
1

ABBREVIATIONS AND SYMBOLS .. 4

1 INTRODUCTION ... 5

1.1 Objectives of the study .. 5

1.2 Scope of the study ... 5

1.3 Structure of the study .. 6

2 REQUIREMENTS FOR THE SYSTEM ... 7

2.1 Data protection ... 7

2.2 Data security ... 8

2.3 Availability of the software ... 8

3 DATA PROTECTION ... 10

3.1 Relational model and relational database ... 10

3.2 DBMS tools for data protection ... 11

3.3 Enforcing data integrity with schema constraints and triggers .. 12

3.4 Transactions .. 14

3.4.1 Logs to protect transactions ... 15

3.5 Database backup ... 15

3.5.1 Logical backups... 17

3.5.2 Physical backups ... 17

3.5.3 Online versus offline backups .. 18

3.5.4 Snapshot backups ... 18

3.5.5 Backups from replication slave .. 19

3.6 Using RAID to protect data against media failures ... 19

2

4 AVAILABILITY OF THE APPLICATION ... 20

4.1 Planning for High Availability .. 20

4.2 Fail-over and fail-back ... 21

4.3 High-availability clusters ... 23

4.4 High-availability cluster software .. 24

5 PERFORMANCE AND SCALABILITY .. 27

5.1 Load balancing... 27

5.1.1 DNS load balancing ... 27

5.1.2 Hardware load balancing.. 28

5.1.3 Software load balancing ... 29

5.2 Scalability planning.. 29

5.3 Vertical scaling, or scaling up ... 30

5.4 Horizontal scaling, or scaling out ... 31

5.5 Functional partitioning .. 32

5.6 Database replication ... 33

5.6.1 Master-slave replication ... 33

5.6.2 Tree replication .. 35

5.6.3 Master-master replication ... 36

5.6.4 Ring replication .. 37

5.6.5 Comparison of replication topologies in MySQL .. 38

5.6.6 Synchronous replication ... 40

5.7 Database partitioning .. 40

5.7.1 Clustering ... 41

5.7.2 Sharding ... 42

5.7.3 Software for database partitioning .. 43

5.8 Block level replication ... 45

3

5.8.1 DRBD operation modes .. 46

5.8.2 DRBD replication modes... 46

6 SOFTWARE ENGINEERING ... 48

6.1 Options for data protection ... 48

6.1.1 Database table structure .. 49

6.1.2 Backing up data .. 51

6.2 High availability setup ... 53

6.3 Scaling the application... 57

7 TESTING REPLICATION OPTIONS ... 58

7.1 Test procedure .. 58

7.2 Test results .. 59

8 CONCLUSIONS .. 63

8.1 Goals of this thesis .. 63

8.2 Thesis research .. 63

8.3 Thesis results ... 64

8.4 Subjects of further study ... 64

REFERENCES .. 65

APPENDICES .. 67

4

 ABBREVIATIONS AND SYMBOLS

API Application Programming Interface

DML Data Manipulation Language

DBMS Database Management System

RAID Redundant Array of Inexpensive Disks

RDBMS Relational Database Management System

SaaS Software as a Service

NIC Network Interface Controller

TCO Total Cost of Ownership

GPL Gnu General Public Licence

DRBD Distributed Replicated Block Device

OCFS Oracle Cluster File System

ext3 third extended filesystem

GFS Global File System

CRM Cluster Resource Manager

LVM Logical Volume Manager

RAM Random Access Memory

5

 1 INTRODUCTION

 1.1 Objectives of the study

The goal of this thesis is to explore the engineering of business critical database driven

web application software. The software is meant to be offered as a web service accessible

with web browsers. Software being business critical here means that it has to offer high

availability for the whole system and guarantee that the data users input to the system

stays correct, has internal integrity and is secured against data loss.

 1.2 Scope of the study

Open source software has expanded and its quality has increased so much that many of

the world's largest companies offering services on the internet rely on it. Open source

also offers numerous benefits for the software development process:

 Source code is shared which enables developers to directly inspect how the

software works.

 With access to source code, developers can easily expand the code, building on

top of it.

 Because of the copyleft licenses, developers can take it and use it freely on

commercial products.

 A tested and proved open source software stack can be acquired prepackaged and

be used as a leverage towards building new products in very short time and with

very little man power. Reinventing the wheel is not required.

The scope of this study is to look into existing open source software as building blocks

for achieving the study objectives. Commercial alternatives are also mentioned briefly,

where appropriate, but the main focus is in the open source. Open source landscape is

also varied enough to offer several popular projects for achieving the engineering goals.

6

 1.3 Structure of the study

First Chapter outlines the thesis goals, scope and structure. Second Chapter details the

requirements for engineering of business critical web application software. Theoretical

part of this thesis is in Chapters 3-5. Third Chapter discusses options for data protection.

Fourth Chapter discusses options for implementing high availability for the web service.

Fifth Chapter discusses performance and scalability issues, as those are often related to

high availability. Sixth Chapter details a few different strategies in engineering the

system and selecting the software to fulfill the system requirements. In the seventh

Chapter these systems are evaluated and example systems are built and tested against the

requirements. Conclusions are represented in eight Chapter.

7

 2 REQUIREMENTS FOR THE SYSTEM

Because business critical systems are used to take care of day-to-day business activities,

requirements for software are quite complex. Businesses will be using the software to

store and access important business critical data. Nature of the software will therefore

present numerous challenges for the engineering of the software:

 Data integrity and safety must be preserved in all situations, including software

and hardware failure.

 Data security must be preserved. Because the software will be exposed to the

internet, software will be open to malicious hacking attempts.

 The system must have high availability.

 Performance issues must be addressed for future growth before they become a

problem for user experience.

 2.1 Data protection

Data that forms the web application typically includes the application code, database data

and document and media files that are served to the user. System must be able to protect

the data and ensure that the data stays intact. Application code consists of files that are

read and executed on the server and results are then sent to user by the web server

software. Application code can be compiled before the execution to a binary or during the

execution dynamically.

Database data resides usually on the disk as files that are accessed by database, although

there are databases that store the data directly on the memory. For the purposes of this

thesis it is assumed that the application database stores its data on hard disk storage.

Database management systems (DBMS) organize the storage of data. DBMS controls the

access and maintenance of the database data. DBMS task is also to protect the data.

DBMS often offers the tools to enforce data integrity, so that the data stays logically

coherent during user modifications and when the system faces hardware or software

failures.

8

File storage exists to handle large amounts of document and media files that users interact

with in the application. Files in the file storage are mostly static and they are not usually

modified once they are uploaded on the system until deleted. File storage can be common

with application code and database data storage. Files can also be served from external

location better suited for serving large amounts of static files.

 2.2 Data security

Oracle (2008b) details common tasks for ensuring data security:

 Ensuring that the database installation and configuration is secure.

 Managing the security aspects of user accounts: developing secure password

policies, creating and assigning roles, restricting data access to only the

appropriate users etc.

 Ensuring that network connections are secure.

 Encrypting sensitive data.

 Ensuring the system has no security vulnerabilities and is protected against

intruders. Administrator of the system is usually responsible for downloading and

installing security patches to protect the system against vulnerabilities.

 2.3 Availability of the software

Availability is the degree to which an application, service, or function is accessible on

demand. Availability is measured by the perception of an application's end user. End

users experience frustration when their data is unavailable or the computing system is not

performing as expected. End users do not understand or care to differentiate what is

causing the service disruption. For example, performance failures due to higher than

expected usage create the same problems as the failure of critical hardware component.

According to Oracle (2005), highly available solution has a few primary characteristics:

9

 Reliability: Reliable hardware is one component of a high availability solution.

Reliable software, including the database, Web servers, and applications, is just as

critical to implementing a highly available solution. A related concept is

resilience. For example, low-cost commodity hardware, combined with special

software, can be used to create a computer cluster with redundant nodes, which

are then used to provide service when system components fail. Related concept is

horizontal scaling, which is detailed in Chapter 5.4.

 Recoverability: Because there may be choices for recovering from a failure, it is

important to determine what types of failures may occur in a high available

environment and how to recover from those failures in a timely manner that meets

business requirements.

 Timely error detection: If a component in architecture fails, then fast detection is

essential to recover from the unexpected failure. Monitoring the health of

environment requires reliable software to view it quickly and the ability to notify

administrators of a problem.

 Continuous operation: Providing the ability for continuous access to your data is

essential when very little or no downtime is acceptable to perform maintenance

activities. Administrative activities, such as making changes to database, or

changing hardware components, should be transparent to the end user in a high

availability architecture.

10

 3 DATA PROTECTION

Most important part of any database driven web application is the data it collects from its

users. Protecting this data is most important aspect of maintaining the application

operational. This chapter goes through aspects of data protection.

 3.1 Relational model and relational database

A database is a collection of logically related data or files. A database is designed and

built to give access for applications to retrieve and modify the data. Information in a

database is structured according to a database model. Database model defines the

structure of the database and how to access the database. According to Lehtimäki (2009)

some of the often used models are:

 Hierarchical model

 Network model

 Relational model

 Entity-relationship model

 Object-relational model

The most interesting model of these for designing Web applications is the relational

model, which is implemented in many of today's most popular database management

systems, including MySQL, PostgreSQL, Microsoft SQL Server and Oracle. Relational

model addresses three aspects of data:

 Data structure (or objects)

 Data integrity

 Data manipulation (or operators)

All three parts have their own special terms. Terms concerning objects and their

correspondence to relational databases are explained in Table 1 (Date, 1995).

