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ABSTRACT
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On the Application of Beam on Elastic Foundation Theory to the Analysis of
Stiffened Plate Strips
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The main objective of this thesis is to show that plate strips subjected to transverse line loads
can be analysed by using the beam on elastic foundation (BEF) approach. It is shown that the
elastic behaviour of both the centre-line section of a semi-infinite plate supported along two
edges, and the free edge of a cantilever plate strip can be accurately predicted by calculations
based on the two parameter BEF theory. The transverse bending stiffness of the plate strip
forms the foundation. The foundation modulus is shown, mathematically and physically, to be
the zero order term of the fourth order differential equation governing the behaviour of BEF,
whereas the torsion rigidity of the plate acts like pre-tension in the second order term.

Direct equivalence is obtained for harmonic line loading by comparing the differential equations
of Levy's method (a simply-supported plate) with the BEF method. By equating the second and
zero order terms of the semi-infinite BEF model for each harmonic component, two parameters
are obtained for a simply-supported plate of width B: the characteristic length, 1/4, and the
normalized sum, n, being the effect of axial loading and stiffening resulting from the torsion
stiffness, n,,. This procedure gives the following result for the first mode when a uniaxial stress
field was assumed (v = 0): 1/4=v2Bfm and n,, = 1.

For constant line loading, which is the superimposition of harmonic components, slightly
differing foundation parameters are obtained when the maximum deflection and bending
moment values of the theoretical plate, with v = 0, and BEF analysis solutions are equated: 1/4
= 1.47B/m and n,,, = 0.59 for a simply-supported plate; and 1/4 = 0.998/ and ny, =0.25 for a
fixed plate. The BEF parameters of the plate strip with a free edge are determined based solely
on finite element analysis (FEA) results: 1/4 = 1.298/1 and n,, = 0.65, where B is the double
width of the cantilever plate strip.

The stress biaxiality, v > 0, is shown not to affect the values of the BEF parameters significantly.
The result of the geometric nonlinearity caused by in-plane, axial and biaxial loading is studied
theoretically by comparing the differential equations of Levy's method with the BEF approach.
The BEF model is generalised to take into account the elastic rotation stiffness of the
longitudinal edges. Finally, formulae are presented that take into account the effect of Poisson’s
ratio, and geometric non-linearity, on bending behaviour resulting from axial and transverse in-
plane loading. It is also shown that the BEF parameters of the semi-infinite model are valid for
linear elastic analysis of a plate strip of finite length. The BEF model was verified by applying
it to the analysis of bending stresses caused by misalignments in a laboratory test panel.

In summary, it can be concluded that the advantages of the BEF theory are that it is a simple
tool, and that it is accurate enough for specific stress analysis of semi-infinite and finite plate
bending problems.
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unknown deflection amplitudes i of harmonic componentm, i =1, 2, 3, 4
unknown deflection amplitudes n

unknown deflection amplitudes n

stiffener spacing; width of I-beam flange

modulus of elasticity

E/(1-v?)

nodal point load component i, i = 1, 2, 3, 4; harmonic component m
nodal point load

flexural moment of inertia of a beam or a plate of unit width

bending or flexural rigidity of plate of unit width

contribution of bending stress in stress concentration

factor for geometric non-linearity

factor for differing thickness

structural stress concentration

factor for transverse bending

length of beam; length of angular misalignment

bending moment of a beam; or a plate of unit width, in general
bending moments (per unit width) producing axial stresses in x and y
directions

edge moment loading in x direction at x = 0 line; componet m of M, o
bending moment in x direction resulting from external loading in simply-
supported plate

bending moment in x direction resulting from edge moment M, ,
unknown edge moment in y direction at y = B/2; component n of M,,
bending moment in y direction resulting from external loading
bending moment in y direction resulting from edge moment M, ,
twisting moment per unit width

twisting moment in y direction resulting from M, ,

point couple loading

bending moment in x direction at x = 0 of a semi-infinite BEF strip
bending moment in x direction at x = 0 of a BEF strip of length L
bending moment in x direction at x = L of a BEF strip of length L
axial load per unit width; harmonic component m; second order,
Pasternak foundation parameter

critical buckling load of the two parameter foundation model BEF
critical buckling load in y direction

elastic buckling load of simply-supported bar in y direction

elastic buckling load in x direction of one parameter BEF model
axial load in x and y directions
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U,. deflection at x = 0 of a semi-infinite BEF

U, slope of deflection at x = 0 of a semi-infinite BEF, or a BEF of length L
U,. slope of deflection at x = 0 of a semi-infinite BEF

U, deflection at x = L of a BEF of length L

U, slope deflection at x = L of a BEF of length L

Un nodal displacement component i of harmonic component m, i = 1, 2, 3, 4
V(x) generalised shear force, transverse to the non-deformed x axis

V, edge force in x direction;

V,, V,, constant line loading at x = 0 line; harmonic component m

Vv, support reaction at x = 0 of a BEF of length L
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X(x), Y(y) deflection functions in x and y directions
XA(X), Yn(y) component m of deflection function
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€, eccentricity of offset misalignment
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k k, Winkler foundation modulus; harmonic component m

K, rotation spring coefficient of line spring at longitudinal edge line
m root of a characteristic equation; index in series expressions

m,, m,,,  normalised moment in x direction; resulting from geometic non-linearity
m, ., M., normalised moment in simply-supported (ss) and fixed (fix) plates

m,, normalised edge reaction moment resulting from M, , in y direction
m,(AL) finite length factor of moment resulting from deflection U,

m, ,(AL) finite length factor of moment at x = L resulting from U,

my,(AL) finite length factor of moment at x = L resulting from U,

n normalised second order foundation parameter in general; index in
series expressions

n, axial load ratio N/N,, of component m

Ny foundation parameter ratio n (= N/N,,) when axial load is zero

n, axial membrane load ratio N/N_

n, transverse membrane load ratio N, /N,

p. P, index; pressure loading in z direction

q(x) distributed load of intensity q in z direction

r stiffness ratio
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I, Ty normalised rotation, resulting from geometic non-linearity

Tix normalised rotation in fixed plate

r,(AL) finite length factor of rotation U,

S, Sgu normalised deflection; resulting fromgeometic non-linearity

Ses 1 Six normalised deflection in simply-supported (ss) and fixed (fix) plates
u,(AL) finite length factor of deflection U,

v,(AL) finite length factor of edge reaction at x = 0 resulting from U,

W, w, plate/beam deflection in z direction; of component m

w, deflection resulting from external loading in simply-supported plate
w, deflection resulting from unknown edge moment M, ,

X, y in-plane co-ordinate axis

z co-ordinate axis normal to the plate (in the lateral direction)

Z, depth of angular misalignment

Greek letters

A auxiliary variable; change of
a, a, parameter containing second order BEF expressions; harmonic
component m

Ay parameter in BEF expressions when the axial load is zero

B B parameter containing second order BEF expressions; harmonic
component m

B parameter containing second order BEF expressions under high tension
loading

€ axial strain

Va auxilary variable nn/a

n Nn auxilary variable v(N/E); auxilary variable mm/B

A AL characteristic of a beam on elastic foundation; harmonic component m

1/A, 1/A,, characteristic length of BEF; harmonic component m in plate analysis

v Poisson's ratio (0.3 used for steel; written v in equations)

g axial stress, normal stress

g, bending stress

On nominal membrane stress

(o Jg membrane stress at centre-line

o, structural stress

g, g, axial stress in x and y directions

Ty =T shear stress

7/ slope of deflection

P, angle of angular misalignment; slope of deflection ow,/ dy resulting from
external loading at y = B/2 line

@, slope of deflection ow/ dy resulting from edge moment M,,aty=B/2line
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1. INTRODUCTION 1

Chapter 1
INTRODUCTION

The chapter begins with an introduction to the problems related to the design of
load-carrying welded plate structures that are subjected to altemnating loading.
Manufacturing tolerances increase the structural stress of plate sections,
illustrated in two figures. This extra stress, the plate bending stress, must be
taken into account in fatigue analysis in particular. Unfortunately, a detailed
stress analysis based on plate theory is tedious, or based on finite element
analysis time-consuming. The objective of the study, presented in Section 2.2,
was to develop onginal, simple calculation methods for specific plate problems.
The content of the thesis is described bnefly at the end of the chapter.

1.1 Background and objectives of study

The primary task of a structural engineer is to ensure that the resistance of a structure
is greater than the loading it experiences. Strength analysis of structures is based on
two principles: i) structures made of ductile material subjected to static loading are
designed against plastic collapse; ii) structures made of brittle material, structures
susceptible to a loss of stability under in-plane loading, or structures subject to fatigue
loading are primarily designed according to linear elastic stress analysis.

Elastic stress analysis has traditionally been based on classical methods, and often
limited to a global level analysis. For some problems, with distinct boundary conditions,
closed form solutions describing deflection functions can be obtained. Nowadays,
numerical finite element analysis (FEA) methods are available for the analysis of the
internal force distribution at a global level, often used in conjunction with a local model
to determine stress concentrations at geometric discontinuities. Further refined elernent
models are needed to take into account all the relevant factors, this being the
shortcoming that has the most significant effect on the accuracy of FE analysis results.

Stress analysis is a mathematical idealisation of natural structural behaviour. In a static
strength analysis, to define the maximum plastic load capacity, some stress
redistribution at the joints is normally allowed. The elastic stress analysis for fatigue
assessment is complicated by the true geometrical shape of the structure, especially at
the joints of welded structures. Under fatigue loading, the sum of the stresses resulting
from various loading components at the critical locations of welded joints are equally
damaging.

Because of fabrication tolerances and differing plate thicknesses at butt joints, the
midplanes of the plates can easily be offset. During the welding process the joints
distort angularly when cooling from the melting temperature. These two types of
deviation from the idealised geometry are called axial and angular misalignments,
illustrated in Fig.1.1-1. When subject to in-plane loading transverse to the misaligned
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joint, the plate will deflect laterally, causing out-of-plane bending stresses which are
superimposed on the membrane stress. The axial stress in the thickness direction,
which consists of the membrane stress and the bending stress caused by
misalignments, is illustrated in the figures. The equivalent loads of nominally straight

structures under axial loading per unit width, N, which result from the misalignments in
Fig. 1.1-1, are shown in Fig. 1.1-2.

299

Figure 1.1-2  Equivalent lateral loading of aligned plates caused by misalignment
shown by force flow and by corresponding free body models.
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In Figs 1.1-2a) and b), the effect of an axial misalignment of magnitude e, is equivalent
to a point couple, Ne,. As can be seen in Fig. 1.1-2a), e, originates from manufacturing
tolerances in a joint comprising plates of equal thickness. In a joint comprising plates of
differing thickness, with the lower surface aligned, Fig. 1.1-2b), e, is 50% of the
thickness step, h, - h,. In a butt joint containing an angular misalignment characterised
by an angle, ¢,, Fig. 1.1-2¢c), the axial load, N, produces a lateral load, Ng,, for an
ideally-aligned plate geometry. An angular misalignment in a butt joint can also be
characterised by a depth, z,, shown in Fig 1.1-1c). In a fillet-welded T joint, the angular
misalignment can only be characterised by the angle ¢,. When a geometric non-linear
analysis is performed, the T joint can be analysed based on the constrained rotation,

Po-

In static analysis of structures made of ductile materials, the induced bending stress
effect of an angular misalignment is not normally taken into account when the in-plane
loading is tensile. In fatigue assessment, these bending stresses may or may not be
taken into account on the loading side, depending on the design approach
(Hobbacher, 1996). In the traditional nominal stress approach the stress concentration
caused by the joint geometry and the effect of misalignments are implicitly included in
the fatigue strength data: these data have been determined as the nominal membrane
stress of laboratory specimens containing some degree of misalignment. When the
shape and stress distribution differ significantly between the laboratory test specimen
and the designed structure, a certain global level concentration must be taken into
account in fatigue design based on the nominal stress approach. In the modern
method, referred to as the structural, geometric, or hot-spot stress approach, which is
based on the structural stress, concentrations are included on the loading side. The
structural stress, linearly distributed in the thickness direction, includes the effect of
misalignments, and contains the effect of all these concentrations.

The stress analysis of shells, plates and plate sections is based on the modified local
nominal stress, since the fatigue strength data have been determined based on
relatively well-aligned specimens from conventional tension testing. Stress
concentrations caused by excessive misalignment belong to the local nominal stress
category. In general, local nominal stress concentrations are called macrogeometric
effects. Finite element methods, and in some cases, classical stress analysis, can be
applied to determine the stress state at the local nominal stress level of accuracy.
Maddox (1985) presented elementary, highly simplified design equations for calculating
the stress concentration resulting from misalignment. His results have subsequently
been applied in design recommendations (Hobbacher, 1996).

Parametric formulae derived using either calculation method, FEA or classical, are the
fast tools used for everyday fatigue design work. By using classical methods, the
(macrogeometric) stress concentration factors are based on mathematically correct
parametric functions of membrane stress and bending stress distributions.
Theoretically correct stress functions are complicated in the analysis of internal
statically-indeterminate structures, such as continuous plate sections. Numerical
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analysis is often needed to provide a solution. The application of the resulting
theoretically correct stress concentration functions in everyday design work is
laborious. Simplified but accurate analysis formulae are needed.

Sometimes a rigorous solution for one problem can be applied to an other with minor
modifications. As an example, the one parameter beam on elastic foundation (BEF)
solution, originally developed by Winkler (1867), is directly applicable to the
axisymmetric analysis of discontinuity stresses in cylindrical shells. The membrane
stiffness in the circumferential direction resisting expansion, or compression in the
radial direction under pressure loading, forms the foundation stiffness of the BEF
model. The accuracy is normally sufficient for the analysis of discontinuity stresses in
spherical and conical shells. FEA using shell or solid elements is a rapid method of
testing the applicability and accuracy of simplified calculation models for more
complicated problems.

The one parameter BEF method has been applied to determine the hot spot
(structural) stress gradient in a number of details in stiffened plate structures by
interpreting FEA results (Partanen, Tarjavuori, and Niemi, 1992) and (Partanen, 1992).

1.2 Goals and scope of study

The study considers the application of geometric non-linear two parameter BEF theory
to the stress analysis (at the local nominal stress level of accuracy) of longitudinally-
stiffened plate strips subjected to external line loads. Plate strips are plates infinite or
semi-infinite in one (longitudinal) direction. The line loads are of constant value and
transverse to the longitudinal support line, being either lateral, Fig. 1.2-1, or edge
moment, such as that shown in Fig. 1.1-2a) and b). Fig. 1.2-1a) shows a simply-
supported plate of width B loaded with a transverse line load in the lateral z direction.
This corresponds to an equivalent loading caused by an angular misalignment,
Fig.1.1-2c), when loaded in-plane in the longitudinal direction, x. The following are to be
shown: i) that the bending stiffness resisting the lateral deflection under uniform
pressure loading (the inverse of the deflection normalised by the load) forms the
foundation (k); and ii) the effect of the torsional stiffness of the plate forms the second
parameter (N) of the BEF model, shown in Fig. 1.2-1d). The BEF solutions are
applicable to a unit width strip, dy, in three cases:

» the centre-line section, y =0, of a simply-supported plate, Fig. 1.2-1a)

+ the centre-line section, y =0, of a plate fixed at the two longitudinal edge lines

y =t B/f2, Fig. 1.2-1b)
» the free-edge line y = b = B/2 of a cantilever plate, Fig. 1.2-1¢).

It will be shown that if the two parameters of the BEF analysis model are determined
based on the equality of the maximum value of the deflection and the bending moment
in the BEF, and the reference solution, respectively, the plate bending behaviour can
be approximated for engineering applications by the BEF model with sufficient
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accuracy. Plate theory, finite element modelling and analysis, and ordinary beam
bending calculations are used to determine the reference analysis results.

N ¢ N

RN 222}532233292"

d)

Figure 1.2-1 Longitudinally-supported plate strips under transverse line load: a) simply-
supported, b) fixed and ¢) cantilever plate stnp with one free edge, the other being
fixed; d) BEF model of the unit width plate strip, dy.

1.3 Contents

In Chapter 2, Lévy's (1899) method is applied to a semi-infinite plate strip that is simply
supported at the longitudinal edges, and loaded by transverse harmonic edge line and
edge moment loads. In Levy's method, a two dimensional plate problem is solved,
based on a one dimensional differential equation of the fourth order. Deflection and
internal force functions are presented.

In Section 3.1 at the beginning of Chapter 3, two types of BEF model, the one
parameter Winkler (1867) model, and the two parameter Pasternak (1954) model are
presented. Deflection and internal force functions for a semi-infinite two parameter BEF
are derived. In Section 3.2, following the principles of finite element formulations, the
stiffness matrix of a semi-infinite beam on elastic foundation is determined. By
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comparing the differential equations of the simply-supported plate strip of Chapter 2
and the semi-infinite two parameter BEF model, it is shown in Section 3.3 that under
harmonic (cosine) loading, the foundation parameters are directly obtainable by setting
equal the differential equations of the plate and BEF solutions. Under constant line
loads the internal beam forces of the BEF model are compared with the internal plate
forces of Levy's method, which are a superimposition of the series expressions of
harmonic loads.

In Chapter 4, Section 4.1, the results of a FE analysis linear shell element model of a
simply-supported plate under constant edge line loading are compared with the closed-
form solutions of Chapter 2. This case is used for verification of the accuracy of FE
modelling. In Section 4.2, the same FEA model is used to test the accuracy and
correctness of more complicated theoretical formulae of a plate strip fixed to prevent
rotation along the longitudinal supporting (stiffener) lines. In Section 4.3, a semi-infinite
cantilever plate strip, with one edge free and the other fixed, is analysed by FEA only,
since a closed-form reference solution is complicated. In Section 4.4, the effect of in-
plane loading is analysed theoretically and verified by geometric non-linear FEA when
the plate is simply supported. The effect of Poisson’s ratio, v, on bending behaviour is
discussed in Section 4.5. A generalised BEF model of a plate that is supported
elastically against rotation along the two support lines is presented in Section 4.6.

The generalised BEF model, based on the results of Chapters 3 and 4 and presented
in Section 4.6, is applied in Chapter 5 to the analysis of simply-supported and fixed
plates of finite length. Deflection functions and stiffness matrices of a two node, two
parameter BEF element are given in Section 5.1. The resuits of shell element FEA
runs are compared with the predictions based on the finite element formulations of a
two node two parameter BEF element.

in Chapter 6, the BEF model developed is applied to the stress analysis of an
experimental test panel that is longitudinally stiffened and loaded. It contains an offset
misalignment resulting from the thickness change superimposed by offset and angular
misalignments as a result of manufacturing tolerances. The panel was also analysed
by shell element FEA for comparison.

The results of the study are discussed and the final conclusions of the thesis are given
in Chapter 7.
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Chapter 2
CLASSICAL ANALYSIS OF PLATE STRIPS BASED ON
LEVY'S METHOD

The theoretical basis of this study and the formulae that are commonly used in
geometric linear plate theory, and which are needed in this study, are introduced
at the beginning of the chapter. The biharmonic differential equation of a
rectangular plate is presented. By applying Levy's method, deflection and internal
force functions are obtained for a semi-infinite plate strip, simply supported along
its longitudinal edges and subjected to harmonic lateral line and edge moment
loads. These solutions are used in Chapter 3 to obtain the parameters of a
uniaxial bending model.

2.1 Differential equation of plate bending

The assumptions of small deflection plate theory (Kirchoff, 1850, 1876) are used
throughout this study. A simply-supported plate strip of width, B, and thickness, h, is
shown in Figure 2.1-1a) together with the co-ordinate system, and an element dx dy at
the location x, y. When subjected to a lateral pressure, p,, the plate deflects in the out-
of-plane z direction by w(x,y), which results in rotations around the x and y axes, as
well as in-plane displacements u(x,y,z) and v(x,y,z), Figure 2.1-1b). The positive
directions of internal stresses are shown in Figure 2.1-1¢).

pz dxdy

T
Txy| VX dx

Figure 2.1-1 Laterally-loaded rectangular plate: a) geometry; b) loading and
displacement definitions; c) a frre body model of a volume of the plate.
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Figure 2.1-2 External and internal forces on a mid-plane element (Szilard, 1974).

The internal forces on a plate element dx dy subjected to lateral pressure, p,, are
shown in Figure 2.1-2. The shear forces, Q, and Q,, are obtained by summing the
moments about the x and y axes. In this study, all force components in plates are
expressed per unit length. The summation of all forces in the z direction yields the third
force equilibrium equation. By using these equations, the differential equation
governing the lateral force balance of a plate element is given by

M, L EM, | M, 211
ax?2 oxdy  ay? 7 '

M, and M, result in bending stresses parallel and perpendicular, respectively, to the
direction of the simple supports, the longitudinal direction. The internal forces are then
related to the stresses, which, according to Hooke's law in two dimensions, are related
to the strains. Finally, when the strains are functions of the lateral deflection, w, the
internal bending moments per unit length, M, and M,, can be related to w through

3
M, = _K(.a_zﬂ + v.a_z‘ﬂ K- _ER” (2.1-2)
xZ oy 12(1 - ?)
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(2.1-3)

M, - _K[izv_v +v@] |

dy? ax?

