
LAPPEENRANTA UNIVERSITY OF TECHNOLOGY

Department of Information Technology

Master of Science Thesis

A SURVEY AND CLASSIFICATION
OF SOFTWARE TESTING TOOLS

The topic of the master’s thesis has been accepted in the Departmental Council

of The Department of Information Technology, 20.01.2010.

Supervisors: Professor Kari Smolander

 D.Sc. (Tech) Ossi Taipale

Lappeenranta, 05.05.2010

Sergey Uspenskiy

Kalliopellonkatu 10 B 10

53850 Lappeenranta

sergey.uspenskiy@lut.fi

+358 404 420 158

ii

ABSTRACT

Author: Sergey Uspenskiy

Title: A survey and classification of software testing tools

Department: Information technology

Year: 2010

Master's thesis. Lappeenranta University of Technology.

61 pages, 14 figures, 6 tables and 2 appendices

Supervisors: Professor Kari Smolander

D.Sc. (Tech) Ossi Taipale

Keywords: software testing, validation, quality assurance, testing tools,
automation.

Software testing is one of the essential parts in software engineering process. The
objective of the study was to describe software testing tools and the
corresponding use. The thesis contains examples of software testing tools usage.
The study was conducted as a literature study, with focus on current software
testing practices and quality assurance standards.

In the paper a tool classifier was employed, and testing tools presented in study
were classified according to it. We found that it is difficult to distinguish current
available tools by certain testing activities as many of them contain functionality
that exceeds scopes of a single testing type.

iii

PREFACE

The study was carried out as a part of the MASTO research project
at Lappeenranta University of Technology during the period from February 2010
to May 2010 and was intended for educational purpose.

I would like to thank my supervisors Dr. Ossi Taipale and Prof. Kari Smolander
for the opportunity to work at the thesis and for the advice, which I have received
during writing this thesis.

It was very interesting, but rather difficult to choose the right pieces of
information among the enormous amount of literature and studies available in
the field of software testing. Nonetheless, despite the amount of researches, some
topics are not overviewed in full or there are a lot of disagreements. That
illustrates how the field of software testing is changing and expanding as the
whole information technology industry does.

Lappeenranta, May 2010

Sergey Uspenskiy

1

TABLE OF CONTENTS

1. INTRODUCTION ... 5
2. SOFTWARE TESTING... 7

2.1. Objectives of software testing... 10
2.1.1. Testing, Quality Control, Quality Assurance............................. 11
2.1.2. Testing program’s interfaces... 12

2.2. Categories of software testing... 13
2.2.1. ISO 9126 classification ... 13
2.2.2. SWEBOK classification.. 15

2.3. Overview of verification methods... 17
2.4. Summary.. 20

3. VALIDATION TOOLS ... 22
3.1. Testing tools classifier .. 24

3.1.1. Automated test model ... 24
3.1.2. Classifier’s criteria.. 25

3.2. Unit testing... 27
3.2.1. Classification of approaches ... 28
3.2.2. TTCN-3.. 30

3.3. Integration testing... 32
3.3.1. Top-down integration ... 32
3.3.2. Bottom-up Integration... 33
3.3.3. Regression testing... 34

3.4. Functional testing ... 36
3.4.1. Functional architecture ... 37
3.4.2. Tools segmentation... 38

3.5. System testing .. 39
3.5.1. Security testing ... 39
3.5.2. Performance and stress testing .. 41

3.6. Acceptance testing.. 42
3.6.1. Acceptance test driven development in Agile............................ 42

4. DISCUSSION.. 45
5. CONCLUSIONS ... 47
REFERENCES.. 48
APPENDIX I: TEST AUTOMATION TOOLS CLASSIFICATION 53
APPENDIX II: TTCN-3 TEST ASES PRESENTATION FORMATS 56

HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l

2

LIST OF FIGURES

1. Correspondence between verification and validation (Kulyamin, 2008) 9
2. Testing provides a negative feedback ... 10
3. Testing — QC — QA .. 11
4. Processes and documents in software development (Sinicin et al., 2006)...... 13
5. Classification of verification methods .. 17
6. Testing in software development process ... 20
7. Software Engineering Tools and Methods (SWEBOK, 2004)....................... 23
8. Automated test model schema (Suhorukov, 2010).. 25
9. Test automation tools classifier (Suhorukov, 2010) 26
10. Mapping C++ to TTCN-3 – Inheritance ... 31
11. TTCN Usage (ETSI Official TTCN-3 Web Site).. 31
12. Architecture of regression testing software... 35
13. Functional test automation tool .. 38
14. Testing tools for application testing by testing types 45

HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l

3

LIST OF TABLES

1. Quality characteristics according to ISO 9126 (2001)................................... 14
2. Testing classification based on the target of test according to SWEBOK
(2004).. 16
3. Test automation tools classification according to SWEBOK (2004) 22
4. Unit testing tools classification .. 29
5. Functional testing tools resources... 37
6. Security testing tools functionality ... 41

HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l
HYPERLINK \l

4

ABBREVIATIONS

ANSI American National Standards Institute

API Application Programming Interface

DTA Direct Test Access

EATDD Executable Acceptance Test Driven Development

ERP Enterprise Resource Planning

ETSI European Telecommunications Standards Institute

HTML Hyper Text Markup Language

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

ISO International Organization for Standardization

QA Quality assurance

QC Quality control

SUT System under test

TDD Test Driven Development

TTCN Testing and Test Control Notation

UI User Interface

5

1. INTRODUCTION

Information systems of different level of complexity are now integral parts of

daily life. Any information system consists of hardware and software parts. At

the earliest stage hardware part was much more expensive than software.

Software cost was estimated about 5% of the whole system cost. However,

software flexibility and extensibility allowed using it for multiple tasks on the

same hardware. Gradually the complexity of software has grown, and today it

covers from 30% to 90% of complete systems cost depending on type. Aggregate

expenses on software development and maintenance are exceeding those for

hardware already (Miller & Sanders, 1999).

According to Kit (1995) systems are becoming more complex and aimed at more

critical tasks to perform. The sophisticated software systems require more

elaborated processes to be implemented. At the same time, contemporary

software engineering industry is characterized with a high level of competition.

In order to be successful, software developers need to implement, introduce and

maintain software in time and with satisfactory quality. The software quality can

be explained as aggregation of features, properties and peculiarities, which

define advantages and disadvantages of software (Sinicin et al., 2006).

In order to correspond to the growing complexity Quality Assurance (QA)

engineers must use more and more sophisticated tools to perform software

testing. There are numerous software systems arising to support testing process

and even more have already been employed by organizations. However, it is

difficult to distinguish which testing tools should be used for a concrete testing

activity, because these software tools frequently have similar facilities. There is a

gap of research in the field of selection of testing tools according to the

organization’s process or software project. The tools are often chosen according

to the current needs or project and not considering long-term organization goals.

Furthermore, the decision to change testing software can implicate additional

6

costs for the organization. For example, the process of switching from one

requirements test software to another can take more than a year in a large

organization and consume a lot of resources. Consequently the question of

choosing the right testing tools should be taken into consideration at the

pioneering stages.

The research question of testing tools classification covers a wide theoretical

area. It requires an understanding of testing and quality assurance standards for

the software development processes. The study was conducted as a literature

study and explored aspects of testing activities and the corresponding testing

tools.

The structure of the thesis is following: chapter 2 introduces a brief explanation

on software testing methods and types, providing a theoretical ground for the

following chapter, where the concrete testing tools are studied. The results of this

Master of Science Thesis will be used in the development of the ISO/IEC 29119

Software Testing Standard (Part 4, Testing Techniques), where organization test

strategy, including both test automation and tools, will be documented.

7

2. SOFTWARE TESTING

Software testing is an integral part of software development process. In order to

agree upon a definition, first we express what is not software testing.

Software testing does not include:

• Development, even if test engineers can write code, including

tests development (test automation can be compared to program-

ming itself), develop some supporting tools for testing purposes.

Nonetheless, testing — is not a development process.