11

Table 1. Concepts in the relational model concerning data structure and their correspondent application in

relational databases (Date, 1995).

Relational model Relational database

Domain: Pool of values, from which actual

attribute values are drawn.

Data type: Integer (INT), character string

(varchar) etc.

Attribute: An attribute is an ordered pair of

attribute name and type name. Values of an

attribute must come from a single domain.

Column: A column in a table, with name

and valid data type.

Tuple: Unordered set of attribute values.

The number of tuples is called the

cardinality and the number of attributes is

called the degree.

Row: A row in the table.

Relation: Relation consists of two parts, a

heading and a body. Heading is a set of

attributes, and body is a set of n-ary tuples.

Table: Heading is the row of column

headings and the body is the set of data

rows.

Various features of relational database make it especially useful for ensuring data

integrity, like schema constraints and transactions. MySQL is used in this thesis as an

example of RDBMS (Relational Database Management System) for detailing replication,

which is a key technique to ensure data safety in event of system failures. The RDBMS

are powering some of the most popular sites in the internet and are widely available for

development and production use.

 3.2 DBMS tools for data protection

Many things can go wrong as a database is queried and modified. Problems range from

the keyboard entry of incorrect data to a fire in the room where the database is stored on

disk. According to Garcia-Molina, et al., (2002) some of the more common failure

modes:

12

 Erroneous data entry can occur, when user tries to enter invalid data into database,

for example forgetting to enter one digit from a phone number.

 Media failures are most common, when hard drive that contains database data

suddenly breaks.

 Catastrophic failures are situations in which the media holding the database is

completely destroyed. Examples include explosions, fires, or vandalism at the site

of the database.

 System failures are problems that cause the state of a transaction to be lost.

A modern DMBS provides a number of software mechanisms for catching those data-

entry errors that are detectable. For example, the SQL standard, as well as all popular

implementations of SQL, include a way for the database designer to introduce into the

database schema constraints such as key constraints, foreign key constraints, and

constraints on values (for example, a phone number must be 10 digits long). Additionally

triggers can be used to check that the data just entered meets any constraint that the

database designer believes it should satisfy (Garcia-Molina, et al., 2002). Database

schema constraints are described in more detail in Chapter 3.3.

DBMS also offers the use of transactions, where queries and other DML actions are

grouped into transactions. Transactions are units that must be executed atomically and in

isolation from one another. Often each query or modification action is a transaction by

itself. In addition, the execution of transactions must be durable, meaning that the effect

of any completed transaction must be preserved even if the system fails in some way

right after completion of the transaction (Garcia-Molina, et al., 2002). Transactions are

covered in in more detail in Chapter 3.4.

 3.3 Enforcing data integrity with schema constraints and triggers

According to Date (1995) a database consists of particular configuration of data values.

Database definition includes certain integrity rules that are supposed to prevent

configuration of values, a database state, which do not have correspondence in the real

13

world. Database can be described to be in a consistent, or in an inconsistent state.

Consistent states satisfy all constraints or integrity rules of the database schema. Oracle

(2008a) lists common rules or constraints used to enforce data integrity:

 Null rule: A null rule is a rule defined on a single column that allows or disallows

inserts or updates of rows containing a null (the absence of a value) in that

column.

 Unique column values: A unique value rule defined on a column (or set of

columns) allows the insert or update of a row only if it contains a unique value in

that column (or set of columns).

 Primary key values: A primary key value rule defined on a key (a column or set of

columns) specifies that each row in the table can be uniquely identified by the

values in the key.

 Referential integrity rules: A referential integrity rule is a rule defined on a key (a

column or set of columns) in one table that guarantees that the values in that key

match the values in a key in a related table (the referenced value).

According to Oracle (2008a) SQL standard defines referential integrity rules that dictate

what types of data manipulation are allowed on referenced values and how these actions

affect dependent values.

 RESTRICT: Disallows the update or deletion of referenced data.

 SET TO NULL: When referenced data is updated or deleted, all associated

dependent data is set to a NULL value.

 SET DEFAULT: When referenced data is updated or deleted, all associated

dependent data is set to the default value.

 CASCADE: When referenced data is updated, all associated dependent data is

correspondingly updated. When a referenced row is deleted, all associated

dependent rows are deleted.

14

 NO ACTION: Disallows the update or deletion of referenced data. This differs

from RESTRICT in that it is checked at the end of the statement, or at the end of

the transaction if the constraint is deferred.

Triggers are described by Garcia-Molina, et al., (2002) as procedures or programs that

execute whenever a modification of a certain type (for example, insertion of a tuple into

relation) occurs. Triggers are then used to check that the data just entered meets any

constraints that the database designer believes it should satisfy.

 3.4 Transactions

The processes that query and modify the database are called transactions. A transaction,

like any program, executes a number of steps in sequence. Often several of the steps will

modify the database. Each transaction has a state, which represents what has happened so

far in the transaction. The state includes the current place in the transaction's code being

executed and the values of any local variables of the transaction that will be needed later

on (Garcia-Molina, et al., 2002).

Garcia-Molina, et al., (2002) states, that properly implemented transactions are

commonly said to meet the “ACID test,” where

 “A” stands for “atomicity,” the all-or nothing execution of transactions.

 “I” stands for “isolation,” the fact that each transaction must appear to be

executed as if no other transaction is executing at the same time.

 “D” stands for “durability,” the condition that the effect on the database of a

transaction must never be lost, once the transaction has completed.

 “C” stands for “consistency,” the fact that all databases have consistency

constraints or expectations about relationships among data elements (for instance,

a person's date of birth must not be in the future). Transactions are expected to

preserve the consistency of the database.

15

 3.4.1 Logs to protect transactions

System failures are problems that cause the state of a transaction to be lost. Typical

system failures are power loss and software errors. The steps of a transaction initially

occur in main memory, so a power failure will cause the contents of main memory to

disappear. Similarly, a software error may overwrite part of main memory, possibly

including values that were part of the state of the program. Database systems must

therefore implement techniques to support the goal of resilience, which means preserving

the integrity of the data when the system fails in some way. The principal technique for

supporting resilience is a log, which records securely the history of database changes

(Garcia-Molina, et al., 2002).

A log is a sequence of log records, each telling something about what some transaction

has done. If there is a system crash, the log is consulted to reconstruct what transactions

were doing when the crash occurred. Generally, to repair the effect of the crash, some

transactions will have their work done again, and the new values they wrote into the

database are written again. Other transactions will have their work undone, and the

database restored so that it appears that they never executed. The three principal methods

for logging are undo, redo, and undo/redo, named for the way(s) that they are allowed to

fix the database during recovery (Garcia-Molina, et al., 2002).

Recovery is a process whereby the log is used to reconstruct what has happened to the

database when there has been a failure. An important aspect of logging and recovery is

avoidance of situation where the log must be examined into the distant past. Important

technique that databases implement to achieve this is a technique called “checkpointing”,

which limits the length of log that must be examined during recovery (Garcia-Molina, et

al., 2002).

 3.5 Database backup

Garcia-Molina, et al., (2002) suggest, that backups and redundant, distributed copies –

will protect against a catastrophic failure, in which the media holding the database is

16

completely destroyed. Therefore maintaining an archive is crucial for data protection. An

archive is a copy of the database that is periodically created, either fully or incrementally,

and stored at a safe distance from the database itself. Schwartz, et. al. (2008), describe

additional reasons for keeping backups:

 People changing their minds: If a user intentionally deletes some data and then

wants it back.

 Auditing: sometimes it is important to know what the data or schema looked like

at some point in the past because of lawsuits, or application bugs.

 Testing: Easy way to test the application on realistic data is to periodically refresh

a development or staging server with the latest production data.

Schwartz, et. al. (2008) state, that backups are important for availability and disaster

recovery. Backups need to be planned and designed from the start of system engineering

so that they don't cause downtime or reduced performance. It's also extremely important

to verify the backups and build solid recovery procedures. Backups are of little use, if

they don't work, or recovery causes more downtime than is accepted. Schwartz, et. al.

(2008) suggests developing backup and recovery procedures based on answers on these

questions:

1. How much data can be lost without serious consequences? Is point-in-time

recovery needed, or is acceptable to lose whatever work has happened since the

last backup?

2. How fast does recovery have to be? What kind of downtime is acceptable?

3. What is needed to recover the system? Common requirements are to recover a

whole server, or just specific transactions or statements.

MySQL (2008, Ch. 6.1) describe different types of database backups:

 Logical backups save information represented as logical database structure and

content.

 Physical backups consist of raw copies of the directories and files that store

database contents.

 Online backups taken while database server is running.

17

 Offline backups require stopping the database server.

 3.5.1 Logical backups

MySQL (2008a, Ch. 6.1) describes logical backups slower than physical methods

because the server must access database information and convert it to logical format.

Output is also larger than for physical backup, particularly when saved in text format.

Backup and restore granularity is available at the server level (all databases), database

level (all tables in a particular database), or table level. This allows more options for

restoring the data, restoring just a certain part of a database. Backups stored in logical

format are machine independent and highly portable. Database server does not need to be

taken offline for logical backups.

 3.5.2 Physical backups

MySQL (2008a, Ch. 6.1) describes physical backups consisting of exact copies of

database directories and files (Schwartz et. al., 2008, call them raw backups). Physical

backup methods are faster than logical because they involve only file copying without

conversion. Output is also more compact than for logical backup. Backup and restore

granularity ranges from the level of the entire data directory down to the level of

individual files. This may or may not provide for table-level granularity. Physical

backups are portable only to other machines that have identical or similar hardware

characteristics. Backups can be performed while the MySQL server is not running.