In Eqgns (2.1-2) and (2.1-3), v is Poisson’s ratio, E is Young's modulus of elasticity,
and h is the plate thickness. K represents the bending or flexural rigidity of the plate.
Similarly, the expression for the twisting moment, M_, in terms of the lateral deflection
is

- (1 -k Ew
My = (1 - DK (2.1-4)

The edge force per unit length, V,, is calculated by using

V, = k| W (2 - gy S
ax3 axoy?

(2.1-5)

When Eqns (2.1-2), (2.1-3) and (2.1-4) are substituted into (2.1-1), the governing
differential equation of the plate subjected to a lateral presure load is obtained:
odw 5 dw_,dw _ P,

— =z -
ax¢ ax2%ay? oyt K (2.1-6)

When no lateral load exists, p, = 0, and Eqn (2.1-6) becomes a homogeneous
biharmonic differential equation:

-0, -2 &

ox2  oy?’

(2.1-7)

where V2 is the two dimensional Laplacian operator.

2.2 Analysis of plate strips based on single Fourier series (Levy's method)

In Levy's method (Levy, 1899) a two dimensional biharmonic plate problem is solved
using the product of two deflection functions X(x) and Y(y) (Szilard, 1974). It is also
assumed that the edges y = +B/2 are simply supported. The deflection function w(x,y)
can be expressed by a single trigonometric series:
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wix,y) = X(x)Yly) = Y X, (x)cos(n,y) ,

2.2-1
nmz%n, m=1,3, 5. ( )

When this is substituted into Eqn (2.1-7), the following equation resuits:

KX [Xn'(x) = 205X7(x) + 1 X,,(x) |cos(n,y) = 0, 2.2-2)

where X,,”” and X,,” are the fourth and second differentials of X_ with respect to x,
respectively. For a specific value of m

X' () = 200X700 + X () = 0 . (223) .

Eqgn (2.2-3) is a linear, homogeneous, differential equation of the fourth order with
constant coefficients. The general solution of Eqn (2.2-3) was given by Nadai (1915) in
the form of hyperbolic functions. For a semi-infinite plate strip, the solution, X (%), that
satisfies Eqn (2.2-3) can be represented in a simple form by

X,(x) = Ao ™+ A, 0 xe (2.24)

The deflection function w(x,y) of Eqn (2.2-1) is

N A A
wixy) = ) (e "1, nmx}{ A" }cosmm}')) + {An} = { a } . (22:5)

m 2.m 2.m
Eqn (2.2-5) is valid for the analysis of semi-infinite plate strips - the deflection vanishes
at x = . The vector {A.} of the two unknown deflection amplitudes, shown in Eqn (2.2-

5) for each value of m is determined next, followed by determination of the deflection
and internal force functions. )

2.3 Semi-infinite plate strips under lateral edge loads

2.3.1 Deflection functions

Using matrix notation, the deflection, w(x,y), of Eqn (2.2-5) can be expressed as
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wixy) = X [Hp(0){An}cos(n,y) .

2.3-1
[Hn001 = [0, njxe ™). e

The coefficients, A, , and A, of the vector {A_} are determined from the boundary
conditions at x = 0, Fig. 2.3-1, as a function of the displacements, U, and U, , the
nodal point displacement (degree of freedom) vector {U..} at x = 0 being given by

ow U,
(¥nheo = Uhn (_ax_m] " e WUn) - {U m}' (2.3-2)

=0

l et _/
AAAR AN

i
i
Figure 2.3-1 Simply-supported semi-infinite plate strip: a) degrees of freedom, and

intemal forces at x = y = 0; b) symmetric mode of deflection af x = 0 under lateral line
loading; and c) antimetric mode under edge moment loading.

The slope of deflection, ow,,/9x at y = 0, is determined by differentiating the row matrix
[Hn()1:
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Sw x0) = L[H (1A, . ZIH, ()] = [H,1D,] ,
oX ox ox

-1 1
0o -1

[D,] = 1

=n.[D].
B N[ O] (2.3-3)

The coefficient matrix [D,] on the right hand side of the matrix [H (x)] denotes the
differentiation operation of [H,(x)]. The boundary conditions of Eqn (2.3-2) can be

expressed as
U1, 1 0 A1,
oot o - e
Upm) |Mm ~ )| Ao (2.3-4)

By inverting the matrix [E,], the coefficient vector {A,} is obtained as the product of the
shape function coefficient matrix [G,], [G,] = [E.]", and the nodal point displacement
vector {U_}:

(2.3-5)

The deflection component, w, (x,0), at the centre-line, y = 0, of of a semi-infinite plate
strip can then be determined, and is expressed as the shape function [N,,(x)] of {U,}:

Wn(6,0) = INy0O{Upn} » [INA0OT = [Hp(0][Gp] -
N, GO] = [ @™ (1 + n,x) . -xe ™. 2.36)
By substituting {A} from Eqn (2.3-5) and [N,] from Eqn (2.3-6) into Eqn (2.3-1), w(x,y)

can be written:

1 0],
wixy) = LIH 01, -1 {U1'm}cos(n,,,y) ,
m 2

Nm m

m 2,m

U m
w(x,y) = E[e'“”'”m + NpX) -xe'““’]{u1' }cosmmy)‘ (2.3-7)

By using Eqns (2.3-3) and (2.3-5), dw,,/oxaty=0is
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0 -1]U
i (2.3-8)
“Nm 1 U2,m

0
=8 = [Hp(NDAI[C,HUp) = [Hn(0)]

resulting in the function, Jw(x,y)/ox:

ow _ 0 -1 U1,m
E(va) - %: [Hm(x)] _nm 1 {Uzm }Cos(nmy)
= E[— 2 xe "™ _g WX(q - x)] Vi co
-2 Nm : N U, s(N,Y) - (2.3-9)

Similarly, by using Eqn (2.3-7) the slope of deflection in the y-direction, ow(x,y)/dy, is
written:

1 0 U
ow _ tm| .
a—y(xv}’) = %: NmlHn ), - 1 {UZm }sm(nmy)
Nm "

U m
= X[ -nae ™ 00, nmxe'“”"]{u1' }sin(nmw (2.3-10)
2

m m

2.3.2 Internal forces

The bending moments, M,(x,y) and M,(x,y), of Eqns (2.1-2) and (2.1-3) are functions
that are related to the second differentials of w(x,y), and are obtained by using Eqns
(2.3-3) and (2.3-6). The twisting moment M, (x,y) of Eqn (2.1-4) can also be calculated
using Eqn (2.3-7). The sign of these moments is defined as shown in Fig. 2.1-2. In
order to determine the edge force, V,, in Eqn (2.1-5), the third differential of w(x,y) is
needed. All these expressions can be obtained by successive differentiation of the
shape function [N,, (x)], or the vector [H,, (x)]. By using the matrix [D,,] of Eqn (2.3-3),
these operations become simpler matrix powers of [D,,], given by

-3
0o 1

0 1

[D,)[D,] = [D2] = , (D3] = -0}

(2.3-11)

The bending moment parallel to the support lines, M,(x,y), can be written explicitly as
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M, (xy) = -KX [Ha1[ID2] - VR2L11)[G,]{Un Yeos(n,y) =

(1+9)n3  -2n,

- KX [Hp (0] !
m _(1 - \))nm (1 - \))nm_

U1.m
Uy m cos(ny) - (2.3-12)

Correspondingly, the bending moment transverse to the support lines, M, (x.y), is

M,(xy) = -KY [H,01l-nal1] + VIDAIN[G,{U,, }eos(n,y)

S ](1 s -2vn {Um}
= K)_[H,(x) " peos(ng,y) .
m (1 - \))ni’ -(1 -V)n, Uy (2.3-13)
The twisting moment M, (x,y) is
M,xy) = (1 - V)KE[H,,,(X)]nm[D,,,][Gm]{U,,, }sin(n,,y)
0 -npl{U,]
= (1 - V)Kg [Hm(x)] —nfn n, U2m sm(nmy) . (23_14)

The edge force, V,(x,y), (see Fig. 2.1-2) is calculated by using Eqn (2.1-5), resulting in

V(xy) = -KY [Ha0][1D3] - @ - WAID,1|[6n]{U,y Jeosn) =

Ui cos(n,,y)
U2,m my .

-2nk, (1 + V)RR

= KY. [H,(0]
; -(1-v)ny, (1 -V

(2.3-15)

2.3.3 Reaction forces at the line x=0

The components of the reaction force vector, {F,}, at the origin, x = 0, are Finand F
(see the positive directibns from Fig. 2.3-1a). They consist of the components of the
reaction edge force, equal to -V, ., (0, y), and the reaction bending moment, -M, (0, y),
which can be calculated by using Eqns (2.3-15) and (2.3-12), resulting for each
component min
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_vx,m(o'y) F‘l,m
%: {—Mx.m(O,y)} ) %: {Fz.m } '

2y, -(1 g |(U,.,
cos(n,,y) -
U2.m

-(1 + ) 2n,

Fim
o)

m 2.m m

(2.3-16)

In Chapter 3 the forces based on Eqn (2.3-16) are compared with those obtained by
BEF analysis. )
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Chapter 3
APPLICATION OF BEF THEORY TO THE ANALYSIS OF
PLATE STRIPS

Two types of beam on elastic foundation (BEF) model are presented in Section
3.1. These are known as the Winkler and the Pastemak models. The deflection
and internal force functions of a semi-infinite two parameter BEF are obtained in
Section 3.2, and presented in finite element method (FEM) formulations. In
Section 3.3 the BEF foundation parameters of the semi-infinite plate strip are
presented for a specific set of boundary conditions and loading. Under harmonic
(cosine) lateral line loading when the semi-infinite plate strip is simply-supported,
the parameters are obtained by setting equal the corresponding parameters of the
differential equations of the plate theory, presented in Chapter 2, and the BEF
theory, presented in Section 3.2. Under constant lateral line loading, slightly
different foundation parameters are obtained by equating the maximum deflection
and the bending moment of the plate and BEF solutions, respectively. The
parameters in the classical analysis of the simply-supported plate strip under
constant line loading, being the superimposition of the series expressions of
harmonic loads, are determined by using Levy's method. The procedure
demonstrated is applied to constant edge moment loading, and further in Chapter
4 to other boundary conditions at the longitudinal edge lines.

3.1 BEF foundation models

Beam on elastic foundation models were originally developed for the analysis of beams
on elastic soil. Winkler (1867) was the first to present the governing differential
equation and the solution for a beam, which consisted of fourth order and zero order
terms. This most common elementary foundation is named the Winkler foundation,
after its developer. The differential equation of the Winkler-type BEF is:

E-Lw) + kw) = q00) (3.1-1)
dx

The sum of the product, Eiw", and the lateral reaction pressure of the foundation,
kw(x), is in equilibrium with the extemal line load, q(x). E is the modulus of elasticity,
and / the moment of inertia of the beam. When applied to the plate analysis, El is equal
to K, Eqn (2.1-2), for a unit width plate or shell if the effect of Poisson’s ratio, v, is not
taken into account, i.e. v = 0. The term k is the foundation modulus, and w(x) is the
deflection of the beam.

Equations similar to (3.1-1) govem the boundary value problems of shells of revolution
under axisymmetric loading. The analysis of discontinuity stresses in shells is similar to
a semi-infinite beam on elastic foundation problem, to which Eqn (3.1-1) can be
applied. The mathematical solution of the Winkler equation is obtained by using
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damping harmonic functions. The period of these functions is 2rA, where the inverse of
Ais the characteristic length.

If there is no contribution from the Winkler-foundation, the contribution of an axial force,
N, to Eqn (3.1-1) is a second-order parameter:

E1-9% W) - N = g0
¢_j;(—4 o2 qx) . (3.1-2)

where tensile forces are defined to be positive. The term Nw” is the internal lateral
reaction resulting from the axial force, N, and/or the second order foundation
parameter denoted in general by N. Under compressive axial loading the solutions of
the homogenous part of Eqn (3.1-2) are well known in the eigenvalue problems of
beam buckling. The interaction of axial loading and beam bending, i.e. beam-column
behaviour, takes into account the effect of axial loading as a deflection and moment
amplification factor. From a purely mathematical viewpoint, Eqn (3.1-2) is analogous to
the differential equation of generalised (warping) torsion, which takes into account the
contribution of the fourth order term, the warping torsion rigidity, known as Vlasov's
torsion, (1961) together with the second order term, the ordinary St. Venant torsion.

The differential equation of the two parameter Pastemak (1954) BEF model consists of
the foundation parameter related to the second order term, N, and the parameter, k, of
the ordinary Winkler model of zero order. In Pasternak’s model, the second order
parameter was originally considered to consist of the stiffness of the shear layer
connecting the Winkler springs together. Other two parameter elastic foundations are
known by the names Filonenko-Borodich (1940) and Viasov (1966). In the Filonenko-
Borodich model, the second order parameter is the tension value of the beam. In spite
of physically different behaviour, mathematically these two models are similar. Vlasov's
model is a special two parameter soil model.

Finally, the effect of the elastic foundation, together with the second and fourth order
terms define the complete homogeneous differential equation of the fourth order in
bending:

d* d?
El—wlx) - N—wl(x) + kw(x) = 0 . (3.1-3)
dx dx

Eqn (3.1-3) is used throughout this study. It is valid for both the pure two parameter
foundation case, as well as an axially-loaded beam on a two parameter elastic
foundation.

Hetényi (Hetényi, 1946) presented solutions for a number of fundamental finite and
semi-infinite beam on elastic foundation problems, in which the beam was loaded
axially and laterally simultaneously. Starting from the homogeneous fourth order
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differential equation of an elastic deflection curve, Eqn (3.1-3), Hetényi solved the four
roots of the fourth order characteristic equation. The roots are complex numbers.
Hetényi also showed that if one real value solution of the deflection (e.g. for tension) is
known, another real value solution (e.g. for compression) can be obtained by using
operations of complex mathematics. The two degree of freedom stiffness matrix of a
semi-infinite beam element on an elastic foundation, under simultaneous axial loading,
can be derived directly from Hetényi's solutions, as shown in the next section. The
necessary steps required to determine the deflection function and to formulate the four
degree of freedom stiffness matrix of a BEF finite element of finite length, L, are given
in Chapter 5.

3.2 Finite element formulations for semi-infinite BEF

The solution of the fourth order governing differential equation (3.1-3), containing the
second and zero order terms, is given first. The procedure used is analogous to that
presented in Section 2.3. Two types of real value deflection function, and related
expressions for internal forces, can be developed: a) the product of exponential and
trigonometric functions; b) the product of exponential and hyperbolic functions. Final
functions for deflection, slope of deflection and internal forces for case a) are given in
Sections 3.2.1 and 3.2.2.

The fourth order differential equation governing the behaviour of beam-columns and

tensioned beams on elastic foundations is given by Eqn (3.1-3). By substituting w(x) =
Ae™ into Eqgn (3.1-3), a characteristic equation can be obtained:

EIm* - Nm? + k =0 . (3.2-1)

The four roots of Eqn (3.2-1) are

N .|k N )2
m =t |—— = - =] =2m,,, (3.2-2)
1.2,3,4 J (ZEI) 1,2

2El El

and the general soiution corresponding to these roots is

wx) = A,e " + Ae "+ Ae™ + AT (3.2-3)
In the case of a semi-infinite beam on an elastic foundation, Fig. 3.2-1, all the patrtial
functions of the deflection function, w(x), must vanish at infinity. Therefore, the function

of deflection that also satisfies Eqn (3.2-1) can be expressed using the decreasing
exponential and trigonometric sine and cosine functions:

w(x) = e ¥[A,cos(Bx) + A,sin(Bx)] , (3.2-4)
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where the foundation symbols used are

l k N
o = + = M1+n, = Ay1-n.
4E] 4E| P (3.2-5)

When Eqns (3.2-2) and (3.2-5) are compared, m, = o + ifand m,=da-if.

K‘ Nw+Nw"dx

Figure 3.2-1 Co-ordinate system, degrees of freedom, and intemal forces in a semi-
infinite BEF element, under simultaneous axial loading, N.

Equation (3.2-4) is similar to the deflection function of an ordinary semi-infinite beam on
an elastic foundation, without the effect of N (in which case a= g = A). The normalised
second order foundation parameter, n, is the ratio of N to N, where N, is denoted in
this study as the critical compression load (without sign) of the one parameter
foundation model, the subscript W after Winkler. In the case N < -N,,, w(x) of Eqn (3.2-
4) and a of Eqn (3.2-5) become complex, corresponding to the loss of stability (if the
beam is infinite in length). Thus the variable « is real when the variable n > -1.

The solutions related to -1 < n < 1 are given next. In the case N > Ny, orn>1 4
changes through zero to complex. When denoting a new variable, 3, = AV(n-1) then 8
=ixf, Since S is complex, the expressions £ and sin(fx) are transformed to i3, and
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ixsinh(igx), respectively. Similarly, cos(fx) equals cosh(Sx).The real value expressions
related to n > 1 as a function of 8, and B, x are obtainable directly from Eqns (3.2-8)
to (3.2-17), when i*= -1 is also substituted in these equations.

3.2.1 Deflection w{x) and slope of deflection ¢(x) functions

The procedure shown in Section 2.3 is applied in this section, also. Now the variable n
is within the range -1 < n < 1. Using matrix notation, the deflection, w(x), of Eqn (3.2-4)
can be expressed as

w(x) = [HXI{A}, [H(x)] = [e **cos(Bx), e sin(Bx)] . (3.2-6)

The coefficients A, and A, of the vector {A} are determined from the boundary
conditions at x = 0, Fig. 3.2-1, as a function of the nodal point displacements, U, and
U, of the degree of freedom vector, {U}:

U g -0
w(0) = U,, w0 = Uz {U) {Uz}' (3.2-7)

By using Egn (3.2-6) and the boundary conditions of Eqn (3.2-7), the deflection function
w(x) is solved and can be expressed as

10y
wi) = [HO) a1 {U } :
B 2 (3.2-8)

The function of the slope of deflection, ¢(x), is determined by differentiating the row
vector [H(x)], and is written as

o -1y,
ot = <Y = [HW)|-2¢  « U‘}.
B B2 (3.2-9)

3.2.2 Internal forces in a semi-infinite beam element on elastic foundation

The bending moment, M(x), relative to the second differential of the deflection function,
can be written explicitly as
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2)2 -2a
U
M(x) = —El%j(—";—' = EMHO) -2)02a o - 2 { 1}'
B Bt

The pure shear force (normal to the deflected axis of the beam), Q(x), is accordingly

(3.2-10)

_4Nq B2+ 3a2
Q) = -E1Y < EiHK)| o0 3 Yl
dx? ?(0(2 - B?) -% +30B [|Uy) " (32-11)

Under simultaneous axial loading, with a tensile load, N, defined as positive, a part of
the extemal lateral loading (perpendicular to the undeformed axis) will be supported, in
the deformed state, by the transverse component, N¢(x), of the axial force, as shown
in Fig. 3.2-1. By using Eqn (3.2-5), N can be expressed as a function of arand A by

N = 4EI(o? - \) = 4EIN?n . (3.2-12)

The total transverse shear force, V(x), called the generalised shear, is expressed by

V(x) = Q(x) + No(x) . (3.2-13)
After the necessary substitutions, V(x) can be obtained:

-4Na 2\2 U,
V(x) = EI[HX)] _op2 .
?3)\ (az - BZ) 2)\2% {Uz}

(3.2-14)

3.2.3 Stiffness matrix of a semi-infinite beam element on elastic foundation

The nodal load vector, {F}, which is related to U, and U, and the corresponding
columns of the element stiffness matrix [S], obtained by using e.g. Eqns (3.2-10) and
(3.2-14), can be solved by using the relations

{F} =[s]{u},
a3 d
El——w(0) - N-—w(0)

F, - V(0) dx
(Fr=1 "t - = :
R 1 -MO) £19- w(0)

a2 (3.2-15)
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The stiffness matrix [S] (determined according to the unit deflection method) is then
written explicitly:
4 %2a -2\2
[S] = EI .
-2\ 2« (3.2-16)

It can be seen that [S] is valid, independent of the character of the parameter £. if the
necessary steps are performed for n > 1, it can be shown that Eqn (3.2-16) is valid for
n > 1 also. Under high axial tension, n >> 1, a is much larger than A. In this case [S]
can be formulated as

Ny
[S] = 2E/N| \ EI , a:%l% a>>\ .
-1 JNTk (3.2-17)

3.3 Application of BEF theory to the analysis of a simply-supported plate
strip

3.3.1 BEF parameters under harmonic loading

By comparing Eqns (2.2-3) and (3.1-3), denoting K = E/ when v= 0, the equality of the
differential equations for the centre-line of the plate strip are obtained for each
component, m:

N k
S+ B = X3 20X X s T @3)

By equating the zero order terms, the (Winkler) foundation parameter, k,,,, is

4 mémt
iy = KNy = KL (3.3-2)

and correspondingly the second order (Pasternak) parameter, N,, is



3. APPLICATION OF THE BEF MODEL TO A PLATE STRIP ANALYSIS 23

22
N, = 2Kn? = 2K’”B;‘ : (3.3-3)

These values, when substituted into Eqn (3.2-5), give

4 N
_1._ = 4-’{ = £B' nm = m = 1 ,
A, \j Kpm —mm 4K N,

(3.34)
1 1 1
——F — T —— B = 0 ]
Cm  ZA, MmO
and for the lowest value m = 1:
1 2 1 B
_.:___B' n:n.:1' _—= -, :0. 33'5
)\ m lin a n B ( )

These parameters apply for harmonic loading of the maximum value of 1.0. The
contribution of the second order Pasternak foundation in the parameter n is denoted in
this study by n,,, when necessary, since N in general also contains the effect of the
true axial loading.

