Lappeenranta University of Technology
Faculty of Technology Management

Degree Program in Information Technology

Master's Thesis

Kimmo Kolehmainen

A COMMUNICATION MIDDLEWARE QUALITY ENHANCEMENT
WITH QT FRAMEWORK

Examiners: Professor Jari Porras
M.Sc. Jussi Laakkonen

Supervisor: Assistant Petri Heinila

ABSTRACT

Lappeenranta University of Technology
Faculty of Technology Management
Degree Program in Information Technology

Kimmo Kolehmainen

A Communication Middleware Quality Enhancement with Qt Framework

Master's Thesis

2010

104 pages, 28 figures, 1 table, 3 appendices

Examiners: Professor Jari Porras

M.Sc. Jussi Laakkonen

Keywords: PeerHood, Qt, Qt Mobility, middleware atjty, peer-to-peer, wireless

In this thesis, a Peer-to-Peer communication mwdadte for mobile environment is
developed using the Qt framework and the Qt Mabiiktension. The Peer-to-Peer
middleware — called as PeerHood — is for serviaish in network neighborhood. In
addition, the PeerHood enables service connectiatyd device monitoring

functionalities.

The concept of the PeerHood is already availableative C++ implementation on
Linux platform using services from the platform.this work, the PeerHood concept is
remade to be based on use of the Qt framework objeztive of the new solution is to

increase PeerHood quality with using functionaditieom the Qt framework and the Qt

Mobility extension. Furthermore, by using the Qinfrework, the PeerHood middleware

can be implemented to be portable cross-platforddiaware.

The quality of the new PeerHood implementation valeated with defined quality
factors and compared with the existing PeerHoodiaBiety, CPU usage, memory
usage and static code analysis metrics are usedaluation. The new PeerHood is

shown to be more reliable and flexible that thesémxg one.

TIIVISTELMA

Lappeenrannan teknillinen yliopisto
Teknistaloudellinen tiedekunta
Tietotekniikan koulutusohjelma

Kimmo Kolehmainen

Tietoliikennevalikerroksen laadun parantaminen Qt velluskehyksen avulla

Diplomityo

2010

104 sivua, 28 kuvaa, 1 taulukko, 3 liitetta

Tyon tarkastajat: Professori Jari Porras

DI Jussi Laakkonen

Hakusanat: PeerHood, Qt, Qt Mobility, valiohjelmistaatu, peer-to-peer, langaton
Keywords: PeerHood, Qt, Qt Mobility, middleware atjty, peer-to-peer, wireless

Tassa tyossa toteutetaan Peer-to-Peer tietoliikéfinbjelmisto mobiiliymparistoon

hyodyntaen Qt sovelluskehystd sekd Qt Mobility daapsta. Peer-to-Peer
valiohjelmisto — nimeltddn PeerHood — on tarkaitgilveluiden jakamiseen. Lisaksi
PeerHood mahdollistaa palveluiden yhteyden muo#testy seka toisten laitteiden

monitoroinnin.

PeerHood konseptista on olemassa C++ toteutus Ledustalle hyodyntden sen
tarjoamia palveluita. Tassa tyossa PeerHood konsept uudelleen toteutettu
pohjautumaan Qt sovelluskehyksen kayttoon. Totewah ratkaisun on tarkoitus

parantaa PeerHood vaéliohjelmiston laatua hyddynt@ensovelluskehyksen ja Qt

iv

Mobility:n tarjoamia palveluita. Kaiken lisdksi, dglyntaen Qt sovelluskehysta,
PeerHood véliohjelmisto voidaan toteuttaa helpsstrettavaksi toisille laitteille seka

alustoille.

Uuden PeerHood:n toteutuksen laatua on arvioituritetfijen laatutekijoiden avulla.
Uutta seka vanhaa PeerHood toteutusta on myodsttvekaskenddn. Luotettavuutta,
prosessorin kaytt6d, muistin kayttbd seka koodiadua mittareita on kaytetty
arvioinnissa. TyOssa toteutettu PeerHood vaikuttakevan Iluotettavampi, seka

joustavampi kuin aikaisempi toteutus.

PREFACE

This project is done as a part of the PeerHoodeptojn communication software
laboratory of Lappeenranta University of Technologyvould like to thank for this

great opportunity to be involved of this projecdgorovided guidance for my thesis
work. A special thanks to Petri Heinila of good pap and valuable information and

opinions.

Without a good background support, accomplishing tork could have been much
harder. Hence, | want to give my acknowledgemémteny employer Digia Plc for
support of studying and graduating. Especially,antvto thank my family; thank you

my lovely spouse Eija and also mother and fatheraddition, my friends have been
supporting me a lot during this project.

Lappeenranta, November 2, 2010

Kimmo Kolehmainen

Vi

TABLE OF CONTENTS

1 INTRODUCTION ..ottt e e e e e e e e e e eeenaa e e e e e aeaes 6
(N A © = N | =0 1LY = J PP PP RPUPPPPR 8
1.2 SCOPE ANDDELIMITATIONSiiiiiiiiiiiiiiiitie e s s e e e e e e e e e et e e e e e eaeeeeeeesssenbnnn e eas 8

2 SOFTWARE QUALITY ¢ttt e et e e e 10
2.1 QUALITY FACTORSIN SOFTWARE.ctuuiiiiiiieeitiieeeetneeesiseesasneesesnnseesesnneesennns 11

2.1.1 ProducCt OPErationeieiieeeeeeees e eeetiinsss s s e e e e e e eeeeeeeeeeeeenenen 11
2.1.2 ProdUCE REVISIONuiiiiiiiiiiiiiiiieieeee s ceeeee ittt e e e e e e 12
2.1.3 ProducCt TranSitioNooooiiiiiiiie e 13
2.2 SOFTWARE QUALITY METRICS ..uuiitiiiiiiiii ettt e et e e et e e et s eeesmas s e s eaa s e eenanenees 13
2.2.1 Static Code ANAIYSIS........cceeiiiiiiieeeeteemmmmss s e e e e e e 14
2.2.2 Eff I CIENCY e ———— 15
2.2.3 Correctness and Testabilityoooiiieeemmmn e 15

3 PEERHOOD COMMUNICATION MIDDLEWAREccooooiiiiiiiiiieee e 16
3.1 KEY REQUIREMENTS. ...cctttttttiiaa e e e e e e e e e et eeeteeeessets s mmsmms bbb s e e s e e e e e e e e eeeeennnnnnnns 17
3.2 HGH-LEVEL ARCHITECTUREii it i eeeeeeeeeeteeettieiiis s e e eeesaas s e e e e e e e e eeeeeeennnnnes 19

3.2.1 PEerHOOd DABMON......uuiiiiiiiiiiiiiiie et e e 20.
3.2.2 PeerHOOd LiDrary oo 21
3.2.3 PeerHOOd PIUGINS ... e 21
3.24 PeerHood APPIICAtIONSccoviiiiieiiviceeeee s e e e e e e e 1.2

4 QT FRAMEWORKot e e e e eennnaes 23
4.1 (@ 0= | =To Y/ [] o =1 24
4.2 FGONALS AND SLOTS cettuuieeieetinuaeeeeeetu e aeeeeessaa e eaaeeannmsssaaaaaeesssnaaeaeeessnnnaaaaeenes 27
4.3 BVENT LOOP ANDEVENTSiiiiiee ettt e e e e e e e e e e e e eennneennene 29
4.4 QU COREMODULEtutiuiiisi e e e e e ettt e e e e e e e e e e e e e eesb b as 31

4.4.1 Data Types, Containers and Smart POINtersceeeeeeiririiniiiinnnnnnn. 31
4.4.2 I/O Devices, Data Array and Streams.........ceceeeeevveniiiiinneeeeeeeeeeeeeeennaenns 33
4.4.3 Concurrent ProgrammMing e ommmmmeeeessessnnnnneneseeeeesseseeeemmmmn. 35
o S 80111 o 37

4.4.5 PIUGINS <. e e e et et 38

4.4.6 SBINGS ..o e e e e et e e e e et tb b enn————aae 38
45 QU NETWORKMODULE.....ccciiiiiiiiiiieeeaaaiitieeeeeessstieeeasssssseeeeessannnnseeeeeesannnnnneens 39
4.6 D-BUSMODULE.....cciiiiiiiiiiiiiee ettt e et ee e sete et e e e e et e e e e e s a s a e e e e e e e e annneees 40
4.7 QT TESTMODULEctuiiiiete e ettt e et e e e e e e e e s e e e e e e s e e e e s e e e et e e eeaneaeaes 40
4.8 DEVELOPMENTFRAMEWORK IMPACT ...ttt ettt e e e 41

A.8.1 gMAKE ceeeiiiiii i r e e 41

4.8.2 Meta-Object COMPIIETcooviiieeeeeeeeee e e e e e e e e e e e e e e e e e eeeeeneeennnnes 2.4

4.8.3 (0] 091 o] | 1o PP UUPRTRTRRR 42
4.9 QT MOBILITY EXTENSION. ..ctttuiititieeeetieeeetineesstiaeesesasessasnnaseeessneesesnaeessnneesesnns 42

49.1 Bearer ManagemeNnt..........oivviviiiiiii s s e e e et e e e e eaaas 43.

4.9.2 Service FramewWorkK ... 44

4.9.3 System INFOrMAtioNccoooeiiiiiiiee e e 44

PEERHOOD IMPLEMENTATION WITH QT FRAMEWORKcccooevvvieen. 46
5.1 FEATURESIMPLEMENTED ...uuvttiiteeeiiiuttieeeeessssnstseeeeesessnstnnesssssssseeaesssnnssnseessesanns 46
5.2 ARCHITECTURE. ...utttitiieeeiittteeteeessastteeeeeeesasssaneesssssasseeeaesaannstseeeeeessnssnseeeeeesnd 84

5.21 PeerHOOd COMMONcoiiiiiiiiiiieie e ceeeeee e e e e e aee e 9.4

5.2.2 ST o o (oo o I D= 1T 1 0[] o DR 54.

5.2.3 PeerHOOd LiDrary oo 56

5.2.4 PeerHood Network PIUGINSovvviiiiiiiciisee e e e e 59

5.2.5 PeerHood APPIICAtIONSccoviiieieiiiiceeeee e e e e e e e e e Q.6
5.3 IMPROVEMENT IDEAS.oetiiiiit ettt ettt ettt e e et e et e e et e e e ena e eeens 60

EVALUATION Lot e e e e e e e e e e e e e eaans 62
6.1 TESTENVIRONMENT ...eutiiiiitiiiiiiiiee e e e sttt ee e e e e s siteteeessnsteee e e e e e s snnteneeeeeeaannnneeeeas 62

6.1.1 PeerHood Configuration.............coovivvivs e eeeeveeniss s e s e e e e e e e e e aeeeeeeaaenens 62

6.1.2 Active — Passive Client TeSt Set...........ceemeeiiieiiiiiiiiiiine e 63
6.2 MAINTAINABILITY ettt ettt ettt e e eet e et et e e e et e e e e s s e e e e e e et e e ean e e e ean e e eeennaeeennns 64
8.3 RELIABILITY tiiiiiiiiiiieee e e ettt e e e e e ettt e e e e s smnneee s s snsbeneeeeeeasnnnbneeaeeesannnneeeessnand 67
R A = o (o] =1 N PR 68

6.4.1 MEMOIY USBGES. ... ciiiiieiiiiiee et st et e e e e et e e e ea e e e ena s 68

6.4.2 CPU USAQES ...euii ittt eeememme et e e e e et e e e e e e e tae e e e e e eesnnnan 73

6.5 (@ 0] 1= =0k N1 =IST TP 74
6.6 LTSS Y =1 1 22 75
6.7 T[22 22 75
6.8 (.53 =1 R 12 22 76
6.9 NI =T = 127 76
ST O B = 1= 1Y =1 I 1 2T 17
T I = ST =1 I 12 22T 78
B.12 INTEROPERABILITY 1 euttuttuteteteaee e te e e seaa e e eeaeeaeee e e seseeeeeaseeaaeeaeenenaeeneens 78
7 DISCUSSIONS AND CONCLUSIONS ... 79
7.1 Qr FRAMEWORK IN MIDDLEWARE USEiiiiiiiiiiiiie et ee e 79
7.2 FUTURE WWORK . ettt et ettt ettt ettt ettt e ettt e e e e e e ettt ea e et et eae e e e enrenneneennennenn e 81
REFERENCES ... oottt naaans 82

Appendix 1. Existing PeerHood API

Appendix 2. Feature Comparison between PeerHood PaarHood2
Appendix 3. New PeerHood API

ABBREVIATIONS

2D
3G
AP
CLR
CPU
FTP
FURPS
GCC
GPL
GPRS
GUI
HTTP
ICMP
IDE
IMEI
IMSI

I/O
ISO
KDE
LGPL
LOC
LSB
MMS
mocC
MSB
0S
P2P
PH
PH1

2-Dimensional

Third Generation

Application Programming Interface
Common Language Runtime

Central Processing Unit

File Transfer Protocol

Functionality, Usability, Reliability, Perfoance, and Supportability
GNU Compiler Collection

General Public License

General Packet Radio Service
Graphical User Interface

Hypertext Transfer Protocol

Internet Control Message Protocol
Integrated Development Environment
International Mobility Equipment Identity
International Mobile Subscriber Identity
Internet Protocol

Input/Output

International Organization for Standardizati
K Desktop Environment

Lesser General Public License

Lines of Code

Least Significant Byte

Multimedia Messaging Service
Meta-Object Compiler

Most Significant Byte

Operating System

Peer-to-Peer

PeerHood

PeerHood1, existing PeerHood implementation

4

PH2
QML
RAM
RFC
SDP
SMS
SSL
STL
SVN
TCP
UDP
Ul
WLAN
XML

PeerHood2, Qt based PeerHood implementation
Qt Meta-object Language
Random Access Memory
Request For Comments
Service Discovery Protocol
Short Message Service
Secure Sockets Layer
Standard Template Library
Subversion

Transmission Control Protocol
User Datagram Protocol

User Interface

Wireless Local Area Network

eXtensible Markup Language

1 INTRODUCTION

Developing a communication middleware can be végllenging. In many cases, there
are needs for use a platform specific components Application Programming

Interfaces (API), like sockets, threads and prazesd-or decreasing platform
dependencies in a software product, abstractions teause much, which usually drives

to more complex system design.