If database is running, database vendor tools are required for locking database tables so

no changes can be made (although data can still be read). The underlying files used by

the database are copied to another physical location using O/S commands (such as cp,

scp, tar, rsync), and once the file copy is completed, the database tables are unlocked

(MySQL, 2008b).

18

According to Schwartz et. al. (2008), physical backups are practically a must-have for

large databases; they're fast, which is very important.

 3.5.3 Online versus offline backups

According to MySQL (2008, Ch. 6.1), online backups can take place while the database

server is running so that the database information can be obtained from the server. The

backup is less intrusive to other clients, which can connect to the database server during

the backup and may be able to access data depending on what operations they need to

perform. Care must be taken to impose appropriate locking so that data modifications do

not take place that would compromise backup integrity. Offline backups take place while

the server is stopped. The backup procedure is simpler because there is no possibility of

interference from client activity.

MySQL (2008, Ch. 6.1) describes that a distinction similar to backups between online

and offline applies for recovery operations, and similar characteristics apply. However, it

is more likely that clients will be affected for online recovery than for online backup

because recovery requires stronger locking. During backup, clients might be able to read

data while it is being backed up. Recovery modifies data and does not just read it, so

clients must be prevented from accessing data while it is being restored.

 3.5.4 Snapshot backups

Some file system implementations (for example, LVM, or ZFS) enable “snapshots” to be

taken. These provide logical copies of the file system at a given point in time, without

requiring a physical copy of the entire file system. For example, the implementation may

use copy-on-write techniques so that only parts of the file system modified after the

snapshot time need be copied (MySQL, 2008a, Ch. 6.1). According to Schwartz, et. al.

(2008), snapshot-capable file systems can create a consistent image of their contents at an

instant in time, which can then be used to make a backup.

19

 3.5.5 Backups from replication slave

Replication slave can be used as a backup solution, by replicating data from the master to

slave, and then backing up the data slave using logical or physical backups. The slave can

be paused and shut down without affecting the running operation of the master, so it is

possible to produce an effective snapshot of “live” data. Other option is to put the slave in

a read-only state while doing the backup. Slave can then be changed back to read/write to

continue the replication (MySQL, 2008a, Ch. 16.2.1).

 3.6 Using RAID to protect data against media failures

A local failure of a disk, one that changes only a bit or a few bits, can normally be

detected by parity checks associated with the sectors of the disk. Garcia-Molina, et al.,

(2002) advices handling major failures of a disk, principally head crashes, where the

entire disk becomes unreadable, by using a RAID scheme. RAID is a computer data

storage scheme that can divide and replicate data among multiple hard disk drives.

20

 4 AVAILABILITY OF THE APPLICATION

Chaurasiya, et. al. (2007) describe high-availability clusters (also known as HA clusters

or fail-over clusters) as computer clusters that are implemented primarily for the purpose

of improving the availability of services which the cluster provides. They operate by

having redundant computers or nodes which are used to provide service when some of

the nodes experience downtime. HA clustering detects hardware/software faults, and

immediately restarts the application on another node without requiring administrative

actions. As part of this process, clustering software may configure the node before

starting the application on it. For example, appropriate file systems may need to be

imported and mounted, network hardware may have to be configured, and some

supporting applications may need to be started.

Users experience the disruption in availability whether or not the downtime was planned,

as explained in Chapter 2.3. Scheduled maintenance can cause the same amount of

disruption as hardware failure. Chaurasiya, et al., (2007) describe that with HA clusters

these kind of problems can be avoided by simply switching the services to another node

and temporarily removing the node needing maintenance from the cluster. Once the work

is done, the machine can be brought back into the cluster.

 4.1 Planning for High Availability

Implementing high availability is a process where redundancy is built into the system,

systems are made to bring replacements online when something fails. Schwartz, et al.,

(2008) define planning process for high availability including the following points:

1. The most important principle of high availability is to find and eliminate single

points of failure in the system. To identify such points, system architect can go

through the application and consider the individual parts. Is any hard drive, a

server, a switch or router, or the power for one rack such point? Are all the

machines in one location, or are the machines intended for redundant use

provided by the same company. Other common single points of failure are

21

reliance on services such as DNS, a single network provider, and a single power

grid. Risks also include human factors, like malicious attackers or programmer

mistakes that delete or corrupt data. Planning for high availability requires a

balanced view of the risks. Any point in the system that isn't redundant is a single

point of failure.

2. Plan over switching (or failing over) to a standby system in the event of a failure,

upgrade, application modification, or scheduled maintenance. Anything that

makes the application unavailable might require a fail-over plan that also

identifies how fast that fail-over needs to be. Related question is how quickly

system administrator can replace the failed component after a fail-over.

3. Losing data might still be possible even if application doesn't go offline for

extended period of time. If server fails, data can be lost, for example the last few

transactions that was written to the database log and didn't make it to a slave's

relay log. Replication techniques to address this are detailed in Chapter 5.6.

4. Separating critical and noncritical parts of the application can save a lot of work

and money, because it's much easier to provide redundancy and high availability

for a smaller system.

 4.2 Fail-over and fail-back

Schwartz, et. al., (2008) define fail-over as the process of removing a failed server and

using another server instead. This is one of the most important parts of high-availability

architecture. Fail-back is the reverse of fail-over. When server A fails and server B

replaces it, the server A can be repaired and failed back to it. Schwartz, et. al., (2008)

also state, that full fail-over solution should, at a minimum, to be able to monitor and

automatically replace a server. This should ideally be transparent to the application. Load

balancing need not provide this capability.

For fail-over to work, the system needs multiple copies of each hardware. Henderson

(2006, 208) categorizes the spare pieces to be cold, warm, or hot copies.

22

 Cold spare requires setup and configuration (either physical or in software) before

it can take over for the failed component. Cold spare might be used for something

like a network switch.

 A warm spare is a piece of hardware that is all configured for use and just needs

to be turned on either physically or in software to start using it. A typical example

might be a MySQL system with a production master and a backup slave. When

the master dies all traffic can be redirected to the slave, including writes, turning it

into a new slave.

 Hot spare is like a warm spare, but needs no configuration to take over the failed

component. The transition happens without any user intervention. For example,

two load balancers might be configured in an active/passive pair. The active

balancer is taking all the traffic, talking to the backup balancer via a monitoring

protocol. The active load balancer fails, and the passive load balancer stops

getting a heartbeat from it. It immediately knows to take over and starts receiving

and processing the traffic.

Henderson (2006, p. 209) also makes a distinction between active/passive redundant

pairs, and active/active pairs or clusters. An active/passive pair consists of online

production device and one hot backup that is not being used. An active/active pair uses

both of the devices simultaneously, moving all traffic to a single device when the other

fails. These setups are used in MySQL replication, which is detailed in Chapter 5.6.

Henderson (2006, p. 209) also recommends using active/active clusters, for a few

reasons. First, machines that take up rack space and draw power but don't contribute

anything to the running of the application seem like a waste. Second, when machines lie

idle, there's more change that something will fail when they come to be used.

Fail-back functionality is not always necessary. If two redundant components are

identical, for instance, either of the two components would be as good as the other, active

component can be chosen arbitrarily. Once fail-over to passive node happens, it can be

the new active node even after the failed node is repaired. According to Henderson (2006,

p. 209) this also avoids situation called “flapping”. In some configurations, components

23

may appear dead due to some software issues, so fail-over happens. Once traffic is

removed from the dead component, it appears to start working again, so traffic moves

back to it. The traffic causes it to fail (or appear to fail) again, so traffic moves to the

spare. This is called flapping, because the traffic flaps between one component and

another.

 4.3 High-availability clusters

High-availability clusters consist of cluster nodes that are computers providing some

services. Clusters are seen outside as one system, providing only one common place of

connectivity. In the context of web service clusters, this commonly includes:

 Virtual IP address, that is shared between cluster nodes and is used to

communicate between the cluster and its users.

 A web server software

 A database server

 A file server

Clusters can also provide storage as a resource, using software like DRBD (see Chapter

5.8) or shared cluster file systems to replicate the storage across nodes.

24

Figure 1. A high-availability cluster with a Virtual IP and MySQL database resource (LINBIT, 2008).

High-availability cluster needs a resource manager that is responsible for starting and

stopping the cluster services (IP addresses, web servers, databases). Services managed by

CRM (Cluster Resource Manager) are typically removed from the system startup

configuration. Rather than being started at boot time, the cluster manager starts and stops

them as required by the cluster configuration and status. If a machine (a physical cluster

node) fails while running a particular set of services, CRM will start the failed services on

another machine in the cluster, therefore providing fail-over functionality over cluster

managed resources. The CRM is typically capable of automatically migrating resources

back to a previously failed node, as soon as the node recovers, thus providing fail-back

functionality. Figure 1 represents two-node fail-over system managed by a Heartbeat

Cluster Resource Manager (Haas, et al., 2010, Ch. 9).

 4.4 High-availability cluster software

Heartbeat

NIC

IP: 192.168.0.1

VIP: 192.168.1.99

Heartbeat

Database

NIC

IP: 192.168.0.2

Client

access

Heartbeat

Database

25

Heartbeat is a daemon that provides cluster infrastructure services (communication,

membership) to cluster members. This allows cluster members to know about the

presence or disappearance of peer processes on other machines and to easily exchange

messages between them (Linux-HA, 2010).

