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Sensor-based robot control allows manipulation in dynamic environments with uncer-
tainties. Vision is a versatile low-cost sensory modality, but low sample rate, high sensor
delay and uncertain measurements limit its usability, especially in strongly dynamic en-
vironments. Force is a complementary sensory modality allowing accurate measurements
of local object shape when a tooltip is in contact with the object. In multimodal sensor
fusion, several sensors measuring different modalities are combined to give a more accu-
rate estimate of the environment. As force and vision are fundamentally different sensory
modalities not sharing a common representation, combining the information from these
sensors is not straightforward.

In this thesis, methods for fusing proprioception, force and vision together are proposed.
Making assumptions of object shape and modeling the uncertainties of the sensors, the
measurements can be fused together in an extended Kalman filter. The fusion of force
and visual measurements makes it possible to estimate the pose of a moving target with
an end-effector mounted moving camera at high rate and accuracy. The proposed ap-
proach takes the latency of the vision system into account explicitly, to provide high
sample rate estimates. The estimates also allow a smooth transition from vision-based
motion control to force control. The velocity of the end-effector can be controlled by es-
timating the distance to the target by vision and determining the velocity profile giving
rapid approach and minimal force overshoot. Experiments with a 5-degree-of-freedom
parallel hydraulic manipulator and a 6-degree-of-freedom serial manipulator show that
integration of several sensor modalities can increase the accuracy of the measurements
significantly.

Keywords: sensor fusion, force, machine vision, robotic manipulation, extended
Kalman filter, uncertainty modelling

UDC 621.865.8 : 681.532.6 : 681.532.8 : 681.527.5 : 004.93’1



Symbols and abbreviations

η noise
τ latency
φ(·) function converting a rotation matrix to immediate angles
A a linear mapping from image plane parameters to homogeneous plane parameters
F state transition matrix
G control input matrix
He Hessian
H observation matrix
J Jacobian
K Kalman gain
P covariance of the state
Q covariance of the process noise
R(·) function converting immediate angles to a rotation matrix
WRO rotation from the world frame to the object frame
S covariance of the measurement
EETC transformation from the end-effector frame to the camera frame

1-D 1-dimensional
2-D 2-dimensional
3-D 3-dimensional
CAD computer aided design
CCD charge-coupled device
DOF degree-of-freedom
EKF extended Kalman filter
IBVS image-based visual servoing
KF Kalman filter
P proportional
PI proportional-integral
PBVS position-based visual servoing
RGB red green blue
SO(3) space of orientations



Contents

1 Introduction 9

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Contribution and publications . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Pose estimation in visual servoing 15

2.1 Visual servoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Marker-based pose estimation . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Pose estimation by structured light sensor . . . . . . . . . . . . . . . . . . 20
2.4 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Fusion of proprioceptive and exteroceptive sensors 26

3.1 Extended Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 6-DOF tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Uncertainty modelling of visual measurement . . . . . . . . . . . . 31
3.2.2 Handling the latency and different sampling rates of the sensors . 32
3.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Modelling the uncertainty of the end-effector pose . . . . . . . . . . . . . 39
3.3.1 1-D tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2 6-DOF tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.3 Handling the latency and different sampling rates of the sensors . 43
3.3.4 Experiments with a 1-D servo bench . . . . . . . . . . . . . . . . . 44
3.3.5 Experiments with simulations . . . . . . . . . . . . . . . . . . . . . 47

3.4 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Fusion of sensors without common representation 52

4.1 Tooltip probing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.1 Tool center point calibration . . . . . . . . . . . . . . . . . . . . . 55
4.1.2 Handling the sensor delay and different sampling rates of the sensors 56
4.1.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Plane equation as a state vector for the EKF . . . . . . . . . . . . . . . . 65
4.3 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Force and vision control 69

5.1 Switched controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.1 Desired velocity profile . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.2 Velocity control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.3 Force control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.4 Switched control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Hybrid control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.1 Hybrid controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



5.3 Shared control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Conclusion 99

Bibliography 101



Chapter I

Introduction

I purpose to show that, however impossible it may now
seem, an automaton may be contrived which will have
its “own mind,” and by this I mean that it will be able,
independent of any operator, left entirely to itself, to
perform, in response to external influences affecting its
sensitive organs, a great variety of acts and operations as
if it had intelligence.

Nikola Tesla, Century Illustrated Magazine June 1900

1.1 Background

Industrial robots have long been used in heavy, repetitive tasks to produce the same
routine again and again without variation. Car industry is a good example of traditional
robotized mass production where large series of identical products are manufactured.
When the size of the series is big, the robot programming costs per produced unit are
low. However, if smaller series or customized products are produced, more flexible robot
control is desirable.

One of the greatest challenges in robotics is to make the robots work in a robust way
in an uncertain environment. Sensor-based robotics attempts to answer this question
by allowing the robot to react to the feedback from the world immediately, instead of
requiring a perfect model of the world which would allow perfect planning of actions in
advance. Simple motion control is not adequate, when the position of the workpiece is
unknown during manipulation, as the uncertainties present in the task prevent the robot
from following a preprogrammed trajectory. Sensor-based manipulation allows a robot
to adapt to a dynamic and uncertain environment which changes over time, independent
of the actions of the robot. With sensors, the uncertainties of the environment can
be modeled and the robot can take actions based on the sensory input. Sensor-based

9



10 1. Introduction

automation was envisioned long before the first industrial manipulators, but sensor-based
robotics has become feasible only recently. If the robot can react to its surroundings and
change its behavior on the basis of sensory input, a wide variety of tasks can be performed.
Sensor-based robotic manipulation promises increase in the productivity, flexibility, and
robustness of manipulation.

Visual sensing allows the robot to examine its surroundings and adapt to the environment.
Force offers a complementary sensory modality allowing accurate measurements when in
contact with the object. In multimodal sensor fusion, several sensors measuring different
modalities are combined to give a more accurate estimate of the environment. In Fig. 1.1,
a robotic manipulator uses several sensor modalities together to examine its surroundings.
Vision gives a coarse estimate of the position and rotations (pose) of the target object
regardless of whether the tool is in contact with the object or not. The joint sensors
of the robotic manipulator measure the pose of the end-effector and can give additional
information of the object pose when the tool is in contact with the object. A force sensor
mounted on the wrist of the manipulator measures contact and friction forces and can
extract object properties, such as the deformability and friction coefficient. Combining
visual and force sensing is currently one of the most promising approaches to sensor-
based manipulation, as combining the sensors can speed up the manufacturing process
and allow more accurate robot control.

Figure 1.1: Robotic manipulator examining its environment.

A robot can adapt to an unknown environment in two ways. In hierarchical paradigm the
robot observes the environment through sensors and builds a model that describes the
unknown environment. After the sensors have constructed a model of the environment,
a planning algorithm devises a path to follow in order to accomplish the desired action.
Another approach is to react to the sensor feedback immediately through feedback con-
trol. In reactive paradigm it is possible to use very simple planning, giving only a velocity
command or position increment to the robot. The two paradigms can also be composed
into hybrid architecture, where knowledge of the environment is combined with reactive
control [11]. In this thesis a hybrid paradigm is adopted, where the workspace of the
robot is assumed to be free of obstacles, and the controller generates the path online on
the basis of the multimodal sensory input. By combining information from several sensor
modalities, uncertainties in the environment can be modeled and an accurate estimate of
the surroundings of the robot can be created. Traditional sensor based robotics exploits
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sensor measurements directly in control. In this thesis, sensor fusion techniques are pro-
posed which combine the sensor information before the control loop to achieve high-rate,
accurate and robust control.

Framework models for sensor-based robot control define methods for task-based manipu-
lation. Mason’s compliance frame [67] or task frame formalism [21] presents a framework
where different controllers are assigned to different translational and rotational axes of
the task frame. The approach is also known as hybrid control, where different sensors
control different perpendicular directions. The formalism has been in extensive use in
combining different sensor modalities, such as force and vision [94, 15, 14, 13]. Task
frame formalism has limitations, however. The framework does not define interaction
between frames and thus only one frame, the task frame, can be used in the control.
This limits the controlled axes to be perpendicular to each other.

Constraint-based programming offers a more general framework allowing several feature
frames to be used simultaneously in the control. In the task function approach [86]
the task is divided into priority and secondary tasks, allowing several competing control
objectives to be fullfilled simultaneously. The method is often used in visual servoing,
but also other sensor modalities, such as force can be fused in this framework [25]. The
approach is also known as impedance control, where the weighted sum of individual task
functions are combined in the control [65]. A similar formalism, constraint-based task
specification [30] estimates the state, taking into account also the geometric uncertainties
of the environment.

Although the above models offer great help in developing the system, they do not specify
what kind of sensors are used, how they are calibrated and how the sensor uncertainties
are modelled. The modelling of the uncertainties is not straightforward, especially in the
case of multi-degree-of-freedom sensors, such as vision. These questions are considered in
this thesis, and examples are given for different visual sensors, as well as wrist mounted
6-DOF force sensors.

The research has been conducted in the “TacVision” project, which is a part of a larger
“Kitara” technology programme focusing on the Application of Information Technology
in Mechanical, Civil and Automation Engineering funded by Academy of Finland and
Tekes (Finnish Funding Agency for Technology and Innovation). The goal of the TacVi-
sion project is to develop methods that use both visual and tactile feedback to control
robotic manipulators and increase the robustness and efficiency of robot control with
integration of multiple sensors. The web pages of the project are available at [91].

1.2 Objectives

The objective of this thesis is to develop estimation methods for combined vision and
force control. The focus is on estimating the uncertainties of sensor measurements and
combining them in one model to provide a robust estimate of a dynamic environment
with known uncertainties. It is investigated whether the estimate can be used in robotic
manipulation to provide versatile and accurate robot control. Also methods for transi-
tion from vision-based control to combined vision and force control are developed. One
of the challenges in force controlled manipulation is that when a machining tool first
touches the object, a momentary force peak occurs. It is investigated if it is possible to
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reduce the force peak by estimating the position of the object and reducing the impact
velocity before the contact occurs. The main research question in the thesis is whether
modelling the dynamic uncertain environment and fusing several sensor modalities to-
gether in one model can provide better control stability and performance than using the
sensor measurements directly in control.

1.3 Contribution and publications

The main contribution of this thesis is developing estimation methods for robotic manip-
ulation. An unknown environment is modeled by fusing information from visual, force
and robot joint sensors to provide an estimate of the pose of an object for the robot
controller.

A major part of the conducted research has been published in scientific conferences and
in a journal article. The research began by investigating methods for smooth transition
from vision-based motion control to force control. When the end-effector of a robotic
manipulator touches the object, a momentary force peak may occur. By estimating the
pose of the object, the force peak can be reduced by decreasing the velocity of the robotic
manipulator before the contact occurs. A method for approaching a target object quickly
and taking contact with no force overshoot was published in [2]. The article describes
a novel velocity profile approach, which is shown with experiments to be more efficient
than the previous image-based approaches.

Robot control in dynamic environments also requires an accurate estimate of the pose of
the target object. A method for tracking a moving object with an end-effector mounted
moving camera has been developed using an EKF (Extended Kalman filter) model to
estimate the pose of an object based on visual and proprioceptive information of the robot
end-effector. Theory and simulated results for a full 6-degree-of-freedom (DOF) case and
experiments with 1-DOF hydraulic servo bench are presented in [5]. The article includes
a novel sensor delay compensation technique for 6-DOF pose tracking and a method for
filtering rotational measurements in the EKF. Experiments with contacting the moving
target and keeping a desired contact force were also conducted. Force overshoot was
reduced by estimating the object pose with the previous estimation method, and the
results were published in [62]. Later the visual system, as well as the experiments for
moving target tracking were extended to cover a more general case [6], and also force
control experiments were conducted with a 5-DOF parallel hydraulic manipulator [63].

Force offers a complementary sensor modality for determining the object pose. A method
for fusing proprioceptive information of the end-effector with force and visual measure-
ment in the EKF has been proposed in three publications [7, 3, 4]. The publications
propose a novel sensor integration method where tooltip measurement is fused with
visual measurement to estimate the object pose. The uncertainties of the visual mea-
surements are modeled in detail, allowing the tooltip measurement to compensate for
the uncertain pose estimate acquired by the vision sensor. The latest work introduces a
structured light pose estimation method and hybrid control experiments with a 6-DOF
serial manipulator [4]. The article proposes a novel laser sensor and a toolpoint calibra-
tion method essential for position-based control. The thesis also includes unpublished
original work in shared control, utilizing novel estimation methods.
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The author made a major contribution to the development and experimental work in [62]
and participated in the development and experiments in [63]. In the rest of the papers
the author is the first author and had a primary role in developing the system, writing,
and conducting the experimental work [2, 5, 6, 4, 3, 7].

1.4 Outline of the thesis

The relations between the chapters presented in this thesis are shown in Fig. 1.2. Chap-
ter 2 introduces vision-based robot control using pose estimation algorithms. Pose esti-
mation is later used in Chapter 3, where an extended Kalman filter (EKF) combining
visual and encoder information is presented, and in Chapter 4, where contact information
is combined in the EKF estimate. Chapter 5 focuses on combined control integrating
force and vision sensors by using the previously introduced estimation methods, and
finally, Chapter 6 summarizes the achievements of this thesis, and suggests topics for
future research.

Figure 1.2: Structure of the theoretical work.
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Chapter II

Pose estimation in visual servoing

In this chapter vision-based robot control, visual servoing is introduced. It is shown how
the pose of an object can be estimated in the world coordinates and how the estimate
can be used in control. First, the relative pose of the object with respect to the camera
must be determined. Then the pose can be transformed to the world frame by using
hand-eye calibration and the proprioceptive information of the robot end-effector. To
extract the relative pose of the object with respect to the camera, model-based pose
estimation methods are often used. Several methods for stable and real-time 3-D pose
tracking exist in the literature. Most current 3-D pose tracking systems are based on
tracking object boundaries [35, 48], but examples of appearance-based 3-D tracking [44]
also exist. Methods based on non-linear pose computation [29], texture tracking [100]
and model free cues [51] have been presented. The model can be a CAD-model of the
object [35] or simply a model describing the 3-D coordinates of markers glued on the
object. Also structured light sensors can be used to define the pose of an object. In
robotics, laser striping is often used to extract geometrical properties of the target object
[28], but also information of the object pose can be obtained if the geometry of the object
is assumed to be known.

Two different pose estimation methods are proposed in this chapter. The first method
is a model-based pose estimation method using markers as image features. The method
can extract the full 6-DOF pose of an object from a single image. A novel marker sys-
tem is presented, where perspective projection and feature correspondence problems are
solved in a computationally efficient way. The second method is a laser-triangulation-
based structured light method. Methods based on image features require distinguishable
features on the target object, such as markers. Active lighting methods do not require
any features and also work on smooth surfaces without texture. The proposed method
can estimate the pose of a planar object and extract the 5-DOF pose of two intersect-
ing planes. A novel laser sensor calibration method is also proposed, automating the
laborious calibration procedure completely.

15



16 2. Pose estimation in visual servoing

2.1 Visual servoing

Vision-based robot control, visual servoing, is traditionally classified into two types of
systems [43]: image-based and position-based systems. In image-based visual servoing
the control error is expressed directly in the image plane. This has the advantage that a
3-D model of the target is not necessary. However, a disadvantage is that the Cartesian
error of the robot is not easily related to the image error, which also explains some of the
convergence problems related to image-based visual servoing (IBVS) [24, 66]. In IBVS,
image features are used to control the robot directly. The visual sensor gives relative
commands to the robot controller in order to maintain the desired tool position and
orientation with respect to the target object. The calibration of the sensor is simple, as
the sensor only needs to give relative information about where the end-effector should
move in order to achieve the correct tool pose. The control will converge to the correct
tool pose as long as the direction of the relative information given by the sensor is correct.
However, there are limitations in this approach, as the desired pose must be shown to the
system. Also, the control is performed in image coordinates which makes the Cartesian
tool trajectory unpredictable.

In the Position-based visual servoing (PBVS), the control is based on 3-D pose of the
object estimated in the Cartesian space using vision. This approach suffered earlier from
high computational complexity, but currently real-time pose estimation and tracking
is possible for different types of objects, see e.g. [35, 93, 51]. PBVS allows control in
Cartesian coordinates, and therefore the generated robot trajectory is known. In addition
to the two control approaches above, another approach, called “hybrid visual servoing”,
is to divide the control between the image space and Cartesian space [64].

Different camera configurations can be used in visual servoing. The camera can be affixed
to the end-effector in eye-in-hand [13] configuration, or the camera can observe both the
hand and the object [83]. The effect of camera calibration errors has been studied for
different configurations [37] and between position-based and image-based visual servoing
[32]. Several camera-object configurations have been proposed for different applications:
moving camera/static object (e.g. visual navigation), static camera/moving object (e.g.
surveillance), and moving camera/moving object (e.g. moving target indication).

