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ABSTRACT

A systematic averaging procedure has been derived in order to
obtain an integral form of conservation equations for dispersed
multiphase flow, especially applicable to fluidized beds. A
similar averaging method is applied further to formulate
macroscopic integral equations, which can be wused in one-
dimensional and macroscopic multi-dimensional models. Circulating
fluid bed hydrodynamics has been studied experimentally and both
macroscopic and microscopic flow profiles have been measured in a
cold model. As an application of the theory, the one-dimensional
model has been used to study mass and momentum conservation of gas
and solid in a circulating fluid bed. Axial solid mixing has also
been modelled by the one-dimensional model and mixing parameters

have been evaluated.
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NOMENCLATURE

A area, m2; parameter in equation (2.149), (N/m2)0‘5

ArS boundary area between the fields r and s in small
scale, m2

ARS boundary area between the fields R and S in macroscopic
scale, m2

a parameter in equation (4.1)

a’ parameter in equation (4.3)

a, parameter in equation (3.111)

a, parameter in equation (3.111)

a,g specific surface area between fields r and s (equation
2.1y, m2/m3

b parameter in equation (4.1)

b’ parameter in equation (4.3)

105} parameter in equation (3.113)

c, parameter in equation (3.113)

C,q parameter in equation (3.113)

CDr drag coefficient (equation 2.127), -

Cr(w) microscopic dispersion of a property ¥

CE($) macroscopic dispersion of a property ¥

c’ parameter in equation (4.3)

D dispersion coefficient, m2/s

d microscopic characteristic length, m

d rate of change of particle diameter, m/s



diameter of a particle, m

coefficient of restitution , -
non-convective flux of a conservative property
aggregation function, equation (3.113)
field fraction (equations 3.78 and 3.79), -
function (equation 2.134)

modulus of elasticity, N/m2

constant in equation 2.148, N/m2

constant in equation 2.148

gravitation constant, m/s2

enthalpy, J/kg

intensity of radiation, -

convection of a property Y through field interfaces

transfer of a property Y from region j to region k of
field i

transfer of property through the walls in region j

mass transfer of field r to field s divided by area,
kg/m2s

mass transfer of species a of field r to field s
divided by area, kg/m2s

transfer of a property through field definition limits

interphase heat transfer coefficient in equation 2.155,
W

m3K

attenuation coefficient, m2/kg



Ry (7)
élll

Re
p

macroscopic characteristic length, m

Chapter 2: averaging characteristic length, m

Chapter 4: beam length in reactor, m

distance between optic fiber probes, m

molecular weight, kg/mol

mass, kg

mass flow rate, kg/s

unit normal vector, -

Chapter 2: derivative partial volume fraction (equation
2.96), 1/m; Chapters 3, 4 and 5: pressure, N/m2
partial volume fraction (equation 2.97)

heat flux, W/mzs

cross-correlation function

reaction rate divided by volume, mol/m3s
Reynolds number (equation 2.129), -

Reynolds number (equation 2.135), -

time, s

stress tensor, N/m2

temperature, X

momentum flux from field r in region d into field s
in region e divided by volume, —%QE
velocity, m/s >

velocity of a field boundary, m/s

average velocity for momentum transfer from field i in

region j to the other region, m/s

gas-particle slip velocity, m/s



terminal velocity, m/s
effective cluster velocity, m/s
space vector, m

height variable, m

Greek symbols

i

H <0
w H

2 % e e e 6

€

tracer concentration, -

drag coefficient, 1/s

field function, -

volume fraction, -

turbulent diffusion coefficient, m2/s

source term for a conservative property

thermal conductivity, W/mK

dynamic viscosity, kg/ms

stoichiometric coefficient, mole

material density, kg/m3

(intrinsic) density (equation 2.80), kg/m3

average time delay, s

flux of a conservative property

continuum-solid field interaction term (equation 2.85)
non-convective continuum flux (equations 2.86 and 2.87)
solid-solid interaction term (equation 2.88)
conservative property

any function in equations (2.32) and (2.33)

shape factor of a particle, -



superscripts

c continuum

d flow region

e flow region

r any field, solid field
s solid field

v momentum equation

w wall

+ upper limit

- lower limit

°e rapidly varying component

~ fluctuating

* tracer

subscripts

B common control volume and solid boundaries
C macroscopic scale continuum

c continuum

d flow region

e flow region

I boundaries inside control volume
m mixture

max maximum

min minimum



particle

any macroscopic scale field

any field

macroscopic scale solid

solid field

system quantity in equations (2.61) and (2.62)
macroscopic scale total control space
microscopic scale total control space
wall

species

lower boundary in l-dimensional models
upper boundary in l-dimensional models
upper limit

lower limit, microscopic average
macroscopic average

momentum average



1. INTRODUCTION

Gas fluidized beds have been used for commercial processes since
the 1920's, when powdered coal was gasified in fluidized bed. The
method has been applied after that to processes in the chemical and
petroleum industry, metallurgy and also to coal carbonization or
combustion. The development of solid fuel combustion in fluidized
beds was started heavily in the mid 1970’s, when the rise of oil
prices forced the industry to look for substitutes for it. Then it
was found that fluidized bed combustion is one of the most
promising ways of burning coal efficiently and adaptively.
Increasing attention to emission figures of sulphur and nitrogen
oxides in the 1980's has made the combustion method even more
competitive because of its low NO, values and ability of absorption

50, with limestone addition.

During the development of fluidized beds for coal combustion
it was found that alsc higher gas flow rate fluidization could be
applied for coal combustion. This fluidization mode was termed
circulating fluid bed (CFB) or fast fluid bed. First commercial
CFB boilers for coal combustion started operation in the beginning
of the 1980’s. It has been found, that CFBs operate at hiéher
combustion efficiencies and lower excess-air levels than the more

familiar bubbling-bed combustors [Schwieger 1985]. In addition



they are more easily adaptable for staged combustion for NO, control
and require less limestone for SO, capture than bubbling beds. Thus
CFB's are achieving more and more significant position in combus-

tion of solid fuels.

Although commercial practice of CFB has shown its efficiency
in solid fuel combustion, fundamental research on it has been con-
siderably smaller than e.g. on bubbling fluidized beds so that
only a few research groups have been studying CFBs before 1980.
Main emphasis has been on experimental research of small, less
than 15 cm diameter reactors, which are far from the big commercial
unit size of several meters. Experimental methods for gas-solid
flow studies have also been poor making the research difficult.
Thus scaling of the research data for commercial units has been
unreliable especially because theoretical and modeling research of
the process has been scanty. There is also lack of comprehensive
flow studies, in which all the main flow properties are determined

and presented for one single device.

In this work continuum flow equations are first derived for
non-continuous multiphase gas-solid flow applying integrated
balance equationé and definitions of space- and time-averaged
quantities. The physical meaning of different terms and the closure

of the flow equation set will be also discussed.

The continuum equation set is difficult to solve in 3-dimen-



sional case especially for multiphase case, because of the
requirement for large amount of grid cells and non-linearity of
equations. Thus also engineering balance equations are derived
from continuum equations applying macroscopic space averaging.

These equations are applied to l-dimensional multiphase flow.

Due to lack of comprehensive experimental data set for CFB
devices, cold model flow experiments are done applying a few most
promising experimental techniques for fluidized beds. Macroscopic
flow properties, local flow values, as well as some solid mixing

profiles are measured.

Macroscopic l-dimensional equations are applied to flow models,
the parameters of which are evaluated using experimental data from
the cold model and from literature. Numerical results of model

simulations are presented.



2. THEORY OF MULTIPHASE FLOW

Mathematical model for gas-solid-fluidization can be formulated
by using single-phase Navier-Stokes equations for the fluid flow
and Newtonian equations of motion for the particle flow and by
considering suitable gas-solid boundary conditions.A solution for
such a model is, however, impossible to get in practice. Thus,
there is a need to formulate simplified models for which soclutions
can be obtained. The same way as the single-phase flow is modeled
by continuum mechanics instead of statistical mechanics, discon-
tinuities in multiphase flow field can be avoided by modeling all
phases as continuum fields. When speaking of gas-solid-fluidiza-
tion, different parts of the same phase may behave quite dif-
ferently. For example, if there are two different particle sizes
of the same phase in the flow, the constitutive equations for them
may differ totally from each other and modeling them as one phase
may not give satisfactory results.

So instead of terms multiphase or multicomponent, the term
multifield is occasionally used in the following to stress the
fact that within one phase or one component there may be parts
which behave differently and these parts must be modeled as their
own continuum fields. The multifield continuum model may be con-
sidered as an extension of multiphase or multicomponent continuum

models. Thus theories for multiphase flow can be applied also to



multifield flow, in the connection of modeling interactions and

shift between fields within one phase.

2.1 REVIEW OF TWO-PHASE FLOW THEORIES

Principally there has been three different ways of obtaining
equations for multiphase continuum models: intuitive models, models
based on continuum theory of mixtures and models based on averaging
procedure.

Intuitive models have been based on intuitive and empirical
postulations. These models have mainly been presented in earlier
papers for gas-particle flows [Soo 1967, Murray 1965, Pigford and
Baron 1965, Jackson 1963] and for dispersed flows [van Deemter and
van der Laan 1960, Wallis 1969]. These intuitive models are
generally limited in application to specific systems and they
result in equation set, which is not usually very applicable in
practice.

Another way of postulating the multiphase equations relies on
the continuum theory of mixtures [Eringen and Ingram 1965, Trues-
dell and Toupin 1960, Truesdell 1969, Bowen 13761 extended to
multiphase flow [Passman et al. 1983, Drumheller and Bedford 1980,
Goodman and Covin 1972]. However, these generalized continuum
formulations result in quite complex constitutive equations and
numerical values of most of the coefficients are not yet available.

In the late 60's the foundations of the averaging approach were

laid in the articles by Slattery (1967), Whitaker (1969) and



Anderson and Jackson (1967). The first two were for porous media
and the last one was for fluidized bed application. They first
derived volume-average theorems for gradient of time and space,
which theorems have been treated after that in many articles [Gray
and Lee 1977, Cushman 1982, Veverka 1981, Howes and Whitaker 1985,
Gray 1983, Tosun and Willis 1980 and 1981].

The main assumptions in volume-averaging are that characteris-
tic length 1 for averaging volume satisfies the condition d << 1
<< L (where d is the microscopic scale of the medium and L is the
scale of gross inhomogeneities) and that averaged quantities and
their derivatives are continuous. In order to make derivatives
continuous, averaging can be done in space and time twice [Drew
1971, Drew and Segel 1971a, 1971b]. Thus it is not necessary to
assume smoothness in averaged variables. Some authors [Ishii 1975,
Dobran 1985] have doubted the necessity to do double averagings.
However, in the review by Bedford and Drumheller (1983) it was
stated, that reasoning behind Drew’s averaging procedure seems
well-motivated.

The difference between these points of view is that mathemati-
cally double averaging makes derivatives continuous in general,
but also in single averaging smoothness can in practice be obtained
as an assumption. Howes and Whitaker (1985) have shown, that for
the layered two-phase system rectangular or cylindrical averaging
volumes do not lead to continuous derivatives, but spherical volume
does. They also expect, that spherical averaging volume vyields

continuous averaged functions in general. Howes and Whitaker do not



have any arguments for their generalization and it seems, that when
flow consists of phase boundaries, which are at least partly
similar in shape with averaging volume boundary, the averaged
variables have discontinuities for derivatives. In practice,
fortunately, the fraction of phase boundaries having the same
curvature as in the averaging volume boundary may be considered
small and so smoothness assumption seems to be reasonable.

Since the work in the 60’s, different averaging formulations
have been used to obtain multiphase flow equations for various
applications [Bachmat and Bear 1986a, 1986b, Banerjee and Chan
1980, Bouré 1979a, Chawla and Ishii 1980, Crapiste et al. 1986,
Delhaye 1977, Drew and Lahey 1979, Drew and Segel 1971a, 1971b,
Dobran 1981, 1984 and 1985, Gray 1975, Gray and Lee 1977, Has-
sanizadeh and Gray 1979a and 1979b, Hughes 1979, Hughes et al.
1976, Ishii 1975, Jiang et al. 1987, Muzyka 1985, Nigmatulin 1979,
Peters and Prybylowski 1983, Sha and Slattery 1980, Soo et al.
1983, 1984, Trapp 1976, Whitaker 1973]). Different averagings used
are space averaging (volume, area or line averaging), time

averaging and probabilistic averaging.

A common feature with different averaging methods is that when
closing the equation set, averages of functions depending on
averaged variables have to be expressed by functions, which depend
on averaged variables. That leads to different kinds of correlation
terms, which are either assumed to be negligible or are meant to

be determined empirically. At this time propositions for correla-



tion terms rely on quite loose arguments or totally on intuition.
One difficulty has been that different formulations lead to various
correlation terms, which are not comparable. So, uniform develop-
ment between researchers for closing the equation system is not
simple. There are also differences in interpretation of certain
essential terms in equations. E.g. different forms for pressure and
drag terms in momentum equation have been the main subject in many
articles [Bouré 1979, Sha and Soo 1979, Rietema and Akker 1983,

Prosperetti and Jones 1984]}.

2.2 OBJECTIVES FOR THEORY FORMULATION

In the following theoretical work the aim has been to formulate
general multifield equations, which are physically reasonable and
in which variables and correlations have clear physical inter-
pretations. The form for pressure terms in momentum equation (as
well as any flux term in any conservation term) has been obtained
by systematic handling of general integral flux term. Averaging is
done in space and time in such way that pure space averaged form
may be obtained as an reduction from the general case.

In conventional averaging procedures the formulation lies on
the differential equations for each phase, which are then averaged
in a proper way. In the following work formulation is based on
integral balances for different fields and then averaging defini-

tions are used to get integral forms presented by averaged quan-



tities. Differential equations may then be obtained as an applica-

tion of the integral equations.

2.3 NOTATION, DEFINITIONS AND THEOREMS

During the development of continuum flow equations different
notations and definitions are needed for presentation of equations.
Also some known general and averaging theorems have been applied
in this chapter. These are all listed below before the actual

theory formulation begins.

2.3.1 Control spaces

In the following formulations total control volume is fixed in
space. Its volume is denoted by VT and surface by AT . Unit normal
vector N, for the volume boundary is defined to point outward from
volume considered (Figure 2.1).

Control volume for a field r is the volume inside the total

volume occupied by field r, the volume of which is denoted by VR

—

and boundary area by AR.
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Figure 2.1 Control spaces

Capital letters T,S and R in subscripts relate to macroscopic
space quantities and small letters t,s and r relate to space-
averaging scale. Thus, e.gq. Vr means averaging volume and AL
averaging area in the field r and Vi and AR are total control
volume and surface for the field r.

Other fields than r are represented by the symbol s so that 3
means summation over all other fields than r and I means summatzii
including the field r. °

The boundary between the fields r and s is denoted by Aﬁs and
common boundary for the total and field control volume by ARR' So

boundary area for the field volume (field r) can be split
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into boundaries ARR and 2 ARS

S#R
= + 3 = 3
Ar=Agr S#RARS : Ars

Boundary Arr is fixed and boundaries Apg Tove with boundary

velocity VbRS Boundary Ap may be expressed respectively

=A + S A..=3A
Ap= Apr son ss” 3 Pss

where ASS is the boundary for field s common with the total control
volume. Total control volume consists of all the field control

volumes

Macroscopic characteristic length L is the length for large
scale changes in flow field, averaging characteristic length 1
relates to space-averaged quantities and microscopic characteristic
length d is the microscopic scale of the medium. So the main
assumption usually made in averaging formulation can be expgessed
in the form L >> 1 >> d.

Specific surface of the r and s field boundary per unit volume

a is defined
rs
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a =
rs \"

1 J Ars
—— | da = X2 (2.1)
t Vt

A__(V

rs t)

2.3.2 Definitions relating to averaging

Many integral forms will be used in the formulation of averaged
conservation equations. In order to make presentation clearer,
suitable definitions are required for integrals which are used in
averaging procedure. Definitions are summarized in this chapter.
Some of these definitions have been presented in the literature
cited in section 2.1 and some additional definitions have been

introduced.

Field function 7r(x) is used to represent space, which is occupied

by the field r and is defined as follows [Drew 1971])

1 , if x belongs to VR
T(x) = (2.2)
0 , if x does not belong to VR

Local space averaging definitions are needed for field volume
and area averages, for intrinsic volume and area averages and for

field boundary area averages
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Ve By

Field volume and area averages <¢>r ’ <¢>r ; [Whitaker 1969]

Ve 1
<$>r =~ I ﬁyrdV (2.3)
t 3
t
A
t - 1
<p>_ = —— | ¥r.da (2.4)
ta
t
Vr Ar
Field intrinsic volume and area averages <¢>r ’ <¢>r , [Gray
1975]
Vr 1
P> = —— I ¥y, dv (2.5)
ry
t
A
r _ 1
<">r-—ArI by, da (2.6)
At
A

. . rs
Field interphase area average <¢;>r

Ars
I w.nrd_A = I <¢>r'arsdv (2‘7)
v

Ars t

Volume fraction €. for the field r is defined to be field volume

average of unit value [Hassanizadeh and Gray 1979]

Vt 1 Vr
€ <> =~ I T AV = == (2.8)
t t
Vt
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Time average E¢> definition is needed, when conservation equations
are averaged in time. The length of the averaging time is assumed
large enough for filtering small scale time fluctuations out and

small enough not to disturb macroscopic transient analysis.

Cep> = —%— j p dt (2.9)
t

When time and space averagings are combined, there are integrals

both in space and time and following definitions are used for
t,V t,A

space/time averages t<¢>r . t<¢>r
t,v \'
t t 't !
<p>r~ < <¢>r> = TV J J pyr dv dt (2.10)
tt v
t
t,A A
t -ttt _ 1
<¢>r < <¢>r> = “Tx J J pyr da dt (2.11)
tt A
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and respectively intrinsic space/time averages

t,v t,A
r
r<¢>r ’ <¢>r
t,v \%
r _t_'r _ 1 1
<¢>r_ < <¢>r> =5 J —V; I ﬁyr dv dt
t Vt
t,A A
r<¢> = t< r<¢> > = —%—— I —%— I jyr dA dt
t T A

In addition to space and time averaging, general quantities are
presented as specific values, i.e. values divided by density. This

definition leads to a considerable simplification and reduction in

(2.12)

(2.13)

length of the equations, as Favre! has presented for one-phase

time-averaged equations. Mass-weighted averaging is especially
convenient for the treatment of flows of non-constant density. If

density fluctuations are negligible, mass-weighted and Reynolds

averaging formulations become identical.

For mass-weighted variables we use definition

1 cited e.g. in [Hinze 1975]
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pltlst
specific space/time average <y‘)>r
J J 7rpt dsdt
t,S
Prt,Sy t<mb>r € S
<¢>r= . = (2.14)
r
t<p> J J TP dsdt
r t S
t
where St is space quantity Vt or At
t,V, t,A
Space/time averages for volume fractions <€.>, <€.>
are defined with respective density averages
t, Ve
t,Vt <p>r
<6r> = ﬁ;_—— (2.15)
<'[)>r
t,At
t,A, <p>
<6r> = a:—r_—— (216)
<'[)>r

Presenting averages of products of variables with products of
averaged variables gives rise to additional dispersion terms and

there is need for the following fluctuating value definitions



Fluctuating density Py
~ t,S
_ t
Pp = Pp~ P>y

Fluctuating general property

~ pltlst
b, = ¥- <p>

r

2.3.3 Relations

17

(2.17)
b
(2.18)
Zr
(2.19)

In addition to definitions, there are some basic relationships

between defined quantities which will be used later in formulation

of balance equations.