Within heartbeat cluster each node sends a “heartbeat” signal to the other nodes in the

cluster. The other cluster nodes monitor this signal. The signal can be transmitted over

many different systems, including shared network devices, dedicated network interfaces

and serial connections (MySQL, 2008a).

Heartbeat comes with a primitive cluster resource manager (CRM). However it is only

capable of managing 2 nodes and does not detect resource-level failures. More powerful

manager was spun-off from the Linux-HA project to become the Pacemaker project.

Pacemaker

Pacemaker is the successor of cluster resource manager in Heartbeat. Pacemaker project

home page describes it being capable of managing clusters of practically any size

(Cluster Labs, 2009).

Multi-Master Replication Manager for MySQL

Multi-Master Replication Manager for MySQL is a set of scripts that perform

monitoring, fail-over, and management of master-master replication configurations.

Despite its name, it can automate the fail-over process for other topologies as well,

including simple master-slave and master-master configurations with one or many slaves.

It uses the abstraction of a role, such as reader or writer, and a mixture of permanent and

floating IP addresses (Hofmann, 2009).

Commercial software

Commercial solutions are available from Microsoft and Oracle among others that provide

their own solutions for building HA clusters. For Windows platforms, Microsoft

Windows 2008 Server operating system provides many high-availability features such as

26

Failover clustering, Network Load Balancing, Shadow Copy, Windows Server Backup,

Windows Recovery and Storage Solution Availability. Microsoft (2009) claims, that

because Failover Clustering is included in some editions of Windows Server, setting up

such a system can be less expensive than comparable commercial solutions, which can

cost thousands of dollars.

27

 5 PERFORMANCE AND SCALABILITY

The demands for scaling and high availability often go together. High availability isn't as

important when the application is small, for obvious reasons: it usually runs on a single

server, so a server failure is less likely. Along with a growing number of servers, the

probability of a server failing grows at the same rate. Schwartz, et al., (2008, p. 410)

define scalability as an ability to add capacity as needed without reducing performance. If

the application is scalable, more servers can be plugged in to handle the load, and

performance problems disappear. If it's not scalable, system administrator can find

himself concentrating on the performance problems, trying to tune servers, and so forth.

This is focusing on symptoms, not the root cause, and can be avoided by planning for

scalability.

 5.1 Load balancing

When scaling system vertically, spreading load between the various processors and

resources is a job of the operating system scheduler. New problems appear when scaling

horizontally, because there's no operating system to spread requests between multiple

nodes. Typical case for load balancing is multiple requests coming to in to the same IP

address, which need to be serviced with multiple nodes.

 5.1.1 DNS load balancing

According to Henderson (2006, p. 214), the easiest way to load balance between a couple

of web servers is to create more than one “A” record in the DNS zone for the applications

domain. DNS servers shuffle these records and send them back in a random order to each

requesting host. However, adding or removing any nodes from the pool is a slow process.

It could take up to a couple of days to make a change to the zone that appears for all

users. For this and other reasons DNS load balancing is not a very practical solution.

28

 5.1.2 Hardware load balancing

According to Henderson (2006, p. 214), the most straightforward way to balance requests

between multiple machines in a pool is to use a hardware appliance. It is plugged in,

configured and ready to start serving traffic. Compared to DNS, adding and removing

real servers from the VIP (Virtual IP) happens instantly. Hardware load-balancing allows

the creation of completely automated fail-over clusters. When a real server in the VIP

pool dies, the load balancer can detect this automatically and stop sending traffic to it.

Hardware load-balancing devices tend to be very expensive, prices starting at five figures

and going up. An example of hardware load-balanced network is shown in Figure 2.

Figure 2. An example of application setup with hardware load balancing (Schwartz, et al., 2008, p. 437).

Load balancer

master

Database

Web

server

Web

server

Web

server

Web

server

Load balancer

slave

Database

slave

Database

slave

Database

Read

queries

Write

queries

Read

queries

Replication

29

 5.1.3 Software load balancing

Load balancing can be done on the software level, using server software running on a

regular machine instead of a load-balancing operating system running on an ASIC.

Henderson (2006, pp. 217-218) describes that software load-balancing does not typically

need special hardware, and the costs are pretty low compared to hardware appliances.

 5.2 Scalability planning

According to Schwartz, et al., (2008, p. 412), the hardest part of scalability planning as

estimating how much load the application needs to be able to handle. This estimation

should be in the order of magnitude accuracy. If it's overestimated, resources will be

wasted on development, and if it's underestimated, system will be unprepared for the

load.

While hardware appears expensive at the beginning of any project, as time goes on, the

cost of software becomes much more expensive (up to a certain point, when the two cross

back over for huge applications). Because of this, Henderson (2006, p. 204) recommends

building the application to grow such that it requires little to no software work to scale; it

is better to just buy and rack more hardware.

Schwartz, et al., (2008, p. 376) describe a few easy things to do before making big

scaling efforts:

 Optimize performance: It is often possible to get significant performance

improvements from relatively simple database changes, such as indexing tables

correctly or using a different storage engine. Administrator can get immediate

insight into database performance by analyzing the slow query log.

 Buy more powerful hardware: Buying more hardware works well if the

application is either small or designed so it can use more hardware well. This is

common for new applications, which are usually very small or reasonably well

30

designed. This is in contrast to older application, where buying more hardware

might not work, or might be too expensive.

 5.3 Vertical scaling, or scaling up

The principle of vertical scaling is simple. As each server runs out of capacity, it is

replaced with a more powerful server. The benefits of vertical scaling are that it's really

easy to design for. Vertical scaling might be a valid solution in early stages of application

life. When the application is still in prototype stage, it's more convenient to allocate most

of the resources to development efforts, and worry about scaling later.

According to Henderson (2006, p. 204), the problem with this model is that the cost

doesn't scale linearly. Figure 3 shows a price comparison for increasing the number of

processors, amount of RAM, and disk capacity in a system, going either the route of

buying a bigger and bigger server, or buying multiple smaller servers.

Figure 3. Costs of scaling with a small number of powerful servers vs. with a large number of small servers

Henderson (2006, p. 205).

31

As can be seen from the Figure 3, the price growth for vertical scaling is exponential, and

the available funds eventually place a limit for the scaling.

 5.4 Horizontal scaling, or scaling out

The way in which horizontal scaling differs from vertical scaling is that instead of buying

more powerful hardware, more regular servers are added to the system. Henderson (2006,

p. 206) advices finding the TCO (Total Cost of Ownership) and computing power sweet

spot, where money buys the best performance, to help plan hardware purchases. As time

goes by, this price point will differ so the ideal hardware also changes over time. An

application that requires identical servers is going to become expensive or impossible to

scale over time, while an application that can mix and match whatever is cheapest is

going to remain cheap.

According to Henderson (2006, p. 206), it is good practice to keep each node in a cluster

(such as the web server cluster) the same. Otherwise the system grows more complex to

manage. In a system where all nodes are identical, new boxes can be simply cloned as

needed.

For horizontally scalable systems, while the hardware will scale linearly, the performance

of the software running on top of it might not. For example, software that needs to

aggregate results from all nodes in a cluster, or swap message among all of its peers, will

not scale linearly but rather gives diminishing returns. With each new server, the amount

of extra capacity decreases. Ideally software should be designed so that it always scales

linearly, but this is not always practical. Henderson (2006, p. 207) recommends to

monitor the situation when adding more hardware will start to get too expensive from the

cost/benefit point of view. At that point it is recommended to scale vertically and replace

the existing nodes in the cluster with more powerful machines. This mixture of horizontal

and vertical scaling gives the benefits of both: software can be designed more easily and

the most expensive servers available are not needed.

32

 5.5 Functional partitioning

Functional partitioning is a type of horizontal scaling that Schwartz, et al., (2008, p. 376)

describe as division of duties. Division can be done by dedicating individual servers or

nodes to different applications, so each contains only the data its particular application

needs. For example, a web site with distinct sections that don't need to share data, can be

partitioned to different nodes. An example of such partitioning is presented in Figure 4.

Figure 4. An example of functional partitioning for website with distinct sections (Schwartz, et al., 2008, p.

416).

Database clustering that is described in Chapter 5.7.1 is also a form of functional

partitioning.

Web

server

Database

Support

Database

News

Database

Forums

Clients

33

 5.6 Database replication

Database replication is a form of vertical scaling. Data is replicated between multiple

machines, giving us multiple points to read from. Replication has various modes, that all

allow systems to expand read capacity over multiple machines by keeping multiple

replicas of the table data on multiple machines.

Replication can be set up for almost any configuration of masters and slaves; however

more complex modes rely on a few basic topologies. Replication is here detailed by

describing MySQL replication modes. Other database products usually have the same

basic topologies. Henderson (2006, pp. 232-237) describes the different basic replication

modes on MySQL as master-slave replication, tree replication and master-master

replication.

 5.6.1 Master-slave replication

Simplest replication configuration is a single master/slave setup. All the write operations

– inserts, updates, deletes and administrative commands such as creates and alters – are

performed on the master. Figure 5 represents the master-slave replication setup.

34

Figure 5. An example of master-slave replication sharing reads and master handling all the writes

(Henderson, 2006, p. 233).

As the master completes operations it writes them to a logfile. In MySQL this logfile is

called the binary log (binlog). When the slave starts up, it connects to the master and

keeps the connection open. As events are written to the master's binlog, they get

transmitted down to the slave, which writes them into a relay log. This connection is

called the replication I/O thread at the slave end and a slave thread at the master end. The

slave has a second thread always active called the slave SQL thread. This thread reads

events from the relay log and executes them sequentially.