Since according to Eqn (3.3-4) B approaches zero when n,,~ 1, then cos(fx) -~ 1 and
sin(fx) ~ Bx - 0 for each harmonic component m. Therefore, when the expressions of
deflection and internal forces of Sections 2.3 and 3.2 are compared, the equality of
functions based on the plate theory and BEF theory is evident. Firstly, for each
harmonic component, m, the matrices [H(x)] of Eqns (2.3-1) and (3.2-6) are equal when
Ne= mmiB. It follows that the deflections of Eqns (2.3-7) and (3.2-8) and, respectively,
the slope of deflections (2.3-9) and (3.2-9) at the centre-line, y = 0, can also be set
equal. When Poisson'’s ratio, v, is set to zero the bending moment, M,(x), in Eqn (2.3-
12) of the plate theory is equal to M, in Eqn (3.2-10) of the BEF theory. The edge force,
V(x), in Eqn (2.3-15) equals the generalized shear force V(x) in Eqn (3.2-14).
Therefore, the force balance equations, the semi-infinite stiffness matrices of Eqns
(2.3-16) and (3.2-16) are also equal.

3.3.2 BEF parameters under constant lateral line loading

Constant lateral line loading at x = 0 of intensity 2V, in the transverse y direction of a
plate strip of width B of infinite length is shown in Fig. 1.2-1a). The loading, V,, of a
semi-infinite plate strip can be presented as a series expression of symmetric harmonic
loads with a period of expansion of 2B (Girkman, 1946, p. 44):
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41 . .mn
V_ = V,——sin(—-) ,
m °nm (2)

V,(0.y) = Y V,cos(n,y) , m=1,3,5... (3.3-6)

A lateral load of intensity V, = 1 is shown in Fig. 4.1-2 for a number of harmonic
components. Because of symmetry, under a restrained slope of deflection (U, = 0), by
substituting Eqn (3.3-6) into Eqn (2.3-15), the unknowns, U, ,, of the maximum
deflection, w(0,0), can be solved. In the plate analysis, by using Eqns (2.3-7) and (3.3-
6), the lateral deflection, w(xy), is a superimposition of the solved U,,, values,
represented also in (Girkman, 1946, p. 186) as

B3 1 X
w(x,y) = 2Vy— —(1 + n, xJe ™ cos(n.y), m=1,3,5... .
°n4K§ m4( m¥) " (3.3-7)

Based on Eqgns (2.3-12) and (3.3-6), the bending moment, M,(x), (see Figs 2.1-1 and
2.1-2) is

M,(x,y) = 2V°£22 _15(1 +¥ - (1-9)n,x)e " cos(n,y) , m=1,35.. .
m™ m m
(3.3-8)

In the BEF model, the maximum deflection, U,, is obtained using Eqn (3.2-14) or Eqn
(3.2-16) when U, = 0. The maximum value of the bending moment is calculated using
Eqn (3.2-10) (or S,, of [S] of Eqn (3.2-16)).

When the plate is simply supported along the longitudinal edges and subjected to
constant lateral line loading, the characteristic length, 1/4, and the parameter, n ( = n,,),
of the BEF formulation can be solved by using two conditions at the centre-line, y = 0,
of the plate strip, with v=0:
1. the deflections, w, at x = 0 of the plate solution of Eqn (3.3-7) and the BEF
solution of Eqn (3.2-16) are set equal; and
2. the curvatures, F*w/ox, (or bending moments, M,) at x = 0 of the plate solution of
Eqn (3.3-8) and the BEF solution of Eqn (3.2-16) are set equal.

Equating K of the plate analysis of Eqn (2.1-2) with £/ of the beam bending. these two
conditions are given as
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2VOB3E sin(mn/2) _ ﬁl 1

(7) pe—
Km* ‘m m* 4K N3 V1 +n

(i) 2VoB ¢ sin(mm/2) - Vo1 1
mK @ m? 2KNfsn (3.3-9)
resulting in
1 B ’ 0.989 B
— =y2—,|—— =147—= = 0468B, n = 0.588. 3.3-10
A 2 ny 0916 n ( )

The numerator of Eqn (3.3-10), 0.989, is the sum expression of condition (i) of Eqn
(3.3-9), and the denominator, 0.916, the sum of condition (ii).

For the first harmonic mode, m = 1, alone, the parameters of Eqn (3.3-5) substituted
into Eqn (3.3-9) result in the ratio 4/m1 of the plate solution vs. 1.0 of the BEF analysis,
the theoretical deflection being larger. If the harmonic lateral loading of Eqn (3.3-6) is
normalized by the maximum value of 4/mV,, the deflection and bending moment of
lateral loads of maximum value 1.0 are equal.

By comparing the foundation parameters of the first mode of harmonic loading and
constant line loading, Eqns (3.3-5) and (3.3-10), the deflection of constant loading is
26% higher than calculated using the parameters of Eqn (3.3-5). Similarly, the bending
moment is 17% higher. However, if the total load ratio, 17/4, is taken into account, the
deflections are almost equal, (1.26x n/4), and the bending moment is 91.6% of the true
value based on plate or BEF analysis using the parameters of Eqn (3.3-5). It can be
seen that the effect of assumptions related to the shape of the transverse line loading
has a minor numerical effect on the deflection and bending moment values under equal
total loadings. Therefore, the parameters of constant line loading, Eqn (3.3-10), can be
applied to other types of transverse line loads when at first the total loading is initially
distributed as constant loading over B.

When a simply-supported plate strip of infinite length is subjected to constant
transverse lateral line loading of total intensity, 2V,, the maximum value of deflection at
the centre-line, w,,, = U,, can be calculated from Eqn (3.2-16) by using the parameters
1/Aand n of Eqn (3.3-10). The bending moment, M,,,, is calculated from Eqn (3.2-10).
These two expressions are

Vo 1 1 1 1+V
w =21 oM, =V, Y (3.3-11)

Kavfasn ™ °2AfA+n

where the effect of the stress biaxiality in a simply-supported plate strip is taken into
account in the factor 1 + v (see Eqn (3.3-8)).
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The validity of analysing a simply-supported plate under constant line loading, based
on the BEF approach, is further verified and discussed in Chapter 4. The functions w(x)
and M(x) for a simply-supported plate are presented in, for example, Figs 4.1-2, 4.2-3
and 4.2-4,

3.3.3 Effect of constant edge moment loading on bending behaviour

A reaction edge moment of constant value, M, ,, acting as external loading is studied
in this section for a semi-infinite plate strip when U,,, = 0 at x = 0. Based on a
procedure shown in Section 3.3.2 for line loading, the validity of the parameters of Eqn
(3.3-10) can be tested. By equating the slope of deflections, U,, of the plate theory
solution, obtained using Eqn (2.3-12), and the BEF solution using Eqn (3.2-10), the
following equations can be written:

Mxo_g—g ___1_s|n(m£) = Mxo_l__._J_ ,
"MK m m? 2 " 2KA v1 +n
y (3.3-12)
-—m M, =M, 2 sinmD), m-135.
“nmm 2

U, ,
2m 2 Krl,,, m

where the constant edge moment loading is written as the sum of cosine expressions
of M,, (similar to the line loading of Eqn (3.3-6)). The equality is valid when the known
values of Aand n in Eqn (3.3-10) are used in the BEF solution on the right-hand side.
For the first harmonic mode alone, m = 1, by substituting the parameters of Eqn (3.3-5)
into Eqn (3.3-12), the ratio 4/ is again obtained, the theoretical slope of deflection
being larger. For equal maximum loading, when the left-hand side of Eqn (3.3-12) is
multiplied by /4, the slope of deflections are equal.

In the BEF analysis using Eqn (3.2-16), the slope of deflection, D @nd the
generalised shear force, V,,,, of Eqn (3.2-14), are given by

Mot 1y -mp e
A .

03 '
e ZKA\/1+n i v1 +n

(3.3-13)
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Chapter 4
ON GENERALISATION OF THE BEF MODEL

The accuracy of the finite element analysis (FEA) model that is used to verify the
BEF model is tested in Section 4.1. The model represents a semi-infinite plate,
simply supported along the longitudinal edges, which is subjected to a uniform
lateral line load and uniform edge moment loading. The accuracy of the FEA
model results for linear shell elements is compared with, and verified by, the
closed-form solutions of Chapter 2. Secondly, in Section 4.2, the same FEA
model is modified to verify more complicated theoretical formulae which describe
a plate strip that is fixed to prevent rotation about the longitudinal support lines.
Thirdly, Section 4.3 shows the FEA of a semi-infinite plate strip, with one free
edge, the other being fixed. By equating the deflection and bending moment of
the BEF model and plate theory, and/or FEA solutions, the two foundation
parameters for the three types of boundary condition analysed are determined. In
Section 4.4 the effect of axial and transverse in-plane loading on the parameters
of the BEF model is based on an approximate plate theory analysis, which is
verified by geometric non-linear FEA runs. The models developed are based on
a value of Poisson’s ratio, v, of 0. The effect of Poisson’s ratio on bending
behaviour is discussed in Section 4.5, where the effect of geometric nonlinearity
resulting from in-plane loading is also taken into account. The generalised BEF
modsl is presented in Section 4.6, which takes into account the effect of the
variable rotation stiffness of the longitudinal support lines, the effect of Poisson’s
ratio, the effect of axial in-plane loading, N,, and transverse in-plane loading, N,

4.1 FEA verification of simply-supported semi-infinite plate strip model
FEA model description

The finite element analysis was performed using the Geostar 1.75A module of the
Cosmos/M (1996) FEA package. A Young's modulus of 210 GPa and a Poisson'’s ratio
v= 0 were used for the material constants. (The effect of the true Poisson's ratio for
steel, v= 0.3, is discussed in Section 4.5.) Constant values for the total width, B, of the
plate strip (200 mm) and the thickness, h, (2 mm) are used in all the models. Figure
4.1-1 shows the element model, a quarter of the whole geometry, under constant
lateral line loading in the deformed shape. Linear shell element types were used. The
model consisted of 20 evenly-spaced elements in the half width, B/2, (100 mm). In the
longitudinal direction, x, 40 elements (spacing ratio 5) were used up to a distance of
500 mm. Boundary conditions of symmetry were applied at the y = 0 line. The plate
was simply supported along the line y = B/2 = 100 mm. Under lateral line loading at x
= 0, symmetry boundary conditions were applied at the loading line. In the second
loading case, under constant edge moment loading along the line x = 0, the boundary
conditions of the nodes at x = 0 line were antimetric.
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Unless stated otherwise, the model presented is used as the basis for all FEA
verifications of this study.

Figure 4.1-1  FE model of a simply-supported plate under fransverse lateral line
loading in the deformed condition.

Results

With lateral line loading, the maximum deflection predicted by FEA, 1.16 mm, agreed
with the theoretical value obtained using Eqn (3.3-9i). FEA gave a bending moment of
36.87 Nmm/mm when the theoretical value of Eqn (3.3-9ii) was 37.04. Based on the
FEA results, the foundation parameters 1/4= 1.473B/im and n = 0.618 were determined,
wheareas the theoretical analysis of Eqn (3.3-9) resulted in 1/4=1.470B/m and n =
0.588. The normalised values of the lateral deflection, s, and the bending moment in
the x direction, m,, of the FEA results and the BEF model (Eqns (3.3-7) and (3.3-8)) of
parameters 1/A= 1.473B/rm and n = 0.618 are shown in Figure 4.1-2 as a function of
the normalised longitudinal co-ordinate, x/B. The functions are practically identical.
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4.2 Analysis of a fixed semi-infinite plate strip using classical plate theory,
FE analysis and BEF theory

4.2.1 Determination of BEF parameters of a fixed plate under lateral line loading

When the simply-supported longitudinal edges in the x direction are restrained such
that they cannot rotate, unknown redundant edge moments are imposed in the
transverse y direction. The co-ordinates are shown in Fig. 2.1-1. Either the force or
displacement methods can be used for the determination of the unknown edge
moment. The finite element method is based on the displacement method. It produces
accurate results if the entire structure is composed of small elements. In the force
method, which is also known as the slope-deflection method (Szilard, 1974), the
redundant force/moment is the unknown to be determined from the compability
condition of displacements. In this study, the reaction edge moment M, =-M,,(x,BI2)
is the unknown, and the siope of deflection, dw/7y, at the support line, y = B/2,
represents the displacement compability equation needed. The deformed shape of
the FE mesh of the simply-supported plate strip of Figure 4.1-1shows clearly that the
slope of deflection is not zero at y = B/2. Figure 4.2-1 shows the lateral line loading of
unit value in the normalised transverse direction, y/B, as the superimposition of a
varying number of harmonic components, see Eqn (3.3-6).
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Figure 4.2-1 Lateral line loading,
Vo, = 1, in the normalised
fransverse direction y/B as the
superimposition of 1, 3, 7, 13 and
25 harmonic components.

The deflection fields of the fixed plate under external unit line loading, V,, (subscript ,)
and unit edge moment loading, M,, , are determined based at y = B/2 on the
superimposition of the external loading and the redundant edge moment, M, ,,
(subscript,). These unit loads are applied in a semi-infinite structure. The results are
used to determine the foundation parameters, 1/4 and n, of the BEF analysis. The
analysis based on the application of classical plate theory to be shown next is verified
by FEA. The determination procedure under external lateral line loading, V,, involves

determinations described in the following steps.

i) The slope of deflection caused by V,, @, = Jw,/dy, at the edge line, y = B/2:
- release the rotation at the line y = B/2, i.e analysis of a simply-supported
plate;
- calculate the deflection function, w,, which results from the external lateral line
loading. Use it to calculate the slope of deflection at y = B/2, ow,/0y(x,BI2) =
Po:
- represent w, and ¢, in the longitudinal direction, x, as a series expression for
an arbitrarily chosen length, a (a >> B).
ii) The unknown edge reaction moment, M, ,, at the longitudinal support line, y = B/2:
- represent M, , as a series expression of length, a,
- calculate the slope of deflection, ¢,, resulting from M, ; at y = B/2;
- determine M,, from the condition ¢, + ¢, = 0 for each component n.
iii) Internal forces of M, ;:
- determine the deflection, w,(x,y), the slope of deflections, dw,/dx, dw, /5y,
and the internal forces resulting from M, ;.
iv) Final functions of deflection and internal forces:
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- when the plate is considered to be fixed along the longitudinal support lines,
superimpose the components of V, from i) onto those induced by M, , from ii).
v) The two parameters, 1/4 and n, of the BEF model:
- equate the deflection, w, and the curvature, J*w/ox?, at the centre-line and
at x =0, of the plate and the BEF solutions, and calculate 1/4 and n;
- compare the analysis with the results of shell element FEA.

i) The slope of deflection under constant lateral line loading
Under conditions of restrained, zero slope of deflection, Jw,/9x(0, y) = U, = 0, the

deflection and slope of deflection functions, w,and Jw,/dy, are given based on Eqns
(3.3-6) and (3.3-7) :

vV
Wolx,y) = L—"—07""(1 + nyx) cos(n,y) ,
m2Kn,
ow, .
—2(x,y) = ~Y —"=8 " (1 + n,x) sin(n,y) ,
ay m 2Knm
mn
n,=—, m=1,3, 5. .
"B (4.2-1)

When the origin is at the centre-line of a plate of arbitrarly chosen length a, -a/2 < x<
al2, w, can be represented in the x direction by a series expression of a symmetric
function of period 2a by

nn

wy(x,y) = YA, cos(y,x), Y, = o n=135. . (4.2-2)
n

The constant, A,, is determined by integrating the expressions with respect to x up to
infinity by

” 2

An,i = —i-fe'ﬂmxcos(ynx)dx = _ﬁ__z_l___ '

2a a (n? +v?)
e 20 (nd -
Asi = —in,,,fxe "n* cos (y, X)dx = Nm (ﬂzm Yo) '
0 (N + ¥7)? (4.2-3)
8 1
An = 2(An,1 + An,ii) = n
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The deflection function, wy(x, y), of lateral line loading of Eqn (4.2-1) is expressed as
a double series expression:

1

woixy) - 2B v 5

vm
— cos(y,x)cos )
T Ka 2 m4( > €os(y,x) cos(ny,Y)
1+ (

2
—@) (4.2-4)
a

3|3

m=135..., n=135.

The siope of deflection of Eqn (4.2-1) at y = B/2, Jw,/oy(x, BI2) = ¢, is

- 3 %4 i
@, = -4B° Vm _ sin(mn/2) cos(y,x) ,
mKa'm @ md n B 2)2
1+ (~————) (4.2-5)
m a

m=1356., n=135..

ii) The unknown edge reaction moment M, , aty = B/2

The deflection function, w,(x), and slope of deflection, ¢,(x), of a symmetrically-applied
unknown edge moment, M, , = -M, ,(x,B/2), is now determined. M ; is a symmetric
function defined by

M, = En: M, sin(nm/2)cos(y,x) , n =13,5... (4.2-6)

The boundary conditions for the deflection w,(x) caused by M, , are:

Fw, aw,
w,(xal2,y) = —(2al2,y) =0, w,(x,£B2) =0, —(x,0) =0
ax? ox

My.1 = 'My.1(X, B/2) . (4'2_7)

Girkman (1946, p. 205) uses a function
1 .
w, = —Z[A,,cosh(vny) + Y,yB,sinh(y,y) +

n

+ C,sinh(y,y) + Y,yD,cosh(y,y) Jcos(y,x) , (4.2-8)

and determines the unknown coefficients A, B,, C, and D,, to give
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- M_.sin(nm/2 B
w, = -y 1 T (1172)  ¥0B Ginh(y, Br2)coshiy,y) -
2K y? cosh?(y,Bl2) 2
- y,ycosh(y,B/l2)sinh(y,y)]cos(y,x) , n =1,3,5.. (4.2-9)

when the boundary conditions are applied (Girkman, 1946, p. 221).

By differentiating Eqn (4.2-9), the slope of deflection, Jw, /dy, is represented by

|sin(nm/)

ow. 1 1 M
_a}l(x' y) = — Y ——= [v,y cosh(y,B/2) cosh(y,y) -

2K 5 ¥, cosh(y,BI2)

- (v,BI2 sinh(y,BI2) - cosh(y,B/2))sinh(y,y)]cos(y,x) . (4.2-10)

At the edge line, y = B2, the slope of deflection, @ , = dw, /Fy(x,B/2), resulting from the
sum of M, components is

tanh(y,B/2) 1
+
Y,B/2 cosh?(y,B/2)

0, = £ Y M, sin(mi2) cos (V,,X)
kG

4.2-11)
The boundary condition along the longitudinal edge, y = B/2 results in:
Qo+ Py =0. (4.2-12)

The component, M, ,, of the unknown edge reaction moment, M, , of Eqn (4.2-6), for
each value of n is calculated by superimposing Eqns (4.2-5) and (4.2-11) onto Eqn
(4.2-12). This gives

2 %
16 B in (n/2) — sin(mn/2)
_ m a m?3
n1 = P
tanh(y,B/2) . 1 m . nB)2
y,B/2 cosh?(y,B/2) ‘ma
m=135., n=13, 5. . (4.2-13)

The edge reaction moment, M, ,, normalised by M,(0,0) of Eqn (3.3-8) of the simply-

supported plate is finally written as the sum ratio of m, ,
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1
my, = > M, B 1
" 2V,—= Y — sin(mm/2)
ﬂzm m?

cos(y,x) ,

(4.2-14)

m, , is shown in Figure 4.2-2, for twenty five harmonic components of external loading,
V,,of Eqn. (3.3-6), with a varying number of reaction moment M, , components. The
numerical analysis was based on the ratio a = 5B.