• Analysis of requirements specification. Although, during a testing

process sometimes requirements have to be specified more ex-

actly, and sometimes requirements have to be analyzed. But this

activity is not the body of testing, and it has to be done rather as a

necessity.

• Management, despite that many organizations have test

management positions. Certainly test engineers have to be

controlled, but the testing itself is not management.

• Technical writing. Nevertheless test engineers have to document

tests and activities.

To reflect the changes in software testing, we can show how the definition of

testing has evolved in time:

• 1980

The process of executing an application in order to find errors

(Myers, 1980)

• 1990

The process of operating a system or component under specified

conditions, observing or recording the results, and making an

evaluation of some aspect of the system or component (IEEE

standard 610.12-1990, 1990).

8

• 1990

Testing is not a process. It is intellectual discipline aimed at ob-

taining reliable software without unnecessary efforts on its control

(Beizer, 1990).

• 1999

Testing is defined as a technical investigation of the software in

order to obtain information about its quality from stakeholders’

point of view (Kaner, 1999).

• 2004

The IEEE Guide to Software Engineering Body of Knowledge de-

fines testing as checking compliance between the real program

behavior and its expected behavior on the finite set of random

tests (SWEBOK, 2004).

From this perspective, one can assume that from the year 1980 to 2004 the the-

ory changed so deeply that the essence of the topic has changed completely.

Definitions provided by Myers, Beizer or Kaner are describing software testing

as an activity aimed at something. While in SWEBOK it is defined what is test-

ing activity, but there is no information about the purposes of testing.

In this thesis we will use software testing definition derived from (Taipale,

2007), because it is not connected with any specific life cycle model or a devel-

opment method:

Testing is verification and validation.

Both verification and validation are activities aimed to software quality control

and error detection. Having the same goals, they differ in sources of properties,

rules, and restrictions that are being checked during these activities.

Verification checks conformance between the artifacts that are being created dur-

ing software development and maintenance process and those artifacts that have

been created earlier or used as a source input data, as well as artifacts and devel-

9

opment process compliance with rules and standards. A verification definition is

provided by the IEEE standard 610.12-1990 (1990):

Verification is the process of evaluating a system or a component to determine

whether the products of a given development phase satisfy the conditions im-

posed at the start of that phase.

Validation checks conformance of any artifacts, which are being created or used

during development or maintenance, with user or customer needs and require-

ments. The validation’s definition is given in IEEE standard 610.12-1990 (1990):

Validation is the process of evaluating a system or a component during or at the

end of the development process to determine whether it satisfies specified re-

quirements.

Verification answers the question: are we building the product right? Validation

answers the question: are we building the right product? (Boehm, 1979) The dif-

ferences between verification and validation are illustrated on Figure 1.

Figure 1. Correspondence between verification and validation (Kulyamin, 2008)

10

2.1. Objectives of software testing

The main purpose of testing can be described as a negative feedback to project

participants about the quality of software product (Figure 2, Sinicin et al., 2006).

Figure 2. Testing provides a negative feedback

As defined in General System Theory, feedback describes a situation when some

process output data (or information about the result of an event) comes to the in-

put and will influence the same process or event in the future. This feedback can

be both positive and negative. It is considered that a positive feedback is added

to an input signal and reinforces it. A negative feedback decreases the input sig-

nal.

Both of them are equally important. Negative feedback stabilizes the system by

reducing input signal. But the constant reducing of input may equal it to zero.

Positive feedback strengths the input but may cause system unstable if the signal

will be too large. For a system to be useful, it requires both types of feedback.

In software development positive feedback is certainly some information from

end users or customers, for example, new functionality requests. Negative feed-

back can be also obtained from end users in a form of negative responses. Or it

 B

A
Input Output+

11

comes from test engineers. The sooner the negative feedback is provided, the

weaker signal this feedback has to modify. And therefore less energy and re-

sources are required for modifying the signal. That is the reason why testing

should be started as soon as possible, at the earliest steps of a project, providing a

negative feedback at the design phase. Or even before, at the phase of require-

ments collection and analysis.

2.1.1. Testing, Quality Control, Quality Assurance

From this point of view the known abbreviation QA can not be a synonym for

testing, despite the fact that testing covers most of QA activities. Quality assur-

ance can not be treated as a negative feedback. In case of assuring, it is assumed

that we provide some arrangement for the quality of software development to

increase.

On the opposite, Quality Control (QC) can be considered testing in the wide

sense of the word, because control is providing a negative feedback at various

phases of a software project. The correspondence between testing, QC and QA is

illustrated with Figure 3.

Figure 3. Testing — QC — QA

Quality Assurance
Quality Control

Testing

12

From SWEBOK (2004) definition, it can be derived that two basic tasks of a

software tester include:

1. Controlling the execution of a program and providing test cases for

checking program behavior.

2. Observing the execution process and comparing it with expected re-

sults.

Depending on testing types one can deviate from these actions. For example, in

usability testing some additional resources can be used, for example, possible

users from target group for evaluation.

In case of automated testing, a test engineer is not directly observing program

execution; he delegates these tasks to a special tool or a program. This tool com-

pares the results of the program execution with expected results and provides test

engineer with the conclusion. There are more terms needed to be mentioned for

defining two tasks mentioned above: stimulus, reaction and oracle. Stimulus is a

data, which comes to program as input. Reaction – an output of the system. Ora-

cle is a mechanism for comparing the output with the outputs that the system

should provide and determining whether test has passed or failed (Kaner, 2004).

2.1.2. Testing program’s interfaces

A program can be presented as a mechanism for processing information: gather-

ing input information and providing output. It can have multiple inputs and out-

puts at the same time. Meaning that the program has multiple interfaces of vari-

ous types:

- User interface (UI) for interaction with user.

- API for interaction between programs.

- Network protocol, can be also used for interaction between programs.

- File system for accessing disk.

13

- Environment’ state which program can read or modify.

- Events.

The goals of software tester are creating test situations, using these interfaces,

and evaluate program behavior. Corresponding processes and documents are de-

picted at Figure 4.

Figure 4. Processes and documents in software development (Sinicin et al., 2006)

2.2. Categories of software testing

2.2.1. ISO 9126 classification

Discussing software testing types, ISO 9126 (2001) provides six perspectives of

quality, which are summarized in Table 1.

Development activity

Verification activity

Requirements
development

Functions and
project
development

Coding Integration

System
requirements

Software re-
quirements
&architecture

Source code
Deliverable
system

Installed
system

Verification
plan and
strategy

Test
requirements Test plan Test plan

Acceptance
schedule

Validation Verification Testing
Internal
testing

Acceptance
testing

Delivery

Documents

14

Table 1. Quality characteristics according to ISO 9126 (2001)

Characteristic Description
Functionality This is one of the most important quality aspects. The most

significant subcharacteristic is suitability – appropriateness
of a set of functions for specified tasks. Other subcharacter-
istics are accuracy – provision of right or agreed results or
effects; and interoperability – ability to interact with speci-
fied systems, standards compliance.

Reliability In this aspect the following subcharacteristics are
concerned: maturity – the frequency of failure by faults in
the software; fault tolerance – ability to maintain a specified
level of performance in case of software faults or of in-
fringement of its specified interface; and recoverability –
capability to re-establish its level of performance and re-
cover the data directly affected in case of a failure.

Usability This aspect concerns understandability – the users’ effort
for recognizing the logical concept and its applicability;
learnability – the users’ effort for learning its application;
operability – the users’ effort for operation and operation
control.

Efficiency Concerns time behavior – response and processing times
and throughput rates in performances its function;
and resource behavior – the amount of resource used and
the duration of such use in performing its function.

Maintainability It is more internal quality aspect rather than external. This is
more significant for the developers of software, rather than
for the end users or customers. For this aspect more often
analytical quality control methods are used. Static code
analysis, code reviews etc. are not made with testing tools.
Maintainability concerns code analyzability – the effort
needed for diagnosis of deficiencies or causes of failures, or
for identification of parts to be modified; changeability –
the effort needed for modification, fault removal; stability –
the risk of unexpected effect of modifications; testability –
the effort needed for validating the modified software.