On desktop environment, there are several framesorkhelping to create applications
without need of low-level platform APIs. The moselwknown frameworks are Java
framework [1] and .NET framework [2]. By nature,eie frameworks are virtual
runtime environments, where applications are exetutsing byte code. On virtual
runtime environments, applications are not compiteda native code execution
environment. Running application on runtime envinemt is not as efficient as
execution of native application, because of bytdects compiled to the native CPU

instructions at application runtime [2].

One interesting and potential cross-platform framws a Qt (“cute”) framework [3].
At an early stage, the Qt was only cross-platforseilJinterface (Ul) framework.
However, it has been evolved over time to be muokerthan just a mere User interface
framework. Current 4.6 Qt (14.6.2010) version affeomponents and tools for several
different application layers, like platform indegkemt concurrent network programming
as well as Graphical User Interface (GUI) and muche.

Basic idea of the Qt framework is “Write once, caegverywhere”, which is very
different approach than in Java runtime environn@n€ommon Language Runtime
(CLR), where application is executed on virtual hmae. The Qt framework is written
with C++ and it provides a set of interfaces arutaliies for use of application
developers. When using the Qt framework, applicatievelopers are not limited to use
only Qt libraries. In addition, the Qt framework adales mixed use with platform

specific libraries.

The 4.6 version of the Qt framework support numgnalatforms where Qt applications
can be targeted and compiled. For example, a sarapflication can be compiled into
the Mac OS X, Linux, Solaris and Windows platforntsxcluding used platform

specific implementations, if those are needed.

The Qt framework is not only available for the degkenvironments. In fact, after
Nokia bought Trolltech — the creator and ownerhef @t framework — it has use a lot of
effort to bring the Qt framework available on mebglatforms as well. Nowadays, the
Qt framework is also available on Windows CE, Syanlband Maemo mobile platforms
[4]. In addition, there are several projects ongoiao extend the Qt framework with
mobile device specific features. One of these ptsjs a Qt Mobility extension. The Qt
Mobility extension provide interfaces to manage alman information, contacts,

connectivity and many others functionalities redlai®main of mobile devices [5].

One of the biggest problems of using the Qt frantévixas been very restricted license
policy. After acquisition of Trolltech by Nokia, éhlicense policy has changed to dual
licensing. Currently, the Qt framework is availableGPL/LGPL [6, 7, 8] licensees and
commercial license for proprietary use as well.sTimeans that the Qt framework and
sources of it are available for everyone’s use utiie common open source licenses.
Anyhow, the closed licensing option provides apilib use and modify the Qt

framework without publishing changes of it [6].

In this thesis, the Qt framework is used as a las@nology in communication
middleware programming. Rationale of this studioienhance of existing Peer-to-Peer
neighborhood communication middleware concept, Wwhi called PeerHood [9].
PeerHood is a communication middleware, which rsskensing devices and services
from wireless network neighborhood in proactive mem The PeerHood provides

transparent connectivity to service located in llacaemote device.

In this thesis the term PeerHood is used to reé&mrfo-Peer neighborhood concept;
PeerHood1 is used for the existing PeerHood imphtaten and PeerHood2 refers to a

new PeerHood implementation based on the Qt framlewbhe new PeerHood

implementation — PeerHood2 — is based on the PeeiHand it is implemented during
this thesis work.

1.1 Objectives

This work is part of a PeerHood project, which esearch project of mobile Peer-to-
Peer communication middleware [9]. Motivation oistlvork is to improve quality of
an already implemented PeerHood middleware byzirtdi the Qt framework. Quality
enhancement is supposed to be done with reusingawents and functionalities from
the Qt framework and the Qt Mobility extension APlisneeded, architecture of the

PeerHood is modified and remade to be well strectwvith the Qt framework.

The main objectives to use sophisticated and mdtareework is to get more defect
free product with better extensibility and portapilto other platforms. Current
implementation of the PeerHood — PeerHoodl - islampnted with plain C++
targeted to Linux based platforms. The Qt framewanki especially the Qt Mobility
extension can enable a new use cases for the Rmgkrhioaddition, the Qt can enable
language bindings for PeerHood API. Language bgwliprovide ability to use the

PeerHood with other programming languages as well.

1.2 Scope and Delimitations

Even though the current PeerHood is implementedigain the Linux environment,
this work does not focus on any specific platfoidea is to use the Qt framework as
enabler to create the PeerHood to be mainly impiéadein a cross-platform manner.
For prototyping and testing purpose, the desktopixienvironment is used.

Scope of this thesis is to do experimental reselaydmplementing existing PeerHood1
implementation with utilizing the Qt framework aride Qt Mobility APIs. First
objective is to evaluate how suitable the Qt framwis for communication
middleware use. Second objective is to analyze emphted middleware — what kind
advantages and disadvantages use of the Qt fratk@aoses. The initial assumption is

that the most of PeerHood functionalities can belémented with the Qt framework to

be portable across different platforms without éargodifications to it. In addition, the
Qt framework is used to increase PeerHood qualig anaturate by using Qt

functionalities instead of implementing those bly.se

2 SOFTWARE QUALITY

Quality is in the major role when talking about @wmplishing software product
improvements. Software quality must be defined m@ésured to follow up how good
software is and prevent software quality regressidaring software development

process [10].

Software quality has been discussed a lot and & sibject, which leads easily an
almost endless debate of what that actually isnEgem quality is ambiguously defined
in literature. A naive quality definition can beotight as a defect free product, thus if
software product has plenty of functional defedtsjoes not fulfill it requirements

anymore [10]. In the real world, software qualitya far away of defect free software.
Actually, it is very likely that most of softwareate some known or unknown defects.
Software quality is set of factors that alter iffetient applications in manner how these
factors are prioritized. Quality factors can depérmn software customer as well —

things what they see important for the softwaredpob [10].

Developing a high quality software product is nbvays straightforward. Moreover,
middleware modules, which many third party appilaa rely on, have to work how
they are specified. In addition, developing middiesv for mobile devices and
embedded devices are even harder than on desktoprenent. Usually, available
resources are limited on mobile environment andiegdon resource usage must pay
attention. In addition, in mobile devices, avaitabletworks can vary a lot and device

can easily run out of battery in intensive use.

There are many different things, which affect gyabf a software product. Before
software can be evaluated, the software qualityt i@ slefined. In this thesis is utilized
a definition for software quality with different glity characteristics for giving a help to

evaluate and measure software quality more acdyrate

10

2.1 Quality Factors In Software

Concept of a software quality factors is not a rnihimg; in fact Boehm, Brown and
Libow introduced quantitative evaluation of softeajuality in the 1976 [11] and after
that McCall, Richards and Walters defined McCatjigality factors in the 1977 [12]
and still these factors are valid and used to dssajuality of a software product.
McCall's quality factors are not only quality modtiat is presented. There are
numerous different quality models like FURPS (Fiowality, Usability, Reliability,
Performance, and Supportability) developed by Havirackard. ISO standardization
organization has also introduced 1SO 9126 softwasdity factors [12].

It is very hard to select best quality model foe,us that many of these models are very
similar and uses same characteristics. For thdystlcCall’s quality factors seems to
be feasible set of characteristics for examinedityuand quality improvements in

domain of this work.

McCall et al. identified three main aspects of #iveare product:
1. Product Operation
2. Product Revision

3. Product Transition

These aspects describe software behavior, fletibitir changes and adaptability to
other platforms. Each product aspects are divigd $everal quality factories [12],

which are show in Figure 1.

2.1.1 Product Operation

Product operation characteristics are related tiwace behavior — how well software
behaves and follows the product specification withany abnormal operations [12].
These characteristics are the most important ®etid-user point of view and these has
biggest affects how the end-user experience udesase.

« Correctnessfactor is about how well software operates as gpecified to do

and how well software fulfills the requirements.

11

» Reliability factor is about maturity of software. How acculatoftware can be
expected to operate specified tasks. In additielability factor is about how
long software can operate without any abnormal \aeha

» Usability factor is about learning curve of the software affdrt required to
operate it. In the middleware domain, this can dlsdow usable given APIs are
and how well APIs are documented [13].

* Integrity factor is about secure control of software anddudata. How well
unauthorized data usage is protected.

» Efficiency factor is about software performance, amount dizatl resources

and amount of code required to operate specifiadtions.

Maintainability Portability

Flexibility Reusability

Testability Interoperability
PRODUCT R CT TRANSITION

PRODUCT OPERATION

Correctness Usability Efficiency
Reliability Integrity

Figure 1.McCall's software quality factors, reproduced frd8]
2.1.2 Product Revision

Product revision characteristics define softwarexibility of changes in software

product. These characteristics are related to softvarchitecture and they are very
important to software internal quality and how eabgnges can be done to the system
[12]. The use of design patterns [14] in softwaesign can have a big impact of these

characteristics and make a system more adaptablel amangeable.

* Maintainability stands roughly for effort required to identify afindan error in
the software. In addition, maintainability may imdé improvements and

adaptation of the software systems to changes énevironment and in

12

requirements and functional specifications. A godocumentation of the
software and its structure can increase softwastesy maintainability a lot
[15].

Flexibility is about how easy is make changes to softwarehamd much it
causes other changes in the software and its estitireture.

Testability is about how well software can be tested and hawmit requires

effort for doing that.

2.1.3 Product Transition

Product transition aspect defines software addpialto other environments. It is

rather, that same software shall be used in diffeoperating systems and different

hardware’s.

Portability is characteristic which describe dependencies maledying
hardware and platform. Without a good abstractt@pendencies to underlying
system can cause many changes to software whemgpa@aftware to other
systems. Even though the dependencies are abdtnaetea platform specific
parts need to be implemented in different platforms

Reusability is about component sharing between other appmicatrelated to
software packaging and its functionalities. In &iddi reusability can utilize
internally with shared components

Interoperability is about effort needed to couple system to anothagenerally
interoperability means ability of two or more syste or components to

exchange and use information together.

2.2 Software Quality Metrics

Software metrics can be divided into three categonproduct metrics, process

metrics andproject metrics [10]. This study concentrates only product metnekich

includes product characteristics like size of thévgare, performance and metrics for

defined software quality factors.

13

In generally quality factors affected to softwatelity can be divided into two groups —
directly measurable factors and only indirect measle factors [12]. McCall’s et al.
defined metrics for the proposed quality factoranyl of these defined metrics are only

subjectively measurable and cannot measure dirotly the software [12].

For PeerHood quality evaluation, the McCall's qtyafactors are examined. Many of
metrics for the McCall's quality factors proposedMcCall’s et al. are very subjective
and cannot measure directly [12]. In addition, ynahthese proposed metrics requires

a long time analysis, which is not feasible in scopthis study.

Decision of rewrite the whole PeerHood with the f@mework provides excellent
opportunity to evaluate a new PeerHood implemeottatly comparing it with the old
PeerHood implementation. With this approach, aluanice of the Qt framework can be
shown. For this reason, quality metrics are chagehat they can be measured and
compared together. Quality factors, which are nsarBjectively and cannot measure
directly are discussed and analyzed as well. Thewong metrics are measured in both

PeerHood implementations and results are compagsditer.

2.2.1 Static Code Analysis

With static code analysis, a several metrics fditwsare quality evaluation can be
measured [16]. The static code analysis can be tesetkasure software metrics like
code complexity, size of code, comments on codedapth of code. In this case static
code analysis refers quantitative measurement qfleimented software, not code
analyzers, which search common mistakes, like assajue instead of comparing

values or use of uninitialized variables.

One of the most important static code analysis iogets a code complexity. The code
complexity has a big influence of code quality éastsuch as maintainability [15] and
reliability [17]. In addition, code complexity hasfluence of code usability, in that
complex code takes always more time to understBaodhermore, the code size and

amount of comments affect usability and maintailitginf the software.

14

2.2.2 Efficiency

Software efficiency is related to software perfonteand system resource usage. Used
resources can be CPU usage, Memory consumptiosyateim resources, like network
and file system usages. The CPU usage and memosurption is used to as a
metrics of execution efficiency of software [12). addition, memory consumption can
be divided to heap, stack and virtual memory usafjes CPU and memory usages are
important characteristic especially in embedded ilmobevices, where available

resources are very limited.

