
LAPPEENRANTA UNIVERSITY OF TECHNOLOGY
FACULTY OF TECHNOLOGY MANAGEMENT
INFORMATION TECHNOLOGY

LEARNING ROBOT MOTIONS FROM
VISUAL SENSING

Master’s thesis

Supervisor: Professor Ville Kyrki

Examiners: Professor Ville Kyrki, Sergey Rybin D.Sc. (Tech.)

Lappeenranta, May 30th, 2010

Nataliya Strokina
Punkkerikatu 2 A 7
53850 Lappeenranta
Tel. 0465790841
nataliya.strokina@lut.fi

ABSTRACT

Lappeenranta University of Technology

Faculty of Technology Management

Information Technology

Nataliya Strokina

Learning Robot Motions from Visual Sensing

Master’s thesis

2010

68 pages, 44 figures, 11 tables.

Examiners: Professor Ville Kyrki
Sergey Rybin D.Sc. (Tech.)

Keywords: Imitation Learning, Trajectory Replication, Motion Learning, Dynamic Move-
ment Primitives, Visual Sensing, Movement Tracking, Machine Vision

Learning from demonstration becomes increasingly popular as an efficient way of robot
programming. Not only a scientific interest acts as an inspiration in this case but also
the possibility of producing the machines that would find application in different areas of
life: robots helping with daily routine at home, high performance automata in industries
or friendly toys for children. One way to teach a robot to fulfill complex tasks is to start
with simple training exercises, combining them to form more difficult behavior.

The objective of the Master’s thesis work was to study robot programming with visual
input. Dynamic movement primitives (DMPs) were chosen as a tool for motion learning
and generation. Assuming a movement to be a spring system influenced by an exter-
nal force, making this system move, DMPs represent the motion as a set of non-linear
differential equations.

During the experiments the properties of DMP, such as temporal and spacial invariance,
were examined. The effect of the DMP parameters, including spring coefficient, damping
factor, temporal scaling, on the trajectory generated were studied.

ii

PREFACE

First of all, I would want to thank my supervisor, Professor Ville Kyrki, for giving me an
opportunity to work on this topic, for his guidance, advice and encouragement.

Thanks a lot to Jarmo Ilonen who was helping me with the stereo camera.

Thanks to Ivan Martynov and Janne Laaksonen for their help and support.

Thank you!

Lappeenranta, May 30th, 2010

Nataliya Strokina

iii

CONTENTS

1 INTRODUCTION 4
1.1 Motivation . 4
1.2 Objectives and Restrictions . 4
1.3 Structure of the Thesis . 5

2 TRAJECTORY IMITATION WITH
DYNAMIC MOVEMENT PRIMITIVES 6
2.1 Imitation Learning for Robots . 6
2.2 Dynamic Movement Primitives . 7
2.3 Properties and Restrictions . 8
2.4 Modified DMP . 9
2.5 Obstacle Avoidance with DMP . 11
2.6 Imitation learning with DMPS . 13
2.7 Combination of Movement Primitives 14

3 SYSTEM DESCRIPTION 15
3.1 Hardware Components . 15
3.2 Software . 16
3.3 Image Analysis . 16
3.4 Trajectory Learning and Generation . 17

4 VISUAL SENSING 19
4.1 Pointer Detection . 19

4.1.1 Target Selection . 19
4.1.2 Detection Algorithm . 19

4.2 Coordinate Normalization . 22
4.3 Reconstruction of 3D Coordinates . 23

4.3.1 Stereo Vision . 23
4.3.2 Reconstruction Algorithm . 24

5 DYNAMIC MOVEMENT PRIMITIVES
IMPLEMENTATION 26
5.1 Motion Representation . 26
5.2 Description of Parameters . 27
5.3 Time and Phase Parameters . 27

5.3.1 Gaussian Basis Function Parameters 28
5.3.2 Spring and Damping Terms . 29

1

5.4 Time vs Phase Approaches . 29
5.5 Learning Motion . 30
5.6 Runge-Kutta Implementation for Movement Generation 31

6 ROBOT CONTROL 33
6.1 Robot Kinematics . 33

6.1.1 Forward Kinematics . 33
6.1.2 Inverse Kinematics . 34

6.2 Robot Control Implementation . 35

7 EXPERIMENTS AND DISCUSSION 37
7.1 Visual Sensing Experiments . 37

7.1.1 Pointer Detection Precision . 37
7.1.2 3D Reconstruction Precision . 39

7.2 Dynamic Movement Primitives Tests . 40
7.2.1 Spring and Damping factors Influence 41
7.2.2 The Effect of Gaussian Basis Function Parameters 48
7.2.3 Generation in Time and Phase Domains 54

7.3 Trajectory Replication by a Robot . 58
7.3.1 Trajectories under Consideration 58
7.3.2 Trajectory Test . 59
7.3.3 Temporal and Space Invariance Tests 60

8 CONCLUSION 62

REFERENCES 64

2

ABBREVIATIONS AND SYMBOLS
DMP dynamic movement primitive
K spring coefficient for the equation of motion
D damping factor for the equation of motion
τ temporal scaling parameter
ϕi Gaussian basis function
M number of Gaussian basis functions
w width of Gaussian basis functions

3

1 INTRODUCTION

The section provides the motivation and the main objectives of the work, as well as the
structure of the thesis.

1.1 Motivation

Recent advances of technological progress have made it possible to replace people with
robots in some areas of life, for example, in industry, services sector and medicine. This
has enabled manufactures to reduce their staff and increase the speed of work; medical
operations are now performed more accurately, and, on the whole, such a replacement
diminished the influence of human factors on work. A person can get tired and loose con-
centration, which increases the number of mistakes. A robot has a predictable behavior,
the errors might be either prevented or taken into account.

However, before a robot can be employed it should learn how to perform the operations.
This challenging problem can be solved by learning from visual sensing. In this case a
person has to demonstrate a motion to the robot, that later will be able to replicate it. The
question is how to make a robot to see what should be done, to learn how to do it and to
perform an operation.

1.2 Objectives and Restrictions

The first objective of the research is to study the way of programming a robot with visual
input. A robot should be able to learn and memorize the motion, demonstrated with
a pointer, and be able to replicate it. The questions are: how to choose a pointer that
will be easy to distinguish, how to detect the pointer and to determine the demonstrated
trajectory in three dimensions. Dynamic movement primitives (DMPs) model was chosen
for motion learning and generation.

The second objective is to study the DMPs concept and examine how the DMP parameters
affect the trajectory generated. It is necessary to determine what kind of trajectories could
be learnt with this method and to find out whether it is possible to single out parameter
values that would allow fitting for a large set of motions.

4

The third objective is to study how the properties of DMPs, such as temporal and space
invariance, are fulfilled.

The trajectories will be considered in Cartesian system of coordinates, the robot should
start from the initial position and its motion should converge to the goal position. The
orientation and direction of the motion are not taken into account. The motion generated
should not be scaled unless otherwise specified. During the research the following high
level hardware should be used: stereo camera and robot arm. Programming languages
are MatLab, for motion detection and learning, and C++, for motion generation and robot
control.

1.3 Structure of the Thesis

The rest part of the thesis has the following structure: Section 2 considers the issues of the
trajectory imitation learning paying special attention to the application of dynamic move-
ment primitives. Section 3 represents the components of the system of motion learning
and generation from visual sensing. Section 4 considers the importance of visual sensing,
including the problems of pointer detection and 3D reconstruction. Section 5 describes
the issues of the dynamic movement primitives implementation. Section 6 includes the
basics of robot kinematics and introduces the way the robot is controlled. Section 7 is
intended for presenting and discussing the results of the experiments conducted. The
conclusion of the Master’s thesis work is provided in Section 8.

5

2 TRAJECTORY IMITATION WITH
DYNAMIC MOVEMENT PRIMITIVES

2.1 Imitation Learning for Robots

On one hand, robot learning is inspired by the scientific interest, researchers are trying to
find out how far a human can go in the simulation of intelligence. On the other hand, re-
searchers are interested in producing machines that would have practical use for ordinary
people at home, at their working places, in industry, increasing the performance of the
operations and decreasing the human factor.

Imitation is one of the most effective and simplest mechanism of learning for robots as
well as for human beings. In imitation learning the robot restores the information about
the motion directly from what a human has showed [1] and forms its behavior. In tradi-
tional robot programming a great attention was payed to the accuracy of manual modeling
of the performance. In [2] the example of an animatronic device is showed; the machine
was replaying the motions that were recorded by manually putting the device in the se-
quence of positions that could be combined as a motion. In addition to the time consuming
teaching process, those machines were non-interactive [2] which means that they were
not able to cope with the difficulties of the real world, such as obstacles or new condi-
tions. Another approach, reinforcement learning [1], allows a robot not only to learn a
motion but to improve performance using a reward function. The system learns a policy
by interaction with the environment and correcting its own behavior. Such systems are
autonomous, but time-consuming for a robot to learn.