Portability This includes adaptability – software should function in
various environments; installability – the effort needed to
install the software in a specified environment;
coexistence – it should run simultaneously with other
software.

15

Based on these quality aspects, six testing types can be defined:

- functionality testing;

- reliability testing;

- usability testing;

- efficiency testing;

- maintainability testing;

- portability testing.

However, this classification can not be generally accepted as single or complete.

One can find classifications based on different aspects rather than quality per-

spectives presented in ISO 9126.

2.2.2. SWEBOK classification

There are more classifications of existing testing types. One of the most widely

distributed is adopted from (SWEBOK, 2004) based on the target of the test.

This classification is summarized in Table 2.

16

Table 2. Testing classification based on the target of test according to SWEBOK (2004)

Testing type Description
Unit testing It verifies if isolated software pieces, which can be tested

separately, are functioning. Units can be individual subpro-

grams or larger components of related units. This testing

type is defined in IEEE standard 1008-1987 (1987), which

also provides an approach to systematic and documented

unit testing. Typically this testing implicates access to the

source code being tested and support of debugging tools,

and involves the programmers who developed the code.

Integration testing This is the process of verifying the interaction between soft-

ware components. In (SWEBOK, 2004) it is suggested that

classical integration strategies (such as top-down or bottom-

up) are used with traditional, hierarchically structured soft-

ware; and modern integration strategies are rather architec-

ture-driven. This is a continuous activity, at each stage of

which software engineers need to concentrate on the level

they are integrating.

System testing In system testing the behavior of a whole system is taken

into consideration, as the most of functional failures should

already have been identified at unit and integration testing

phases. This testing type is appropriate for validating non-

functional requirements, such as security, speed, accuracy,

and reliability. Also at this level external interfaces to other

applications can be evaluated.

17

2.3. Overview of verification methods

In this section verification methods, intended first of all for evaluating technical

artifacts of software life cycle are overviewed. These methods can be separated

in the following groups – Figure 5 (Kulyamin, 2008).

Figure 5. Classification of verification methods

• Review of software life cycle artifacts can be divided into management

review, technical review, walkthrough, inspection and audit. From the

middle of 1990’s scenario based software evaluation methods are being

developed. Compared to other verification methods, reviews can be done

18

using only artifacts, not with artifacts’ models (as in formal methods), or

with artifacts’ output (as in dynamic methods). Review can be applied to

any quality of software or any artifact at any stage of project. It allows er-

ror revealing at the phase of artifact’s development, minimizing defect’s

time existence and defect consequences for artifact’s derivatives. At the

same time, review can not be automated and requires active people par-

ticipation. Empirical observation shows that reviews’ effectiveness as lo-

cated defects to consuming resources ratio is higher than with other veri-

fication methods. Reports show that from 50% to 90% of all stated errors

during software life cycle can be located with reviews (Boehm, 2001;

Deimel, 1995). Regarding to the early defect detection, expenditures can

be from 5% to 80% of resources for detection at the test stage (Laitenber-

ger, 2002). At the same time reviews’ effectiveness is highly dependant

on experience and motivation, as well as process organization and inter-

action between participants (Wong, 2006).

• Static analysis of software life cycle artifacts is used for verifying formal

rules of correct artifact development and locating abundant defects using

templates. This analysis can be highly automated and done completely

relying on testing tools. However it is applicable only to a source code or

some specific artifacts’ presentation format and can show only limited set

of defect types. Testing tools based on static analysis are widely used,

because they do not require any additional training and are convenient in

use. Many effective static analysis techniques can be a part of compilers

or even transformed into semantic rules for programming languages.

• Formal verification methods use formal requirements models, software

and environment behavior models for software analysis. It is performed

with specific techniques such as theorem proving, model checking or ab-

stract interpretation. Formal methods can be applied only to those quali-

ties or artifacts, which can be represented with a formal mathematic

model. Accordingly, implementing these methods is time consuming. It

requires building formal models, which can not be automated. Neverthe-

19

less it is used in areas where the cost of an occurred error is significantly

high, since it allows detecting complex error, which can not be located

with reviews or other testing methods. During the last ten years tools

based on formal methods have arisen, aimed at limited tasks of software

verification, which can be effectively used at large industrial projects

(Barnes, 2003). More frequently in practice formal methods are used with

hardware (Kern, 1999).

• Dynamic verification methods provide analysis and evaluation of

software system characteristics based on its real effort or efforts of some

models or prototypes of the system. Examples of it include testing or

simulation testing, monitoring, and profiling. In order to implement dy-

namic methods, one should have a working system or components, or at

least its’ prototypes, so it can not be used at initial development phases,

but it is useful for controlling system’s characteristics in its real environ-

ment, which can be difficult to do with other approaches. The errors de-

tected with dynamic methods are often treated as most serious. These

methods require some initial efforts to implement: tests development and

test or monitoring system development, but test tools can be implemented

once and then re-used for various types of software. It requires just tests

re-implementing. At the same time, creating tests set which can provide

an adequate quality measuring of a complex system is a resource con-

suming task, but it allows locating defects in requirements or project

documents, while testers analyze them.

• Synthetic methods. During the last 10-15 years many studies have been

conducted and tools developed, where elements of above mentioned

methods are implemented. Thus dynamic methods with elements of for-

mal methods were distinguished: model driven testing, runtime verifica-

tion and passive testing (Broy et al., 2005). Some of the testing tools use

both formalization of software aspects and static code analysis. The basic

idea of these methods is combining advantages of various verification

methods.

20

The classification given is mainly based on historical reasons and researchers of

new methods usually try to conform to this classification, but if new synthetic

methods continue arising, more thorough classification may be required.

2.4. Summary

To help one better understand the role of software testing in development process

it can be depicted in the following figure (Figure 6):

Figure 6. Testing in software development process

As software complexity grows, development processes become more sophisti-

cated. Consequently software testing need to change, in order to correspond and

support the development.

Literature and studies show that there is a lack of comprehension among soft-

ware testers in using software testing tools. It is also true that sometimes testing

21

is mistakenly considered not a resource-intensive activity, which does not require

any supportive tools (Myers, 2004).

This chapter gives a presentation of software testing as verification and valida-

tion, and describes verification methods. Validation activities and supportive

tools are introduced in the next chapter, where tools are classified by a concrete

activity and common characteristics for each tool group are discussed. In the

near future, with new testing tools arising, more detailed tool reviews and classi-

fication may be needed.

22

3. VALIDATION TOOLS

In the previous chapter software testing has been introduced as verification and

validation, and verification methods have been overviewed. The current chapter

provides a presentation of validation activities and classification of supportive

software tools, as the justification for the second part of software testing defini-

tion.

Software testing tools, as a part of software engineering tools (Figure 7), are

computer-based tools for assisting software lifecycle processes. Software testing

tools allow periodic and defined actions to be automated, reducing the repeated

load on the software engineer and allowing concentrating on creative aspects of

the process. Both testing tools and methods make software testing more system-

atic. Tools are often designed to support one or more software testing methods

and are varying in scope from supporting individual tasks to covering the com-

plete testing cycle. As it has been mentioned above, validation checks confor-

mance of any artifacts, which have been created or used during development or

maintenance, with user or customer needs and requirements. These requirements

can be documented, and correspondingly testing tools can be used for automation

of testing activities. These tools are summarized in Table 3.

Table 3. Test automation tools classification according to SWEBOK (2004)

Tool type Description
Test generators Assist in test cases development.
Test execution
frameworks

Provide execution of test cases in a controlled environment
where the behavior of tested artifact can be observed.

Test evaluation Support the evaluation of test execution results and determine
whether or not it conforms to the expected results.

Test management Support for all of the testing process’s aspects.
Performance
analysis

Quantitative measuring and analyzing of software
performance in order to assess performance behavior rather
than correctness.