2.2.3 Correctness and Testability

Software correctness is quite subjective qualityda It means that software behaves as
expected without any abnormal behavior [12]. A nes&lasuring of correctness would
require continuous bug tracking and detailed respeénts. In scope of this study, the
software correctness is handled and measured ofoSeAPl tests, which are
implemented during developing a new PeerHood imphaation. With API tests and
test coverage, testability can be increased [18]saitware correctness can be proved

partially. Test coverage is measured for testgetanetrics for the testability [18].

15

3 PEERHOOD COMMUNICATION MIDDLEWARE

PeerHood is a communication middleware [19] for eerpo-peer (P2P) [20]
communication with a device neighborhood. The PeetHconcept is for mobile
devices to monitor constantly services from otharicks in the network neighborhood
and provide transparent usage of services withayt kanowledge of the underlying
network technology. It supports functionalitieselik

» Detect other devices using different network tedbgies

» Discover services from other devices

* Advertise own services to other devices

* Monitor status of devices in network neighborhood

The PeerHood searches devices on network neighbdihgroactive manner by using
available wireless network technologies. Ability toam between different network

technologies is provided by the PeerHood middlewaaresell. [9]

The PeerHood middleware is currently mostly targete a Maemo platform, which is
based on the Linux operating system kernel ancgtaogmobile devices such as Nokia
Internet tablets and Nokia N900 mobile phones [Zhf PeerHood is also implemented
on Symbian platform, but because of old limitatidoscreate background server, it is
not implemented as completely as on the Linux emwvitent [22]. This thesis uses the
Linux implementation as a reference PeerHood implaation and the Symbian

implementation is not covered at all.

Uses of different network technologies are implet@énwith plugin implementation
[9]. The PeerHood supports Bluetooth, WLAN and GPR&work technologies.
Moreover, new plugins can be added if needed. gurEi 2 is shown basic concept of
the PeerHood.

16

Applications]J\

Middleware modules

Y,

D @
.

PeerHood

p _d
Network technologies

Bluetooth ‘ [WLAN J |\ GPRS

~

"y

Figure 2. The concept of the PeerHood, reproduced from [9]

3.1 Key Requirements

Device discovery— system must be able to discovery other Peertdapdble devices
within range and the same device neighborhood [ZXvice detection can be depend

used network technology.

Service discovery— system must be able to discovery services fioenldcal device
and other PeerHood devices in the device neighloorh@2]. System must have
capability to read service attributes as well veivice discovery.

Service sharing— PeerHood must provide mechanism to registeicgsand use them
by applications or middleware components [22]. Bexw can locate on local or remote
device. The PeerHood system must advertise regtstsegrvices to other devices in a
PeerHood neighborhood.

Connection establishment- PeerHood must provide ability of connect to onenore

other PeerHood device in a PeerHood neighborho®l Zonnect establishment must

be transparent for used underlying network techmpolo

17

Active monitoring of a device— PeerHood must provide way to set a selectecceei

the PeerHood neighborhood under active monitorimghe active monitoring state, a
PeerHood client is notified when the device undenitoring is out of range or when it
comes back in the range [22]. Proper response dimlerange are network technology

dependent attributes.

Data transmission between devices- PeerHood must provide data transmission
between connected PeerHood devices [22]. PeerHumddsnot take care of data being

transferred. User of the PeerHood must take dadata endianess and word length of
data.

Seamless connectivity- PeerHood should provide way to change usedeaogwork

technology automatically if established connectiegakens or breaks [22]. PeerHood
should provide always the best possible connectitors the user. Established
connection should be possible to monitoring forediéhg connection changes, which

might cause change of used network technology [22].

Network management— PeerHood should be able to manage a specificonietand
events from the network [23]. In addition, PeerHaosltbuld check availability of

network and get notifications of changes of thevoek.

Component management— PeerHood should provide events to PeerHood tcbén
changes and suspensions of discovering functieem|i23]. The PeerHood operates on
mobile devices where memory and power consumptiane to take care. Due to that,
used device environment is dynamic. As, if netwintierface might go power saving

state or it can be closed for freeing memory t@o#pplications.

Communication concurrency base- PeerHood must support concurrent execution, in
that multiple connections are used and they neggt@xecution time evenly [23]. The
only exception for use of multiple simultaneous mections is if used network
technology limits multiple connections on the haadavlevel.

18

Event interface — PeerHood must provide event interface for be &bhotify dynamic

changes to PeerHood client and itself [23].

Plugin architecture for networks — PeerHood must provide interface for its
functionalities to plugins [23]. Network plugins lements abstractions of connectivity
and device monitoring functionalities [23]. In atiloin, plugins handles device detection

and service sharing.

User control — PeerHood could provide ability to control PeesHdunctionalities [23]
* Is PeerHood active
* What services are provided
« What services are accepted
This is a new requirement and that is not yet iTigleted in the existing PeerHood

implementation.

3.2 High-Level Architecture

In this chapter, a high-level architecture of theseng PeerHood implementation is
explained. PeerHood implementation can be sepatatédree different components.
These components are PeerHood library, daemonetasbrk plugins. Network plugins
actually contains several plugins for networking different network technologies.
PeerHood components are shown in Figure 3. and @adiponent is explained more

detailed in following chapters.

19

N

PeerHood Application Process g WLAN Plugin g BT Plugin EI__;' GPRS Plugin

PH Application
@
PH Plugin|Interface
PH Library Interface
PeerHood Daemon Process

PH Library PH Daemon
@ -

Socket interface

Figure 3.Main Components of the PeerHood, reproduced frethdfd current
implementation

3.2.1 PeerHood Daemon

Daemon is the most important component in the PeedH Device and service
discoveries and advertises local services to atbeices in the PeerHood neighborhood
are very heavy and resource consuming operatidms.PeerHood daemon is used to
decrease this heavy processing from an each apptican addition, when using
background running daemon process approach, tbemation of remote services and
available devices are already gathered when a Bedripplication is launched. That

will reduce time required to get the PeerHood ajapion ready for operating.

The PeerHood daemon gathers other PeerHood dearmbgheir services from the
network neighborhood. PeerHood capable devices iafatmation are stored to
neighborhood device registry. Registered devicd¢asns information about its services.
The PeerHood daemon has another registry for lsealices, which daemon is
advertise to other PeerHood devices. The daemolispab a local socket interface for

a PeerHood library.

With the socket interface, a library instance caguest available devices and services

from the daemon. In addition, new services can rseried into daemon by the

PeerHood library. The daemon publishes these exgidtservices to other devices in
20

the PeerHood neighborhood. Services registered hby ReerHood library can be
unregistered as well. The daemon utilizes netwdtgips for devices and service

discovery from the PeerHood neighborhood.

3.2.2 PeerHood Library

The PeerHood library is a dynamic library componevttich applications can include
for use. The PeerHood library provides a PeerHoudrface for use of third party
applications and middleware components. Third pattmponents can use the
PeerHood only with the PeerHood interface. The Peed interface is available at

Appendix 1.

The PeerHood library functionality is separatedbé¢oa client for the PeerHood daemon
and providing ability to establish and manage cotioes between PeerHood devices.
Like the PeerHood daemon, the PeerHood library neesork plugins. The PeerHood
library uses network plugins indirectly throughatfstractions. Used functionalities are

a connection abstraction and device monitoringrabson.

3.2.3 PeerHood Plugins

With PeerHood Plugins network specific implememtasgi are done. With network
plugins, support for new network technologies candaded easily. For each used
network technology, the PeerHood has an own plugisually one plugin create
implementations foiMADbstractPinger MAbstractMonitoy MAbstractConnectiorand
MADbstractPlugininterfaces.

3.2.4 PeerHood Applications

Applications can link against the PeerHood libramgl communicate with the PeerHood
system through the MPeerHood interface (Appendjx Applications can use the
PeerHood system without any special knowledge détlging network technology.

21

Common way to use the PeerHood from an applicasoto provide services to be
available for other PeerHood applications in therHeod neighborhood or use services
provided by other PeerHood applications. An appiicacan use and provide services
as well at the same time. Multiple PeerHood appboa can operate on same device,
hence used service does not always locate on ateefeerHood device. In addition,
with the PeerHood, device can be selected to bantmusly monitored. If monitored

device moves out of the range, the applicatiorotgfiad of it.

22

4 QT FRAMEWORK

The Qt framework is a cross-platform applicatiorvelepment framework. Cross-
platform support for the Qt framework is done a wafy “Write once, compile
everywhere” principle, which means that same sowase, can be used on several
platforms. With this principle, application is ex¢ed on native environment without
any virtual execution environment. The current Q6 framework is available on
multiple desktop and mobile platforms. These alleiong platforms [4]:

* Embedded Linux

e Mac OS X
« Windows
e Linux/X11

* Windows CE/Mobile
e Symbian

* Maemo

The Qt framework provides unique APIs, which areduas platform abstractions. The
platform specific implementations are wrapped bélohthese APIs [25]. Because of
used abstractions, usually application developesdmt need to care of target platform.
Of course, there are some exceptions and somectiests as well. For example, a
desktop application can be very hard to get worlongmobile platform without any

changes of it. At least some changes to applicdtibmight need to be done to keep

application user experience in good level.

Maybe the most well know use of the Qt frameworikia KDE Project, they have long

history with the Qt framework and Trolltech Compaiiyne KDE project has used the
Qt framework since 1996 when KDE project was sthig6, 27]. The KDE project and

Trolltech made an agreement, where Trolltech predite keep the Qt framework as a
free for the KDE project [28]. That agreement wasthe KDE project, so they were
able to rely on that the Qt framework will be fregftware in use of the KDE Project.
Later on, the Qt framework published under GPL dg= [6], which made that

agreement useless and available the Qt frameweektdr use for everyone.

23

The Qt framework is usually known as a cross-ptatfgraphical user interface (GUI)

framework. That has been true a long time ago. News, the Qt framework is much

more than just a sophisticate graphical user iaterfframework. The Qt framework

provides platform independent interfaces for mangheo purposes than GUI

programming use as well [3]. The Qt framework isnponent based; these main
components are presented in Figure 4. Multithregadimd 2D Graphics Canvas are not
separate components, instead they are wanted thammp in the figure and they

belongs groups of Core and GUI modules. In subenspQt components related in
scope of the PeerHood middleware are presentetasid Qt principles and models are
described. Additionally, an interesting Qt extensifo] — the Qt Mobility — is

introduced and some APIs of the Qt Mobility extensare described more detailed.

OpenGL® WebKit

Scripting Multimedia
Networking XML

Database Unit Testing

Figure 4. Qt Component Overview [3]

Even though the Qt framework is written with C+#daage, it does not limit all
applications to be written with C++ language. Thare available numerous language
bindings for the Qt framework. Trolltech officialigport Java and JavaScript language
bindings and bindings for Python, PHP, Ruby andTNige provided by third parties
[28]. With these various language binding optiotiee Qt framework is even more

portable and versatile.

4.1 Qt Object Model

The Qt framework includes a built in object modehich is heart of the Qt framework.
The most important class for this Qt object modeh iQODbject class. The QObject has
several roles of the Qt object model and the QQligclbase class for almost all objects
inside of the Qt framework [29].

24

Inside of the Qt object model, QObjects are relategether in a Parent-Child

relationship. Internally, QObjects organizes tielahip within an object tree [29]. The
object tree is a key enabler of an intelligent objmanagement inside of the Qt
framework. With the object tree, the Qt object modan provide type of semi-

automatic memory management by enabling automadtilcl @bject deletion when

deleting the parent object. The parent for the @Cibhas to define explicitly and

habitually parent is given as the parameter oflgaab constructor. QObjects can query
all child objects that belong to it and parent objer itself. Note that the parent-child
relationship is not a same as inheritance in olgeented languages. It is just
connection between two QObjects.

The Qt object model provides more flexibility aneltter object runtime information of
objects than standard C++. With the Qt, propertésn object are query able on
application runtime [29]. Some compilers make aldé object properties functionality
as well. However, for getting object properties king a way of cross-platform it is

done by using a Qt's Meta-Object System (moc) [BQhe Qt framework.

Advantage for use of meta-object system is to kéependencies for any compiler
specific options as minimal as possible [30]. MeeFg this system enables dynamic
runtime property declaration to Qt objects. Thar@ta-object system is based on three
things [30]:

» The QObject, which provides base class for allsdaghat, can take advantage
of meta-object system.

* Q_OBJECT macro, which must be defined in privatgpscat the beginning of a
class definition. The Q_OBJECT macro is used tdkenmeta-object features,
such dynamic properties and signals and slots nmésaha

* The Meta-object compiler, which generates metaatbpede for each class,
which declare the Q_OBJECT macro. More about campibnd the meta-

object compiler is discussed later on.

Although, the Q_OBJECT macro is used to enable myn@roperties and signals and
slots, the Qt documentation recommends use thatromfac all QObject classes,

25

regardless of is features provided by the metaeblggstem used. E.g. the Qt provide
gobject_cast method for casting QObjects, howewvaticamme of that method is
undefined if Q_OBJECT macro is not used in objedid¢ casted.