The sum of all volume fractions €g is unity

<

S
T oe= = Fo
38

ct
ct

(2.20)
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It is agreed [Whitaker 1969, Nigmatulin 1979, Bachmat and Bear

1986a] that volume and area averages can be considered equal

Ve Ar
<¢>r = <¢>r (2.21)
\Y A
t .t
<¢>r = <¢>r (2.22)
From definitions (2.3), (2.5) and (2.8) comes equality
Vt Vr
<¢>r= er <¢>r (2.23)
and from equations (2.21), (2.22) and (2.23)
At Ar
<¢>r= €. <¢>r (2.24)

From the definition of field function (2.2) we may write also

[Hassanizadeh and Gray 1979]

j y‘)dV=J-'yr¢ av (2.25)
VR VT

j ¢-anA = j 1r¢-anV (2.26)
ARR Aq

Equation (2.27) may be obtained from definition (2.7) for

integral in boundary of fields r and s
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J. w.anA = J. rs<¢>r'arsdv (2'27)

2.3.4 Theorems

The literature of averaging theory presents some averaging
theorems, which have been applied also in this chapter. 1In
addition, general theorems, such as transport theorem and Gauss

theorem have been applied.
Averaging theorem {Slattery 1967, Whitaker 1969, Gray 1975]

J p-n_da = v-f $dv , if 1 << L (2.28)
v

A
rr r

Transport theorem gives a means of transferring general principles
for a system to principles for a control volume, which is con-
venient when dealing with moving continua. [Slattery 1981, Arpaci

1984]

2 f v av = o f ¥ dv + J p(v_-v_ ) n_da (2.29)
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Theorems for integrals of averages [Whitaker 1969, Slattery 1981)

are needed especially in integral formulation of averaging

equations
Vt .
I tyrdv = I <¢>rdv , 1f 1 << L (2.30)
VT VT
At .
I wyr-nT da = I <¢>r-anA ; 1f 1 << L (2.31)

A local space/time averaged variable may be taken out of local
space/time averaging procedure, because according to averaging
preconditions it can be considered constant within local averaging
space and time. This has also been assumed in one way or the other
in many references cited in this work. Assumption can be proved
when average value is written in a Taylor series and averaging
preconditions, 1 << L and t << T, where T is macroscopic time

length, are applied [Whitaker 1969}. Assumption may be written as

follows
t,S t,S t,S t,S
t t B t t
<] <¢>r> = <Q>r <¢>r (2.32)
£,8 p,t,S t,s p,t,S
t t B t t
<] <¢>r>r = <Q>r <¢>r (2.33)

where {l is any function.
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Gauss theorem is also needed for changing area integrals into

volume integrals. For a general quantity

J w-anA=J Vo9 av (2.34)
Ap Ve

2.4 NON-CONVECTIVE FLUX TERMS

As presented in section 2.1, pressure terms in multiphase
momentum equation have been the subject of many articles. 1In
general, similar problem confronts with all non~convective flux
terms in general conservation equations. In this chapter these
terms are formulated and certain physical meanings are given for
them in multifield equations of continuum-solid particles flow.
Approach will be similar to pressure term derivation presented by
Prosperetti and Jones (1984). This is by no means the one and only
way of expressing different terms. The division depends e.g. on how
terms are going to be determined experimentally, what kind of
equation closure is to be used and on how minimum amount of para-
meters is obtained in the model for the flow case considered.

For a general quantity, effect of a non-convective flux in

conservation balance may be written with surface integral term

I ¢-anA
gARS



22

Respectively to pressure term division of Prosperetti and Jones
{1984), flux ¢r is divided into two parts; slowly in space varying

-]
component <¢_> and rapidly varying component ¢
P r P g P r

b = <p_> + ¢ (2.35)

r r

where <¢r> is defined to be equal to volume averaged flux

Vr
<¢p >

rr

2.4.1 Continuum

Indexes C and c are used here for continuum field and S and s

for solid field.

For a control volume (Figure 2.2) term

J ¢c-nch can be written into three parts FlC’ F2C and F3C
Z A

S CS

F1C : Flux through free boundaries of control volume VC’

Acc T Ac N Bg

F2C : Flux through boundaries of particles totally inside Vo
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surface AI

F : Flux through boundaries of particles partly inside V,

3C TI
surface AB
Figure 2.2 Control volume and field boundaries
Suitable forms can be derived for different parts FlC' cm and F3C
by applying equations (2.26), (2.31) and (2.35) as follows
Ve
FlC = J ¢c°nCdA = J 7c¢coanA = J € <¢c>c°anA (2.36)
Aec A A
Vc o
Foc = J ¢c°nCdA = J <¢c>c°nCdA + J ¢c-nCdA (2.37)
A A A
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For a single particle the first term of the right side of the

equation (2.37) can be written

\'" \'" \'"
c - . ¢ _y. €
J <¢c>c°nCdA = - J v <¢c> dv = v <¢C>CVIp (2.38)
A \'"

Ip Ip

Sign changes because n. is opposite to particle unit vector. The

last equality holds because particle dimension is much smaller
\'"
than space averaging length, and thus V- c<¢c> may be assumed

constant in particle scale.

The third term ¢. may be divided into two components

v

= . = c .
Fic = ,[ 9o nda J o> meda +

I
Ag Ap Ag

8c~nCdA (2.39)

For a single particle (additional subscript p is used), which

is lying on the control volume boundary we may write

C c" e e c>c°nTdA
ABp ABp ASSp
Vc Vc Vc
+ J <¢c>c-anA = V. <¢C>CVBp + J <¢c>coanA (2.40)
A A
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where VBp is the part of particle volume, which is bounded by

surfaces ABp and AT.

Combining terms FlC’ F2C and F3C gives

v v
— c 3 p— . c
Fiet Foc® Fac® j €c 9> AR ?p VIPV @c”c
Vc Vc °
- g VBpV- <9 t j <¢.>.npdA + j ¢, n.dA (2.41)
p S A S A

Summation index Ip takes into consideration all the particles,
which are totally inside the volume and index Bp particles on the
boundary.

Adding the second and the third terms and also the first and

the fourth terms together we may write the flux term

v

c d o
<¢c>cv+j¢-ndk

j ¢ dA = j Vc<¢c>c'n‘1‘dA - j (1-€)V- c' e
2 A
s

v, 2 A
cs Ag T sic CS

(2.42)

Another form may be obtained, if the Gauss theorem (2.34) is
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applied to the first term on the right hand side of equation (2.42)
by adding the first and the second terms together and using

equation (2.27)

v A o
- . C cs
J ¢c-nCdA = J ecV <¢c>cdv + J 2 <¢c>cacsdv (2.43)
Z A v
S

2.4.2 Particles

Indexes R and r are used in this section for the solid con-
sidered, S and s for other solid fields and indexes C and c for the
continuum field. In order to formulate the total flux for the solid
field r, the flux acting on one particle lying on the control

volume boundary is examined first, Figure 2.3.

Figure 2.3 Particle on the control volume boundary
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General quantity balance equation may be written for that part

of the particle, which is inside the total control volume

= B
I ¢r-anA + I ¢r-anA = 3¢ I pYp dv - I Brdv P (2.44)
Agrp App VBp,sys  VBp
where V is system volume and V is control volume. Their

Bp,sys Bp
size at the moment considered is equal.

Flux term on ABp consists of continuum - solid field r interac-
tion and interactions between field r and all solid fields, i.e.
collisions and contacts (includes also interactions between

particles within field r)

I ¢, npdA = I ¢, npda + j ¢, nda (2.45)
ABP ABPC sicABps
where

Ach= ABp n ARC and ABps= ABp n ARS

Summing the flux term j ¢r-nrdA for all particles,

“rRp

which belong to the field r and are on the boundary AT and applying

equation (2.45) to equation (2.44) gives



(2.46)

Next the flux term for particle field r is written into three

parts, respectively as was done for the gas flux term

J . -mpdA = Fio + Foo + Foo (2.47)

where

Flg = J ¢, n dA (2.48)
ARrR

corresponding to the flux through the free boundary of control

volume VR, ARR = AR n AT

FZS is flux due to interaction between the continuum and the
field r and F3S is flux due to interactions between field r and

all solid fields, Figure 2.4.
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Figure 2.4 Different parts of fluxes acting on solid field r

Term FZS may be obtained in the same way as continuum terms F2C

and F in section 2.4.1, thus giving

3C

Vc Vc o
Fog = | €70 C<bcav - [ C<h> omgan - [ G ompan (2.49)
Vv

For term FBS interactions between particles both representing
field r need not to be considered, because their net effect is

zero and term F3S may be written

A
Fyg = J ¢, ndA = 3 J TS<¢ > a__dv (2.50)



30

Substituting the equation (2.46) into term F and adding terms

1s

and F together gives

Figr Fag 3s

[ #.mgan = - [ goman - [ g ompan + Bo [ ow av

z ARS ABc sicABs VB,sys
Vc
- I 8 dv + I erV- <¢c>cdv (2.51)
Vs Vo

J $_-ngda = J IC 4 > a_ dv (2.52)

The first term on the right hand side of eguation (2.51) may be

written
- I ¢, ngdA = - J ¢, nodA + i ¢ ngdA (2.53)
Apc Ag Apg

s¥#c
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Considering definition (2.35) and equation (2.53) we may write

for the first and sixth terms of equation (3.49)

v v

- J 9o ngda - J c<¢c>c°“'1‘dA = J c<¢c>c'nwd}\‘
Apc ARR Ag* App

_ J $_-ndn + J $ - nodA (2.54)
AB SECABS

When the Gauss theorem is applied to equation (2.54)

(2.55)
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Substituting equations (2.55) and (2.52) into eguation (2.51)

gives

A A
- c rs
I ¢r npda = + I eV <¢c>cdv + sir . I <¢r>rarsdv
14
> Prs Vo Vo
vc D
- J V- <¢c>ch + J Or dv + DT J oY dv (2.56)
vB vB vB,sys

o A o
¢ -npda - I rc<¢c>rarcdv - I ($5-9;) "ngdh = 0
A" 3 ABS

s#c
Ve
Term I V- <¢c>cdv may be approximated as follows
VB
Ve Ve Ve
(]
IV- <¢c>cdv < J7rv- <¢c>cdv Jerv- <¢c>cdv (2.57)
v

B Apd, Apdy

where dr is particle’s characteristic length and ATdr is volume
along total volume boundary, thickness of which is dr'
Volume ATdr << ATl and when total volume is assumed to be such,

that ATl is not greater in magnitude than VT’ it may be written

that
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v v
r r

J € V- T<g > AV >> J V. T<g > dv (2.58)

%

In the same way when applying equation (2.27) the sixth term on

the r.h.s. of the equation (2.56) is smaller than the seventh term

A
e re re
¢C.n da < J <¢ > a dv << J <¢C>r a e dv (2.59)

|
™ Ayt 2

When the flux term is later substituted into general balance
equation (chapter 2.5), there are integrals over total control
volume for source and rate of change terms and thus corresponding
integral terms in equation (2.56) are negligible compared with
them. So, the fourth and the fifth terms on the r.h.s. of the flux

term equation (2.56) are dropped out.

When all the small terms are eliminated from equation (2.56) it

gives
Ve Ars
¢ anA = + eV T<pg>dv + 3 <¢ > a__dv
r r Cc C r rrs
Z Ap v s#r,c v
s S T T

(2.60)
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where terms are interpreted as follows

Vr
j erV- <¢c>cdv
v,

T

A
rs
% I <¢r>rarsdv

A

rc(; av

). a
c’r rc

<G

[ (8g-8¢)-ngan = o

2 Pps

s#c

~e

~e

~e

~e

the gas average flux

particle-particle interaction

gas-solid interaction

accounts for the flux due to solid-solid
interactions on particles, which are on
the boundary Aq subtracted by gas inter-

action on respective particles
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2.5 SPACE-AVERAGED CONSERVATION EQUATIONS

Conservation balance for a general quantity ¥ in field r (solid

or continuum) for system volume VR may be written

,8Y8

D

J pYp dv - J ¢~anA - J Br dv = 0 (2.61)

Dt
sys
VR,sys g ARS VR,sys

The first term in (2.61) is the change of property in the system
volume, the second term is the non-convective flux of the quantity
through boundary AR and the third represents the rate of produc-
tion of quantity ¥.

According to the transport theorem (2.29), the system time
derivative can be written using the time derivative for the control

volume VR

D J op AV = g—g J pp dv + J p¥(v_-v__) n da (2.62)

R,sys VR g ARS

" Surface integral in I ARS may be divided into two parts ARR
S
and I ARS‘ In addition, the velocity for the control volume

S#¥R
boundary is

Viep = 1] in ARR and

rs brs in ARS
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SO one can write

J pﬁ(vr—vrs)-anA = J ptvr-anA + J pv(vr—vbrs)-anA (2.63)
g Aps ARr SERARS

Substituting equations (2.62) and (2.63) into equation (2.64)

gives

—%E J pY dv + J pvvr-anA + J pv(vr—vbrs)-anA
VR Arr sirARR
(2.64)

The system volume and the control volume have been chosen to be
the same at the moment considered, so in the last integral there
is vp instead of VR,sys'

According to relations (2.25) and (2.26) equation (2.64) may

also be written in the form
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_%E J Tpp¥ AV o+ J TpPPVy ngdA - J PPV, ~Vprg) - Dpdh

2 Ags

S#R

o
e

(2.65)

- J ¢,.-n.da - J 8 _dv = 0
A\

At this point it should be noted, that equation (2.65) reduces to
normal space-averaged differential equation, if the non-convective

flux term is divided into two parts ARR and X ARS and applying

S#R
equations (2.22), (2.31) and (2.34)
v v v
3 't t t 1
gt PPt Ve T<ppv > - Ve Te > 4 A J PP(V~Vypg) sm dA
Z A
s#r TS (2.66)
v
1 t _
- V; J $y-n.dA - <8.>.=0
Z
sfr TS

which is the same form as e.g. in reference [Gray 1975].
Applying theorems (2.30) and (2.31) to equation (2.65) gives

d_ Vt< p>_dv + A't< ypv_> -n_dA + ) Ars< p(v > av
dt PPy PPV,> "Dy PY(V~Virs) > r2rg
v,

S#r
VT AT T
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Vt
- f ¢r'anA - f <6r>rdV =0 (2.67)
A

In equation (2.67), four of the five terms are integrals in the

total control volume or area. The flux term is integral in area

SA_ ..
SARS

The flux terms, i.e. equations (2.43) and (2.60), may now be

substituted into conservation equation (2.67) to give

Continuum

A

z CS<py‘)(v -v a_dv

a4 Vt< ¥> dv + At< yv > -n_dA + >
dt P o} P c c s#c o} bcs) c Ccs

T

é<“—ﬁ

S
o

(2.68)
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Solid field

d Vt At Ars
dt I <p¥> AV + I <pYv,>,-nydA + I sir <PV (VVprg)> B gAY
Vo Ap Vi
v A
- I €.V c<¢c>cdv - 2 I rs<¢r>rarsdv (2.69)
v s#r,c v
T T
Arc Vt
+I $> a AV + I (#,-9) npdA - I <8_> dv = 0
v 5 v
T S#CABS T

2.6 SPACE/TIME-AVERAGED CONSERVATION EQUATIONS

Integrating equations (2.68) and (2.69) in time and applying
averaging definitions, the following space/time-averaged equations

may be obtained
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Continuum
t,V t,A
d Ve S ]
G| Sewav s [ Caaproongan
Vo Ap
A A .
t t_"cs
* J Z < cs<m"(vc—vbcs)>cacs> av - j 2 U< T acg> dv
y_s#c y_s#c
T T
v v
t c t 't _
- J <e V- T<g > > dv - J < <8 > > dv =0 (2.70)
VT VT
Solid field
t,V t,A
d "t "t
TS J <p¢>rdV + J <p¢vr>r-anA
Vo Ap
A v
t “rs t c
* J Z < <PP(VL~Vprg)>parg > AV arsdV - J <€ Ve T<d > > av
v, 57t v
T T
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The problem with equations (2.70) and (2.71) is that when flow
properties are substituted in these equations instead of general
quantity, it results in an equation system, in which there are more
unknown variables than equations. To reduce the amount of unknown
variables, averages of functions depending on the basic variables
p.¥ and v should be written in the form in which there are
functions depending on the averaged variables. This leads to extra
dispersion terms, which are defined in the following. When choosing
different forms for the definitions, the emphasis in formulation
has been on obtaining averaged quantities, which are experimentally
measurable and which lead to as simple an equation closure as

possible.

Below we will consider first two terms in equations (2.70) and
(2.71), i.e. the rate of change and convection terms, and write
them as products of averaged variables instead of averages of

products of variables.

From definition 2.14 we may write straight

tIS t[St p,t,St

t<p¢>r = <p>_ <¢>r (2.72)

or applying definitions (2.15) and (2.16)
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t,S /T,S
_ t r rertte
<p¢>r = <€_> <p>_ <¢>r (2.73)

If we apply definition (2.18), we may write

t,St p,t,St t,St ~
<p¢>r = <p <¢>r>r + <p¢r>r (2.74)

If we take into consideration equation (2.33) and then

compare equation (2.72) with (2.74), we can conclude that

t,S. -~
<pp > = 0 (2.75)

Now, for the convection term may be written applying equation

(2.18)

<> <p¢r>r + <¢>r <pv.> (2.76)

According to equation (2.75) the second and the third terms from

the equation (2.76) can be eliminated thus giving
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t pltlst pltlst tlst ~ ~
<pv¢>r = <p>. <v>_ <P> + <p (v)r(ﬁ)r>r

(2.77)

Substituting equations (2.72) and (2.77) into space/time-
averaged conservation equations (2.70) and (2.71) rate of change
and convection terms may be written as products of averaged
variables, if respective dispersion terms are added.

In order to make the notation in conservation egquations simpler,

new definitions are introduced as follows

t,St

€r = <€.> (2.78)
t,Sr

Br = <p>r (2.79)
t,S

€ _ t

b = <p>_ (2.80)

or applying equations (2.15) and (2.16)

Br = Er Br (2‘81)

P, = P> (2.82)

I209) = "< TE<pp(vio-vy )>a > (2.83)
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c.(¥) = t'St<p v_ 9> (2.84)
=r r 'r'r )
A
1 t cr, %
. < ($.)ac,> (2.85)
v
t<ecV- c<¢c>c>
V'Qcc = (2.86)
=c
v
t<erV~ c<¢c>c>
V~ch = (2.87)
-r
A
vV _ t rs
Qrs = < <¢r>rars> (2.88)
v
8_(¥) = © t<q_> (2.89)
-r rr

and Qis is defined with the following equation

te J ($,-6_) -npdA > = J ¢".n da (2.90)
Aps Ap

Substituting equations (2.72) and (2.78)-(2.90) into conserva-

tion equation gives



45

Continuum

a
J‘ —:9—1': (ECBCQC) av + J‘ EchQcYC.HTdA + J‘ Qc(ﬁ)'anA
v

T Ap Ap

(1.) (2.) (3.)
(2.91)
+j 3 Io(¥) dV—j zgésdv-jgcv-gccdv—jgc(w) av = 0
v, s*e v, 57¢ v v
T T T T
(4.) (5.) (6.) (7.)