Learning from demonstration technique has been presented in detail by Schaal in [3].
The main idea is to show a robot a motion, which it should learn and be able to replicate
under new circumstances or with new goals. One of the key advantages of the approach
is that only few demonstrations are needed for a robot to learn a motion successfully. In
[1] the examples of areas, appropriate for imitation learning, are given, among which are
learning racket sports, manipulation, drumming on anthropomorphic systems. Complex
policies can be constructed out of primitive motions. In this case the system is much more
predictable, since all the smaller motions can be tested and provide the expected result.
Imitation learning from visual sensing creates a model of a motion, which might be used
for motions recognition. Although it is not difficult to get kinematic information about the
demonstrated motion, the replication with stable robot dynamics might be a complicated

6

task [4]. Another shortcoming is that there is no evidence why the derived policy for
behavior is a good one [1].

2.2 Dynamic Movement Primitives

There are three main challenges that imitation learning methods should take into account
[5]. First of all, the assumption should be made that a human and a robot does not nec-
essarily have the same links and joints that are used in a particular movement. Second,
generalization to new types of movements should be handled, since it is impossible to
demonstrate to the robot all the possible variants of movements. Finally, a method should
be able to react adequately to changes in the environment that might affect the system.

The above mentioned issues are addressed in the model of dynamic movement primitives,
that was proposed by Schaal et al. [5], [6], [7] and has been shown to be applicable in
robotics for imitation and skill learning in, for example, gestural interaction with mobile
computers [8], learning maneuvers in flight control [9] and humanoid robot control [10].

Assuming that motion is a spring system influenced by an external force making this
system move, DMPs represent the motion as a set of non-linear differential equations.
DMP consists of the canonical and transformation systems of equations [5]. Equations
(1) and (2) introduce the transformation system:

τ v̇ = K(g − x)−Dv + (g − x0)f (1)

τ ẋ = v, (2)

where x and v are the position and velocity of the system correspondingly, x0 is the
starting position, g the goal position; τ a temporal constant, K a spring constant, and D a
damping factor, which is used to reduce the amplitude of oscillations. Non-linear function

f(s) =

∑
ωiϕi(s)s∑
ϕi(s)

(3)

7

can be thought of as a set of Gaussian basis functions and enables the system to describe
the arbitrarily complex movements [10]. ϕi(s) = exp(−hi(s − ci)2) is a Gaussian basis
function with center ci and width hi. The adjustable weights wi determine the generated
motion. The transformation system is a second order dynamic linear system, since the
non-linear function f does not have any modulation effect on it. Thus the proper choice
of spring and damping parameters can guarantee that the system will eventually converge
to the goal position [10].

The canonical system, represented by the equation 4 , aims at generating a phase variable
s, that the non-linear function depends on.

τ ṡ = −αs, (4)

where α is a predefined constant. The reason for using the phase instead of time is that one
can manipulate the time evolution of phase by additive coupling terms or phase resetting
[10]. Phase is initially set to 1. With time s approaches zero, which decreases the influence
of function f and the equation (1) becomes linear.

The equations introduced describe the motion only in one dimension. In multi-dimensional
space motion in each dimension should be described by one-dimensional equation, and
for each dimension a set of weights, describing a motion, is obtained. The phase variable
used in several dimensions can be the same.

2.3 Properties and Restrictions

The following advantages of DMP are mentioned in the literature [11], [6], [10]:

1. Spatial invariance includes online adaptation to the new goal position, invariance to
the change of the amplitude of the motion, translation invariance.

2. Temporal invariance implies that the duration of the motion can be scaled varying
the temporal parameter τ .

3. Robustness against perturbations. In real world systems a robot may encounter
unexpected obstacles on its route and DMP provides online modification of the

8

trajectory that allows robot to avoid obstacles. During the perturbation the run of
the generated trajectory is paused and the system tries to avoid obstacle keeping
relatively close to the initial direction, which is possible due to the feeding back of
the error between the actual and planned trajectory. Once the perturbation is over
the system continues to follow the generated trajectory.

4. Movement Recognition. Due to the fact that similar motions have the same weight
coefficients although the speed, the duration and the amplitudes might differ, one
can create a library of movements and recognize which of them was shown. In other
words, DMPs can be used to solve the opposite problem, called motion recognition.

5. Superposition of DMPs. Combining in time DMPs to generate different move-
ments, one could model not only the control policy for a single movement but also
to create behavioral policies that make the robot to fulfill the sequence of the mo-
tions.

However, the DMP concept has several shortcomings [11], [5].

1. If the initial and the goal positions are too close to each other, the canonical equation
is hardly able to drive a system.

2. If the goal position does not differ enough from the initial one, a small change in
goal position can lead to extremely high acceleration and exceed the limits of the
robot.

3. Whenever (g − x0), where g is a goal position and x0 a start position, changes its
sign the generalization is mirrored.

The next section describes the approach of overcoming the above mentioned drawbacks.

2.4 Modified DMP

The modified version of DMP, described in [11], aims at curing the drawbacks of the
traditional method. The following neurophysiologycal findings [12] of spinal force fields
in frog appeared to become a motivation for the new approach:

9

1. the force fields, measured at different leg positions of a frog after stimulation, are
usually convergent;

2. bell-shaped time pulses modulates the magnitude of the force field;

3. simultaneously stimulated force fields add up linearly.

These facts imply that following a certain trajectory different force fields should be acti-
vated during the motion. However, in modified DMP approach an acceleration field rather
than a force field is employed. In [11] the derivation of the modified equations of motion
is shown.

Assuming that there are no external forces influencing the system, acceleration field space
in three dimensions could be introduced as linear fields, equation (5) centered at wi:

ai(x, v) = K(wi − x)−Dv, (5)

where x and v are position and velocity correspondingly. Given that each field is mod-
ulated with a Gaussian basis function ϕi(s) = exp(−hi(s − ci)

2), centered at ci, more
complex equation (6) of acceleration field can be obtained.

ai(x, v, t) =

∑
ϕi(t)ai(x, v)∑

ϕi(t)
. (6)

Substituting (5) in (6) and adding another linear field around g for convergence, the equa-
tion (7) can be obtained.

v̇ = sK(

∑
ϕi(s)wi∑
ϕi(s)

+ x0 − x) + (1− s)K(g − x)−Dv, (7)

where time is changed for phase which also plays role of weights. x0 is added to make the
motion translation invariant. The final set of equations describing the motion is introduced
in the equations (8), (9)

τ v̇ = K(g − x)−Dv −K(g − x0)s+Kf(s) (8)

10

τ ẋ = v (9)

In this equation f(s) is the same as in the original form, equation (3), and K(g − x0)s

enables to avoid rapid increase of acceleration at the beginning of the movement.

In [11] the invariance under affine transformation of the new approach is proved, which
means that the new form is not only translationally but also rotationally invariant. The
improvement of the adaptation to the new goal is also represented in [11]. The goal
parameter can be changed before the motion or even while the motion is being performed.

2.5 Obstacle Avoidance with DMP

One of the main properties of the DMP is the possibility of the trajectory correction if
an obstacle is encountered. In [11] the problem of obstacle avoidance is given a special
attention.

The steering angle describes the angle between the velocity v and the obstacle o direc-
tions, as it is presented in Figure 1, so that for large angles, ϕ̇ approaches zero, and this
means that if the obstacle is far enough it does not make any change to the trajectory.

Figure 1. The Steering Angle [11]

The velocity vector is changed by a rotational matrix R with axis r = (o−x)×v and the
angle of rotation π/2. The differential equation (10) describing the human steering angle

11

is derived in [13]

ϕ̇ = γϕexp(−β|ϕ|), (10)

where γ and β are adjustable constants.

If the obstacle is static, the only change that is needed for the equation of motion is adding
a term p(x,v), given in the equation (11).

p(x,v) = γRvϕexp(−β|ϕ|), (11)

where ϕ = cos−1((o − x)Tv/(|o − x| · |v|)), which is always positive. As a result, the
equation (12) introduces the transformation equation.

τ v̇ = K(g − x)−Dv +K(g − x0)s+Kf(s) + p(x, v) (12)

Figure 2 shows the examples of trajectory correction with different distances to the obsta-
cle

Figure 2. Obstacle avoidance example [11]

12

In a case with many obstacles, the term p(x,v) sums up the correction of the trajectory
caused by each of the obstacles, forming a new path to the goal position around all the
hindrances.