1.6
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n=13
—— n=7
X p=3

Figure 4.2-2 The normalised edge reaction moment, m, ., as the superimposition of 25,
13, 7 and 3 harmonic components M, , shown as a function of x/B.

ili) Internal moments of the edge moment, M, ,
Based on Eqn (4.2-9), the internal moments resulting from the edge moments M.,

defined in Eqn (4.2-13) can be determined using the equations of Chapter 2, Eqns (2.1-
2) to (2.1-4). The bending moment M, ,(x,y) is
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_ _Mn1 B .
M,J(x, y) = an coshly. B72) 4 [((1 V)tanh(y,B/2)

Jcosh(y,y) - 2(1-V) = y smh(yny)]sm(nn/2)cosh(vnx)
B/2 (4.2-15)

The bending moment M, (x, y) is

_ _Mn1 _ _
M, (x.y) = an coshty. B12) 4 [((1 V)tanh(y,B/2)

4 )cosh(y,y) - 2(1 —\))lslnh(vny)] sin?(nm/2) cos(y,X) .
y,B B (4.2-16)

The twisting moment, M, ,(x, ¥), is correspondingly

Y,B i
M, (xy) = )Z cosh(ynB/2) 2 [(tanh(y,BI2)

B )sinh(y,y)

n

-2y cosh(y,y) 1sin(nm/2)sin(y,x) .
B (4.2-17)

iv) Final functions of deflection and internal forces

The final functions representing deflections and internal forces are determined by
superimposing the functions based on the deflection, w,, of V, of Eqns (3.3-6) and (4.2-
4) onto the functions based on the deflection, w,, of M, , of Eqns (4.2-9) and (4.2-13).
At the centre-line of the joint, x = y = 0, the final maximum deflection w,,, is

Woax = Wo(0,0) + w,(0,0) =
v

B3 < B? <
= Z..’_"E_ 2:1
n

2K m-1 4nK 5C

M, sin(nm/2) tanh(y,B/2)
n cosh(v,B/2) (4218

Eqns (3.3-8), (4.2-13) and (4.2-15) are used in order to determine the bending moment,
M,. The maximum value, M, ., atthe jointx =y=0is

Mx.max = M, (0,0) = MX.O(O,O) + MX.1(0'0) -

g = -
= 1+\}_ ._m -V t: h B/2 + \)
( 2 21 m 21 cosh(y B/2)[( )v,,4 anh(y,B12) I

(4.2-19)
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The theoretical model for the determination of the deflection function, w, of a fixed
semi-infinite plate strip was verified by the FEA model of Section 4.1 by fixing the
rotation around the x axis at the longitudinal support. The normalised deflection
functions: s, = wy/w,(0,0), of the simply-supported plate and the superimposed
function, s;, = w/w,(0,0), of the fixed plate are shown in Fig. 4.2-3. The difference s -
S;, is equal to -w,/w,(0,0). Correspondingly, the normalised bending moments are
shown in Figure 4.2-4 where m, ; = M, /M, ,(0,0) relates to the fixed plate. The functions
determined theoretically and verified by FEA correlate well.

1 \\ T T T B
.
~_ S
" 55
0.8 “\\ =
\‘K
“
0.6 [~ N -1
\\\\\B\
04 -
Sﬁx
02 [~ S
0 0 0I 0I4 '6 0.8 1
2 . 0. .
. v x/B
ss - theory
" fix - theory
® ss- FEA
X fix -FEA

Figure 4.2-3 Normalised deflections, s and s, , of a simply-supported and fixed plate
subjected to constant transverse line loading as a function of x/B at the centre-line.

Table 4.2-1 gives the cumulative values of the superimposed maximum deflection and
bending moment at x =y = 0. They represent the sum expressions of fixed plates,
comparable with the sum expressions of Eqn (3.3-9) of the simply-supported plate. The
horizontal rows show the effect of the number of harmonic waves (m) that are taken
into account in the loading, Eqn (3.3-6). The vertical columns show how the functions
stabilize when an increasing number of components (n) of the harmonic reaction
moments of Eqn (4.2-13) are taken into account. The deflection and bending moment
function surfaces are shown schematically below the table.
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Table 4.2-1 Cumulative sum expression values, s, and m,;,, for deflection and
bending moment, M,, of a fixed semi-infinite plate subjected to lateral line loading.

m= 1 3 5 7 9 11 13 15

1 [ 0.636 0.619 0.62 0.62 0.62 0.679 0.62 0.619
3 0.452 0.431 0.4371 0.43 043 043 043 043
5 0.389 0.366 0.366 0.365 0.365 0.365 0.365 0.365
7 0.371 0.346 0.346 0.345 0.345 0.345 0.345 0.345
9 0.366 0.34 0.34 0.339 0.339 0.339 0.339 0.339
7

7 _ 0.365 0.339 0.338 0.338 0.337 0.337 0.337 0.337
13 0.364 0.338 0.338 0.337 0.337 0.337 0.337 0.337
| 715 ] | 0.364 0.338 0.338 0.337 0.337 0.337 0.337 0.336]

7 1 0.985 0.874 0.914 0.894 0.906 0.898 0.904 0.899
3 0.979 0.806 0.846 0.826 0.838 0.83 0.836 0.831
5 0.856 0.741 0.781 0.76 0.772 0.764 0.77 0.765
7 0.821 0.703 0.742 0.721 0.734 0.725 0.731 0.727
9
7

" Mo = 0.805 0.685 0.723 0.703 0.715 0.707 0.712 0.708,
7 0.798 0.677 0.715 0.694 0.706 0.698 0.704 0.699

13 0.795 0.673 0.711 0.69 0.702 0.694 0.7 0.695:
| 15] . 0.793 0.671 0.709 0.688 0.7 0.692 0.698 0.693

Deflection Bending moment
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Figure 4.2-4 Normalised bending moments, m, . and m, , , of a simply-supported and
fixed plate subjected fo constant transverse line loading as a function of x/B at the
centre-line y = 0.

v) Foundation parameters of the fixed plate

The two foundation parameters, 1/4 and n, of the fixed plate can be determined based
on the equality of the deflection, w, and the curvature, J*w/dx?, at the centre-line of the
plate at the line of load application, x = 0, of the theoretical plate and BEF analysis.
Following the procedure of Section 3.3, w of Eqn (4.2-18) and M, of Eqn (4.2-19),
using v=0, are set equal to w and M, of the BEF theory. By performing the necessary
numerical calculations, it can be shown that the deflection of the fixed plate is 34.0% of
the deflection of the simply-supported plate. The bending moment ratio is 75.7%. FEA
resulted in the ratios 34% and 75.4%. The theoretical analysis resulted in the following
equations:
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0 0.34 2V,B° i sin(mn/2) _ V%o 1 1

Km* m=1 m* 4K N /T 1 n
(4.2-20)
@ 0.757 2VoBi sin(mm/2) _ Vo1 1
MK m=1 m? 2K )\,/1 +n
giving the parameters
1 - 09858 - 03148 - 0.245
100852 - 03148, n - 0245 (4.2-21)

Values of 1/4= 0.990B/41 and n = 0.284 were obtained, based on the results of finite
element analysis. The normalised deflection, s, =w Av,(0,0), and the bending moment,
m, = m,/m, 4(0,0), calculated by BEF and using the FEA are shown in Figure 4.2-5.
The BEF curves are based on slightly differing values 1/4 = BAt and n = 141 of a
generalized model to be determined in Section 4.6. The bending moment of this model
is 0.986 times the theoretical moment. The corresponding deflection ratio is 1.017.

—+ s-BEF
¢ mx - BEF
& 5 _FEA
"% mx-FEA

Figure 4.2-5 Normalised deflection, s;, and bending moment, m, ;. , of a fixed plate
subjected to constant transverse line loading as a function of x/B at the centre-line.
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4.2.2 Constant edge moment loading

When subjected to external loading in the form of an edge moment of constant value,
M,, = -M,, (0,0), the deflection function, wx,y), is determined according to similar
methods to those described and used in Section 4.2.1. w,(x,y) is an antimetric function
in the x direction from 0 to a, and can be expressed as a double series function of
period 2a

Wo(X.y) = Y Y A, sin(y,x) cos(n,y) . N, =

m=1,35..,n=13, 5. (4.2-22)

The edge moment loading, M, ,, can be presented in the y direction as an even series
expression, similar to the constant lateral line loading of Eqn (3.3-6). The loading and
deflection functions are antimetric functions in the x direction. Therefore, at the origin,
x = 0, the deflection, wy(x,y), is zero and Jw, /ox(x,y) = U, is the only degree of
freedom in a simply-supported semi-infinite plate strip. The deflection function, w,(x,y),
is determined according to Eqn (2.3-7), ( U, , = 0). By using Eqn (2.3-12), each U, is
related to each component M,, of M, ,. The coefficients A, are obtained by integrating
wo(x,y) of Eqn (2.3-7) in the x direction as a function of U, ,, and further of M,

2
= 20, —-fxe " sin (v, x)dx = i———il—’"—\f’l——u,‘,m :

2 (M + V)* (4.2-23)
"

o = = M = My A L sinmni2) |
' 2Kn,, ®nm

In order to determine the edge moment at the fixed longitudinal support line, y = B/2,
the rotation angle, @ , = w, /0 y(x,B/2), of the external loading, M, ,, must be known. By
using w, from Eqn (4.2-22) and (4.2-23,) ¢, can be written as

3
P = 4 B EZ n sin(mni2)sin(n ) .
™ Ka? ' ( g\2)? a
1+ [ﬂ_)
ma (4.2-24)

Each component M, , of the unknown edge moment, M, ,, being also an antimetric
function in the x direction, is determined following the procedure shown earlier in

Section 4.2.1, and calculated from
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16 B2
il M.
n¢ a
Mn,1 = t Z n; ]
anh(y,B/2) 1 m m 2)?
+ 1 + nB
Y,Bl2 cosh?(y,B/2) ( m a)
m=1,35., n=1,3, 5. . ‘ (4.2-25)

In Figure 4.2-8, the normalised bending moment, m, ., and the slope of deflection, r;,
= (dw/odx)(dw, /Fx), for a fixed, continuous plate are shown in the normalised x/B
direction at y = 0. The slope of deflection results of FEA of the simply-supported case
are used for reference. Values of 1/4= B/t and n = 1/1, based on the model of Section
4.6, were used in the BEF analysis to calculate the slope of deflection of the continuous
plate at x = y = 0. This resulted in a r;-ratio of 76%.

0 0.25 0.5 0.75 1
—+ r-BEF x/B

> mx - BEF

“® r -FEA

© mx -FEA

Figure 4.2-6 Fixed continuous plate strip subjected to constant edge moment loading,
M., : normalised slope of deflection, r,, , and bending moment, m, s, shown as a
function of x/B.
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4.3 Application of BEF theory to the analysis of a semi-infinite plate strip
with a free edge

The two foundation parameters, 1/4 and n, of the third type of symmetric plate strip - a
strip with one longitudinal free edge and the other fully fixed - are determined by using
the resuits of FEA alone. The model of Section 4.2 is used by releasing the rotation
around the longitudinal axis of the nodes at the line y = B/2. A detailed analysis of a
plate having one edge free and the other, y = 0, simply supported, and its verification,
are considered to be beyond the scope of this study (the second-order stiffness
dominates). As in earlier sections two loading cases, constant line loading and
constant edge moment, were studied. Figure 4-3-1 shows the FE model under moment
loading in the deformed state.

Figure 4.3-1 Deformed shape of a FE model of a semi-infinite cantilevered plate strip
subject to an edge moment loading, -M, , at the line x = 0.

Following the procedure used in Sections 4.1 and 4.2, under constant line loading the
values of the FEA for wand M, at x =0, y = B/2, using v = 0, are set equal to w and
M, of the BEF theory. By using the input data of Section 4.1, the FEA resulted in a
deflection of 0.768 mm. Thus the deflection of the plate strip of width B/2, with one
edge free and the other fixed, is 66.2% of the deflection of the simply-supported plate
of total width B. The bending stress, 47.9 MPa (bending moment 31.93 Nmm/mm),
corresponds to a bending moment ratio of 86.6%. 1/4 and n are calculated from the
equality of: (i) the deflection, w, and (ii) the bending moment, M,, of the FEA and the
BEF solutions, at x = 0, giving the equations
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v
() ©0768mm=-1-0°1 1
4K ¥ Ah
Gy a1eaNmm _ 1Yo 1 (4.3-1)

1
mm 2N A+ n

K = 140000Nmm , B =200mm , V, = 1N/mm .

resulting in

- 12882 - 0826, n-065, b- g . (4.3-2)
11}

>|=

where b is the width of the cantilevered plate strip (e.g. 50% of the total width, B, of the
flange of a symmetric I-beam flange).

The results of FEA of unit lateral line loading, V,, and unit edge moment loading, M.,
are shown in Table 4.3-1 at the line y = B/2 as a function of the coordinate, x, shown in
column one. The results of V, are given in columns two and three; the axial bending
stress in the second and the deflection in the third. The axial bending stress and the
slope of deflection, which are the results of -M, ,,, are given in columns four and five,
respectively. The results under line loading, shown in Figure 4.3-2, are compared with
the corresponding functions of the BEF theory using the parameters of Eqn (4.3-2)
when normalised by the results of the simply-supported plate of width B. The
corresponding normalised bending moment, m, ,, and slope of deflection, r, functions
under moment loading are shown in the x direction in Fig. 4.3-3.
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Table 4.3-1 Results of FEA of a plate strip with a free edge.

X o) o)  o(x) P(x)
[mm] [MPa] [mm] [MPa] [mrad]

0 479 .768 993 -0.154

10 343 757 .829 -0.110
213 22.1 726 .654 -0.0708
272 16.7 704 567 -0.0536
39.7 7.60 .648 404 -0.0245
53.4 .850 .580 263 -0.0029

76 -5.10 468 104 0.0162
111 -7.10 320 -.005 0.0229
141 -6.20 224 -.031 0.0197
176 -4.50 .148 -.032 0.0144

. 200 -3.40 .108 -.027 0.0108

125 T

0.75 |~

0.25

-0.25

~+ s-BEF
> mx - BEF
"8 s-FEA
® mx-FEA

0.5

Figure 4.3-2  Plate strip with free edge subjected to constant lateral line loading:

normalised deflection, s, and bending moment, m,, as a function of x/B = x/(2b).
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Figure 4.3-3 Plate strip with a free edge under edge moment loading: normalised slope
of deflection, r, and bending moment, m,, as a function of x/B.

4.4 Geometric non-linear effect of in-plane loading on bending behaviour
4.4.1 Geometric non-linear BEF model

As with the case of a BEF under true axial loading, N = N,, the lateral deflection of a
plate is influenced by in-plane forces. The effect of membrane forces on the deflection
has been expressed as an equivalent fictitious lateral pressure, (Szilard, 1974)
resulting in the differential equation:

kW o W oW

ox* ox29y? oy*

é‘zw+

dx?2

2
62W+N 3w

N .
o2 Yoxoy  (4.4-1)

y

=P, N,

When neither lateral load nor shear in-plane loading exist, p, = N, = 0, the contribution
of N, and N, to Eqn (2.2-2) for a simply-supported plate results in
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4 2 B 2 + 1" + " -
LK + Ny X ) = (2K + X0+ KX, (0] cos(n,,y) ° a2

Proceeding as in Section 3.3.1 under harmonic loading, it can be seen that the zero
order Winkler foundation parameter, k,,, and the second-order foundation parameter,
N, for a simply-supported piate strip are

N 4 N B2
k, = Kna(1 + —£) = k2 ”4(1 +
Kn? B* Km?r?
) N i N B2 (4.4-3)
N_ = 2KnZ(1 + —*) = 2K (1 + —=
2Kn?, B2 2Km?m?

When these values are substituted into Eqn (3.2-5), the following equations are

obtained:
1 ’4_1:‘/ _2g 1
A, K, mmn a4 N B2

1+ X
Km?2n?
n, = —m =(1+ N B !
" aEIN, 2Km?2m? N B2
1+ 2
Km?2m?
o, = A1+ Bo= A 1 -n, . (4.4-4)

For the lowest value, m = 1, the foliowing can be obtained (for a simply-supported
plate) :

1 2 1 K
~ =B v Ngy = —,
A m 4 B2
N
1+ X
NEuI
2
n=(1+X) 1 N, -aKke-2TK
w N B?
1+ L
NEuI

a=MNT+n, B=ANT 1. (4.4-5)
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N, is the fundamental Euler buckling load of a prismatic bar of unit width that is simply
supported at the ends. In Eqn (4.4-5), N,, is the Winkler buckling load of the one
parameter BEF of Eqn (3.2-5), for a simply-supported plate in the case studied.

When no transverse membrane stress exists, N, = 0, the factor 1/a required in Eqn
(3.2-16) can be represented in general by

N
X
n-=n =n, + —
X fin '
A n N,

N
a-ANTTn, 11+*”=A1+n,,,,J1+V*-1+1 .
: Ny w Niin (4.4-6)

In Eqn (4.4-6), n, is the value of n of the two parameter foundation when axial in-plane
loading is not present, N, = 0. The combined effect of axial loading and n ,js taken
into account in n,. Under a restrained slope of deflection, U, = 0, the deflection U ,=
Wrao and the bending moment, M,,, are directly proportional to 1/a. Similarly, under
restrained deflection, U, =0, the slope of deflection, U, = ®Pmax, I8 directly proportional
to 1/a. Therefore the following equations can be written:

1 1
— = K.
o Ay
1 1 _ 1
- ]
a/ln AJ1 + n,,n o 1 Nx 1
NW1 + Ny (4.4-7)

Ko is the factor of geometric non-linearity due to axial in-plane loading, N As an
altemative to Eqn (4.4-7), K, can be written approximately, and applied in general by
using

1 1
Kont = = v New = (1 + )Ny,

N (4.4-8)

where N, is the critical buckling load corresponding to the appropriate boundary
conditions along the longitudinal support lines. Based on Eqns (4.4-2) to (4.4-8), n is
the true axial load, N,, normalised by N,

Theoretically, in a fixed plate, N, is 1.75 times the value of N, for a simply-supported
plate, 4m°K/B?, (Timoshenko & Gere, 1936). Based on the BEF model presented, when
the parameters 1/4 = B/ and n,, = 1/ are used, N, in a fixed plate is 1.32 times the
value of N,y of Eqn (3.2-5), or 75% of the correct value. For a simply-supported plate,
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using 1/4=1.47B/Mm and n,, = 0.588, the BEF model predicts N, = 2.9411°K/B?, or 74%
of the theoretically correct value. The BEF parameters of the lowest mode m= 1, Eqgn
(3.3-5), predict the correct critical buckling load, N, which is equal to 2N, of Eqn (4.4-
5), for a simply-supported plate.

The effect of axial loading, N,, can be taken into account by multiplying the deflection
and bending moment values of the linear analysis by the factor Kg. Since the
foundation parameters are series expressions, approximate values of w,,,, and M, e
under a restrained slope of deflection at x = 0, and under constant lateral line loading,
V,, are calculated from

T N S VRV B

Winax K 3 gnl 02)\_——'—'
4X y1 + ny, y1 + ny,

Koni Ks - (4.4-9)

The factor K, takes into account the effect of the transverse bending moment, M,, at
the location of M, ., . Based on FEA of the fixed plate case, K, = 1 + 0.8v. For the
simply-supported plate, K, =1 + 0.8v. The importance of K, is discussed further in
Sections 4.5 and 4.6.

Similarly, under restrained deflection at x = 0, the slope of deflection, Do UNder
constant edge moment loading, M,, is

Ko - (4.4-10)

Models for FEA verification. The accuracy of Eqns (4.4-9) and (4.4-10) was tested
by geometric non-linear FEA under constant axial pre-straining membrane loading, N,,
by using the Cosmos/M program, with lateral line and edge moment loadings of
constant value, 1 N'mm and 1 Nmm/mm, respectively, as in the linear elastic model of
Section 4.1. Each analysis (which was performed automatically by the program)
comprised two steps, or runs. In the first run, pre-tension or pre-compression of
constant value in the width direction was analysed to determine the in-plane forces and
to form the geometric stiffness matrix. In the second run, single nodal point deflections
and internal forces were determined by taking into account the stiffening or softening
effect of the in-plane axial loading, N,. Because of the type of analysis, no redistribution
of in-plane stress occurred in the plate. On the tension side, comparative runs were
performed, based on membrane stress levels up to twenty times the critical buckling
stress. In the figures to be presented, the results are shown for normalised membrane
stresses for n, in the range -1 (equal to the critical buckling load) to four on the tension
side.
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4.4.2 Geometric non-linearity under constant lateral line loading
Effect of axial in-plane loading in simply-supported plates

Table 4.4-1 shows the maximum deflection and bending moment results normalised by
the values of the linear elastic runs. Also shown are two columns of K, values
calculated by using two values of n,,: 0.618, corresponding to the n of lateral line
loading of constant value (see Section 4.1); and 1.0 for harmonic loading (see Section
3.1.1). In the model analysis, N, /N,, = 1.0, corresponding to a tension stress of 34.5
MPa, when v=0.