Real-time pose estimation of 3-D objects enables such tasks as grasping moving objects
and localization of a mobile robot. In visual servoing, visual measurements are needed to
provide a feedback for control. To attain controller stability, the sample rate needs to be
high enough and the sensor delay low. This can be circumvented by using low feedback
gains, which consequently causes slow convergence. Low gains are typical for much of the
research in visual servoing. To use vision to control a fast moving platform, specialized
hardware is often [47] required. To achieve efficient and robust control, the frequency
of the control loop must be high enough. Complex algorithms, such as model-based
3-D tracking restrict the sampling rates typically to under 100Hz, and also considerable
sensor delay exists due to image processing.

2.2 Marker-based pose estimation

To simplify the pose estimation procedure, a marker-based method is introduced. The
model can be predefined, or if the 3-D locations of the markers are unknown, they can be
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determined by moving the robot end-effector to known locations and storing the image
coordinates of the markers. From these pixel coordinates it is possible to reconstruct the
3-D coordinates of the markers, as long as the intrinsic camera parameters are known.
However, predefined models offer better accuracy if they are available. In this thesis,
marker-based tracking with a predefined 3-D marker model is used.

The marker system was designed so that perspective projection does not cause inaccu-
racies in determining the marker location. Marker systems based on determining the
centroid of a circle cannot determine the marker center reliably. The perspective pro-
jection distorts the circle into an ellipse therefore giving inaccurate measurement for the
marker centroid. This problem can be avoided by computationally intense ellipse fitting
techniques [40]. However, in real-time tracking, simple point features are desirable.

In the approach the marker features are points and do not suffer from perspective projec-
tion. Each marker consist of three corners which can be recognized with corner extraction
methods [39]. Depending on the resolution of the image and frame rate of the camera, the
system can be built either to detect corners in the whole image or in the neighborhood
of the corners in the previous image. A sample of a marker is shown in Fig. 2.1.

Figure 2.1: Marker with three high contrast corners.

The corners of a single marker lie on the same line, and due to the linearity of the
perspective projection, the corners are collinear also in image coordinates. The corners
are spaced equally, and between two corners there is a color encoded dot which is used
for determining the label of the marker. Lens distortion can cause the corners to diverge
from the line, but as the markers occupy only a small area in the image plane, and the
dot between the corners is relatively large, the labeling is robust even when a small lens
distortion exists. Each marker has unique color encoding, and therefore correspondence
between 2-D and 3-D points can be made. The marker system and the coordinate axes
of the estimated relative pose are shown in Fig. 2.2, and an algorithm for extracting the
marker features is described in Alg. 1.

With model-based pose-estimation the pose of the object relative to the camera CTO
can be determined if the intrinsic camera parameters are known. Pose estimation meth-
ods require at least three 2-D–3-D feature pairs that are not on the same line. An
initial guess for the pose is calculated using DeMenthon-Davis’s method [31]. However,
DeMenthon-Davis’s method is not as accurate as non-linear pose estimation methods [41]
and therefore a conjugate gradient approach [53] is used to minimize the image plane
reconstruction errors, to determine the maximum likelihood pose. If the motion between
two consecutive images is small, the previous pose can be given as a starting point for
the gradient descent. Otherwise the initial pose must be estimated in every frame. An
algorithm for the pose estimation is given in Alg. 2.
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Algorithm 1 Algorithm for extracting the feature coordinates.

1: find the corner points from the image
2: for all corner point ci do

3: find the two closest corners cl and cr
4: if ci, cl and cr are on the same line and ci is in the middle then

5: measure the color of the dot between ci and cl
6: measure the color of the dot between ci and cr
7: determine the color encoding for the marker
8: get the 3-D object coordinates of the marker corner points from a database based

on the color encoding
9: store the 2-D image plane coordinates and the 3-D object coordinates in a list

10: else

11: proceed to the next corner
12: end if

13: end for

14: return a list of corresponding 2-D–3-D coordinate pairs of the feature points

Algorithm 2 Algorithm for 6-DOF pose estimation.

1: calculate an initial pose estimate based on the 2-D–3-D feature pairs using
DeMenthon-Davis’s [31] method

2: repeat

3: back project the 3-D features on the image plane using the estimated pose and
camera calibration parameters

4: compute the sum of squared errors of back projected and measured image feature
coordinates

5: calculate the gradient of the projection error function
6: perform a line search along the gradient to find a new pose estimate
7: until error is under a threshold
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Figure 2.2: Marker system.

In the proposed approach, the camera is attached rigidly to the end-effector. To estimate
the world frame pose of a target object, the transformation from the camera to the object
CTO is first estimated using vision, as described above. The translation and rotation of
the camera with respect to the end-effector EETC must be determined in a calibration
step in order to get the pose of the object relative to the end-effector

EETO = EETC
CTO. (2.1)

The absolute pose of the object with respect to the world frame is then

WTO = WTEE
EETO, (2.2)

where WTEE is the end-effector pose in the world frame determined with forward kine-
matics.

Several hand-eye calibration techniques exist in the literature. The translation and rota-
tion can be solved independently [97, 77] or simultaneously [42]. Calibrating the hand-eye
configuration of parallel manipulators with lower mobility imposes endogenous difficul-
ties. If the actuators have less than six degrees of freedom, it is not possible to control
all the translations and rotations. The relative rotation between the camera and the
end-effector can be determined with translational movement of the end-effector. Ro-
tations of the end-effector are required to measure the translation. In lower mobility
manipulators, some degrees of freedom are unavailable, which weakens the accuracy of
the calibration. Also the work space of the parallel manipulator is limited, further de-
teriorating the calibration, as accurate hand-eye calibration requires large movements of
the end-effector.
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2.3 Pose estimation by structured light sensor

The visual system consists of a diffractive optics laser cross hair module and a fire-wire
camera. The laser cross hair module generates two laser planes perpendicular to each
other in the world coordinates. The laser pattern is projected on the target object and
the camera captures an image of the pattern from a different viewpoint. Correspondence
between an illuminated point on the camera image and a three-dimensional world point
can be made by triangulation. An image processing algorithm extracts four lines from
the image and calculates the parameters of the lines. Gaussian filtering is first applied to
the image in order to smooth the speckle pattern of the laser light. Next, two illuminated
areas on each column of the image are detected by using thresholding. The mean of each
area is calculated and the y-coordinates of the mean of upper and lower areas are stored
in separate arrays. Least squares line fit is then used to extract four lines from the arrays.
Also the standard deviations of the line parameters are obtained by the least squares fit.
Fig. 2.3 shows an image from the laser sensor. The line parameters are visualized by
drawing two dots on each line. The second dot is chosen to be on the crossing point of
two lines, and therefore three dots define a plane where the laser pattern is projected.
The three dots on the left side of the image define three points on the first plane and the
three dots on the right side of the image define three points on the second plane.

A narrow-field-of-view lens is attached to the camera in order to minimize the lens distor-
tion effects. If the lens distortion is not considered, there exists a linear transformation

U = AL from the parameters of the two lines in image plane L =
(

a1 b1 a2 b2 1
)T

to homogeneous plane parameters U =
(

a b c d
)T

. It is also possible to compen-
sate for the lens distortion by calculating the lens distortion off-line and transforming
the image plane coordinates through the lens distortion model during calibration and
tracking. The extracting of the homogeneous plane parameters is presented in Alg. 3.
The algorithm extracts the plane parameters of a plane on the left side of the image.
The procedure is repeated to extract the plane parameters for a plane on the right side
of the image by processing the arrays in reverse direction.

Algorithm 3 Algorithm for estimating the pose of a homogeneous plane.

1: filter the image with Gaussian filter
2: for all image plane x-coordinate do

3: find the two largest connected components from the single image column
4: compute the mean of the first connected component’s pixel values and store in an

array
5: compute the mean of the second connected component’s pixel values and store in

a second array
6: end for

7: extract line parameters a1 and b1 from the beginning of the first array using least
squares line fit

8: extract line parameters a2 and b2 from the beginning of the second array

9: store the line parameters into vector L =
(

a1 b1 a2 b2 1
)T

10: compute the homogeneous plane parameters U =
(

a b c d
)T

= AL

11: return the homogeneous plane parameters of the first plane
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Figure 2.3: Image from the laser sensor.

One challenge with position-based visual feedback is the calibration of the visual sensor.
The visual sensor must provide information of the absolute position of the object in
all configurations, which requires very accurate calibration. One possibility is to use a
camera fixed to the world frame, but the resolution of the camera restricts the accuracy
of the measurement, and this configuration allows the target object to be observed from
a single viewpoint only. When the camera is attached to the end-effector of the robot, a
simple laser projection-based visual sensor can extract the geometry of the object when
the sensor is moved by the robot during the machining process. When calibrating the
sensor, also the pose of the sensor with respect to the end-effector must be determined. If
the sensor has fixed optics and sturdy design, it is often enough to calibrate the intrinsic
parameters of the sensor once. The hand-eye calibration on the other hand must be
repeated if the position or orientation of the visual sensor changes with respect to the
end-effector. The hand-eye calibration is often a laborious process prone to measurement
errors, which must be performed by the robot end user. A method for automatic laser-
sensor calibration is proposed below, which solves the intrinsic parameters of the sensor
as well as the hand-eye calibration in a single calibration step.

Calibrating the laser sensor system often requires three different calibration steps [109,
105, 90]. First the intrinsic camera parameters are calibrated, then the hand-eye cal-
ibration is determined, and finally the laser planes are calibrated. Calibration errors
propagate, and therefore each step adds more uncertainty to the estimate. The calibra-
tion pattern used for determining the intrinsic parameters is not exact, as it is printed
with an ordinary laser printer. The robot calibration is not perfect, which increases the
uncertainty in the hand-eye calibration. Lastly, the laser plane calibration suffers from
the uncertainties of the previous steps, as well as imperfections in the calibration object.
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Methods for determining all the required parameters in one step are also available. The
calibration of the laser plane as well as the intrinsic and hand-eye parameters of the cam-
era can be obtained in a single calibration procedure. Chen et al. [26] present a method
which resolves a linear transformation Xw = TcbXi from the homogeneous image plane
coordinates Xi to the homogeneous world coordinates Xw. The linear transformation
Tcb is a 4× 3 collineation matrix describing a map from one projective space to another.
The elements of the matrix are explained by Agin [1], but it is not necessary to know
what the elements describe, as the linear map can be solved by linear least squares fit.
Reid [84] has extended the method for plane-image point corresponds, where the original
method used line-image point corresponds. It should be noted that Reid’s method does
not require any features on the calibration plane other than the projected laser line. The
calibration is based on world plane to image point correspondences, rather than world
point to image point correspondences.

For the calibration of the laser sensor, the method presented by Reid [84] has been mod-
ified. The original method requires several calibration planes to be known in the world
coordinates, and not all planes all allowed to be parallel. In this section, a method re-
quiring only one calibration plane is proposed. The robot end-effector is rotated and
translated into different poses in order to view the calibration plane from different view-
points. Fig. 2.3 shows how the robotic manipulator is transformed to different poses
during the calibration procedure. The laser crosshair module projects two lines on the
calibration plane, and the camera captures an image of the lines. The parameters of the
two lines are obtained in image plane coordinates and stored for each pose T . Homo-
geneous presentation for the line parameters is adopted and thus there exists a linear

transformation A from the line parameters L =
(

a1 b1 a2 b2 1
)T

to homogeneous

plane parameters U =
(

a b c d
)T

. The 5 × 4 conversion matrix A converts the line
parameters to relative plane parameters

ρU = AL, (2.3)

where ρ is a scaling factor.

Figure 2.4: Different poses during the laser sensor calibration procedure.
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The parameters of the calibration plane Uc are assumed to be known in the world
coordinates, and also the pose of the end-effector can be obtained from the joint sensors
of the robot. Therefore several corresponds between line parameters Li and relative
plane parameters Ui can be obtained by moving the end-effector to different poses Ti,
where i is a running index of the pose. The relative plane parameters can be obtained
by transforming the calibration plane to the end-effector coordinates Ui = T−1

i Uc, and
thus the transformation equation (2.3) then becomes

ρT−1
i Uc = ALi. (2.4)

There are 19 unknowns in the transformation matrix A, as one of the parameters is a
scaling factor. Therefore at least five different poses are required to determine the projec-
tivity. The system of linear equations can then be solved by singular value decomposition
to obtain the transformation matrix A. An algorithm for the calibration procedure is
presented in Alg. 4.

Algorithm 4 Algorithm for laser sensor calibration.

1: for i=1 to number of poses do

2: capture an image
3: store the line parameters as the i:th row of a matrix Lm

4: transform the calibration plane Uc to the end-effector coordinates Ui = T−1
i Uc

5: store the relative calibration plane parameters Ui as the i:th row of a matrix Um

6: move the end-effector to the next pose
7: end for

8: compute pseudoinverse L+
m using singular value decomposition

9: A = L+
mUm

To get reliable results, the poses used for the calibration should cover the work-space
used during robot control, and the number of poses should be much higher than the
required five. The calibration process can be fully automated and repeated during the
robot control in case the calibration becomes inaccurate. During the calibration process,
the tool center point was rotated around the x-axis to four different poses and to eight
different poses around y-axis. For each rotation, the end-effector was also translated along
the z-axis to six different heights, yielding in total 4×8×6 = 192 poses. The calibration
errors are presented in Fig. 2.5. When the end-effector was rotated to different poses, it
was also translated in order to keep the tool centerpoint stationary. The plot describes
the error of the plane distance parameter d for each individual end-effector position in
the x- and y-coordinates. It can be seen that the calibration is more accurate in the
center of the calibration area where the relative rotation is smaller, and that the variance
of the error becomes higher when the relative rotations are large. The histogram of the
calibration errors shown in Fig. 2.6 gives an estimate of the expected errors during robot
control. The error distribution is close to Gaussian, and the magnitude of the errors is
in the order of few millimeters.

2.4 Summary and discussion

Two different pose estimation methods were proposed in this chapter, a marker-based
pose estimation method and a structured light laser sensor method. A novel laser sen-
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Figure 2.5: Calibration errors for each pose.
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Figure 2.6: Histogram of calibration errors.

sor calibration method was also proposed, which automates the calibration procedure.
Experimental results and error analysis of the laser sensor calibration procedure were
shown.

Model-based pose estimation methods require a model of the target object. This can be
for example a CAD-model of the object or a list of marker features in 3-D coordinates.
Marker-based pose estimation methods are often used in industrial applications as they
simplify the pose estimation procedure. In this chapter, a robust marker system was
proposed, which utilizes color encoding to determine the correspondence of the markers.
The marker system is based on point features instead of circular markers and therefore
does not suffer from perspective projection.

Altough model-based pose estimation can be used in many applications, distinguishable
features on the target object, such as markers are required. Active lighting methods do
not require any features and also work on smooth surfaces without texture. Structured
light methods are often used to determine the shape of an object [28], but it is also
possible to extract the pose of an object if assumptions of the object shape are made.
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The structured light laser sensor method proposed in this chapter can estimate the pose
of a planar object and extract a 5-DOF pose of two intersecting planes. Calibrating a
structured light eye-in-hand visual system is a challenging and laborious process. The
calibration methods presented in literature often require three calibration steps [109, 105,
90]. By utilizing the calibration method proposed in this chapter, the procedure is fully
automated and all the required parameters are obtained in a single calibration step.



Chapter III

Fusion of proprioceptive and exteroceptive sensors

This chapter addresses three problems: uncertain visual measurements, different sam-
pling rates, and compensation of the sensor delay. The extended Kalman filter (EKF)
framework is used for incorporating measurements with different uncertainties and sam-
pling rates. The EKF allows reduced uncertainties of vision-based estimates and interpo-
lation between low frequency visual measurements, making it possible to track a moving
target. The expected future target pose can be predicted with the EKF to alleviate
inherent latencies in the visual system and control loop. When proprioceptive and visual
measurements are synchronized in the EKF, the estimate of the target pose becomes
delayed. To compensate for this delay, as well as latencies in the control loop, the future
target pose is predicted with the EKF.

The reduction of measurement errors and fusion of several sensory modalities with a
Kalman filter (KF) framework is widely used in robotics, for example in 3-DOF robot
navigation [9, 27, 56, 85] and 6-DOF pose tracking [102, 46]. These methods assume,
either implicitly or explicitly, a stationary target/moving camera configuration. In [57],
the localization of mobile robot with a moving target/stationary camera configuration
is proposed. The trajectory of the moving target is known and the robot stops while
observing the target. Kalman filters have also been applied in fusing several different
visual cues for pose tracking for both moving target/stationary camera and stationary
target/moving camera configurations [49, 51]. Tracking a moving target with a moving
camera has not been studied in detail. However, such tracking would allow many useful
applications, including the manipulation of moving objects, which is especially useful
when the work space of the manipulating robot is limited. In that case, it would be
possible to process large workpieces by attaching the workpieces onto a moving platform.
The size of the work space is a serious limitation especially for parallel robots, which
provide superior force control properties due to high stiffness.