Solid field

j —%E (€x0.8,) AV + j €rLr¥r ¥y npdA + j C,(¥) -n;dA

Vv,
T (1.) T o
+ j 2 15(9) av + j ¢ av - j € V-g,.dv - j 8_(b) av  (2.92)
VT&”ér Vo Vo Vo
(4.) (5.) (6.) (7.)
[ = glav+ j £ g2 ngda = 0
v s#r,c ATs#c

T (8. (9.)
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Terms in equations (2.91) and (2.92) can be interpreted as

follows

(1.)
(2.)
(3.)
(4.)
(5.)
(6.)
(7.)
(8.)
(9.)

When

volume,

Continuum

rate of change

convection

dispersion part of the convection

convection of property through field interfaces
continuum-solid field interaction
non-convective continuum flux

source term

interactions between solids in volume Vo

interaction on solids lying on surface caused b
g Y

solid fields subtracted by continuum interaction

equations (2.91) and (2.92) are applied to differential

respective differential equations are

TE (EcBB) + Vo (eopobove) *+ T-CL(h) + 3 13(p)

-3 I

s¥#c

s#c
(2.93)

$es - €e Vtee - 8.(¥) =0
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Solid field

%E (Epo ) + Veo(ep ¥ v) + V() + i Ei(ﬁ)
S#r

I v A _
$or ~ &r Vifor - 8.(¥) -sir,cgrs +s§cv'ﬁrs =0 (2.94)

2.7 DIFFERENT FIELDS IN CONTINUUM APPROACH

Averaging formulation may be considered as a transformation from
non-continuous fields to continuous fields, where different fields
are allowed to be at the same space location at the same time. As
a result we can obtain similar conservation equations for different
fields whether they are continuous or not.

The need for different fields within a phase or material comes
from the fact that different parts of the phase may have quite
different averaged values at the same point for quantities. An
obvious example is differences in flow dynamics or combustion
mechanism due to different particle sizes. In addition to phase
properties, also different initial and boundary conditions may
result in different behavior of different parts of a phase. Of
course, with proper definitions all different parts of a phase can
be considered as one field having common representative quantities.

The problem is, however, the determination of constitutive models



48

to obtain the right behavior for representative quantities,
especially if there is a great non-uniformity in flow. The part of
non-homogeneity, which is caused by different properties or
different initial and boundary conditions within a phase, may be
reduced by dividing a phase into different fields defined according
to the respective properties or conditions. It may then be easier

to establish constitutive models for these fields

In the following formulation a phase is divided into different
fields according to particle size. In general, instead of particle
size the same treatment may also be used with other quantities.

Field r is defined to represent all the particles, the size

range of which is [dp Following relations [Kunii and

r—’dpr+]‘

Levenspiel 1984) and definitions may be written

d

pr+
€ ;= j pyd(dy) €; (2.95)
d
pr-
dv. (d_)
P;= _\1’ d(é_g) (2.96)
i P
d
P
Pi(dy) = j pyd(d,) (2.97)
0

Pi(») =1, (2.98)
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where
pi(dp) is partial volume fraction of particles in phase i of
size between d_ and d_+d(d
e P p d(dp)
Pi(dp) is partial volume fraction of particles in phase i of
size smaller than dp
dVi(dp) is volume occupied by particles in phase i size of
hich is between d_ and d_+d(d
v * P prd(dp)
Vi is volume occupied by all particles in phase i

Mass transfer from one field to another through field defini-

tion limits dp- and dp+ is caused by particle size change and for

property ¥ transfer we may write

J; () = ¥p;p;€;dy (2.99)

and net transfer in field r, dpr_<dpr<dpr+ is
dpr+
- a_ ;
T = [ - 55 pied ) aa,) (2.100)
d p
pr-

or in integrated form, equation (2.101)
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dpr+

Irs(¥) = - €5 £ (¥py05d5,) (2.101)

pr-

If field limit transfer rates are defined as follows

I8 = - (¥esp58p0la - s (2.102)
Ji(9) = - (tpipidpr)ldpé_ei (2.103)
equation (2.100) gives

I (h) = I (0 - I (H) (2.104)

2.8 EQUATION CLOSURE

The basis for the modeling of multifield flow may be obtained
by applying general equations (2.93) and (2.92) to material,
momentum and energy balance. However, there are still more unknown
terms in the equation system than there are equations. Thus,
closing the system implies additional equations which will give

relations for some of the terms so that total amount of equations
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will be the same as the amount of unknown variables. At the moment
the knowledge of these constitutive equations for fluidized bed
applications is limited. Constitutive equations presented in
literature require suitable interpretation in order to enable their
application to the model frame presented herein, because many of
them are connected with equations based on pure intuition or
different averaging formulation. Often when an equation system has
been closed, the amount of unknowns has been reduced by assuming
certain terms negligible, which assumption has also been used
sometimes when there has not been better knowledge of the model for
the term. Various forms found in literature are introduced in the
following to model unknown terms in conservation equations. Terms
in literature are often written for simplified cases, e.g. in one
or two dimensions. Thus in the following, some relations are

presented using scalar variables instead of tensors.

2.8.1 Material balance

General conservation equations (2.91) and (2.92) may be applied
for different species within a field to give similar equation form

for gas and solid fields
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Species egquation

o | ecteatV = [ ppgvigmgan + [ 312 1) av
v v s#r
T A']:' T

]
o

- f 8,.,(1) av

Vo

and for mass balance of field r

Mass balance

d - s

dt f Erly AV = f Erly Yy DpdR 4 f 2 Ip(1) av
s#r

VT

o
e

Unknown terms in equations (2.105) and (2.106)

(2.105)

(2.106)

(i.e. terms,

which are not functions of primary variables) are interpreted and

presented as follows
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s
Term zra

Iia(l) represents mass transfer of species a through field
interfaces from field r to field s. The mathematical form for it

is similar to equation (2.83)

A
s _t rs
Ira(l) = < “PraVea Vbrs) rirs” (2.107)
or
A
s t “rs _.s
zra(l) =" < lra>rars> (2.108)

. - .S . .
where species’ mass transfer divided by area, i, 18 written

as follows

.S _
1ra™ Pra(Vra Vbrs) (2.109)

If time correlation between rs<is > and a is
ra r rs
negligible we may write
A
s _ "rs_.s
Ira(l) = <£ra>rars (2.110)

For iia suitable mass transfer model must be applied

depending on the phenomena which is being studied.
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Term Qra(l)

Qra(l) represents source term for species a in the
field r. For gas phase Qra(l) comes from homogeneous chemical

reactions in the gas phase

Lt

Qra(l) = f VioMa gg Bgi (2.111)
where i means gas phase reactions and reaction rate for
reaction i in gas phase is

£,V Iy
AR ' t<€ li ;>
R . = q gL (2.112)
..gj_ ¢

=g

For solid field r, Qra(l) is due to reactions in field r

and due to field limit transfer rate

R

+ -
80 (1) = f VieMae Er Bri * Jria(l) = Jpia(l) (2-113)

+ -
where gria(l) and qria(l) may be obtained from equation (2.102)

and (2.103)
s
Term Ir(l)

Ii(l) represents total mass transfer through field
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interface. Mathematical form for ;i(l) is similar to

equation (2.108)

15(1) = %< TS<i%s a> (2.114)
-r rrrs
where
iS= v_-v 2.115
r pr( r brs) (2. )
Ars .s
If there is negligible time correlation between <ir>r
and agr then
15(1) = i%a 2.116
I.(1) =r'rs (2. )
Term 0_(1)
- -r
gr(l) is mass source for field r. For gas Qr(l) = 0 and for

solid fields gr(l) takes into consideration field limit transfer

rates

8,(1) = 375 (1) - 3p;(1) (2.117)
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2.8.2 Momentum balance

Momentum balance is obtained when substituting ¥ = v and ¢ =TT
into general conservation equations (2.91) and (2.92), which leads

into the following forms

(]
]
0]

d
I Tat (Eglg¥g) AV * I €glg¥q¥q NpdA + I Cq (V) ngdA
VT
(2.118)

+ | = 3v)yav- [ 3ot av - I € V-T_ 4v - I 8 (v) dv = 0
=g =gr =g’ =gg =g
v s#g 7 s#g Vo v

T T T

Solid field

I —%E (Ep8,Yy) AV + J €8, Y Y, "npdA + J C (V) n,dA
A"

T By By

s I
+ | 2 o1m av s [ rlay - J €,V T, AV - J 8_(v) av

T T VT T

<

<
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v
. J 5 TV av + J s ™ .ngda =0 (2.119)
s#r,g s#g

Ve Br

where terms are presented as follows
Term gr(v) ; r represents here both gas and solid

gr(v) is the dispersion term, which can be considered as

turbulent inertial stress due to random exchange

t, S, .
Co(v) = <p v Vv > (2.120)

For gr(v) there has often been proposed the same model as for
the stress tensor of a Newtonian fluid [Jackson 1971, Roco and
Shook 1985]. Applying the same assumption to present notation and
assuming bulk viscosity negligible, Qr(v) can be written in the

form

C.(v) = ¢ Vv (2.121)

r Br Er -r

where £r is turbulent diffusion coefficient

This kind of model has been used in various applications
{Pritchett et al. 1978, Roco and Shook 1985, Homsy 1979]. In
suspension rheology there has also been presented various forms for

shear viscosity of mixture [Brady and Bossis 1985, Kulshreshtha
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1985, Ishii and Chawla 1979]. At the moment it seems, however, that
there exists very scanty theoretical and especially experimental
knowledge on the subject of fluidized beds and thus all the models
for the dispersion term are more or less based on intuition.
Two-equation k-¢-model has been proposed with large number of
correlation terms [Elghobashi and Abou-Arab 1983] for two-phase
time averaged flow equations. Also, to some degree, a more
pragmatic approach has been used by Berker and Tulig (1986) in
order to model a minimum number of turbulence correlation terms.
One way of avoiding the difficulty to model the fluctuation
average term has been an assumption that the importance of the term
is negligible. This assumption has been widely used for gas phase
in fluidized bed model solutions. For solid phase, too, most of the
models ignore the corresponding term. The assumption is supported
by the results of Padhye (1985), who reported that changes in the
parameter values of the term did not have appreciable effects on

the calculated results of his application.

Term I17(v)

8 :
;r(v) represents momentum transfer due to convection

between different fields. Mathematical form is (equation 2.80)

A
s _t rs
Ir(v) = "< <pvr(vr_vbrs)>rars> (2.122)
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. . . s c .
Assuming correlations between i, vy and a.g negligible we

may write

ID(v) = i> v> a (2.123)

where gi is the velocity on the field boundary between fields r
and s. If convective momentum transfer between the solid fields is
assumed negligible, there is only gas-solid convective momentum

exchange and for gi it may be written

Vs if r is solid
= (2.124)
Ys. if s is solid

One way of modeling convective momentum transfer between the
fields is to include it into gas-solid momentum drag, which is
presented below. Some additional parameters and function forms are

then required for consideration of mass transfer.

gér is gas-solid momentum drag term, which is due to

rapidly varying stress between fields g and r.
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Equation (2.85) gives

A
I t gr, S

= < T > 2.12
T ( g)agr ( 5)

or from equation (2.27), applying time averaging

I_t °
Tgr= < j Ty Dg 4B > (2.126)
A

gr

There are numerous correlations for gas-particle drag term,
which may differ from each other considerably due to different
experimental arrangements, conditions and measuring scales. In
fluidized bed applications, care must be taken not to get confused
with applying models based on homogeneous or non-homogeneous
experiments. For example, for aggregate fluidized beds there could
be a small length scale where flow may be considered homogeneous
and respective models may be applied to model flow locally. On the
other hand, macroscopic models based e.g. on reactor area averaging
(l-dimensional models) would give meaningless results, if homo-
geneous submodels were applied to it. In this chapter it is assumed
that averaging length scale is such that flow condition may be
considered locally homogeneous. In chapter 3 non-homogeneous

situations will be discussed.
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For a single spherical particle there has often been used

correlation proposed by Schiller and Naumann'

I " d;r ‘r
ol o= 0.5 - - 2.127
Tgr = = Cpg0+5 #(vgm V) Ivgm vel— A ( )
where
24
( 1+ 0.15Re?° %87} | Re < 1000
Re p p
Cpp = 1 P (2.128)
0.44 ; Re, > 1000
e pd |v-v
Re = ! qﬂp 9 X (2.129)
g

Richardson-Zaki correlation has been widely used [Arastoopour
et al. 1982, Ettenhadieh 1982, Adewumi 1985, Syamlal 1985] for a

group of particles, when gas void fraction has been more than 0.8.

3 €
I e _ _ r
Egr = - p CDrpg(vg Vr)|vg Vrl N 52'670 ’ eg > 0.8 (2.130)
pr g r

For porosities less than 0.8 Ergun equation is often used {Kunii

and Levenspiel 1984, Ettenhadieh 1982, Syamlal 1985}, which holds

lcited e.g. in {Arastoopour et al. 1982a]
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for particulate fluidized beds

(1-€.)"p plv —v_|(1-€)
TIr= - l150 ———~9-~g5 +1.75 219 L T (v -v_)
g € _(d__w_ ) w d g
g\'pr r r pr

Ishii and Chawla (1979) have presented a model based on mixture

viscosity model. Their drag coefficient may be presented as follows

24 0.75
Cpr™ ;; ( 1+ 0.1Rerm ) + Re . < 1000
m
6/7 2
1+ 17.67 [£(€_)]

C..= 0.45 Re > 1000
bz 18.67 £(¢_) ¢
where

0.5 €y 1.55
£(e ) = (1 -e€. ) "7(1- )

€ rmax
e - Pqdplvg V.|
m B

€ is maximum value for solid fraction

rmax

(2.

(2

(2.

(2.

132)

.133)

134)

135)
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Term V-T r

Term represents gas stress term, which is defined in

equation (2.87)

v

t g

< . <T > >
€V a’g

VT, = (2.136)

€
-r

\Y
or if time correlation between €. and V-g<Tg>g may be assumed
negligible and t<er> equal to £,

t,v
ver = V- g<'gg> (2.137)

=gr

A stress tensor form of a Newtonian fluid has been proposed for
stress term [Jackson 1971, Anderson and Jackson 1967, Murray 1967].
However, the viscous part of the stress tensor is usually assuméﬁ
small and thus ignored in the fluidized bed model applications.
The only part of the stress term which is taken into consideration

is the one due to pressure.
Term gr(v)

gr(v) is momentum source term due to gravitation and for solid
fields also due to momentum exchange through field limits. For gas

phase
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85(V) = ¢ g (2.138)

tg &g

and for solid field r

+ -

8.(V) = €. 0, 9+ I (V) - I (V) (2.139)
A\

Term Trs
T¥s may be interpreted as momentum interaction between

solid fields r and s in volume VT. Fields r and s may not be

the same. Equation (2.88) gives

A
TV - t< rs<T

> a
-IS rr

rs” (2.140)

For collisional momentum transfer between particles r and

particles s has been presented models by Soo (1967) and Nakamura

and Capes (1976). Syamlal (1985) has derived an expression for

momentum exchange in dense bed. His equation reduces into dilute

case equation given by Nakamura and Capes, when solid fraction

tends to zero. Syamlal’s model is
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1/3

*

2 frs
(1+) €pegprog(dpridps)” 143 [ ——:——J
er es

7T vyl (vmvy) (2.141)
A ‘

3 3 frs
2(dprpr+dpsps) l [e +e
r

v
Irs' -

s

where

*
Ers is the maximum solid volume fraction of a random

close-packed structure.

The coefficient of restitution e has values from 0 to 1, if
collisions between the particles are plastic or elastic, respec-
tively.

Recently Syamlal [Syamlal 1987] has derived an expression for
the particle-particle drag based on the kinetic theory of dense
gases. He has also compared his model to experimental data and he
found thaﬁ a part of the results was predicted reasonably well,
when he assumed that some disagreement was due to the absence of
granular stress in the model.

Some empirical correlations for a limited experimental range
have been also suggested by Arastoopour et al. 1982a and Aras-

toopour and Cutchin 1985.
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Term T

gis accounts for the flux due to solid-solid interactions
on particles, which are on the boundary Ap subtracted by gas

interaction on respective particles. Tis is defined by equation

te J (Tg- Tg) -npdh > = J >, -n_dA (2.142)
Aps Ap

For a fixed bed of only one particle size, where all velocities

are zero, solid field momentum equation reduces to

™ nda = 0 (2.143)

J €r 0,9 AV - | Ty

J
Vi A
From equation (2.143) it is seen, that gﬁs is the only
force opposing gravitational force and thus preventing particles
from collapsing into too high solid fraction. In order to avoid
collapsing and to make equation system well-posed [Lyczkowski et -
al. 1982] an assumption has been presented that for a Newtonian
solid flow a normal component stress gradient is presented with the
aid of modulus of elasticity, G(eg) [Rietema and Mutsers 1973]. In

one dimension the gradient for normal stress is



67

aT de
—H - ge )y —4 (2.144)
Ay 9% a3y
where
_ BTN
G(eg) = —= (2.145)
aeg

Expression for G(eg) has been given by Ettenhadieh (1982) fitted

to the experimental data of Rietema and Mutsers

G(e ) = 10(—8.76€g+ 5.43) , Ef (2.146)

g m

For multiparticle case Syamlal (1985) has suggested
aT de

HE = ¢ G(e,) =%, where (2.147)
dy g dy
*

Gleg) = - gjel92(€ ~¢g)] (2.148)

1.5-10°

(o]
-
]

g, = 500
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S§8S-group has used solid pressure of the form [Pritchett et. al.

1978, Padhye 1985]

2
) - A (egmin - eg) P eg < Egmin (2.149)

G(eg) = G

egmin

i
o

G(€g) , € (2.150)

g z egmin
where A is a large number. Equation is stated necessary to avoid
slumping in non-fluidized beds. Rogers and Padhye [Padhye 1985]
have formulated a numerical method for calculating Newtonian normal
stress tensor for solids. Their formulation is based on the

molecular dynamics theory applied to solid particles.

Expressions in equations (2.146), (2.148) and (2.149) may be
regarded more as mathematical terms to avoid undesirable effects
rather than as real physical terms. The physical meaning of the
term is illustrated e.g. by applying the model in equation (2.119)
to stable fixed bed with zero gas and solid velocities leading to

equality

2
’q

dy

]
o
-

- €xPrd * G(ey) (2.151)
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which gives very high values for the modulus of elasticity for an
uniformly packed bed, when the gradient of volume fraction is

small.