2.6 Imitation learning with DMPS

Once a motion has been demonstrated by a tutor, the system has the information about the
trajectory of the movement. The way of how the imitation learning is performed can be
found in [7], [5]. The positions of the pointer x(t) at each moment of time, when the mo-
tion was recorded, are obtained. Then the first ẋ(t) and the second ẍ(t) derivatives of the
path, the velocity of the motion and the acceleration correspondingly, can be numerically
calculated for each time-step. After that the phase variable s(t) is calculated for an appro-
priate temporal scaling which is adjusted such that the nominal dynamics achieves 95%
convergence at the end of a motion [6]. After that the target function ftarget(s), derived
from the transformation equation (8), should be calculated:

ftarget(s) =
τ v̇ +Dv

K
− (g − x) + (g − x0)s, (13)

where x0 and g correspond to the positions of the pointer in the beginning and the end of
the motion.

At the next stage calculating the weights of Gaussian basis functions is performed so that
the error between the target function and the non-linear function, modeling the motion, is
minimum. The error criterion can be formulated as in the equation (14)

J =
∑
s

(ftarget(s)− f(s))2, (14)

Minimizing the error J is a linear regression problem, that delivers weights for Gaussian
basis functions. A linear regression problem can be solved, for example, using the least
squares method [14]. Learning part of the process ends with obtaining the weights for
a non-linear function. After that the motion can be generated using the weights. The
transformation system of equations are solved for velocity and motion generation for each
single moment of time. For example, one can use the Runge-Kutta methods of numerical

13

analysis to solve the system of differential equations.

2.7 Combination of Movement Primitives

Since the generation of each primitive motion starts with zero velocity and acceleration,
the motions can be combined so that they are performed one directly after another. How-
ever, in [5] the approach to generate a sequence of motions without a pause is presented.
According to the approach in [5] a motion starts before the preceding motion is fin-
ished. In this case the velocity and acceleration between the motions are not zero. A
proper initialization needs to be performed for the succeeding velocities and positions
(vpred → vsucc, xpred → xsucc).

14

3 SYSTEM DESCRIPTION

The section describes the components of the system of motion learning and generation
from visual sensing. First, a large scale view of the system is given. After that the parts
of it are introduced in more details. The system, represented in Figure 3, includes three
components: stereo camera, robot arm and computational module.

Stereo
Camera

Robot Arm

Image
Analysis

Learning
and

Generation

Recorded Motion Command

Trajectory

Figure 3. Large Scale Model of the System

3.1 Hardware Components

Stereo vision camera provides the system with a set of left and right images recorded
during the motion demonstration. Intrinsic camera calibration parameters are known, in-
cluding focal length, principal point, skew coefficient, defining the angle between the x
and y pixel axes, and distortions, including radial and tangential distortions. Transforma-
tion matrix from camera to the global system of coordinates is provided as well.

Robot Arm Melfa RV-3SB is the 6-DOF robot arm at the laboratory, equipped with a JR3
force/torque sensor at the wrist, and a Weiss Robotics WRT-102 parallel gripper (Schunk
PG-70 gripper equipped with Weiss tactile sensor arrays).

Computational Module consists of a personal computer, that is responsible for image
analysis procedure, learning, generation process and sending commands to the robot.

15

3.2 Software

Image capturing program, which continuously saves images of the demonstration with
the expected frame rate of 15Hz, is provided by the laboratory.

Camera calibration software,which enables a user to find the matrix of transformation
between the camera and the world coordinate system, is provided by the laboratory.

Image analysis and learning program performs the tracking of the pointer, 3D reconstruc-
tion of the trajectory and, after learning procedure, returns the weight coefficients of the
motion. The program was implemented in Matlab, as part of the thesis.

Motion generation and robot control software runs the velocity generation routine and
sends commands to the robot. The software was implemented in C++ as part of the thesis
work.

3.3 Image Analysis

Image analysis process, illustrated in Figure 4, need to be devoted much attention, since
the results of it will affect the final result of the system. The image processing consists
four steps.

Pointer
Tracking

Coordinate
Normal-
ization

3D Recon-
struction

Go Global

Pointer
Position

Normalized
Pointer Co-

ordinates

3D Trajectory in
Camera Frame

Camera
Images

3D Trajectory
in Robot Frame

Figure 4. Image Analisys Routine

In the first block, pointer tracking, given the input images the program has to detect the
pointer in all of them. After that the coordinates of the pointer are normalized according
to the intrinsic calibration parameters. Then the trajectory is reconstructed with respect

16

to the left camera frame. Finally, the trajectory is moved to the global coordinate system
using the transformation matrix. Image analysis component is described in more detail in
Section 4.

3.4 Trajectory Learning and Generation

Figure 5 presents the diagram of the learning process.

Canonical
System

Error
Minimization

ftarget(s)

Gaussians

x, ẋ, ẍ

Weights

Figure 5. Learning Process

The canonical equation generates the phase parameters, for which the target non-linear
function ftarget and Gaussian basis functions are calculated, given the coordinates x, ve-
locities ẋ and accelerations ẍ of the trajectory demonstrated. As an output the learning
block provides the set of weight coefficients, the result of the error criterion minimization
box.

Figure 6 demonstrates the process of motion generation.

Canonical
System

Transformation
System

f(s, w)

Learned Weight
Coefficients

x, v, v̇

x0, g

Figure 6. Motion Generation

17

Knowing the weights of the non-linear function describing the motion and given the task
specific start and goal positions the program outputs the set of expected trajectory coordi-
nates, velocities and accelerations.

Similarly to the learning stage the canonical system generates the phase variable for the
whole duration of motion, using which the non-linear function is calculated. After that
the transformation system is employed to compute the following position, velocity and
acceleration. The implementation of learning and generating are discussed in Section 5.

18

4 VISUAL SENSING

The importance of visual sensing, the first stage in the system of learning robot motion,
is difficult to overestimate, since the accuracy of trajectory replication strongly depends
on the accuracy of the measured path. This section represents the fundamentals of stereo
geometry as well as the description of pointer tracking, normalizing frame coordinates
and 3D reconstruction.

4.1 Pointer Detection

4.1.1 Target Selection

One part of the problem was to choose the pointer for motion demonstration. A tutor was
using a red ball to demonstrate the movement and a stereo camera with known calibration
parameters is recording left and right images, that will make up the representation of the
whole motion. The frame rate of the saved images might not be constant (i.e., the gaps
between images might be the expected to be 15Hz seconds most of the time but sometimes
more). The color of the pointer was intended to be easy detected on the background, so
it is red. A round object was chosen to get almost the same view of it regardless of the
projection, which can differ in different points of the trajectory. The size of the ball is
convenient to demonstrate the motion and at the same time big enough to detect its center
of mass correctly, so that the trajectory obtained is close to the original one. The material
of the pointer should have as little specular reflection as possible not to get holes in the
image of the ball.

4.1.2 Detection Algorithm

Pointer localization and tracking is the first part of the trajectory detection, which can not
be much time and resource consuming. That is why color segmentation was employed
to detect the pointer. Since the lighting conditions and the position of the camera might
change from one experiment to another, a user is asked to show the position of the ball in
the first image, and after that the program is using these samples of the color to localize
the pointer in further images. Colors are considered in HSV color space. Maximum and
minimum of HSV-values of the pixels specified by the user are utilized as the threshold

19

for detecting the area of points of the ball. In addition, the system memorizes the previous
location of the ball and later on takes into account not the whole image but the part that is
expected to contain the pointer.

Blue points in Figure 7 represents the pixels assumed to be the area of the ball due to the
thresholds:

Figure 7. Localizing the Pointer, Color Segmentation

There might be several regions including pixels of the sample color, as Figure 7 shows
there is also a part of a shoe detected as the pointer. In order to resolve this problem,
first morphological closing is performed on the binary image to make the regions more
homogeneous. A disk structuring element is used to preserve the circular nature of the
object. After that blob detection reveals the areas remained and for the region with the
largest area the center of mass is calculated. Figure 8 shows the region of the ball as a
binary image and the detected center of mass.

20

Figure 8. Pointer Localization

After the color threshold was obtained, the further algorithm of a pointer detection is as
follows:

1. determine the window, containing the pointer, according to the previous center of
mass detected;

2. detect the clouds of the red points according to the threshold;

3. get a binary image, where red areas are white and all the other points black;

4. perform image closing;

5. blob detection;

6. choose the blob with the largest area;

7. calculate the center of mass of the largest blob.

The pointer is localized in the same way in all of the images of the trajectory, including
right and left views of the camera. After this stage the system obtained the trajectory in
the left and the right frame of the camera, but the question is how to get the motion in 3D,
and here stereo geometry needs to be employed.

21

4.2 Coordinate Normalization

Before implementing 3D reconstruction, the coordinates of the points localized in the
right and left images should be normalized with respect to the intrinsic camera parameters
that describe the internal properties of the device optics. The focal lengths fl and fr for
both lenses, the principle points or the centers ccl and ccr of the left and the right camera
frames, the skew coefficients sl and sr, the radial and tangential distortions are provided
as the internal parameters of the camera [15].