In the visual servoing context, Kalman filters are typically used only for filtering uncer-
tain visual measurements, and the proprioceptive information of the end-effector is not
taken into account. Wilson et al. [103] propose to solve the pose estimation problem for
position-based visual servoing with the KF framework, as this will balance the effect of

26
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measurement uncertainties. A similar approach has been used by Lippiello [59], utilizing
several cameras and fusing the information together. However, in these approaches the
KF can be understood as a single iteration of an iterative Gauss-Newton procedure for
pose estimation, and as such are not likely to give optimal results for the non-linear pose
estimation problem. Nomura et al. [75] propose to use KFs to reduce measurement noise
in image-based visual servoing. Their approach differs from the one proposed in this the-
sis by modelling the uncertainty in the image space, while in this thesis the uncertainty is
considered in Cartesian space. Another difference is that their state vector is the pose of
the object relative to the camera, and in this thesis the state vector is the absolute pose
of the object in the world frame. The world-frame-based prediction model is more linear,
as the motion of the end-effector does not affect the state. It should be noted that in an
eye-in-hand system, the absolute pose of a target cannot be obtained without fusing the
proprioceptive information of the end-effector and the relative visual measurement.

While the above mentioned works address the problem of uncertain measurements, the
sensor delay and different sampling rates of the sensors should also be considered. Data
fusion of sensors with different sample rates have been proposed earlier by Langois et al.
[55]. They describe a system composed of one-degree-of-freedom manipulator controlled
by fusion of visual measurement and optical encoder in the KF-framework. Sim et al.
[89] propose a multirate predictor control utilizing an α− β filter to predict the desired
path and velocity of the end-effector. In their work, sensor delay is taken explicitly into
account, but only visual measurement is considered in the filter. Their approach is also
only applicable for estimating the Cartesian position, not the full pose.

Vision offers a low cost sensor modality with a high information content. Although
relatively fast cameras and visual algorithms exist, the sampling rates of visual measure-
ments are still lower than the frequency of positional encoders and joint angle sensors.
By combining the visual measurements with high frequency proprioceptive information,
the control loop can be run with higher frequency to allow better stability and faster
convergence. In addition, the sensor delay of the visual measurements must be taken
into account when fusing the measurements. Especially the eye-in-hand configuration
requires precise synchronization of proprioceptive information and visual measurement.
Otherwise the vision will give erroneous information when the end-effector is in motion.
In addition to low sample rate and sensor delay, visual measurements are also always
uncertain. The resolution of a camera is limited, image noise is present and motion blur
adds error to the image. When using a single measurement at each time instant, as is
typical in visual servoing, uncertainty in the visual measurements can cause undesired
oscillations and weaken the accuracy. By fusing multiple measurements together, more
accurate estimates of the target motion can be made compared to a single image.

The number of different tracking [35, 93, 51] algorithms is almost as great as the number
of applications. Therefore, in this chapter a particular 3-D tracking algorithm is not
proposed, but the theory is given in a way which allows it to be applied to any tracking
algorithm.

3.1 Extended Kalman filter

In this section, the notation in the context of the Extended Kalman filter (EKF) is
presented. The measurements from position encoders and visual system are integrated
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in an EKF. The EKF estimates the state of a system with a system model f(x) describing
the dynamics of the system

x(t) = f(x(t− 1)) + g(u(t− 1)) + w(t− 1), (3.1)

where g(u) describes the effect of the system input u and w is the model error modeled
as a zero-mean Gaussian random variable. In addition, a measurement model h(x) is
used to link the internal state to measurable quantities z by

z(t) = h(x(t)) + v(t), (3.2)

where v is the Gaussian measurement error. Uncertainty is modeled with covariance
matrices so that P = Cov(x), Q = Cov(w), and S = Cov(v).

In each time-step, a measurement update is calculated as follows

x(t+ 1) = x(t) + K (z(t) − Hx(t)) , (3.3)

where H is the observation model matrix and the Kalman gain K is defined as

K = PHT (HPHT + V RV T )−1, (3.4)

where V is observation noise with covariance R.

An algorithm for extended Kalman filtering is presented in Alg. 5. The basic EKF
estimation equations are only briefly mentioned in this section. For a more thorough
explanation of the EKF, the reader is referred to [58].

Algorithm 5 Algorithm for extended Kalman filtering.

1: initialize the state x and the state covariance P

2: repeat

3: predict the state x(t) = f(x(t− 1)) + g(u(t− 1)) + w(t − 1)
4: predict the state covariance P = Cov(x)
5: obtain a new measurement z(t)
6: calculate the measurement residual z(t) − Hx(t)
7: calculate the residual covariance S

8: calculate the Kalman gain K = PHT (HPHT + V RV T )−1

9: update the state estimate x(t+ 1) = x(t) + K (z(t) − Hx(t))
10: update the state covariance P

11: until filtering is stopped

3.2 6-DOF tracking

In 3-D tracking, the relative 3-D pose of the object with respect to the end-effector is
measured by using vision. The tracked object is assumed to be moving with a constant
velocity, and the end-effector motion is assumed to be known as the joint sensors of a
robotic manipulator measure the end-effector pose at every time instant. The approach
was first proposed in [6], and later extended by modelling the covariance matrix of the
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visual measurement in detail and combining the tactile measurement into the EKF model
[3]. If there is uncertainty in the end-effector motion, the method described in [5] can be
adopted.

The 12-dimensional state vector x contains the 6-DOF velocity and pose information of
the object,

x =
(

xTp ẋp
T
)T
, (3.5)

where xp =
(

x y z φ θ ψ
)T

. The poses are given with respect to a world coordi-
nate system, and the rotation is represented by immediate angles. Three-parameter axis
angle representation is used for the angles. The φ, θ, and ψ represent the rotation axis

and the length of the vector
(

φ θ ψ
)T

gives the angle.

Because of the problem of non-unique angles, the approach from [102] is adopted, and
the orientation of the objects is stored externally, outside the EKF state, so that φ, θ,
and ψ only represent incremental changes to the orientation. After each update step of
the EKF, the rotation angle of the target is integrated into rotation matrix Rt, and the
rotation angle is reset to zero. The homogeneous transformation describing the pose of
the target in the world coordinates can now be written as

WTO =









x
RtR(φ, θ, ψ) y

z
0 1









, (3.6)

where R(·) is a function mapping immediate angles to a rotation matrix. Now, the 3-D
system can be modeled with

x(t+ 1) = Fx(t) + w(t), (3.7)

where

F =

(

I6 ∆tI6

0 I6

)

. (3.8)

With the assumption that an unknown constant acceleration affects the object at every
time instant, the model covariance matrix Q is now

Q =

(

1
4∆t4Σd

1
2∆t3Σd

1
2∆t3Σd ∆t2Σd

)

, (3.9)

where

Σd =

(

σ2
dxI3 03

03 σ2
dφI3

)

, (3.10)

where σ2
dx describes the process uncertainty for the translation and σ2

dφ the uncertainty for
the rotations. The uncertainties are assumed to be unknown accelerations with Gaussian
noise and zero mean. It is important to notice that by using WTO as a state variable
instead of CTO, the model can estimate the motion of the object more accurately. If the
relative pose from the camera to the object is used as a state vector, the motion of the
end-effector alters the state, and even if the object is stationary, the constant velocity
assumption for the state might not hold.
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The visual system provides a measurement describing the relative pose of the target
object with respect to the camera, C T̂O. The Kalman filtering requires the difference
between predicted and measured quantities to be calculated. The structure of SO(3) (the
space of orientations) is such that the difference between rotation angles is geometrically
meaningless, which in this case can cause severe problems. Therefore, the rotation and
translation parts of the measured relative pose are considered separately below.

The mapping between the current state and the measured relative translation from the
camera to the target C t̂O can be written as

C t̂O = CRW

(

W tO −W tC
)

. (3.11)

Next, noting that CRW = WRT
C , W tO =

(

x y z
)T

and W tC is known, the measure-
ment model for translation can be written as

yT (t) = HTx(t) − CRW
W tC , (3.12)

where
HT =

(

CRW 03 03 03

)

. (3.13)

For the rotation measurement, it is beneficial to use a three-parameter representation,
because then the additional constraints for over-parameterized representations are not
necessary. However, contrary to translation, the arithmetic difference between the mea-
sured and predicted angles does not have a geometric explanation, and therefore the
difference must be calculated with rotation matrices.

As the rotational parameters in the state vector only describe the incremental changes
to the orientation, the measurement model for the rotation must also use incremental
rotations. The measurement can be written as the difference between the stored target
rotation Rt and the current visual measurement of the target rotation WROm

. Then
the difference of these two rotations is OtROm

, where Ot is the stored target rotation
frame and Om the measured target rotation frame. The prediction model gives a second
estimate of the incremental change

OtROp
= R(φ, θ, ψ), (3.14)

where Op is the predicted target rotation frame. The residual between the prediction
and measurement then becomes OpROm

.

By introducing a function φ(·) converting a rotation matrix to immediate angles, the
predicted incremental angles are obtained by

φ(OtROp
). (3.15)

Now, in order to use the incremental rotation measurement in the EKF, only the gradient
HR of the φ(OtROp

) is needed with respect to the system orientation parameters, HR =
∂φ(OtROp )

∂φ,θ,ψ
; The gradient can be calculated analytically by taking the partial derivatives

of the rotation matrix with respect to each element and then utilizing the chain rule to
get the partial derivatives with respect to the orientation parameters. The measurement
model for the rotation is then

HR =
(

03 −∂φ(OtROp )

∂φ,θ,ψ
03 03

)

. (3.16)
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The covariance of the visual measurement is often modeled with a constant diagonal
matrix as

Sc =

(

σ2
vxI3 03

03 σ2
vφI3

)

, (3.17)

where σ2
vx is the uncertainty for the position of the visual measurement and σ2

vφ the
uncertainty for the rotation. However, by using a constant diagonal covariance matrix,
the information of the relative uncertainties between each degree of freedom are lost and
the covariance is restricted to be fixed over time. Also the cross covariance terms of the
visual measurement are lost. In the next subsection the covariance matrix is modelled
by using a Hessian approximation.

3.2.1 Uncertainty modelling of visual measurement

In order to fuse the measurements in the EKF, the uncertainty of each individual mea-
surement must be estimated. The uncertainty of the visual measurement depends on
the resolution and optical properties of the camera. Image noise due to poor lighting or
short exposure time adds uncertainty to the measured feature point locations in pixel
coordinates. By assuming this uncertainty to be zero mean Gaussian and projecting
it into the uncertainty of the object pose in Cartesian space, the measurement can be
incorporated in the EKF. A linear approximation is used where the Hessian of the visual
measurement is calculated and the probability density of the transformed measurement
is considered Gaussian. As the transformation is non-linear in reality, this will only give
an approximation of the true distribution. However, the approximation is reasonably
good as long as the measurement is not close to a singularity.

Calculating the true Hessian would require solving the second derivatives of the pose
estimation problem. This can be done analytically, but in a real-time application the
computational burden is considered too large. Instead, the Hessian is approximated by
the Jacobian estimate 2JJT , which ignores second derivative terms [17]. The obtained
Hessian is also validated by numerical second order differentiation of the projection equa-
tions in order to verify the analytical results. The Hessian estimate and numerical ap-
proximation agree when the image Jacobian is not close to a singularity.

The Hessian estimates how much the pose changes when there is a small error in the
image plane coordinates. The Jacobian J is formed by derivating the difference between
the projected and measured feature coordinates in the image plane with respect to each
pose parameter. The projection equations solve the transformation from the image plane
coordinates (u, v) to the pose coordinates (x, y, z, φ, θ, ψ)

X̂i = R00Xi + R01Yi + R02Zi + x (3.18)

Ŷi = R10Xi + R11Yi + R12Zi + y (3.19)

Ẑi = R20Xi + R21Yi + R22Zi + z, (3.20)

where R = R(φ, θ, ψ), (Xi, Yi, Zi) are the coordinates of the feature i in the 3-D model,
and (X̂i, Ŷi, Ẑi) can be solved from

△ui = ui −
X̂i

Ẑi
(3.21)
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△vi = vi −
Ŷi

Ẑi
, (3.22)

where (ui, vi) are the coordinates of the feature i in the image plane and (△ui,△vi) the
difference between projected and measured feature coordinates in the image plane. The
Jacobian J is now

J =



















∂△u1

∂x
∂△v1
∂x

... ... ∂△un

∂x
∂△vn

∂x
∂△u1

∂y
∂△v1
∂y

... ... ∂△un

∂y
∂△vn

∂y
∂△u1

∂z
∂△v1
∂z

... ... ∂△un

∂z
∂△vn

∂z
∂△u1

∂φ
∂△v1
∂φ

... ... ∂△un

∂φ
∂△vn

∂φ
∂△u1

∂θ
∂△v1
∂θ

... ... ∂△un

∂θ
∂△vn

∂θ
∂△u1

∂ψ
∂△v1
∂ψ

... ... ∂△un

∂ψ
∂△vn

∂ψ



















, (3.23)

and the Hessian He ≈ 2JC−1
I JT , where CI is a diagonal matrix describing the uncer-

tainties for each feature in the image plane. The covariance matrix for the relative visual
measurement from the camera to the object in Cartesian space can now be written as
CC = H−1

e .

In the EKF, however, this is only applicable to the translational measurement. For
the rotational measurement, the Hessian must be projected to the incremental rotation
measurement function. For the rotational measurement model, the gradient of the mea-
surement function HR is already calculated. The covariance for the visual measurement
is then

SH =

(

I 0

0 HR

)

CC

(

I 0

0 HR

)T

. (3.24)

Modeling the visual uncertainty is described in Alg. 6.

Algorithm 6 Algorithm for determining visual uncertainty.

1: calculate the difference between the projected and measured feature coordinates in
image plane analytically

2: derivate the difference with respect to each pose parameter to obtain Jacobian J

3: approximate the Hessian by He ≈ 2JC−1
I JT

4: project the Hessian to the space of the EKF measurement

3.2.2 Handling the latency and different sampling rates of the sensors

The sampling rate for a position encoder is typically much higher than for visual mea-
surement. In addition, the visual measurement has latency due to the exposure, transfer,
and processing of the image. These typically limit the response rate of visual control,
but this can be alleviated by modeling the effects. Due to different sampling rates, the
prediction is performed more often than the measurement update. This can be done by
setting the visual measurement terms in the Kalman gain matrix or the gradient matrix
to zero when there is no visual measurement.

To compensate for the sensor delay of vision, the system shown in Fig. 3.1 is used. The
proprioceptive measurements are delayed by the amount of visual sensor delay so that the
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two are synchronized when fed to the EKF. The delay of the filter can be compensated
by a modified prediction model (bottom of Fig. 3.1) to estimate the current, non-delayed
state. In the modified prediction, the time interval ∆t in the state transition matrix F

is substituted by sensor delay τ . Compensation of the sensor delay is explained in Alg.
7.

Figure 3.1: Compensation of the sensor delay.

Algorithm 7 Algorithm for compensation of the sensor delay.

1: repeat

2: estimate the pose of the target using the visual measurement
3: delay the encoder measurements for the amount of sensor delay in visual measure-

ment
4: run the EKF loop
5: predict the current non-delayed state
6: repeat

7: delay the encoder measurements for the amount of sensor delay in visual mea-
surement

8: set the visual measurement terms in Kalman gain matrix to zero
9: run the EKF loop

10: predict the current non-delayed state
11: until new visual measurement is obtained
12: until tracking is stopped

3.2.3 Experiments

Experiments were conducted on a 5-DOF parallel hydraulic manipulator [61] shown in
Fig. 3.2. A linear track was mounted on the robot frame to increase the work space of
the robot. The object to be tracked was affixed to the linear track. The absolute position
of the object with respect to the robot frame was estimated by using visual measurement
alone and by the EKF. The experiments were conducted to compare the performance of
the EKF-based control and position-based visual servoing.
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Figure 3.2: 5-DOF parallel hydraulic robot.

The robot coordinate system is based on Euler angles, whereas the EKF uses an axis an-
gle representation. Therefore, the axis angles had to be converted to Euler angles in order
to control the robot. The object rotations were selected so that the Euler angle represen-
tation did not suffer from singularities in the robot work space. In parallel manipulators,
the direct kinematics of the system is difficult to solve. Mapping from joint coordinates
to the pose of the end-effector is usually only obtainable through iterative methods. The
inverse kinematics, on the other hand, is available. When following a known trajectory,
the pose of the end-effector follows the desired trajectory approximately with some de-
lay. As the lengths of the cylinders are controlled with PI-controllers, a true pose is only
available when the PI-controller has converged. The error between the true pose and the
one approximated from the trajectory is negligible, however, as long as the sensor delay
is taken into account.