2.8.3 Energy balance

Fluidized bed applications may usually be assumed isobaric, when
energy conservation is considered. Thus the general equations are
applied to thermal energy balance assuming isobaric case, which

gives in terms of enthalpy

Gas

d_ . )

T Ag Ag

(2.152)

+J2;s(h)dv-JZgIdV-ng-g dV-J.Q(h)dV=O
v s#g g v s#g gr v g gg v g
T T T T
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Solid field

_[ _%; (ﬁrerhr) av + ‘[ s'-:L'Br!:.lr‘.z;r.n']'_‘d‘A + ‘[ Qr(h)‘anA
v

T Ap Ap

s I
+ J SZ Ir(h) dv + J gcrdv - J ng-gcrdV - J gr(h) dv (2.153)

#r
VT VT VT VT

\'4 A _
- 2 grsdv + Sic grs-anA = 0

The energy equation has been applied in computer simulations
made by Systems, Science and Software (SSS) [Schneyer 1981,
Pritchett et. al. 1978], JAYCOR [Chan et al. 1982, Klein et al.
1983] and Illinois Institute of Technology [Syamlal 1985, Syamlal
and Gidaspow 1985, Gidaspow 1986]. SSS and JAYCOR used a mixture
energy equation, which would then be written in differential form

and with isobaric and negligible viscous terms

Dy f €.p.h)

= V- (A VT) + 0(h) (3.154)
Dt

where Am is mixture conductivity
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In calculations made in IIT, equations were similar to K-FIX
computer code [Rivard and Torrey 1377], which may be written with

previous assumptions in this chapter for gas or solid

D (€xpphy)

= V-(e A VT ) + K (T~ T ) (2.155)
Dt

When comparing equations (2.154) and (2.155) with (2.152) and
(2.153) it is seen that the latter ones are greatly simplified
forms. In equation (2.155) the two terms on the left may be

interpreted as follows [Syamlal and Gidaspow 1985]
V-(erArVTr)

The term represents heat transfer within a field. For particle-
particle transfer it is caused by contact conductance, conduction
through the thin layer of gas sticking to the particles, and
radiation. For solid field there has not been found any work
dealing with the constitutive relation for Ar, and Syamlal (1985)
has used effective radial thermal conductivity of solids obtained

from a packed bed correlation.
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Ko(Tg- Ty)

The term represents the interphase heat transfer term, which is
primarily due to transfer through a gas film surrounding the
individual particle. K, has been calculated from the dimensionless
correlation, which is applicable for fluidized bed interphase heat

transfer.

According to IIT calculations, simulations with equation (2.155)
led to heat transfer values in reasonably close agreement with the
experiment, although their equation seems to be strongly simpli-

fied.

As can be seen from the previous discussion, there is a very
small amount of work done to model the terms in energy equation and
there are only few applications found, in which energy balance has
been considered in multidimensional fluidized bed simulations.
Thus, at the moment it does not seem possible to obtain good quan-
titative models for unknown terms in energy equation until there
is more experimental knowledge of the subject. However, even with
rough approximations, the total result may be acceptable, if
hydrodynamic model is good enough. Intuitively, many of the terms
in energy balance may be modeled respectively to corresponding
terms in momentum equations. But because there is so scanty

experimental knowledge on constitutive equations for energy
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balance, the following contains only a list of the different terms

in thermal energy equation with their physical interpretation.

t,S. o~ =«
c.(h) = <p v_ h_> (2.156)

- the dispersion term for enthalpy due to local
nonhomogeneities in space and time
s t_Prs
Ip(h) = "< 77<p b (V- Vprg)>r 2rs” (2-157)
- thermal energy transfer due to convection between

different fields

A
I _ t “gr,?°
dgs = < 7 (dg) 357 (2.158)
- gas-solid interphase heat transfer due to heat flux varying
rapidly in space. Term K&(Tg- Tr) in equation (2.155) is
interpreted roughly in the same way and intuitively it looks

like similar models may be used for both of the terms.

v
r

=t .
grv-ggr = "<e V <qg>g> (2.159)

- gas heat flux term
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8,.(h)

- source term including e.g. radiation, viscous
dissipation and thermal energy exchange through field

limits

A
Vo« t. rs<qr> a s> (2.160)

- heat conduction between solid fields r and s (r#s)

A t
I 9yg NpdA = "< I (dg- ay) ‘ngdA > (2.161)
AT A
gr
- heat flux due to solid-solid interactions on particles
which are on the boundary Aq subtracted by gas phase

heat flux
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3. MACROSCOPIC MULTIPHASE EQUATIONS

In chapter 2 the balance equations were derived averaged in time
and space. The main purpose of the averaging was to obtain con-
tinuum model from non-continuous flow written in terms of defined
and measurable quantities. The usage of the resulting equations
may be considered comparable to e.g. single-phase turbulent flow
equations. Reduction in mathematical complexity of the equations
was achieved by the aid of averaging definitions for averaging
integrals. But still the solution of the equations for a flow case
with continuum equations is difficult even for supercomputers
available today.

Certain means have been derived in single-phase theory to make
flow equations more simple, also applicable in everyday engineer-
ing. As an example, fluid flow in a pipe has been simplified by
averaging over pipe cross area. In this chapter, a way to treat the
continuum equations in multifield flow by macroscopic space
averaging is presented and averaged equations are derived. The main
purpose is to obtain a general equation structure, which is
suitable for different engineering applications and is simple
enough for practical calculations and which can be used as a tool
in construction of different level models.

In multiphase cases macroscopic averaging has earlier been

applied to liquid based two-phase cases [Hughes et al. 1976, Wallis
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1969] and to porous media [Bachmat and Bear 1986a, 1986b], where
some empirical data has been obtained for equation closure system.
For 1l-dimensional or multidimensional gas-solid fluidized bed
models there has not been systematic macroscopic averaging, and
experimental parameters have been evaluated mainly based on more
intuitive hydrodynamic models.

In this chapter macroscopic averaging is formulated with
integral balances, which as a special case reduce into macroscopic
averaged differential equations. Integral formulation can be also
applied, when different averaging spaces are required in the same

application.

3.1 MACROSCOPIC AVERAGING FOR SPACE/TIME-AVERAGED EQUATIONS

In the following the fixed macroscopic control volume is con-
sidered, the boundaries of which are divided into different parts,
which may be open or closed surfaces. In this context separate
macroscopic time averaging has not been applied.

Macroscopic volume and area averages are defined as follows

Vo

P> =—‘17—J P dv (3.1)

Vo

3

A

<2c>

2

chdA (3.2)
Ap
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Unit normal vector is assumed to be constant on each macroscopic

surface and thus we can write

pongdn = T<psong A (3.3)

J
2

Substituting macroscopic averaging definitions into general
conservation equations (2.91) and (2.92) and applying form (2.42)

for the flux term in continuum equation we may write

Continuum

aV Aps

T €
dt <£cfc> VT + ?

Ap

€ i
<£c CYC>.§TiATi + E <(-:c(¢)>.r-‘TiATi

Vp s Vo 1 Vo
+ 2 <I_ (¥)> VvV, - 2Z <¢p >V, + 2 <¢ V-¢ >V
s#c c T s#c cs T s#c -8 cs T

v,
g ATi<Qc>.§TiATi - T<§C(t)> Vp = 0 (3.4)

Solid field

A\
d T ¢ AT
dt <£rfr> VT + ?

Br

TOpR Y mpghpg * 3T <CL($)> Ay
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A" A" A" \'
T. .S T_ ,T T T
+sir <£r(¢)> Vp * <ch> Vg = <£rv'écr> Vg - <9r(¢)> Vo
A" A"
T_,V T_,A
-3 < >V, + 3 3 < >en,,.A =0 (3.5)
s#r,c $rs> Vi i s#c Bra” Britrs

In equation (3.4) a new definition has been applied for continuum

flux term

v

Qc = t< C<¢C>C> (3.6)

In the above equations there is a similar problem to microscopic
averaged equations (2.70) and (2.71) in section 2.6 - in the
equation system there are more unknown variables than equations.
Thus there is a need to replace averages of variable functions by
functions of averaged variables and to obtain additional relations
for macroscopic volume- and area-averaged variables. It depends
much on an application how the total equation closure is reasonable
to build up, and thus in this context no general equation closure
is derived. The first and the second terms in equations (3.4) and
(3.5) have the same function form regardless of an application and
in the following section is presented what effect the averaging

choices have on the modeling of them.
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3.2 MACROSCOPIC SPACE, MASS AND MOMENTUM AVERAGING

Density may be averaged over space in macroscopic averaging.
For a general quantity there is also other definitions possible
instead of pure space averaging. In this section is studied the
effect of different definitions on equation closure problem.
Respective forms, which are considered here are illustrated with

terms

es¥,  and  plvp

These terms are essential in balance equations representing rate

of change and convection terms.

Space-averaging

In space-averaging a similar definition is used for all dif-
ferent variables by using pure space-averaged values. It leads to
different turbulent extra products for both of the terms, which are

considered here.

Definitions:

Tep > = %T I p.-ds (3.7
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Y, = ST<tr> + ST<ir> (3.8)
Terms:
ST<e§tr> = ST<£§> ST<tr> + ST< ST<E§> ST<ir>> (3.9)
ST(Bi ¥’ T ST<e§> ST<tr> ST(Yr> * ST(BE ST<§r> ST<§E>>

+ ST<fr> ST< ST<E§> ST<1~rr>> + ST<Yr> ST< ST<E;> ST<ir>> (3.10)

Mass averaging

The mass averaging is defined in order to make the turbulent
product term disappear in density-variable product. Thus e.g. a
mass flow rate can be presented by simple product of density and
velocity. This kind of averaging has also been used in microscopic
gas phase turbulence theory for time-averaged equations as

discussed in section 2.3.2 (Favre-averaging).
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Definitions:

T<£; R T<B;> <tr> (3.11)
b, - p'ST<tr> + p'ST<§r> (3.12)
Terms:

ST<B;tr> = ST<B;> p’ST<tr> (3.13)
ST<B;trYr> = ST<B;> p’ST<tr> p’ST<Yr> + ST<B; p’ST<§r> p’ST<§r>>
(3.14)

Momentum averaging

The reason for momentum averaging is similar to mass averaging

above, but convection term is used as an averaging basis.
Definitions:

S S v,S

T<B;trgr> = T<B;> <P.> <v.> (3.15)
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*r = T<fr> + T<§r> (3.16)
Terms:

T T T £ (3.17)
ST<B§PrYr> = ST<£§> V,ST<tr> V,Sll‘<‘-{r> (3.18)

The above terms are obtained in the same way as the terms in
section 2.6 for microscopic averages. Relations between different
velocities may be obtained from equations (3.9), (3.13) and (3.17)

by substituting velocity instead of general quantity, which gives

S Sm ~ Sm ~
p,ST S T, T<£§> T<Y >>
<v_ > = <y > + 3 (3.19)
T _ €
<p.>
v,S S S Sh ~ Sm ~ S V,S5n ~
’ <y > = <v_ > + 1 ( T, T<£E> T<v >> - T<£€ ’ T<v >>)
- - ST ¢ r -r r -
<p.>
(3.20)
S v,5, ~
V,ST p.S T<£§ T<Y >>
<v > = <v.> - 3 (3.21)
T_ €
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The choice between different definitions depends on a flow
application and measurement arrangements. The objective of a choice
is to obtain as few extra terms as possible in addition to products
of averaged variables and also to have extra terms, which can be
expressed as functions of averaged variables. As an example we may
compare effects of different definitions for a 1l-dimensional
application, in which mass balance, momentum balance and one
additional general balance are required.

Rate of change and convection terms in equations have the

following forms

rate of change convection

Vp Ap

€
< > < >
mass er er\_fr

Vv
momentum T<g€v > AT<£€v v_>
r-r r-r-r

\"Z
T_ € =
general <gryr> <P YLV

Applying equations (3.9), (3.10), (3.13), (3.14), (3.17) and
(3.18) the number of extra terms in the above terms may be obtained
for convection and rate of change terms. These numbers are

presented in Table 3.1 for mass, momentum and one general quantity

conservation equations.
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Table 3.1 The amount of extra terms in mass, momentum and general

quantity balance equations

MASS MOMENTUM GENERAIL
averaging
basis change |{convect.| change |convect.| change |convect.
space 0 1 1 3 1 3
mass 0 0 0 1 0 1
momentum 0 1 1 0 1 0

Total amount of extra terms for space-, mass-~ and momentum-
averaged variables for one field are 9, 2 and 3 respectively thus
mass-averaging leading to the smallest amount. For steady flow case
the rate of change terms are negligible and the amount of extra
terms is 7, 2 and 1. So, whether the case is steady or unsteady,
different averaging procedure leads to a smaller amount of extra
terms. In addition to the amount of extra terms, there are also
other things to be considered. For example, momentum averaged
velocity is not usually as well documented in literature as mass
averaged velocity, and finding experimental data to respective

equation model is difficult.

Mass, momentum and general balances are presented as an example
of using averaged variables. Equations are written for continuum

and one solid field applying mass averaged variables. Substitution
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of mass averaged definitions into equations (3.4) and (3.5) gives

General balance

Continuum
v PV Api ¢ PrBqg PiAq
d T ¢
4t <£c> <t > V + Z ( <£c <tc> <v >) nTlATl
Api Api T
+ E Co(9)> Bpjhpy  * 2 <Co($)> Dy Ay
+ 2 VT<Is(y5)> Vo, = Z <Q >V + 2 VT<e V-g. . >V (3.22)
s¢c © T s#c sgc 5 o8 T
. V,
T
) 5 ATll(éc)"-‘TiATi - T<8(9)> Vg = 0
Solid field
\'4 P,V AT PIAT PIAT
d T e T € .
dt <£r> <tr> VT + ? ( <er <tr> <‘—'r>) 1;lTiA'I'i
Api Api T
+ f <CL(¥)> DpiAp;  F f <CL(¥)> i Agy
(3.23)
\" Vv, V,
T T ,1I T
+ 32 <Ei(¢)> Vp * <ch> Vp - <£rv'écr> Vip

s#r
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Vv, \" v,
T T ,V T _ LA
- <O _(P)> VvV, - < >V +3 I < >y An: =0
-r T s#r,c Qrs T i sfc Qrs -Ti"Ti

Mass and momentum balances may be derived from general balances
by substituting respective variables instead of general quantities,

which gives following equations
Mass balance

Continuum

a v Apg  ¢Prhpy v

d 'T_ e . T .s _
at > Vp t 2 <8e> Vo> Bpihpg * sz I (1)> Vp =0

i #c
(3.24)

Solid field

\% A 2. \%
d T ¢ i el Ti T .s
dt Ly Vp t ; “ery> V> Dpihpg * 2 <Ir(1)> Vo
i s#c
Vo o+ Vp

- [ < (1)> - PRI (1)>]1 Vg, =0 (3.25)
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Momentum balance

Continuum
—%EYT<225'VT<YC> Vo ? (ATi<£é£'AT<Yc£'AT<Yc>)‘ETiATi
2 ATi<9c(")>"-‘-riATi v ATi<92(")>"-‘TiATi
+s§cVT<!2(v)> Ve 'SECVT<?£r> Vo +s§cVT<£sv'?cs> Vo
-3 Mg ngy - gl g vy = 0
Solid field
d Vo ep'VT Apy ep'AT P B

T <£r> <Yr> VT + ? ( <£r> <Yr> <Yr>).ETiATi

Aps Ap; 1
vEOTC (V> BpyAy Y f <CL(V)> B Ay
v v v
T .8 T I T
+ 3 <I_(v)> VT + <T_.> Vo - <£rv'?cr> VT
s#r
Vo Vip Vo Vo v

- Teplrg vy 4 [ T<gli(v)> - T (v)>]Vp - 3 T<T

=rs
s#r,c

A\
T
+ 2 2 <'1’A >.n .AT =0
i s#c =rs~ -Ti"'Ti

>

\Y

(3.26)

(3.27)

T
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Macroscopic term gg(w) is defined as follows

S p,S

T T € T 3
gr(ﬁ) = <£r <gr> <Yr>> (3.28)

In equations (3.22)-(3.27) only few terms are written as
functions of averaged variables. The rest of the terms must be
presented as functions of primary averaged variables in order to
close the equation system. Because the form of different terms
varies in different applications, it is not reasonable to try to
close the system in general level in this connection. In the
following section the equations are formulated for a certain

application instead of a general case.

3.3 APPLICATION: 1-DIMENSIONAL, NON-REACTIVE FLOW

In this section we apply macroscopic equations to l-dimensional
continuum-solid particles flow case, in which we assume the

following:

- cross sectional area of flow geometry is constant
- microscopic dispersion terms Cg(w) and Cr(w) are negligible and
also macroscopic dispersion term CgT(w) for gas phase is

negligible
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- there is no mass transfer between the phases or fields

- gas phase viscous terms are negligible excluding the gas-particle
drag term

- only vertical direction of flow is considered, gravitation
g =-9.81t m/s =g

- gas phase acceleration in momentum balance is negligible

- particle-wall non-convective momentum flux is small

- macroscopic area- and volume-averaged variables are equal

- only steady flow is considered

- material densities for gas and solid are constant

- solid-solid stress term is negligible

For this case only mass and momentum balances are considered.

3.3.1 Mass-averaged form

In l-dimensional model we apply notation presented in Figure
3.1. Indexes 1 and 2 represent bottom and top surfaces respectively

and w means all other walls for control volume.
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Surface 2
E Lt
I
CONTROL VOLUME R-] B —
5 N —
Surface 1 9

Figure 3.1 Control volume for l-dimensional application

When the above-mentioned assumptions and macroscopic mass
average definitions are applied to mass and momentum balances
(3.24) - (3.27), the following equations are obtained
Mass balance

Continuum

(1) Vpp = 0 ‘ (3.29)
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Solid field

. . w
2 <pri> Vpei” BpiApg T I(1) Vo =0 (3.30)

Momentum balance

Continuum
\ v dp
T I T
- 3 <T" >V _ - 3 <€ =— >V
stc ~cs T sic -s dx T
ATi VT €
+ .2 <Eci>-§TiATi - <£c> g VT = 0 (3.31)
i=1,2
Solid field
AT' PIAT Pr AT
i € 1 T
R G ML Vri” Ypi”) Bpjhp;  * 2 <Cri (V)> By Apy
i=1,2 i=1,2
\} v dp \} v
T I T e T ¢ T .V
* Tep” Vp t trdx > Vr - LI Vg -2 Irs” Vo
s#r,c
w =
+ I (V) Vg =0 (3.32)

where the following definition has been used for convection through

the walls
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1

<P Vs P M A v (3.33)

_ Prw

w
I ($)

where r is either continuum or solid field and P means either

velocity (momentum balance) or unit value 1 (mass balance).
In order to simplify notation in equations (3.29)-(3.32) the
following definitions are introduced

For macroscopic space average

¥ = <Q> (3.34)

except for velocity, for which is written

p,S
v= Ty | (3.35)

Substitution of definitions (3.34) and (3.35) into equations

(3.29)-(3.32) gives

Mass balance

Continuum

€ €
(Log Yoy = Ly Yoy) Bp v LIo(1) Vg =0 (3.36)
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Solid field

(Bey Yoy = B8] ¥ ) Ap+ IN(1) V=0 (3.37)

Momentum balance

Continuum

I dp € _
=2 P Vp -2 €5 Gx Vpt (Bym By) Ap - 2, 9 Vp =0 (3.38)

s#c s#c
Solid field
2 2 T T I
(E§2 Y2 ~ Eil V) Bp ¥ [CH (V) = C (V)] Ap + T Vo
dp
€ A' w -

t e gp Vp - B9 Vp =S L Vo + In(v) Vp =0 (3.39)

s#r,c

In equations (3.38) and (3.39) it has been assumed that the cor-
relation between fluctuating wvalues of volume fractions and

pressure gradient is small, i.e.