23

Figure 7. Software Engineering Tools and Methods (SWEBOK, 2004)

The last item of tool classification – performance analysis, illustrates to some

extent the insufficiency of the classification available in SWEBOK. It fails tak-

ing into consideration, for example, functional testing tools, security testing

tools, user interface testing tools, stress testing tools and others, which corre-

spond to the objectives of testing as described in SWEBOK IEEE Guide to

Software Engineering Body of Knowledge section 2.2 of Chapter 5 “Software

Software Engineering Tools and Methods

Tools Methods

Software Requirements Tools

Software Design Tools

Software Construction Tools

Software Requirements Tools

Software Testing Tools

Software Maintenance Tools

Software Configuration
Management Tools

Software Engineering
Process Tools

Software Quality Tools

Heuristic Methods

Formal Methods

Prototyping Methods

Test generators

Test execution
frameworks

Test evaluation

Test management

Performance analysis

24

Testing”. Each of the mentioned tool type can be a subtype of possible particu-

larized or special testing tools.

In this thesis, the classification is adopted from (Taipale, 2007), where the vali-

dation activity is divided into unit testing, integration testing, functional testing,

system testing, and acceptance testing.

3.1. Testing tools classifier

In order to facilitate testing tools description and provide a support for test engi-

neers in selecting correct set of instruments according to their tasks, one can use

a tools classifier. This means that by providing necessary information regarding

the system under test (SUT), required testing type to perform and other details, a

test engineer can get an output of possible testing tools that match concrete crite-

ria.

3.1.1. Automated test model

At present time some classifiers are available. A classifier derived from (Suhoru-

kov, 2010) is based on a model of automated test (Figure 8). This classifier is

supposed for test automation tools. Test automation can be defined as an activity

when software tester just executes a test (or test sequence) and analyzes the re-

sults (Fewster, 1999).

The automated test model used in this classifier is general enough, so a test engi-

neer can utilize it for modeling various tests, which require automation. This

classifier is convenient, as the belonging of some tool to a particular group is

easy to evaluate, and it provides an unambiguous classification results. By using

25

the classifier, software tester can obtain a tool or a list of tools that is most suit-

able for concrete tasks.

Figure 8. Automated test model schema (Suhorukov, 2010)

In this model testing software is divided into testing scenario and test data.

Scenario can be treated like a program, which includes usage of an object under

test, response correctness checking and other activities, required for evaluating

an object. Test data is used in the scenario for running specific test cases. Test

data can be divided into input data, expected output data and auxiliary data.

An object can be a code fragment, a unit or a complete system. Scenario is inter-

acting with an object via object’s interface. For example, calling object’s opera-

tions or checking output correctness. Scenario is obtaining data from some

source, but can not modify it, since the data is defined separately or is generated

during a test case.

3.1.2. Classifier’s criteria

The resulting classifier uses four criteria:

1. scenario’s data acquiring method (marked D);

2. scenario construction type (S);

3. interaction with an object method (M);

Test
data Scenario Object

In
te

rf
ac

e

obtaining data object usage

26

4. object’s interface type (I).

Each criterion’s possible values are depicted at Figure 9.

Figure 9. Test automation tools classifier (Suhorukov, 2010)

Scenario’s data acquiring method can be:

- data as scenario part (D1) – scenario contains constant values and runs with

the same data set each time;

- external data (D2) – data can be changed without modifying scenario;

- data tables (D3) – data obtained externally, there is a possibility of executing

the scenario with a different data set;

- data generators (D4) – tool can automatically generate testing data using a

template.

Scenario construction type can be:

- using a programming language (S1) – these can be either general purpose

(S1a) or specific tool languages (S1b), S1a can be further classified by lan-

guages (for example Java, Python or Multiple in case of using different lan-

guages);

27

- using a declarative language (S2) – unlike the first class, declarative language

simplifies writing primitive scenarios, but makes impossible creating com-

plex scenarios;

- using visual tools (S3) – scenario is constructed with visual interface, no text

description available.

Interaction with an object method can be:

- serial execution (M1) – tool executes scenario step by step in a single copy;

- parallel execution (M2) – tool can execute several copies of a scenario in

parallel, imitating object’s multiple clients.

This criterion can be used for segregating testing tools into two wide categories:

functional testing tools and stress testing tools.

Object’s interface type can be:

- user interface level (I1) – tool imitates real user behavior, interacting with

visible objects (windows, buttons, fields);

- API level (I2) – tool imitates system’s unit, which uses an object on

functions call level, this is applicable to unit testing tools;

- network protocol level (I3) – in this case tool is imitating a client part of a

system, interacting with an object via network protocols

In the appendix there is a table with classification results for test automation

tools mentioned in the paper (Appendix I) according to this classifier.

3.2. Unit testing

Unit testing is fundamental to the way that people develop software (Sen, 2010).

It refers to testing of separate system’s units. In object-oriented systems, units

28

typically are classes and methods. These may also be a collection of procedures

or functions.

Unit testing tools are represented with a set of xUnit tools which are program-

ming language dependant (JUnit for Java programming language, NUnit sup-

posed for .NET, CppUnit and CUnit for C/C++ correspondingly, and others).

These tools imitate one of the system’s modules, which use an object under test

on the level of functions calling (Beck, 2003). It corresponds to an API level

(I2), previously mentioned in the classifier description. Unit testing is usually

performed by developers and can be easily automated, providing the base for fur-

ther application regression testing – checking whether applying small changes

and errors correction does not violate system stability. This is how unit testing

during development phase is connected with a regression testing, which is per-

formed at maintenance phase after applying changes with new version release.

3.2.1. Classification of approaches

In order to classify unit testing software, several types of tools have been re-

ported in the literature. These are test drivers and test stubs, dynamic testing

tools and automatic test cases generators (DeMillo et al., 1987). They are catego-

rized in Table 4.

Test driver is a piece of software that controls the unit under test. Drivers usually

invoke or contain the tested unit. Therefore units under test subordinate to their

respective drivers. A stub is a piece of software that imitates the characteristics

and behavior of a necessary piece of software that subordinates to the unit and is

required for unit to operate.

29

Table 4. Unit testing tools classification

Unit testing
approach

Data
acquiring
method

Interface
type Description Tools

Manual
program
execution

Test case
contains con-
stant
values and
runs with
the same data
set each time

API level The whole program is being run.
Proper parameter values are de-
rived by manual calculation in or-
der to invoke the required unit.

The main disadvantage of this ap-
proach is that it is very time-
consuming, considering that a unit
is tested several times with differ-
ent test data, requires writing client
code.

Automated
Testing
Framework

Automated
test driver

Test case
contains con-
stant
values and
runs with
the same data
set each time

API level Sometimes also called test harness.
An advantage of the driver is pro-
viding a way of saving test cases
for regression testing.

The unit is required to be taken out
of its operational environment. As a
result certain values and procedures
that are called in the unit become
undefined. A test driver automati-
cally constructs the declaration for
the undeclared variables.

But this approach requires software
stubs (or mock objects), which are
procedures for replacing undefined
procedures called in a unit during a
test. Constructing stubs becomes
main time-consuming activity dur-
ing the testing.

CUnit,
CppUnit,
JUnit.

Direct test
access

Tool can
automatically
generate
testing data
using a
template

API level The tools can provide the same
functionality as automated test
drivers but without the need of con-
structing stubs.

It allows the direct control of the
unit under test without taking the
unit out of its operational environ-
ment.

API
Sanity
Autotest

30

Unit testing frameworks are now available for many languages. Some but not all

of these are based on xUnit, free and open-source software, which was originally

implemented for Smalltalk as SUnit.

3.2.2. TTCN-3

One of the new possibilities in unit testing was introduced with a Testing and

Test Control Notation version 3. TTCN-3 new test domains have emerged – it

can be applied at an earlier stages (during unit testing), but it requires a mapping

of the language under test into TTCN-3 to exist (Nyberg & Kärki, 2005).

Furthermore, mapping must provide the same operational semantics as mapped

language. In (Nyberg & Kärki, 2005), a sample C/C++ to TTCN-3 mapping is

proposed (Figure 10).

Primarily TTCN was used for conformance testing in communicating systems

sphere. With the new version TTCN-3, usage can be expanded to new testing

types and new testing domains (Figure 11). Tools supporting TTCN-3 are pro-

vided from various software companies: OpenTTCN, Telelogic, Testing Tech-

nologies, IBM/Rational and others. The programming language is also used in-

ternally in such corporations as Nokia, Motorola and Ericsson.