To validate the theory presented earlier experimentally, as well as the analysis of measure-
ment errors in visual servoing [52], a test setup was constructed where the uncertainties
for different degrees of freedom of the visual measurement could be measured.

The calibration of the vision is essential in order to get reliable results. Intrinsic camera
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parameters were obtained by using the Matlab camera calibration toolbox [20]. The
toolbox implements Zhang’s method [107], using a simple planar calibration pattern.
Several hand-eye calibration techniques exist in the literature, but only an initial estimate
of the hand-eye calibration was obtained using techniques from the literature, and the
hand-eye calibration was further optimized by minimizing the apparent motion in the
object pose estimate.

In the first experiment the robot was controlled under position-based visual servoing.
The absolute pose of the object respect to the world frame WTO was determined from:

WTO = WTEE
EETC

CTO. (3.25)

First the uncertainties of the visual system were determined by keeping the end-effector
stationary and measuring the 3-D pose of the object. Fig. 3.3(a) shows the uncertainties
of the visual measurement while the robot was stationary and the hydraulics was off. The
x- coordinate corresponds to the camera optical axis, whereas measurements along y- and
z- coordinates are parallel to the image plane. The uncertainty in the x- coordinate is
substantially larger than for the y- and z- coordinates. Different uncertainty is observable
in rotations about the camera optical axis and off-axes also in angular measurements.

The robot was set to initial position and the visual control loop was activated. Fig.
3.3(b) shows that the system oscillated heavily under visual control. The uncertainties
of the visual measurements for each axis are shown in Table 3.1. σo is the uncertainty
of the off-line visual measurement and σc the uncertainty when the robot was controlled
by position-based visual servoing. It is important to note that the oscillations seen in
Fig. 3.3(b) are caused not only by measurement noise but also a low sample rate, and
the following results show that the EKF-based estimation can alleviate this problem.

Table 3.1: Uncertainties of the vision.
σo σc σo σc

x 0.1493mm 0.4074mm α 0.0404◦ 0.0859◦

y 0.0121mm 0.2105mm β 0.1178◦ 0.3174◦

z 0.0211mm 0.1496mm γ 1.1032◦ 1.3326◦

As the system oscillated heavily under position-based visual servoing, a low-pass filter
was set up to smooth the visual measurement. An experiment was made where an object
on the linear track was moved slowly towards the end-effector. A proportional controller
was used to track the object with constant distance using the low-pass filtered visual
measurement, thus moving the end-effector backwards. After some time, the motion of
the linear track was reversed. The results shown in Fig. 3.4 illustrate the motion of the
linear track and the end-effector controlled with low-pass filtered visual measurement.
The filter parameters were tuned to give a smooth response, and thus substantial phase
shift between the linear track and end-effector position can be seen.

In the following experiments, the performance of the EKF was evaluated. The linear track
was again allowed to move towards the end-effector. This time the distance between the
end-effector and the object was set initially larger than the set distance. The robot had to
move towards the object first, before the desired tracking distance was achieved. Then a
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Figure 3.3: Effect of measurement noise.

PI-position-based controller was used to track the object with a given relative pose using
the EKF estimate. Similar to the previous case, the linear track motion was reversed
after some time.

The experiment was conducted to compare different filtering techniques to smoothen
the uncertain visual measurement. The object on the linear track was moved slowly
towards the end-effector, and the position of the moving object was estimated with four
different methods: visual measurement without filtering, the proposed EKF estimate, the
EKF without latency compensation, and a low pass filtered visual measurement. The
parameters of the low pass filter were tuned to give approximately the same amount of
smoothing as the EKF. After some time, the motion of the linear track was first stopped
for a while and then reversed, and the object was moved back to the original position.
The motion of the linear track and the EKF estimates of the position and the velocity
are shown in Fig. 3.5. The relative distance between the object and the end-effector was
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Figure 3.4: Low-pass filter in control loop.

not constant in this test-run. As the position of the object in the world coordinates was
unknown, the incremental encoders of the linear track could only give relative ground
truth data. The position of the linear track, as well as the visual measurement were reset
in the middle of the linear track motion range in order to minimize calibration errors.
Inexact hand-eye and intrinsic camera calibration generates some systematic error in
distance measure when the position of the object moves relative to the camera. This
is clearly visible in the converged EKF positions when the linear track is stationary.
However, these inaccuracies hinder the performance of all the methods with the same
amount. The effect is much less pronounced when the end-effector is allowed to track
the object, and the relative distance is kept the same.
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Figure 3.5: Comparison of different filtering techniques while tracking.

The comparison of the methods in Fig. 3.6 verifies that the phase shift for the EKF
is significantly smaller than for a low-pass filter. When the velocity estimate of the
EKF has converged, the EKF outperforms even the theoretical linear fit of the visual
measurement, which was calculated off-line. The linear fit is comparable to the EKF
without sensor delay compensation where the external prediction model is omitted.

Finally, a 4-DOF approach test was conducted with the EKF to study its performance
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Figure 3.6: Comparison of different filtering techniques and pure visual mea-

surement.

in a more general case. The desired pose between the end-effector and the object was set
by the teaching-by-showing method. After teaching, the pose of the object was altered
and the linear track was initiated with constant velocity. The new pose of the object
and its velocity was estimated with the EKF. The end-effector was then controlled to
the desired relative pose. In Fig. 3.7, Cartesian robot positions and the controller set
point obtained using the EKF estimate are shown. Fig. 3.8 presents the EKF velocity
estimates for the translations and Fig. 3.9 the robot rotation, rotation estimate and
angular velocity estimate. It can be seen that the control in 4-DOF converges without
oscillations even for the moving target. During the approach phase, the estimate of the
object pose and velocity are less accurate, as the relative pose between the end-effector
and the object changes. When the desired relative pose is achieved, the EKF estimate
converges with minor noise also for velocities. It should be noted that the velocity as a
differential quantity is very sensitive for measurement errors.
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Figure 3.7: EKF approaching the object.
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Figure 3.8: EKF velocity estimates.
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Figure 3.9: Rotation and angular velocity.

3.3 Modelling the uncertainty of the end-effector pose

In this section, a tracking system for a moving camera moving object system is proposed
with uncertainties in both the camera and the object pose [5]. The system applies an
EKF estimation for the state of the system. Typically the moving camera-moving target
configuration arises from the eye-in-hand configuration, with the camera attached to
the robot end-effector. Based on this, it is assumed that the end-effector motion can
be measured by using incremental encoders, whereas the visual measurements give the
relative pose between the end-effector and the target object. The model assumes that
the target has reasonably constant velocity, with small unknown acceleration.

Some of the most important limitations for the use of visual tracking in robotics context
are the noisy measurements, the low sample rate, and the latency of the vision system.
These factors are often neglected in the development of the systems. The approach
presented in this section takes these explicitly into account by integrating the encoder
and visual measurements to provide a high sample rate and high accuracy estimates
of the object motion. In addition, a theoretical approach of virtual measurements is
proposed, which solves the problems related to the non-unique representations of 3-D
rotation.
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To describe the basic idea of tracking without any additional difficulties due to 3-D
geometry, the integration method is first applied to a 1-D case, where the measured
quantity is the distance between the end-effector and the target. Finally, a six degree-
of-freedom case is proposed.

3.3.1 1-D tracking

In 1-D tracking, the state vector x contains 1-D positional data of the end-effector and
the position and velocity of the object,

x =
(

d1 d2 ḋ2

)T
, (3.26)

where d1 is the location of the end-effector, d2 the location of the object, and ḋ2 the
velocity of the object. The velocity of the end-effector ḋ1 can be read from the positional
encoders. Interpreting the velocity information as the input to the system u = ḋ1, the
system can be modeled by

x(t+ 1) = Fx(t) + Gu(t) + w(t). (3.27)

In this case, the prediction is linear with respect to both the previous state and the
control input. The state transition matrix F is

F =





1 0 0
0 1 ∆t
0 0 1



 , (3.28)

where ∆t is the time interval of predictions, describing the constant velocity model for
the target object. The control input matrix G =

(

1 0 0
)

describes the relationship
between position encoder values and change in the end-effector position. The model
covariance matrix Q can be written as

Q =





σ2
u 0 0
0 1

4∆t4σ2
d

1
2∆t3σ2

d

0 1
2∆t3σ2

d ∆t2σ2
d



 , (3.29)

where σ2
u describes the uncertainty of the encoder measurement, and σ2

d an unknown
uncertain acceleration affecting the target object, modeled as a discrete time Gaussian
random process. This allows the modeling of small changes to the velocity of the target.
At each time step, the error covariance P is predicted for the next time step:

P (t+ 1) = FP (t)F T + QT . (3.30)

The distance between the end-effector and the object is measured with a vision system
using a linear measurement model

y(t) = Hx(t) + v(t), (3.31)

where the measurement matrix H =
(

−1 1 0
)

and the measurement covariance S =
σ2
v, where σ2

v is the uncertainty of the visual measurement. These models can now be
directly used in a Kalman filter to derive optimal estimates for the position.
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3.3.2 6-DOF tracking

In 3-D tracking, the relative 3-D pose of the object with respect to the end-effector is
measured with vision. The tracked object is assumed to be moving with a constant
velocity. The end-effector motion is measured by the encoder.

The 18-dimensional state vector x contains 3-D pose information of both the end-effector
and the object, and the velocity of the object,

x =
(

xT1 xT2 ẋT2
)T
, (3.32)

where xi =
(

xi yi zi φi θi ψi
)T

. Because of the problem of non-unique angles,
the approach from [102] is adopted again, and the orientation of the objects is stored
externally, outside the EKF state, so that φ, θ, and ψ only represent incremental changes
to the orientation. After each update step of the EKF, the rotation angles are integrated
into rotation matrices R1 and R2 (for the end-effector and the target, respectively), and
the rotation angles are reset to zero. The homogeneous transformation describing the
pose of the end-effector in the world coordinates can now be written as

WTEE =









x1

R1R(φ1, θ1, ψ1) y1
z1

0 1









, (3.33)

where R(·) is the function converting immediate angles to a rotation matrix. A similar
form applies to the target object pose.

Now, the 3-D system can be modeled with

x(t+ 1) = Fx(t) + Gu(t) + w(t), (3.34)

where u is the output of the encoders in joint coordinates,

F =





I6 0 0

0 I6 ∆tI6

0 0 I6



 , (3.35)

and
G =

(

J(α) 0
)

, (3.36)

where J(α) is the robot Jacobian, dependent on the current configuration α. This allows
the modeling of a general robot, as long as the robot Jacobian is available. The model
covariance matrix Q is now

Q =





JJTΣu 06 06

06
1
4∆t4Σd

1
2∆t3Σd

06
1
2∆t3Σd ∆t2Σd



 , (3.37)

where

Σu =

(

σ2
uxI3 03

03 σ2
uφI3

)

and Σd =

(

σ2
dxI3 03

03 σ2
dφI3

)

, (3.38)
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where σ2
ux and σ2

dx describe the encoder and process uncertainties for the translation,
and σ2

uφ and σ2
dφ the uncertainties for the rotations.

The visual system provides a measurement describing the relative pose of the target
object with respect to the end-effector, EE T̂O. The rotation and translation parts of the
measured relative pose are considered separately below.

The mapping between the current state and the measured relative translation from the
end-effector to the target EE t̂O can be written as

EE t̂O = EERW

(

W tO −W tEE
)

. (3.39)

Next, noting that EERW = (R1R(φ1, θ1, ψ1))
T , W tO =

(

x2 y2 z2
)T

, and W tEE =
(

x1 y1 z1
)T

, the measurement model for translation can be written as

yT (t) = HTx(t), (3.40)

where
HT =

(

−EERW 03
EERW 03 03 03

)

. (3.41)

Contrary to translation, the arithmetic difference between the measured and predicted
angles does not have a geometric explanation, unless either one of these is equal to zero.
By introducing a technique called “virtual measurement”, this problem can be avoided
by making the predicted angles zero.

Similar to translation, the mapping between the current state and the measured relative
rotation from the end-effector to the target EER̂O is defined as

EER̂O = EERW
WRO, (3.42)

where EERW = (R1R(φ1, θ1, ψ1))
T
, and WRO = R2R(φ2, θ2, ψ2). Now, (3.42) can

multiplied by EER̂T
O to get

(R1R(φ1, θ1, ψ1))
T

R2R(φ2, θ2, ψ2)
EER̂T

O = I. (3.43)

By introducting the function φ(·) converting a rotation matrix to immediate angles,
and applying the function on both sides of (3.43), the virtual measurement function is
obtained

φ
(

(R1R(φ1, θ1, ψ1))
T

R2R(φ2, θ2, ψ2)
EER̂T

O

)

=





0
0
0



 ; (3.44)

linking the virtual measurement, left-hand side, to the predicted angles, on the right-
hand side. The frames related to the virtual measurement are shown in Fig. 3.10. From
the predicted end-effector frame EE it is possible to get to the predicted object frame
O through the world frame W . The transform EET

ÊE
is the residual between the

measured pose and the prediction.

The left-hand side of (3.44) can be denoted by hR(φ1, θ1, ψ1, φ2, θ2, ψ2,
EER̂T

O). Now, in
order to use the virtual measurement in the EKF, only the gradient HR of the virtual
measurement function is needed with respect to the system orientation parameters, HR =
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Figure 3.10: Coordinate frames linking the virtual measurement to prediction.

∂hR(·)
∂φ

, where φ denotes the set of orientation parameters. The gradient can be calculated

analytically from (3.44), or estimated numerically. Thus, the visual measurements can
be collected into one model:

y(t) = H =

(

HT

HR

)

x(t), (3.45)

where
HR =

(

03
∂hR(·)

∂φ1,θ1,ψ1

03 − ∂hR(·)
∂φ2,θ2,ψ2

03 03

)

. (3.46)

The covariance of the visual measurement is

S =

(

σ2
vxI3 03

03 σ2
vφI3

)

, (3.47)

where σ2
vx is the uncertainty for the position of the visual measurement and σ2

vφ the
uncertainty for the rotation.

3.3.3 Handling the latency and different sampling rates of the sensors

To compensate for the latency of vision, the system shown in Fig. 3.11 is used. The
encoder measurements are delayed for the amount of the latency so that the two are
synchronized when fed to the Kalman filter. To take the delay of the filter into account,
a modified prediction model (bottom of Fig. 3.11) is used to estimate the current, non-
delayed state. In modified prediction, the time interval ∆t in the state transition matrix
F is substituted by the latency τ , and instead of the encoder measurement u, an integral
of the encoder velocities over the period of the latency is used:

∫ t

t−τ

venc, (3.48)
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where venc are the velocities given by the encoders. The algorithm for the latency
compensation is the same as presented in Alg. 7, but in the external prediction model
the integral of the encoder velocities is also taken into account.

Figure 3.11: Latency compensation.

3.3.4 Experiments with a 1-D servo bench

Experiments with a 1-D servo bench were performed to study the proposed estimation
approach in a control problem with real equipment. Two hydraulic cylinders were set
up, one for the object and one for the end-effector. The motion of the object and the
end-effector were controlled by velocity controllers.

Figure 3.12 presents a proposed controller, which controls the distance between the end-
effector and a target to a desired value. An incremental position encoder and a vision
system are used as sensors. The relative distance d measured by the vision system and
end-effector velocity ṙ measured by the encoder are fed to the EKF. The control loop
consists of two nested controllers, an outer controller for setting the desired velocity ṙd
for an inner velocity controller. In the outer controller, the estimated distance xo − xee
is controlled towards the desired distance d∗ by a proportional controller with gain Kv.
In addition, an estimate of the object velocity ẋo is fed forward and added to the desired
velocity ṙd. The inner velocity control is application-specific and depends on the robot
configuration and the actuator dynamics. Due to non-linear system dynamics, there is a
small steady-state error in set velocity in the experiment.

A vision system was used to measure the relative distance from the object to the end-
effector. Red markers were affixed on both the end-effector and the target, and tracked
in the image. The image locations of the markers were then used to determine the
distance. The tracking was based on thresholding and connected component labeling
[96]. The camera was attached perpendicular to the servo bench, but eye-in-the-hand
configuration, where the camera is attached to the end-effector, would also be possible.
The end-effector can only move in one dimension, and the object is always on the same
line in Cartesian space. The lines in Cartesian space are mapped as lines in the image
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plane due to the perspective projection [38]. As lens distortion is considered negligible,
the markers are always on the same line in pixel coordinates. A recursive flood fill
algorithm is initiated at each pixel of the line. The algorithm goes through connected
neighboring pixels and gives them a specified color. Pixel connectivity is defined by
thresholding, which is performed in red-green-blue (RGB) space by using specified ranges
of intensities in each RGB channel. The centroids of the two largest connected regions
are then calculated in pixel coordinates.