VT<5 Eg > = VT<5 >V < Eg >
-8 dx -8 dx
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Equations may also be written for differential length to give

differential equations

Mass balance

Continuum
€
d(g. v.)
c_—¢C w
dx * L) =0 (3.40)
Solid field
€
d(g,. v.)
r —xr w
dx + lr(l) =0 (3.41)
Momentum balance
Continuum
2 TI + de € 0 3.42
- = £r g — L. 9 = (3.42)
s#c cr c dx c
Solid field
d(ﬂ; Ki) dgi(v) I dp ) v "
gt ot It e gt L 932 I -IN(V) =0
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In addition to equations (3.40)-(3.43) we may write

Se =1 (3.44)
S

€ = 3.45)
Lo = €, Pg (3.

€

Ly = £p Py (3.46)

In the equation system primary variables are

€ €
B _e_cr Err _e_rr Veor Y. and p
and for each primary variable there is also a corresponding

equation among equations (3.40-3.46).

There are still left three additional terms, which must be
presented as functions of primary variables in order to close the

equation system. These terms are

I T v
T, C.(v) and T

One way of closing the system is to assume the macroscopic
average term to be a direct function of macroscopic averaged
variables and to try to find an optimal experimental function for

it. It will then require experimental data fitting into the
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equation system. The macroscopic drag term may be defined e.gq.

respectively to microscopic Stokes drag term by equation

Top = - Bop 2p (¥ - ¥)) (3-47)

In this connection it must be stated, that the choice for the
drag submodel above is intuitive and quite arbitrary. Functional
forms have been presented scantily in literature for macroscopic
drag.

In equation (3.47) the macroscopic drag coefficient may be
determined either by using local drag coefficient and stochastic
values of local variables (as presented later in this chapter) or

it may be determined directly from macroscopic experimental data.

Next we will assume that there is only one homogeneous solid
field and we consider region in flow, where there is not flow
through walls. So there remains two terms in equation closure,
which have to be expressed by primary variables; gas-particle drag
and dispersion average term. Balance equations reduce thus into the

following form
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Mass balance

Continuum

€
d(p; ¥.)
C —C
—ax - = 0 (3.48)
Solid field

d(ef v )
—— =0 (3.49)

Momentum balance

Continuum

I dp €
- It gy " 2:.9°=0 (3.50)

Solid field

acef v2)  actv) °
dx * ax * ot e gx 2,90 (3.51)

Pressure term may be eliminated by substituting the equation

(3.50) for the pressure derivative to the equation (3.51)

€ _2 T
d(ﬂr v,.) dgr(v) €. I € _
ax * —dx + ( 1+ E; ) I (ﬂr e ﬂc) g =20 (3.52)
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If experimental data is going to be used to determine the value
of functions, at least two of the primary variables must be
measured.

In the following formulation pressure and solid density profiles
are assumed to be known as well as gas and solid mass flow rates
as boundary conditions.

From solid density profile it is possible to determine continuum
density profile and continuum and solid fractions from relations
(3.44), (3.45) and (3.46). Continuum and solid velocities may then
be calculated from mass balances. For determination of macroscopic
drag term the continuum momentum balance (3.50) can be represented

in the following form

Tor " €cdx ~ Lc 9 (3.53)

It is possible to calculate the derivative of macroscopic
dispersion term e.g. from total momentum balance, which is obtained
by adding continuum and solid field momentum equations together.

Thus it can be written

dci(v)  d(ef ¥l o e .
ax ST T ax T ax (et g (3-54)

From the above equation it can also be concluded, what is the

relationship between pressure drop and solid density under
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assumptions in this chapter. One large term is the dispersion term,
which seems to get quite high values according to the measurements
presented in chapter 4. and also by Hartge et al. (1988).

Another possibility to determine macroscopic fluctuating average
term is to determine it from stochastic experimental data according

to the equation (3.28)

Ap ep’AT” 2

Qz(\') = <Py <v,.>> (3.55)

3.3.2 Momentum-averaged form

Applying momentum averaged forms instead of mass averaged forms
in equations (3.29)-(3.32) mass and momentum balances may be

written

Mass balance

Continuum

Api ¢ Vihpy Api ¢ VrBpi ~

<p- > < . . .+ < <y _>>- . .
.Z £c1 Yci lllTJ_ATJ_ i§ Bc Yc ETlATl
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") vy =0 (3.56)

Solid field

ATi € vIA':['J- ATj. € VIATj_ ~
l=§.:, 2 <03 DA% ‘rlATj_ izl ’2 <p, <y_>>- nTlATj_
+ I.(1) V=0 (3.57)

Momentum balance

Continuum
v, v d
-3 T<,£I>VT_2 T<§s£>VT
s#c s#c
+ AT< _VT< €> V. =0 3 58
Rei Dpidh £e> 9 Vo (3.58)
i= 1 2
Solid field
ATi AT VIAT VT I
<£ b2 <v.i VeI DyiBAmg <T_ > Vi
i= 1 2
Tee. o= Tep€ Ve v W _
e ax T Vet e 9 Vg _sir c<grs> Vp * I.(V) Vp =0

* (3.59)
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I1f definition (3.34) is now applied in addition to new

definitions (3.60) and (3.61)

Y = <y> P (3.60)

Proe TG

T
cl(1) = <v,>> (3.61)

we may write differential equations respective to equations (3.40)-

(3.43)
Mass balance

Continuum

€
d‘(-ac gc) + d

T w
ax ax Sc(l) +I5(1) =0 (3.62)
Solid field
d(ef ¥) 4 .
= + gz Co(l) + LJ1) =0 (3.63)
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Momentum balance

Continuum
I dp €
-2 T + 2 €. -p.g=20 (3.64)
sfc T sc c dx (o}
Solid field
e 2
d(e,. ¥.) dp
r =r I - € - vV oW =
* dx T lor Y& gx L9 2 Irs = Ip(v) =0 (3.65)
s#r,c

When considering additional equations (3.44)-(3.46) we obtain
an equation system where the number of equations is equal to the
number of primary variables. Additionally, there are again extra
terms, which have to be presented as functions of primary variables
in order to close the equation system. There are now altogether

four extra terms, which are

L M

T T
T..r Trgs Co(1) and CL(1)

Next we will assume similar flow application as for mass
averaged form in order to evaluate extra terms experimentally. In
addition, the gas dispersion term in gas mass balance is assumed
negligible. So, there are only two extra terms to be determined

from experimental data
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I T
To ., C(1)

and respective equations are

Mass balance

Continuum

€
d(eg ¥.)
dx

Solid field

d(ef v.) 4

r =r d T _

dx *t ax gr(l) =0
Momentum balance
Continuum

dp p

~ Tt fcaqx " L9790
Solid field

€ 2
+‘d(zr v.) I dp

dx tLpt g 2,90

(3.66)

(3.67)

(3.68)

(3.69)
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Experimental determination of the two extra terms may be done
respectively to mass average form equations (3.48)-(3.51) by
applying equations (3.66)-(3.69), but they are not determined in

this work.

3.3.3 Two-region form

Area averaging of the rate of change or convection terms leads
to stochastic average terms like e.g. in equations (3.7-3.18). If
homogeneous constitutive models are applied into non-homogeneous
field, similar stochastic terms arise also e.g. for gas-particle
drag as will be presented in section 3.4.1. These terms are due to
differences between local values and average values and thus the
more homogeneous the flow structure is, the smaller are the
stochastic average terms. One way of reducing values of the terms
is to divide flow into more homogeneous subfields, for which
balance equations are written separately.

In fast fluidized beds there has been reported flow structures
in which solid flow is divided into dilute phase and into more
dense phase (terms like clusters, strands etc.) [Yerushalmi et al.
1976, Li et al. 1980). Dilute phase is mainly going up in the
reactor and dense phase has lower velocity or is going down
especially near the walls of the reactor. Thus in fast fluidized

bed more homogeneous fields are obtained, if non-homogeneous solid
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field is divided into two or more uniform regions according to
total solid density.

In the following we will divide solid field into two different
regions according to the critical solid density value, then apply
mass averaged variables under assumptions presented at the
beginning of the section 3.3 and define macroscopic averaging space
to be that of the dilute or the dense region respectively. In
addition to one region equations, interactions between dense and
dilute regions must be considered. The conservation equations are

written below for two-region model
Mass balance

Continuum

€ € w
(2c,4 Yc,q fq 2plo ~ (85,9 ¥e,a fa Bp)y * Ic,q(1) Yoty

c,e c,d -
*I0q(1) Vg - I70(1) Vg = 0 (3.70)
(¢ v £ Bn)y - (Be o Yo o fo Bp)y * I o(1) Vif

@ —Cc,e “e 2 c,e —C,e “e 1 =c,e T e

c,d c,e =
*ING() Vpfg - 107 4(1) Vpfy = 0 (3.71)
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Solid field

€ € w
(8r,d Yr,q fa Pr)p = (8p g Yo g £q Ap)p + Ip 4(1) Vify

r,e r,d -
+ lr:d(l) Vde - lr:e(l) VTfe =0 (3.72)
(08 v £, Ap)y - (05 v £, Ap)y + In (1) V,f

r,e -r,e e 2 Er,e -r,e e 1 =r,e T e

r,d r,e -
+ lr:e(l) VTfe - lr:d(l) Vde = 0 (3.73)

where

li’?(l) is mass transfer of field i from region j
’

to region k

v

I j(l) is mass transfer of field i through walls of
’

the reactor, respectively to equation (3.33)
Momentum balance

Continuum

dp
I
“s#c Zor,d Vr T4 “sfic €s,q ax Vo fq - R [fgp- £4,1 Ag
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+

[(B £4)y - (B £4),]1 Ap = 28 4 9 Vg £y

c,e w e *
FIoa Ve fa Lo q(V) Vg £q T I0G(1) Yo g Vofy
-1 e(1) v c e Vpfe = 0 (3.74)
I dp
—s;c Icr,e Ve fe —s;c £5,e dx Vp fo - RIS e2” fe1l 2

+ (R £), - (R £4)1] BAp - 2 e 9 Vp fg

c,d w c,d *
T Ioe Vo fo v Ig (V) Vp £ 170(1) v o Yoty

1%y v L v.f, =0 3.75
Io,a(1) Yo g Voply (3.73)

Solid field

€ 2 € 2 T
[(Ar,d !r,d fd)2 - (Ar,d zr,d fd)]_] AT + {[Qr,d(V) fd]Z

dp
I €
- L&, r alv) fqly Y2 ¥ Topq fa Vet £r g @x Vr T4 - 2 ,q 9 Vo £y

\ s,d
s;r,c Irs,d - g L

w
TG - Iy g1 Vg f

T °d

£ 1L d *

+ I d(1) vr d T d - —r e(1) Y, e VTfe =0 (3.76)
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(085, ¥7,0 fa)y = (Bf,0 Y7 o £o)1] Ay + {ICF o(V) £],

dp
I €
- r e(v) £l F Ap ¥ —cr e fo Vp ¥ £r,e dx Vp £ - Lr,e 9 Vo fo

\"

- s,d w
[sgr,c Irs,e 2 L VT £

Ire = ir,e(M]

+ 1 (1) Yy o Voo - Ir d(1) vr q Vpfg =0 (3.77)
where
7°/¢  jis momentum flux from field r in region d into field s

=r,d

in region e.

*

vy 3y is average velocity for momentum transfer from field i in
14

region j to another region.

w

I,

1i,3 (v) is momentum transfer of field i in region j through the
14

walls of the reactor, respectively to equation (3.33)

Field fractions fd and fe can be defined according to critical

solid density as follows

da (3.78)
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T dA (3.79)

where 14 and T are region functions for dilute and dense fields,
respectively. Dilute region function is 1, when solid density is
less than critical value and 0, when more than critical value.
Between region functions there is relation Ta t e = 1 and thus it

may be written

f4=1-f (3.80)

Respective equations to mass averaged form equations (3.48-
3.51) and momentum-averaged form eguations (3.66-3.69) are ob-
tained, if we assume total cross sectional area constant, particles
of similar size and convective flux through walls negligible. In
addition non-convective momentum flux between different regions is
assumed small and macroscopic fluctuating term negligible because

of more uniform fields.



Mass balance

Continuum

€
d(8c,4 ¥Yo,a f4)

c,e
dx lc,d(l)
d(of o ¥, o £o)
c,e —c,e e Ic,d 1
dx —c,e( )
Solid field
d(pf . v £.)
r,d ~r,d °d ¢
dx Lr,alt)
d(of o v, o £o)
r,e —r,e "e Ir,d 1)
dx —r,e(
Momentum balance
Continuum
I dp
- Icr,d £q * £c,d dx £4
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_ (c,d
4 lc,e(l) fe

_ .c,e
fe - Lolall) £y

r,d
d lr,e(l) fe

Hh
i

— 14
fo - I/

HH
Qo

€
" Lc,4 9 fq

c,e * _ yc,d * =
+ lc,d (1) !c,d fd lc,e(l) !c,e f 0

(1) £4 =

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)
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- ¢l £ € EE 36 g £f_ +
~Ccr,e e .-c,e dx e Cc,e e
* —g’g (1) —:,e fe lg'g(l) Yec,d fg=0 (3.86)
Solid field
d (2; 4 lzzs,d i UNNS S, . = €
ax Ter,a fa * €r,0 dx T4 ~ 2r,q 9 fg
S Ing) vy g fgt IS v o £ =0 (3.87)
- (ﬂi,gxxg,e ) * lér,e e * £r,e gg fe - Ei,e g £,
S IeM) vy o £ INS(L) ¥p g £ =0 (3.88)

In the equation system there are altogether 8 balance equations.

Primary variables are

€ € € €
Ec,d' Ec,e’ Er,d' Er,e' lc,d' zc,e' zr,d' l’-r,e' R

and additional unknown terms are

c,e c,d r,e r,d
Ioia(h)y Ig'g(1), 1751, Iy

Ire(),

dl
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* &* &*

*
v v v v
-r,e’ ¢, d’" "c,e’ 'r,d’ 'r,e

Six variables out of four solid densities and four volume

fractions may be eliminated by applying equations (3.89)-(3.94)

wuitvi vt

Equation
field is

=1 (3.89)
=1 (3.90)
ic,d pc,d (3.91)
ic,e pc,e (3.92)
ir,d pr,d (3-93)
ir,e pr,e (3.94)

(3.80) holds between the field fractions and pressure

assumed constant in horizontal direction (this assumption

will be discussed in section 3.4.1). Thus there are seven variables

and 9 independent unknown terms. Drag term is here assumed to be

known as a function of primary variables, because fields are

assumed more uniform than in one solid field case and thus
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fluctuating values are assumed small. At least 8 variables have to
be determined from experiments in order to calculate unknown terms
from equations (3.81) - (3.88). In addition some value for critical
density is required for defining the field boundary between dilute

and dense regions.

If momentum transfer between continuum fields is assumed
negligible and continuum mass balances are added together, the
amount of equations reduces by one and four extra terms are

eliminated giving the following equation system

Mags balance

Continuum

€

€
d(g, v £5) d(g v £)
c,d —¢,d °d c,e —Cc,e e _
ax + dx =90 (3.95)
Solid field
d(pf | v £.)
r,d —r,d °d r,e r,d _
ax + ;r:d(l) fd - ;r:e(l) fe =90 (3.96)

€
d(e, o v. o £)
r,e —r,e e r,d r,e =
dx + ;r:e(l) £, - ;r:d(l) £4 =0 (3.97)
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Momentum balance

Continuum

1 dp ¢

I dp €

€ 2
d (2 v £4) dp
r,d —r,d “d + TI £+ € £ - Be g f
dx =cr,d “d =r,d dx °d r,d d
r,e r,d * _
- lr,d(l) Yr,d fq * lr:e(l) Yr,e fo =0
€ 2
d (o v f) dp
r,e —r,e e I €
dx + Icr,e fo t £r,e “dx fo - Ly e 9 fo

ft
o

r,d * r,e *
- lr,e(l) Yy,e fo ¥ lr,d(l) Yr,d 4

Evaluation of equation system with six extra terms still seems
to require much more detailed experimental data compared with mass
and momentum averaged formulations in the previous chapter. Thus,
in order to evaluate parameters for two-region model, much better
experimental knowledge must be available about CFB flow behaviour

and at the moment the model seems not to be reasonable in this

form.

(3.98)

(3.99)

(3.87)

(3.88)
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3.4 EQUATION CLOSURE FOR MACROSCOPIC MASS~AVERAGED MODEL
3.4.1 Drag

Drag coefficients for particulate gas-solid interactions were
reviewed in chapter 2. In circulating fluidized beds flow is
aggregate and for macroscopic averaged equations particulate flow
parameters cannot be applied. However, certain relations can be
written between parameters of particulate microscopic fluidization
and aggregate macroscopic fluidization.

In chapter 2 some equations were presented for gas-particle and
particle-particle drag in equation system, where averaging scale
was 1. Below we will try to formulate the relation between the

terms of scales 1 and L.

As an example macroscopic gas-particle drag term will be
considered, which may be expressed as a macroscopic average of a

microscopic average gas-particle drag term

I oo Tepl s (3.100)

For microscopic averaged value we use the following form

T = -8

€ .
~cr cr Br (o= Yp) v (3.101)
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where Bcr is function of primary variables

If form (3.101) is substituted into macroscopic term equation

(3.100), we may write

I VT

_ €
Tor = <8y by (o= vp)> (3.102)

This form again is an averaged value of a function, which
depends on local values of primary variables. In order to change
it into form which is function of averaged primary variables,
additional correlation terms have to be introduced, which again

leads to difficulties in closing the system.

Next we will consider a case, in which the gas gravitation is
negligible in gas momentum balance. Thus, we may write for some

point of cross sectional area

ap

£§ Boy (Vo= vp) = - e 3x (3.103)

For continuum mass flow holds

m, = J Be Ec Y dA (3.104)
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From the continuum momentum equation (3.26) we can derive
equation for pressure gradient in horizontal direction. According
to the equation (3.50) pressure gradient term will be equal to drag
term for horizontal direction, which is proportional to the
velocity difference between solid and continuum velocity. Because
the flow is assumed to be vertical, pressure gradient in horizontal
direction is thus assumed to be negligible compared with vertical
direction (similar assumption to single-phase nearly parallel
boundary layer flows [Arpaci and Larsen 1984]).