Every QObject instance has a unique identity in @eobject model. Use of unique
identity causes some limitation for classes inkdrifrom the QObject. In that, copy
constructor and assignment operator has been ddallimplementing them in private
scope by default. Therefore, all objects inheritemm the QObject have to move

between methods using pointers or object references

The Qt framework has two event systems, which plewiability to deliver events
between objects. The Qt object model enables tbesat mechanisms. These event
models are a Qt event system, which allows sendid)posting events to registered
event listeners and @ignalsand Slotsmechanism. Signals and Slots mechanisms are
used to communicating between QObjects. These bmitiels are introduced more

detailed in following chapters.

The Listing 1 shows a basic example of the Qt stidss definition, which is inherited
from the QObject and it utilize signals and slotecimanism. Important parts are
numerated inside of comments in the example cod#.these numerated lines are

explained.

26

Listing 1. Example class inherited from the QObject

#i f ndef MYEXAMPLE_H
#def i ne MYEXAMPLE_H

#i ncl ude <QtCore/QObject> /11,
#i ncl ude <QtCore/QDebug>

cl ass MyExample : publ i c QObject

Q_OBJECT 2.
public:
MyExample(QObject* parent=0) /3.

: QObject(parent)
¢

public slots: 4.
voi d receiveSignal()

gDebug("signal received");
si gnal s: II'5.
voi d mySignal(); I1'6.

J
#endi f // MYEXAMPLE H

1. Include of the QObject. Defined MyExample class imberited from the
QObiject, which is located inside of the QtCore medu

2. To enable use of signals and slots mechanism, tH@BJECT macro must be
defined in the private scope at the beginning efdlass definition.

3. The QObject as the parameter of the MyExample dasstructor is forwarded
to the QObject constructor. Delivering the parefjeot to the QObject
constructor enables instance of the MyExample dlasge part of parent object
tree.

4. Public slots scope for defining slots in the MyExdenclass

5. Signals scope for defining signals, what MyExanghess can emit

6. A definition of a MySignal. The signal does not tain any parameters.

4.2 Signals and Slots

One of the interesting tools in the Qt frameworlSignals and Slots mechanism [31]. It
is powerful seamless connection system between €¥Bbjand subclasses of the
QObject. With the signals and slots mechanism, tsvbetween objects can be sent
without any known of receiver object or objectseTdignals and Slots mechanism is
one kind replacement of callback mechanism by pliogi type safe notifications to

event receivers called as slots. By nature sigioal-nnection is many to many

27

connections, thus multiple slots can be conneaeshime signal. Furthermore, multiple
signals can be connected to a same slot as wglird-5 shows how signals and slots
can be connected. In addition, signals can be abedeto other signals. When

connecting signals to slots the function signaturasst match together. However,

exception is a case where signals have more pagasrtéan a slots, then slots is called
and extra parameters are ignored. The signal aitd ale loosely coupled and thus,
connections to unavailable or misused signal aois sloes not cause any compile time

errors. The Qt system prints out warning messagigeatuntime if connection is failed.

P Objectt N connect(Oh!ect1,s!gnal1,0b!ectz, slot1)
cohnect(Objectd, sighal1, Object2, slot2)
signali
signal2 4 Object2 "
signali
———3» slof1
—p slof2
{ Object3 Y
signalt - connect(Object1, signal2, Object4, slot1)
{ Objectd)
slot1
————pp{ slotl
slot2
P slot3
connect(Object3, signali, Object4, slot3) ;J

Figure 5. Signals and slots model [31]

Classes inherited from the QObject can define $sgaad slots. When defining slots or
signals in a class definition, the meta-object eaystmust be enabled with the
Q_OBJECT macro at the beginning of the class defm{31].

For the Signals and Slots mechanism, the Qt handatl C++ keywords with extra
words. New keywords argignals emitandslots Keywords signals and slots are used
in a class definition like visibility scope operais. The slots keyword is used with
public, protected or private visibility scope ogera. For the signals this visibility

scope operators are not used. Section 4 and 5eiriting 1 shows how slots and

28

signals keywords can be used. emit keyword is uisetbde when defined signal is

wanted to emit.

Signals are only abstract methods without any implatation. The Signal definition is
used as a template what kind function signaturetbasave for a receiver slot. All
signals, which class can emit should be definedhim scope of signals keyword.
Nevertheless, inherited signals can be used withedeéfine. In the Listing 1, the
section 6 is shown how to signals can be definedhé examplemySignalsignal is
defined without any parameters. Signals can neaee la return value hence void return

type must be used.

Slots can be thought as normal methods, which eacdnnected with signals. Only
exception to normal methods is how they are intcedun a class definition. Slots must
be defined in scope of slots keyword with a visipilkeyword. Defined slots can
connect to signals and when connected signal iedrslot is executed. However, slots
can be called also like normal method dependingesaaf visibility. Slots can be
invoked from any component regardless of scopasihility via signal-slot connection.
With signal-slot connection visibility of a slot filees only access level of connection
establishment to slot. Thus, slot in private scope be connected only inside of the
class. When slot is called from signal emit, thieinre value of slot is ignored. Usually,
return values of all slots are defined to be v&@tbts can be defined to be virtual as

well.

When using the signals and slots mechanism, a ai@etannot ever assume that slot
is called directly after signal is emitted [28]. timat, signals can be connected to slots
using direct connection or queued connection. FEuntlore, when signal is emitted from

different thread than receiver object is the slotreection is always made in queued

connection.

4.3 Event Loop and Events

Almost all Qt applications are event-driven apgimas, excluding the simplest hello

world console application. Events for an applicatéoe delivered from the Qt's event

29

loop [32]. By nature, the Qt event loop is likeaR®r design pattern [33], which is
used to provide events to registered event handlers

Event loop can be controlled with a QAbstractEvespltcher. Global instance of the
QAbstractEventDispatcher can be reached f@AbstractEventDispatcher::instance()
method. The Qt allow implement an own event didpatcas well by inherit the

QAbstractEventDispatcher class. For using own ewispatcher, it must be created

before Q(Core)Application is created.

The main event loop is executed in the applicatima thread and it is responsible to
keep the application running until application eXihe main event loop must run in the
main thread in the Qt. At the beginning of Qt aggtion startup, the main event loop is
usually started. A QCoreApplication and a QApplmat inherited from the
QCoreApplication are used to start main event Id&yth have a methoexec() which

is generally synchronous method all over Qt classes

Usually main function of a Qt application is implented so that it does first some
initialization. After application is initialized amxec() method is called from the
QCoreApplication or the QApplication object. Th&ec()method starts the Qt main
event loop. Habitually, the application exits diteavhen the main event loop is quit

and theexec()method call returns back to main function.

The QApplication is part of a QtGui module andsitused when an application uses
Graphical User Interface [28]. The QCoreApplicatisrdefined in the QtCore module

and it is used in case when application is conapf#ication, like background daemon.

Because of Qt event system is based on event tbeQt cannot deliver events before

the main event loop is started [32]. This condliseeents and signals based on queued
connection. However, direct signal connection issille because those are executed
without event loop. Furthermore, Qt dialogs carubed before event loop is started, in

that they uses own event loop to receive events.

30

Events in the Qt system can be delivered to itsivec in two ways [32]. These options
are post events and send events. The differeretegeén these two methods are that
posted events uses main event loop and sent easentielivered directly without event
loop to receiver. In addition, posted events mustalbocated from the stack and the

ownership of the event object is taken immediatdign post is done.

4.4 Qt Core Module

The Qt core module named as QtCore is module, winigtides core functionalities to
other Qt modules and Qt based applications [25].féhdamental Qt classes, like
QObject, are included in the core module. The Qt apes not include any classes
related to graphical user interfaces. In followswgochapters, tools and functionalities

provided by the Qt core module are introduced.

4.4.1 Data Types, Containers and Smart Pointers

Primitives

The Qt core module contains a several extendediraptbved data types from C++

types [25]. As all other Qt classes, provided dsfaes are implemented in cross-
platform manner. One pitfall of cross-platform dpment is sizes of primitive types.
Usually, the native integer size depends on sy&tieérwide. For example, int primitive

can be 16 bit in some systems and 32 in some atfstem. For this reason, the Qt
framework provides size defined primitive types.eThize defined primitives are
guaranteed to be same size on all platforms [25].

Strings

Maybe the most used non-primitive data type is\gtrA QString is Qt implementation
of string type. It has a full Unicode [34] suppam all platforms where the Qt is
supported. Unicode 4 is used as a native charaetdor the Qt framework. Moreover,
the Qt framework Unicode support provides detectibriWindows so the Unicode
support is available even though Windows platforoesinot support it natively. The
QString implementation uses an implicit sharing] [R&e many other Qt classes. The

implicit sharing optimizes memory usage of strings.

31

Pointers

The Qt Core module provides also useful helperselmdor safer pointer use [25].
Everyone who has developed software with C or Cmeéws how error prone using
pointer can be. For making things much easier,Qhdramework provides a set of
smart pointer classes. These classes help avoidiegiory leaks of dynamically
allocated objects and protect against of danglmigtprs.

QPointer class provide guarded pointer for clabssed on the QObject. The QPointer
behaves like a normal C++ pointer, except it iométically set to 0 when referenced
object is deleted. Hence, the QPointer is usefiltppwhen need to refer some pointer,
which is owned by someone else. With the QPoinker,use of invalid pointer cannot

happen. The QPointer can be used only with suledassQObject.

A QScopedPointer is a bit different kind pointeasd than the QPointer. Use of the
QScopedPointer is not limited just QObject baseds®#s. The QScopedPointer simplify
use of heap objects in a particular scope. Conveally the QScopedPointer itself is a
heap object in the scope of a method. When exeatutidhe method goes out of the
scope, the QScopedPointer instance get deletedaisddeleted allocated memory that
the QScopedPointer instance is referring. Unlike @Pointer, the QScopedPointer
refers a memory, which must be owned. In addittbe, QScopedPointer can contain
any kind of objects, not just the QObject basedctisj One exception is traditionally
allocated arrays, which must be stored to QScopegRointer. The

QScopedArrayPointer useglete[] instead of the delete operator for deleting cortai

memory.

Containers

The Qt framework provides a set of generic tempbatged container classes [35]. C++
Standard Template Library (STL) provides same ket of containers, but the Qt
versions are designed to be easier and safer toTime Qt container set contains
optimized sequential and associated containersQAltontainer classes use implicit
sharing to decreasing memory consumption [35].dditeon, containers are reentrant

and in situation where container is read-onlys thread-safe as well.

32

Qt containers can be traversed either Java-sjfatdrs or STL-style iterators [35]. The
STL-style iterators are a bit efficient than Jatdesiterators are, although the Java-
style iterators provide high-level functionalitychthey are easier to use. With the STL-
style iterators, a STL’'s generic algorithms canused [35]. A QtAlgorithms header

offers access to STL'’s generic algorithms [25].

4.4.2 1/0 Devices, Data Array and Streams

QIODevice

A good data handling classes can provide a grefi for the communication
middleware use. The Qt framework consist nice abstm of 1/O device, which is base
of socket handling as well. A QIODevice is a baks< for all I/O devices in the Qt
framework [25]. The QIODevice provides common ifdee for devices that support
reading and writing blocks of data. It is abstratiss and cannot be instantiated
directly. The QIODevice based classes are madédodling input and output to and
from external devices, files or processes. In amlditinstead of handling some regular
I/O device the QIODevice interface can be usedritevand read data in QByteArrays

as well.

The QIODevice provides support for two types ofides — random-access devices and
sequential devices [25]. Random-access devicesosuppeking to arbitrary position
usingseek()method. Opposed to random-access devices, seat@ngpt supported with
sequential-devices, hence data must be read inpass. Type of device can be

determined from QIODevice with a methis&equential()

Several device types are always asynchronous lwyeiadsynchronous write and read
operations are returned immediately and operatanptete later on. The QIODevice
contains signalseadyReadand bytesWrittento react when a new data is available for
read or data payload is written to device. MethogtesAvailableandbytesToWriteare
usually use with these signals to find out amoditaba available or sent to device.

The QIODevice allow to make asynchronous write aedd operations to be

synchronous. This can be done withitForReadyReadndwaitForBytesWrittenWith
33

these methods, a calling thread is blocked withgnihg back to event loop, which
makes possibility to use QIODevice without an evirgp or in separate thread.

Subclasses of QIODevice can provide other devieeip blocking methods as well.

QByteArray

Since the QString is based on 16-bit Unicode charscit is good to have some type,
which can contain 8-bit data. For that reason, ayt®®&ray can be used [25]. The
QByteArray is data storage for both raw bytes amditional 8-bit \O' terminated
strings. The QByteArray is more advanced data coetahan C++ arrays are and the
QByteArray always ensure that the 0’ terminatoldws the data. In addition, like
many others Qt containers the QByteArray use int@ltaring to reduce memory usage

and avoid unnecessary memory copies.

When using the QByteArray it is good to remembat tehen using raw bytes the ‘\0’
termination is added [25]. Without knowing thatussit can cause unexpected behavior
in some cases. The QByteArray can use like C++yarkey pointing specific array
position with [] operator. Like C++ arrays, the @8Array uses 0-based indices as

well.