The vision system can be calibrated by moving the end-effector to known positions and
saving the corresponding pixel values. In a full 3D camera calibration matrix there
are 11 degrees of freedom. In 1D there are only 5 degrees of freedom, and thus three
calibration points are sufficient. Pixel coordinates of the image features are saved in each
end-effector position, and camera calibration matrix M ∈ ℜ3×2 is formed. If Xi are set
of homogeneous 1D points and xi are corresponding 2D points, the projection matrix M

can be solved from xi = MXi. In 1D case the projection equations reduce to

m11Xi +m12 − xim31Xi − xim32 = 0

m21Xi +m22 − yim31Xi − yim32 = 0
. (3.49)

Stacking (3.49) for each calibration point, the projection matrix M can be solved from
the resulting system of linear equations using singular value decomposition. The homo-
geneous position of the end-effector Hee = (uee, wee)

T , and the location of the object
Ho = (uo, wo)

T are then

Hee = M+





xiee
yiee
1



 , Ho = M+





xio
yio
1



 . (3.50)

where M+ is the pseudoinverse of the projection matrix, (xiee, y
i
ee) are the pixel coordi-

nates of the end-effector, and (xio, y
i
o) the pixel coordinates of the object. The Cartesian

positions of the object and end-effector can then be solved from xee = uee/wee, xo =
uo/wo.

The vision system operates on a 1 GHz Linux PC equipped with a frame grabber and a
color video camera. The frame-rate of the system is 25 Hz with a resolution of 720×568.
The vision system calculates the distance to the object and sends it to the controller by
using an RS-232 serial connection. The total latency of the vision system and serial data
transmission is measured to be approximately 55 ms. Most of the latency is caused by
the exposure and grabbing of the image, causing 40 ms of latency. The rest is caused by
image processing and data transmission.

The performance of a control response based on EKF estimate was compared to that of a
direct measurement from the visual system. The uncertainty of the visual measurement
can be estimated by calculating the variance of the distance measurements when the
object and the end-effector are stationary. The process uncertainty can be set very small
if the motion of the object is constant. The uncertainty of the end-effector was within
the encoder resolution, which was 1µm. The initial guess for the object velocity was set
to zero, but the object velocity estimated by the Kalman filter was allowed to converge
before the control algorithm was initiated.
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Figure 3.12: Control schematic.

In the first experiment the object was moving away from the end-effector with a constant
set velocity of 10mm/s. Because of the steady state error in the velocity controller, the
actual object velocity was approximately 9mm/s. Figure 3.13 shows the response of the
controllers based on a direct visual measurement and the EKF estimate. The desired
distance between the end-effector and the object d∗ was set to 30mm. The control
algorithm based on the direct visual measurement never reached the desired distance.
There is a considerable steady state error that increases if the object velocity is increased.
With the EKF the steady state error is smaller, as the predicted object measurement is
added to the desired velocity. The steady state error still present in the EKF experiment
is due to the steady state error in the velocity controller.
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Figure 3.13: Object moving away from the end-effector.
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In the second experiment shown in Fig. 3.14, the object was moving towards the end-
effector with a constant set velocity of 20mm/s. Visual measurement alone cannot keep
the desired distance of 30mm, and there is a significant steady state error allowing the
end-effector to move dangerously close to the object. With the EKF the steady state
error is considerably smaller, and can be eliminated by improving the velocity controller.
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Figure 3.14: Object moving towards the end-effector.

In the third experiment shown in Fig. 3.15, the object was moving along a sinusoid
pattern. The figure demonstrates that it is possible to track an arbitrary moving object,
even when the constant velocity assumption of the EKF is false, if the process uncertainty
is set high enough. It can be seen in Fig. 3.16 that the phase shift between the end-effector
and the object location is significantly higher if the direct visual measurement is used
as a control input instead of the EKF estimate. Also the amplitude of the end-effector
motion is smaller than the amplitude of the object motion if the visual measurement is
used directly.

3.3.5 Experiments with simulations

The proposed 6-DOF EKF-model was studied with simulations. The visual system was
not modeled in detail, but Gaussian noise was added to the simulated measurements.
The visual measurement consisted of the relative pose between the end-effector and the
object. A Cartesian robot was used for simplicity, and therefore the robot Jacobian J

was an identity matrix. The gradient of the virtual measurement function (3.44) was
estimated numerically.

In the first experiment, both the object and the end-effector were moving with constant
Cartesian and angular velocities. The initial guess for the velocities was set to zero and
the uncertainties were initialized with high values. Figure 3.17 presents the estimated
x, y and z Cartesian velocities of the target. The true object velocities were 20mm/s,
-30mm/s and -20mm/s, respectively. It can be seen that the settling time for the object
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Figure 3.15: Sinusoid object movement.

velocities is less than two seconds. Figure 3.18 shows the estimated z-coordinate positions
of the end-effector and the object. As the end-effector measurement is very precise, the
error of the estimated end-effector location is negligible. In the estimated object position
there is a small error before the estimate of the object velocity converges. The velocity of
the object is first assumed to be zero, and therefore the estimate is jagged. The sampling
rate of the visual measurement was again 40ms, but the latency was assumed to be zero
for simplicity. This experiment demonstrates that the method of virtual measurements
is applicable for 6-DOF estimation.

In the second experiment, the constant velocity assumption for the object movements
was neglected. Instead, the object was allowed to follow a sinusoid track. In this experi-
ment, the process uncertainties were set to correspond to the changing object velocities.
It can be seen in Fig. 3.19 that the estimated position and velocity of the object fol-
low the real position with a phase shift of approximately one second. This experiment
demonstrates that the proposed approach improves the estimates significantly only if the
initial assumptions of the object motion are not seriously violated.

It should be noted that a simplification has been made in that the covariance matrix for
the visual measurement in the simulated 6-DOF case is assumed constant. In reality, the
uncertainty depends on the poses of the end-effector and the object.

3.4 Summary and discussion

In this chapter, a moving camera moving target tracking method integrating visual and
encoder information using an extended Kalman filter have been proposed. Noisy, low-
sample-rate visual measurements with a considerable latency have been fused with en-
coder information to give high sample-rate high-accuracy estimates of the target motion.
The applicability of the approach has been demonstrated with experiments and simula-
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Figure 3.16: Relative locations of the end-effector and the object.
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Figure 3.17: Cartesian velocities of the object.

tions, which show that the proposed approach is valid and can significantly improve the
performance of a vision-based controller.

Visual control allows manipulation in dynamic environments with uncertainties. Al-
though vision offers a sensor modality with high information content, it also suffers from
limitations, such as low sample rate, high sensor delay and uncertain measurements. The
proposed 6-DOF EKF tracking method addresses these three problems. The relative pose
from the camera to a moving object is measured with vision. High frequency proprio-
ceptive information of the end-effector motion and the visual measurement are fused in
the EKF to estimate the absolute pose of the object in the world coordinates as well
as the translational and angular velocities. The sensor delay of the visual measurement
is taken into account explicitly. The proprioceptive measurements are delayed in the
EKF so that they are synchronized with the visual measurement. An external prediction
model then estimates the pose of the object for the present time. The uncertainties in
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Figure 3.18: End-effector and object z-coordinate positions.
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Figure 3.19: Sinusoid movement.

the end-effector pose are assumed negligible compared to the uncertainty of the visual
measurement. If the end-effector pose needs to be estimated as well, the EKF model
with 18-dimensional state vector proposed in [5] can be used.

Visual servoing is often either image-based or position-based. In image-based visual
servoing, image features are used to control a robot directly. In position-based visual
servoing, the relative pose between the robot and the target object is estimated and the
robot is controlled accordingly. Visual servoing is often accompanied with an EKF to
filter either the image feature locations or the relative pose. The proposed method differs
from the traditional EKF frameworks used in visual servoing by taking into account
the information of the end-effector motion. In the approach, the state vector is the
absolute pose of the object in the world accompanied with corresponding linear and
angular velocities. This allows estimation of the absolute pose of the object in the world
frame compared to the relative pose between the end-effector and the object usually
considered in KF-frameworks [103][75]. Simulated results on using absolute pose as the
state vector have been presented earlier for eye-in-hand configuration [59]. However, using
such a system on a real robot requires the sensor delay of the visual measurement to be
compensated for. There are several benefits in using the absolute pose as a state vector.
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First, the prediction model is more linear, as the motion of the end-effector does not affect
the state. If the relative pose is used as a state vector, the motion of the end-effector
alters the state, and even if the object is stationary, the constant velocity assumption
for the state might not hold. Second, determining the covariance matrix for the process
uncertainty is easier in the Cartesian world coordinates, as only the motion of the object
must be considered and not the relative motion between the end-effector and the object
in image space. Finally, compensation for the latency of the visual measurement can be
accomplished.

The single camera setup induces different errors in measurements along different Carte-
sian coordinate axes. The distance to the object is difficult to measure accurately, as
small changes in pixel coordinates cause a large change in distance. Translations perpen-
dicular to the optical axis of the camera, on the other hand, are less noisy, as translation
on the image plane causes a large change in pixel coordinates. The same applies for rota-
tions. Rotation measurements about the camera optical axis are accurate, but when the
object is rotated about an axis perpendicular to the optical axis, only small changes in
pixel coordinates can be seen. For this reason it is essential to model the uncertainties of
the visual measurement in detail. By modelling the covariance of the visual measurement
so that it takes into account the cross covariance terms of the measurement, it is possible
to fuse different sensors together. This chapter has validated the previous analysis of
measurement errors in visual servoing experimentally [52].

The approach was validated by experiments with a 5-DOF parallel hydraulic manipu-
lator. The experiments verified that the method can be used for controlling a robotic
manipulator, when visual measurement alone is too noisy for the task. The method com-
bines sensors with different sampling rates, providing high frequency efficient and robust
control reducing the phase shift, compared to a pure visual feedback due to sensor delay
compensation. On the other hand, the experiments indicated that some degrees of free-
dom are difficult to control very accurately with visual feedback only, and thus the use
of other sensory modalities together with vision appears an appealing alternative.



Chapter IV

Fusion of sensors without common representation

When using a single measurement at each time instant, as is typical in visual servoing,
the uncertainty in visual measurements can cause undesired oscillations and hinder the
accuracy. However, even when adequately filtered, visual measurement is often not accu-
rate in all degrees of freedom. Only the object translations perpendicular to the camera
optical axis can be determined accurately. The object translation along the camera op-
tical axis is difficult to measure, as even a big change in the object distance induces
only small changes in the image, due to limited perspective effects. The same applies
for rotations, as rotation around the camera optical axis can be determined accurately,
whereas rotations around the off axes yield only diminutive changes in the image. To
alleviate these problems, vision can be complemented by other sensor modalities. One
attractive complementary option is to use a tactile or force sensor to probe the local
shape of an object. When the tooltip is in contact with the object and the pose of the
tooltip can be determined with direct kinematics, information about the object can be
extracted. However, a single tooltip measurement can only give one point on the object
surface. Without other information this measurement will be difficult to use, as it is
not known which location of the object the measurement has been taken at. Also if the
object is moving, the point of the contact can move even if the position of the tooltip is
stationary.

Combining a force sensor with vision would seem appealing, as these two sensors can
complement each other. Since force and vision measure fundamentally different sensor
modalities, the information from these sensors cannot be fused directly. Vision can ex-
tract the full pose of a known object with respect to the camera, but a force sensor can
measure forces only locally. When the force sensor is used only to detect if the tooltip is
in contact with the object, no other information can be gained. Combining this binary
information with visual measurement requires that both measurements can be related to
a common estimated state. This can be achieved, as the incremental encoders or joint
angle sensors of the robot can determine the pose of the robot end-effector in the world
coordinates. If also the hand-eye calibration of the camera and the tool and the object
geometries are known, both visual and tactile measurements can be related to the object
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pose in the world coordinate frame. However, a single tooltip measurement can only give
constraints to the pose of the object but not the full pose. Therefore, a single measure-
ment is meaningless unless it can be fused with other sensor modalities or over time.
Combining several sensor modalities or multiple measurements over time can reduce the
uncertainty of the measurements, but in order to fuse the measurements, the uncertainty
of each individual measurement must be estimated. Also the sensor delay of the visual
measurements must be taken into account when fusing the measurements. Especially the
eye-in-hand configuration requires accurate synchronization of the proprioceptive infor-
mation and visual measurement. Otherwise vision will give erroneous information when
the end-effector is in motion.

This chapter addresses the problem of combining sensors without an inherent common
representation. It is proposed how visual and tactile measurements can be fused together,
taking into account the uncertainty of each individual measurement. A model-based pose
estimation algorithm is used to extract the unknown pose of a moving target. The un-
certainty of the pose depends on the uncertainty of the measured feature points in the
image plane, and this uncertainty is projected into Cartesian space. A tooltip measure-
ment is used to probe the local shape of the object by moving on the object surface and
keeping a constant contact force. An EKF is then used for incorporating the multimodal
measurements with different uncertainties and sampling rates. The EKF allows reduced
uncertainties of vision-based estimates and interpolation between low frequency visual
measurements, making it possible to track a moving target. The expected future target
pose can also be predicted with the EKF to alleviate inherent latencies in the vision
system. When proprioceptive and visual measurements are synchronized in the EKF,
the estimate of the target pose becomes delayed. To compensate for this delay, the fu-
ture target pose is predicted with the EKF. Most importantly, to the author’s knowledge
the use of contact information to compensate for the uncertainty of vision in estimating
the object pose while the tooltip is sliding on the object surface has not been proposed
before.

Previous work on combining haptic information with vision uses primarily the two sensors
separately. Vision is used to generate a 3D model of an object and a force sensor to extract
physical properties, such as the stiffness of the object [10]. Also stereo vision has been
used in the modelling of the object [54], and active touch to determine how the object
deforms. Pomares et al. [80] combined a force sensor and an eye-in-hand camera using
structured light to detect changes in the contact surface. Vision is first used to detect
zones likely to have discontinuities on the surface and the force sensor is used for verifying
the discontinuity. Force sensors have also been used for determining linking structures
and functions of objects, such as scissors or pliers [99]. In a work by Tanaka et al. [92]
vision is used to extract the 3D shape and pose of an object. The robot hand is then
allowed to move the object and the contact force is measured by a force sensor. The mass
of the object is then extracted using known friction coefficients. Ueda et al. [98] propose
a ”touch and see” system consisting of a range sensor and a force-feedback sensor. One
robot hand is equipped with a range sensor and a CCD camera and another robot with
a force sensor. A deformable object is pushed by the haptic robot, and a range finder
observes how the deformed object returns to its original shape when the force is released.
Also arrays of tactile sensors have been used to model the 3D shape of an object with a
laser range finder first observing the target object [78].
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In this chapter, contact information is combined with vision to extract more accurate
information about the object pose. A constant stiffness for the object is assumed, making
it possible to use the tooltip measurements for determining the object’s position and
orientation. The method is independent of friction and can be used even when the
tooltip is sliding on the object surface while the object is in motion.

4.1 Tooltip probing

Force or tactile sensors allow accurate measurements of the object surface when in con-
tact. By probing the surface of the object with a tooltip, it is possible to extract the
location of the contact point. In order to fuse this information with the model of the
object in the world coordinates, the position of the tooltip must be known in the world
coordinates. If this information is known and the surface of the object is assumed to
be planar, the position of the tooltip can be used as a measurement. Even though this
measurement does not define the pose of the object completely, it can complement the
information given by vision. The rotation around camera off-axes and the distance to
the object are difficult to measure with vision. However, probing by the tooltip can
give accurate information on these very same degrees of freedom. A single tooltip mea-
surement does not give other information than the distance to the object, but several
measurements in different locations of the object can be combined to produce an accurate
estimate of the object rotations. It should be noted that the rotation around the tool
axis cannot be measured by tooltip probing, but if the camera is on the same axis as the
tool, accurate measurements from the vision are obtained.

Next, a measurement model for the tactile measurement is defined. The surface of the
object is assumed planar. Thus, the distance d from the tooltip Pt to the plane is

d =
|Wn·

−→

PtP0 |
|Wn| , (4.1)

where Wn = WROn is the normal vector of the surface and P0 a point on the object
plane. P0 can be defined as the origin of the object in the world coordinates, which is
stored in the state vector of the EKF. Also the rotation matrix WRO can be extracted
from the state. When the tooltip is in contact with the object, the distance from the
object to the tooltip is assumed zero. For a rigid non-deformable object this assumption
is reasonable. The position of the tooltip Pt can be obtained in the world coordinates, as
the dimensions of the tool are measurable and can be assumed constant if the stiffness
of the tool is high enough. Fig. 4.1 explains the tooltip measurement where the normal
vector of the surface n is presented in the object coordinates.