Table 4.4-1 Results of geometric non-linear FEA of constant lateral line loading.

N, INy, N, /N Winax (N, ) My (N) Kon Kon
=10 Wou®)  M©  n,=0862 n,=10
-1.80 -0.90 3.20 3.41 3.00i 3.16
-1.50 -0.75 2.00 2.10 3.67 2.00
-1.00 -0.50 1.42 1.45 1.62 1.41
-0.50 -0.25 1.16 1.17 1.20 1.16
0 0 1.00 1.00 1.00 1.00
1.00 0.50 0.817 0.802 0.786 0.817
2.00 1.00 0.702 0.684 0.669 0.707
4.00 2.00 0.565 0.547 0.537 0.577
10.8 5.40 0.358 0.357 0.361 0.395

By using n,, = 0.618, accurate values were obtained for the tension side. Physically, in
tension, practically no membrane stress redistribution caused by lateral deflection
occurs. In compression, Ny, = 1.0 is less conservative and predicts more correctly the
theoretical loss of stability. Based on some true geometric non-linear shell element FE
analysis runs for compression, it was found that the membrane stress redistribution in
compression is significant when N, < -N,,. Since the true interaction of the lateral
deflection and the membrane stress redistribution cannot be neglected, the use of the
BEF analysis, (or FEA based on pre-straining), is to be limited to N, > -N,,, in analysis
applications.

The effect of the geometric nonlinearity is shown in Figure 4.4-1 as s, and m, ., as a
function of the normalised axial loading, n, s,y is the maximum deflection, w,_,,,
normalised by w,,, of the linear analysis, N, = 0. Correspondingly, m, , is the
normalised bending moment.The curve, K, of Eqn (4.4-8) based on n,, = 1.0, is



4. ON GENERALISATION OF THE BEF MODEL ‘ 50

shown as a solid line. In compression it coincides with the deflection curve drawn
between the FEA results (dotted line and marked by 0O) of FEA. Under high tension
loading, the bending moment results (dotted line and ¢) diverge slightly from the K,
curve but only marginally from the deflection results of FEA, which can also be seen in
Table 4.4-1.

" s-BEF
1.5 ® 5-FEA -]
" m-FEA
a
1 “‘o\ —
. .
0.5
i 1 | £ 1
-1 0 1 2 3 4 5

Figure 4.4-1 Simply-supported plate strip, v = 0, under constant lateral line loading,
V,: normalised deflection, s,,, and bending moment, m, .., as a function of n, .

Effect of transverse in-plane loading

The validity of the geometric non-linearity shown in Eqn (4.4-5) for the plate strip
subjected to constant transverse in-plane loading was analysed by FEA for comparison
in two cases: simply supported and fixed at the longitudinal stiffener lines. The FEA
results corresponding to v= 0 are shown in Figures 4.4-2 and 4.4-3 by dotted lines.
The theoretical curves are indicated by solid lines. The symbol definitions of Figure 4.4-
1 apply. The elementary Euler-buckling load for steel, calculated using Eqn (4.4-11)
and resuiting in a value of 17.3 MPa for a slenderness ratio, B/h of 100, was used to
normalise the in-plane loading. A value four times greater is the Euler-buckling load of
a plate fixed at the ends. For the calculation of deformations and internal forces in a
simply-supported plate, the following parameters, based on a model to be shown in
Section 4.6, were used:
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ry (4.4-11)

Figure 4.4-2 Simply-
supported plate strip, v
= 0, under line loading
Vo' Sy and m, .,
4 againstn,.

Correspondingly, the parameters for the fixed plate are:

1 B 1 1
N A4 - v : (4.4-12)
A TIW , n m 4m’K

P B ~ s-BEF |
' " 5-FEA

® m-FEA
~ m-BEF -

Figure 4.4-3 Fixed
plate strip, v = 0, under
Vo' 84 @and m,

y against n, .
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4.5 Effect of biaxial stress state on bending behaviour

The BEF model presented in Chapters 3 and 4 was based on stress uniaxiality by
setting Poisson's ratio, v, equal to zero when determining the foundation parameters,
1/A and n. In this section, the use of the BEF model is widened to engineering materials
having v > 0, e.g for steel for which v=0.3. The bending stiffness, K, and the bending
moment resulting from lateral deflection, M,, are influenced by v: when v =0.3, Kis
1/(1 - v = 1.10 times the value for K for the uniaxial case; M, is the sum of M, and v
times M, for v = 0. The validity of the BEF models for v = 0.3 was tested by the shell
element FEA models of Section 4.1 under unit lateral line loading.

4.5.1 Linear analysis
Simply-supported plate strip

The maximum deflection at the centre-line was 91% of the deflection obtained in
Section 4.1, i.e. 1.16 mm. The maximum bending moment was exactly 30% higher (48
Nmm/mm compared with 37 Nmm/mm) than the case when v = 0, since M,(0,0) =
M/0,0) in Eqns (2.3-12) and (2.3-13). The results of the plate theory were numerically
equal to the results of the FEA and BEF analysis based on Eqn (3.3-11). Therefore the
foundation parameters of Chapter 3 are valid for v > 0.

Fixed plate strip

The two parameters,1/4 and n, of the BEF theory of a fixed plate are determined for a
material using v = 0.3. By performing the necessary numerical calculations, it can be
shown that the deflection, w, of the fixed plate is 34.0% of the value for a simply-
supported plate strip, also for v = 0.3. When v= 0.3, based on theoretical calculations,
the bending moment, M,, of the fixed plate is 0.721 times the value 48 Nmm/mm for M,
for a simply-supported plate (compared with 0.757 times the value 37 Nmm/mm, when
v= 0). Based on the theoretical analysis, the bending moment ratio of the fixed plate is
1.24, K, = 1 + 0.8 v when Poisson'’s ratios of 0.3 and 0 are compared. Following the
theoretical procedure shown in Section 3.3.2, it can be shown that the BEF parameters
for v= 0.3 are 1/A=0.985B/1 and n = 0.25, which are the same as those of v=0
determined in Section 4.2.1.

For v = 0.3, FEA resulted in 70.7% of the bending moment of the simply-supported
plate, i.e. 48.3 Nmm/mm (cf. 75.4% for v = 0). Therefore, when the bending moment
of the BEF solution is multiplied by K, in the theoretical solution, the two equations
based on the FEA resuits can be written as
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V,
(i) 0.34x(1 - 0.3%)x1.16mm - 2 1__1
4KN A+ n
y (4.5-1)
(i) 0.707x48.3 Nmmimm - o1 124 =
2\ 75 q
resulting in
A m

In the earlier results, Section 4.2.1, when v = 0, n varied between 0.25 and 0.29, and
1/A was relatively constant, 0.99BM. By using 1/4 = BAt and n = 1/r1 of the generalised
model, Section 4.6, the accuracy of the maximum deflection and bending moment of
the linear elastic BEF model of v = 0.3 is

Muaxmg T+ 025 _ 0.988
Moax.cer  0.985/1 + 1/m

Wnaxmos __ T+025 _ _ 40,
Winax, def 0.985%/1 « 1m

(4.5-3)

when the results of the calcualation model (mod) are compared with the results defined
theoretically (def). It can be concluded that the parameters n and 1/4 describing the
fixed plate are not affected significantly by the value of Poisson's ratio. Minor
modifications to the BEF parameters from the exact values also have little influence.
The normalised functions, realed to deflection, w, and the bending moment, M,,
calculated by BEF and using FEA, shown in Figures 4.5-1, 4.5-2, 4.5-4. 4.5-5, 4.5-6,
are based on the values 1/4A= Bt and n = 1.

4.5.2 Effect of geometric non-linearity caused by axial in-plane loading
Fixed plate under constant lateral line loading

The applicability of Eqn (4.4-1) for predicting the combined effect of axial in-plane
membrane loading with a value for Poisson’s ratio of 0.3 was studied by varying the
axial membrane stress level. In Fig. 4.5-1 the maximum deflection (marked by 00) and
bending moment FEA results (dotted line and ¢) normalised by the resuits of the linear
FE analysis, s,, and m,,, are shown together with the theoretical curve (solid line),
which is equal to K, of Eqn (4.4-8). The results are shown as a function of the
normalised axial stress, n,.
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2 T T T
“® 3-FEA
15 ® m-FEA -
. -
. Sem
05 [~ My “uiego=l Figure 4.5-1 Fixed plate, v
= 0.3, under constant lateral
line loading: s,, and m,,
: . . ' as a function of n,.
-1 0 1 2 3 4

Fixed plate under constant edge moment loading

The applicability of Eqn (4.4-8) for predicting the combined effect of axial in-plane
membrane loading and v= 0.3 under edge moment loading is illustrated in Figure 4.5-
2. The normalised slope of deflection, r,,, curves (FEA by dotted line and ¢; Ky Of
BEF by solid line) indicate that the effect of the geometric nonlinearity resulting from
axial in-plane loading is predicted well by Eqn (4.4-8).

2 T T ‘ T T
® r-FEA
— r-BEF
1.5 -
-
0.5
Figure 4.5-2 Fixed plate, v
= 0.3, under constant edge
| | \ | moment loading: normalised
0 ,
“1 0 1 ) 3 4 Slope of deflection Iew @S @

n function of n,.
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4.5.3 Effect of geometric non-linearity caused by transverse in-plane loading
Simply-supported plate under lateral line loading

The combined effect of variable transverse in-plane loading, N,, and v = 0.3 was
studied using the model presented, and also by FEA. The results are shown in Figure
4.5-3. FEA results of the maximum deflection are marked by O, the bending moment by
¢, and the theoretical curves by solid lines. The effect of the geometric non-linearity on
bending behaviour is more important for v = 0.3 than for v= 0, when the results of Fig.
4.4-2 are considered. When v= 0.3, the BEF model based on the parameters of Eqn
(4.4-11) is conservative in the case of tension, predicting a significantly higher bending
moment than the results of FEA, and vice-versa in compression, whereas when v=0,
the FEA results and the BEF model correlate well.

Figure 4.5-3 Simply-supported

| | A i plate, v = 0.3, under constant

1 0 1 5 3 4 [lateral line loading: s , and m,
n, as a function of n,.

Fixed plate strip subject to constant lateral line loading

The results are shown in Fig. 4.54. In this case, the bending moment curve of the
FEA results agrees well with the prediction of the BEF model. m, ,, basedon v =0 is
also plotted for comparison (dashed line and x). Otherwise the notations of Fig. 4.5-3
apply. The results show that the BEF model under the influence of N, is applicable for
a fixed continuous plate under lateral line loading.
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3
25
2 -
15
1 —
05
0 J | 1 1
-1 0 1 2 3 4
Ily
Figure 4.5-4  Fixed plate , v= 0.3, under constant lateral line loading: s, and m, ,,

as a function of n,.

Fixed plate strip subject to constant edge moment ioading

In Fig. 4.5-5 the FEA results of
the normalised maximum
slope of deflection, r,,, are
marked by a dotted line and 0T,
and the theoretical curve by
solid line.

Figure 4.5-5 Fixed plate,

v = 0.3, under constant edge
moment loading: normalised
slope of deflection, r,, as a
function of n,.
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The slope of deflection results shown in Figure 4.5-5 indicate that the effect of the
geometric non-linearity on bending behaviour is lower than predicted by using the
parameters of Eqn (4.4-12). It was also noticed that a mild empirical correction factor
was needed in the BEF model. Therefore, a correction factor chosen by trial and error
(1+n,)°", shown as the dashed line in the figure, multiplied by the BEF model slope of
deflection (lower solid line), resulted in good convergence with the FEA results, dotted
line.

4.5.4 Combined effect of geometric non-linearity caused by axial and transverse
in-plane loading on bending behaviour

The combined effect of axial and transverse in-plane loading on bending behaviour
was analysed for a fixed plate strip. Only one level of transverse in-plane loading was
tested: a compressive load, N,, equal to 50% of the critical buckling stress (n, =-0.5).
The axial membrane stress was varied. The results of v= 0.3 are shown in Fig. 4.5-6
as a function of normalised axial stress where the FEA results of the maximum
deflection are marked by O, the bending moment by ¢, and the theoretical curves by a
solid line (deflection higher). By applying Eqns (4.4-5) to (4.4-7), the parameters of the
BEF model are given by approximative formulae

1 _ B 1 a_ [4, 1] 1.75n,
P ——— w T o
A m 1+n m 1 + :

Y J1 + n,

(4.5-4)

Figure 4.5-6 Fixed plate, v = 0.3,
under constant lateral line loading
and normalised transverse
compression, n, = -0.5: s,, and
| . A m, ., @S a function of n,.
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4.6 The generalised BEF model

Two BEF models are developed as the final result of the analysis of semi-infinite
plates. The first, in Section 4.6.1, describes the behaviour of the centre-line of a plate
strip supported along two edge lines. The second, in Section 4.6.2, describes the free
edge line of a cantilever plate. The second order parameter, N, which represents the
effect of the torsional stiffness of the BEF model, is determined for the plate supported
on two edges. It is used to develop a generalised geometric linear BEF model for the
centre-line, taking into account the effect of the rotation stiffness of the longitudinal
support lines. The rotation stiffness is shown to be determined using ordinary beam
theory. The results of the generalised BEF model are shown to correlate with sufficient
accuracy with the linear shell element FEA results, to be used in practical applications.
The critical buckling loads, which are required for the determination of the factor of
geometric non-linearity, K, are presented, taking into account the effect of rotation
stiffness at the support lines. In Section 4.6.2 the same procedure is used, and
verified, to determine the BEF model for a cantilever plate.

4.6.1 Model for plate strips supported elastically along longitudinal edge lines
Effect of second order foundation parameter, N

In a simply-supported plate under harmonic cosine loading, the second-order
parameter, N, Eqn (3.3-3), which corresponds to the first component, m =1, is

22
N, = 2Kn2 = 2k N - 197 K
B? B? (4.6-1)

The parameter N of Eqn (4.6-1) resulted in n = 1.0, as shown in Chapter 3.

The superimposed effect of the second order parameter, N, of constant lateral line
loading is lower than under the first harmonic component. When theoretically n = n,,
= 0.588 and 1/4= 1.47B/, Eqn (3.3-10), the parameter N results in

N = 4KNn = 107 K (4.6-2)

BZ

In a fixed plate the theoretical values of Eqn (4.2-21), n,, =0.245 and 1/4 =0.985B8/m,
give

N - 4KNn - 997 K (4.6-3)

BZ
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Based on the parameters of FEA, n,, = 0.284 and 1/4 =0.9908/m, N results in the
value 11.4K/B% It can be seen that under constant lateral line loading the effect of the
torsion stiffness, N, is fairly constant, at least approximately close to 41 ( corresponding
to n, = 1/m and 1/4= B/m). It is independent of the rotation boundary conditions at the
support lines, whether simply supported or fixed. Therefore, it can be deduced and
assumed that N is constant for a specific type of loading (in this study constant lateral
line or edge moment loading over the width B).

Effect of rotation stiffness at support lines on bending behaviour

The centre-line of a longitudinal plate strip can be considered as the centre-line beam
of a series of longitudinal beams resting on a series of transverse beams, on an
elastic foundation generated by the transverse bending stiffness of the plate. In this
study, constant lateral line loading is applied, since the study concentrates on
transverse line loads, harmonic loads, or loads of constant value in the transverse
direction. Therefore, the longitudinal beams of the grillage network are supported by
the transverse beams. It is assumed that the shape of the support reaction of the
transverse beams follows the shape of the external loading, at least close to the load
application line. Therefore, the foundation parameter, k, can be determined by
calculating the maximum deflection of a beam of length, B, under a specific type of
loading. The characteristic length, 1/4, is determined from Egn (3.2-5). The
determination of k for a simply-supported plate is shown initially: the maximum
deflection, w,,,, of a simply-supported plate strip of unit width under line loading, p, is
well known as

5 pB*
w = —— .
™ 384 K

(4.6-4)

It is also generally known that k = pAv, and therefore 1/4 is given, using Eqn (3.2-5), by
4
1. 120 8-158 (4.6-5)
A 384 n

By comparing Eqn (4.6-5) with Eqn (3.3-10) it can be seen that the expressions for 1/4,
based on the plate theory and the simple beam theory, are practically equal. For the
fixed plate, similar determination results in 1/4 = BA.

The effect of the rotation stiffness of the longitudinal support lines caused by joint
springs, k,, is determined by analysing one half of the structure as a beam element
model shown in Fig. 4.6-1. The nodal load vector {F} consists of equivalent nodal loads
{F o} resulting from the constant line loading p.
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A
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y X U1F1l ?-__K_-?;\U‘;Ftt

Figure 4.6-1 Beam element FE model consisting of a unit width plate strip and one
spring element loaded by equivalent nodal loads resulting from constant line loading.

The determination of {F,;} is a stahdard procedure in the theory of FE analysis. {Feqt
and the global force balance are given by

L] [126 sk
2 L3 L2 U, B
(Fead =P (7| 6k 4k lU ke
= | =5 a5
12 L2 L (4.6-6)
where the parameter r,
L B
r=k— =k — .
"4K 78K “4.67)

is the non-dimensional rotation stiffness of k,. By inverting the coefficient matrix, the
maximum deflection U, (at the centre-line) can be solved, resuiting in
1 5+rpB*

U, = 3
V3841 +r K (4.6-8)

Since k = p/U,, the characteristic length of the unit width longitudinal BEF, using Eqn
(3.2-5), is:

(4.6-9)

I lw
E-N
()]
+
-

i)
A

—
+
~
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The characteristic length, 1/4, of the fixed plate (r = <) equals B/, and 1/4 for the
simply-supported plate (r = 0) is 1.508/.

When the value of N of Section 4.6.1:

4K
N = 52 (4.6-10)

is chosen to describe the torsion stiffness, the parameter n;, of the generalised BEF
model, Eqn (3.2-5) is

1 5+r

n\N1+r "

N, = (4.6-11)

This results in n,, = 1/ when the ends are fixed, and in Ny, = 0.711 when the plate is
simply supported. When these parameters are compared with the analysis of a plate of
material with v = 0.3, shown in Section 4.5, the maximum bending moment and the
deflection of the BEF model are 95% and 103% of the theoretical values, respectively,
in the simply supported case (r = 0) and when the plate is fixed at the support lines (r
= oo)_

Under constant line loading, the
1.1 functions of the maximum
deflection, s, and bending
moment, m,, are shown in Figure
4.6-2, together with the results of
the FEA runs, with v = 0.3. The
FEA results of the simply-
supported case were used to
normalise the results. It can be
seen that the correlation is good,
except for a minor difference
when the normalised rotation
stiffness r of Eqn (4.6-7) is zero,
corresponding to the simply-
supported case.

Figure 4.6-2 Normalised
deflection, s, and bending
moment, m,, curves for constant
0.3 L | | L line loading, v = 0, as a function

001 0.1 1 10 100 1000 of the normalised joint rotation
stiffness, r.
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Effect of Poisson’s ratio on bending behaviour

The bending moment, M,, of a BEF is affected by the bending moment in the
transverse direction, M,, through Poisson’s ratio: when the material parameter v = 0.3
and the plate is simply supported, the multiplication factor, K, is equalto 1 + v=1.3;
for a plate fixed at the ends K, = 1 + 0.8 v = 1.24 (Section 4.5.1). The combined effect
of boundary conditions and Poisson’s ratio on bending behaviour is small. The
reduction caused by the rotation stiffness at the ends can be estimated by the
normalised bending moment curve, m,, e.g. based on Fig. 4.6-2, resulting in the
following expression for K,:
K, =1 +155v—1
1 (4.6-12)

— 1]
My,

where n, from Eqn (4.6-11) is used. For a fixed plate, Eqn (4.6-12) results in K, =1
+ 0.76v, and for a simply-supported plate, K, =1 + v.