In simple case, shown in Figure 9, if the projection plane Z = 1, the projections on X
and Y planes can be obtained as x = X

Z
and y = Y

Z
correspondingly.

Z

X
L

P

R

x2x1

f

b

Figure 9. Perspective projection

In real cameras the focal length is not equal to 1 and therefore the z-coordinates of the
points in the projections should be scaled to the focal length. The coordinates should be
also normalized with respect to the principal points of each frame. The pointer coordinates
in the left and right camera frames can be computed as

plnorm =
pl − ccl
f

(15)

prnorm =
pr − ccl

f
, (16)

where pl and pr are the detected coordinates for the left and right camera frames corre-
spondingly.

The skew coefficients defining the angle between the x and y pixel axes should be taken

22

into account both for right and left cameras as follows:

xl = xl − sl ∗ yl (17)

xr = xr − sr ∗ yr (18)

Finally the third step is to compensate for the lens distortion, which all optical devices
are suffering from. The location of a point in the image can be larger or smaller from the
principal point than can be obtained from the projection equations, this offset is increasing
for the pixels that are far away from the center [15]. The problem of compensating lens
distortion was solved using the function of Matlab toolbox provided by the University of
Oulu [16].

4.3 Reconstruction of 3D Coordinates

Having obtained the normalized coordinates of the trajectory points in the left and right
images of the camera one can move to the reconstruction problem.

4.3.1 Stereo Vision

A word ’stereopsis’ comes from the Greek language, where it meant ’solid sight’. Nowa-
days this term is referred to as an important visual ability of people and animals to sense
the depth according to the difference in points of view of two eyes [17]. As a result hu-
man is able to percept three-dimensional shapes and distances. The idea of stereopsis is
employed in stereo cameras, which are able to capture three-dimensional images. Unlike
a human, a stereo camera can have more than two lenses, but in this thesis a camera with
two lenses is used.

Figure 10 represents a simple stereo system composed of two pinhole cameras

23

Figure 10. A Simple Stereo System [18].

There are two problems of stereo vision to be considered [18]: the correspondence prob-
lem and the reconstruction problem. The first stands for defining the corresponding points
in left and right images, the main difficulty here is that some elements of the scene might
be visible only in the left image, for example, and not visible in the right. The solution
is to make the stereo system to detect the areas in two images that should not be matched
and exclude them from the images.

The second problem, 3D reconstruction, in human vision is solved by brain that is aware
of the differences in retinal position, disparity, between matched elements and thus recon-
structs an image of the object seen by a person.

4.3.2 Reconstruction Algorithm

One of the methods used to reconstruct the 3D coordinates of the point is triangulation
[18], [19]. In ideal conditions, when the matching problem is solved correctly, the point
P in 3D can be obtained by intersecting the ray going through the optical centers Ol and
Or and the projections pl and pr of the points in the corresponding images. In most of the
cases these rays do not intersect in one point in 3D space, which means that the system
looks as in Figure 11

24

Figure 11. Stereo System with Non-intersecting Rays [18].

In this case the problem becomes more complicated but can be solved using a method
called midpoint triangulation [20]. Assuming that the intrinsic and extrinsic camera pa-
rameters are known, it is possible to calculate the point in 3D as the point with the equal
distance to the rays l and r going from the centers of lenses and through the projections
pl and pr in both left and right images. If w is the vector perpendicular to both l and r and
s is the part of it joining l and r together then the required point in 3D will be lying in the
middle of s. The equations are provided in [18, p.162-163]

25

5 DYNAMIC MOVEMENT PRIMITIVES
IMPLEMENTATION

The section presents the core part of the research, dealing with the mechanism of learning
the motion from demonstration and generating a duplicate of it according to the weight
coefficients obtained in the process of training. First, the way of motion representation
and transformation between the robot and the camera system of coordinates is considered.
Next, the issues of motion learning are presented: what was the target function, how the
motion was described and what was the output of the learning procedure. The section
of motion generation describes the method of obtaining the trajectory and velocity of a
motion needed using the parameters provided by the learning process.

5.1 Motion Representation

After the first stage of Visual Sensing, Section 4, performing the transformation from the
images of the stereo camera to 3D world, the motion demonstrated is represented as a set
of points in 3D with the center of the coordinate system in the camera origin. In addition,
the vector of velocities in X, Y and Z directions are provided.

In order to perform the motion on a robot, it is necessary to get the trajectory with respect
to the robot platform origin. For that purposes the transformation matrix is used and the
conversion itself is shown in the equation (19), where PR is the desired trajectory in the
robot frame, TR

C the transformation matrix from the camera to the robot coordinate system
and PC the trajectory in the camera coordinate system:

PR = TR
C · PC (19)

Using the function of camera calibration made it possible to get the matrix of transfor-
mation from the robot to the camera coordinate system. The matrix TC

R consists of two
elements: 3x3 rotational matrix R and 4x1 translational vector t:

26

TC
R =

 R11 R12 R13 t1

R21 R22 R21 t2

R31 R32 R33 t3

To make the above mentioned transformation the matrix should be inversed 20

PR = (TC
R)−1 · PC (20)

To perform the transformation it is necessary to move to homogeneous system of coordi-
nates, so that the matrix turns to be square:

TC
R =

R11 R12 R13 T1

R21 R22 R21 T2

R31 R32 R33 T3

0 0 0 1

In homogeneous coordinate system the trajectory points and velocities get the fourth co-
ordinate as follows: P = [XY Z1], V = [VxVyVz0]. The fourth coordinate of velocity is
zero as the translation should not have an effect on the velocities.

5.2 Description of Parameters

The parameters of the system could be divided into several groups: time and phase pa-
rameters, Gaussian basis function parameters, spring and damping factors.

5.3 Time and Phase Parameters

Time vector t is determined according to the duration of the motion (move_time), and
to the approximate frame rate of the camera. The number of pictures (pic_num) taken is

27

known and the time vector can be defined as follows 21:

t = [0...move_time]. (21)

The time step for the array t is equal to move_time
pic_num . Since all the calculations are performed

in phase domain one should determine phase variable s with one-to-one mapping to the
time variable. A phase variable s monotonically changes from 1 to 0 and can be found
using the fundamental equation (4).

The parameters α and τ should be selected such that s covers the maximum interval from
1 down to 0 for the specific duration of motion. Figure 12 shows the dependence between
s and t.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 12. Phase Variable s

5.3.1 Gaussian Basis Function Parameters

The concept of DMP assumes that the motion is fully described with the set of weight
coefficients w, which are obtained in the process of minimization the error criterion 14.
In fact a motion is describe with M Gaussian basis function

ϕi(s) = exp(−hi(s−ci)
2) (22)

with centers ci and width hi.

28

The number of weights w is equal to the number of Gaussian basis functions M , which
should be selected as small as possible but at the same time large enough not to lose
essential information of the motion.

The centers of Gaussian basis functions should be equally distributed in time, and it is
important to avoid unnecessary overlap of the functions, which is regulated by the width
of the Gaussians, which should also be equal for all of them in time.

5.3.2 Spring and Damping Terms

The spring factor K and the damping term D contributes a lot in the behavior of the
system. These terms are included in the system of differential equations describing the
system (1), (2), that are used for motion generation, they also are considered in the process
of learning as the terms with K and D coefficients enter the target function 13 of the
movement.

According to the definitions K affects the speed of convergence to the goal position,
and D should be chosen such that the system is critically damped. The effect of these
parameters is studied in Section 7.

5.4 Time vs Phase Approaches

In this thesis a new approach for determining the Gaussian basis functions is proposed:
to locate the centers of Gaussians in time domain. In the overviewed literature Gaussians
are generated in phase domain. When moving to the time domain the necessary changes
to the transformation function are described in the equations (23) and (24)

f(s) =

∑
ωiϕi(t)t(s))∑

ϕi(t)
(23)

t = −τ
a
ln(s) (24)

It is worth to mention that instead of multiplying the nominator of f(s) by s , the trans-

29

formation function t(s) is employed. One of the targets of Section 7 is to show how the
generation of the Gaussians in time and phase domain affects the resulting trajectory.

5.5 Learning Motion

In one dimension, a motion is represented by a modified set of differential equations de-
scribing a spring-like linear system. Previously the system has been described in Section
2. The target function was given in the equation (13). The main problem of the learning
phase is to define the function that would match the target function in the best way.