By copying the events performed on the master, the dataset on the slave get modified in

exactly the same way as the master. The slave can then be used for reading data, since it

has a consistent copy of the contents on the master. Any changes written to the slave do

not get replicated to the master. Replication process in MySQL is shown in Figure 6.

Database

Slave

Database

Master

Clients

Reads and writes

Reads

Replication

35

Figure 6. MySQL replication process (Schwartz, et al., 2008, p. 346).

Read capacity can be increased further by adding more slaves to the master. Each slave

has its own I/O and SQL threads, relaying the binlog from the master simultaneously.

Slaves aren't guaranteed to be in sync with each other as a faster machine will be able to

execute writes faster than its siblings (Henderson, 2006, pp. 232-234).

 5.6.2 Tree replication

Replication tree is created by turning some slaves into a master for further machines. This

is done to limit the number of slaves talking to any single master. Some large web

applications can have hundreds of slaves per master. The bandwidth required by the

master to replicate to all slaves can become substantial because each slave requires a

unicast notification of each event, all coming from a single NIC on the master. Each slave

requires a thread on the master and at some point the thread management and context

switching becomes a significant load (Henderson 2006, p. 234).

MySQL

Data

changes

Binary log

MySQL

Relay log

I/O thread

SQL thread

MASTER
SLAVE

Read
Replay Read Write

36

 5.6.3 Master-master replication

Master-master replication setup has a pair of servers, each of which is a slave of the

other. Each server reads the binary logs of the other, but a feature of the replication

system avoids a server replaying an event that it generated. It is also possible to expand

the pair of masters by considering it as a two-machine ring. Any number of servers can

be added to this ring as long as each machine is a master to the machine after it and a

slave of the machine before it.

Schwartz, et al., (2008, pp. 363-366) describe two modes for master-master replication,

active-active mode and active-passive mode. Active-active mode involves two servers,

each configured as both a master and a slave of the other. Figure 7 represents master-

master replication in active-active mode.

Figure 7. An example of master-master replication in active-active mode (Henderson, 2006, p. 237).

Schwartz, et al., (2008, pp. 363-366) describe few problems associated with active-active

mode:

Database

Master

Database

Master

Clients

Reads and some writes

Replication

Reads and some writes

37

 Updates that happen in a different order on the two machines can cause the data to

become out of sync silently. For example, if two writes change the same row on

the same table simultaneously. Henderson (2006, p. 237) writes, that as a

workaround the application code can be partitioned to make writes for some

tables to server A and writes for other tables in server B.

 If replication stops with an error, but applications keep writing to both servers,

both of the servers will have changes that need to be copied on the other

manually.

 There's no single “true” copy of the data – at any time the data on all the machines

will vary (if there's traffic), with some records existing on some portion of servers

before they're replicated around. Achieving consistent reading results, for

example the exact value of a row at any time, can then become a problem.

The other mode is called active-passive. Main difference to active-active is that one of

the servers is a read-only “passive” server. Active-passive mode largely avoids the

problems described with active-active mode. Active-passive mode allows swapping the

active and passive server roles back and forth very easily, because the servers'

configurations are symmetrical. This makes it easy to implement high-availability

techniques fail-over and fail-back described in Chapter 4.2.

 5.6.4 Ring replication

Master-master replication is actually a special form of ring replication, or multi-master

replication. Rings of masters can be created with any number of servers as long as each

machine is a master to the machine after it and a slave of the machine before it.

Henderson (2006, p. 237) describes that one of the downsides to a multi-master approach

is that there’s no single “true” copy of the data – at any time the data on all the machines

will vary (assuming there’s traffic), with some records existing on some portion of

servers before they’re replicated around. To get to know the exact value of a row at any

time requires stopping writes to all machines, waiting for replication to catch up, and then

performing the read, which is not really practical in a production system.

38

 5.6.5 Comparison of replication topologies in MySQL

Benefits and drawbacks of different replication topologies explained in previous Chapters

are represented in Table 2.

Table 2. Comparison of replication modes in MySQL (Henderson, 2006, Ch. 9).

Mode Benefits Drawbacks

Master-slave Easy way to increase

read capacity almost

linearly

 Transactions are not

replicated as

transactions. For a

short time slave does

not have

transactional

integrity while

executing the writes

that comprises a

transaction.

 Does not scale write

capacity.

Tree Allows to limit the

number of slaves

talking to single

master, easing the

load on the master.

 If any middle-tier

slave goes down, the

slaves beneath it will

stop replicating and

go stale.

 Each write event

takes longer to hit

the bottom-tier

slaves.

39

Mode Benefits Drawbacks

Master-master in active-

active mode

 Allows increasing

the write and read

capacity.

 Increases

redundancy by

having no single

point of failure.

 There is not single

“true” copy of the

data.

Master-master in active-

passive mode

 Increases

redundancy by

having no single

point of failure.

 Easy implementation

of fail-over and fail-

back techniques.

 Very little, good all

around

configuration.

Multi-master or ring

replication

 Allows to share read

and write load

between all nodes.

 There’s no single

true copy of the data

 A failure in a single

machine will cause

all machines after it

in the chain (with the

exception of the

machine just behind

it) to become stale.

Schwartz, et. al., (2008) write, that since fail-back is the most important part of fail-over,

symmetrical replication topologies should be preferred, such as the dual-master

configuration, and asymmetrical like ring replication with three or more co-masters

should be avoided. If the configuration is symmetrical, fail-over and fail-back are the

40

same operation in opposite directions. Fail-over and fail-back are described in more detail

in Chapter 4.2.

 5.6.6 Synchronous replication

MySQL replication is asynchronous. When a master fails, the most recent transactions

can be lost because they might not have been copied to a slave. In synchronous

replication, a transaction cannot complete on the master until it commits on one or more

slave servers. MySQL does not provide synchronous replication with MySQL Server.

However, MySQL also offers MySQL Cluster database, which supports synchronous

replication. MySQL Cluster is a real-time open source transactional database designed for

fast, always-on access to data under high throughput conditions. See Chapter 5.7.3 for

more details about MySQL Cluster.

Another option is third-party provided solidDB Storage Engine for MySQL Server.

solidDB Storage Engine for MySQL is a multi-threaded storage engine that supports full

ACID compliance with all expected transaction isolation levels, row-level locking, and

Multi-Version Concurrency Control (MVCC) with non-blocking reads and writes.

solidDB is designed for mission-critical systems that require a robust, transactional

database (MySQL, 2008a, Ch. 13.2).

 5.7 Database partitioning

One approach to database vertical scaling is replication detailed in Chapter 5.6. However,

Schwartz, et al., (2008, p. 376) suggest, that replication can help database administrator

with only so far to scale the system for more reads. Slaves can split the amount of reads

between themselves, but writes are also increasing at the same rate. Each slave has to

write the same amount of queries in replication. This is why more and more slaves are

needed to increase the read capacity by the same amount. The master-master topology

described in Chapter 5.6.3 theoretically shares the writes to both nodes, but still can't

handle as many writes as a single server.

41

To allow database to scale writes as well as reads, it must be divided into chunks. This

technique is called database partitioning. Henderson (2006, Ch. 9) describes the two main

techniques to do partitioning as vertical partitioning, which is also known as clustering,

and horizontal partitioning also called as federation or sharding.

 5.7.1 Clustering

Henderson (2006, p. 241) describes clustering as splitting a database into multiple chunks

or clusters, each of which contains a subset of all tables. This typically involves a large

amount of application change. By identifying which queries operate on which tables,

database dispatching layer can be modified to pick the right cluster of machines

depending on the tables being queried. Each cluster can be a single machine or structured

according to any replication technique to suit the needs of the various tables they support.

Clustering large database is shown in Figure 8.

Figure 8. Database clustering (Henderson, 2006, p. 241).

Table2

Table1

Cluster

6 Tables

Large database with

Table4

Table3

Cluster

Table6

Table5

Cluster

42

Schwartz, et al., (2008, p. 412) suggest, that clustering is not a common way to partition

data, because it's very difficult to do effectively and it doesn't offer any advantages over

other partition methods.

 5.7.2 Sharding

Slicing tables into arbitrarily sized chunks allows system administrator to add more

hardware to increase both read and write capacity. This is called federation or sharding,

the horizontal scaling equivalent for databases. Increasing the number of chunks can be

done as the size of the dataset and the number of queries changes, always keeping the

same amount of data and same query rate on each chunk. The chunks of data and the

machines that power them are usually referred to as shards or cells, but are sometimes

also called clusters. Figure 9 shows an example of sharding large table based on user ids.

Figure 9. An example of sharding large table based on user ids (Guerrero, 2007).

Sharding can be done on the application level, meaning that application has code that

handles the connections to the right shard. According to Henderson (2006, pp. 242-244)

performing sharding yourself can be quite difficult compared to letting the DBMS handle

ID 1-999

Sharded Table

Load balancer or Application Logic

ID 1000-1999

Sharded Table

ID 2000-2999

Sharded Table

43

it. Selecting a range of data from a table that has been split across multiple servers

becomes multiple fetches with a merge and sort operation. Join between federated tables

become impossibly complicated. To address this, application data must be sharded in

such as way that all the records user needs to fetch together reside on the same node.

Schwartz, et al., (2008) are advising to shard only the dataset that will grow very large.

As an example, a blogging service with 10 million users might not need to shard the user

registration information, but if there are 500 million sharding is probably required. The

user generated content, such as posts and comments, will almost certainly require

sharding in either case, because these records are much larger and there are many more of

them.