Effect of axial membrane stress

Using Eqns (3.2-5) and (4.6-9), the elementary Winkler buckling load, N, , of the one
parameter foundation model, as a function of r, is

4K |1 +r
B2 5+r

N, = 4KM = (4.6-13)

Based on Eqns (4.4-8), (4.6-11) and (4.6-13), N, can be calculated. It is 1.31N,, when
the plate is prevented from rotating, i.e. r = «, which is 75% of the theoretical buckling
load of 1.75N,, (Timoshenko & Gere, 1936). Similarly, when the plate is free to rotate,
i.e. r =0, N,, inthe generalised BEF model of this study is 1.71N, of Eqn (4.6-13),
which is 1.53N,, of Eqns (4.4-5) and (4.4-8). N, of the model presented is 77% of the
true buckling load, which is twice the value of N, in Eqn (4.4-5). Therefore, an
approximation for the true N, can be deduced and written in the form

4K 1+r 1+r
= . 4.6-14
Nw,x 32 [\J 4.7 + \l 227 ) ( )

The effect of the geometric nonlinearity, K, is calculated according to Eqns (4.4-8)
and (4.6-14) when the axial load is in compression. In tension, the use of K, calculated
according to Eqns (4.4-7) and (4.6-13) is preferable, as shown by the results in Table
441,
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Effect of transverse membrane stress on bending behaviour

The critical buckling load in the transverse direction, under the action of compressive
in-plane transverse loading, N, < 0, is determined based on the geometric nonlinear
stiffness matrix [S]: (Cook, 1974)

( n’s Sy Sz Sy
(s K n*(1-¢) n(s-nLo Sy, S,
c = R — 1t
2-2c-nLs -Sy =Sy Sy Sa
Sy n(nL -s) -S, Sy
-N .
n = Y, N, <0, s =sin(nL), c = cos(nL) .
K (4.6-15)

The global force balance of the beam system shown in Figure 4.6-1 is given by

3
F, K n's S U,

Y A , A=2-2c-nLs.
F, Al n?2(1 -¢) n(s-nLc) + k”? U,

(4.6-16)

The critical buckling load, N, is found from the condition that the determinant of the

global stiffness matrix is zero. Therefore, when L = B/2,

k, . B B
?_sin(n=) + cos(n=) = 0, 4.6-17
KN (n 2) (n 2) ( )

or N, is expressed as

_a K 2
y = 4E£arctan (

2
-2nK | N, B (4.6-18)
kq,B mK

N,

cr,

The effect of transverse membrane loading, N,, on the foundation parameters and on
the geometric nonlinearity, Ko is calculated by using Eqns (4.4-11) and (4.4-12). An
approximation of the true interaction of N, and N, is calculated by using Eqn (4.4-5)
when applying N, in the expressions for N,,.
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4.6.2 Cantilever plate model

The free edge of a longitudinal plate strip under lateral line loading can be considered
as a beam resting on an elastic foundation formed by the transverse bending stiffness
of the cantilever plate. Following the methods used in Section 4.6.1, the foundation
parameter, k, of the BEF is determined by calculating the maximum deflection, w,,,, of
a beam of length b (= B/2) under constant line loading, p. B is the double width, i.e. the
width of the flange of a symmetric I-beam. The maximum deflection, w,,, , is

1 pb*
Wigy = — P . 4.6-19

The characteristic length, 1/4, is determined by using Eqn (3.2-5). When k = pM,,,, 1/A

is given by
1 “l 1
— = ,=b=084b. 4.6-20
A 2 ( )

This result from the simple beam theory model in practice equals 1/4 = 0.82b of Eqn
(4.3-2), which was determined by the equality of the FE shell element analysis and the
BEF theory results (v=0).

When again the value N in Eqn (4.6-10) is chosen to represent the effect of the torsion
stiffness, the parameter, n,,, of Eqn (3.2-5) in the generalised BEF model is

1
Ny = 1.74; = 0.55 , (4.6-21)

wheareas Eqn (4.3-2) predicts n,, = 0.65. By using the parameters 1/4 = 0.82b and
n,, = 0.65 of the FEA the critical axial load parameters are

K

2 |
b K (4.6-22)
N, =(1+n,)N, - 9.82-b—2 .

N, = 4KM = 595

N, of Eqn (4.6-22) is 74% of the true critical buckling load of 13.3K/b? (Timoshenko &
Gere, 1936), when the plate is restrained against rotation along the support line. By
using the parameters 1/4 = 0.84b and n,, = 0.55 of the generalized BEF model
determined in this section, N,, = 5.66Kb? N, = 8.77K/? and the ratio 66% are the
results comparable with the values of Eqn (4.6-22).
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N, of the BEF model based on the BEF parameters of constant line loading,

compared with the true buckling load, is about 75% in all three cases analysed: simply
supported, fixed and cantilevered.

Under axial compression, K, can be calculated for a cantilevered plate from

1
Nb2 (4.6-23)
+
13.3K

K

gnl =

1

In compression, a symmetric section, similar to the flange of an I-beam, is to be
designed against the antimetric buckling mode corresponding to the simply-supported
boundary condition. In that case the theoretical value N, is 4.5K/b* (Timoshenko &
Gere, 1936). When the effect of the zero order term, the bending stiffness, is negligible,
applying e.g. Eqn (4.6.22) a critical buckling load based on ny, = 0.65 of FEA results is
predicted by

K
N, =0 +n, N, = 3.87; , (4.6-24)

wheareas the BEF model, n, = 0.55, predicts 3.12K/b?. These two values are not far
from the theoretical value, 87% and 69%, of 4.5K/b? being also close to the general
ratio 75% of other cases studied.
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Chapter 5
ANALYSIS OF PLATE STRIPS OF FINITE LENGTH BASED ON
BEF THEORY

In this chapter it is shown that the BEF theory can be used to determine the axial
bending stress at the centre-line of a rectangular plate of finite length. Finite
element formulations of a beam of finite length on an elastic foundation are
presented in Section 5.1. Previous work is discussed initially. The deflection
function of a four degree of freedom beam element is developed, which results in
two stiffness matrices: one for compression and moderate tension axial loading;
the other for predominant tension (or second order stiffness). Formulations based
on the solutions to a single two node BEF element under point loading and point
couple loading are presented in Section 5.2. By using the foundation parameters
determined in Chapter 4, the BEF model corresponding to the semi-infinite fixed
plate is applied to the analysis of a rectangular plate of vanable length. In the
parametric study the accuracy of the BEF model is verified by ordinary geometric
linear shell element FE analysis.

5.1 BEF finite element formulations
5.1.1 Literature review

Stiffness matrix solutions of two node BEF elements, based on polynomial shape
functions, were developed in the 1970's by using the energy method. When a = = A
in Eqn (3.2-5), FE formulations based on the exact solution of the homogeneous part
of Eqn (3.1-1) were first developed independently by Ting and Mockry (1984), and
Eisenberger and Yankelevsky (1985). By taking into account the effect of the second
order term, N, an exact solution of Eqn (3.1-3), and the stiffness matrix, were
developed (Yankelevsky and Eisenberger, 1986), for normalised axial loading, n, in
Eqn (3.2-5) in the range -1 < n < 1. A solution was presented for a beam element on
a two parameter foundation, 0 < n < 1 (Chiwanga & Valsangkar, 1988). Except for a
minor typing error, this solution for the stiffness matrix is equivalent to one presented
elsewhere (Yankelevsky & Eisenberger, 1986). Exact analyses for the beam on two
parameter foundation problem have been presented (Razagpur and Shah, 1991),
which included two stiffness matrices: one for n > 1; and the other for the most
common case 0 < n < 1. (Both k and N were assumed to be positive foundation
parameters in these formulations.)

Closed form deflection and internal force functions are generally complicated. The
elegant solutions given in the references contain some minor errors, most often
typographical. In a number of other publications the defiection functions chosen are not
particularly useful. Therefore, in order to present the stiffness matrix of a two node BEF
finite element, the development of the deflection and internal force functions are given
in detail.
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5.1.2 Deflection function w(x), -1<n<1

Figure 5.1-1 shows the FE-element model and the coordinate system used.

Z

- J/_'/% v

7

T D
"/%’//,%f i % 4;/"{//%/// i . /W

Figure 5.1-1 Coordinate system, degrees of freedom, and intemal forces of a beam
element of finite length on an elastic foundation subjected to axial loading.

The notation of Eqn (3.2-5), Chapter 3, is used in the formulations shown next.
Equation (3.2-1), which is the solution of the governing differential equation, Eqn (3.1-
3), is the basis for determining the deflection function and the internal forces of atwo
node BEF. Two cases relating to the value of n are considered:

i) -1<n<A1;

ii) n>1.

In the first case, -1 < n < 1, both arand fof Eqn (3.2-5) are real. It is assumed again
that n = n,, + NIN,, where N is the true axial loading. A function of deflection w(x) that
satisfies the differential equation, Eqn (3.1-3), can be expressed using hyperbolic and
trigonometric functions:

w(x) = A, cosh(ax)cos(Bx) +A,cosh(ax)sin(Bx) +
+Azsinh(ax)cos(Bx) +A,sinh(ax)sin(Bx) . (5.1-1)
When n > 1, £ in Egn (3.2-5) changes through zero to complex. In the real value
solution, the trigonometric terms cosine and sine in Eqn (5.1-1) are changed to
hyperbolic cosine and hyperbolic sine functions of a new variable B, times x. If
necessary, explicit deflection and internal force functions for n > 1 can be obtained
from the expressions determined for -1 < n < 1, which are shown in detail below. The
final result, the stiffness matrix for n > 1, is given in Section 5.1.4.
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By using matrix notation, the deflection, w(x), of Eqn (5.1-1) is expressed as the
product

w(x) = [H){A} (5.1-2)
where
cosh(ax)cos(Bx) T A,
i A
I e L IR 1 (5.1-3)
sinh(ax)cos(Bx) A,
sinh(ax) sin(bx) A,

By applying boundary conditions at x = 0 and x = L, the four undetermined coefficients
of the vector {A} can be solved, based on the nodal degree of freedom vector {U}:

-dw
dx

w©) = Uy, <S2(0) = Uy s wi) = Uy —2H(0) = U (5.1-4)

The slope of deflection, ¢(x), is obtained by differentiating either w{x) in Eqn (5.1-1) or
[H(x)] in Eqn (5.1-3). Denoting the differentiation operation by the matrix [D]:

0 B oa O
d -0 0 «o
2 = = 5.1-5
dx[H(X)] [H(X)] « 00 B [H()1ID] , ( )
0 a -BO
@(x) can be written as
0() = <IH(M1A) = [HWIIDNA} (5.1-6)

By using the notation

CH = cosh(al), SH
¢ = cos(BL), s

sinh(al) ,
sin(BL) ,

(5.1-7)

the boundary conditions of Eqn (5.1-4) can be represented by
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Y 1 0 0 0 A,
U, 0 B -a O A,
< - < ’
U CHc CHs SHc SHs || A,|’
3 3 (5.1-8)
U, W TW W3 WA,
y, = aSHc-BCHs, wy, = aSHs+BCHc,
W, = aCHc-BSHs, y, = aCHs+BSHc,
or
{U} = [El{A} . (5.1-9)
The undetermined coefficient vector {A} is solved by inverting the matrix [E]:
{A} = [E]THU} = [GIU} . (5.1-10)
Finally, for the case (-1 < n < 1), the matrix [G] is given explicitly by
[ A 0 0 0
2
AsHeH+Sse)y  -SHD %o ScHs) - sHs
B B B p?
[6]-+ a a a 1
A | ~(SHCH + =cs) —s? SHc + =CHs —SHs '
B p2 B B
2
- X(sH24s?) SHOH oo (1, Fygps - SHe, & oy
B B BZ BZ B 2
A = SH2- % g2
BZ
(5.1-12)
The deflection at any point, x, within the length, L, of the beam element is
w(x) = [NOOHU = [HX))[G)L, (5.1-13)

where the row vector [N(x)] is the shape function of the deflection. By using Eqns (5.1-
3), (6.1-5) and (5.1-12), ¢(x) can be expressed by

o) = d%[H(x)][G]{U} - [HXIIDI[GI{U} . (5.1-14)
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Since the product expressions are long, only the matrix notations are given.

5.1.3 Internal forces in a two node beam element on an elastic foundation

The unit deflection method, according to the finite element method, is used to derive
the stiffness matrix of a four degree of freedom beam-column or tensioned-beam
element on an elastic foundation when -1 <n<1.

The bending moment, M(x), and the shear force, Q(x), are functions of successive
differentiations of the deflection function, w{x), or the matrix, [H(x)]. The differentiations
can be rearranged to yield a product of [H(x)] and the corresponding matrix [D']: [D]
was given in Egn (5.1-5), [D3] and [D® are given in (5.1-16) and in (5.1-17),
respectively:

[Bo)] = %{H(x)] - H[D][D] = [H[D?]

(5.1-15)
where [D?] is the product [D]{D] written by
o? - 2 0 0 2ap
2_QR2 _
oy .| 0 9B 2B 0
0 208 a?-p? 0
-2af 0 0 a? - p?
(5.1-16)
Correspondingly, [D*] is
0 B(3a? - B a(a® - 3p?) 0
2 _ 2 2 _ 2
(D] - B(B* - 3a%) 0 0 a(a? - 363
a(a? - 3p2) 0 0 B(3a? - B?)
0 a(a? - 3p%) B(B? - 3a?) 0
(5.1-17)

All the deflection functions needed for determining the internal forces are now fully
defined. The bending moment, M(x), and shear force, Q(x), are directly related to the
second and third differentials of w{(x). The functions of the bending moment and shear
force are given by
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Moo = -E1-Lwig = -E-LHWNGHUY - - EIHWID2IGHU)
dx? dx?
(5.1-18)
d3 d3 3
QW) = -El=—w(x) = -EI"_[H0][GI{U} = -EI[HX)]D3[G}{U}
dx3 dx?
(5.1-19)
The generalised shear force,V(x), (see Section 3.2.2) is
- QL) __gdw  Naw
V(x) = Q) + No(x) = -EI e N e (5.1-20)

5.1.4 Element stiffness matrix

The element end force vector {F} and the columns of the stiffness matrix, respectively,
are obtained from the relations given in Eqn (5.1-21), (see also Section 3.2).

£1-9> (o) - N wo)
dx?3 dx
F. - 2
CEEIE 'wf) ] o . {FY = [S]iU) .
3 ol B = Y- IR
F, M(L) dx3 dx
2
19w
dx?
(5.1-21)

A convenient way to determine the stiffness matrix, [S], is to use the expressions at x
= 0, according to the unit deflection method. In Eqn (5.1-22), which defines [S], the
parameters V and M are related to the expressions for V(x) and M(x), where the
subscript of V; or M; is related to a product of two vectors: the subscript parameter j =
1 corresponds to the first row of the differentiation matrix of [H(x)] (since x = 0); and the
second parameter j to the column number of [G]. When the sign convention for the
rotation angle and reaction moments is taken into account, [S] can be written as
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- V11(0) V12(0) B V13(0) B V14(0) 1

T M0 M 0) M0
[S] = . (5.1-22)
SYMM. - S, -M,0)

) 1<n<1

The stiffness matrix of a geometric non-linear four degree of freedom beam element on
a linear elastic foundation is written explicitly as

4A2a(SHCH+%sc) S, Sy Su
2
~2)02(SH2+ L s?)  2a(SHCH-ZLsc) S, S,
(s1 - o P
A ~4A2a(SHc+%CHs) -Sa Sy Su
2 & a
-4R S SHs 2a(SHe - CHS) =Sy S

A= SHZ—Q(—is2
B’

«-Mi+n B-M-n n-=-N

4EIN2’
SH = sinh(al), CH = cosh(al),
s = sin(BL), ¢ = cos(BL) . (5.1-23)

In Eqn (5.1-23) it was taken into account that a? + % = 242 The parameters a and 8
are real when -1< n < 1. Since S (or a') can become imaginary, the [S] given above is
preferred as the most general solution for the stiffness matrix of a two node BEF
element. If the mathematics can handle complex numbers, [S] of Eqn (5.1-23) can be
used, with all terms real for n > 1.

Semi-infinite BEF element. When the length of the element, L, is large, aL and AL
are large constants, and the effect of the trigonometric and hyperbolic functions of Eqn
(5.1-23) on the result is marginal. Therefore, the beam element can be considered to
consist of two semi-infinite ends. The expressions S,,, S,,, and S ,, of Eqn (5.1-23)
result in [S] of Eqn (3.2-16).
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i) n>1

The real value stiffness matrix for the case n > 1 is now determined from the known
solution of Eqn (5.1-23). In this case, the axial load is clearly tensile (in the
mathematical sense), and Bis complex. When denoting a new real value variable, B
shown in Eqn (5.1-24), and seen that # = ix3,, it is known in mathematics that sin(ig )
= ixsinh(5 ) and cos(iB ) = cosh(B). The real value stiffness matrix [S,] of a tensioned
beam element on an elastic foundation is given explicitly by

r

4N a(SHCH + %shch) Sz Ss1 Sy |
2N (SH? + E‘;shZ) 2a(SHCH- Zsheh) s, S,

(s] - £ g " :
. -4\ a(SHch + %’CHsh) - Sy S Su
_4A2%,SHSh 2a(SHch - %t CHsh) -8, SzzJ

2
A=SH2—%sh2, a=AJ/1+n, B, =AN/n-1, n>1,
t
SH = sinh(al) , CH = cosh(al),
sh = sinh(B,L) , ch = cosh(B,L) . (5.1-24)

In Eqn (5.1-24), 242 is equal to a?- B2, (24%= a2+ 2B2). The remaining definitions
of Eqn (3.2-5) apply. Each term S;, which is not given explicitly, relates to the
corresponding term of [S,]. The real value functions of the deflection of Eqgn (5.1-13),
and the slope of deflection of Eqn (5.1-14), the bending moment of Eqn (5.1-18), and
the shear forces of Eqns (5.1-19) and (5.1-20) can be derived in explicit form, when
[H(x)] of Eqn (5.1-3) and [G] of (5.1-12) are applied, taking into account the complex
character of ix S, in the expressions of 3

5.2 Application of BEF theory to analysis of a plate strip of finite length

The validity of the BEF approach used in the analysis of plates of finite length, L, was
tested by analysing the plate model of Section 4.1, in Chapter 4, when node lines at
varying distances x = L were fully restrained. The plate was either simply supported or
fully fixed along the longitudinal edge lines, when the unit lateral line load at the end x
= 0 was applied. The fully-fixed plate was also analysed with unit edge moment line
loading. The effect of in-plane loading was not studied.
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Both the original element mesh (40 elements in the x-direction) and a finer mesh of 60
elements in the x-direction (and more biased towards the origin) were used. As in
Section 4.1, the FE analysis was based on the following input data in all the shell
element models: Poisson’s ratio of v = 0, width B = 200 mm, thickness h = 2 mm, and
a value for K of 140 000 Nmm.

In order to test the accuracy of the BEF model, the deflection, or the slope of
deflection, the bending moment and the support reaction at x = 0, and the bending
moment, x = L, were calculated, based on Eqgn (5.1-23) and compared with the results
of the FEA.

Results of BEF model for lateral line loading

Since n = n,, < 1 Egn (5.1-23) is used in the BEF analysis. The deflection at the
location of the point load application, x = 0, and bending moments at x = 0 and at the
other end x = L, are obtainable from the first column of [S] in Eqn (5.1-23), since U, =
U, = U, =0. The deflection, U,, at x = 0 with a point load, V,, atx = 0 is the product of
two factors: the deflection U, _ of a semi-infinite BEF of Eqn (3.2-16), and the finite
length factor u,(AL) of deflection resulting from U,, given by

U, = U, u(\) (5. 2-1)
where
SH? - —O—(Es2
Vv, 2
-2y — B (5.2-2)
! AE| )2 a
a SHCH+Esc

Similarly, the reaction bending moment, M,, at x = 0 is given by

M, = M,.m,\) (5.2-3)
where
SH? + L
_ 1 _ p2
Mo = Voge o M) = ———. (5.2-4)
o SHCH+%sc

The reaction bending moment, M,, at x = L is

Mz = M1..,m2.1(AL) ’ (52-5)
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where

m, (L) = & SHs

B SHCH + %sc (5.2-6)

corresponds to the finite length factor of the bending moment at x = L, resulting from V,
of the symmetric line loading at x = 0.

Resuits of BEF model under constant edge moment loading

Under edge moment loading, M,, the boundary conditions are U, = U, = U,=0. From
the second column of Eqn (5.1-23), the slope of deflection U,, x = 0, under M, is the
product of the slope of deflection, U, ., of a semi-infinite BEF, Eqn (3.2-16), and the
finite length factor of rotation, r,(AL), resulting from U,, given by

U, = U,.r\L) , (5.2-7)
where
SH?2 o(—zsz
M, 1 B2
Upe = g s R = ——F—. (5.2-8)
o SHCH - %sc

The reaction bending moment, M,, at x = L, which is the product of the applied loading,
M., and the relative factor, m, ,(AL), is given by

% CHs - SHc
My = Mymy,(\L) . my,(ML) = o (5.2-9)
SHCH-%sc
B
The reaction force, V,, atx =0 s
V, = V,_v,(AL) , (5.2-10)
where
SH? + -9‘332
AZ B2
v1‘.. = _Mog ' V1()\L) = - (52‘11)
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Comparison of BEF medel and shell element FEA results

Results of the comparison are shown in Figs 5.2-1, 5.2-2, 5.2-3 and 5.3-1; the curves
based on the BEF model are shown as solid lines, and the results of the shell element
runs are shown by dotted lines and symbols. The functions u,(AL), m,(AL) and m, (AL)
for unit lateral line loading, and u,(AL), m, ,(AL) and the inverse value of v,(AL) for unit
edge moment loading are shown as a function of the normalised length, AL, of the
plate. In the BEF models, the characteristic lengths used were 1.58/11 for the simply-
supported plate, and B/t for the fixed plate. The normalised second order parameters
used were n = 0.71 and 1/m1, respectively.