To use tooltip measurement (4.1) in the EKF, the gradient of the measurement model, i.e.
the distance function, must be calculated. The translational parameters of the distance
function are independent of the rotation matrixWRO, reducing the translational gradient
to

∂d

∂x, y, z
= Wn · ∂

−→

PtP0

∂x, y, z
. (4.2)
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Figure 4.1: Tooltip probing.

By utilizing the chain rule, the partial derivatives of the rotation matrix WRO are ob-
tained for each orientation parameter. The rotational gradients can be written as

∂d

∂φ, θ, ψ
=

(

∂WRO

∂φ, θ, ψ
n

)

−→

PtP0 . (4.3)

The 12 element gradient vector is then

HF =
(

∂d
∂x

∂d
∂y

∂d
∂z

∂d
∂φ

∂d
∂θ

∂d
∂ψ

0 ... 0
)

. (4.4)

The visual measurements and the tooltip measurement can now be combined into one
model

y(t) = Hx(t) =





HT

HR

HF



 x(t), (4.5)

and the covariance then becomes

S =

(

SH 0

0 σ2
t

)

, (4.6)

where σ2
t is the variance of tooltip distance measurement modelling the deformability of

the object and stiffness of the tool.

4.1.1 Tool center point calibration

Methods for determining the tool center point are extensively used in industry, and many
patents have been filed for such methods over years. In this section, the method presented
in [95] is extended by solving the parameters of an unknown calibration plane, as well as
the tool center point. The method also takes explicitly into account the uncertainty of
the measurements by providing a linear least squares estimate of the parameters. The
tooltip is allowed to contact the calibration plane in several different places to solve the
surface normal of the calibration plane. By tooltip probing, several measurements on the
surface of the calibration plane are obtained. The coordinates of the end-effector position
are stored for each measurement in data matrix D. The data matrix is transformed to
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have a zero mean by subtracting the mean of the distribution from the data. A covariance
matrix C is formed from the data matrix D and the best fitting plane can be solved
by finding the eigen vectors of the covariance matrix C = DDT . The first two eigen
vectors form the basis of the plane and the third eigen vector is the surface normal nc.
Next the tooltip center point with respect to the end-effector, as well as the distance
parameter dc of the calibration plane are solved. The end-effector is allowed to contact
the calibration plane by rotating the end-effector to different orientations and moving
the tool towards the calibration plane slowly until contact occurs. Different poses during
the tooltip centerpoint calibration are shown in Fig. 4.1.1. The pose of the end-effector is
stored for each pose and the unknown parameters are estimated by a linear least squares
fit. This can be done by solving a system of over-determined linear equations Mx = c,

where x =
(

dx dy dz dc
)T

describe the unknown parameters, M is a i × 4 matrix
and c is a column vector. Each row of the matrix M is defined as

(

Rinc 1
)

, (4.7)

and elements of the column vector c as

−nTc ti, (4.8)

where Ri is the end-effector rotation for each pose, ti is the end-effector translation, and
nc is the surface normal of the calibration plane. The system of linear equations can be
solved by singular value decomposition to obtain dc and the tooltip center point location
(

dx dy dz
)T

. The algorithm for the tool center point calibration is given in Alg. 8.

Figure 4.2: Different poses during the tooltip centerpoint calibration.

4.1.2 Handling the sensor delay and different sampling rates of the sensors

Due to different sampling rates, the tooltip measurement is performed more often than
the visual measurement update. This can be done by setting the visual measurement
terms in the Kalman gain matrix or the gradient matrix to zero, when there is no visual
measurement.

To compensate for the sensor delay of vision, the system shown in Fig. 3.1 in the previous
chapter is used. It should be noted that the tactile measurements are not taken into
account in the external prediction model. If the visual sensor delay is great and the
constant velocity assumption for the object movement does not hold, this may cause
error in the prediction.
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Algorithm 8 Algorithm for tool center point calibration.

1: for i=1 to number of translations do

2: move the end-effector downwards along z-axis until contact occurs
3: store the end-effector translation in a data matrix D

4: move the end-effector to the next place in x-y-plane
5: end for

6: substract the mean of the positions from the data matrix D

7: compute the covariance of the data matrix C = DDT

8: find the eigen vectors of the covariance matrix C

9: store the third eigen vector into surface normal vector nc
10: for i=1 to number of poses do

11: move the end-effector downwards along z-axis until contact occurs
12: get the end-effector rotation Ri and translation ti
13: transform the surface normal nc into homogeneous coordinates

(

Rinc 1
)

relative
to the end-effector

14: store the homogeneous surface normal vector as i:th row of matrix M
15: store −nTc ti as the i:th element of a column vector c
16: move the end-effector to the next pose
17: end for

18: solve x from the system of linear equations Mx = c by singular value decomposition

19: the unknown parameters are now stored in vector x =
(

dx dy dz dc
)T

20: tool center point is
(

dx dy dz
)

4.1.3 Experiments

Experiments were conducted on a 5-DOF parallel hydraulic manipulator [61] shown in
Fig. 3.2. A linear track was mounted on the robot frame to increase the work space of the
robot, and the object to be tracked was affixed on the linear track. The absolute pose of
the object with respect to the robot frame was estimated by using visual measurement
alone in the EKF and by combining the visual and tactile measurements in the EKF.
Both the robot tool and the target object were made of steel and very rigid.

The direct kinematics of the system is difficult to solve in parallel manipulators. Mapping
from joint coordinates to pose of the end-effector is usually only obtainable through
iterative methods. The direct kinematics problem was solved off-line by the Gauss-
Newton method. However, the problem is solvable in real time [69].

In the experiments, the end-effector was allowed to take contact to the rigid object in
order to compare the EKF with and without tactile measurements. The end-effector
followed a circular trajectory in the y − z-plane, as shown in Fig. 4.3. Force control was
set up to control the third, x-axis, and keep a constant contact force. The linear track
was moved with a constant velocity on the force controlled axis. In Fig. 4.4, it can be seen
that the force controller can keep a constant contact force when the object is stationary,
but when the object is in motion the controller will induce a steady state error. However,
the contact is stable for the whole motion. The oscillation in Fig. 4.4 is partially due to
measurement noise, partially caused by the force controller characteristics.

Figs. 4.5 and 4.6 illustrate the translations and rotations of the estimated object poses,
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respectively. True motion was only present in the translational x-coordinate. The linear
track was allowed to move along the x-coordinate with constant velocities, as shown in
Fig. 4.7. The apparent motion seen in the other figures is caused by imperfections in
hand-eye and intrinsic camera calibration, as well as uncertain measurements. As there
was only translational movement present, the process uncertainties for the rotations were
set to zero. The tooltip measurement requires an initial estimate of the object pose, which
can be estimated with vision. The tooltip measurement was switched on at t = 20s once
the vision had a coarse estimate of the object pose.

In Fig. 4.5 it can be seen that the tooltip measurement does not contribute to the estimate
of the translational y- and z-coordinates. These axes are perpendicular to the tool axis,
and therefore the tooltip measurement cannot give any additional information on the
object pose. However, the visual measurement has only a small uncertainty on these
axes according to the Hessian approximation, and they can be considered accurate even
without the tooltip measurement. The x-axis, on the other hand, is on the tool axis and
tooltip probing can compensate for the uncertain visual measurements. The EKF with
tooltip measurement follows the linear table motion more accurately than the vision-
only EKF estimate. When the velocity of the linear table changes, the EKF with tooltip
measurement can adapt to the new velocity almost instantaneously, whereas the velocity
estimate of the vision-only EKF oscillates and does not converge to the true velocity. The
mean error for the EKF with tooltip measurement is 0.5255mm and for the vision-only
EKF 1.0822mm for a time interval t = 20s− 68s.

In the estimated object rotations, the effect of the tooltip measurement is even more
drastic. Once the tooltip measurement is switched on, the estimate of the object orien-
tation quickly converges. The uncertainty of the visual measurement is very high for β-
and γ-rotations, and the vision-only EKF estimate converges slowly. The visual mea-
surements of the rotation around the camera optical axis (α) are much more precise, and
even the vision-only EKF converges quickly. An interesting phenomenon can be observed
in the α-axis rotation. Even though the tooltip measurement should not give any infor-
mation on rotations around this axis, the estimate of the rotation still converges very
quickly. This can be explained by the covariance matrix of the visual measurement. As
the y- and z-axis are measured very accurately by vision, and the tooltip measurement
constrains the β- and γ-rotations as well as the x-axis translation, the EKF converges to
an accurate pose also for the α-axis.

The estimated uncertainties shown in Figs. 4.8 and 4.9 describe how the uncertainty
propagates as more and more measurements are included in the estimate. As the co-
variance is represented as a 7 × 7 matrix, only the diagonal terms are presented in the
figures and the rotations are converted into Euler angles. The figures clearly show much
faster convergence rates when the tooltip measurement is used. The last experiment
was conducted to find how the proposed method would perform in a control scenario.
The estimate of the object pose was converted into an equation of a planar surface, and
the distance between the plane and the tooltip was calculated. If the estimate of the
object pose is directly fed to the robot controller, this experiment shows how much the
controller set point differs from the surface of the object. In Fig. 4.10, three different
distance estimates are compared. The pure visual estimate (dashed line) is very noisy
and shown only for the first few seconds of the experiment. The vision-only EKF es-
timate (dotted line) filters the visual measurement considerably, but does not converge



4.1 Tooltip probing 59

to zero distance. The EKF with tooltip measurement (solid line) can keep the distance
very close to zero.
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Figure 4.3: End-effector motion.
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Figure 4.5: Estimated object translations.
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Figure 4.6: Estimated object rotations.
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Figure 4.7: Estimated object x-coordinate velocity.
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Figure 4.8: Estimated uncertainties without tooltip measurement.
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Figure 4.9: Estimated uncertainties with tooltip measurement.
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Figure 4.10: Estimated distance to the object plane.
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4.2 Plane equation as a state vector for the EKF

In the case of structured light sensor, the full pose of the object cannot be determined
from the visual measurement. Instead, the surface of the object can be assumed piecewise
planar and the plane equation can be estimated. In [4] the visual measurements of the
plane parameters are fused over time by utilizing the EKF. Tooltip probing adds infor-
mation to the estimate, increasing the accuracy further. Even though the measurement
and prediction models are linear, there is a nonlinear normalization step modifying the
state and covariance matrix. The EKF estimates the state of a system using a system
model F describing the dynamics of the system:

x(t+ 1) = Fx(t) + w(t), (4.9)

where w is the model error modeled as a zero-mean Gaussian random variable. In
addition, a measurement model Hx(t) is used to link the internal state to measurable
quantities y by

y(t) = Hx(t) + v(t), (4.10)

where v is the Gaussian measurement error. Uncertainty is modeled with covariance
matrices so that P = Cov(x), Q = Cov(w), and S = Cov(v).

The target object can be modeled as two intersecting surfaces, both having a constant but
unknown orientation and position in space. The parameters of the surfaces are affected
by Gaussian noise with zero mean. The two planes are independent from each other,
and thus two separate extended Kalman filters can be run instead of one, to reduce the
complexity. The 4-dimensional state vector x contains the parameters of a plane

x =
(

a b c d
)T
. (4.11)

The plane parameters are given with respect to the world coordinate system. The pa-
rameters are redundant, as a plane can be defined using only three parameters. The
surface normal of the plane could be presented in polar coordinates instead of a normal
vector. Another possibility is to fix one parameter, let us say the distance of the plane to
the origin d, to be constant. However, such mappings are nonlinear and can have singu-
larities. Instead, the plane is presented in general equation form ax+by+cz+d = 0, and
the parameters are normalized so that the normal of the plane (a, b, c)T is normalized to
unit length after each update step of the EKF. It should be noted that when the plane
parameters are normalized, also the covariance P of the plane parameters needs to be
updated. The covariance can be approximated by NPNT , where N is the Jacobian
of the normalization function. The visual measurement is described by a 4 × 4 identity
matrix HV = I.

In order to fuse the measurements in the EKF, the uncertainty of each individual mea-
surement must be estimated. By assuming the uncertainty of the visual measurement in
pixel coordinates to be zero mean Gaussian and projecting it into the uncertainty of plane
parameters in world coordinates, the measurement can be incorporated in the EKF. The
linear transformation A described in (2.4), estimates how much the plane parameters
change when there is a small error in the image plane coordinates. If the statistics for



66 4. Fusion of sensors without common representation

the image plane parameters are known, also the statistics for the plane parameters can
be determined. The covariance matrix can be defined as

SH = Aσ2
iA

T , (4.12)

where A is a linear mapping from the image plane parameters to the plane parameters,
and σ2

i defines the uncertainties for the image parameters. The visual measurement
gives the parameters of a plane accompanied with corresponding covariance matrix for
the uncertainties of the parameters.

Next, the measurement model for the tooltip measurement is defined. The surface of the
object is assumed planar. Thus, the distance dt from the tooltip point Pt = (xt, yt, zt)
to the plane is

dt =
|axt + byt + czt + d|√

a2 + b2 + c2
, (4.13)

where a,b,c and d are the plane parameters. Positive distances are defined above the
surface and negative distances inside the object. As the normal vector n is normalized
to unit length in the EKF, the distance equation reduces to

dt = axt + byt + czt + d. (4.14)

When the tooltip is in contact with the object, the distance from the object to the tooltip
is assumed zero. For a rigid non-deformable object this assumption is reasonable. The
position of the tooltip Pt can be obtained in the world coordinates, as the dimensions of
the tool are measurable and can be assumed constant if the stiffness of the tool is high
enough.

As the tooltip measurement (4.14) is linear, the measurement model is described by

HF =
(

xt yt zt 1
)

. (4.15)

The visual measurements and the tooltip measurement can be now combined into one
model

y(t) = Hx(t) =

(

HV

HF

)

x(t) =













1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
xt yt zt 1





















a
b
c
d









, (4.16)

and the covariance then becomes

S =

(

SH 0

0 σ2
t

)

, (4.17)

where σ2
t is the variance of tooltip distance measurement modelling the deformability of

the object and the stiffness of the tool.

In case the tool or the object is highly flexible, the deformability can be taken into
account by modeling the contact as a spring system. Instead of assuming the distance
from the object to the tooltip to be zero, the distance is estimated using a normal contact
force fn = |f | and a spring constant k by Hooke’s law dt = −kfn.



4.3 Summary and discussion 67

The normal contact forces f1 and f2 for an object consisting of two intersecting planes is
shown in Fig. 4.11. n1 is the surface normal of the first plane and n2 the surface normal
of the second plane. The intersection line of the planes is the cross product of the surface
normals n3 = n1×n2, as it is perpendicular to both surface normals. n̂1 = n1 ×n3 and
n̂2 = n2 × n3 can be defined as vectors along the planes that are perpendicular to the
intersection line. By projecting the contact force to vectors n̂1 and n̂2, information on the
contact type can be obtained. The projected forces are f̂1 = P (n̂1)f and f̂2 = P (n̂2)f ,
where

P (n) =
1

a2 + b2 + c2





a2 ab ac
ab b2 bc
ac bc c2



 (4.18)

and n =
(

a b c
)

. As the vector n̂1 is parallel to the first plane, forces along the vector
cannot be caused by surface normal forces of the first plane. Therefore, they must be
caused by contact to the second plane. The same applies for the second plane: forces
along the vector n̂2 indicate contact to the first plane. It should be noted that when the
tool is sliding on the object, friction forces may produce forces parallel to the projected
forces. However, if the friction forces are smaller than the desired contact forces, the force
threshold can be such that the contact information is only used when the force is larger
than the maximum friction forces. An algorithm for estimating the position deformation
is presented in Alg. 10.

Figure 4.11: Forces during contact to two surfaces.

4.3 Summary and discussion

Sensor-based control allows manipulation in dynamic environments with uncertainties.
Although vision is a sensor modality with high information content, it also suffers from
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Algorithm 9 Algorithm for using forces to estimate position.