Advantages of TTCN-3 usage are:

- TTCN-3 procedure-based communication allows direct interfacing to soft-

ware modules.

- One testing language is used for testing systems under test (SUTs) in differ-

ent programming languages. No need to write new test suites and test cases.

Test artifacts re-usage allows reducing testing time and costs.

- TTCN-3 techniques can be combined with traditional approaches in unit test-

ing.

- TTCN-3 can be edited and represented in multiple formats (core text format,

tabular format, graphical format).

31

Figure 10. Mapping C++ to TTCN-3 – Inheritance

Figure 11. TTCN Usage (ETSI Official TTCN-3 Web Site)

module CppBase {
type record CppBase_t

{} }
module CppDerived {
 import from CppBase all;
 type record CppDerived_t {
 CppPtr m_this optional,
 CppBase_t m_base
 }
}
module CppDerived2 { /* as above */ }

module SubClass {
 import from CppDerived all;
 import from CppDerived2 all;
 type record CppDerived2_t {
 CppPtr m_this optional,

 CppDerived_t m_derived,
 CppDerived2_t m_derived2,

 }
}

• Inheritance in C++ • Using TTCN-3 import

class Base {};
class Derived :

public Base {};
class Derived2 :

public Base {};
class SubClass :
 public Derived,
 Derived2 {};

32

In the appendix (Appendix II) a sample of the same TTCN-3 test case is

presented in various formats, adopted from ETSI Official TTCN-3 Web Site.

3.3. Integration testing

Integration testing is vital to ensure the correctness of integrated system. It is

often the most expensive and time consuming part of testing. This testing activity

can be divided into two categories:

- incremental: expanding the set of integrated modules progressively;

- non-incremental: software modules are randomly tested and combined.

Integration testing tools are designed for assisting in verification of components

interaction. It is important to notice that only a result of the interaction matters,

not the details or sequence of interaction. That is the reason why code refactoring

process does not affect integration test cases. At the same time, with introducing

new modules and functionality it is very easy to add interaction errors to a soft-

ware product. That is the reason why regression testing is an essential part of in-

tegration testing (Pressman, 2000).

There is a lack of studied and defined techniques or tools, which are specifically

designed for integration testing. Test engineers are often forced to performing

integration testing in ad-hoc (without planning and documenting) and ineffective

ways that often leads to less reliable test results and errors left in interfacing be-

tween components (Offutt et al., 2000).

3.3.1. Top-down integration

Top-down integration is an incremental approach to integration testing. Referring

to (Pressman, 2000) it is performed in five steps:

33

1. The main control module is selected as a test driver and all components,

which are directly depending on the main module, are substituted with

stubs.

2. Subordinate stubs are replaced one by one with actual components. The

order of substitution is determined by the selected approach (in depth or

in width).

3. Tests are executed after the each component is integrated. At this step

testing tools, including automatic input data generation tools, test drivers

and results recording tools are used. In (Hartmann et al., 2000) it is

shown how Rational Rose is used for test generation.

4. After each set of tests is completed, the following stub is replaced by the

real component.

5. Regression testing is conducted, in order to ensure that no new errors

were produced by the integration.

The process is repeated from step 2 until the whole program structure is con-

structed.

In this approach the stubs tools are used (the same as in unit testing). This fact

explains why software testing tools, initially designed for unit testing, are also

used in integration testing. The examples of tools used in this approach are the

above mentioned Rational Rose, xUnit frameworks and Cantata++. But in con-

trast to unit testing, the uncertainty of top-level modules behavior occurs, when

most of lower levels are substituted with stubs. In order to resolve this uncer-

tainty, the tester may adopt bottom-up integration approach.

3.3.2. Bottom-up Integration

Bottom-up integration starts from construction and testing components at the

lowest level of program. In this approach no stub tools are used, because all the

34

required processing information for a component is already available from the

previous steps.

Bottom-up strategy exposes the following structure (Pressman, 2000):

1. Components combined into clusters (or builds), which are designated for

a specific subfunction.

2. A test driver is written to control test cases input and output.

3. The cluster is tested.

4. Then the driver is removed and cluster is integrated into the upper level.

From this perspective, tools that are used for integration testing again correspond

to those for unit testing activity (test drivers). This could be almost considered an

extension of unit testing. With bottom-up integration approach such tools as

Cantata++ or VectorCAST/C++ can be used, which have been designed for both

unit and integration testing.

3.3.3. Regression testing

Each time after new module is implemented and added into integration testing

software behavior changes. With the changed structure of the software, new side

effects might appear. In the context of integration testing, regression testing

means execution of some tests subset that has already been conducted, after

application’s code has been modified, in order to verify that it still functions

correctly (Pressman, 2000).

This activity can be carried out manually by executing some tests from all test

cases or using automated capture/playback tools, which allow testers record test

cases and repeat them for following results comparison. Regression testing often

starts when there is anything to integrate and test at all. Test cases for regression

should be conducted as often as possible. For example, after the new software

35

build is produced, regression testing helps to identify and fix those code modifi-

cations that damage application functioning, stabilizing the build (so-called

baseline).

Obviously, as it claimed in (SWEBOK, 2004), the compromise should be made,

considering the assurance by regression testing every time the change is submit-

ted and the resources required to perform testing. As the application’s develop-

ment process continues, the regression test suite grows in order to cover new or

rewritten code. It may contain thousands of test cases, so that automation of

regression testing becomes necessary. Regression test software structure is de-

picted at Figure 12.

Figure 12. Architecture of regression testing software

36

Regression test tool consist of:

- Regression tests automation, which allows re-running tests as

developers add new functionality. These can be composed of

scripted or low-level functional tests or load tests that have been

used earlier to verify desired application’s behavior.

- Checkpoints management for comparison of the application

characteristics and outputs against defined baselines. Checkpoints

are used to stabilize application build.

- Regression test management for selecting test cases to run and

execution order, because execution of all available test cases at

every step is not effective.

- Regression test analyzing to detect which recent code

modifications have broken functionality and fix them quickly.

Detected errors can be automatically reported to a bug tracking

system after the test run.

The examples of regression testing tools are Selenium, SilkTest, Rational

Functional Tester and QEngine.

3.4. Functional testing

Functional testing focuses on aspects surrounding the correct implementation of

functional requirements. This is commonly referred to as black-box testing,

meaning that it does not require knowledge of the underlying implementation.

Functional testing ensures that every function produces expected outcome, as it

described in (ISO 9126, 2001) for functionality quality characteristic.

37

3.4.1. Functional architecture

According to (Yphise, 2002) a functional testing tool must provide resources,

which are summarized in Table 5.

Table 5. Functional testing tools resources

Resource type Description
Tests definition Constructed by recording an interaction with the SUT. The

record produces a test script, which can be written in a
common programming language or in a specific language.
For handling data-driven test a tool must provide data
access functionality, which selects data sources for the
test. For managing test result analysis, control points are
defined.

Tests execution Test cases are automatically reproducing recorded user
interaction. Data-driven tests are performed using data
access that was set at tests definition phase.

Results reporting On test completion, the results are compared with the ref-
erence state, which is based on the control points that were
set at tests definition phase.

Facilitating previously mentioned capabilities, functional test tool relies on a re-

pository, which stores the following elements:

- Function library. It is the list of all available application functions for defin-

ing test scripts.

- Object library. The list of recognized objects, which depends on the devel-

opment environment and the platform where application is installed.

- Test scripts. These are records output, which can be further edited. Used for

reproducing tests.

- Test results, which can be further analyzed with functional or other tools

The common structure of such application is depicted at Figure 13 (Yphise,

2002).

38

Figure 13. Functional test automation tool

3.4.2. Tools segmentation

Functional test tools should not be confused with test management tools, test

evaluation tools and stress testing tools. In contrast to test management tools,

functional tools provide the recording of tests. While test management tools are

providing the capabilities for integration with other testing types tool (including

functional tools), in order to manage test plans.