QTextStream and QDataStream

For powerful I/O device usage the Qt framework i&ffevo stream classes for use to
application developers. With streams, the Qt frapr&whandles the most platform
differences such as endianess and use of progeetidings [25]. Therefore, application
developers do not need to take care as much doptactompatibility. QTextStream is
for reading and writing a text with 1/0O device. Mower, for reading and writing binary
data with 1/O device a QDataStream can be used Wdith stream operators << and >>
can be used to read and write data in streamsarBsrerovide data serialization of C++
primitive types and basic Qt types. Serializatidnmmre complex classes depends on
class implementation. Many Qt classes’ offers adden << and >> operators for

stream them into streams.

34

By default, the QDataStream handles data internallynost significant byte (MSB)
order format [25], which gives better interoperdpilvith other devices. Using MSB
format ensures the cross-platform compatibilitynd8y stream of encoded information
is 100% platform independent. Nevertheless, datading can be changed to little

ending format, which is not recommended as it lse¢hk platform compatibility.

4.4.3 Concurrent Programming

Processes

Processes and threads provide common approactptenmant application concurrency.

The Qt framework provides convenient and crossguiatt classes to handle processes
and threads. In addition, the Qt framework comeh e advanced threading options,
like thread pool functionally [33]. Concurrent pragiming has been challenging with
native C++ environment, in that using processesthrehd are handled in a different
ways by different operating systems. Hence, poréipglication from environment to

another has been challenging.

A QProcess is class for controlling other proces#teprovides interface for spawn
processes and communicate with them. Even thoughQProcess is cross-platform
implementation for handling processes, some actaeEends user permissions. For
example, process kill and terminate requires PowgenMcapabilities on Symbian

platforms. If required capability is missing, actiwill fail [25].

Threads

Using threads is a second — a much lightweightiutisns to implement concurrency in
application. Threads can be created and contrafigtie Qt framework through of a
QThread class [25]. Qt thread model permits therpized of threads as well. When
using threads in Qt, the signals and slots mechaaisd event posting can be used. It is
remarkable, that when using signals and slots letvagferent threads with automatic
connection type, the queued connection type isy@waed. The QThread has a virtual
run() method which is executed after thread is starféae run() method is a thread

entry point, likemain() function is for the application. The QThread emsitmal started

35

when execution of thread is started and finishephadi when execution is finished.
Thread execution ends wheaim() method returns. Default implementation of tha()

method calls onlgxec()to start event loop for the current thread.

When using threads in the Qt, there are some lilmits, which must be followed [25].
Each threads consist own surroundings, which méaaiseach thread can have own
event loop and each created QObject based objeltdrsds to current thread by default.
QObject can be moved to another thread wittveToThread(jnethod. First limitation

is, that child objects cannot be in a differenettd than the parent. Second limitation is
that, all event driven objects may only be usedna thread. Meaning that, for example,
socket cannot connect or timer cannot start frootheer thread where object is. Third
limitation or more like requirement is that all ebjs created in a thread must be deleted
before QThread instance is deleted. In additiois, giood to remember that if event loop
IS not running on a thread, objects cannot receosted events or signals.

Thread Pool

Third option to implement concurrency using theiase a thread pool based solution
[25], which recycles threads. When using thread,gbere are no needs to create a new
thread every time. Creating thread is known as aijwer, which is non-deterministic
and time-consuming operation [33]. Using threadolpwith the Qt is very
straightforward. First subclass of a QRunnable mb& implemented with
implementation of virtuatfun() method offered by the QRunnable. After that, riokaa
class can be started with global thread pool itgaBach Qt application has one global
QThreadPool instance. The QThreadPool providefaxterfor configuring thread pool
options. The QRunnable provide control of class aieletion. If QRunnable auto
deletion is set on (the default), then the runnafligect is deleted automatically after

execution is accomplished.

Mutexes and Semaphores
When discussing about concurrent programming awsays important to remember of
data synchronization and protection. Mutexes anthphiores are usually used for data

protection and synchronization between concurmstances. The Qt comes with mutex

36

and semaphore implementations [25] and a few ritieyiclasses. Utility classes give
ability to use mutexes more safely and more opgehiZQMutex represent Qt mutex

implementation and a QSemaphore offers semaphootidnalities.

A QMutexLocker is one of mutex utility classes. TRMutexLocker implements
common Scoped locking design pattern [33]. The 8dolocking design pattern is
intent to simplify mutex locking and especially ocking. The QMutexLocker is a
simple class, which is meant to be allocated fraaph When heap object goes out of
scope, the mutex is released by the QMutexLockgecoldestructor. With scoped

locking solution, mutex is always released whenho@treturns.

Second utility class is QReadWriteLocker, which t&nused to increase performance
of multithreading system. The QReadWriteLockerizgilRead-Write Locking design

pattern [33]. The Read-Write locking is intent twrease availability of data. When
using some common data from multiple threads ittrhasprotected from changes. The
idea of Read-Write locking is that multiple instasccan lock data for reading at the
same time. Only if data is wanted to change, théeviock is acquired and then other

instances will not get access to it until lockekensed again.
4.4.4 Timing

Using the Qt, a timing functionality can be implertexd with two ways [25]. The
QObject itself provides methods for start objentitig. In this way, a subclass of the
QObject needs to implement virtuainerEvent()method for receiving timing events.

Timing events are wrapped inside of a QTimerEvéags

Second option to create timed operation is use m€Tclass. If timed operation need
to be done only once, the QTimer provides a sttigleShot(method for simplifying
use of timing. When continuous timing is needed@ieémer must be instantiated and
connecttimeoutsignal to some slot. THeneoutsignal is emitted when timer interval is
elapsed. The QTimer provides basic interface fortrodling timing and settings of

timing.

37

Accuracy of timers depends on the underlying opsgasystem and hardware. Most
systems support at least one millisecond resolutios guaranteed by the Qt, that timer

never timeout until exact specified timeout valsiegached.

4.4.5 Plugins

There are two different APIs for creating pluginghaQt. High-level API is for creating
extension plugins for the Qt itself [25]. Moreovdrpw-level API is for creating
application extension plugins. Because of the sadphis study, the High-level API is

not handled at all.

The low-level plugin API is more interesting in dipption developer point of view.
APl enables run-time loading of shared library jhgg into application. For
implementing use of dynamic extensions into apfiboa the application developer
must create a pure virtual interface and declangith Q_DECLARE_INTERFACE
macro. The defined macro publishes interface taarobject system. After interface is
defined, a QPluginLoader can be used to load shdremties from wanted location.

Finally, with gobject_cast method, the loaded piugstances can validate to be correct

type.

Finally, implemented plugin object must be exportgih Q_EXPORT_PLUGIN2
macro. After these steps, the application can loachpiled dynamic library from
location where binaries are deployed into. The enmnted plugin class must be
derived from QObiject, if implemented pure virtudss is not. When plugin is loaded
into application, the QPluginLoader verify that gis are build against same Qt
version than the application has.

4.4.6 Settings

Several applications need to store or retrieve saowfiguration information for

application. There is not available common way tndie application settings in
different platforms. The Qt provides an abstractmmhandling settings in same way in
all different platforms [25]. QSettings class emabktore and read settings without

38

taking care of underlying platform. The QSettinggpersistent map of key/value pairs.
It is reentrant and same settings can be read it f’om multiple thread or processes
at a same time. Changes performed to settingsadresible for other processes until a
sync() method is called for settings. Theync() method is automatically called in
settings destructor. In Additiorsync()is called in regular interval by the event loop.
Hence, usually application developers do not needake care of that. In a same
process, changes made to settings will be immeddigisible to other settings objects,

which are using the same settings.

4.5 Qt Network Module

A Qt network module provides tools for programmipgytable network applications.
The Qt network module is named as a QtNetwork amdntains low-level and high-
level networking tools [25]. High-level networkinigols provide APIs to handle HTTP
(Hypertext Transmission Protocol) and FTP (Filenbfar Protocol) client connections
without using any low-level networking. In scope tfis work only low-level

networking tools are included.

Using networking in communication middleware ha®rbe bit challenging, since
network sockets are generally very low level APisl aery platform depended [33].
The Qt provides fully cross-platform network sockétr local host connections, TCP
(Transmission Control Protocol) connections, UDPsdlJ Datagram Protocol)
connections and SSL-connections (Secure Socketerlain addition, it provides
classes for handling incoming TCP connection reiguesd incoming local socket
connections. Additionally, the Qt offers a sockdisteaction of common socket

functionalities for all socket types.

All Qt sockets are inherited from QIODevice, hemsteeam classes makes socket use
very convenient and straightforward. When using @@B&eam, used byte order is
already managed by the Qt to be in platform corbtSB (Most Significant Byte)
format [25].

39

Sockets in the Qt are always asynchronous it hokyelere are methods for blocking
execution without going to event loop. Signals alads mechanism gives a nice ability
to handle asynchronous socket operations. Witlsigpeals and slots dependencies are

loosely coupled, which gives better flexibility ciange.

4.6 D-Bus Module

D-Bus is a message bus system, which enablesprieess communication between
applications [36]. The D-Bus is mostly used in eliéint Linux and UNIX operating
systems. A QtDBus module provides ability to useBlZ functionalities in these

platforms. The QtDBus component is one of the ptatfspecific Qt components.

Applications using the QtDBus module can share ipgext services to remote

applications by exporting objects [25]. Moreovenaied services exported by other
applications can be used. The QtDBus module extemdignals and Slots mechanism
by providing ability to connect signals from remaigplication, as well as connect local

signals to remote slots.

In software portability manner, use of the QtDBasnot recommended. Certainly, it
could be used to wrap some platform specific fuumalities to Qt based application. In
fact, using D-Bus is required in several cases. ikstance, handling Bluetooth with
BlueZ on Linux is relying on use of the D-Bus megsaystem.

4.7 Qt Test Module

The Qt framework includes unit-test framework floe Qt based applications [37]. With
a QtTest module, application developers can writdergnt kind test sets for
applications. The application developer can wr#sib unit tests, data-driven unit tests
or GUI tests for applications or interfaces. Funthere, the QtTest library provides tool
for monitoring emitted signals for testing purpases

In Addition, benchmark tests with varying data danimplemented with the QtTest

library. The benchmark tool provides way to measexecution time for the specific

40

operations. The results of the benchmarking carplbded to graphical form with
gtestlib-toolq37].

4.8 Development Framework Impact

A Qt application development environment can beoainsame than C++ application
development environment. Addition of the Qt libesi two tools for compiling a Qt
application is needed. First tool is a gmake tedijch is used to generate platform
specific makefiles from Qt's project files (.prodarpri files). Second tool which is
required for compile Qt application is Meta-Obj€xmpiler (moc) tool [30].

Other additional development tools are not needsmlyever, in Qt application
development, a Qt Creator IDE is a good tool ineshdo Qt cross-platform
development. Qt Creator Integrated Development ienment (IDE) comes with a
cross compiling environment, which helps applicatidevelopment to different

environment, especially mobile environments.

4.8.1 gmake

A gmake is a tool, which simplify build processdifferent platforms. With the gmake,

the Qt can offer cross-platform ideology in projeonfiguration and build system as
well [38]. In that, Qt project files and gmake ynivarying make file systems on

different platforms. The gmake generate nativegdusake files from project files. For

example, on Linux environment, the gmake generatkdilles and on Symbian

environment, it generates bld.inf files and pkegdilfor creating deployment packages.
The gmake can be used for any C++ software proydogther is it a Qt based project or
not [38].

The gmake uses project files, which defines projedbe build. The project files use
.pro file extension. Moreover, .pri file extensisnused for files, which can be included
project files. The gmake provide sophisticated whglefine software projects in multi-
platform usage. The gmake includes a set of opeatifunctions, variables, and

conditional statements [38].

41

4.8.2 Meta-Object Compiler

Meta-Object compiler (moc) is for preprocessingeexted C++ code from used Qt code
in the project [30]. The moc tool handles all hexafles from the project and generates
meta-object code from classes, which declares tteBJECT macro. The meta-object
code is required for the signals and slots mechanike object run-time information

and the dynamic property system.

Meta-Object system is very transparent for appbcadeveloper. Moreover, usually
application developers do not need to take camaeaih-object system. Except, declare
of the Q_OBJECT macro in class definition. Genet&ie+ files must compile and link
with class implementations, nevertheless gmakesystn automatically include meta-

object codes into build process.

4.8.3 Compiling

Compiling Qt application depends on target platfoAmmake process can vary between
different platforms. Usually, the GCC (GNU Compieollection) compiler can be used
on each platform. However, used compiler is notitéch anyhow. Hence, Qt
applications can be compiled with third party colensi and vendor-supplied compilers
as well. More about supported compilers and platfoican be found from the Qt's

supported platforms web page [4].

4.9 Qt Mobility Extension

The Qt Mobility Extension is targeted to being ay kenabler for use of the Qt
framework effectively in cross-platform mobile ajgption development [5]. The Qt
Mobility is a collection of APIs. The Qt Mobilityarsion 1.0 was released on 27.4.2010
and last update 1.0.2 was released on 27.7.201@&Ms$ of the Qt Mobility extension
are available on Symbian and Maemo platforms [B89Rddition, with a few missing
functionalities the Qt Mobility Extension is avdila for Windows CE/Mobile, Linux,

Windows and Mac OS X desktop environments [40].