If velocity is substituted from equation (3.103) into equation
(3.104) and if we assume that pressure is constant on cross

sectional area, continuum mass flow rate can be written

h)

ap
C C
-3—){——+J.BC §-C YrdA (3.105)
A

B dA

2
n = I __fe ‘e
c (1-€.) P
A C cr r

For mass flow rate we may write with macroscopic variables

m, = p. £, V. A (3.106)
Elimination of mass flow rate from equations (3.105) and (3.106)
and applying macroscopic gas momentum balance (3.50) and macro-

scopic drag definition (3.47) gives
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€ € VA - € _v_dAa
B = - | ( i | [ q ; ) (3.107)
€
1
l-¢ Y (v.- ¥ ! da
(1-gg) (rg- v,) | e

If we now assume, that solid velocity is negligible and local

drag coefficient is constant, equation (3.107) reduces into form

= B (3.108)

Equation (3.108) shows in this simple case that ratio factor
between constant local and macroscopic drag coefficients can be
determined, if stochastic values of local solid fraction are known.
The above equations (3.107) and (3.108) have been obtained for
vertical flow case, i.e. terms in momentum equation are assumed
negligible in horizontal direction. Better accuracy for drag
coefficient should be obtained, if the above equations would be
written multidimensionally. However, local flow values are not yet
known so well in practice that such a procedure would be realistic.

Drag coefficient has been determined experimentally for fast
beds [Kwauk et al. 1985, Sankar et al. 1986, Matsen 1982] which

indicates, that drag coefficient factor is less than one for non-
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homogeneous solid flow. It will get greater values for more
homogeneous flow regions i.e. for dilute cases or for very dense
cases. In pneumatic transport, drag effect is taken into con-
sideration by using slip velocity values. If solid momentum
equation (3.52) and macroscopic drag coefficient definition (3.47)
are combined, we may write relationship between averaged drag
coefficient and slip velocity for a case, where there is negligible

vertical change in flow structure

er € er

(i E; ) Ber £y Vg1 ~ (B — ¢ 85) 9 < 0 (3.109)

Matsen (1982) has stated, that slip velocities should increase
with solid concentration in dilute region of pneumatic transport
systems, which is considered controversial to many other inves-
tigators. For example Richardson-Zaki correlation gives decreasing
slip velocity for decreasing void fraction. Matsen’s qualitative
conclusion has been verified in many recent experimental studies
[Yerushalmi 1976, Avidan et al. 1981, Sankar et al. 1986, Klinzing
and Mathur 1984, Kojima et al. 1986, Kwauk et al. 1985, Bingyu and
Kwauk 1985, Han et al. 1985, Shao 1986]. Matsen has concluded, that
explanation for this lies in the phenomenon of cluster formation.
It seems, that this explanation can be presented in a general case
with degree of aggregation of flow. Thus for low gas velocity and
dense concentration regions high drag coefficients may again be

expected, because flow is less aggregative.
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Matsen presented function form for slip velocity correlation,
the parameters of which were evaluated later by Sankar et al.

(1986) giving the correlation of the form

Is1

v, = 1 1 €g < Es,min (3.110)
Is1 a

M - 9

v, aj€ ., €5 € s,min (3.111)

The application of correlation (3.110) to practical fast bed
cases is limited by its experimental coverage. Maximum tube
diameter has been only 38.1 mm and correlations for parameters a,;
and a, give unreasonable slip velocities for extrapolations with
larger diameters. But it shows qualitatively the form of dependence
of drag term as a function of solid concentration. Matsen proposed,
that his correlation is valid only to void fractions above 0.9. For
lower void fractions he has presented a correlation, which depends
on minimum fluidization values and the diameter of a non-slug
bubble.

Kwauk et al. (1985) have used correlation of the form

€
Yg T Ve (Tig ) T Ve fg L1+ F(eg) (3.112)
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where F(eg ) depends on the level of aggregation and its form has

been presented semiempirically

= C C
F(eg) = C [(l"fg)(fg”fg,min) 2y 3

(3.113)
For particulate dense flow regions Ergun equation (2.131) or
one of bed expansion equations [Couderc 1985] can be used to
evaluate drag coefficient by applying equation (3.109). Also
various flow diagrams used for fast beds can be applied.
Avidan and Yerushalmi (1982) have presented modified bed

expansion equation also for fast bed flows. Their equation is of

the form

v n

-4 = ¢ (3.114)
Vep

*
where Vo is ’effective’ cluster terminal velocity.

As to the presented correlations, it seems that there is only
a limited range of experiments behind the correlations. Thus their
application to different materials and flow conditions, e.g. for
coal combustion fast bed hydrodynamics, requires too much

extrapolation.
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3.4.2 Dispersion

Closing the dispersion term in macroscopic momentum equations
is a problem similar to the time-averaged single-phase equations,
where different closure models for turbulent stresses have been
derived leading from simple algebraic equations to multiequation
systems [Gupta and Lilley 1985]. In section 2.8.2 it was stated,
that for microscopic gas-solid fluidization equations there does
not exist any rigorous model for dispersion term and it has often
been assumed negligible in model applications. For macroscopic or
l-dimensional fluidized bed equations there has not been found any
work at all referring to dispersion term modeling.

Concerning the importance of velocity fluctuation terms in
macroscopic time-averaged two-phase equations, Trapp (1986) has
demonstrated that instabilities present in mean motion equations
of two-phase flow can be explained as a result of the failure to
include appropriate closure models for the velocity fluctuations
in the momentum equations. A similar type of situation can also be
expected to exist with space averaged CFB equations. Another
problem is, that the magnitude of dispersion terms may be so large
compared with other terms in momentum equation, that neglecting

them may give totally incorrect results.

Different kinds of turbulence closures from algebraic to two-
equation models or large eddy-simulations have been derived for

single phase time averaged equations. In similar ways different
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models can be used in multiphase space-averaged flow equations. We
will start by applying a general equation (2.94) to momentum
conservation and multiplying it by solid velocity. For assumptions

used in this chapter we can write

d_ € I d_, € -
Ve dr (8e¥e¥e) * V. Tor ¥ Yy €0 Gx Ber " Yy 8, 9 = 0 (3.115)

If solid velocity is divided into the average and the fluc-
tuating value according to equation (3.12), area average of the

first term in equation (3.115) can be written in the form

2 ~2
d (2ivy) Lo P4 ey
— ‘-,_ e

< Ve ax (2pYpYe)> = Y. TTax r dx
€2 d €._ = de”z
AT ~ d (er!r) AT ~ (er!rvr) AT ~ ervr
<V——————-—>+2 < vy —— > 4 < Y et >
r dx r dx r dx

(3.116)

The second, the third and the fourth terms in the right hand

side of the equation (3.116) can be written as follows

Second term

€”2 T
AT d (Brvr) _ d Cr(v)
Yy <T@ 77 Y Tax (3-117)
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Third term

€2 €
An ~ d (px)) An ~ dp
<y ——EX. 5 - < v L 22 (3.118)
r dx r dx r

Fourth term

€. ~2
An . d (Br!rvr) d Cr(v) An p d Ve
2 Ry —_————=Z > 5 ) Ry .y < p >
r dx dx -r -r r dx
T d v,
+ 2 C(V) 5 (3.119)

Applying equations (3.117)-(3.119) for the second, the third and

the fourth term, equation (3.116) may be written

Ap d

€. 2 T
d dC
cv. S s =y ) 25
-r dx Er—r—r -r dx -r dx

€ T ~2
~ d d C_(v) dv
+ AT< v 2y S V2 + 2 r v - v AT< BE r
r dx -x dx -r -r r dx
€~2
d v ~ dpv
+ 2 Cz(v) w AT< L T (3.120)

Combining the second and the fourth term on the right hand side

gives
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€2 T
Ay g . d (2,¥y) , 16
-r dx ( errYr) Ve dx b of dx
d v AT d ee AT d ;2
T -r ~ r 2 € r
+ 2 Cr(V) 3% + < Ve Tdx 0 Yy - Y. < 8y Tax

+ <VrT‘> (3.121)

Below the macroscopic solid momentum equation (3.51) is

multiplied by average solid velocity thus giving

€ 2 T
d(e, ¥v.) dc (V) dp ¢ ~
Yy dx Yy Tdx P T T Y o Gx T Ve 2,90
(3.122)

+

If equation (3.115) is averaged over area and equations (3.12)
and (3.121) are taken into consideration and then equation (3.122)

is subtracted from it, we may write

T € ~2
d [Cp(v) ¥, ] - AT< v d 8y S v2 + AT< 0 d Vr S
dx T ax T T T ax
€.~2
Ap o~ d v Ap -~ Ap ~
r'r I .
- < Ve dx - < Ve Ior” T Ve &r ax Ber”

= = o €
S frax €r ax ! * S Ve 8p 97 (3.123)
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Gravitation is a constant in equation (3.123) and if pressure
gradient is assumed constant as in chapter 3.4.1, equation (3.123)

reduces into

T € ~2
2 d [Cr(v) y-r] AT< ~ d Br 2 AT € d Ve
= - v > v + v < Br >
dx r dx r r dx
€2
Ap o~ d vy Ap ~ 1
- < V. i > - < v, T.> (3.124)

Equation (3.124) is the respective form to turbulent kinetic
energy balance in time-averaged equations of single phase equations
of motion, in which intuitive assumptions have often been used for
closing the equation system. For multiphase flow one-equation model
may also be obtained by interpreting equation (3.124) e.g. as a

balance for solid turbulent energy

CONVECTION + DIFFUSION + SOURCE + DISSIPATION = 0

The problem in the turbulence models is that they all contain
some additional parameters, which have to be determined ex-
perimentally. The experimental knowledge of circulating fluidized
beds is so scanty at the moment, that it is not realistic to try
to evaluate turbulence parameters for complicated models. Thus, a

simple device-dependent algebraic function form seems to be a
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reasonable way to model dispersion term in macroscopic momentum
equation. If experimental knowledge increases, more complicated

models can be evaluated later.

The magnitude for the dispersion term can be calculated
according to the equation (3.28) and thus it can be compared with
other tefms in momentum equation. As a rough example, a valué for
dispersion term is determined from experimental solid‘velOCity and
density profiles presented by Hartge et al. (1988). Profiles in
cross-sectional area are presented in Figure 3.2.'Thesefpfofiles
are aireédy averaged in time and the profiles may give too(small
dispérsion. As a result dispersion term divided by éolid &éhsity
has value 120 m?/s? compared with the value of 20 nF/sz‘ of
respeéti&e momentum term calculated with averaged values. The
result shows, that dispersion term is significantkin moméntum

equation at least when compared with acceleration term.

80

velocity

Solid density
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Velocity [m/s]

-~
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~
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Solid density [kg/m3]

L . - 3
0.05 0.1 0.15 0.%‘)
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Figure 3.2 Solid density and velocity profiles in dispersion term

calculation [Hartge et al. (1988)]
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4. EXPERIMENTS ON CFB COLD MODEL

In the 1970’s the term "fast fluidization" was introduced to
illustrate fluidization mode, where dense clusters and strands of
solid particles are flowing in the reactor fluidized by high gas
flow rate [Yerushalmi et al. 1976]. At that time experimental
investigations of fast fluidization were started in the City
College of New York [Avidan et al. 1981, 1982, 1985, Yerushalmi et
al. 1976, 1977, 1979, 1985]. Even earlier, Reh (1971) studied
circulating fluid bed reactors in connection with endothermic and
exothermic commercial processes. Significant work has also been
started in the late 70’s in China. [Li and Kwauk 1980]. Addition-
ally, similar process has been studied under the subject of
vertical pneumatic conveying [Leung 1980, Klinzing et al. 1987,
Konrad 1986].

Most of the experiments have been performed in order to obtain
some macroscopic, average values, such as average slip velocity,
pressure drop, solid density and gas or solid mixing data. Solid
density has often been calculated from equality of gravitation and
pressure drop, which relationship has been subject in some works
[Arena et al. 1985, Kato et al. 1986, Reiying et al., 1985]. The
results have often been presented in the form of various fast bed
diagrams [Reh 1971, Matsen 1982, Yerushalmi and Avidan 1985, Kwauk
1985, Wirth 1988]

Local flow variables in circulating fluidized beds have not been
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measured until recently. Suitable measurement techniques have been
developed in the research of bubbling bed as reviewed by
Cheremisinoff (1986) and Atkinson and Clark (1986). In circulating
fluid beds main methods have been optic fibers [Hartge et al. 1985,
1986, 1988, Horio et al. 1988, Morooka et al. 1984], capacitance
probes [Brereton and Str&mberg 1985], sampling probes [Monceaux et
al. 1986] and reactive tracer [Dry 1986]. Experimental data has,
however, been quite scanty, e.g. local solid velocities have been
presented only recently in few papers [Horio et al. 1988, Hartge
et al. 1988].

Most of the experimental works have concentrated on certain
measurements. Usually no comprehensive experimental studies have
been published, in which all the main properties would be measured,
i.e. axial pressure profile, axial solid density, mass
recirculation rate, gas flow rate and local solid densities and
velocities. Thus the main objective of the experimental work
presented here is to obtain values for different properties for the
same experimental unit and for the same flow conditions. This data
is needed in order to evaluate the magnitudes of different terms
and parameters in fast bed flow model. It is realized, that the
present knowledge of measurement techniques is deficient. Thus the
experimental part is aimed to provide more qualitative data and
better quantitative data can be obtained when experimental
techniques, available for circulating fluid beds, have been
developed to a more accurate level.

Axial mixing in circulating fluidized beds has also been a
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subject which has been studied very little. Main experimental work
has been accomplished in the City College of New York. Yerushglmi
and Avidan (1985) have provided a summary of the published work in
the area, which has only five investigators for solid mixing.
Understanding solid mixing is most essential at the moment in the
development of fast bed coal combustors, because scale-up into
larger utility size units is one of the main questions of the

technique. Thus in this study axial solid mixing was also studied.

4.1 EXPERIMENTAL SET-UP

The experimental unit shown in Figure 4.1 is 7.3 m high and its
cross-sectional area is 0.25%1.00 m’. Narrow wall is made of steel
and wide walls are made of plexiglass in order to make visual
observations about flow structure. In the recirculation loop, the
particles are separated from gas in cyclone and then fed back to
the bottom of the reactor at the level 0.7 m. Air is fed mainly
through the grate in the bottom of the reactor and in addition
there are two secondary air ports at two levels, 1.6 m and 3.0 m.
Solid material is fed manually from solids feed hopper which is in

the upper part of the reactor.

Pressure is measured at levels 0.25 m, 0.8 m, 2.1 m, 4.1 m and
7.1 m using standard pressure transducers. Air flow is measured

with venturi flow meters separately for primary and secondary air.
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1000 1150

L]

Figure 4.1 CFB cold model

Sand with average particle size of 270 pm is used as solid
material. Sieve analysis of the used material is presented in table

4.1.
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Table 4.1 Sieve analysis of sand

Sieve
4m 500 250 177 125 30 45 0
On sieve
% 1.4 56.3 19.3 15.4 5.0 2.4 0.1

4.2 MASS RECIRCULATION RATE

Two different methods were used to measure mass recirculation
rate of solids. In both methods the rate was determined by
measuring time of a certain amount of material coming down from the
cyclone. The other one was based on three-way valve in recircula-
tion loop and in the other one the rise of solid material surface

was followed after closing the valve in the recirculation loop.

During the first experiments the return pipe of the unit was
equipped with a three-way valve in order to determine mass
recirculation rate. The valve was switched into such a position,
that solid material was flowing into the separate vessel and after
a proper time the valve was again switched into normal position,
in which solid was fed into the reactor. Material in the vessel was

then weighed and mass recirculation rate was calculated from weight
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and time values.

Variables, which were changed during the experiments, were total
air flow rate, secondary air flow rate (level 1.6 m) and total
solid inventory in the reactor. Air flow rate was between 0.65 -
1.20 kg/s, secondary air 0.0 - 0.30 kg/s and total solid inventory
77 - 169 kg.

In the other measuring method, a steel return pipe was replaced
by a transparent plexiglass pipe. In recirculation loop a valve was
then closed and solid surface began to rise in the transparent
return pipe. Time was measured as solid surface was rising from
lower level to upper one. Mass of solids between the two levels was
calibrated and thus flow rate was obtained by dividing the mass by
the rising time. These experiments were performed with different
solid inventories and different gas flow rates. Also pressure,
solid concentration and velocity profiles were measured under the
same conditions. Deviation of solid material flow was much smaller
than during first mass flow rate experiments and it seemed that
natural instability of the process was the main reason for the
deviations.

The data from experiments were analyzed with regression analysis
using a few different functional forms for variables. As a result,
proper function was obtained for mass recirculation rate, and that
functional form was then used for the rate in the evaluation of

parameters in mathematical models. The mass recirculation rate
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according to correlation function form is presented in Figure 2.
In figure 2 a solid inventory is as a parameter in the system and

in figure 2 b is seen the effect of secondary air.

Solid flow rate [kg/s]

0.7 0.8 0.9 1 1.1 1.2 1.3
' Gas flow rate [kg/s]

no sec. air

with sec. air -

Solid flow rate [kg/s]

a.7 g.8 0.9 1 1.1 1.2 1.3
Gas flow rate [kg/s]

Figure 4.2. Recirculation mass flow rates
a) solid inventory as a parameter
b) secondary air as a parameter
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4.3 DENSITY MEASUREMENTS

Macroscopic average value of solid density was measured by
radiocactive tracer technique, radicactive transmission and
according to pressure data. As presented in chapter 3, pressure
drop is only a rough way of estimating solid concentrations, but
because it has been used so often as a solid concentration
measurement, it is presented here in connection with other solid
concentration measurements. Local solid densities were measured

with optic fibers.

4.3.1 Pressure

Pressure values were measured on five levels of the reactor.
Pressure data was then analyzed by regression analysis in order to
get functional form for pressure dependence as a function of
height. Functional form of regression analysis was obtained by
assuming solid density form presented by Brereton and Strémberg

(1985).

£§= a xb ;, where (4.1)

a, b are parameters
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Solid density function was then transformed into pressure dif-

ference function according to equation

%5 = Ei g , where g is gravitation constant (4.2)

Pressure value is obtained by integrating pressure difference

equation (4.2) over height

h h h
14
P=J.g—§dx=J.Ei-gdx=J.axbdx=a’hb+C’ (4.3)
0 0 0

Measured pressure data is then fitted according to equation
(4.3) and parameter values are optimized by regression analysis.
After that pressure difference or solid density profiles can be
calculated from pressure profile function according to equations
(4.2) and (4.1).

Pressure data was obtained by using solid inventories between
75 kg and 136 kg and different gas flow rates from 0.68 kg/s to
1.15 kg/s" Experimental pressure data is compared with regression
analysis result in Figure 4.3. Example values for solid densities
determined according to the above procedure are presented in Figure

4.8.
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Figure 4.3 Pressure profiles, gas flow rate as a parameter (kg/s).

Values with legend 0.75+ mean that secondary air has also been used

with total gas flow rate 0.75 kg/s.
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4.3.2 Radiocactive tracer

Radioactive tracer measurements for solid density profile were
accomplished by using Na-24 isotope, half-life of which is 15.0 h.
Process material sample was activated in order to ensure, that
tracer material would be representative. A sample was then fed into
the reactor and after a transient time period radioactivity was
measured from different levels of the reactor (1.2 m, 2.62 m, 4.23
m and 6.5 m above grate). Gas flow rate was used as an operational
parameter in these experiments. The uncalibrated results of

radiation intensity are presented in Figure 4.4.