Functional test tools are focused on “black box” tests, while test evaluation tools

are designed for “white box” technique. In contrast to test evaluation, functional

test tools do not inspect the application source code. Finally, functional test tools

can be distinguished from stress tools in perspective that they are not measuring

the response time and the ability of the application to work under the various

workloads.

39

One of the most used examples of functional test software includes Rational Ro-

bot (IBM Corporation) and SilkTest (Borland). Rational Robot is designed for e-

commerce, ERP and client/server applications testing. It uses SQABasic for

scripts recording. SilkTest uses Java and special purposed 4Test language for

scripting. It is optimized both for traditional and Agile development environ-

ment, supporting faster iterative system delivery through a code-and-test cycles.

Most of analyzed in the study application testing tools are designed specially for

functional testing. This can be explained with ISO 9126 Standard (2001), which

considers functional quality characteristic as one of the most valuable.

3.5. System testing

System testing tools performs end-to-end functional tests across software units,

ensuring that all functions combine for the desired business result. The main

problem in this testing is “finger-pointing”: when an error is uncovered, it is hard

to localize the responsible system element (Pressman, 2000). System testing is a

series of various tests with the main purpose of fully exercising the system.

System testing is actually a series of different tests whose primary purpose is to

fully exercise the computer-based system In (Beizer, 1984) this activity is split

into recovery, security, stress and performance testing.

3.5.1. Security testing

Security testing relies on human expertise much more than an ordinary testing,

so full automation of the security test process is less achievable than with other

testing types (Michael et al., 2009). Nevertheless, there is a significant number of

black box test tools designed for testing application security issues. According to

(Michael et al., 2009), these tools are aimed at testing:

40

- input checking and validation;

- session management;

- buffer overflow vulnerabilities;

- injection flaws.

Among the existing tools, there are subsets focused on specific security areas:

database security, network security and web application security.

Database security test tools designed for identifying vulnerabilities, which can

be results of an incorrect database configuration or poor implementation of the

business logic accessing the database (SQL injection attacks). Database scanning

tools are usually embedded into network security or web application security.

Network security tools generally allow network scanning and identifying vulner-

abilities that give access to insecure services. These tools can also be referred to

as penetration testing tools.

Web application security tools detect security issues for applications, which can

be accessed via Internet. These tools are identifying abnormal behavior within

applications available over specific ports, and can be used for Web Services

based application technologies.

The technologies used in security testing tools can be divided, based on its func-

tionality. The results are summarized in Table 6.

One of the most used examples of security testing tools include HP WebInspect,

IBM Rational AppScan and Nikto, which were designed for automating Web

application security testing.

41

Table 6. Security testing tools functionality

Functionality type Description
Fuzzy injection Injection of random data at various software interfaces.
Exploratory testing Testing which is conducted without any specific

expectation about the results.
Syntax testing Generating a range of both legal and illegal inputs, usually

considering some knowledge of underlying protocols and
data formats used by the software.

Monitoring program
behavior

Check how program responds to test inputs.

3.5.2. Performance and stress testing

Performance tests are often coupled with stress testing (Pressman, 2000). Stress

testing is conducted to evaluate a system at the maximum design load or beyond

the specified limits, while performance testing aimed at verifying that the soft-

ware meets the specified performance requirements (SWEBOK, 2004).

This testing activity is difficult, if possible at all, to perform manually due to a

need of imitating a certain workload. The main principle of operation of per-

formance and stress testing tools is simulation of real user with “virtual” users.

The tool then gathers the statistics on virtual users’ experience. These types of

software are often distributive in nature. In general performance testing tools can

be divided into load generators, monitors and frameworks (such as LoadRunner,

Jmeter, soapUI), and profilers (such as JProbe, Eclipse TPTP), which are used

for finding performance bottlenecks, memory leaks and excessive memory con-

sumption.

42

3.6. Acceptance testing

Acceptance testing is aimed to explore how well users interact with the system,

whether customer is satisfied with the results. It is final testing phase before

deployment, but the tests themselves need to be designed as early as possible in

the development life cycle. This makes sure that customer’s expectations are ap-

propriately defined so that the system will be built in accordance with them.

From this point of view acceptance test cases are derived from user requirements

and the results of testing is acceptance or rejection of the product.

This testing activity differs from others in aspect that it may or may not involve

the developers of the system, and can be performed by the customer (SWEBOK,

2004). If some errors are identified during acceptance testing, after developers

correct them or after any change, the customer should go through acceptance

tests again. In this manner, acceptance testing can be compared with regression

testing (Myers, 2004). It means that, as the project grows the number of

acceptance tests increases (the same as with regression testing), because the cus-

tomer gets better understanding of the final product, so the acceptance testing

tools are required. Developers write unit tests in order to determine if the code is

doing things right. Customers write acceptance tests in order to determine if the

system is doing the right things.

3.6.1. Acceptance test driven development in Agile

One of the inventions in Agile methodology was the test-driven development

(TDD), when the tests are written before writing the code. Then those tests are

used for evaluating development process. In (Hendrickson, 2008; Park &

Maurer, 2008) it is argued the benefits of the extension of TDD to the

requirements/specification level, when the requirements are written in form of

43

executable acceptance tests, so-called executable acceptance test driven

development (EATDD).

It imposes that a feature is not specified until its acceptance test is written, and

the feature is not done until all its acceptance tests pass (Steindl, 2007). EATDD

also involves creating tests before actual code. Acceptance tests specify the

behavior the software should have.

In (Mugridge & Cunningham, 2005), the inventor of Framework for Integrated

Test (or “Fit”) Ward Cunningham advocates usage of spreadsheets for con-

ducting acceptance tests. Spreadsheets provide the customer with the ability to

write acceptance tests and enter data, which can be exported to text format.

These data can be used by a development team for creating test scripts.

There are several tools for acceptance testing supporting EATDD. One of those

is the above mentioned open source framework Fit, which was developed as an

extension for xUnit environment, and supports most of modern programming

languages (.Net, Java, Python, Ruby, C++, etc). FitNesse is Fit-based framework

which was designed to support acceptance test automation.

The customer can write tests in a form of editing HTML tables, supporting it

with an additional text. The developers can write supporting code (code fixtures)

as the corresponding system feature has been implemented. Code fixtures can be

regarded as a bridge between these tables and the SUT. Then the tool can parse

the tables, execute tests and provide outputs as a modified HTML document.

When requirements are captured in a format supported by a test framework, the

acceptance tests then become a form of executable requirements (Hendrickson,

2008).

44

The EATDD forces software stakeholders to come to an agreement about the

exact behavior of the resulting product. It allows the development to be driven by

the requirements, rather than letting requirements perspective out of sign as the

development processes. Acceptance test driven development directly links

requirements and QA (Park & Maurer, 2008).

45

4. DISCUSSION

The software testing activities study was conducted focusing on tools description

and common features concerning each of the activity. The software testing tools

were classified according to the model that was described in chapter 3.1.

48 testing tools have been collected and classified. Tools classification is sum-

marized in the appendix (Appendix I). The resulting distribution of the tools over

testing types is presented on Figure 14.

Figure 14. Testing tools for application testing by testing types

The above results showed that there is a large number of testing tools intended

for functional, unit and performance testing. For functional testing there is a

number of ways to ensure that a SUT meets functional requirements. Unit testing

is a necessary for large systems and it can be considered as the basic phase in

testing. While unit testing allows parallelism in testing process by presenting the

46

opportunity to test multiple modules simultaneously and therefore can be easily

automated. As for performance and stress testing, these activities are almost im-

possible to conduct manually and intended for an automatic execution by its

nature, so there is a wide area for such type of tools usage.

At the same time, the smallest number of classified tools is intended for inte-

gration testing. This is due to a fact that unit testing frameworks often can be

used for an integration testing, if it is regarded as an incremental unit testing.

It was rather difficult to identify system testing tools, because this activity is

often split into many activities, and system testing is called the most difficult and

misunderstood testing process (Myers, 2004). This makes the right choice of sys-

tem testing tools vital, because of the severity of errors, which can be detected at

this phase.