Figure 5.2-1 shows the results for the fixed plate with unit edge moment loading. The
1/v,(AL) of Eqn (5.2-11). values of the shell FEA are determined manually from the axial
and shear stress output data by using Eqn (2.1-5). This is not very accurate, as can be
seen from the shape of the curve.

Figure 5.2-2 shows the results of a comparison of the simply-supported plate under unit
lateral line loading. For the fixed plate, theoretical curves together with the shell FEA
results are constructed in Fig. 5.2-3.

Figure 5.2-1 Fixed plate:
finite length factors of the
inverse of the reaction
force, 1/, (AL), rotation,
r,(AL), and bending moment
at x = L, m,,(AL), under

edge moment loading, as a
0 1 2 3 4 5 function of AL.
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Figure 5.2-2  Simply-supported plate: finite length factors of deflection, u,(AL), bending
moments at x = 0, m,(AL), and x = L, m, (L), under lateral line loading, as a function of
AL,
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Figure 5.2-3 Fixed plate: finite length factors of deflection, u,(AL), bending moments at
x =0, m(AL), and x = L, m,,(AL), under lateral line loading, as a function of L.
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5.3 Discussion

The behaviour of the centre-line section of a rectangular plate fixed at the end x = L
was shown to be described by a plate strip model using the BEF theory. The deflection
and slope of deflection functions of Figs 5.2-1, 5.2-2 and 5.2-3 show only marginal
deviations over the whole range of AL, compared with the FEA results.

It is often essential to know the bending moment at the load application point
accurately. In order to test its sensitivity, the resuits of the shell element FEA and
m,(AL) as a function of AL are plotted in Fig. 5.3-1, see also Figures 5.2.2 and 5.2.3.
Three theoretical curves for the tension side are shown as continuous lines: n.=0,1/m
(equal to ny, of fixed plate) and 1.5, together with the FEA resuits, n, = n,, ofthe
simply-support (dotted line and ¢) and fixed plates (dotted line and +) cases. m,(AL) is
fairly insensitive to the type of restraint at the longitudinal edges. The influence of the
second order parameter, n,, in the functions shown is marginal, compared with its
significance in the reference semi-infinite case. The effect of AL and transverse in-plane
loading was not studied.

The resuits of Chapter 4 and 5 have shown that the effects of various types of
intermediate support in plate structures can be analysed by modelling a one
dimensional continuous beam structure composed of BEF elements given by Egns
(5.1-23) and (5.1-24).

1.2

0.8

0.6

0.4

0.2

o OIS '1 1|5 2
' ' AL

Figure 5.3-1 Comparison of simply-supported and fixed plates: finite length factors of
bending moments at x = 0, m,(AL) under lateral line loading, as a function of AL.
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Chapter 6

CASE STUDY: EXPERIMENTAL VERIFICATION OF
APPLICATION OF BEF THEORY TO ANALYSIS OF
STIFFENED PLATE

The BEF models developed in this study are applied to the analysis of a
continuous stiffened plate structure containing misalignments, as a
demonstration of the method. The expenmental test panel was loaded in a test
ng, Section 6.2. The panel is also modelled and analysed using shell element
FEA, Section 6.3, and the BEF-model of this study, Section 6.4. A summary and
a discussion of the data from expenimental strain gauge readings, results of
FEA, and BEF-models are given in Section 6.5.

6.1 Introduction

An experimental test case study was designed to illustrate the applicability of the BEF
method and to verify the accuracy of calculations based on it. A transverse butt joint in
a longitudinally-stiffened plate panel was chosen for the case study, containing: i) a
natural offset misalignment which resulted from a thickness change; and ii) artificially-
introduced angular and offset misalignments. Experimental tests designed to compare
measured structural strains with calculated structural stresses were conducted in the
Laboratory of Steel Structures of Lappeenranta University of Technology. For
comparison, stresses were calculated based on FEA using shell elements and the
semi-infinite BEF theory application model of this study.

6.2 Experimental tests
6.2.1 Shape of the panel

The test panel was made of structural steel S355 of nominal yield stress 355 MPa,
manufactured by Rautaruukki, Finland. The stiffened plate, length 2 000 mm and
width 900 mm, is shown in the 5 MN test rig in Fig. 6.2-1. The panel was strained
using a T-shaped groove/shoulder connection at the ends. A drawing of the panel can
be found in Appendix 6.2-1. Four longitudinal stiffeners were welded to the top, deck
plate, dividing it into three even stiffener spacings of 300 mm: i) longitudinal edge
stiffeners of square hollow sections (SHS) 100 x 100 x 3 mm to introduce rotation
stiffness at the edge line and thus simulating a part of a continuous plate field; ii) two
intermediate flat bar stiffeners of dimensions 10 x 120 mm. The bottom surface of the
deck plate, of thicknesses, 5 and 10 mm, was aligned with the upper side of the flat bar
stiffeners. The thickness change introduced a natural offset misalignment. The plate
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sections were first tack welded together. Subsequently, the stiffeners were welded to
the deck plate by intermittent welding. Shrinkage of the butt joint between the plate
sections, caused by cooling of the fillet welds, was restrained by the tack welds. Thus
a significant angular misalignment was induced in the butt joint of the deck plate.

Prior to testing the shape of the panel was measured by an instrumented movable
displacement gauge: i) three longitudinal lines in the outer fields, one in the middle,
with the others 20 mm distant from the stiffener surface; and ii) five lines in the centre
field, one in the middle, two 65 mm distant from the centre-line, and two 20 mm distant
from the stiffener face.

The depth of the natural offset misalignment, 2.5 mm, was 50% of the thickness
change, i.e. (10 - 5)/2 mm. An additional offset misalignment of 0.3 mm was measured
at the centre-line of the panel, which resulted from fabrication tolerances. A short, more
localized pit of depth 0.5 mm and length 50 mm could also be observed from the
displacement gauge reading. The pit was located on the side of the thicker plate
section. An initial deflected shape of 2 mm was measured, caused by weld cooling,
equivalent to an average roof top angle of angular misalignment of 2¢, = 4/300 rad.
The depth of the angular misalignment was constant in each of the five measuring lines
of the centre field. Fig. 6.2-2 shows the result of the initial shape along the centre-line
of the panel measured on the bottom (stiffener) surface of the deck plate.

Figure 6.2-1 Test panel in test ng.
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Figure 6.2-2 True shape of the panel bottom surface along the centre-line.

6.2.2 Instrumentation and strain gauge measurements

Strain gauges were attached along the centre-line of the panel, at the stiffener line, and
at a distance of 15 mm from the stiffener line. The locations of the strain gauges are
shown in Appendix 6.2-2. A rosette gauge was placed on the stiffener line on the -
outside face, 5 mm from the weld toe. Transverse strains were measured at one
location near the stiffener. Two strain gauges at the hot spot locations were placed at
distances 3.5 mm and 3.5 + 4 mm from the weld toe. Since the plate thickness, h, is
small (5 mm), the strain gauges could not be located close enough to the weld toe, in
order to comply with the International Institute of Welding recommendations of 0.4h
and 1.0h (Niemi, 1995). After mounting and welding, the normals to the contacting
surfaces of the T shoulders were in line, but not aligned with the plate surface, thus
inducing out-of-plane bending moments at the ends of the panel. Therefore, the
nominal axial membrane strain was measured using the readings of the gauges outside
the joint, gauges 6A and 6C. Uniaxial stress is often assumed in order to transform the
measured strains to stresses. This was the case in this example, such that ¢ = Ee,

Experimental tests were performed in two stages, since the capacity of the recording
PC program was limited to 15 channels. In the first run, the strains at the centre-line of
the panel were recorded. The remainder were recorded in the second run. The axial
force and displacement of the cylinder actuator were also recorded during the two test
runs. Out-of-plane deflections were measured at two locations. The cylinder force was
increased stepwise in both runs: 0~ 500kN~0-+1MN-0-1.5MN ~0-2 MN -
0. During testing, data from each channel were recorded once every second. A
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selection of results are presented in Appendix 6.2-3. The maximum applied membrane
stress loading, g,, was 320 MPa. The maximum structural stress range was 590 MPa
when the panel was loaded under pure pulsating tension varying between 0 and 2 MN.
The local stress behaviour of the steel S355 was linear elastic.

6.3 FEA models and results
6.3.1 FE models

The test panel presented in Section 6.2, containing misalignments, was modelled using
linear shell elements and analysed as geometric linear runs, using the Cosmos/M
program (1996). Two types of models were analysed: i) a theoretically straight model;
and ii) a model containing angular misalignment based on experimental
measurements. The panel modelled in the ideal straight condition was also analysed
using solid elements for comparison of FEA techniques. The results of the shell
analysis are presented in this study. Accurate results at and very close to the stiffener
lines can only be obtained by modelling the local geometry of the joint at the stiffener
line by solid element FEA. Detailed stress analysis of the stiffener line is beyond the
scope of this study.

Because of symmetry, half of the panel was modelled using approximately 1200 nodes
and linear thin shell elements. A value of 210 GPa was used as the Young's modulus
for steel and 0.3 for the Poisson’s ratio. The edge SHS stiffeners were modelled as
beam elements. The fillet welds of the stiffeners were not modelled. The offset
misalignment was modelled by a vertical thin shell element of very large flexural rigidity,
see Figs. 6.3-1 and 6.3-2. Under far-field pure tension loading loading of the thinner
plate, g, , equal to 1.08 MPa the membrane stress in the cross-section of the joint
region of the thinner plate varied in the width direction from 1.0 MPa to 1.1 MPa. The
membrane stress in the centre-line of the thinner plate at the joint area x = 0 of the
nominally straight FE model was 1.02 MPa, and 1.0 MPa in the plate containing
misalignments, which represented the reference membrane stress, g, .

6.3.2 Results of shell element FEA

Figure 6.3-1 shows the panel in the deformed condition, together with the co-ordinate
system. The undeformed initial shape of the model (neutral axis surface) along the
centre-line cross-section, which included the misalignments, is also shown
schematically on the left-hand side. Figure 6.3-2 shows three XY-plots of the structural
stress extrapolation under o, = 1.08 MPa membrane loading of the initially straight
model: i) at the centre-line; ii) at the maximum stress line, y = 15 mm from the stiffener
line; and iii) at the stiffener line. The plots are shown in the x-axis direction up to
distances of 200 mm, 44 mm and 20 mm, respectively.
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a)

5 mm

Figure 6.3-1 Thin shell FE model: a) deformed initial shape of the centre-line cross-
section ; and b) deformed shape of the FE model under axial loading.
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Figure 6.3-2 Surface stress in the 5 mm plate of the initially straight thin shell model.
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Table 6.3-1 shows a selection of the results of experimental measurements and FEA
based on the element results. Four cases of interest are considered: i) the membrane
stress distribution; ii) the centre-line location; iii) the maximum stress line y = 15 mm
(parallel to the stiffener line but 15 mm distant); and iv) the stiffener line. In cases ii) -
iv), extrapolated structural stresses at the weld toe, o,, are considered. In addition to
the nominal stress, the membrane stress value along the centre-line at the weld toe
area, d,, is given. The structural stress concentration factor, K, is obtained as the
ratio of g, divided by the nominal membrane stress, ¢, i.e. K, = ¢,/g,. Since the axial
membrane stress in the transverse y direction of the location of interest, y, differs from
the far-field nominal value, g, the contribution of the bending stress in the structural
stress concentration, K,= g/d, 4, for the centre-line is also shown. In the last row of
each block the gradient of the bending stress concentration in the longitudinal direction,
AK/Ax, unit [1/mm], is given. The locations of linear extrapolation points are given in
the header line of each block, e.g. as the distances of 2h - h. Three columns are
shown: a) stress-based results for the nominally straight shape plus additional stresses
caused by the real shape containing offset misalignment plus additional stress resulting
from angular misalignment; b) two values for the experimental test results (biaxiality
correction factor 1.05 included, based on FEA runs - and direct uniaxial strain gauge
reading based values comparable with strain-based FEA results); c) strain-based FEA
data comparable with the experimental measurements without taking into account the
stress-biaxiality.

Table 6.3-1 Summary of linear shell element FEA, v = 0.3, and test results.

a) Stress based FEA| b) Experimental |c¢) Strain based FEA
Straight + misal. Biaxial - uniaxial Straight + misal.
i) Membrane
O 1.08 1.05- 1.05 1.08
O 1.02/1.0 1.00 - 1.00 1.0
ii) Centre-line
g, 1.77 + 0.08 + 0.15 2.04 -1.92 1.69 +0.08 + 0.15
K, 1.64 + 0.08 + 0.14 1.94 -1.84 1.57+0.08 +0.14
K, 1.77 + 0.08 + 0.15 2.04 -1.92 1.69+0.08+0.15
AKJAx 0.6/100 1.6/100 -
iii) 15 mm from 2h - h 14h - 0.7 h 2h -~ h
stiffener
q, 2.20 - 2.08
K, 2.04 1.75- 1.68 1.94
AK JAx 8.5/100 4.8/100 7.8/100
iv) Stiffener line 2h - h 2h - h
g, 1.93 1.3+0.25 225
K, 1.79 - 2.10
AK JAx 16/100 - 12.5/100
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According to FEA and the biaxial stress state, the bending stress concentration factor
resulting from offset and angular misalignments at the centre-line is 2.00. It correlates
well with the expenmentally-observed uniaxial value of 1.92 wheareas 2.04 is the value
with the biaxiality correction included. Without the angular misalignment, the bending
stress concentration factor was determined by FEA to be 1.77 + 0.08. In the FE model
the effect of the extra offset misalignment from the manufacturing tolerances of 0.3 mm
resulted in a normalised bending stress of 0.08. Thus, an angular misalignment of 2
mm in the depth produced a change of 0.15 in the stress concentration. In the
experimental measurements the stress gradient at the stiffener line was not clear: the
value of 1.3 corresponds with the measured value of strain gauge 7A, 0.25 is the extra
stress based on the measured gradient. Based on the the stress gradient obtained by
thin shell FEA the extra stress is 0.7.

6.4 Two parameter BEF models and results

The test panel shown in Section 6.2 was also modelled and analysed using two
parameter, unit width BEF semi-infinite FE elements, described in Section 3.2. Both
linear and geometrically non-linear BEF analyses were performed for two extremes of
rotation stiffness at the stiffener lines: simply supported (ss) and fixed (fix) to show the
sensitivity of the accuracy to assumptions related to the boundary conditions, in
general. The test panel, being continuous in the width direction, was very close to a
fixed plate resulting in the geometric linear analysis in slightly lower structural stresses
than if only a single simply-supported plate section would have been tested. A
theoretically straight model resulted in an equivalent point couple of a unit width plate
strip resulting from the thickness change. The angular misalignment caused by
shrinkage of the transverse butt weld, based on experimental measurements, was
modelled as a point load of a unit width plate strip, see Chapter 1.

Based on the model of Section 4.6, Eqn (4.6-9), the characteristic lengths of the thinner
plate, 5 mm, and the thicker plate, 10 mm, of width B of 300 mm were shown in this
study to be in general equal, having a value of 1/4 = 1.5x300/ = 143 mm for the
simply-supported case, according to Eqn (4.6-9). Similarly, for the continuous deck
plate of the test panel, assuming fixed boundary conditions, the characteristic length is
300/rr = 95.5 mm. The second order parameter, N, according to Eqn (4.6-11), was 1/
and 0.71 for the fixed and simply-supported cases, respectively. To calculate the factor
n under maximum axial membrane loading, the critical buckling stress of the
denominator was the elastic buckling stress of the thinner plate. Detailed analysis of
the non-linear analysis is shown in Section 6.4.2.

The element stiffness matrices [S, } and [S;] of the semi-infinite BEF elements 1 and
2 of thicknesses h and 2h, respectively, can be derived for the global co-ordinate
system from Eqn (3.2-16). The global stiffness matrix [S,] is therefore obtained by
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20, N 16N2x, -8N?
[S,] = 2E, . [S;] = 2E], ,
oy -8\ 8a, (6.4-1)
[S,] = [S,] +[S,].
The global equation of the force balance can be written as
{Fg) = [S iU,
4-2
2\%a -7N? (6.4-2)

FO
(F,) = {Mo} = 2E,

The external load vector {F} consists of the transverse load, F,, and the point couple,
M,. as the product of the membrane force, hg,, 4, and the misalignment. The transverse
load, F,, resulted from the initial angular misalignment of 2@, = 4/300 rad, and the point
couple, M,, resuited from the natural offset misalignment of 2.5 mm and 0.3 mm
caused by mounting tolerances, see Eqn (6.4-3). The influence of the lateral pressure
in F, caused by the initial curvature was taken into account approximately by using the
averaged apex angle instead of a local one. The load vector is written as

FdN _ (143...95)x4/300| _ (9.5...6.3)
{Mo} y 5°m,d{ 25+0.3 } - °mvd{12.5 +1.5} : (6.4-3)

U, 3
m o |\ a = o+ 2°a, .

The numbers on the left of F,/4, and those used generally in this section, 143 and 9.5,
relate to the simply-supported boundary condition. The numbers on the right, 95 and
6.3, refer to the fixed condition.

When inverting the global stiffness matrix, the deflection vector {U} is obtained. The
internal forces {F.} of the thinner plate (1) are the product of the two-parameter [S,] and
the deflection vector {U} solved from Eqn (6.4-2). {F,} can be obtained by

F
{MZ} . (6.4-4)

a 7N

(F,) =
IR 2Na

F, 4N%a, 2N 1
M,

202 2a,| 4Na? - 98N

6.4.1 Geometric linear analysis model and resulits

Fixed, continuous plate. In the linear elastic case, by using in Eqn (6.4-2), n, =1/n
and a,=a, = a,,=v(1 +1/mA =1.154, the displacements are solved from
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F U
{M‘;} = 2El, {U;} : (6.4-5)

resulting, using Eqn (6.4-4), in the bending moment, M,, of the thinner plate,:

207N -TN?
-7TA  10.35A

F
M, = [0.111K,, 0.187}{&/)‘}. (6.4-6)
o]

The effect of stress biaxiality under line loading is taken into account by the factor of
stress biaxiality, K, , as presented in Sections 4.5.1 and 4.6.1, Eqn (4.6-12). The
normalised bending stress of the thinner plate, o, /0,4, resulting from the shell
bending moment, M,, gives

o 6.3 6
—b - 0.24[0.111K,, 0.187}{12.5 1 5} . Op = M— . (6.4-7)
Omu ' hy

Based on v = 0.3, resulting in K, = 1.24, the bending stress concentration factors, K.,
at the centre-line of the plate at the joint, are

=1 + 017K, + 0.56 +0.07 :
Om,et (6.4-8)

K,=180,v=0; K,=184,v=03.

Simply-supported plate. Based on the parameters: n, = 0.711, a,=a, = 1.314, K,
= 1.3 for v = 0.3, the bending stress concentration factors, K,, are

K, =1+021K, + 0.50 +0.06 :
(6.4-9)
K, =177 ,v =0; K,=183,v=03.

6.4.2 Geometric non-linear analysis results

The effect of the geometric non-linearity of the maximum measured nominal membrane
stress in the thinner plate, o, = 320 MPa, caused by the axial loading of 2 MN is
considered in this section. For the boundary condition where parallel sides are fixed,
the critical buckling stress of the thinner plate, 1, is 370 MPa, and for the thicker plate,
2, is 1500 MPa . For the simply-supported case, the stresses are 210 and 840 MPa,
respectively. Based on Eqn (4.5-4) with N, = 0 the factors a,/4 and a,/4 for the fixed
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case are therefore

X X
- T 1+%27-g—=1.57, =2 - T 1.1320 457

4370 (6.4-10)

For the simply-supported case when n,, = 0.71 the corresponding ratios are: a,/A4 =
2.08 and a,/4 = 1.54. The stress resuits of the fixed and simply-supported cases are
presented below.

Continuous structure, fixed. The normalised bending stress, o,/0,, 4, of the thinner
plate, similar to Egn (6.4-7), is given by

Op 6.3
b - 0.24[0.10K,, 0.193]{12.5”.5} . 6.4-11)

0m,cl

The bending stress concentration factor, K, , at the centre-line of the joint, taking into
account the geometric non-linearity, is

K, =1+ 0.15K, + (0.58 + 0.07) :

(6.4-12)
K,=180,v=0;, K,=184,v=03.
Simply-supported plate. K, results in
K, =1+ 0.18K, + (0.55 + 0.07) :
(6.4-13)

K,=180,v=0; K,=188,v=03.