1,000 1.15 kg/s
*
800 L @ D.Bsokg/s
0.68 kg/'s
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hat 600 } ®
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[ .
£ 400 | o
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Height [m]

Figure 4.4 Detector signals from radioactive tracer tests

There is a functional relationship between the intensity of

detecting device and solid density thus enabling the determination
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of the solid density profile. One parameter value of relationship
was calibrated from the pressure data. A gamma-ray Nal crystal
scintillation probe was used for detecting the activity. It had a
diameter of 7.5 cm and was covered by leaden collimator of opening

angle 90 °.

The amount of radiation which hits the detector may be calcu-
lated when locally homogeneous solid density is assumed and
attenuation coefficient of the material is known. If radiation
balance is formulated, equation for intensity as a function of
solid density for small cone collimator may be written, if
radiation source as a linear function of solid density and

attenuation are taken into consideration

ko

I =258 (l-e sl) , (4.4)

where B is function of activity of material and 1 is lengfh of the

measured zone.

The value given for glass beads, k=0.00744 mZ/kg [Seo 1985], is
substituted for attenuation coefficient. Equation (4.4) shows, that
for higher solid densities deviation from linear dependence between
intensity of radiation and solid density increases. When
calibrating the results, form of equation (4.4) was used. Thus

number of unknown parameters in calibration function was only one.
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Figure 4.5 Calibration of radioactive tracer signals

Calibration of radiation intensity is illustrated in Figure 4.5.
Calibration line has been assumed to go through origin, because the
limit value of radioactive signal must be zero for zero solid
density. Calibration coefficient can be obtained as a slope of
regression analysis of intensity and pressure data. Solution of

equation (4.4) gives then for the solid density

I
€ _ In (1- B ) .5
Ly = k1l (4.5)

According to equation (4.5) radioactive intensities may be
transformed to solid density values, which are plotted in Figure
4.6 together with solid densities obtained from pressure profile.
Solid density values in the upper part of the reactor are higher

and in the bottom mainly lower for tracer-based densities.
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Figure 4.6 Solid densities determined from pressure data and from

radioactive tracer

4.3.3 Radioactive transmission

Seo (1985) applied a gamma-ray absorption techniquénfor solid
density measurements in fluidized bed. He had a Cs<137 isotope
radioactive source on one side of the reactor and a Nal scintilla-
tion detector was used on the other side to an51yze'transmitted
radiation. Although analyzed intensity can be descfibed by Beer’s
law, Seo calibrated the system by using a -known material amount
between source and detector.

A similar measuring and calibration method‘was~used also in this
study. It was found that the intensity analyzed by a detector was
strongly dependent on the detector’s position in plane perpen-

dicular to the line between source and detector. In practice, it
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was difficult to mount the detector and the source exactly to the
same axis. Thus measuring analysis was modified so that during
experiments radiation on each measuring point was first measured
with an empty reactor in order to get a base value. Then during the
operation, the detector values were compared with the base value
and solid concentration was calculated according to this
proportional ratio, which was also calibrated. In this way, the
measuring system was not sensitive to detector position.

Measurements were made with two different solid inventories and
with different gas flow rates. At each measuring level only one
measuring point was used, which was in the middle of 1 m side of
the reactor. Thus the results do not represent area average values
and they must be interpreted as line average values of solid
densities in the center of the reactor.

The measured solid density values are presented in Figure 4.7
for two different solid inventories with gas flow rates as para-
meters. Comparison of smaller solid inventory axial profiles with
larger ones show clearly different shape. With smaller inventory
there are minimum values of solid densities in the middle of the
reactor, whereas with larger solid mass, densities are decreasing,
when the height of the reactor is increasing. The highest point is
in the region of exit conduit, in which flow is partly divided into
certain flow patterns and thus line average values may deviate
considerably from area averaged values. Lines in Figure 4.7 show
the results of regression analysis with polynomials. These curves

have been used later in chapter 5, when continuous functions of
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solid density are needed for evaluation of model parameters.
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Figure 4.7 Solid density profiles from radiocactive transmission

measurements

In Figure 4.8 measured line-averaged solid density values are
compared with solid densities obtained from pressure gradients.

For both solid inventories and all gas flow rates pressure based
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values are lower at the top of the reactor. A similar effect was

also found in section 4.3.2 for tracer measurements.
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Figure 4.8 Solid density profiles from radiocactive transmission and
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4.3.4 Optic fibers

Light scattering or transmission and fiber optical methods have
been applied successfully to studies in bubbling fluidized beds and
in dilute gas-solid flow applications [Hatano and Ishida 1983, Mat-
sumoto et al. 1986, Matsuno et al. 1983, Morikawa et al. 1986, Oki
et al. 1980}. Two main methods have been either based on light
transmission from one probe into another or based on light reflec-
tion from particles back to light source probe. Depending on probe
size, there has been measurements over different volumes thus
giving a signal from one particle or swarm of particles. Single
particle detecting gives particle number within time interval and
thus particle velocities are required, if concentration of par-
ticles is needed. Detecting swarms of particles gives a signal,
which is function of particle concentration. Thus probe data must
be calibrated in order to find functional dependence.

After testing both the transmission and reflection principles
with probe types presented in Figures 4.9 and 4.10 the latter was
selected for this study. Probe diameter is 3 mm and it consists of
fibers of diameter 70 pgm, which are homogeneously divided into
light source and receiver fibers. Modulated IR-light was used as
a light source, which light was detected by photodiode and ampli-

fied according to light intensity.
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Figure 4.9 Transmission probe principle
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Figure 4.10 Reflection probe principle

Two different test run programs were carried out for measuring
local solid densities with optic fibers. Functional dependence
between solid density and output signal was first calibrated
according to pressure profile data and then also a separate
calibration device was used. During the latter measurements,
velocity and solid density values were measured simultaneously,

which allowed some qualitative conclusions about the dispersion
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term in l-dimensional solid momentum equation (3.51}).

First optic fiber measurements were accomplished on three
vertical levels 2.5 m, 4.4 m and 6.3 m. On each level there were
eight measuring points as presented in Figure 4.11. Gas flow rate
was used as a process variable. From each point measuring time was
20 s, providing time average values for solid densities. For
calibration of optic fiber data, wvalues on each level were
integrated to give area averaged value. Solid density on a level
was obtained from pressure data according to procedure presented
in section 4.3.1. Correlation between optical wvalues and solid
density values calculated from pressure data is presented in Figure

4.12 having correlation factor 20.24 kg/m3.

1000
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< Front wall

Figure 4.11 Optic fiber measuring points
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Figure 4.12 Calibration of optic fiber results with pressure data

Solid density profiles from optic fiber measurements are
presented for each three levels and for three different gas flow
rates in Figure 4.13. For each level there are two figures; one
for wide side measurements and the other for the narrow side. For
radial profiles figures show similar structure to qualitative
results presented in earlier studies. The more dilute part is in
the core of the reactor and there is quite a dense region within

a few centimeters from the wall.

Because of the uncertainty of the previous calibration system,
another method was used. A calibration device was constructed which
produced falling solid flow due to gravitation. Mass flow rate
divided by area was measured by weighing solid material in a vessel
below the calibration point. Solid velocity was obtained with optic

fibers by the aid of the method, which is presented in the next
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section. Thus it was possible to calculate density at a certain
point of flow. Intensity determined with optic fibers was also
measured and that data was used in the calibration.

Using the latter method local densities were measured with two
solid inventories 75 kg and 136 kg for gas flow rate 1.00 kg/s.

The levels in the reactor were 1.0 m, 2.5 m, 4.4 m and 6.3 m and

the points in cross-section were located as presented in Figure

4.14,
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Figure 4.14 Horizontal solid density profiles, height as a
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kg and gas flow rate 1.00 kg/s, distance from the wall as a

parameter

Probability density functions were also determined from
different points of the reactor, which illustrates the stochastic
nature of solid flow. Especially in lower parts of the reactor
solid density values are changing a lot in one location, as can be
seen in Figures 4.15 and 4.16. Horizontal location has also a clear
effect on the form of the functions, so that near the wall

different solid densities can be found, but in the middle of the
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reactor mainly smaller solid densities.
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4.4 LOCAL SOLID VELOCITIES

Vertical components of particle velocities were measured by
applying the same optical probe facility which was used to measure
local solid densities. The principle was to measure fluctuating
signals of two optical probes which were at certain distance 1,
from each other. Solid material time delay from one point to
another was then obtained by applying cross-correlation function

o
ny(T) = I x(t)y(t-7)dt (4.6)
-0
where x(t) and y(t-7) are signals from two probes at time t and t-
T respectively. Cross-correlation function has maximum at average

time delay Ta and solid velocity may be calculated from the simple

equation
1
v, o= (4.7)
r Ta

Experiments were accomplished with different gas flow rates 0.63
- 1.14 kg/s on levels 1.0 m, 2.5 m, 4.4 m and 6.3 m. Local values
were measured from different points of cross-section respectively
to solid density measurements. Time-averaged velocity profiles are
presented in Figure 4.17 with experimental material, which is not
stochastically representative having only 5-9 wvalues for each
point. For the smallest gas flow rate solid densities in the upper

part of the reactor had so small fluctuation, that no clear time
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Figure 4.18 Local solid velocity values

delays were obtained with experimental facilities. Velocify values
were fluctuating in each measuring point, espedially a féwkcen—
timeters out of the reactor wall, where largé pbsifivé;and negative
values were found. Similar behavior has been presented recéntly
also by Hartge et al. (1988), who reported that in their
application, they detected both positive and negative velocity
values in each measuring point. Solid velocities were found to be

in some cases much higher than average gas velocity, which is an
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indication of strongly nonuniform velocity profile also for gas.
Figure 4.18 illustrates with one test run, how different the velo-

cities are, even at the same measuring point.

Solid velocity values in Fiqure 4.17 are time average ones and
they should not be interpreted as mass averaged values. For solid
flow rate we may write

. 1 €
mr=fgfgrgrdtdA (4.8)
At

If flow rate is presented with time averaged values

< -€ - 1 ~e o

m,. = I Py Vp dA + I t I Ly Yrdt da (4.9)
A A t

In equation (4.9) the latter term is fluctuating average term
similar to single phase turbulent flow. From measurements it is
possible to obtain values for total mass flow rate, time averaged
density and velocity, and thus the last term is possible to
determine from experimental data. Density profiles presented in
section 4.3.4 are assumed to represent density profiles cor-
responding to velocity experiments. The results are presented in

Table 4.2.
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Table 4.2 Solid flow rates
fl is the first term in r.h.s. of equation (4.9)
f2 is the second term in r.h.s. of equation (4.9)
gas flow sol. flow| height f1 £2
rate rate
kg/s kg/s m kg/s kg/s
1.14 2.45 2.5 10.10 -7.65
" " 4.4 10.00 -7.55
" " 6.3 3.37 -0.92
1.00 1.50 2.5 3.81 -2.31
" " 4.4 3.31 -1.81
" " 6.3 0.87 +0.63
0.63 0.30 2.5 2.25 -1.95
" " 4.4 1.19 -0.89
Of the

values of the second term it may be concluded,

that

fluctuation is extremely high and correlation is mainly negative

indicating that high velocity values correspond mainly to low solid

density values.
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4.5 AXTIAT, SOLID MIXING
4.5.1 Equipment, arrangements

Mixing studies were accomplished by applying a radioactive
tracer technique for solid material. The detectors used were
described in section 4.3.2. A solid material sample was treated
with radioactive material. Altogether there were ten detecting
points for six detectors and five feeding points for samples. The
feeding points in the reactor were located at the axial levels 1.0
m, 2.5m, 4.4 m and 6.3 m. In addition there was one feeding point
in the loop seal. Detector points were located in the reactor ét
the levels 1.20 m, 2.62 m, 4.23 m and 6.50 m ; three points in the
loop seal and one point after the cyclone, Figure 4.19. The
position of six detectors were changed in different experiments

according to position of feeding points.

8.50m

423m

282m

1.20m

Figure 4.19 Location of radiation detectors
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The same sand which was in the reactor as fluidized material
was used as a solid tracer sample material. Tracer sample was fed
into the reactor with probe system presented in Figure 4.20. Tracer
was first fed into the probe from valve 3. Then the valve 3 was
shut and compressed air was flowing to probe space through valve
2. Valve 2 was closed and a tracer sample was blown into the
reactor by opening and closing the valve 1. The starting time of
the tracer input was recorded with a detector, which was placed
near the feeding point and concentration was recorded at five other

points.

AN

reactor

ANNARNY
5]

Y T compressed air

N\

SECUSSASEY

Figure 4.20 Tracer feeding probe

The particle size effect was also studied by feeding particles
of three different size range divided by particle diameters 0.125
mm and 0.250 mm (less, middle, above rahges).‘These samples were
fed into the reactor from the level 2.5 m. According to particulate
solid flow theories, these samples should have quite a different

behavior, which was to be tested with this experiment.
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4.5.2 Results

Air flow in these experiments was 1.1 kg/s and total solid
material amount in the system was 111 kg. In this connection only
axial mixing data is reported.

Points 1, 4, 9 and 13 in the results correspond to reactor
levels 1.2 m, 2.6 m, 4.2 m and 6.5 m for detectors and 1.0m, 2.5
m, 4.4 m and 6.3 m for feeding points, respectively. Detector
signal for point 1 is calibrated to have a much smaller coefficient
for dependence between intensity and density than other detectors
and thus direct quantitative comparisons for intensities may not
be done. All detector signals are presented within an initial time
period of 0-4 seconds, during which the material did not have time
to recirculate back to the reactor, which was also confirmed by the
detector in the loop seal.

Results showed that there was not a large variation between
experiments, where the same feeding point had been used. In Figures
4.21 and 4.22 all the results from the same feeding point
experiments have been combined to give average results for the
feeding point. For each feeding point three similar tracer tests
were done. Different test results are analyzed quantitatively in
chapter 5, where dispersive mixing coefficients are determined.

The feeding of different particle sizes from feed point 4 did
not show clear separation in behavior. Only slight differences may

be seen in signals. Especially the starting time of the signal rise
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Figure 4.21 Experimental mixing curves for different feeding points
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on the respective levels is the same. The smallest particles seem
to give more clear signal in the highest detector point (13), but
in one of the experiments with largest particles the same effect

was seen.

4.6 DISCUSSION ON EXPERIMENTS

In this chapter some promising measurement techniques have been
tested and used for evaluation of overall and local variables of
CFB cold model flow. Determination of accuracy of different methods
is quite difficult, because there are no proven reliable ways of
making comparable measurements. CFB process is very stochastic in
nature and thus long measuring times are required especially for
local variables in order to obtain enough information for a
determination of necessary data. In addition to time-averaged
values it seems that also different stochastic and correlation
terms are needed to describe the process adequately.

Local values have been measured in this work by optical methods
with optic fiber probes. Optical signals produce data with very
high frequency, which can be utilized when different stochastic
values are required. Solid density values have been measured
applying the light reflection principle, which is easy to use in
the evaluation of solid density values in different locations of

the flow field. One of its main drawbacks seems to be difficulty
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in calibrating the signals, especially for higher solid densities.
In addition, calibration data is dependent on calibration material
and conditions. Another problem is disturbances in the flow field
due to measuring probes, the effect of which could not be reliably
determined. A similar measuring principle can be utilized also in
hot conditions, but then special heat resistant fiber materials are
necessary.

Velocity values of solid material were determined by calculat-
ing cross correlation for two solid density signals. Thus each
velocity value requires certain time for solid density data
acquisition and signal analysis. In this work solid velocities were
calculated separately after longer period of data acquisition. It
was found that good correlation function was not always achieved.
It seems however, that correlation can be improved by decreasing
the distance between the probes and thus also automatic on-line
measurements can be made for determination of solid velocity. That
will require high data acquisition frequency, some 10 - 20 kHz for
the conditions used in this work. For multidimensional solid
velocity analysis more fibers are required for single velocity
vector and signal analysis will become more complicated and slower.
Also the problem of disturbance of the fibers will be worse.

Radioactive technique seems to be a useful method for the
determination of macroscopic solid flow and especially mixing. The
same equipment is viable also in hot conditions and large units.
In the small cold model only axial mixing was studied, but

especially in larger units also horizontal mixing can be deter-
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mined. In order to measure average solid densities radioactive
methods can be used to some degree. Calibration of signals may be

difficult especially in large and hot units.
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5. 1-DIMENSIONAL MODEL EVALUATION

5.1 LITERATURE REVIEW

Compared with multidimensional models one-dimensional models
can be considered simple. That simplicity may be considered in some
respect disadvantageous, but it has also many benefits. One-
dimensional models have less parameters, which can more easily be
obtained from experiments. It is not easy to obtain enough data for
different model parameter evaluation, especially at this stage of
knowledge about circulating fluid beds. One-dimensional models also
require much less computing time allowing thus wide comprehensive
model calculations. On the other hand they cannot straight
calculate radial mixing or effects, which depend on radial
profiles, at least without special modifications. So it must be
approved that one-dimensional models are not optimal for all kinds
of applications and purposes.

The most widely known one-dimensional flow model for circulating
fluid beds is Kwauk’s model [Li and Kwauk 1980, Kwauk et al. 1985].
The model is based on strongly intuitive equality of solid
diffusion and buoyancy fluxes, which gives functional dependence
between void fraction and height of the reactor. The function has
four parameters, which are determined from experimental data. Thus

Kwauk’s model can, on the other hand, be considered as a suitable
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functional form for experimental data fitting. A similar kind of
functional form has also been presented elsewhere (Kato et al.
1988). Kwauk’s model has also been used in CFB comprehensive
combustion model by Weiss (1987).

Until now there has been only some attempts to model axial solid
density and velocity profiles by using mass and momentum balance
equations for gas and solids. One problem seems to have been, that
there is found two separate balance flow states for one set of
boundary conditions [Matsen 1988, Li et al. 1988] and a model for
transition from more dense state to more dilute state has not been
presented.

For pneumatic transport some one-dimensional model calculations
have been presented based on hydrodynamic multiphase flow equations
[Nakamura and Capes 1976, Arastoopour et al. 1982a, Adewumi 1985,
de Souza and Santana 1986]. These models are not taking into
consideration any dispersion term and they are mainly using
particulate flow drag functions for gas-solid momentum interaction.
Lian and Chen (1985) have used in their model changeable average
drag coefficient, which has been evaluated according to
experimental results. But they have not taken into consideration
any dispersion terms due to aggregate flow profiles.

Mixing theories in one-phase flow are largely based on Taylor
dispersion model [Taylor 1921, 1932, 1935], which have been
presented e.g. in reference [Tennekes and Lumley 1987]. Combination
of Taylor and mixing length theories gives correlation between

turbulence variables and diffusivity for time-averaged one-phase
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flow equations [Hintze 1975, Sato and Yamamoto 1987]. For space-
averaged two-phase equations dispersive transport has been
considered in porous media applications [Slattery 1981, Chang and
Slattery 1987, Plumb and Whitaker 1987]. Different terms in
averaged equations have been studied and it has been found that
dispersive transport needs not always be Fickian.