1: if f̂1 > threshold then

2: project the contact force f along the surface normal n2

3: store the projected contact force into vector f2

4: estimate the deformation of the second surface by Hooke’s law dt = −k|f2|
5: end if

6: if f̂2 > threshold then

7: project the contact force f along the surface normal n1

8: store the projected contact force into vector f1

9: estimate the deformation of the first surface by Hooke’s law dt = −k|f1|
10: end if

limitations, such as low sample rate, high sensor delay and uncertain measurements.
Some Cartesian degrees of freedom are also less accurate for visual measurements due to
limited perspective effects. A method for combining force and vision to estimate a pose
of a target in an EKF has been proposed. A relative pose from an end-effector mounted
camera to a moving object is measured using vision. High frequency positional informa-
tion of the tooltip motion on the surface of the object and visual measurement are fused
in the EKF to give accurate high rate pose estimates, as well as translational and angular
velocities. The sensor delay of the visual measurement is taken into account explicitly.
The positional measurements are delayed in the EKF so that they are synchronized with
the visual measurement. An external prediction model then estimates the pose of the
object for the present time. Inaccuracies in the visual measurement are compensated
with accurate measurements from tooltip probing. When the tooltip is in contact with
the object surface, the position of the tooltip is calculated using the cylinder lengths of
a parallel manipulator or the joint sensors of a serial manipulator. The method can be
used also when the tool is sliding on the object surface as it is independent of the friction
forces.

In [101] a serial robot was used to probe the pose of an object as well as contact pa-
rameters. However, the proposed approach used vision only to estimate the pose of the
tool and not the pose of the object. The approach proposed in this thesis uses vision
to estimate the pose of the object, and the position of the tooltip, as well as the pose
of the camera are obtained from the joint sensors a robotic manipulator. An algorithm
proposed in [60] combines vision with force and joint angle sensors. A camera fixed to
the world frame, as well as a wrist force sensor and joint sensors of an 6-DOF industrial
robot are fused in an EKF. While the approach in [60] takes advantage of the force sen-
sor measurements directly in the pose estimate as well as the proprioceptive information
from the joint sensors, they assume frictionless point contact, making it impossible to
use sensor fusion when the tooltip is moving on a physical surface.

The proposed approach was validated by experiments with a 5-DOF parallel hydraulic
manipulator. The experiments verified that the method improves the estimation ac-
curacy of the pose of a moving target significantly by combining sensors with different
sensor modalities. The method combines data from very different sensors into one model,
providing a novel and accurate method for 6-DOF pose tracking.



Chapter V

Force and vision control

In this chapter, control methods combining force and vision sensors are presented. Force
and vision sensors measure fundamentally different physical phenomena. Thus, the use
of standard sensor fusion techniques for combining the measurements has significant
problems, as common data representation for force and vision sensors can not be found
easily. For this reason, traditional control approaches based on a single type of sensor
input can not be used.

There are three basic strategies for combining force and vision: switched control, hybrid
control, and shared control [74, 73]. In switched control, force and vision are used sepa-
rately, at different time instants. Switched control, which switches between image-based
visual servoing and force control has been presented in [72, 110]. In hybrid control, each
Cartesian degree of freedom is controlled by either force or vision sensors [16, 76, 79].
Hybrid control can be used to follow unknown surfaces [104] and track arbitrary con-
tours [23]. Hybrid control methods taking into account the uncertainties in kinematics,
dynamics and the camera model also exist [108]. Vision can also be used in a shared con-
trol scheme where the information from force and vision sensors is used simultaneously
for controlling the same axes [12].

One of the problematic stages of force controlled machining is when the tool comes into
contact with the workpiece. Even if force control is used, the inertia of the robot causes
a momentary force peak on the instant of impact. The impact can cause damage to the
tool or the workpiece, especially when their stiffness is high. The force overshoot can
be reduced by decreasing the velocity of the end-effector before the contact occurs. The
use of visual information has been proposed as a solution to reduce the impact forces
[72, 110]. Vision can be used to reduce the force overshoot by reducing the velocity as
the point of contact approaches. If the pose of the end-effector is known relative to the
target, an efficient velocity profile for approaching the target can be determined.

The diverseness of both the applications and the machinery for the integration of force
and vision is extensive. Fusion of force and vision has been utilized in both assembly
tasks with parallel robots [8] and disassembly tasks with serial robots [81]. Vision can

69
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be sometimes used to predict forces before they can be detected with force sensors. For
example, automatic deburring can greatly benefit from visual information if vision is
used to detect the size of the burr, and machining speed is adjusted accordingly [106].
A grinding tool can be moved at higher speed when the size of the burr is small and
the speed can decreased when the vision system detects a larger burr size. A wide
variety of automatic robot deburring tasks, such as verifying deburring performance [19]
and determining the burr size and location [34] benefit from sensor integration. Also
locating the workpiece and ensuring proper tool contact [88] and grinding tasks [50] can
use sensor fusion. One interesting area of applications is microrobotics, where force and
vision sensors have been utilized in both mobile microrobots [22] and microassembly
where a microscope is coupled with a haptic interface [45] or an optical beam deflection
force sensor [110] to provide methods for example for part assembly and alignment [36].
Also high speed robotics can benefit from vision and force control, for example to catch
falling objects [71].

In this chapter, three different control strategies are proposed: switched control, hybrid
control and shared control. The switched control experiments were done with a hydraulic
1-DOF servo bench and 5-DOF parallel hydraulic manipulator. For hybrid and shared
control experiments, a 6-DOF serial manipulator was used to track a contour of two
planar surfaces. Planar contour tracking fusing force and vision sensors has been pro-
posed before for a 1-DOF [70] as well as for a 6-DOF [76] case. Pomares and Torres
[82] combined image-based visual servoing with force sensing to detect discontinuities in
contact surface, where only force sensing is used for recognizing the orientation of the
planar surface. Force control can also be used to probe the shape of a workpiece. Mason
and Salisbury [68] have solved the unknown geometry of the object by force probing.
The surface normal of the object can be estimated if the contact point is known and
the contact forces are measurable. However, the method is only applicable to frictionless
point contact. When the tooltip slides on the object, unknown friction forces affect the
force measurements along the axis of the motion, but the other axes perpendicular to
the motion can still give information about the shape of the object. Another approach
estimates the geometric parameters of an object by utilizing EKF [87]. The framework
also assumes frictionless contact, but in discussion it is proposed that the friction co-
efficient could be incorporated in the EKF estimate. To the author’s knowledge, using
contact information to compensate for the uncertainty of vision in estimation has not
been proposed before.

5.1 Switched controller

In this section, a switched controller is proposed which applies a smooth transition
method from vision-based velocity control to force control, allowing minimal force over-
shoot at the time of impact while also providing fast approach.

In switched control, there is a transition stage from visual to force control. Nelson et
al. [72, 110] have considered the use of vision as a means to decrease the impact forces on
contact. In [110], a switching control scheme which uses image-based visual servoing for
visual control is proposed. In contrast to directly controlling the robot by using image
point features, visual features are used in this section to estimate the relative pose of the
end-effector with respect to the target.
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Figure 5.1 presents an overview of the proposed switched controller, where switching
is used to select either vision- or force-based control. Three sensors are used: a force
sensor, an incremental position encoder, and a vision system. The force sensor can be
fitted directly to the end-effector to measure the contact force directly. The vision-based
control loop consists of two nested controllers, the outer controller setting the desired
velocity for the inner velocity controller. The use of an incremental position encoder for
velocity measurements makes it possible to have high frequency in the inner controller
even while the sampling frequency of vision is low. Next, each of the subparts of the
system are explained in more detail.

Figure 5.1: Controller.

5.1.1 Desired velocity profile

Approaching the object should be as fast as possible, and at the same time the impact
forces should be minimized. To achieve a smooth contact, the velocity of the end-effector
must be low when the contact occurs. Approaching the object can be done by using
high speed, and when the end-effector is near the object, the speed can be reduced for a
smooth contact. Usually there is always a maximum acceleration the system will endure.
There can also be constraints in the maximum velocity of the end-effector.

In an optimal approach, the acceleration stays constant at the upper limit of the acceler-
ation the system can endure. Vision based velocity control calculates an optimal velocity
based on the distance to the object. The desired velocity is as high as possible so that it
is still possible to decelerate the end effector to a safe contact velocity.
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The velocity profile of the vision-based velocity control is linear in the time-velocity
coordinate system, as can be seen in Fig. 5.2. Vision is used to determine the distance
to the target, so the desired velocity must be known in position-velocity coordinates.

Figure 5.2: Velocity profile.

To attain constant deceleration, the desired velocity f(d) during the deceleration is

f(d) =
√

V 2
min + 2ad, (5.1)

where Vmin is the desired speed of contact for a low gain force control, a is the allowed
deceleration, and d is the distance to the point of contact. To limit the speed outside the
zone of constant deceleration, the desired velocity can be written as

f(d) = min

(

Vmax,max

(

√

V 2
min + 2ad, Vmin

))

. (5.2)

The direction vector of the velocity v can be written as

v =
x − x∗

‖x − x∗‖ , (5.3)

where x is the measured end-effector position and x∗ the desired position in Cartesian
space. Noting that d = ‖x − x∗‖, the desired velocity of the end-effector ṙd is then

ṙd = f(d)v = f(‖x − x∗‖) x − x∗

‖x− x∗‖ . (5.4)

Thus, the desired motion is a straight line path with the speed controlled by the distance
to the target.

The latency and low frame-rate of the visual system cause error to the estimated position.
The incremental position encoder gives high frequency proprioceptive information of
the end-effector motion. By fusing visual and encoder information, it is possible to
compensate for the latency of the vision system and interpolate the position of the end-
effector. Encoders can only be used for calculating relative positions as the location of
the objects is not known. The encoder position at the time instance when the position
was measured by the visual sensor is stored. The difference between the current encoder
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position and the stored position is calculated and added to the position measured by the
visual system. The compensated position of the end-effector is as follows:

x = xvis(t0) +

∫ t

t0

venc, (5.5)

where xvis(t0) is the end-effector position at the time instance when the image was taken
and venc the velocity in Cartesian coordinates given by the encoders.

The focus in the experiments was on hydraulic manipulators, but the proposed controller
is also applicable to electrically driven robots equipped with a force sensor.

5.1.2 Velocity control

A position is achieved by velocity control. When operating in the velocity control mode,
the controller drives an actuator at a velocity rate specified by a command. Once the
motion starts, the actuator moves indefinitely at the required speed until it is commanded
to change speed or stop.

The actuator space velocity l̇ is measured by encoders, and the end-effector velocity in
Cartesian space is

ṙ = Jr l̇, (5.6)

where Jr is the robot Jacobian. The velocity during the approach phase is controlled
using a proportional velocity controller

uv = Kv (ṙd − ṙ) , (5.7)

where Kv is a suitable positive definite matrix gain and ṙd the desired velocity.

The controller needs at least two poles in the origin in order to follow a ramp signal
with a zero steady-state error [33]. A standard proportional-integral (PI)-controller has
only one pole in the origin, and adding a second integrative term could make the system
unstable. However, if the deceleration rate is relatively small, there will be no significant
deviation from the desired velocity even with a proportional (P)-controller during the
ramp phase.

5.1.3 Force control

The aim of the force controller is to attain and maintain a constant desired force between
the robot end-effector and a target. Let Fd denote the desired force vector. The force
controller can now be written

uf = Kp (Fd − F ) + Ki

∫ t

0

(Fd − F ) , (5.8)

where Kp and Ki are suitable positive definite matrix gains. The proportional-integral
control scheme converges to a steady state with zero force error, provided that the control
gains are properly chosen to ensure stability of the closed loop system.
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5.1.4 Switched control

The switched controller consists of a vision-based velocity controller and a force controller.
Velocity control is used in approaching the object, and switched to force control when
the object is reached. The transition from visual to force control is based on force
thresholding. Vision is used if the force is under the threshold Ft and if the threshold is
exceeded, force control is applied. Thus, the switched controller can be written as

u =

{

uv if ‖F ‖ ≤ Ft

uf if ‖F ‖ > Ft
. (5.9)

Inertial coupling of the end-effector mass can cause measurable forces. If the inertial
forces are greater than the force threshold, the forces should be compensated. The
Cartesian acceleration of the end-effector can be calculated from the encoder’s positional
information. An acceleration sensor can also be used if the encoder data is too noisy. If
the Cartesian acceleration and the mass of the end-effector are known, the inertial forces
can be estimated.

Because the velocity and force controllers are separate, they do not hinder each other’s
performance, even if the sampling rate of vision is low. That is, after the contact, only
the force controller is used.

5.1.5 Experiments

Making contact with a workpiece is essentially a one-dimensional motion. For that reason,
a test setup with a one-axis robot has been developed to analyze the controller proposed
in Sec. 5.1 experimentally.

The experimental setup consists of three parts: a hydraulic actuator with a sled, a rigid
target, and a vision system. The sled moves on a linear guideway, placed on an I-bar
bolted to the floor.

A rubber damper is mounted to the actuator so that there is some flexibility when the
actuator impacts the target. The diameter of the piston rod is 25 mm. An LT5 A1
force sensor is installed directly to the hydraulic cylinder for the force measurements.
The rated capacity of the hydraulic cylinder is 2000 kg. The displacement of the sled is
measured by a linear position encoder. The setup is shown in Fig. 5.3.

The controller operates on a dSpace DS1103 controller board connected to a PC, which
is used to build the controller with Simulink. The force sensor and the position encoder
are directly connected to the controller. The vision system operates on a separate PC,
connected to the controller with a serial link. Different velocity profiles were compared
with respect to their rate of convergence and the force overshoot at impact.

In the first experiment, the magnitude of the force overshoot was examined at different
constant approach velocities. In this experiment, visual information was not used to
determine the location of the target, and there was no deceleration before contact. The
test bench was started from the velocity control, and switched to force control after
touching the object. The desired contact force was set to Fd = 200N , and the threshold
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Figure 5.3: Test setup.

force for switching to Ft = 50N . Three different velocities and their corresponding
contact forces are shown in Figs. 5.4 and 5.5, respectively.

Fig. 5.5 it can be seen that the force overshoot increases when the velocity is increased.
This is due to the inertial effects of the end-effector. The force overshoot can be reduced
by decreasing the contact velocity. However, the time to contact increases if the approach
velocity is decreased.

In the second experiment the proposed controller was used. The distance to the ob-
ject was determined by vision only, without the incremental encoder. The deceleration
rate was set to 64mm/s2, and the contact velocity to the smallest velocity of the first
experiment. The resulting velocity and force are shown in Fig. 5.6.

In Fig. 5.6 it can be seen that the contact force overshoot is negligible, but the time to
contact is smaller compared to the constant velocity approach with the same overshoot.
The jagged velocity profile in Fig. 5.6 is caused by the low frame-rate of the visual system
and can be improved by incorporating the encoder measurements.

In the third experiment, integration of the encoder and visual measurements was used,
as proposed in Sec. 5.1.1. Figure 5.7 shows the measured velocity and force. The figure
shows that the deceleration is now smooth. The contact velocity and therefore the contact
force are the same as in the previous experiment.
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Figure 5.4: Constant velocity approach and force control.
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Figure 5.5: Contact forces with constant velocity approach.

In the fourth experiment, the proposed approach was compared to a P-controller for the
position during the approach phase. This experiment is comparable to the approach pro-
posed by Zhou et al.[110], but instead of visual features, the control is done in Cartesian
coordinates. However, the visual measurements are approximately linearly dependent on
the Cartesian measurements, and therefore the results are comparable. The gain of the
controller was optimized so that the maximum and contact speeds were not exceeded.
The velocity and force of the proportional position control is shown in Fig. 5.8. It can be
seen that the time to contact is higher than with the proposed controller, and therefore
the proposed approach gives faster convergence when the contact force needs to be lim-
ited. In addition, as the desired contact speed is a simple physical quantity, it is often
easier to set, compared to the parameters of the proportional controller.

Experiments were also conducted with a moving target object [62]. In Fig. 5.9 the object
moves away from the end-effector. As the velocity of the end-effector is higher than the
velocity of the object, the end-effector eventually reaches the object and impact occurs.
The experiment shows that the end-effector and the object have the same velocity after
the impact and that the contact force is stable. When the object moves towards the
end-effector, shown in Fig. 5.10, a force peak occurs during impact.
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Figure 5.6: Measured velocity and force using vision and force sensors.
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Figure 5.7: Measured velocity and force using vision, encoder and force sensors.
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Figure 5.8: Position-based velocity profile and force control.

Impact experiments with 5-DOF parallel hydraulic manipulator shown in Fig. 3.2 verified
that force peak can be reduced by decreasing the impact velocity [63]. In Fig. 5.11 it is
visible that higher impact velocity causes larger force peak. Different materials also have
different force control properties, and even when using the same velocity the force peak
can be different, as shown in Fig. 5.12.
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(a) End-effector velocity. (b) Object velocity.

(c) Contact forces.

Figure 5.9: Integrated force and velocity control with vision with target move-

ment away from the end-effector. [62]
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(a) End-effector velocity. (b) Object velocity.

(c) Contact forces.