42

The Qt Mobility API provides a large scale of funcialities mostly targeted on mobile
application development. There are available fumstilike handle sensor information
of device, control contacts information, retriesedtion and using SMS, MMS or email
functionalities [39]. In addition, there are APIlsrfBearer Management, System
Information and Service Framework, which are disedsmore detailed in following

subchapters.

4.9.1 Bearer Management

Purpose of the Bearer Management API is for commoinectivity state of device [39].
Using this API, application developer can acce$srimation of what kind bearer types
there are available or are device currently onliboreover, with the Bearer
Management, network interfaces can be started oppstl. However, network
configurations itself cannot be managed with thRIl,Aas configurations can only be

used.

The Bearer Management API is the first Qt Mobilixtension API, which is already
migrated into main Qt Network library. The Bearesmagement API is included in 4.7
Qt version. The release candidate of Qt 4.7 isadlereleased on 12.9.2010 and

probably the final release will be released soon.

Network configuration contains information of netkanterface and configuration for
that network interface. Network configuration infaation is used to specify network
more detailed, like how network interface can kaatet [39]. For example, in WLAN
connection, access point details, such a data ptanyand credential information for
establish a connection is needed. The Bearer MamagfeAP| provides information of
available network configurations and control ofristand stop specified network
configuration for communication. In addition, theedder Management API enables

actively monitoring changes of network configurasar device connectivity status.

43

4.9.2 Service Framework

The Qt Service Framework is a concept, which ersalnlesely coupled service usage.
Services are independent components (plugins), hwiaillow clients to perform
specified operations [39]. Service can be regidteoethe service framework, where
other application can discover needed servicesamenand version of the service. If
service is found, application can load and usendéfioperations of the service. Services
can be added or removed at runtime to service frarie Services are installed via
XML file, which contains Meta data of service anddtion where service can be found.
The Meta data contains available interfaces, dasons for the interface and

capabilities for the interface.

4.9.3 System Information

A system information API enables a common way ttrieee information and
capabilities of underlying system and hardware .[SBje System Information API
consist a several categories, which information pmavided. These categories are
device information, display information, networkammation, screen saver information
and storage information. In addition, there is @esneral information category. In scope
of this work, device information and network infation are the most interesting

options.

Device information is available through of a QSysBevicelnfo class. That class
makes available information of underlying deviceitiWthe QSystemDevicelnfo class
user can retrieve information of device IMEI (Imtational Mobility Equipment
Identity) code and IMSI (International Mobile Subber Identity) code, which can be
used as unique identifiers. Also this API providesormation of currently used
operation profile (e.g. silent profile, loud prefilor normal profile) and power state
status. The power state status indicates is de@peeated for example in battery mode
or fixed power mode. Furthermore, battery leveh dae retrieved. Finally, the
QSystemDevicelnfo can offer asynchronous notifarati of changes in battery, profile

or power states.

44

Information of general mobile network can obtainthaa QSystemNetworkinfo, which
belongs to the network information category. TheyQ&mnNetworkinfo class provides
interface, which can be used to retrieve informmatod network name, network cell id,
current location code and home network and countgdes. With the

QSystemNetworkiInfo class, network signal strengim @e read and monitored in
asynchronous way. Moreover, the network status lmametrieved with the network

information interface.

45

5 PEERHOOD IMPLEMENTATION WITH QT FRAMEWORK

In the next, an implementation of the PeerHood theiddre concept based on the Qt
framework is described (PeerHood2). The existingerReod (PeerHoodl)

implementation is used as a base for the new imgiation. At the beginning of the
project, it was decided that target is not justrimwPeerHoodl again using the Qt
framework. Without limitations and dependenciesxilsting protocols, — which were
not well documented —enhance of the existing PesdlHmplementation can be done
better without problems. That decision enables gidinngs way of Qt and make
PeerHood2 to be cross-platform middleware. Thusri@d2 do not need to be

compatible with the PeerHood1 implementation.

5.1 Features Implemented

In the chapter of PeerHood communication middleviareduction, the key features of
the PeerHood concept were presented. Most of tteegerements were implemented
into PeerHood1. In addition, most of these wereléemgnted to the new PeerHood2.
The detailed comparison table of PeerHood impleatmms can be found from
Appendix 2. Represented features can be roughlgeativnto two groups: group for the

PeerHood API features and group for PeerHood iateress user-centric — features.

Basis for a new PeerHood API functionality was éefx APl as much same as it was in
the previous PeerHood API. For that reason, theezewno big changes in the
functionality of the new PeerHood API. The biggasanges for the APl come from use
of the signals and slots mechanism to replace fdymesed call back mechanism.
Additionally, the new PeerHood API was harmonizeduse a Qt coding conventions
[41, 42]. Besides, the whole PeerHood implememtatieas put inside of a PH
namespace to avoid name conflicts between Peerbioddhird party applications. The

new PeerHood API can be found from Appendix 3.

With the PeerHood2 interface, third parties appioces can publish own services and as

well discover other services and devices from neiwmighborhood. The PeerHood2

46

support as well connection to services with anrabstd connection. The connection
abstraction enables application developer to us&icge connection in network
transparent manner. The data transmission is ngemndéng on the PeerHood
implementation after connection is established andved to PeerHood client.
Moreover, the PeerHood API enables monitoring rendsgvice actively or by using
signal strength of connection.

Event interface for PeerHood1l was implemented u€lbgerver design pattern [14],
where callback interface instance was provided éerRood. The PeerHood uses
provided callback instance for notifying eventctient. For callback mechanism, the
Qt framework provides solution, which is bettertahie for particular application. The

signals and slots mechanism are used for providatexo PeerHood clients.

The second key feature group is PeerHood integadlifes. Most of these features were
implemented into the PeerHood2 as well. One of imgs$unctionalities is the user
control of PeerHood daemon, which was not impleednh PeerHoodl either. In

addition, the network roaming functionality is moplemented.

The common structure of the PeerHood?2 is a prettghnsame than in the PeerHood1
implementation. Accordingly, use of network pluginms PeerHood2 is based on

dynamic plugins, which are loaded at applicatioartsp. The connection network

plugin interface provides channel for receivingreggdrom a connection manager. With
the connection manager, different networks and at\wlugins can be controlled.

Communication concurrency in the PeerHood?2 is mglyin the Qt event system, hence
multithreading is not used. Concurrency providgdhe Qt event system seems to be
enough for the PeerHood use, however design afielePeerHood?2 is implemented in
such manner that multithreading can be taken easiyuse if needed. The decision of
not to use multiple threads is made for resouregngapoint of view. Furthermore,

multiple threads increases complexity of the sysaach make debugging much harder.

47

5.2 Architecture

Mostly the existing PeerHood implementation is éwniven system using event loop
to receive events and deliver them to correct lmanddoth PeerHood daemon and
library uses infinite loops for handle incoming ete and timed operations. The
PeerHood library can be divided into two differguatrts. One part handles incoming
service connections and another part providesfaderfor all PeerHood functionalities.

Incoming service connections are handled in reacthanner based on events from
network. Second part handles PeerHood API functioastly communicating with the

daemon and establishing connections to other s=vic

The Qt applications uses a same kind event loofemsys than the PeerHoodl uses.
Therefore, taking the Qt framework in use for theeiMood does not cause major
changes of the PeerHood design. Hence, the exiBeegHood1 design can be utilized.
The biggest changes of the PeerHood structure cinm@suse of the signals and slots
mechanism, which can help increase flexibility lo¢ tsystem. With use of the signals
and slots mechanism, the use of Observer desigerpaian be removed. Consequently,
component coupling can be decreased with utilizignal and slot mechanism in

design.

As a basic structure of the PeerHood2 does nogrdiffuch from the PeerHood1, the
use of daemon, library and network plugins were i@z Moreover, PeerHood
functionalities were separated to independent dyméibraries. By use of independent
dynamic libraries, a better reusability and chabdidya can be reached. In the
PeerHoodl a lot of code is compiled to bgbeerhooddexecutable angheerhood
dynamic library. New components for the PeerHo@ammon, settings and register.
In the Figure 6 are shown PeerHood2 componentshemdrelations.

The register component is an independent compdaoestoring information of current
devices on network neighborhood and informatiorlochlly registered services. The
register interface enable insert, remove and sedmshces and services from the

register.

48

The PeerHood settings can be handled with thengsttcomponent. The settings
component can be used from every component, ifssccecommon PeerHood settings
information is needed. The settings component sethan use of the Qt settings class
and therefore settings can be accessed from diffprecesses easily without problems.
However, this PeerHood component is not publisteedse of third parties. For third

parties, the library component provide an own sg#tinterface.

— g PHZWLanPlugin E PH2LocalhostPlugin

PeerHood Application Process

3rd Party Applicati
g Pt iy L el PHZCommon O
O Connection Plugin Interface

Daemon Socket Interface

g PeerHood Daemon Process
O PHZLibrary !
E PHZDaemon PHZCommon
PH Library Interface] [=

PH25ettings PH25ettings PHZR.eqgister
i Rl £

Gt provide Functionality For mulki-process settings Ij

Figure 6. Component diagram for a new PeerHood structure

The Qt’s signals and slots mechanism enables tovera listener framework [43] and
listener plugins from the PeerHoodl implementatidhe listener framework was
implemented to provide events of system changetheliPeerHood2 system, events can
be received with different Qt components via signal

5.2.1 PeerHood Common

All general utility classes and common functiona$itneeded by PeerHood library and
daemon are included in the common component. Thenemn component provides

functionality for plugin management, PeerHood dataeaming to I/O devices and data
containers for service and device information. Tiest of the PeerHood core services

are included into common library.

49

Connection Manager

One of the most important functionalities in theef®0d common component is a
connection manager. The connection manager is megpge to load and control
different networks with available network plugifiie connection manager is needed in
both PeerHood daemon and library processes, doettoneeds network connectivity in
different networks. The connection manager confpbalgins which are loaded. Loaded
plugins depends of information what network typlks tlevice can handle. Network
plugin is not loaded, if the network is not suppdrby the device. However, based by
settings, some of plugins can force to be loadedaddition, loaded plugins can be
limited only for restricted plugins. The connectioranager uses Bearer management
APl from the Qt Mobility extension to resolve awdile network configurations.
Moreover, the connection manager receives eventadded, removed or changed

network configurations. In Figure 7 are shown aasselated to the connection

manager.
M|
QtMobility PH2Common
QNetworkConfigurationManager <<uses>> | abstractPluginLoader

ConnectionManager Z>

ConnectionPluginLoader

< <signal>>+stateChanged]) =

< <glot>>+changeState)
< «slot> = +onlineStateChanged() i
r £<reater
QietworkConfiguration | W
AR EEE TP ! AbstractConnectionPlugin

Figure 7.Classes related to Connection Manager

A ConnectionManager interface provides notificasioof plugin state changes and
ability to control system connectivity. In additiotihe ConnectionManager provides a
way to control some specific network types by esenthe ConnectionManager
interface is exported interface for use of othlerdiies. The ConnectionManager uses a
Private Implementation (Pimpl) idiom [44] to enablketter changeability without taking
care of binary compatibility issues.

50

In the connection manager plugins are loaded witboanectionPluginLoader class.
The ConnectionPluginLoader class is based on ustheofQPluginLoader. Most of
plugin loading functionalities are abstracted tos#éctPluginLoader class, which uses
virtual functions to configure where plugins areaded. Finally when plugins are
loaded, a real plugin instance accepting is regde$tom concrete subclass. The
subclass of the AbstractPluginLoader handles plegsting to correct plugin type. If

plugin type is not correct the instance is ignored.

After plugins are loaded with the ConnectionPlugiatier, the ownership of the plugin
instances is taken by the ConnectionManager. Than€&iionManager can send
different kind events to concrete plugin instariCieese events can be like notifications

of low battery level or request to going offlinatst.

Common Data Transmission

Service and device data transmission is unifiethenPeerHood2 implementation. The
PeerHood common component provides classes folirggmaad receiving device and
service information without knowing how data tramssion is actually done. With
Reader-Writer classes, a single instances or flistsbances can be send and receive in
I/O devices. The Reader-Writer classes are usatidtvact real communication between
remote peer. The Reader-Writer classes are aledracto level of the QIlODevice.
Hence, used device where data is sent or read egmdzess, socket or even file. In

Figure 8 are shown Reader-Writer classes and aMaaiager class.

The DataManager class provides an interface fadisgninformation of registered data.
The data can be locally registered services orod&ed devices. In Addition, the
DataManager enable common way to read informatfaeraote device and send local
device information to remote peers. Purpose ofQa&aManager is to provide a safe
way to read information from register and sendirémote peer. This way, the data
protection of registered data can be done bettee. DataManager safely locks used
data for read to avoid simultaneous data usagelggnsbwhich might happen when
multiple threads are used.

51

The common data transmission is used all over e ReerHood implementation.
Therefore services and devices are serializeddarstin same way when information is
shared between daemon and client or between remewces during network
advertising. This way transmission logic is onbr Reader-Writer classes and data
containers. The data containers implements dataligzation and deserialization from
stream and Reader-Writer classes contains infoomaif how single or list of data is

transferred.

|
PH2Common

AbstractReaderWriter

L4

DeviceInfoReaderWriter | | ServiceInfoReaderWriter

Contains information of local device
and available services on it.