 5.7.3 Software for database partitioning

MySQL Cluster

MySQL Cluster is separate product from MySQL AB that is based on NDB storage

engine. It is a distributed, in-memory, shared-nothing storage engine with synchronous

replication and automatic data partitioning with load balancing across the nodes. It is

built to have no single point of failure. It can also achieve consistent response times,

making it suitable for real-time applications (Sun Microsystems, 2010).

MySQL Cluster can store data either on disk or in memory. It can do this safely, because

all data is distributed evenly across nodes. By storing and distributing data in a shared-

nothing architecture, (that is without the use of a shared-disk) if a data node does fail,

there will always be at least one additional node storing the same information. Since all

data in the database is automatically replicated on multiple data nodes within the same

node group, data is synchronously replicated during transactions, that is, the effect of

each transaction is propagated to all the appropriate data nodes during the transaction. If a

data node fails during a transaction, it is aborted and the application is informed so that it

can roll-back and restart the transaction (Sun Microsystems, 2010).

44

Sun Microsystems (2010) describes MySQL Cluster especially suited for demanding data

management solutions, like telecommunications operations and finance. MySQL Cluster

works on most commodity hardware and OS platforms, requiring no special platforms or

vendors. Sun Microsystems (2010) claims this results in substantially lower TCO

compared to comparable commercial systems, making it a cost-effective database

solution for mission critical applications. A commercial licensing and support package

offering additional features for enterprise use is called MySQL Cluster Carrier Grade

Edition.

memcached

According to MySQL (2008a, Ch. 14), memcached is a simple, yet highly scalable key-

based cache that stores data and objects into system RAM (Random Access Memory) for

a very quick access by applications.

Memcached is popularly used in combination with web application and MySQL to

reduce the number of reads from the database. The application first tries to load the data

from the memcached cache. If the data is not found from the cache, the database is

queried and the results are written to the cache.

Advantages of using memcached according to MySQL (2008a, Ch. 14) are:

 memcached can be used to store entire objects that might normally consist of

multiple table lookups and aggregations, so the speed of the application can be

significantly increased because the requirement to load data directly from the

database is reduced or even eliminated.

 Because the cache is entirely in RAM, the response time is very fast.

 The information can be distributed among many servers to make the best use of

any spare RAM capacity.

MySQL (2008a, Ch. 14) therefore recommends memcached for high scalability situations

having a very high number of reads, particularly of complex data objects that can easily

be cached in the final, usable, form directly within the cache.

45

 5.8 Block level replication

Alternative to database replication is to replicate the data in the block device level. That

means mirroring a whole block device via an assigned network. Block devices are

devices, which the operating system moves data in the form of blocks. In some sense this

can be understood as network based RAID1. For more details about RAID, see Chapter

3.6. Implementing replicated data storage and putting the application code along the

database files on the same place allows both to be replicated with the same process.

DRBD (Distributed Replicated Block Device) is software that implements block level

data replication. LINBIT (2008) describes DRBD as a software-based, shared-nothing,

replicated storage solution for mirroring the content of block devices (hard disks,

partitions, logical volumes etc.) between servers. DRBD is originally developed by Li

HA-Solutions GmbH, an Austrian company, and released to open source under GPL

(Gnu General Public Licence) (LINBIT, 2008).

Figure 10. DRBD architecture overview (MySQL, 2008a, Ch. 14.1)

PRIMARY

System data

Data filesystem

DRBD device

Disk device

SECONDARY

System data

DRBD device

Disk device

Network

sync

sync

46

According to LINBIT (2008), DRBD's core functionality is implemented by way of a

Linux kernel module. DRBD constitutes a driver for a virtual block device, so DRBD is

situated at the bottom of a system's I/O stack. DRBD currently supports replication

between two cluster nodes. Figure 10 represents two node DRBD cluster architecture.

 5.8.1 DRBD operation modes

DRBD offers two operation modes, single-primary mode and dual-primary mode. In

single-primary mode, any resource is, at any given time, in the primary role on only one

cluster member. Single-primary mode guarantees that only one cluster node manipulates

the data at any moment. This mode can be used with any conventional file system (ext3,

XFS etc.). Deploying DRBD in single-primary mode is often used approach to implement

storage for high availability clusters with fail-over capability (see Chapter 4.2) (Haas, et

al., 2010).

The other mode is dual-primary mode. Dual-primary mode offers concurrent access to

the the between the cluster nodes. This mode requires the use of a shared disk file system

that uses a distributed lock manager. Examples include GFS (Global File System) and

OCFS2. Deploying DRBD in dual-primary mode is the preferred approach for load-

balancing clusters which require concurrent data access from two nodes (Haas, et al.,

2010).

 5.8.2 DRBD replication modes

DRBD supports three distinct replication modes, allowing three degrees of replication

synchronicity. Haas, et al., (2010) describe them as follows:

 Asynchronous replication protocol (protocol A). Local write operations on the

primary node are considered completed as soon as the local disk write has

occurred, and the replication packet has been placed in the local TCP send buffer.

In the event of forced fail-over, data loss may occur. The data on the standby node

47

is consistent after fail-over, however, the most recent updates performed prior to

the crash could be lost.

 Memory synchronous (semi-synchronous) replication protocol (protocol B).

Local write operations on the primary node are considered completed as soon as

the local disk write has occurred, and the replication packet has reached the peer

node. Normally, no writes are lost in case of forced fail-over. However, in the

event of simultaneous power failure on both nodes and concurrent, irreversible

desctruction of the primary's data store, the most recent writes completed on the

primary may be lost.

 Synchronous replication protocol (protocol C). Local write operations on the

primary node are considered completed only after both the local and the remote

disk write have been confirmed. As a result, loss of a single node is guaranteed

not to lead to any data loss. Data loss occurs only if both nodes (or their storage

subsystems) are irreversibly destroyed at the same time.

The choice of replication protocol is influenced by two requirements: data protection and

system latency. Asynchronous replication protocol offers the best latency, while

Synchronous replication protocol offers best protection for data.

48

 6 SOFTWARE ENGINEERING

Goal of this thesis as explained in Chapter 1 is to explore engineering options for web

applications that handle business critical functions. A sample system was built for this

thesis in order to be a testing ground for different engineering decisions. The system

consists of:

 Operating system providing necessary background functions, like scheduled tasks

 A web server

 A database server

 Various other services, like email and monitoring

Requirements set for this kind of application in Chapter 2 guide the building of the

system.

 6.1 Options for data protection

In the example application MySQL was chosen as the RDBMS. MySQL is an open

source database product from MySQL AB. MySQL offers these necessary RDBMS

features built-in that are used to ensure data integrity described in Chapter 3:

 Multiversion concurrency through InnoDB storage engine

 Transactions through InnoDB storage engine

 Foreign key constraints through InnoDB storage engine

 Replication

The application's database schema is normalized, which means there exists multiple

references between the tables. User operations sometimes involve updating data on

multiple tables. InnoDB was chosen as the storage engine, because of the benefits it

offers over the MySQL default storage engine, MyISAM. InnoDB was designed for

transaction processing, and therefore is highly suitable for processing many short-lived

transactions. This ensures, that user operations are completed in full, or, when an error

49

occurs, are rolled back completely without leaving orphaned data in the tables (Schwartz,

et al., 2008, p. 19).

 6.1.1 Database table structure

Database schema is designed to guarantee data referential integrity. Figure 11 shows part

of the application database schema. For example, clients-table has a column “id”, which

is 10 numbers long integer. The column also has a PRIMARY KEY index on it. Invoices

table has column “client_id”, which is a FOREIGN KEY to the “id” column in clients-

table. This FOREIGN KEY constraint enforces, that no invoice can be created, which

doesn't reference to existing row in the clients-table.

50

Figure 11. Screenshot from MySQL Workbench program showing a subsection of application database

schema diagram.

Moreover, “client_id” column in invoices-table has a CASCADE referential constraint

with “id” column in clients-table. This constraint enforces, that whenever a client row is

deleted from the clients table, all referencing rows from invoices table will be deleted

also. Referential constraints were described in Chapter 3.2.

51

 6.1.2 Backing up data

Replication is not a substitute for backups and therefore it is critical that regular backups

are made of database data. Table 3 describes advantages and disadvantages between

various MySQL backup methods.

Table 3. Comparison of MySQL backup methods (MySQL, 2008a, Ch. 6.1 and Schwartz, et. al. 2008, Ch.

11).

Method Advantages Disadvantages

Backup from

replication slave

 Does not disturb the master

server

 Allows effective snapshots of

“live” data

 The slave

might not have

the same data

as the master.

Data

mismatches

are common,

and MySQL

has no way to

detect this

problem.

mysqldump Backup granularity is available at

all levels, server, database or

individual table.

 Backups are machine

independent and highly portable.

 Does not require taking MySQL

server offline.

 Slower than

physical

backup

methods.

 Output is

larger than for

physical

backup

methods.

52

Method Advantages Disadvantages

mysqlhotcopy (for

MyISAM tables),

ibbackup (for InnoDB

tables), etc.

 Faster than logical because they

involve only file copying without

conversion.

 Output is more compact than for

logical backup.

 Backup

granularity

ranges from

the level of the

entire data

directory down

to the level of

individual

files.

Depending on

the storage

engine, this

may not

provide table-

level

granularity.

 Backups are

portable only

to other

machines with

similar

hardware

characteristics.