Solid mixing modeling in CFB has not been studied much. More
work has in the past been pointed to bubbling or turbulent
fluidized beds. The first of the efforts were more concentrated on
one-phase models, e.g. such as dispersion model and later on two-
phase models [Potter 1971, van Deemter 1985]. For circulating
fluidized bed experiments Avidan et al. (1982) tested a two-phase
model presented by van Deemter, but the approach described his
results only at the lowest superficial gas velocity. He also used
a modified turbulent dispersion model similar to Taylor dispersion.
He applied a steady state density fluctuation method described by
Todes et al. (1972) to yield dispersion coefficient in the low gas

velocity regimes.

5.2 MASS-AVERAGED MODEL

5.2.1 Parameter evaluation

The experimental data presented in chapter 4 has been used in

the evaluation of mass averaged model of chapter 3 according to
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(3.48)~(3.51) and

(3.44)-(3.46).

Known experimental

values have been gas and solid mass flow rates, pressure profile

and solid concentration, which have been obtained from experiments

presented in chapter 4. Solid mass flow rate has been obtained from

solid surface rise method and solid concentration according to

radiative transmission results.

The order of the calculation procedure has been as follows:

1)

2)

3)

4)

)

6)

7)

solid fraction, eq. (3.46)

gas void fraction, eq. (3.44)
average gas density, eq. (3.45)
solid velocity, eq. (3.49)
gas velocity, eq. (3.48)
drag term, eq.

(3.50) or (3.53)

turbulence term derivative, eq.

(3.51) or (3.54)

Integration over height is needed for evaluating values for

dispersion term.

level must be fixed at one point of reactor.

indicate,

In order to get absolute values for the term, its

Derivative values

that the dispersion term divided by solid density has
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maximum somewhere in the reactor and becomes smaller towards the
bottom and top. In this connection the dispersion value was assumed

fixed to zero at the top of the reactor.

In the upper parts of the reactor, flow conditions are not
adequately described by 1-dimensional equations (3.53)-(3.56),
because mass flow rates for gas and solid are not constant due to
exit channel. If changes in convection and mass are taken into

account, equations (3.40)-(3.43) may be written in the form

Mass balance

Continuum

€

d(e; ¥.)
c ~c w
dx + I.(1)

1]
(]

(5.1)

Solid field

3
d(of v,)

dx

[
(=)

w
+ 1.(1) (5.2)
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Momentum balance

Continuum
2

d(piv?) dp
Vet T B e

dx "I tofc ax £c 9 =0 (5.3)
Solid field

def v2) acliv) ® . .
* dx * Tax * Icr vt € 3x T L 9 - Ir(V) =0 (5.4)

Pressure taps in the upper part of the reactor were located at
the levels 4.1 m and 7.1 m. So, pressure profiles near the exit
channel were smoothed when pressure data was fitted according to
regression analysis. Because of the possibility of having varying
gradients in pressure near exit channel, pressure profile was not
used as a primary measurement value in parameter evaluation in the
upper part of the reactor. Instead, drag coefficient variation was
assumed linear between levels 4.1 m and 7.1 m and its value at the
top was reiterated so that pressure at the top was the same as

measured value.

As an example of the calculation procedure which was presented
in the beginning of this section, calculated dispersion term and

drag coefficient profiles are presented in Figures 5.1 and 5.2 for
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solid inventory 136 kg and air flow rate 1.0 kg/s. Drag coefficient
is calculated according to the definition in equation (3.47) and
dispersion term is divided by solid density and thus its unit is
m2/52. Specific dispersion term seems to have low values near the
bottom of the reactor, which may be due to similar phenomenon as
is prevailing in single-phase turbulence. Any wall will damp
velocity fluctuations near its surface and thus turbulence in
single-phase flow and possibly also perpendicular solid phase
dispersion as defined in this study has small values near the
walls. The magnitude of the dispersion term seems to be quite high
when compared with convective momentum term. It means, that if
convective term is included into momentum equation, then the
dispersion term should also be taken into consideration.

Drag coefficient for average-sized particle of sand is about 5
1/s according to correlation in equation (2.127). Calculation
procedure has given values ranging between values 1 1/s and 4 1/s
for the top and bottom of the reactor, indicating smaller values
than single particle drag.

Profiles in the Figures 5.1 and 5.2 give some magnitude of the
respective terms, but because at the moment accurate measurement
techniques are not available for CFB hydrodynamics, the curves

evaluated here cannot be considered accurate.
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Figure 5.1 Drag coefficient as calculated from experimental data
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Figure 5.2 Specific dispersion as calculated from experimental data

Another method to determine dispersion term is to calculate it
straight from local solid densities and velocities according to
the equation (3.55). Dispersion term is next calculated according

to data, the velocity values of which are presented in Figure 4.19.
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Calculation results are given in Table 5.1.

Table 5.1 Calculated specific dispersion

Specific
Height dispersgon
[m] [m/s]
1.0 8.08
2.5 12.85
4.4 6.21
6.3 10.70

Velocity and solid density measurements of optic fibers are not
fully developed at the moment and thus calculated dispersion terms
give only magnitude of dispersion effect. Anyway, both of the two
above methods give values of the same magnitude, which are
significant when compared with convective momentum term.

Some qualitative approximation can be calculated also for
drag coefficient, if equation (3.108) is used. Solid density data,
which has been obtained with optic fibers has been used here as
experimental data. As a result correction coefficient defined as
a ratio of average and particulate drag coefficients is presented

in Table 5.2.
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Table 5.2 Calculated drag coefficient ratio

Drag coeff.
Height ratio
[m]
1.0 0.181
2.5 0.073
4.4 0.042
6.3 0.027

The above-calculated values are based on an assumption of
vertical flow only and no horizontal fluid dynamics is considered.
Thus results give only some qualita&ive information about the
variation of drag as a function of H%ight showing that at the
bottom region average drag has the highest values and at the top,
smallest, which behavior is also seen in Figure 5.2. More exact
average drag values could be determined according to similar 3-

dimensional method, if 3-dimensional and transient solid flow

profiles were known better.

5.2.2 Model calculations

For the solution of 1l-dimensional flow equations, a finite
difference code was developed. Stability of the calculation was
reached by using staggered grid and upwind differencing for mass

and momentum convection. In all calculations fixed solid inventory
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in the reactor was used as a boundary condition, which is often -
the practice in commercial CFB combustors.

Because of the lack of experimental data a simple‘aigebraic‘
function model was used for dispersion term. Specific dispersidn
was assumed to be constant in free stream, but near the bottom it
has been assumed to be damped. Correction function near the bottom.
has been of the form l-exp(-x/X), where X is constant for damping
distance.

Because of the limited experimental data also for drag coeffi-
cient, a model for it has beeﬁ taken from correlations presented
by Matsen (1982) and Sankar and’Smith f1986). Extrapolation bf
their data to present stg@y leads to meaningless values and thus
the function form of drag correlation, which is used here, is based
on 38.1 mm in diametér reaétér data, where solid material has
material density of 2.63‘kg/m3and its average particle diameterris

0.173 mm.
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&2 \‘ e ——— 1 75 kg, 0.8 kg/s
Q) - R N T e Tt
Ko 20 T,
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Q
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0

0o 1 2 3 4 5 6 7
: Heignt [m]

Figure 5.3 Calculated solid densities
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Figure 5.4 Calculated solid velocities

Some calculations have been done with the same boundary
conditions as has been used in experimental work. Calculated cases
have been with solid inventories of 75 kg and 136 kg and with gas
flow rates of 0.75 kg/s, 0.90 kg/s and 1.00 kg/s.

Calculated solid densities and mass averaged solid velocities
have been presented in Figures 5.3 and 5.4. For solid inventory
136 kg curves give similar results to experimental values. For
solid inventory 75 kg solid densities near bottom drop too fast and
because solid inventory has been fixed as a boundary condition,
solid densities are too high in upper parts of the reactor. The
difference in solid density profile can be explained with errors
in drag and dispersion models. If drag term is modified so that it
has smaller values, momentum balance gives smaller velocities in
the bottom of the reactor. This causes solid density curves to drop

in higher level and curves get closer to experimental values in the
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bottom as presented in Figure 5.5. Also velocity profile changes
into increasing curve as a function of height (Figure 5.6). Solid
mass flow rates from calculated profiles and from experiments are

presented in Figure 5.7.
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Figure 5.5 Calculated’solid‘densitiés for solid inventory 75 kg,

gas flow rate as a parameter
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Figure 5.6 Calculated solid velocities for solid inventory 75 kg,

gas flow rate as a parameter
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Figure 5.7 Calculated solid flow rates

A comparison of the calculated and experimental data shows, that
calculated results are quite near the experimental ones. This indi-
cates, that forms of drag term and dispersion models used in the

calculations are realistic.

5.2.3 Qualitative model predictions

Flow model can be used for different kinds of parametric and
sensitivity tests. Although at the moment tested submodels for
average drag and dispersion are not available, some qualitative
calculations can be done. In addition to using a flow model for
extrapolation out of experimental range of data, drag and/or

dispersion models can be matched to certain experimental profiles
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in order to increase understanding of the magnitude and effect of

drag and dispersion in flow dynamics.

As an example of applications of the flow model, qualitative
trends of effects of solid inventory and dispersion term on flow

profiles are studied in this section.
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Figure 5.8 Calculated solid densities for different solid

inventories
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Figure 5.9 Calculated solid flow rates for different solid

inventories
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In Figures 5.8 and 5.9 solid density profiles and respective
solid mass flow rates are presented for different solid inven-
tories. Figure 5.10 presents the same calculation, but drag
coefficient in calculation is smaller and the effect of bottom
damping in the dispersion model is set to smaller value. This will
increase solid density in the bottom and decrease it at the top,
which leads to smaller solid flow rates. Also the inflection point
for solid density can be seen in the largest solid inventory
calculations, which has also been discovered experimentally in

small cold models with small particles [Kwauk et al. 1985].

800

600

400

200

Solid density [kg/m3]

Height [m]

Figure 5.10 Calculated solid densities for different solid

inventories applying modified drag coefficient

The effect of dispersion term magnitude is evaluated in Figure
5.11. The smaller the term, the sharper is the drop in solid
density profile from dense region to dilute region. If the

dispersion term reached =zero, all the solids would be in dense
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region and solid density profile would drop uncontinuously to value
zero in upper parts of the reactor. In the smallest dispersion‘
coefficient some unstable oscillation of solid density can be seeﬁ.
It indicates that calculation method should be "developed ﬁore

stable, if smaller dispersion values are to be calculated.
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Figure 5.11 Calculated solid densities for different specific

dispersion values

5.3 AXIAL SOLID MIXING

In this section the experimental mixing results of chapter 4
will be analyzed. Numerical values for mixing coefficients of
certain mixing models are sought in order to quantify experimental

data and also to study usefulness of mixing models.
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Conservation equations for solid material and tracer material

may be written

0 (5.5)

do” 4y -

* Kk
ac p v -ndA (5.6)

| ov
Ay
L

|
Ay

As we are only interested in surfaces perpendicular to axial
direction, only axial velocities are needed and velocity vectors

can be replaced by scalar values.

Average values for density and velocity are defined as follows

pex]oam , R —r (5.7), (5.8)

Convection flow for the tracer material may be written

* k K - * ~k - * “*
I p v -ndA = I p v dA + I p v dA =p v A + I p v da (5.9)
A A A A

~%
where v 1is fluctuating tracer velocity and is defined
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vV=yv -V (5.10)

The first term in equation (5.9) for tracer concentration is
convection caused by total mass average velocity and the latter is
convection caused by tracer concentration and velocity deviation
from average value. It can be considered to be due to two mass flow
rates for opposite directions and that flux is often presented as
a function of tracer concentration gradient according to dispersion
model. In order to have zero dispersion flux, when concentration

of tracer is constant, dispersion flux is expressed as

de
J. = -Dp g% (5.11)

where tracer concentration is defined as follows

*
_ L
=%

and corresponding balance equation in differential form is

* *
d d d do
I e L (5-12)

The above equation is used to analyze experimental results
presented in section 4.5. Velocity profile is obtained from ex-

perimental data by dividing solid mass flux by solid density.

The only parameter in the balance equation is the dispersion
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coefficient, the value of which has been fitted by experimental
data. Here we have assumed, that results may be presented and
evaluated as one-dimensional, i.e. radial mixing does not effect.
This may be assumed in this case, because of large height-to-width
ratio and because the feeding system spreads tracer material into
the cross-section of the reactor near the feeding point. Also it
is assumed, that particles of this size accelerate infinitely fast
{acceleration time is 0.2 s for the particles used in the
experiments, if calculated for single spherical particle according
to equation 2.127)

The solution of balance equation has been obtained by difference
method allowing variation of velocity, density and dispersion
coefficient. A solution respective to each feed point experiment
has been calculated by using a constant dispersion coefficient.
The matching criteria of calculated and experimental results has
been the least square sum of differences between values within time
period 0-3 s. Because of differences in detector calibrations,
calculated values are scaled according to experimental values in
such a way, that integrals of respective signals from 0 s to 3 s
are the same. Thus different dispersion coefficients have been
optimized for the experiments in feed point 4 by comparing calcu-
lated and measured values in points 1, 4 and 9, for feed point 9
in points 4, 9 and 13 and for feed point 13 in points 9 and 13.
Results of the optimized calculations are presented in Figures

5.12-5.14.
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In addition to gquantitative values of dispersion coefficients,
it can be seen, that dispersion coefficients for the points above
the feeding point, and for the feeding point itself, are much
higher than coefficients for the points below. Dispersion values

of matching are presented below

Dy, = 0.4 Dg,4 = 0.1 Dyg g = 0.3
Dy 4 = 1.5 Dy g =4 Dy3 13 = 4
D _ -

4,9 = 1.5 Dy 13 = 3

where Dij means optimal dispersion coefficient for detecting point
j, when feed point has been i. Unit for the coefficients is m?/s.

The main reason for the difference above between upward and
downward mixing coefficient is due to difference between horizon-
tal tracer concentration profile and average concentration in the
reactor just after feeding moment. Although the tracer feed would
homogeneously be divided into the reactor area, average velocity
for the tracer would be different from reactor material velocity,
because there is correlation between solid velocity and solid
density. This can be illustrated by writing equations for
velocities. If we assume that the tracer is homogeneously divided

into the reactor area, we can write
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v'= I v da (5.13)
A

From two equations (5.8) and (5.13) may be obtained the

difference between the material and tracer average velocities

* - P
v -v = I v dA - I — Vv dA (5.14)
A A’

According to experimental data there exists negative correlation
between solid velocity and solid density. So from the above
equation may be concluded, that at the start average tracer
velocity is higher than average material velocity, if feeding is
homogeneous. Thus dispersion model evaluation gives a result, that
at the start mixing coefficient is smaller for mixing downwards and
when tracer has spread out mixing is higher. This may be explained
so, that at the start, the tracer average velocity is larger than
the reactor material velocity and when the tracer mixes also with
more dense reactor material and begins to take part into cluster
flow its average velocity gets closer to material velocity.
Convection is modeled with material average velocity in dispersion
model and thus in order to obtain the correct result when compared
with experiments, dispersion coefficient increases faor upward flow
and decreases for downward flow. Then when the tracer velocity

begins to decrease, the artificial error in dispersion remains the
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same and the difference between average material velocity and
tracer velocity diminishes. Thus the model begins to give too small
values for points below feeding point. This may be seen e.g. from
Figure 5.13 (feed point 9), where at start (0-2 seconds) good
correlation between measured and calculated value at point 4 using
coefficient 0.1 m2/s has been obtained, but then calculated value

begins to decrease and measured value remains the same.

Separate tracer velocity has been used next in order to describe
the mixing in a more realistic way. At the start velocity is
assumed to have terminal solid particle velocity, which then
linearly reaches average solid velocity value after certain initial
mixing time. If particles at the start have more uniform velocity,
then also mixing for the particles must be smaller. Thus also the
mixing coefficient is assumed to change its value from minimum
value to average value within the same time period as tracer
velocity. Thus mixing coefficient and tracer velocity are both here
assumed to be also time-dependent variables. The results of these
model calculations are presented in Figures 5.15-5.17 using the
same parameter value for all feeding points, which gives very good
results when compared with measured values. Only for feeding point
9 is there more deviation between measured and calculated values.
For feeding point 9 calculated intensity rises too fast for points
below feeding point and too slowly for a point above it. Thus it
can be concluded, that too small a tracer velocity has been

assumed. It is then verified by increasing initial tracer velocity
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and it shows, that curves get much nearer to experimental ones in

Figure 5.18.
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Figure 5.18 Calculated and measured mixing curves for the feeding

point 9 with corrected initial tracer velocity

From the above results it can be concluded, that depending on

the way, by which the tracer is fed into the reactor, it can
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initially be mixed to the cross-section of reactor more or less
representatively. In order to take into consideration the initial
tracer flow, model parameters must be set according to tracer
particles and not according to average solid values. But after a
certain initial mixing time period, the tracer can be assumed to
reach average solid flow conditions in the cross-sections of the

reactor and then average values can be applied.
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6. CONCLUSIONS

A method of formulating a theoretical equation set for multi-
phase gas solid flow has been presented. Applying general
conservation principles with averaging definitions has lead into
continuum integral and differential balance equations, which can
be divided into physically reasonable and measurable terms. In
addition, the usage of macroscopic averaging definitions with
continuum equations has been found to be a systematic way for the
construction of practical, engineering type of models for gas-solid
multiphase flow. This has also been tested by applying the method
to build up the model for non-reactive l-dimensional CFB flow case.
In general, also multi-dimensional macroscopic models can be
derived applying similar method.

CFB cold model experimental set-up has been used to test some
measuring techniques and also to evaluate behavior of gas-solid
flow. Practical and useful results have been obtained both for
overall and local flow gquantities, but still a lot of development
is needed for improving accuracy and viability of experimental
methods for gas-solid flow.

l1-dimensional model equations have been used to simulate
experimental test runs. It has been shown that reasonable flow
structure can be obtained by applying macroscopic gas-solid mass

and momentum equations. The main difficulty in the modeling is the
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lack of good experimental data for the parameter evaluation.

Also axial solid mixing has been modeled with mixing equation
of dispersion type. Good results can be obtained, if experimental
arrangements are modeled accurately. This has been shown by a

comparison of model results with experimental mixing data.

The following recommendations are made for the future work in

this area.

1. The development of experimental methods will be the first
precondition to increase the knowledge of the CFB processes.
Especially experimental techniques to measure flow values in large
units and hot conditions are lacking, although they have the main
industrial interest. Research groups should also be able to use
larger test devices, in addition to scaling principles with

dimensionless groups.

2. The solution and application of microscopic flow equations
for gas-solid flow structures is under development. However, there
are still barriers to that progress because of limited computer
speed, unknown model terms and parameters, numerical stability and
complexity of the methods. While these problems are being solved
other simpler models are also needed to increase knowledge in this
area. In formulation of these models, systematic handling of the
general conservation principles forms the firm basis for physically

realistic results and pure intuitive models should be avoided.
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