Y - Y

Device LocalDevice DataManager Service
i3 a | R
: L : :
i i PH2Register | ,
e e i e
E R P Register '

Figure 8. DataManager and Reader-Writer classes

Daemon Client

PeerHood daemon access is provided by the DaenamClihe DaemonClient is part
of the PeerHood common library. Purpose of the Dmaedhient is to hide a real
communication between client and PeerHood daemdbe. DaemonClient provides
interface of how daemon can serving its clientskelFigure 9 shows there are two

related classes for the DaemoncClient.

52

The DaemonClient utilizes Acceptor-Connector deggtiern [33]. At the beginning a
DaemonConnector established a connection to themalae After that, the
DaemonConnector initiates a DaemonClientService @odide instance of it to the
DaemonClient. Using the DaemonClientService thenmaeClient can communicate

with the daemon.

The Acceptor-Connector design pattern separates ctiection handling from
connection establishment. As a consequence ofdalatpmmunication logic is only in
the DaemonClientService, which is easy to modifyemlaced. Current implementation
contains only ability to request something from ta@mon, however in the future the

DaemonClientService can also provide events fradtdemon.

DaemonClientService

(E) e Acceptor - Connector
["*- Desing pattern for

DaemonClient A S connection and
' _ | communicating with
; p the Daeman
DaemonConnector

Figure 9.Classes related to DaemonClient

Factory

A Factory class utilizes common Factory designgpat{14]. With the Factory class,
concrete implementations of provided abstract fater classes can be created. There
are available abstract interfaces for remote depinging, remote device monitoring,
network advertising and for connectivity. Eachwwmk plugins register a creator
instance in the Factory. The creator instance &l ue create a concrete instance. If
network plugin creator does not support functidgalt can return a null instance. The

concrete creator registration and instance creagguence are shown in Figure 10.

53

them are separated to shown roles them are separated to shown roles
of actions of actions
.

These are a same instance, but j These are a same instance, but j

Consumer : WlanPluginCreator < <interface== : Factory <<interface== : WlanPluginAdverter
: AbstractCreator : AbstractAdverter

i 1:registerCreator()

2 createAdverter()

h J

E 4 createAdverter() , 3 : createAdverter() ,
] = 1 : :
u <<creates = H
5 A

il
¢ | L 2 |

--.=L| --.=u

h
h

h

\

.

s

| oy

h

! Consumer uses

; created adverter
H

\

H

Figure 10.Sequence diagram of concrete creator and instaraéian

5.2.2 PeerHood Daemon

Compared to the PeerHoodl daemon implementatiothén PeerHood2 daemon
implementation has been changed a lot. In the ReetH daemon implementation was
one a huge CDaemon class, which contains all dagelated functionalities. In the

PeerHood2 implementation, that class has been &plgeveral classes. The main
Daemon class uses these classes by aggregatiemahnstructure of the daemon and

class relations is shown in the Figure 11.

The daemon has two fundamental functions, whichitaresponsibilities. The daemon
is responsible for publish information to other ideg and discover information from
other devices in the network neighborhood. Likewike daemon provide interface for
clients to request information maintained by therdan. In Addition, PeerHood clients

can insert and remove own services to be published.

54

PHZ Daemon

'11
PHZ2Settings
<<acceph s> “
J\ DaemonServer Settings - Daemon
0. SocketInterface \:‘{<<create>> 1’
DaemonClientPeer B
PHZ2(ommon :
CESErYICE R .
i)
! ConnectionPluginLoader ConnectionManager Factory
1 e
o ,
PHZRegister : ’ l{
\.ur ! AbstractConnectionPlugin | | AbstractCreator | |AbstractAdverter
Reqgister e =
<<ireatex> A A A
|
‘Wlan Conngction Plugin
WLanPlugin WLanPluginAdverter
L 3
WLanPluginCreator [... _____ 0
<<creates =

Figure 11.Classes and their relations in the PeerHood daemon

Actually, either of the PeerHood1 and the PeerHataEmon implementations does not
contain device discovery and publish informatiomafl functionality is divided into

each network plugins. Only responsibility of theeden is to start network advertising
functionality for each network plugins. After adiiging is started, plugins handle
device information publishing and discovering. Tdemon constructs advertisers for

the each network plugins with the Factory providgdhe common library.

Second daemon function is to provide interfacedf@mon clients. The clients must be
able to fetch information of detected devices avallable services. In addition, clients

must be able to register services and remove eggisservices.

The daemon provides a local socket interface faentd. For handling incoming
connections, the daemon utilizes Acceptor-Connedtesign pattern as well. A
DaemonServer is used to listening incoming cli@mnections. When a new connection
arrives the DaemonServer accept the connection arehte instance of a
DaemonClientPeer class. After the DaemonClientPewtance is done, the

55

DaemonServer shift connection responsible to tkated DaemonClientPeer instance.

The DaemonClientPeer handles connection until aciioreis closed.

5.2.3 PeerHood Library

Like in the daemon implementation, also the libranplementation was divided to
several smaller classes. Purpose of the creatirdjesnpieces is to create classes with
clear independent functionality. The PeerHood clasa Facade [14] for the whole
PeerHood system. That class provides service ctmitgcfunctionality, device
monitoring functionality and functionality providdyy the PeerHood Daemon interface.
Figure 12 shows classes related to the PeerHoodckBs. For keeping figure clear
enough private implementation class for the PeedHdass is not drawn. However,
The PeerHood API utilizes Private implementatiomonas for the PeerHood API as

well.

Service Connection

The PeerHood library handles connection establisiintgetween services. The
connection establishment consist accepting incorsenyice connections and initiate
service connections to other services locally arately. The PeerHood library uses the

Acceptor-Connector design pattern for this purpasevell.

o PH Application 1 = l e
PH2Library PH2Common o
AbstractConnection
l ‘ AbstractMonitor LETAITID
; [
ServiceConnectionHandler i | DeviceMonitorWorker AbstractPinger
i ‘WLanPinger
<<reates= > ' N
| L L] Service
“ : DaemonClientService
= 5 - A
ServiceConnectionAcceptor PeerHood 5
< Device A
——————————————————————— - 1=t i (:
A -3 :
<<connect>> » " DaemonClient ' DaemonSocketInterface
| | <areatess»
' ServiceConnector :
------ | ConnectionManager | DaemonConnector
A
PH2Settings
Settings

Figure 12.Classes and their relation in the PeerHood applicat

56

A class ServiceConnectionAcceptor is responsibleaézepting incoming connections.
The ServiceConnectionAcceptor creates connectistamaces for all available network
types and start each of them to listening incongognections. When an incoming
connection arrives, the ServiceConnectionAcceptoeates an instance of a
ServiceConnectionHandler class. The ServiceCororgdtndler initiates connection
and notify PeerHood API client withewConnectiorsignal. Execution sequence for

incoming service connection is shown in Figure 13.

: Peertood : ServiceConnectionAcceptor : AbstractConnection -‘ : AbstractConnection -‘ : ServiceConnectionHandler (| : 3rdPartyClass remote device

1:open()

2 listen()

¥
b
==

< <signal>> : : : : 3 : connect
4 : newConnection() 7 0
-

5 : hasPendingConnections() :

P
Lt

6 : nextPendingConnection O_|_|

: | 7 <<create=> i | ServiceConnectionHandler start
Accept incoming connection 5 handling incoming connection after
E ServiceConnectionAcceptor has accept

1 | the connection

1B <eceate>>

= L
9:open@" ! _U

T L
<<signal>> H u

E 10 : newConnection() :

¥

newConnection signal must be connected,
if not, incoming connection is not accepted

111 : nextPendingConnection()
- .
<} :

12 : nextPendingConnection() E
-

Control of AbstractConnection is :
moved. ;

connected socket connection to local
or remote device

3rdPartyClass can now use j o

Figure 13.Incoming service connection

For connecting to another service a ServiceConneclass can be used. The
ServiceConnector provide only simple interface iimtiating connection to wanted

service. Internally the ServiceConnector first bssh a connection to another service
located on local or remote device. After connect®astablished the ServiceConnector
initialized the connection by sending some addalanformation. Sequence of Service

connection initialization is shown in Figure 14.

57

: IrdPartyClass : PeerHood : ServiceConnector : Factory : AbstractConnection : AbstractConnection
 ce—

E 1: connectToService() - E

- H
U 2: connectToServiceD__ . :
0 ™ 3: createConnection() |

7 4 <<oeates>
5 : connectToSocket])

[; E 6 : connectToHost()
J :

7 <<connect>>

¥

3 |
8 initConnaction() ; _‘
-+ 9 write() :
i L | 10 : PH_DIRECT_DATA
V11 write()
: L 12 : service port
13 write)
o 14 : device checksum
)
H 15 : PH_OK
16 : read() v
.-
! 3 17 & write() U
H] -
e (RN NP SRR, PR S S S N e L 'U 19 : connection id

Figure 14.Service connection initialization

Device Monitoring

The PeerHood contains two different kind device itwoimg functions. These are
device monitoring based on active device pingindg device monitoring by signal
strength between devices. For feasible device kigimaitoring the direct connection
between devices is required. Otherwise, signal toong is done of connection

between device and access point, like connectibmeas device and WLAN router.

The both monitoring options are included into a iDeMonitorWorker class. In the
PeerHoodl monitoring was done in separate threadi$aa that reason both monitors
are included the DeviceMonitorWorker, hence momigprfunctionalities are easy to

move to run in another thread if needed.

An abstract signal monitor interface was built ginti that the Qt Mobility extension

provides functionality to receive events of sigsalength changes. Signal strength
events come from the Qt Mobility without any actipelling by the PeerHood. As

opposite to signal monitoring, the active monitgrirequires operate pinging within

interval. The QTimer is used for active monitoringing.

58

5.2.4 PeerHood Network Plugins

Like the PeerHood1, also the PeerHood2 containardigplugin extension system for
including different network specific implementatgonn the current PeerHood2, only
plugins for local host and WLAN connectivity areglamented. The local host network
plugin provides only ability to create local hosisked connection instances, in that other
functionalities are not supported on local hostadilition, the WLAN network plugin

contain all functionalities, which network plugioan provide for the PeerHood.

The plugin system and interfaces are very simitarthe PeerHood2 than in the
PeerHoodl implementation. However, some thingdare a bit different way than in
PeerHoodl. Two major changes to plugins systemaarew interface for service
advertising and capability to receive and send &vey plugin interface. Classes related

to WLAN network extension are shown in Figure 15.

]
PH2Common
ConnectionPluginLoader
ff???_h??i 9 [-- -~{ All network plugins are loaded with ConnectionPluginLoader lﬁ
s
AbstractConnectionPlugin AbstractConnection AbstractPinger
A A A
Factory AbstractCreator : AbstractMonitor AbstractAdverter| |DataManager
3 A A L
T [
H ViLan Connection Plligin ul s
WLanPlugin | | | : PH2Register
|1 <<uses>> !
U <<creater> .,
? E _____ 2 WeLanPluginCreator [~~~ WLanMonitor
! S WLanServicePublisher L) Register
H H WLanPi]
All network spedific implementations L EEREE L R EEEEE T e o] =t
will be created with Factory : <<aeate>>
E WLanPluginAdverter
<<reatex>

Figure 15.Class relations in WLAN connection plugin

Advertising Interface
The network advertising control functionality wasluded in the plugin interface in the
PeerHoodl implementation. The new PeerHood2 impiésren own AbstractAdverter

interface. The AbstractAdverter can be used to mangetwork advertising. Like
59

other abstract interfaces for network plugin thestdictAdverter can be created via
Factory class. Even though, advertise controllBxghbved to own interface it provides

same functionalities as earlier.

Network Plugin Events

Network plugins interface — an AbstractConnectiowgii — is extended to have ability
to receive and send events. The AbstractConnedtigimPinterface utilizes the signals
and slots mechanism for events. The connection ganeaan notify plugins with the
event system. Events for plugins can be notificetiof common events like low battery
or control events like request to go offline stafdus, the ConnectionManager can
control all plugins with events. Furthermore, thetwork plugin can notify others if it
changes state. It is notably that action for evelegsend plugin implementation, as a
result, plugin implementation can ignore providedquest, like going in battery saving

mode.

5.2.5 PeerHood Applications

The biggest change for the PeerHood API usingasttie new PeerHood API requires
use of the Qt framework also. If use of the Qt fearark is not possible in third party
application, a C++ wrapper for the PeerHood API banimplemented into PeerHood.
Other impacts or limitations for the third partypéipations the new PeerHood API does

not cause.

The previous PeerHood implementation rejects inogmservice connections if
callback instance was not given at PeerHood iie PeerHood2 uses similar model by
recognizing isnewConnectiorsignal connected to any slot. If signal is notreseted,
the PeerHood rejects incoming service connectiqoests, as there is no one to accept

incoming connections.

5.3 Improvement Ideas

Using the Qt framework enables ability to extend BeerHood with new uses cases.

The Qt provides several APIs to get notificatiofslmanges in the system and device.

60

With the event system for network plugins, the GaotionManager can be extended to
control network plugins, like reduce power consuompivhen device is running out of
battery. In addition, network plugins must be inmpénted to change their behavior

when events are provided by the ConnectionManager.