A nonlinear function 25 can be represented as a set of Gaussian basis functions ϕi =

exp(−hi(s− ci)2)

f(s) =

∑
ωiϕi(s)s∑
ϕi(s)

, (25)

If the centers ci and the width hi of Gaussians are predetermined then the weight coeffi-
cientswi are responsible for similarity of the target and designed functions. The following
steps should be taken in order to find the weight coefficients:

1. Calculating the first and the second derivatives of the trajectory using the numerical
differentiation for each dimension separately. Central-difference formula was cho-
sen for evaluating the derivatives of the position x and velocity v at each moment
of time:

ẋi =
(xi+h − xi−h)

2h
(26)

v̇i =
(vi+h − vi−h)

2h
, (27)

where step h is equal to the time step used in (21) for time array calculation.

2. Determining the target function for each phase variable and for each dimension
using the obtained parameters and derivatives in the equation (13):

ftargeti(s) =
τ v̇i +Dẋi

K
− (xN − xi) + s(xN − x1)), (28)

30

where τ is a time scaling parameter, D damping term, K spring constant, xN the
last position in the array of the position, that is a goal position, x0 the first position
in the array of the positions, initial position. The derivatives were calculated for the
moments of time and the target function depends on the phase variable. Such a sub-
stitution is possible due to one-to-one matching between time and phase variables.

3. Defining the weights of Gaussians.
The weights calculation is aimed at maximizing the conformity between the target
and the nonlinear function, representing the motion, or, in other words, the goal of
this step is to minimize the error criterion 14, given in Section ??

One might consider this problem as a linear regression problem, the solution of
which is

w = A+ftarg(s), (29)

where A+ is a pseudoinverse matrix of the matrix A, that is not square and can be
expressed as follows:

Aij =
ϕi(sj)sj∑

i ϕi(sj)
(30)

The output of the learning procedure is the set of weight coefficients, defining the nonlin-
ear function for motion replication.

5.6 Runge-Kutta Implementation for Movement Generation

In order to obtain the trajectory of the motion given the weight coefficient of the motion
and the initial and goal positions the system of differential equations (??), (??) should be
solved. The fourth-order Runge-Kutta method [21] for the approximation of solutions of
ordinary differential equations is employed for that purpose with the chosen time step.

The equations to be solved are the following:

v̇ =
K(g − x)−Dv +K(g − x0)s+Kf(s)

τ
. (31)

31

ẋ = v/τ, (32)

where x0 and v0 = 0 the initial values of the arguments.

The iterative formulas for coordinates x and velocities v are then:

xn+1 = xn + 1/6h(K1 + 2K2 + 2K3 +K4) (33)

vn+1 = vn + 1/6h(K1 + 2K2 + 2K3 +K4) (34)

where tn+1 = tn + h, h is the time step for Runge-Kutta.

The terms Ki can be expressed as:

K1 = f(s(tn), vn, xn) (35)

K1 = f(s(tn + 1/2h), vn + 1/2hK1, xn + 1/2hK1) (36)

K1 = f(s(tn + 1/2h), vn + 1/2hK2, xn + 1/2hK2) (37)

K1 = f(s(tn + h), vn + hK3, xn + hK3) (38)

As a result Motion Generation provides a smoothed trajectory for the motion including
both positions and velocities.

32

6 ROBOT CONTROL

In this work one of the assumptions was to use the available high level robot interface,
but it is essential to understand what the employed functions perform. In order to do that
it is necessary to understand the basics of robot kinematics and explore how the robot is
controlled.

6.1 Robot Kinematics

Unlike the dynamics, which considers forces and torques making the robot move, the
kinematics deals with the definition of the possible movements of the robot, considering
aspects of redundancy, collision avoidance and singularity avoidance [22]. Robot kine-
matics can be divided into two types: forward kinematics and inverse kinematics. The
former determines the position of the end-effector given the location of joints. The latter
calculates joint positions given a position in 3D space.

6.1.1 Forward Kinematics

A robot arm, see Figure 13, is typically built as a set links connected with revolute joints,
that rotate a robot around given axis allowing it to perform movements activating different
joints.

Figure 13. General Structure of a Robot Arm, [23]

Like in Figure 13, the arm used in this work ends with a sensor with an end-effector

33

attached to it.

Forward kinematics solves a transformation equation to find the location of the end-
effector using the joint angles. Each joint has its own coordinate frame, but the position
of the end-effector is found in the base frame, so that the forward kinematics procedure
performs transformations between all the neighboring joint frames, as shown in Figure
14.

Figure 14. Forward Kinematics by Composing Transformations, [22]

The solution of the forward kinematics is always unique for special robots, one combina-
tion of joint positions corresponds only to one location of the end-effector in space.

6.1.2 Inverse Kinematics

As the name implies the inverse kinematics aims at determining the joints angles given
the position of the end-effector. Therefore if x is the position of the end-effector and θ the
joint angles, the task for the inverse kinematics is to solve:

x = f(θ). (39)

For θ,function f represents the forward kinematics transformation. As a rule [24] joint
angles are found using numerical methods. Unlike the forward kinematics inverse kine-
matics does not necesseraly give a unique solution, as illustrated in Figure 15.

Thus, there might be multiple combinations of joint locations corresponding to one posi-
tion of the end-effector in space.

34

Figure 15. Multiple Solution for Inverse Kinematics Problem

6.2 Robot Control Implementation

The robot arm has two control modes:

1. Teaching mode: the robot is controlled using a control panel. One can change the
robot position varying the coordinates of the end-effector in the Cartesian coordi-
nate system or the position of joints.

2. Automatic mode is used to control the robot running programs on it.

In the thesis work the teaching mode was used to estimate the trajectory generated by the
software, to see if the trajectory is reasonable. In the automatic mode the software was
run on the robot.

There two stages in the robot control for performing trajectory replication:

1. moving the robot end-effector to the initial position;

2. running the trajectory.

In the former stage the robot is given the initial position coordinates in the Cartesian co-
ordinate system, the center of which is situated in the robot base. The inverse kinematics
procedure is performed to find one of the possible solutions for the joints. The function
needs an initial guess for the inverse kinematics solution which was found experimentally.
Knowing the location of joints the robot is able to go to the initial position.

Once the robot is at the start position it can be provided with the velocity vector for
joints, containing velocities for three dimensions. Later on the robot is controlled by the
velocities calculated by the generation procedure.

35

It is necessary to notice that the frequency, which the robot is able to get commands with,
should correspond to the frequency of sending new velocities to it. This will affect the
smoothness of the trajectory performed by the robot.

36

7 EXPERIMENTS AND DISCUSSION

7.1 Visual Sensing Experiments

The first stage of the system gets the visual information of the motion, detecting the
trajectory. Since a motion is represented as a set of images from left and right cameras
and considering the correspondence problem of 3D reconstruction, it would be useful to
know how precise the detection of the pointer is and how precisely the 3D reconstruction
is performed.

7.1.1 Pointer Detection Precision

This part of experiments measures the precision of the pointer detection. One should
distinguish between the terms ’accuracy’ and ’precision’. Accuracy shows how close a
measurement is to the true value, while precision shows how successfully one can get the
same measurement under unchangeable conditions.

A series of images of the pointer was taken with pointer situated in the same position as
in Figure 16

Figure 16. Pointer Precision Test

The set of images contains 25 images for each camera, left and right. The results of
detection are represented in Table 1

37

Table 1. Pointer Coordinates In Left and Right Images

Image 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
XL 287

116 116
XR 215 215 215 215 215 215 216 215 215 215 215 215 215 215 215 215 215 215 215 215 215 216 215 215 215

115 114 115 115 114 1165 114 115 115 115 115 115 115 115 114 115 115 115 115 115 115 115 114 115 115

XL and XR assign the coordinates of the pointer in the left and right camera images
correspondingly. The means for each dimension of right and left image detection result
were calculated according to:

XLmean =
1

N
·
∑

i=1..N

XLi (40)

XRmean =
1

N
·
∑

i=1..N

XRi, (41)

where N = 25 is the number of test images.

To find out the precision, the variance of the data was calculated using:

(σXL)
2 =

1

N
·
∑

i=1..N

(XLi −XLmean)
2 (42)

(σXR)
2 =

1

N
·
∑

i=1..N

(XRi −XRmean)
2. (43)

Standard deviation was computed as:

σXL =

√
1

N
·
∑

i=1..N

(XLi −XLmean)2 (44)

σXR =

√
1

N
·
∑

i=1..N

(XRi −XRmean)2. (45)

The result of the calculation is shown in Table 2

38

Table 2. Means and variances for Left and Right Images Detection

Mean Variance Standard deviation,%
XL 287 0 0

116 0 0
XR 215.08 2.75 · 10−7 2.44 · 10−4

114.80 5.98 · 10−7 6.74 · 10−4

In the worst case the standard deviation is less than 0.001%, which means that the de-
tection has a good predictability. This precision is appropriate for using at the trajectory
detection stage.