53

Method Advantages Disadvantages

File system snapshots

(with LVM, or ZFS)

with physical backups

 Taking a snapshot even for a

large amount of files is a very

fast operation

 File system

performance

storing

database files

can be

substantially

slower during

the

snapshot/back

up process

Choosing the right backup tool depends on the requirements for backup and recovery

procedures. If only 30 minutes of lost work is acceptable, database should be backed up

in 30 minutes intervals. If it's important to be able to restore a database to a certain point

in time, binary logs should be backed up as well with database data to be able to do point-

in-time recovery.

Schwartz, et. al. (2008) suggests doing file system snapshots with LVM or ZFS and

backing up the database from the snapshot as a great way to make non-disturbing online

backups. Additionally, doing physical backups for large databases is preferred because of

their speed advantage over logical backups. They also recommend backing up binary logs

in order to enable point-in-time recovery. Snapshot backups look like a preferred method

of doing backups for business critical web applications.

 6.2 High availability setup

Requirements for the availability of the system were defined in the Chapter 2.3. Most

important aspect for fulfilling these requirements is to find a reliable replication

mechanism for database data. Two possible alternatives for data replication were

54

described in Chapter 3: database replication and block level replication. Table 4 details

advantages, disadvantages and recommended uses between software products that use

either of these two approaches.

Table 4. Comparison of replication software (MySQL, 2008a, Ch. 14).

Product Advantages Disadvantages

MySQL Server

(database

replication)

 Because replication is

asynchronous, it can be

started and stopped at any

time.

 Data can be replicated from

one master to any number of

slaves, making replication

suitable in environments with

heavy reads, but light writes

(this includes many web

applications), by spreading

the read load across multiple

servers.

 Supports multiple active

masters.

 Because of the

asynchronous

replication, there is

no guarantee that data

on master and slaves

will be consistent at

any given point in

time. This can cause

problems in

applications where a

write to the master

must be available for

a read on the slaves

(for example a web

application).

55

Product Advantages Disadvantages

MySQL Cluster

(database

replication)

 Offers multiple read and write

nodes for data storage,

allowing the write and read

load to be spread across

multiple servers.

 Provides automatic failover

between nodes. Only

transaction information for

the active node being used is

lost in the event of a failure.

 Offers synchronous

replication.

 Allows nodes to be added

dynamically to running

clusters and on-line updates to

live database schema.

 Nodes within the

cluster should be

connected on the

same high-speed

LAN (Gigabit

Ethernet

recommended);

geographically

separate nodes are not

supported.

DRBD in single

primary mode

(block level

replication)

 Can guarantee data integrity

across two servers in the

event of hardware or system

failure by using synchronous

replication.

 More robust design and usage

than in database replication,

because the block device the

data is written to is replicated,

not the data itself.

 Only provides a

method for

duplicating data

across nodes.

Secondary nodes

cannot use the DRBD

device while data is

being replicated.

 Cannot be used to

scale performance.

56

Product Advantages Disadvantages

DRBD in dual-

primary mode

(block level

replication)

 Data integrity is guaranteed

like using DRBD with

ordinary file systems.

 Dual primary mode utilizes

shared disk file systems (GFS,

OCFS2...) to allow multiple

active nodes. Can be used to

scale performance.

 Shared disk

filesystems are more

sensitive to

disturbances in the

network.

According to Schwartz, et. al. (2008, Ch. 8), MySQL replication is not very resilient to

crashes, power outages and corruption caused by disk, memory, or network errors. They

state that manual intervention is almost certainly required at some point when replication

breaks. MySQL replication can fail or get out of sync, with or without errors, just because

of its inherent limitations. A fairly large list of SQL functions and programming practices

won't replicate reliably.

DRBD block level replication is another choice for a small web application requiring a

good fail-over solution for MySQL master node. DRBD is used in this cluster setup to

enforce data integrity by using its synchronous replication protocol. DRBD combined

with high-availability cluster software detailed in Chapter 4.4 then provides fail-over

capabilities for the system. Part of this thesis was to find reliable replication mechanisms.

A testing procedure was deviced and DRBD replication was tested against MySQL

replication. Procedure and results are presented in Chapter 7.

Shared storage architecture is a way to allow multiple servers to share a single disk array.

Whis this strategy, the active server mounts the filesyste. If the active server dies, the

standby server can mount the same filesystem, perform any necessary recovery

operations, and start operating on the failed server’s files. Shared storage architecture

helps to eliminate replication errors on system crash, but introduces a single point of

57

failure in the system, so it’s not really a viable option if the system design goal is to build

redundancy (Schwartz, et. al., 2008, p. 449).

 6.3 Scaling the application

High-availability requirements for the web application require building fail-over

techniques for database and web server master nodes. Because most web applications are

reading the database data much more than writing into it, MySQL master-slave

replication can be used to scale read capacity when application grows. When the

application grows even bigger, at some point database partitioning techniques detailed in

Chapter 5.7 are then required to scale the system.

58

7 TESTING REPLICATION OPTIONS

A test to research on different database replication techniques was conducted in part of

this thesis work. Testing was done on two-node MySQL master-master setup, where one

of the nodes was the active and the other was passive node. Active node was also serving

a web application that presented a web form. Data submitted via form was passed to

active MySQL installation, and replicated to the passive node.

Goal was to test the techniques for robustness and suitability for a fail-over setup.

Robustness means, that the replication does not break easily and must be able to handle

various error conditions without manual intervention. Ideally, the replication setup

should:

 Perform the replication reliably. Data is replicated between instances unchanged,

even after a node crash when one of the nodes takes over the active role.

 Repair itself after a node crash. After the crashed node has come back online, the

current active node recognizes this and starts the replication from where it was

stopped without user intervention.

Techniques tested were DRBD block level replication and the MySQL’s own replication.

Test setups were built on Virtualbox, an x86 virtualization software by Sun Microsystems

with two identical virtual machines for both setups. Both virtual machines were part of

local network with private IP addressed and one Virtual IP that is assigned to the active

node. Details of virtual machine and software configurations are given in Appendix I.

 7.1 Test procedure

Both setups were tested with a following basic testing procedure:

 Test that the replication is working. Access the web application on primary node

and input new data into database. Check that secondary node database has the

same data.

59

 Test secondary going offline. Do an orderly shutdown on the secondary node,

access the application now running on primary node and change database and turn

secondary back on. Check that secondary database has the same data.

 Test primary going offline. Do an orderly shutdown on the primary node, access

the application now running on secondary node and change database. Now turn

primary node on. Primary and secondary node should be able to sync their data,

so that primary node syncs its data from secondary, which has newer data.

 Test primary crashing. Simulate primary node crashing by pressing the reset

button or similar technique. Change database on secondary and turn primary back

on. Check that primary is able to sync its data from secondary.

 Load test with secondary crash. Generate load on the setup (100 serial

connections by accessing and submitting the web application form) and crash the

secondary node while connections are being made. After connections are made,

boot secondary node up and see if the replication finishes orderly.

 Load test with primary crash. Generate load on the setup and crash the primary

node while connections are being made. See if secondary takes over the

connection handling (new primary) and starts handling the form submits. When

primary (now new secondary) comes back online, check that replication finishes

correctly between nodes.

 7.2 Test results

Load tests in items 5 and 6 were made with a Selenium web application testing system

running a script that made the connections to the application. Test results with brief

descriptions are detailed in Tables 5 and 6. With each test item is also reported, if the

replication finished correctly and if the system required manual intervention to come

back fully operational. Each test item was tested several times to establish a trend.

60

Table 5. Replication test results for MySQL master-master replication.

Test Item Was the data replicated

without errors?

Was the system able to

come back online fully

working without manual

intervention?

1. Replication works Yes Yes

2. Handles secondary

orderly shutdown

Yes Yes

3. Handles primary orderly

shutdown

Yes Yes

4. Handles primary crash Yes Yes

5. Load test with secondary

crash

No, replication failed in

each case with two identical

rows being inserted into the

table resulting in a broken

replication.

No, out of sync tables had to

be manually synchronized.

6. Load test with primary

crash

Yes Yes/No, in some cases the

new primary node was

reading an older binary log

from the new secondary

node than what was

currently being written into.

MySQL thought the

replication was proceeding

without errors.

Replication errors in item 5 occurred, because the commit to InnoDB by the slave SQL

thread and the update of relay-log.info file that follows the commit are not atomic and so

61

transactions can get replayed. A possible subject of further study would be to test the

most recent MySQL Server version to see if this problem is already addressed.

Table 6. Replication test results for DRBD block level replication setup.

Test Item Was the data replicated

without errors?

Was the system able to

come back online fully

working without manual

intervention?

1. Replication works Yes Yes

2. Handles secondary

orderly shutdown

Yes Yes

3. Handles primary orderly

shutdown

Yes Yes

4. Handles primary crash Yes Yes

5. Load test with secondary

crash

Yes Yes

6. Load test with primary

crash

Yes, sometimes DRBD lost

data packets during the

crash and the secondary

node did not take over the

primary role, but waited the

crashed node to come back

online and sync the data.

Yes/No, in some cases the

DRBD daemons were both

in a secondary role after

crash recovery and data

synchronization finished.

DRBD serves data only

from the primary role

daemon.

This test suggests, that DRBD based setup is considerably more fault tolerant and

requires less manual intervention to continue functioning correctly after fail-over

operations. DRBD replication was able to guarantee data integrity even in case of

primary node crash during write load on the setup. MySQL replication failed to guarantee

62

the data integrity and required manual intervention in order to continue operational after a

node crash.