Furthermore, it is worth noticing that an acceptance testing activity is not well

yet automated. Obviously there is a lack of tools for this type of testing. So the

tool usage for both system and acceptance testing is quite restricted. These com-

ments can be taken into account when building a set of tools that overpass the

borders in current software testing automation.

The weakness of the thesis is that in given period of time it was not possible to

examine all presented tools in depth. Many of them are sophisticated systems

and require a lot of time to setup and employ. As for future solution a sample

SUT can be presented specially for testing purposes. So that tools introduced in

study can be applied to this system providing a practical demonstration of their

usage. Another possible improvement is to conduct a comparison between

testing tools, which belong to a similar group, in order to represent concrete

tool’s advantages and disadvantages.

47

5. CONCLUSIONS

The study illustrated that there is a lack of studies directed to overview and clas-

sify software testing tools. Even though there is an understanding between re-

searchers that the correct selection of tools for software testing is one of the vital

elements in assuring the quality of the whole project. Most of papers in the field

of software testing are concentrated on testing methods description with no direct

connection to tools, which are based on those methods.

The practitioner’s approach to software testing requires more information about

currently available testing tools. With the growing software complexity and

shorter development cycles, it is becoming evident that manual testing can not

provide quality level required for the market. As well as wrong testing tools

choice for the project results in inadequate quality measurements or replacement

of the tools during the project. Both wrong selection and change of testing tools

during a development process affect software quality and as a result the project’s

success.

The classifier used in this thesis can be employed in appropriate choice of testing

tool or set of tools for a software project. On the one hand it can be helpful for

orientation in the wide subject field of software testing, reducing the amount of

time required for specialists to find a proper solution. On the other hand it can be

used as a quick introduction to a fast-developing area of testing and currently

available testing tools for non-experts in this field.

As the conclusion more classification of tools may be needed. These classifica-

tions can be applied to testing a various set of projects depending on software

type and development methodology.

48

REFERENCES

ApTest – Software QA Testing and Test Tool Resources.

Available: http://www.aptest.com

Accessed: 05.03.2010.

Barnes, J. (2003), High Integrity Software. The SPARK Approach to Safety and

Security. Addison-Wesley.

Beck, K. (2003), Test-Driven Development By Example. Addison-Wesley,

Boston.

Beizer, B. (1984), Software System Testing and Quality Assurance, Van

Nostrand Reinhold.

Beizer, B. (1990), Software Testing Techniques. Van Nostrand Reinhold

International Company Limited, New York, second edition.

Black, R. (2002), Managing the Testing Process: Practical Tools and Tech-

niques for Managing Hardware and Software Testing, 2nd ed. New

York, NY, John Wiley & Sons.

Boehm, B. W. (1979), Software Engineering; R&D Trends and Defense Needs.

In R. Wegner, ed. Research. Directions in Software Technology.

Cambridge, MA:MIT Press.

Boehm, B. W., Basili, V. (2001), Software Defect Reduction Top 10 List. IEEE

Computer, 34(1):135-137, January 2001.

Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (2005), Model

Based Testing of Reactive Systems. LNCS 3472, Springer.

Chillarege, R. (1999), Software Testing Best Practices, IBM Research.

49

Deimel, L., Rifkin, S. (1995), Applying Program Comprehension Techniques to

Improve Software Inspections. The Software Practitioner 5(3):4-6, May-

June 1995.

DeMillo, R.A., McCracken, W.M., Martin, R.J. (1987), Software testing and

evaluation, Banjamin/Kummings Publishing Company, Inc., California.

Dustin, E., Rashka, J. and Paul, J. (1999), Automated software testing: introduc-

tion, management, and performance, Addison-Wesley, Boston.

ETSI Official TTCN-3 Web Site.

Available: http://www.ttcn-3.org/

Accessed: 05.03.2010.

Fewster, M., Graham, D. (1999) Software Test Automation: Effective use of test

execution tools, ACM Press, New York.

FitNesse. Acceptance Testing Framework.

Available: http://www.fitnesse.org/

Accessed: 05.03.2010.

Java-Source. Open Source Testing Tools in Java.

Available: http://java-source.net/open-source/testing-tools/

Accessed: 05.03.2010.

Hartmann, J., Imoberdorf, C. and Meisinger, M. (2000), UML-Based Integration

Testing, Proceedings of the 2000 ACM SIGSOFT international sympo-

sium on Software testing and analysis, pp. 60-70.

Hendrickson, E. (2008), Driving Development with Tests: ATDD and TDD,

Quality Tree Software, Inc.

IEEE/ANSI (1987), IEEE Standard for Software Unit Testing, 1008-1987.

50

IEEE/ANSI (1990), IEEE Standard Glossary of Software Engineering

Terminology, 610.12-1990.

ISO/IEC (2001), ISO/IEC 9126-1, Software engineering - Product quality -

Part 1: Quality model.

Kaner, C. (1999), Testing Computer Software, John Wiley and Sons, NY,

pp. 37-40.

Kaner, C. (2004), A Course in Black Box Software Testing.

Available: http://www.testingeducation.org/BBST

Accessed: 05.03.2010.

Kern, C., Greenstreet, M. (1999), Formal Verification in Hardware Design:

A Survey. ACM Transactions on Design Automation of Electronic Sys-

tems, 4:123-193, April 1999.

Kit, E. (1995), Software Testing in the Real World: Improving the Process,

Reading, MA, Addison-Wesley.

Kulyamin, V. (2008), Software Verification Methods, Moscow, pp. 4-8, 29-35,

in Russian.

Load Testing Tools resources.

Available: http://www.load-testing-tools.com/

Accessed: 05.03.2010.

Laitenberger, O. (2002), A Survey of Software Inspection Technologies. In

Handbook on Software Engineering and Knowledge Engineering, v. 2,

pp. 517-555, World Scientific Publishing.

Miller, H., Sanders, J. (1999), Scoping the Global Market: Size Is Just Part of

the Story, IT Professional, 1(2), pp. 49-54.

51

Michael, C., Radosevich, W. (2009), Black Box Security Testing Tools,

Cigital Inc.

Mugridge, R., Cunningham, W. (2005), Fit for Developing Software: Frame-

work for Integrated Tests. Addison-Wesley.

Myers, G. J. (1980), Software Reliability, Mir, Moscow.

Myers, G. J. (2004), The Art of Software Testing, Second Edition, John Wiley &

Sons, NY.

Nyberg, A. & Kärki, M. (2005), Introduction to the C/C++ to TTCN-3 mapping,

Nokia.

Offutt, A., Abdurazik, A. and Alexander R. (2000), An Analysis Tool for Cou-

pling-based Integration Testing, The Sixth IEEE International Confer-

ence on Engineering of Complex Computer Systems (ICECCS ’00),

pp. 172–178

OpenTTCN DocZone.

Available: http://wiki.openttcn.com/

Accessed: 05.03.2010.

Park, S., Maurer, F. (2008), The Benefits and Challenges of Executable

Acceptance Testing, University of Calgary.

Pressman, R. S. (2000), Software engineering: a practitioner's approach,

McGraw-Hill, NY.

Sen, A. (2010), Get to know CppTest, IBM Corporation.

Sinicin, S., Nalutin, N. (2006), Software Verification, Lections Course, Moscow,

in Russian.

52

Software-testing – Testing and Software Quality.

Available: http://www.software-testing.ru

Accessed: 05.03.2010.

Steindl, C. (2007), Test-Driven Development at the Acceptance Testing Level,

Catalyst.

Suhorukov, A. (2010), Targeted training for the model and classifier for auto-

mate testing tools, Educational Technology and Society, January 2010,

vol. 13, no. 1, pp. 370-377, in Russian.

SWEBOK (2004), IEEE Guide to Software Engineering Body of Knowledge.

Taipale, O. (2007), Observations on software Testing Practice; Doctor of science

thesis; Lappeenranta University of Technology.

Voas J. (1999), Software Quality’s Eight Greatest Myths, IEEE Software,

September/October 1999, pp. 118-120.