7.1.2 3D Reconstruction Precision

The same set of images was used to estimate the 3D reconstruction precision, the idea
was to reconstruct the coordinate of the pointer center for all of the images and calculate
the mean and variance for them. Table 3 contains the coordinates of the pointer center.

Table 3. 3D Coordinates of the Trajectory

Image 1 2 3 4 5 6 7 8 9 10 11
P -0.0074 -0.0086 -0.0074 -0.0074 -0.0086 -0.0074 -0.0074 -0.0074 -0.0086 -0.0074 -0.0074

0.5413 0.5417 0.5413 0.5413 0.5417 0.5413 0.5413 0.5413 0.5417 0.5413 0.5413
0.1934 0.1940 0.1934 0.1934 0.1940 0.1934 0.1934 0.1934 0.1940 0.1934 0.1934

Table 4. 3D Coordinates of the Trajectory. Continuation

12 13 14 15 16 17 18 19 20 21 22 23 24 25
-0.0074 0.0046 -0.0074 -0.0086 -0.0086 -0.0074 -0.0074 -0.0074 -0.0074 -0.0086 -0.0074 -0.0074 -0.0086 -0.0086
0.5413 0.5387 0.5413 0.5417 0.5417 0.5413 0.5413 0.5413 0.5413 0.5417 0.5413 0.5413 0.5417 0.5417
0.1934 0.1967 0.1934 0.1940 0.1940 0.1934 0.1934 0.1934 0.1934 0.1940 0.1934 0.1934 0.1940 0.1940

Mean and variance were then calculated using:

Pmean =
1

N
·
∑

i=1..N

Pi (46)

(σP)
2 =

1

N
·
∑

i=1..N

(Pi − Pmean)
2. (47)

39

Standard deviation was computed as:

σP =

√
1

N
·
∑

i=1..N

(Pi − Pmean)2 (48)

Result of the calculation is represented in the table 5

Table 5. Means and Variances for Reconstructed Coordinates in 3D

Mean Variance Standard deviation,%
P 0.0034 0.010 · 10−7 0.9301

0.5391 0.139 · 10−7 0.0219
0.1965 7.085 · 10−7 0.4284

The standard deviation of the 3D reconstruction is less than 1%, which shows that the
method for 3D reconstruction can be used in the system and give a predictable result.

7.2 Dynamic Movement Primitives Tests

As it was shown in Section 5 the Dynamic Movement Primitives concept assumes using
a number of parameters and it is difficult to find guidance how to set them. The DMP
experiments are intended for clarifying what is the influence of the parameters and coef-
ficients, how they might be chosen and is it possible to find a universal set of parameters
for a large range of motion primitives.

In this subsection a single parabolic motion was used to examine the effect of the DMP
parameters.

40

7.2.1 Spring and Damping factors Influence

In the series of experiments described in this subsection the parameters of the motion are
as follows:

Table 6. Parameters of the Motion

Parameter Value
Move Time (s) 3.5

Number of Gaussians M 9
Width of Gaussians w 10

Spring Constant K varied
Damping Factor D varied
Temporal Scaling τ 3
Runge-Kutta Step(s) 0.007

According to the definition the spring coefficient K corresponds to how fast the system
converges to the goal position, and damping factor D should be chosen such that the
system is critically damped, which means that the system returns to equilibrium as quickly
as possible without oscillating.

The questions for this part of the experiments are:

1. What is the effect of the spring and the damping factors on the generated trajectory?

2. How should one choose the parameters?

3. Is it possible to single out unique values for a large set of motions?

The following examples will illustrate the effect of these parameters. The spring and
damping factors were chosen experimentally. In the figures, provided below, the initial
and generated trajectories are represented in the 3D space and along each coordinate axis.

Figures 17 and 18 show the trajectory for K = 70 and D = 10. The damping factor
is tuned so that the trajectory is smooth, but the spring constant is obviously not large
enough to let the z-coordinate grow high to reach the initial values.

Figures 20-21 represent what influence the decrease and the increase of D have on the
trajectory. In the first set of figures, with smaller D, the system does not have enough

41

time to converge to the goal position for the time given. For larger D it smoothes the
trajectory but overfits still trying to converge to the target point.

According to the experiments conducted, the values of K and D should be chosen in a
way allowing the system to replicate the motion but at the same time to get the smoother
trajectory for the reasonable interval of time. In Figures 24 and 23 K = 150 and D = 15,
and the system seem to be quite close to the original.

As it was illustrated by Figures, the increase of D helps to get the smoother trajectory and
to make the system to converge, but what will happen if D will be increased further.

As it is represented in Figure 25 and 26 one will get more bent trajectory, but replicating
the original path much closer. This fact might be explained by the local effect of D
parameter which makes the system more sensitive to any oscillations.

Discussion of the questions:

1. The spring and damping parameters affect how fast the system converges to the
goal position, how closely it follows the original trajectory and how smooth the
trajectory is.

2. The parameters need to be chosen experimentally and considered together.

3. Is seems to be possible to find the values that will fit some set of motions if they
have similar shape and duration.

42

0.1
0.2

0.3 0.4 0.45 0.5 0.55

0.14

0.16

0.18

0.2

0.22

0.24

0.26

YX

Z

Figure 17. Initial and Generated Trajectories, K = 70 D = 10

0 2 4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

X

0 2 4
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

t

Y

0 2 4
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

t

Z

Figure 18. Initial and Generated Trajectories, K = 70 D = 10

43

0.1 0.15 0.2 0.25 0.3

0.4
0.5
0.60.14

0.16

0.18

0.2

0.22

0.24

0.26

Y
X

Z

Figure 19. Initial and Generated Trajectories, K = 70 D = 5

0 2 4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

X

0 2 4
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

t

Y

0 2 4
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

t

Z

Figure 20. Initial and Generated Trajectories, K = 70 D = 5

44

0.1

0.2

0.3 0.4 0.45 0.5 0.55 0.6

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

YX

Z

Figure 21. Initial and Generated Trajectories, K = 70 D = 15

0 2 4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

X

0 2 4
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

t

Y

0 2 4
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

t

Z

Figure 22. Initial and Generated Trajectories, K = 70 D = 15

45

0.1 0.15 0.2 0.25 0.3
0.4

0.5
0.6

0.14

0.16

0.18

0.2

0.22

0.24

0.26

XY

Z

Figure 23. Initial and Generated Trajectories, K = 150 D = 15

0 2 4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

X

0 2 4
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

t

Y

0 2 4
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

t

Z

Figure 24. Initial and Generated Trajectories, K = 150 D = 15

46

0.1 0.15 0.2 0.25 0.30.4
0.5

0.60.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Y
X

Z

Figure 25. Initial and Generated Trajectories, K = 150 D = 21

0 2 4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

X

0 2 4
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

t

Y

0 2 4
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

t

Z

Figure 26. Initial and Generated Trajectories, K = 150 D = 21

47

7.2.2 The Effect of Gaussian Basis Function Parameters

The concept of DMP assumes that the motion is fully described with the set of weight
coefficients w, which are obtained in the process of minimization of the error criterion.
Therefore in fact a motion is described with M Gaussian basis function with centers ci
and width hi.

The questions for this part of experiment are:

1. How to choose the number of Gaussian basis functions?

2. Is it possible to single out one number appropriate for a large range of motions?

3. How does the number of Gaussians depend on the duration of motion?

Motion parameters are as follows:

Table 7. Parameters of the Motion

Parameter Value
Move Time (s) 3.5

Number of Gaussians M varied
Width of Gaussians w 10

Spring Constant K 150
Damping Factor D 15
Temporal Scaling τ 3
Runge-Kutta Step(s) 0.007

48

In the first experiment the number of Gaussians was set to 3,M = 3, there was not enough
information of the motion and therefore the generated curve does not match the initial, as
it is shown in Figure 27.

0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.3

0.4
0.5

0.6

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

XY

Z

Figure 27. Initial and Generated Trajectories, M = 3

If M = 20, Figure 28, the generated curve is close to the original but there is no use in
employing such a number of coefficients if the same effect could be obtained with smaller
number of Gaussians.

0.1 0.15 0.2 0.25 0.30.40.50.6

0.14

0.16

0.18

0.2

0.22

0.24

0.26

XY

Z

Figure 28. Initial and Generated Trajectories, M = 20

49

For example, M = 9, in Figure 29.

0.1 0.15 0.2 0.25 0.30.4
0.5

0.6

0.15

0.2

0.25

XY

Z
Figure 29. Initial and Generated Trajectories, M = 9

Questions discussion:

1. The number of Gaussian basis function should be chosen according to the duration
of motion.

2. If the duration of motions from a large set is approximately the same and the shape
of motions is similar, then the number of Gaussian can be found for all the motions
from the set. If the shape of the motions is different, for example some motions are
simple line motions, the number of Gaussians need not to be large.