6.5 Summary of results and discussion

Table 6.5-1 shows a summary of the results of Sections 6.3 - 6.4 obtained i)
experimentally; ii) using the BEF theory application of this study, and iii) using
geometric linear FEA with linear shell elements in Cosmos/M. The bending stress
concentration factor, K, is used as the value for comparison when true biaxial
behaviour, v = 0.3, is considered. Two types of calculation model are compared: i) a
theoretically straight model; and ii) a model containing angular misalignment based on
experimental measurements. The results of both geometric linear and non-linear BEF
models are shown (lin/gni).
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Table 6.5-1 Summary of K, results, v = 0.3, stress-based comparison.

Method Centre-line area, 15 mm line Stiffener
lin/gnl from stiffener line

Experimental 2.04/2.04 =1.8 =1.8
BEF model: lin/gnl
As manufactured, fix 1.84/1.84 - -
(As manufactured, ss) (1.83/1.88) - -

Ideal straight, fix 1.56/1.58 - -
Thin shell analysis: lin
As manufactured 2.00 =2.0 =1.8
Ideal straight 1.75 =2.0 =1.8

6.5.1 Comparison of BEF and FE analysis with experimental measurements
Centre-line section

Based on uniaxial strain, v = 0 and geometric linear BEF analysis, a comparison of
fixed-plate boundary conditions K, = 1.80 in Eqn (6.4-8), shows the two-parameter
geometric linear BEF model to be close to the experimentally-observed K, factor of
1.92, Table 6.3-1. When the stress biaxiality, v = 0.3, is taken into account, the
experimentally-observed K, factor is 2.04, compared with 1.84 from the BEF model (the
effect of biaxiality is based on FEA results being 5% higher than those based on
uniaxial strain measurements, Table 6.3-1). Thus the two-parameter geometric linear
BEF model in the case studied correlates relatively well with the experimentally-
observed behaviour. It can also be seen that offset misalignment dominates in the
stress concentration, being ~0.6 compared with ~0.2 for angular misalignment, Table
6.3-1. The angular misalignment is considerably smaller in joints of standard
manufacturing quality than that in the test specimen. Therefore, in a joint of good
quality but containing a natural offset misalignment, resuiting from a thickness change
from h to 2h, the K, factor is still at least 1.6.

The normalised stress gradient at the centre-line of the panel is very low, about 0.6/100
1/mm. However, the experimentally-observed gradient, based on the strain readings
of gauges 3A and 4, was more than twice that based on the FEA and BEF models. If
the value of the weld toe line alone is needed, one strain gauge located at a position
0.4h gives a satisfactory result. The experimental test showed that the nominal stress
level was achieved at a distance of 50 mm from the weld toe, gauges 3A and 4,
Appendix 6.2-3. Based on FEA resulits, 50% of the bending stress should still exist at
a distance of 50 mm. According to the BEFmodel, Figs 4.2-4 and 4.2-5, the bending
stress resulting from the angular misalignment is about zero, but 40% of the bending
stress caused by offset misalignment still exists. The strain reading of gauge 3B was
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slightly higher than the strain of gauge 3A and was not considered in the study.

Maximum stress line and stiffener line

Based on experimental measurements and FEA, the stress concentration results did
not change significantly along the weld toe line, Table 6.5-1. In the FE analysis,
significant differences were observed at the maximum stress line, 15 mm from the
stiffener, depending on the FEA element types and modelling techniques used. The
normalised stress gradient at a distance 6 mm from the weld toe lies between 5/100
and 6/100, (in 1/mm), when determined either experimentally or by using FEA. The
gradient is ten times larger than at the centre-line. The results of the stress gradient
analysis show that the characteristic length of a BEF model for the maximum stress line
or the stiffener line is much shorter than for the centre-line.

The stress gradient at the stiffener line was not determined experimentally. According
to FEA, Fig. 6.3-2 and Table 6.3-1, the normalised stress gradient is at least 16/100
1/mm, being so large that the more distant strain gauge (gauge10B: see Appendix 6.2-
2) gives unreliable results, if conventional in-line strain gauges are used. At least two
strain gauges are therefore required for accurate stress extrapolation at and close to
the stiffener line. The rosette strain gauge at the stiffener line showed that no
transverse stress existed in the weld line direction. The structural stress, calculated
using a stress gradient of 16/100 1/mm, would be around 2.0. Thus, also the
experimental results indicated that a fatigue crack could initiate anywhere along the
weld toe line in a continuous plate. In a simply-supported plate only the centre-line area
is critical.

The BEF model showed that the stress analysis of offset misalignments is not
dependent on the characteristic lengths. The (one or two parameter) linear BEF model
can be applied to the analysis of the bending stress caused by offset misalignment at
the stiffener line and at the maximum stress line. Some FE formulation results for the
characteristic lengths 1/4 are available (Partanen, Tarjavuori, Niemi, 1992) particularly
for calculating the deep stress gradient close to the stiffener lines. The results of this
study, shown in Fig. 6.3-2 and Table 6.3-1, are in agreement with the earlier FE study,
indicating that the characteristic length at the stiffener line is less than twice the plate
(or flange) thickness.

Effect of strain gauge mounting tolerances

Strain gauge mounting instructions were used to determine the locations of the gauges,
Appendix 6.2-2. The principle involved locating the strain gauges A and C at identical
distances, measure a, but on opposite sides of the plate. However, the strain gauges
were placed at distances of around 4 mm from the weld toe on each side, resulting in
deviations in vertical alignment of between 2 - 3 mm in the longitudinal direction when
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the locations were inspected afterwards. For the centre-line the stress gradient is so
low that the effect of gauge location is not especially significant. The effect of the true
locations is taken into account by using correction factors based on FEA when
interpreting the experimental measurements.

Geometric non-linearity and behaviour in experimental testing

Under the maximum loading of 2 MN, the BEF models showed that the geometric non-
linearity effect was low, marginal for this specific case: based on a uniaxial stress state,
the K, factor was around 1.80 and independent of the boundary conditions, fixed or
simply supported. Centre-line K, resuits from experimental tests, obtained by Appendix
6.2-3, indicated that the bending behaviour was linear. Under axial loading of the panel
from 0 ~ 1 MN the surface strain range of gauges 3A (or 3B) was 1.42 mm/m, whereas
from 1 - 2 MN the surface strain range was 1.39 mm/m, i.e. 98% of the former strain
value. However, at the same time, the local membrane strain range (based on gauges
3A and 3C) was higher, ranging from 0.79 mm/m in the load range 0 ~ 1 MN, and 0.76
mm/m from 1 - 2 MN. Corresponding experimental strain-based values for K, were
1.80 and 1.83 (1.92 in Table 6.3-1 is based on the maximum value 2 MN). An
explanation for this behaviour is the surface at the end of the T shoulders in contact
with the T groove of the rig. The location of surfaces in contact changed during the
testing, causing a small change in the global bending moment of the panel.

6.5.2 Discussion of present design recommendations

The effect of offset misalignments can be taken into account when modelling the
geometry in FEA, as shown in this case study. It is difficult and time-consuming in
practical work to model the true shape of a complicated structure containing angular
misalignments of assumed shapes. Therefore, design recommendations are needed to
determine the structural stress when analysing a model of an ideal shape without
misalignments resulting from manufacturing tolerances.

Offset misalignment
The elementary offset misalignment formula, K, = 1 + 3e,/h = 1 + 1.5, of plates of

equal thickness is too conservative to be applied to joints of differing thickness affected
by BEF behaviour. Maddox (1985) recommended

e 1 h, - h,
Kp=1+60f 1 ) o . i
b h, ( 1 +(hzlh1)1‘5) °T T3 (6.5-1)

for the analysis of a joint between plates of differing thickness. This results in K,=1+
0.78, which in the case studied is close to the result of the shell element FEA model,
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giving 1 + 0.75, Table 6.3-1. The BEF model produced a factor of 1.56. Thus the
formula of Maddox is accurate enough to be applied in future studies.

Angular misalignment in plates or shells affected by a foundation

FEA resulted in a bending stress concentration of 0.15 when the true shape of the
model contained an angular misalignment, in the form of a roof topping of apex angle
2¢,, i.e. 4/300 rad, equal to z, =2 mm in depth (40% of the thickness), see also Fig.
1.1-1. Using the notation (fix) for fixed, and (ss) for simply-supported, pinned ends, the
design recommendations (Maddox 1985), give

Kb‘ﬁx=1+3%‘1=1+1.z. K

Zy

bes = 1 * 6—’—7— =1+24. (6.5-2)
These values, derived from simple beam analysis, are too high compared with the
results of the experimental tests, the shell element FEA runs, or BEF analysis of this
study. ltis clear that it is far too conservative to apply the beam formulae of a free joint
to constructions supported by a foundation, e.g. transverse stiffness. The BEF model
resulted in a bending stress concentration of 21%, which was 33% higher than that
given by the shell element FE analysis. Transverse butt joints in plate structures (as in
the test camied out) and rotation symmetric joints in spherical shells and circumferential
joints in pipes are the most common examples of BEF behaviour.

According to the BEF model, the geometric non-linearity originating from the angular
misalignment was marginal. In addition, the total geometric non-linearity determined
experimentally by the load - strain behaviour was marginal. However, in the design
recommendations of Intemational Institute of Welding (IIW) edited by Hobbacher
(1996) and based on the studies of Maddox (1985), the geometric non-linearity is very
strong:

o
3 % tanh(y/2) =1 +6_Z_Qla_“£“_" w=_L_ 37" (6.5-3)

K. =1+ , —_m
b, fix h w2 bss h h\ E

Eqn (6.5-3) is the result of beam-column analysis, shown e.g. by Timoshenko & Gere
(1936). No instructions are given in the [IW recommendations for welded joints affected
by BEF behaviour. Equation (6.5-3) is based on the assumption of pinned or fixed ends
a distance L apart, and a constant thickness, h. Based on the maximum axial tensile
stress of testing, o, = 320 MPa, and the length of the roof topping, L = 700 mm, see
Fig. 6.2-2, the factor ¢ becomes = 5.5. By using the true shape of the panel, z,= 2
mm, approximately equal concentration factors for the fixed and pinned end conditions,
K, =1+ 0.43, are obtained. Based on Eqns (6.5-2) and (6.5-3) the ratio of the bending
stresses of the fixed plate (0.43/1.2 = 0.36), equal to the factor of geometric non-
linearity, is unconservative, compared with experimental observations or BEF
calculations.
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6.5.6 New model for angular misalignment for plates of differing thickness

BEF model description: The centre-line of a butt joint in a continuous structure
of plates of differing thickness containing an apex angle of 2¢, is considered.
The thickness of the thinner and thicker plates are h, and h,, respectively. The
joint rests on an elastic foundation having parameters 1/4and n,, (1/4 = B/ and
n;,, = 1/ when asumed a fixed plate). It is assumed that the characteristic
lengths are equal on both sides of the joint. The factor of stress bi-axiality is K,,
(for a continuous plate K, = 1.24). The ratio of axial membrane stress loading,
O (tension positive) to critical buckling stress is n.

The transverse line load, g, induced by the roof topping is the product of the axial
stress, o0, and the slope between the plates, 2¢,, giving q = 20,h,@,. The bending
stress concentration, K, resulting from the plate bending stress of the angular
misalignment is given by Eqn (6.5-4). It includes a factor for the effect of differing
thicknesses, K, which can be obtained from the closed form BEF solution of the
bending stress caused by a line load g, similar to the numerical analysis of Section
6.4. The effect of the geometric non-linearity, Ky EQn (4.4-8), is most effective when
the plates are of equal thickness. For differing plate thickness, K, of the thinner plate
1 is slightly higher than the K, of plates of equal thickness. K, can be written:

Ky =1+ wo%"'_J_KvKganh
1y1 + o,
A (6.5-4)
thl = 1 , Kh = -—__8_,-___ , r = _2 = _2_ .
1+n 1+6r+r2 o h}

By using the data of the continuous test panel, 2¢, = 4/300, h,=2h,, Ah, =0.057, n=
320/370, resulting in K, = 0.57, K,, = 0.73, K, =1+ 0.30%0.57%1.24x0.73 = 1.16. If the
effect of the geometric non-linearity is neglected, then K,=1+0.22.

It was observed from experiment, BEF analysis, geometric non-linear BEF analysis,
and FEA that the stress concentration caused by the angular misalignment is around
0.2. The present recommendations resulted for the fixed plate in Ky =0.36and K, =
1+ 1.2x0.36 = 1.43. Since the basis of these recommendations is not correct for joints
supported by a foundation Eqn (6.5-4) is more preferable. Especially for the design of
joints under alternating compression loading Egn (6.5-3) cannot be used.
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Chapter 7
DISCUSSION AND CONCLUSIONS

7.1 Summary and conclusions

The aim of this thesis was to show that plate strips can be analysed by using the beam
on elastic foundation (BEF) approach. It was shown by various methods that the BEF
theory can be used to describe the centre-line section of a semi-infinite plate supported
along two parallel edges, as well as the free edge of a cantilever plate strip. The
transverse bending stiffness of the plate strip forms the foundation. When considering
the fourth order governing differential equation of the BEF model, the foundation
modulus is shown, mathematically and physically, to be the zero order term, whereas
the torsion rigidity of the plate functions as pre-tension in the second order term of the
equation.

BEF parameters based on uniaxial stress field

By comparing the differential equations of Lévy's plate analysis and the BEF method,
a correspondence regarding harmonic line loading was obtained directly (Chapters 2
and 3). By equating the second and zero order parameters, the two characteristic
parameters for a simply-supported plate of width B were obtained for the semi-infinite
BEF model for each harmonic component, m: the characteristic length, 1/4, and the
normalized stiffening effect of the torsion stiffness, n,,. The equality resulted in 1/4 =
V2B/mr and n,, = 1 for the lowest mode, m = 1.

Under constant line loading, which is represented by the superimposition of harmonic
components, slightly different foundation parameters were obtained when the
maximum deflection and bending moment values of the plate and BEF solutions were
equated: 1/4= 1.47B/m and n,, = 0.59.

The deflection function of a fixed semi-infinite plate strip subjected to line loading was
determined, based on classical plate theory to demonstrate the work required, Section
4.2. The theoretical plate analysis results were in good agreement with shell element
FEA calculations. The foundation parameters of the BEF model were determined from
the equality of the maximum deflection and the bending moment in the axial direction,
resulting in 1/4 = 0.998/m and n, = 0.25. For practical applications such as the analysis
of continuous plate fields, 1/4 = B/ and n,, =1/ are easily remembered, whilst still
giving accurate results.

The BEF parameters of a plate strip with one edge free the other fixed were
determined by using the results of FEA alone, Section 4.3. The BEF parameters were:
1/4=1.29B/m and n,, = 0.65, where B is the double width of the cantilever plate strip.
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In a number of figures it was shown that deflection and bending moment functions of
the plate solutions and BEF analysis, respectively, correlated well in the logitudinal
direction.

Generalized BEF model

The effect of geometric nonlinearity, caused by in-plane bi-axial loading, on bending
behaviour was studied theoretically by comparing the differential equations of Lévy's
method and the BEF approach. It was shown that when Poisson's ratio was not taken
into account (v = 0), the correlation between the maximum deflection and bending
moment, defined by geometric non-linear FEA and the BEF model, is good when the
plate is under the influence of axial or transverse in-plane pre-stress loading. A factor
for the geometric nonlinearity, K, was obtained from the comparison, Section 4.4.

The effect of true stress biaxiality (v > 0) on bending behaviour did not affect the values
of the BEF parameters significantly, as shown in Section 4.5. In particular, the flexural
rigidity is 10% greater compared with v = 0, and the product of Poisson's ratio and the
transverse bending stress must be superimposed on the bending stress of the axial
bending moment. Under axial in-plane loading, the geometric nonlinearity was
predicted well by the BEF model, but the biaxiality effect under transverse in-plane
loading was not so clear compared with the case v = 0, Section 4.5.3. It was also
found, based on geometric nonlinear shell element FEA, that when the axial load is
increased gradually, the membrane stress redistribution became significant when the
axial compressive loading exceeded 50% of the buckling load.

Finally, the generalized BEF model was developed in Section 4.6, to describe a centre-
line of a plate strip that is supported uniformly and elastically against rotation along the
longitudinal edges. The torsional stiffness of the plate between the centre-line and
support line was taken into account in the model developed. First, it was shown that the
effect of torsion stiffness, N, was fairly constant and independent of the rotation
stiffness of the edge support lines. Secondly, it was found that the characteristic
lengths, 1/4, of a simply-supported plate and a fixed plate could also be determined by
using elementary deflection formulae. The maximum deflection and bending moment
of the BEF model were shown to correlate well with the results of a parametric thin
shell FEA when the rotation stiffness at the support line was varied, Fig. 4.6-2. Finally,
components of the generalized BEF model that take into account the effect of
Poisson’s ratio, axial and transverse in-plane loading on bending behaviour were
presented.

Effect of finite length on bending behaviour

In Chapter 5 it was shown that the BEF parameters of the semi-infinite model are valid
in the geometric linear analysis of a plate of finite length. When the non-dimensional
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length of the plate, AL, is about one, the bending moment of the BEF model at the far
end is at most 10% lower than that determined by shell element FEA. Otherwise, the
correlation is very accurate. It was also found that the boundary conditions, simply-
supported or fixed, did not affect the deflection or bending moment functions relative to
the normalised finite length of the plate strip.

Engineering understanding

Fast computers and efficient FEA programs are now available to structural engineers.
The cross-sectional properties of structures can be varied easily such that the
maximum stress level is acceptable for a given load case or load combination. Critical
engineering assessment is needed to ensure that the structure will meet all the strength
requirements of the total life cycle. If the behaviour of the structure can be understood
and approximated in advance with reasonable accuracy, the FEA result can be
accepted with more confidence as being numerically accurate, rather than just relying
on the numerical data of the computer calculations.

Many structural engineering scenarios can be analysed as a one dimensional problem -
this is a general aim in practical work. This study has shown that under constant lateral
line and edge moment loadings, the application of BEF theory is a simple tool for the
analysis of semi-infinite and finite plate bending problems. The model was succesfully
applied in the stress analysis of a full-scale test panel, Chapter 6. The use of present
fatigue design recommendations for calculating bending stresses caused by
misalignments was tested. It was found that stress concentrations resulting from
angular misalignments in joints affected by an elastic foundation are not predicted
correctly using present formula. A new formula taking into account the stress biaxiality
and geometric nonlinearity was presented for a continuous plate.

The damping behaviour of deflections is often noticeable when structural details are
analysed. In spite of this, some engineers are not very familiar with the use of BEF
theory. Based on the findings of this study, one or two parameter BEF models can be
applied to new practical applications to explain bending behaviour in a simple way, with
sufficient accuracy. Therefore, the combination of the BEF approach and finite element
methods based on shell or solid element analysis can be recommended as a starting
point for more theoretical analysis of complicated structural phenomena.

7.2 Future research
Improvement of the BEF model

The BEF model presented can be further developed to take into account the effect of
out-of-plane shear deformation.
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Finite elements for the analysis of truss or torsion structures on an elastic foundatior
can be developed. Based on these, and BEF elements, the interaction can be taken
into account when analysing elastically-supported plane frame and/or plane grid
structures.

The BEF model can be modified to be applied to the analysis of warping behaviour in
open sections under the influence of a rotation foundation.

Applications

The plate strip BEF model can be applied to the behaviour of various types of structure,
and to develop more accurate parametric design equations for the analysis of plates
containing misalignments, e.g. those shown in Figure 1.1-1.

The semi-infinite plate strip BEF model can be applied to the analysis of angled beam
joints in plane frames and plane grids.

A model that takes into account the effect of membrane stress redistribution can be
developed, based on the interaction of the semi-infinite behaviour of a truss on an
elastic foundation and BEF elements.

The semi-infinite BEF model can be applied to the analysis of out-of-plarie discontinuity
stresses, caused by in-plarie shear deformation of the web plate of beam profiles such
as | beams and rectangular hollow sectioris.

Characteristic lengths at stiffenier lines can be determined. The BEF model for the
centre-line section can be widened to cover the entire width between the stiffeniers.

Finally, the most important application of a more accurate stress analysis is in the
fatigue assessment of dynamically-loaded structural joints, most notably welded joints.
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APPENDIX 6.2-1 STIFFENED PLATE TEST PANEL
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APPENDIX 6.2-2 STRAIN GAUGE LOCATIONS IN TEST PANEL
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APPENDICES

EXPERIMENTAL TEST RESULTS, RUN 1 AND 2

APPENDIX 6.2-3
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