Wong, Y. K. (2006), Modern Software Review: Techniques and Technologies,

IRM Press.

Yphise (2002), Functional test automation tools. Software Assessment Report,

Technology Transfer.

53

APPENDIX I: TEST AUTOMATION TOOLS
CLASSIFICATION

Tool Data Scenario Method Interface Tool’s or developer’s
website

Abbot D1 S1a-Java M1 I1-Swing http://abbot.sourceforge.net/
API
Sanity Autotest

D1 S1a-C++ M1 I2-C++ http://ispras.linux-
foundaton.org/
index.php/
API_Sanity_Autotest

Business Process
Testing

D2 S3 M1 I1-
Multiple

http://www.hp.com/

Canoo WebTest D1 S2 M1 I1-HTML http://webtest.canoo.com/
Cantata++ D1 S1a-C++ M1 I2-C++ http://www.ipl.com/products/

tools/pt400.uk.php
Conformiq
Qtronic

D3 S1a-
TTCN

M1 I3-Mutiple http://www.conformiq.com/
qtronic.php

cPAMIE D1 S1a-
Python

M1 I1-HTML http://pamie.sourceforge.net/

CppTest D1 S1a-C++ M1 I2-C++ http://cpptest.sourceforge.net/
CppUnit D1 S1a-C++ M1 I2-C++ http://cppunit.sourceforge.net/
CUnit D1 S1a-C M1 I2-C http://cunit.sourceforge.net/
DTM
Data Generator

D4 S3 M1 I2-SQL http://www.sqledit.com/dg/

DTM DB Stress D3 S3 M2 I3-
Multiple

http://www.sqledit.com/stress/
index.html

FitNesse D1 S2 M1 I2-
Multiple

http://www.fitnesse.org/

HttpUnit D1 S1a-Java M1 I3-HTTP http://httpunit.sourceforge.net/
Jemmy D1 S1a-Java M1 I1-Swing https://jemmy.dev.java.net/
JMeter D3 S3 M2 I3-

Multiple
http://jakarta.apache.org/
jmeter/

JProbe D2 S1a-Java M2 I2-Java http://www.quest.com/jprobe/
JUnit D1 S1a-Java M1 I2-Java http://www.junit.org/
JVerify D1 S1a-Java M1 I2-Java http://www.mmsindia.com/
LoadRunner D3 S1a-C M2 I3-

Multiple
https://www.hp.com/

MessageMagic D3 S1a-
TTCN

M2 I3-Mutiple http://www.elvior.com/
messagemagic/

NeoLoad D3 S3 M2 I3-
Multiple

http://www.neotys.com/

Nikto D1 S2 M1 I3-
Multiple

http://cirt.net/nikto2

(to be continued)

54

Tool Data Scenario Method Interface Tool’s or developer’s
website

NUnit D1 S1a-
Multiple

M1 I2-.NET http://www.nunit.org/

OpenSTA D3 S1b M2 I3-HTTP http://www.opensta.org/
OpenTTCN
Tester

D3 S1a-
TTCN

M1 I3-
Multiple

http://www.openttcn.com/

Oracle Functional
Testing

D3 S3 M1 I1-HTML http://www.oracle.com/

Oracle Load
Testing

D3 S3 M2 I3-HTTP http://www.oracle.com/

QALoad D3 S1a-C++ M2 I3-
Multiple

http://www.microfocus.com/

QEngine D1 S3 M1 I1-HTML http://www.manageengine.co
m/products/qengine/
index.html

QF-Test D1 S3 M1 I1-Swing http://www.qfs.de/en/qftest/
index.html

QuickTest
Professional

D3 S1a-VBS M1 I1-
Multiple

http://www.hp.com/

Rational App
Scan

D1 S3 M1 I3-
Multiple

http://www.ibm.com/

Rational
Functional Tester

D3 S1a-
Multiple

M1 I1-
Multiple

http://www.ibm.com/

Rational
Performance
Tester

D3 S3 M2 I3-
Multiple

http://www.ibm.com/

Rational Robot D1 S1b M1 I1-
Multiple

http://www.ibm.com/

Selenium D1 S3 M1 I1-HTML http://seleniumhq.org/
SilkPerformer D3 S3 M2 I3-

Multiple
http://www.borland.com/

SilkTest D3 S3 M1 I1-
Multiple

http://www.borland.com/

soapUI D3 S3 M2 I3-
Multiple

http://www.soapui.org/

TestComplete D3 S1a-
Multiple

M1 I1-
Multiple

http://automatedqa.com/
products/testcomplete/

TestNG D1 S1a-Java M1 I2-Java http://testng.org/
TestPartner D3 S1a-

VBA
M1 I1-

Multiple
http://www.microfocus.com/

The Grinder D1 S1a-
Jython

M2 I3-HTTP http://grinder.sourceforge.net/

TOSCA D2 S3 M1 I1-
Multiple

http://www.tricentis.com/

VectorCAST/
C++

D1 S1a-C++ M1 I2-C++ http://www.vectorcast.com/
software-testing-products/
c++-unit-testing.php

APPENDIX I (continued)

(to be continued)

55

Tool Data Scenario Method Interface Tool’s or developer’s
website

WAPT D3 S3 M2 I3-HTTP http://loadtestingtool.com/

WebInspect D1 S3 M1 I3-
Multiple

http://www.hp.com/

APPENDIX I (continued)

56

APPENDIX II: TTCN-3 TEST ASES
PRESENTATION FORMATS

Example Core Format

(to be continued)

testcase TC_resolveDns() runs on DnsClient
{

timer t_ack;
serverPort.send(m_dnsQuestion("www.ttcn-3.org"));
t_ack.start(1.0);
alt {
 [] serverPort.receive(mw_dnsAnswer("172.26.1.17")) {

setverdict (pass);
 }
 [] serverPort.receive { // any other message

setverdict(fail);
 }
 [] t_ack.timeout {

setverdict(inconc);
 }
}

 t_ack.stop;
}

57

APPENDIX II (continued)

Example Graphical Format

(to be continued)

testcase TC_resolveDns()
runs on DnsClient

DnsClient

mtc

DnsPort
serverPort

m_dnsQuestion("www.ttcn-3.org")

timer t_ack

t_ack

alt
mw_dnsAnswer("172.26.1.17")

?

t_ack

inconc

fail

t_ack

pass

58

APPENDIX II (continued)

Example Tabular Format

Testcase

 Name TC_resolveDns()

 Group

 Purpose

 System Interface

 MTC Type DnsClient

 Comments

 Local Def Name Type Initial value Comments

 t_ack timer

Behavior
 serverPort.send(m_dnsQuestion("www.ttcn-3.org"));
 t_ack.start(1.0);
 alt {

[] serverPort.receive(mw_dnsAnswer("172.26.1.17")) {
setverdict (pass); }
[] serverPort.receive { // any other message
setverdict(fail); }
[] t_ack.timeout {
setverdict(inconc); }

 }

 t_ack.stop;

 Detailed Comments:

	1. INTRODUCTION
	2. SOFTWARE TESTING
	2.1. Objectives of software testing
	2.1.1. Testing, Quality Control, Quality Assurance
	2.1.2. Testing program’s interfaces

	2.2. Categories of software testing
	2.2.1. ISO 9126 classification
	2.2.2. SWEBOK classification

	2.3. Overview of verification methods
	2.4. Summary

	3. VALIDATION TOOLS
	3.1. Testing tools classifier
	3.1.1. Automated test model
	3.1.2. Classifier’s criteria

	3.2. Unit testing
	3.2.1. Classification of approaches
	3.2.2. TTCN-3

	3.3. Integration testing
	3.3.1. Top-down integration
	3.3.2. Bottom-up Integration
	3.3.3. Regression testing

	3.4. Functional testing
	3.4.1. Functional architecture
	3.4.2. Tools segmentation

	3.5. System testing
	3.5.1. Security testing
	3.5.2. Performance and stress testing

	3.6. Acceptance testing
	3.6.1. Acceptance test driven development in Agile

	4. DISCUSSION
	5. CONCLUSIONS