3. The longer the motion is the larger number of Gaussians needed. If there are not
enough Gaussian basis functions describing the motion on the whole duration, there
will not be enough information to generate the motion close to the original one.

Another parameter if the width of Gaussian basis function.The questions for consideration
are as follows:

1. How can the width of Gaussians be chosen?

2. Is it possible to choose one value for a large range of motions?

50

Motion parameters are as follows:

Table 8. Parameters of the Motion

Parameter Value
Move Time (s) 3.5

Number of Gaussians M 9
Width of Gaussians w varied

Spring Constant K 150
Damping Factor D 15
Temporal Scaling τ 3
Runge-Kutta Step(s) 0.007

Figure below shows the results of learning for different width hi. The normalized Gaus-
sians generated in time domain (left upper Figure), the same Gaussians in phase domain
(right upper Figure) and Gaussians generated in phase domain (left lower Figure) are
shown. The generated and initial trajectories are also shown in right lower Figure.

During the experiments more than three values for Gaussians were studied, but in the
thesis work the most descriptive need to be shown.

0 1 2 3 4
0

1

2

3

4

5
x 10

−3

t

N
or

m
al

iz
ed

 G
au

ss
ia

ns

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5
x 10

−3

s

N
or

m
al

iz
ed

 G
au

ss
ia

ns

0 1 2 3 4
0

1

2

3
x 10

−3

s

N
or

m
al

iz
ed

 G
au

ss
ia

ns

0 0.1 0.2 0.3 0.40.40.60.8
0.1

0.2

0.3

0.4

XY

Z

Figure 30. Initial and Generated Trajectories, W = 1

51

0 1 2 3 4
0

0.005

0.01

0.015

t
N

or
m

al
iz

ed
 G

au
ss

ia
ns

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4
x 10

−3

s

N
or

m
al

iz
ed

 G
au

ss
ia

ns

0 1 2 3 4
0

1

2

3

4
x 10

−3

s

N
or

m
al

iz
ed

 G
au

ss
ia

ns

0 0.1 0.2 0.3 0.40.4
0.6

0.8
0.1

0.2

0.3

0.4

XY

Z

Figure 31. Initial and Generated Trajectories, W = 10

0 1 2 3 4
0

0.02

0.04

0.06

t

N
or

m
al

iz
ed

 G
au

ss
ia

ns

0 0.5 1
0

2

4

6
x 10

−3

s

N
or

m
al

iz
ed

 G
au

ss
ia

ns

0 1 2 3 4
0

2

4

6
x 10

−3

s

N
or

m
al

iz
ed

 G
au

ss
ia

ns

0 0.2 0.40.40.60.8

0.1

0.2

0.3

0.4

0.5

XY

Z

Figure 32. Initial and Generated Trajectories, W = 100

The next series of figures represents X, Y and Z coordinates of the initial and generated
trajectories with respect to time.

52

0 2 4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

X

0 2 4
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

t

Y

0 2 4
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

t

Z

Figure 33. Initial and Generated Trajectories, W = 1

0 2 4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

X

0 2 4
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

t

Y

0 2 4
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

t

Z

Figure 34. Initial and Generated Trajectories, W = 10

53

0 2 4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

X

0 2 4
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

t

Y

0 2 4
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

t

Z

Figure 35. Initial and Generated Trajectories, W = 100

Questions discussion:

1. Since the Gaussians are generated in phase domain, it is preferable to have the width
of Gaussians such that in phase domain they were not much overlapping. This will
allow of getting the information about the motion for the whole duration of it. At the
same time, the overlapping of Gaussians need to be sufficient to make the motion
smooth, in other words, there should be some overlapping.

2. The width of Gaussians need to be chosen experimentally for a particular range of
motions.

According to Figures it is reasonable to choose width equal to 10. The overlapping of
Gaussians in time domain is adequate and the trajectory obtained is smooth and close to
the initial.

7.2.3 Generation in Time and Phase Domains

The aim of this part of experiments is to show the performance of the system when the
Gaussian basis functions were generated in time domain and how it differs from the case
when phase dependent Gaussians were used.

54

Motion parameters are as follows:

Table 9. Parameters of the Motion

Parameter Value
Move Time (s) 3.5

Number of Gaussians M 9
Width of Gaussians w 10

Spring Constant K 150
Damping Factor D 15
Temporal Scaling τ 3
Runge-Kutta Step(s) 0.007

Two experiments were made such that all parameters were kept equal, but in first case,
illustrated by Figures 36 and 37, the Gaussians were described in phase domain and in the
second case, Figures 38 and 39, in time domain.

When generated in the phase domain, the centers of Gaussians are not equally distributed
in time domain, which means that there is not enough information about the rest of the
motion. In the case when the Gaussians were generated equally distributed in time do-
main, they cover the whole duration of the motion, giving better fitting for the initial
trajectory.

55

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

t

N
or

m
al

iz
ed

 G
au

ss
ia

ns

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

s
N

or
m

al
iz

ed
 G

au
ss

ia
ns

Figure 36. Gaussians in Time and Phase Domains, Generated in Phase Domain

0.05 0.1 0.15 0.2 0.25
0.4

0.5
0.6

0.1

0.15

0.2

XY

Z

Figure 37. Initial and Generated Trajectories for Gaussians Generated in Phase Domain

56

0 1 2 3 4
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

t

N
or

m
al

iz
ed

 G
au

ss
ia

ns

0 0.5 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

s

N
or

m
al

iz
ed

 G
au

ss
ia

ns
Figure 38. Gaussians in Time and Phase Domains, Generated in Time Domain

0.05 0.1 0.15 0.2 0.250.4
0.5

0.6

0.1

0.15

0.2

XY

Z

Figure 39. Initial and Generated Trajectories for Gaussians Generated in Time Domain

57

7.3 Trajectory Replication by a Robot

Before starting the experiment with the robot replication of the motion it is reasonable to
define the set of trajectories that should be demonstrated and the possible application of
those.

7.3.1 Trajectories under Consideration

First type of the trajectories includes straight line motions as shown in Figure 40

Y

X

Figure 40. One-dimension Movement

which could be used as separate motions, for example, for lifting some objects or drawing
lines, so that a robot could learn how to write. Besides that motions of that kind can be
used as components of a complex motion.

Second type includes parabolic motions, illustrated in Figure 41, for moving objects,
putting them from one place for another, that could be used in industries.

Y

X

Figure 41. Parabolic Motion

58

If one considered medical area, then such kind of movement could be helpful in surgical
operations.

7.3.2 Trajectory Test

Parabolic Motion proved to be possible to replicate. Given the initial and goal positions,
the velocities for each point of the motion were generated.

Motion parameters are as follows:

Table 10. Parameters of the Motion

Parameter Value
Move Time (s) 3.5

Number of Gaussians M 9
Width of Gaussians w 10

Spring Constant K 150
Damping Factor D 17
Temporal Scaling τ 3.3
Runge-Kutta Step(s) 0.007

In test 1, Figure 42, the duration of the generated motion and the goal position are the
same as for the motion generated in Matlab.

0.05

0.1

0.15

0.2

0.25

0.470.480.49

0.1

0.12

0.14

0.16

0.18

0.2

X
Y

Z

Figure 42. Generated Trajectories

In Figure 42 the motion generated in Matlab (red line) and the motion generated online
for the robot (blue line) are represented. The difference between goal positions is not

59

considerable, since the motion generation program does not take into account the perfor-
mance of the robot, there might be some difference between the point where the robot
was assumed to go and where it actually went.

Line Motion appeared to be difficult to replicate with the same setting of the DMP, it
tends to take a shape of parabolic. When varying the damping and spring parameters, it
occurred that if the motion was close to line then the trajectory was not able to converge to
the goal position. But if the spring and damping factors were adjusted so that the motion
converged to the needed position, the trajectory became curved. Since there are three
DMPs, one for each dimension, a possible solution might be to use different damping and
spring parameters for different dimensions.

7.3.3 Temporal and Space Invariance Tests

Spatial Invariance. In order to check the property of the Dynamic movement primitives,
called spatial invariance, the series of tests was performed in which the goal position was
changed. The system was expected to generate the trajectory with the shape close to the
initial, but that would converge to the new goal position. The parameters of the motion
are as shown in Table 11.

In test 2, Figure 43, time of the motion is the same as for the motion generated in Mat-
lab, but goal position was changed. Figure 43 demonstrates how the change in the goal
position affected the trajectory.

0.05

0.1

0.15

0.2

0.25

0.470.480.49

0.1

0.12

0.14

0.16

0.18

0.2

X
Y

Z

Figure 43. Generated Trajectories, Change of the Goal Position

In Figure 43 the motion, generated in Matlab (red line), and the motion, generated online
for the robot with the changed goal position (blue line), are represented. As it is shown

60

the generation program adjusted the Dynamic Motion Primitives to produce a trajectory
that converged to the new goal position.