Figure 5.10: Integrated force and velocity control with vision with target move-

ment towards the end-effector. [62]
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Figure 5.11: Impact forces with different velocities. [63]

Figure 5.12: Impact forces to different materials. [63]
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5.2 Hybrid control

In this section, an online trajectory following task which utilizes laser projection vision
and force sensors is proposed. The trajectory to be tracked is assumed to lay on a
piecewise planar surface bounded by another plane. The laser striping system projects
two laser lines perpendicular to each other on both planes. The visual system estimates
the location and orientation of the two planes. This information is used to control the
orientation of the tool. While the tooltip is in contact with the object, and following
the trajectory, the robot joint sensors provide additional information, giving one point
on the trajectory. The force sensor also measures contact forces to both planes and the
friction force along the trajectory. Three different force controllers are set up to control
three axes: an axis along the surface normal, an axis along the trajectory, and an axis
perpendicular to the previous axes. These three axes are controlled with proportional-
controllers to have constant contact forces. The vision is essential also for force control,
as the orientation of the tool affects the directions of the three force controlled axes.

Measurements from the vision and robot joint sensors are fused in the EKF. Two separate
filters are set up to estimate each independent plane measured by the visual sensor. The
state vector of each EKF contains the parameters of one plane. The proposed EKF
method is compared to an EKF method which uses only vision to estimate the state.
Also a method using visual measurement directly to set the controllable axes is compared
to the previous methods.

5.2.1 Hybrid controller

The control system consists of an EKF-based controller, which determines the correct
orientation for the tool, and a force controller, which maintains desired the contact forces.
All the controllers are proportional-velocity controllers, which feed the desired linear and
angular velocities to the robot controller. The control loop is run with the maximum
140Hz rate supported by the robot controller.

The set point for the tool orientation controller is estimated by the EKF-based on the
visual and the tooltip measurements. The orientation controller is therefore a shared
controller utilizing both the visual and proprioceptive information from the joint sensors.
The force controller, on the other hand, controls three translational axes in the task-
frame coordinates. The forces are measured by a wrist mounted 6-DOF force sensor.
Each axis is controlled by a separate force controller and with axes perpendicular to
each other. The first axis is perpendicular to the object surface, the second axis is along
the trajectory, and the third axis is perpendicular to the first two axes. The controller
outputs the desired velocities in the end-effector coordinate system, which are then fed to
the robot controller. Each axis can be set to have a different desired force, and also the
maximum velocity for each axis can be limited. Usually only the second axis, controlling
the end-effector velocity along the trajectory, will be limited by the maximum velocity
restriction.

5.2.2 Experiments

Experiments were conducted to show that the EKF estimate reduces the visual measure-
ment noise considerably and allows higher gain to be used during control. The system
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consists of a laser striping visual system and a 6-DOF force transducer integrated into a
6-axis serial manipulator, shown in Fig. 5.13.

Figure 5.13: 6-DOF serial manipulator.

In the experiments, three different estimators were used to control the orientation of the
end-effector: a simple unfiltered visual measurement, EKF-based estimate utilizing only
visual measurement, and an EKF estimate fusing visual and tooltip measurement. Then,
a force controller was set up to control three axes: z-axis perpendicular to the target
object, x-axis along the trajectory, and y-axis perpendicular to the first two axes. First
the estimation methods were compared in hybrid control under a relatively low control
gain. Fig. 5.17 shows the trajectories under the different estimation methods. In the
figure it can be seen that the estimation method fusing visual and tooltip measurement
gives the smoothest trajectory, and the vision-only estimate oscillates the most. However,
the scale of the plot should be noted. The oscillations using the a visual estimate are
under 0.1mm in amplitude, which can be considered adequate for most tasks. In the
contact forces there are no drastic differences between the different estimation methods.
The contact forces under the pure visual estimate in Fig. 5.16 oscillate slightly more than
when using the filtered estimates shown in Figs. 5.14 and 5.15.
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Figure 5.14: Contact forces during hybrid control with Kalman filter estimate

using only vision.
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Figure 5.15: Contact forces during hybrid control with Kalman filter estimate

using vision and tooltip measurement.
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Figure 5.16: Contact forces during hybrid control with vision without filtering.
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Figure 5.17: Comparison of different estimation methods with a low control

gain.

Next, the control gain was increased by a decade to allow higher speed to be used during
the control. Figs. 5.18 and 5.19 show the contact forces in the end-effector coordinates.
The tooltip point in the Cartesian world coordinates is shown in Fig. 5.20. It can be seen
that the control utilizing unfiltered visual measurement oscillates heavily and cannot
follow the trajectory reliably. The EKF-based controllers, on the other hand, give a
smooth response. It should be noted that each test run was unique, and therefore the
absolute positions cannot be compared, but only the relative movement.

The effect of the tooltip measurement is less obvious. By looking at the EKF-estimate
of the plane equations in the world coordinates, a slight difference in the two EKF
methods can be seen. In Fig. 5.21 it is visible that the EKF with a tool-tip measurement
deviates slightly from the mean of the visual measurement. Without ground truth data,
it is difficult to determine which estimate performs better. However, both the EKF-
measurements are stable in control.

The trajectories in the Cartesian world coordinates are shown in Fig. 5.22. The EKF
with and without tooltip measurement are again almost identical. The unfiltered visual
measurement cannot track the contour but oscillates in a fixed position.

An experiment was also made with the EKF with tooltip measurement where the tool
was moved with a higher velocity along the seam. Trajectories for two different velocities
are shown in Fig. 5.23. The contact to the second surface cannot be maintained when
the velocity is doubled. The friction forces become higher than the desired contact force
to the second surface, and the tool drifts along the first surface.
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Figure 5.18: Contact forces during high gain hybrid control with vision without

filtering and Kalman filter estimate using only vision.
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Figure 5.19: Contact forces during high gain hybrid control with Kalman filter

estimate using vision and tooltip measurement.
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Figure 5.20: Toolpoint position in high gain hybrid control.
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Figure 5.22: Trajectory during high gain hybrid control experiment.
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5.3 Shared control

In shared control, force and vision sensors are used to control the same axes simultane-
ously. The system for the shared control is the same as for the hybrid control introduced
in the previous section. Also the same orientation controller is utilized to keep the desired
tool pose during control. The position controller, on the other hand, is a shared con-
troller using the information from the EKF estimate directly. The estimates of the two
plane equations give an intersection line of the planes. The shared controller is set up to
follow the intersection line by moving the tooltip towards the intersection line and at the
same time along the line. Schematic of the vectors needed in shared control is presented
in Fig. 5.24. Distance dl from the toolpoint Pt to the intersection line is calculated as

dl =
|v1

−→

PtP1 |
|v1|

, (5.10)

where P1 is a point arbitrary on the intersection line. P1 can be solved by finding a
solution to a system of linear equations of the intersecting planes

{

a1x+ b1y + c1z = d1

a2x+ b2y + c2z = d2

, (5.11)

by setting for example the x- coordinate of the equations to zero and solving for y and z.
The desired movement of the tooltip can be defined as a sum of vectors dl

v4
|v4|

and vd
v1
|v1|

,

where vd is the desired velocity along the seam. An algorithm for the shared controller
is specified in Alg. 10.

Figure 5.24: Forces during shared control.

5.3.1 Experiments

Experiments with the shared control were conducted to prove the concept of using the
EKF estimate directly in control and also to compare the shared control approach to
hybrid control. Different parameters for the desired velocity vd and spring constant vk,
as well as different control frequencies were also investigated to verify the robustness
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Algorithm 10 Shared control algorithm.

1: repeat

2: find the direction vector v1 = n1 × n2 of the intersection line of the two planes
3: find a point P1 on the intersection line by setting x = 0 and solving the plane

equations for y and z

4: calculate v2 =
−→

PtP1, v3 = v2 × v1 and v4 = v3 × v2

5: calculate the distance dl from the tooltip to the intersection line
6: the desired movement of the toolpoint is dl

v4
|v4|

+ vd
v1
|v1|

7: until

of the control. The same experimental setup was used as with the hybrid experiments
shown in Fig. 5.13.

Trajectories under different velocities during contact are shown in Fig. 5.25. The shared
control oscillates slightly with the slow velocity, and when the velocity is doubled, the
trajectory following becomes less reliable. When it is compared to hybrid control with
the same velocities in Fig. 5.23, it can be seen that the hybrid control gives a smoother
trajectory with the low velocity, but shared control can still track the trajectory even
when the velocity is doubled.
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Figure 5.25: Trajectories while using different velocities during contact in shared

control.

The shared controller requires an estimate of the spring constant k. In the experiments
the spring constant was determined offline by measuring the contact forces fc1 and fc2
in two different end-effector positions, zc1 and zc2, giving k = fc1−fc2

zc1−zc2
. Determining the

spring constant with this method is not very accurate and can give large variations to
the value of the constant if several measurements are made with different tool poses or
contact forces. Therefore an experiment was made where the spring constant was altered
deliberately to test the performance of the controller in case the spring constant is not
very accurate. Fig. 5.26 shows the resulting trajectories of three different test runs with



94 5. Force and vision control

spring constants k, 2 × k and 5 × k. The control is stable for the first two test runs,
but becomes unstable when the spring constant is further increased. The corresponding
forces in Fig. 5.28 are surprisingly stable even for the 5×k spring constant, but from the
x-force it is visible that contact to the second surface is not obtained.
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Figure 5.26: Trajectories under different spring constants.

Also experiments with different control frequencies were made in order to estimate how
well the shared control method would perform if the frequency of the robot controller is
low. The trajectory under low frequency shown in Fig. 5.27 is almost the same as with
the higher frequency, but the force control properties shown in Fig. 5.29 are hindered
considerably.
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Figure 5.27: Trajectories while using different control frequencies.
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Figure 5.28: Forces under different spring constants.
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Figure 5.29: Forces while using different control frequencies.
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5.4 Summary and discussion

This chapter presented three different control methods combining force and vision sen-
sors: switched, hybrid and shared control. A novel approach for reducing the impact force
overshoot of a force controller in the initial contact phase was proposed. The approach
is based on measuring the distance to the target using vision and reducing the velocity
before the contact. Thus, the impact force, caused mainly by the inertia of the system,
is reduced. The approach gives an optimal velocity profile when the maximum velocity,
maximum acceleration, and contact velocity are specified. The approach was demon-
straded with experiments, which showed that combined force/vision control reduces the
overshoot and approach time compared to pure force control. The optimal velocity pro-
file with constant deceleration gives faster approach time than velocity control based on
image features. Using the velocity profile method, the selection of parameters is trivial
compared to image-based visual servoing.

A hybrid control was also demonstrated to follow a trajectory based on the estimate
from the EKF. The estimate of the EKF was used to control the orientation of the
tool when a simple proportional force control was used to track a continuous trajectory.
The proposed approach was validated by experiments with a 6-DOF serial manipulator.
The experiments showed that high control gains cause visual control without filtering to
oscillate due to measurement uncertainty, and that the proposed method can increase
the stability of control considerably. The hybrid contour tracking methods presented
in literature are often restricted to planar contours [16], but the proposed approach
can track arbitrary contours in 6-DOF. The proposed approach differs from traditional
hybrid control methods [16, 79] by modelling the dynamic uncertain environment and
fusing several sensor modalities together in one model, where the earlier methods use
sensor measurements directly in control.

Experiments with shared control were also presented. The estimation method fusing
force and vision in EKF was also used for shared control experiments. The system was
stable under control and was able to follow the trajectory with a wide variety of operating
parameters. However, according to the experiments, hybrid control outperformed shared
control in all but one experiment. When a high velocity was used for contour tracking, the
hybrid controller became unstable, but shared control was still able to track the contour.
The shared controller requires an estimate of the spring constant k to be estimated. The
experiments showed the method is not very sensitive to the value of the spring constant,
and therefore the system can adapt even if the measurement of the spring constant is
not very accurate or if there are variances over time. In future work the spring constant
could also be added to the state of the EKF and estimated online. The tool used in
the experiments was flexible and deformed while in contact. Hooke’s law is not a very
accurate model for the tool, as the forces also cause rotational displacement not taken
into account. More realistic physical modeling of the tool or the use of a more rigid tool
could improve the shared control results.

The control loop frequency of modern industrial manipulators is usually adequate for
sensor based robotics. Earlier, latencies in setting the desired position, as well as low
sample rate prevented efficient sensor-based control unless the sensor was integrated into
the robot controller internally. There have been attempts to describe open control archi-
tecture which would not require hardware modifications of the robotic manipulator or the
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controller [18], but as every manufacturer has their own controllers, this is a difficult task.
Experiments were also conducted where the control frequency was deliberately decreased
to simulate how well the method would perform on lower-rate industrial manipulators.
Even though the system was still able to follow the contour, the force control properties
where hindered considerably.



Chapter VI

Conclusion

Sensor-based robotics allows manipulation in uncertain and dynamic environments. Force
and vision offer complementary sensor modalities allowing fast and precise manipulation,
but combining the sensors is problematic, as they do not share a common representation.
Although framework models for sensor fusion have been proposed, multisensor control is
still a challenging field of study and requires a great deal of knowledge from the robot
programmer.

In the thesis, methods for fusion of proprioception, force and vision sensors in robotic
manipulation were proposed. Different visual sensing approaches were proposed and
also methods for determining the uncertainties of visual measurements were given. The
objective of the thesis was to develop methods for estimating a dynamic uncertain en-
vironment by fusing several sensor modalities together in one model to provide better
control stability and performance than using the sensor measurements directly in con-
trol. In the thesis, a method for estimating the pose of a target object that was also
allowed to move during manipulation was proposed. Information from three different
sensors was combined in an EKF to provide an accurate, high-sample-rate estimate of
the pose of the target object and its velocities. The proposed method offered better
stability and performance by reducing the oscillations and allowing higher gains to be
used during control than when using the sensor measurements directly in control. Also a
method for transition from vision-based control to combined vision and force control was
proposed. The approach was demonstraded with experiments, which showed that the
proposed transition method reduces the force overshoot and approach time compared to
pure force control.

Filtering the sensor measurements often causes a phase shift in the estimate. When
using EKF the expected future target pose can be predicted making it possible to track
a moving target and alleviate the inherent latencies in the visual system and control
loop. Three parameter axis angle representation was selected for estimating the orien-
tations in order to minimize the amount of state variables. The use of four parameter
quaternions would simplify the calculation of the gradient in the estimation model, but
there is a drawback when using quaternions, as quaternions must be normalized to unit
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length after each update step. Although the normalization of the state vector itself is
straightforward, also the covariance of the state must be modified to correspond to the
normalized state. As the normalization process is nonlinear the new covariance matrix
is only an approximation of the convariance of normalized state.

Three different multi-sensor control strategies were verified experimentally. Switched
control uses a vision sensor for approaching the object and switches to force control once
the contact is made. The experimental results verified that the velocity profile approach
proposed in the thesis reduced the time to impact and allowed a smooth contact without
force overshoot. In hybrid control, force and vision sensors control separate degrees of
freedom. In the experiments it was shown that the proposed estimation method allowed
higher control gains to be used during control than when the control was based on visual
measurement alone. The results with shared control where force and vision control the
same degrees of freedom confirmed that the proposed shared control method can be used
in control, although the performance was not on a par with hybrid control.

Experiments were performed on several real physical platforms. The methods were val-
idated with both hydraulic and electric motor manipulators. Also parallel and serial
platforms were both covered. Switching control experiments with one dimensional hy-
draulic servo bench allowed to study the transition phase from visual control to force
control without additional difficulties due to 3-D geometry. The tracking experiments
were verified with 5-DOF parallel hydraulic manipulator, which allowed complete control
of the hydraulic cylinders. Hybrid and shared control experiments were performed on an
industrial 6-DOF articulated robot arm.

Visual sensor calibration is usually a laborious process, especially for position based
visual servoing. Although it is often enough to calibrate the intrinsic parameters of the
visual sensor once, hand-eye calibration must be performed by the robot operator every
time the relative pose of the camera changes with respect to the end-effector. In this
thesis, an automated procedure for structured light laser sensor calibration was proposed.
Although the absolute accuracy of the laser sensor alone was insufficient for the robot
control, robust and efficient control was achieved by combining force and vision sensors.

Inertial coupling of the end effector causes forces even if the end effector is not in contact
with the object. The inertial coupling was not considered in this thesis as the acceler-
ations of the end-effector during contact were very small. During the approach phase,
however, inertia causes measurable forces when the end-effector is decelerating. For this
reason the switching rule from visual to force control, was based on the visual information
only. The switching rule could be improved by including the force measurements in the
EKF model during the approach phase. This would require either compensating for the
inertial effects or setting a large force threshold for the contact information during the
approach phase. The shared control method could be improved by more realistic phys-
ical modeling of the tool. The tool used in the experiments was flexible and deformed
while in contact causing rotational displacement not taken into account. The use of a
more rigid tool could also improve the shared control results. Future work consists of
validating the methods with real industrial applications such as grinding and deburring
tasks.
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