63

8 CONCLUSIONS

Building a business critical web application is possible using for the large part open

source components. Combining the techniques presented in this thesis for data protection,

high-availability and scaling, a consistent user experience can be achieved. Engineering

of such system requires careful selection of software and hardware, good knowledge of

software engineering best practices and rigorous testing procedures. Additionally, the

application needs statistics collection, monitoring and alerting built into the system to

maintain good user experience.

 8.1 Goals of this thesis

The goal of this thesis is to explore the engineering of business critical database driven

web application software. Software being business critical here means that it has to offer

high availability for the whole system and guarantee that the users input data stays

correct, has internal integrity and is secured against data loss. These requirements form a

basis for research into several architectural and software alternatives. Requirements are

detailed in Chapter 2.

 8.2 Thesis research

The theory part of this thesis is in Chapters 3-5. Chapter 3 goes through key concepts and

details the strategies of protecting the web application data. Chapter 4 explains the high

availability concept and takes a look at various software alternatives providing the

functionality. Chapter 5 goes through the concepts for splitting the data across multiple

nodes from performance and data protection point of view. This Chapter also details the

database replication alternatives that Chapters 6 and 7 build further upon. Chapter 6

details the decisions for engineering the software with requirements set in Chapter 2.

During the course of this thesis work, most important aspect for achieving thesis goals

was to find a reliable replication mechanism for database data. A testing procedure was

64

deviced and DRBD replication was tested against MySQL replication. Procedure and

results are presented in Chapter 7.

 8.3 Thesis results

The main contribution of this study/dissertation is result that indicates database software's

(MySQL) own replication mechanism inferior to more robust block level replication

(DRBD) for setting up fault tolerant database master nodes. This result is expected to

hold as well on other DBMS using asynchronous replication.

 8.4 Subjects of further study

Replication test procedure from Chapter 7 would be interesting to conduct on several

other database solutions including PostgreSQL, MySQL Cluster, Microsoft SQL Server

and Oracle Database. Some of these products use synchronous replication, so their

performance against DRBD block level replication would offer a good point for future

research.

65

 REFERENCES

 (Canonical, 2009) Canonical Ltd. 2009. Ubuntu Server Edition.

http://www.ubuntu.com/products/whatisubuntu/serveredition, 28.08.2009.

 (Chaurasiya, et. al., 2007) Chaurasiya, V. Dhyani, P. Munot, S., 2007. Linux

Highly Available (HA) Fault-Tolerant Servers. In 10th International Conference

on Information Technology, (ICIT 2007). Orissa, 17-20 Dec. 2007. ISBN 0-7695-

3068-0.

 (Cluster Labs, 2009) Cluster Labs. 2009. Pacemaker.

http://clusterlabs.org/wiki/Main_Page, 25.01.2010.

 (Date, 1995) Date, C.J. 1995. An Introduction to Database Systems. 6th edition.

Addison-Wesley Publishing Company, Inc. ISBN 0-201-82458-2.

 (Garcia-Molina, et. al., 2002) Garcia-Molina, H., Ullman, J. D. & Widom, J.

2002. Database Systems: The Complete Book. Upper Saddle River, New Jersey:

Prentice Hall, Inc. ISBN 0-13-098043-9.

 (Guerrero, 2007) Guerrero, J. 2007. Scale-Out & Replication for High-Growth

Businesses. MySQL Whitepaper.

 (Henderson, 2006) Henderson, C. 2006. Building Scalable Web Sites. Sebastopol,

California: O'Reilly Media, Inc. ISBN 978-0-596-10235-7.

 (Linux-HA, 2010) Linux-HA. 2010. Homepage: Linux-HA. http://www.linux-

ha.org/, 25.01.2010.

 (Lehtimäki, 2009) Lehtimäki, L. 2009. Course material for Databases, spring

2009. Lappeenranta University of Technology.

 (LINBIT, 2008) LINBIT. 2008. DRBD: What is DRBD. http://www.drbd.org/,

21.01.2010.

 (Haas, et. al., 2010) Haas, F., Reisner, P., Ellenberg, L. 2010. The DRBD User's

Guide. http://www.drbd.org/users-guide/, 24.01.2010.

 (Microsoft, 2009) Microsoft. 2009. Windows Server 2008: Failover Clustering.

http://www.microsoft.com/Windowsserver2008/en/us/failover-clustering-

main.aspx, 08.10.2009.

http://www.ubuntu.com/products/whatisubuntu/serveredition
http://clusterlabs.org/wiki/Main_Page
http://www.linux-ha.org/
http://www.linux-ha.org/
http://www.drbd.org/
http://www.drbd.org/
http://www.microsoft.com/Windowsserver2008/en/us/failover-clustering-main.aspx
http://www.microsoft.com/Windowsserver2008/en/us/failover-clustering-main.aspx

66

 (Hofmann, 2009) Hofmann, P. 2009. Multi-Master Replication Manager for

MySQL. http://mysql-mmm.org/, 25.01.2010.

 (MySQL, 2008a) MySQL AB. 2008. MySQL 5.1 Reference Manual.

http://dev.mysql.com/doc/refman/5.1/en/index.htm, 25.01.2010

 (MySQL, 2008b) MySQL AB. 2008. Global Backup & Recovery for MySQL.

http://www.mysql.com/products/backup/, 27.01.2010.

 (Oracle, 2005) Oracle. 2005. Oracle Database High Availability Overview 11g

Release 1 (11.1).

http://download.oracle.com/docs/cd/B28359_01/server.111/b28281/overview.htm

#i1006492, 30.09.2009.

 (Oracle, 2008a) Oracle. 2008. Database Concepts.

http://download.oracle.com/docs/cd/B28359_01/server.111/b28318/toc.htm,

30.09.2009.

 (Oracle, 2008b) Oracle. 2008. Database 2 Day + Security Guide.

http://download.oracle.com/docs/cd/B28359_01/server.111/b28337/tdpsg_intro.ht

m#sthref11, 30.09.2009.

 (Pfister, 1998) Pfister, G. F. 1998. In Search of Clusters – The Ongoing Battle in

Lowly Parallel Computing, 2nd edition. Upper Saddle River, New Jersey:

Prentice Hall, Inc. ISBN 0-13-899709-8.

 (Schwartz, et. al., 2008) Schwartz, B., Zaitsev, P., Tkachenko, V., Zawodny, J.

D., Lentz, A., Balling, D. J. 2008. High Performance MySQL, Second Edition.

Sebastopol, California: O'Reilly Media, Inc. ISBN 978-0-596-10171-8.

 (Sun Microsystems, 2010) Sun Microsystems, Inc. 2010. MySQL Cluster

Features. http://www.mysql.com/products/database/cluster/features.html,

27.01.2010.

http://mysql-mmm.org/
http://dev.mysql.com/doc/refman/5.0/en/ha-heartbeat.html
http://www.mysql.com/products/backup/
http://download.oracle.com/docs/cd/B28359_01/server.111/b28281/overview.htm#i1006492
http://download.oracle.com/docs/cd/B28359_01/server.111/b28281/overview.htm#i1006492
http://download.oracle.com/docs/cd/B28359_01/server.111/b28281/overview.htm#i1006492
http://download.oracle.com/docs/cd/B28359_01/server.111/b28337/tdpsg_intro.htm#sthref11
http://download.oracle.com/docs/cd/B28359_01/server.111/b28337/tdpsg_intro.htm#sthref11
http://www.mysql.com/products/database/cluster/features.html

67

 APPENDICES

Appendix I: Replication test software setup

Appendix I, 1

 REPLICATION TEST SOFTWARE SETUP

Test setups

DRBD replication setup:

 2 x Debian GNU/Linux 5.0 (”Lenny”)

 MySQL v. 5.0.51

 Apache2 v. 2.2.9

 Heartbeat v. 3.0 beta

 DRBD v. 8.3.2 with kernel module built for Linux 2.6.26

 One partition housing the OS and programs

 One partition managed by DRBD

 Heartbeat is the Cluster Resource Manager (CRM), handling the assigning of the

Virtual IP (192.168.1.99) between nodes, mounting the DRBD partition and

starting and stopping the MySQL database server and Apache2 web server

 MySQL data directory and the binary log is stored on the DRBD partition

MySQL replication setup:

 2 x Ubuntu 8.04 (”Hardy Heron”)

 MySQL v. 5.0.51,

 Apache2 v. 2.2.8,

 Heartbeat v. 2.1.3

 Heartbeat is the Cluster Resource Manager (CRM), handling the assigning of the

Virtual IP (192.168.1.99) between nodes

 Both MySQL installations are up and running, with installation on the active node

receiving the traffic from the web application and the installation on the passive

node replicating the data

MySQL setup details

Appendix I, 2

Web application tested was using InnoDB tables to benefit from better crash recovery

and data protection detailed in Chapter 6.1. Most recent MySQL Server version available

through each operating system package repositories was used. MySQL replication was

configured in both setups with following additional directives:

 sync_binlog=1: This makes MySQL synchronize the binary log's contents to disk

each time it commits a transaction, so log events are not lost if there's a crash.

Otherwise binary log entries could be corrupted or missing after a server crash

(Schwartz, et. al. 2008, p. 354).

 innodb_support_xa=1: InnoDB support for two-phase commit in XA transactions

is enabled, which causes an extra disk flush for transaction preparation.

 innodb_flush_log_at_trx_commit=1: Llog buffer is written out to the log file at

each transaction commit and the flush to disk operation is performed on the log

file.

DRBD setup details

DRBD replication is pretty straightforward to setup. Testing was done with C protocol

(protocols are detailed in Chapter 5.8.2) and meta-disk was set on “internal”.