Temporal Invariance was checked by setting the recalculated parameter τ depending on
the desired duration of the motion. Motion parameters are as follows:

Table 11. Parameters of the Motion

Parameter Value
Move Time (s) 5

Number of Gaussians M 9
Width of Gaussians w 10

Spring Constant K 150
Damping Factor D 17
Temporal Scaling τ 4.75
Runge-Kutta Step(s) 0.007

Figure 44 demonstrates the trajectories with different durations.

0

0.05

0.1

0.15

0.2

0.25

0.48
0.5

0.1

0.15

0.2

0.25

X

Y

Z

Figure 44. Generated Trajectories, Change of the Duration of the Motion

In Figure 44 red-line motion lasts for 5 seconds and blue-line one for 3.5 seconds. The
shape of the motion remained the close to the original, although the trajectory was stretched
in time. In order to get the motion close to the original one but with other duration, one
would need to adjust also spring and damping factors.

61

8 CONCLUSION

During the research the first objective, studying the way of programming robot with visual
input, was accomplished. A demonstrated motion was recorded by a stereo camera, the
sequence of images were processed, the learning phase provided the weight coefficients
of the motion and the generation procedure produced the velocities for robot joints.

Dynamic movement primitives concept proved to be an efficient tool for motion learning
and generation. One of the advantages of the DMP is that the motion is stored as a set
of weight coefficients, which allows to save memory. Another beneficial point is that the
DMP makes it possible for a motion to be generated with different target positions and
different duration, which are the space and temporal invariance properties of the DMPs.

The second objective was defined as the analysis of the influence of different parameters
values on the trajectory generated was performed. The part of the experiments concerning
the visual sensing proved that the methods for pointer detection and 3D reconstruction can
be used in the system and give a predictable result.

During the second part of experiments the different parameters used in motion learning
and generation were studied. It was shown that the number of Gaussians should be such
that the whole motion was described without loss of information about the path and at
the same time not to store excess weight coefficient that would not bring new knowledge.
The centers of Gaussian basis functions should be equally distributed in time, and it is
important to avoid unnecessary overlapping, which is regulated by the width parameter.

Damping and spring constants should be chosen for each application separately, since
there seems not to be unique values that would satisfy all the types of motions. On the
other hand, it might be possible to choose suitable parameters for the movements within
one type. It is important to consider damping factor and spring coefficient together.

The parabolic trajectories were learnt and performed by the robot successfully, whereas
for the line motions there were problems related to the difficulty in choosing one set of
damping and spring parameters for all three dimensions. As a solution, different coeffi-
cients for different dimensions were suggested.

The third part of the experiments proved some of the properties of DMP, such as spatial
and temporal invariance. The former implied the capability of the system to converge to

62

the changed goal position. The latter implies that the duration of the motion can be varied
changing the temporal coefficients.

The system designed includes the Matlab image analysis and learning program and the
C++ motion generation software, which might be extended to add new functionality to
the system.

As one of the improvements, obstacle avoidance could be implemented, which was not
considered in the scope of the work. A good idea might be to build a library of motions,
so that the robot obtained ability not only to perform the demonstrated motions but also
to recognize the movements that were shown.

63

REFERENCES

[1] N. Roy J. Peters, R. Tedrake and J. Morimoto. Robot learning. IEEE Robotics&

Automation Magazine, 16:19–20, 2009.

[2] C. Breazeal and B. Scassellati. Robots that imitate humans. TRENDS in Cognitive

Sciences, 3:233–242, 2002.

[3] S. Schaal. Is imitation learning the route to humanoid robots? Trends in Cognitive

Sciences, 1999.

[4] K. Grochow R. Chalodhorn, D. B. Grimes and R. P. N. Rao. Learning to walk
through imitation. IJCAI’07: Proceedings of the 20th international joint conference

on Artificial Intelligence, pages 2084–2090, 2007.

[5] T. Asfour P. Pastor, H. Hoffmann and S. Schaal. Learning and generalization of
motor skills by learning from demonstration. IEEE International Conference on

Robotics and Automation, 2009.

[6] S. Schaal A. J. Ijspeert, J. Nakanishi. Learning attractor landscapes for learning mo-
tor primitives. Advances in Neural Information Processing Systems 15 (NIPS2002),
9:1040–1046, 2002.

[7] S. Schaal A. J. Ijspeert, J. Nakanishi. Movement imitation with nonlinear dynam-
ical systems in humanoid robots. IEEE International Conference on Robotics and

Automation (ICRA2002), 2002.

[8] I. Oakley S. Strachan, R. Murray-Smith and J. Angesleva. Dynamic primitives for
gestural interaction. Lecture Notes in Computer Science 3160, pages 325–330, 2006.

[9] J. E. Slotine B. E. Perk. Motion primitives for robotic flight control. ArXiv Computer

Science e-prints, 2006.

[10] J. Ijspeert S. Schaal, J. Nakanishi. Learning movement primitives. International

Symposium on Robotics Research (ISRR2003), 2004.

[11] D. Park H. Hoffmann, P. Pastor and S. Schaal. Biologically-inspired dynamical
systems for movement generation: automatic real-time goal adaptation and obstacle
avoidance. 2009 IEEE International Conference on Robotics and Automation, pages
2587–2592, 2009.

64

[12] P. Pastor H. Hoffmann and S. Schaal. Dynamic movement primitives for movement
generation motivated by convergent force fields in frog. Adaptive Motion of Animals

and Machines (AMAM), 2008.

[13] B. Fajen and W. Warren. Behavioral dynamics of steering, obstacle avoidance, and
route selection. Journal of Experimental Psychology: Human Perception and Per-

formance, 29:343–362, 2003.

[14] A. S. Hadi S. Chatterjee. Regression analysis by example. Wiley-Interscience, 2006.

[15] O. Silven J. Heikkila. A four-step camera calibration procedure with implicit image
correction. Computer Vision and Pattern Recognition, 1997. Proceedings., 1997

IEEE Computer Society Conference on, pages 1106–1112, 1997.

[16] http://www.vision.caltech.edu/bouguetj/calib _doc/index.html.

[17] http://mysite.du.edu/ jcalvert/optics/stereops.htm.

[18] Emanuele. Trucco. Introductory techniques for 3-D computer vision. Upper Saddle
River (NJ), 1998.

[19] P. F. Sturm R. I. Hartley. Triangulation. Lecture Notes In Computer Science,
970:190–197, 1995.

[20] P. Sturm R. I. Hartley. Triangulation. Computer Vision and Image Understanding,
68:146–157, 1997.

[21] Bahvalov N. Numerical Methods. M. Nauka, 1975.

[22] Y. C. Sirma. Kinematic analysis for robot arm. Master’s thesis, Yildiz Technical
University, 2009.

[23] www.tirbosquid.com/3d-models/maya-robotic arm/281750.

[24] M. Wahde. Lecture notes, "humanoid robotics". Chalmers University of Technology,
2009.

65

	INTRODUCTION
	Motivation
	Objectives and Restrictions
	Structure of the Thesis

	TRAJECTORY IMITATION WITH DYNAMIC MOVEMENT PRIMITIVES
	Imitation Learning for Robots
	Dynamic Movement Primitives
	Properties and Restrictions
	Modified DMP
	Obstacle Avoidance with DMP
	Imitation learning with DMPS
	Combination of Movement Primitives

	SYSTEM DESCRIPTION
	Hardware Components
	Software
	Image Analysis
	Trajectory Learning and Generation

	VISUAL SENSING
	Pointer Detection
	Target Selection
	Detection Algorithm

	Coordinate Normalization
	Reconstruction of 3D Coordinates
	Stereo Vision
	Reconstruction Algorithm

	DYNAMIC MOVEMENT PRIMITIVESIMPLEMENTATION
	Motion Representation
	Description of Parameters
	Time and Phase Parameters
	Gaussian Basis Function Parameters
	Spring and Damping Terms

	Time vs Phase Approaches
	Learning Motion
	Runge-Kutta Implementation for Movement Generation

	ROBOT CONTROL
	Robot Kinematics
	Forward Kinematics
	Inverse Kinematics

	Robot Control Implementation

	EXPERIMENTS AND DISCUSSION
	Visual Sensing Experiments
	Pointer Detection Precision
	3D Reconstruction Precision

	Dynamic Movement Primitives Tests
	Spring and Damping factors Influence
	The Effect of Gaussian Basis Function Parameters
	Generation in Time and Phase Domains

	Trajectory Replication by a Robot
	Trajectories under Consideration
	Trajectory Test
	Temporal and Space Invariance Tests

	CONCLUSION
	REFERENCES