Second improvement idea is related to device deteand information sharing in
network neighborhood. Currently, in both PeerHoad#l PeerHood2 responsibility of
device detection and information sharing is in rewplugins. With the connection
abstraction, these functionalities can be cengdlito daemon. In that model device,
detection logic is only in one place and thereasieed to implement that in all network
plugins. Network plugins can be used to parametdrimquiries and other needed
things based on network type or some other detd&ilentralized model decreases also

dependencies of network plugins.

The PeerHoodl contains support for the Bluetootivork as well. In the PeerHood?2,
the Bluetooth was leave out of scope, becauseefthframework does not provide
needed functionalities for that. Hence, Bluetoatiplementation must be implemented
in the platform specific way. The Bluetooth plugmplemented in the PeerHood1 can
be used in the PeerHood2 with a small modificatiand integration to existing plugin

system.

61

6 EVALUATION

In this chapter, the new PeerHood2 implementat®oevaluated. Evaluation is done
with using explained McCall's quality factors. Inddition, the Peerhood2
implementation is compared with the PeerHood1 impletation to see impacts of the

Qt framework into PeerHood implementation.

6.1 Test Environment

All tests were executed on 10.04 Ubuntu with 2.&32yeneric kernel version running
on VMware player 3.0 virtual machine. As a hosttfplan, Asus EeePC (Intel Atom
N450 @ 1,66GHz, 1Gt RAM memory) with 32bit WindowsStarter operating system

was used. The virtual player was configured to H&é4@MB RAM memory.

6.1.1 PeerHood Configuration

Both PeerHood implementations were measured as sanfguration as can be. The
test configuration consist network plugins for libcst and WLAN networking. The

WLAN advertising interval is set to one second othbPeerHood implementations. In
addition, the old PeerHood implementation contdeature for customizing what

information the PeerHood shares between deviceas.f@ature is set to be aligning with
the new PeerHood implementation, which share semamd device information between
devices.

The PeerHood?2 is built with Qt 4.6.3 version an@.Z.version of the Qt Mobility

extension APIs are used as well. The Qt framewndkthe Qt Mobility are compiled to
Linux environment with default configuration. Alulids — including PeerHoodl1 — are
done with the GNU C++ compiler. The used PeerHogat§ion is SVN revision 170 of
public PeerHoodl SVN repository [45]. The PeerHoeégsion can be found from
Gitorious [46].

62

6.1.2 Active — Passive Client Test Set

Purpose of an Active-Passive test set is to cosemeon PeerHood actions in a same
test set. The test set is limited to local conwégtito avoid disruption caused by
network transmission. The proposed test set caomtdimctionalities of service
registration, service resolving and connectionravijgled service. Figure 16 shows the
test set and steps of the test. The test set exdbas active — passive PeerHood client

pairs. All active and passive clients are runnimgwn processes.

| Passive Passive | | Passive
client1 | | client2 client n

R

Figure 16.Used PeerHood test set

First, for each active clients must start a passiient (step 1). For each passive client
registers a service, which active client pair isngoto use. After all, when passive
clients are started, active clients can be staffibd.active clients execute the following
test set in five seconds interval (Figure 16):
Register a new service
Read all services and verify that at least twoisesvare found. These two
services must be service registered by the pasdiest pair and second
must be service registered by self.
4. Find and connect to service published by the passtient pair

63

5. Passive client accept a service connection. Aftamection is made. The
active client verifies result of connection and cdisnects the created
connection.

6. Finally active client unregister service which wasgjistered in the step 2.

All executed test steps are verified by the activent. If some step fails, the execution

of the active client is interrupted and the exemutime is logged.

6.2 Maintainability

For the maintainability, the static code analysisused to give some overview of
differences between the PeerHoodl and the PeerHwmop2mentations. The static
code analysis is done with SourceMonitor 2.6.3 igppbn [47], which is freeware
source code analyzing tool. For the PeerHoodl imefgation, only main PeerHood,
localhost plugin and WLAN plugin are analyzed. Henthe both PeerHoodl and
PeerHood2 are comparable together. The BluetoothGIiPRS plugins are excluded

because the lack of functionalities in PeerHood?2.

Static code analysis results are divided into twfteent groups. The first group is a
guantitative metrics of PeerHood implementationd second group is more qualitative
metrics of PeerHood implementations. Figure 17 shayuantitative metrics of
PeerHood implementations. The amount of Files, 4ioé Code (LOC) and class
definition metrics are obvious and does not neqaagation, nevertheless statements,

branches and functions may need.

The statements metrics is amount of computatictasients in the source code [47].
These statements includes all C++ statements imguztanches sudifi statements and

loops suchor andwhile.
Statements that cause break for sequence exeaitmde are counted in the branches

metric [47]. The branches metric is percentage evaluthe all statements. The branch

statements are for exampte, while, if andswitch casestatements.

64

Functions metric is total amount of functions destiaout of class definitions [47]. This
metric includes all functions although functiondisfined in the source code file scope
with the static definition to be out of global naspace. The functions metric counts the
main function as well. The PeerHood1 contains C #Pthe PeerHood as well, which
causes that big difference between amount of fanstin the PeerHoodl and the
PeerHood2 implementations.

Quantitative Metrics

130 O PeerHood1 | |
110 B PeerHood2 |

N
o
|
[T[]

&y 4 8, G
//@S /,7@ S Sléf) ,6/70 A /Q'S
Q

Figure 17.Quantitative metrics for both PeerHood implementai

Especially the difference of lines of code is relkaate in maintainability point of view.
Evidently, the quantitative metrics is nothing wathh analyzing quality of code. Code
quality metrics are shown in Figure 18. Kiviat gnador the PeerHoodl (A) and the
PeerHood2 (B) contains information such a code dexity and a code depth.

Moreover, average amount of statements in methods€ade comments are available.

In the Figure 18 the green area and values indid@gle brackets are preferred values
of each metrics [47]. The exact metric values ef ithplementation are shown in each
axis description. Except, the maximum depth vasumited to nine and all statements
at the deeper level are counted as in depth nifle [4

65

Kiviat Metrics Graph: Project ‘PeerHood1 Kiviat Metrics Graph: Project 'PeerHood?’
Checkpoint 'Baseline’ Checkpoint '‘Baseline’

% Comments =413 % Comments = 25 2
[15-25] [15-25]

Avg Complexity = 3.19
[20-45]

Method/Class =8.13 Avg Complexity = 3.19 Method/Class = 7.24
[4-20] [2.0-4 5] [4-20]

Avg Depth = 1. Avg Stmits/Method = 105 Avg Depth =0.97 Avg Stmts/Method = 4.7
[10-25] [5-10] [10-25] [5-10]
Max Depth = 9+ " Max Complexity = 44 Max Depth = 5 Wax Complexity = 8
[3-6] [2-8] [2-6] [2-8]
A) B)

Figure 18.Static code analysis metrics for A) PeerHood1 apBd&:rHood2

The depth metrics describes nested blocks in aadetha function. The nested blocks
are usually introduced with execution control statats such if and loops statements
[47]. Hence, depth metrics are related to condétimna code. More conditions in code

make code harder to read. Namespace blocks amalwotated into depth metrics.

The code complexity metrics are calculated fromecadndition options. For each
conditional statements increases execution pattes imethod or a function. The code
complexity is calculated from these execution patitsch increases the complexity of
method [47]. The code complexity calculation is dghson definition by Steven

McConnell presented in his book Code Complete [48].

Combining lines of code with the code complexityega good overview of code to be
maintained. Code with a high complexity value tetalde difficult to maintain and
usually has high defect density [16]. Furthermdtnere are relation between complexity

and software reliability as well [17].

All differences of quantitative and qualitative mes between PeerHood
implementations are not only related to use ofQhé&amework. A lot of code has been

refactored during the new PeerHood implementatioh some features like connection

66

roaming was dropped off the PeerHood2. HoweverQh&amework provide a lot of
functionalities to PeerHood, which helps to keetenmal structures more simple and

code less by self.

6.3 Reliability

In reliability testing the introduced active-passislient test set were used. The purpose
of reliability test was to verify how all PeerHo@dmponents work in long running
operation. Time frame for test was set to 12 holine PeerHood system should work
that time without any abnormal behavior. The actilient verifies all operations and
terminates client execution if some operation thil€he active-passive client tests set

were run with five client pairs and all executiengected to last 12 hours.

Figure 19 shows results of the reliability testeTPeerHood1 implementation fails after
85 minutes to socket assertion error. For thatorgaBeerHood1l implementation was
tested three times. Every time all clients failthat same runtime. It seems that some
sockets are not closed proper way in PeerHoodleimghtation and finally socket
creation fails. The PeerHood2 ran 12 hours witheowt abnormal behavior. The test

execution was stopped after 12 hours was elapsed.

12h Run test with 5 active-passive client pairs

Test3 g
@ Serviceb
Test2 B Senviced
O Service3
O Service2
Testl B Servicel
@O Daemon

O
Testl

PeerHood1

PeerHood?2

o
N
S
]
[ee]
S
Ny

Total run time (h)

Figure 19.Reliability test results
67

Deeper analysis of the PeerHood1 failure in thealdity testing was not done. The
failure was very deterministic and it occurs inmvest run almost at the same time. As
the previous chapter states, there are relationghef code reliability and code

complexity, which can be partially seen in thigatkllity test as well.

6.4 Efficiency

PeerHood efficiency is evaluated with measuringpuese usage of both PeerHood
implementations. Memory usage and CPU usage ofibgilementations are measured

and compared in following subchapters.

6.4.1 Memory Usages

PeerHood implementations memory usages were ambilyh two different memory
usage tools to get better reliability for the résul’he memory measurements were done
on Linux platform, which uses virtual memory. Thetwal memory can be a bit
challenging when measuring memory usage, due tttetliat memory areas can be

reused between multiple processes [49].

Memory usage is measured for all related execudabléne active-passive test set. The
test set consist executables for PeerHood daenagsive client and active client. In the
memory usage tests, the test set was executedheitiive active-passive client pairs in
duration of ten minutes. All memory measurementseva®ne from application start to

application close.

Massif

PeerHood memory usages are measured with a Mas§ifvthich is heap profiler tool
in the Valgrind [50]. Output of the Massif is viszad with a MassifG tool [51]. The
Massif can be used for measuring how much heap meapplication consumes. In
addition, the Massif can measure use of stack megnaod extra bytes of heap
allocation. Extra bytes are allocated in book-kegpand alignment purposes [50].
Moreover, the Massif can expose memory leaks onicgbipn runtime. The runtime

68

memory leaks cannot be determined with regular nmgnheak tools if application
cleans allocated memory correctly at the applicegit.

In Figure 20 are shown heap and stack memory usfatlpe PeerHoodl daemon and in
Figure 21 are shown heap and stack usage of théi&@d2 daemon. Difference of
memory usage is significant between native appiinaand the Qt based application.

However, the memory usage level in the PeerHood2usable range.

BBt +00ms.21e+04ma.24e+05m4d..86e+05M2.48e+05m83.10e+05mS. 73e+05me.35e+05ms.97e+05mS.59e+05m

Figure 20.Memory usage in the PeerHood1 daemon, measuredheitiassif tool

Stacks
Heap Extra
Heap

BB +00ms.17e+04ma.23e+05m4.85e+05m2.47e+05m3.08e+05m3.70e-+05mg. 32e+05md. 93e+05MS.55e+05m

Figure 21.Memory usage in the PeerHood2 daemon, measuradheitMassif tool

Between the active and the passive clients, thierdiices of memory usage were

negligible and for that reason only memory usagiefpassive clients are presented. In

69

Figure 22 is shown memory usage of the passivatclnich uses the PeerHoodl

implementation. In Figure 23 is shown memory usaigthe passive client with using

the PeerHood2 implementation. As already mentiotteel, Massif tool can point out

application memory leaks, which can be seen inHRematl based passive client. The

difference of passive and active client memory asagas a bit larger than between

daemon executables.

BaokiB
Boz2 kiB
Pe4kiB

P26 KiB

Exmap

868+ 00m7.13e+04m4a.43e +05m2.14e + 05m2.85e+05m3.57e+05m4.28e+05m4.99e+05mS.71e+05m$.42e-+05m

B +00ms.21e+04ma.24e+05m4.86e-+05m2.48e+05m3.10e+05m3.72e+05m4. 356+ 05m4. 97e+05mS.59e-+05m

Figure 22. Memory usage of passive client using PeerHood1

Stacks
Heap Extra
Heap

Figure 23.Memory usage of passive client using PeerHood?2

Second tool for memory usage measurements is Exo@p[52]. The Exmap can

provide more detailed information of used memotye Exmap can take into account of

70

shared memory between processes by providing irdom of effective, mapped and
resident memory in addition to heap memory. Thelted Exmap memory measuring
is a snapshot of currently running process. For tbason, memory usage results are

average values of snapshots in time after minie,rhinutes and ten minutes runtime.

In Figure 24 are shown different memory usage tesln all tests, resident and mapped
memory was same amount of memory. For that reassigent and mapped memory

usages are grouped together in all related figures.

PeerHood1 Memory Usage

2000

1800 -

1600 -

1400 -

1200 + O Effective Resident/Mapped
@ 0O Writable
2 1000
0O Sole Mapped
800 B Resident/Mapped

600

400 -

200 :‘7
0

Figure 24.PeerHood1l memory usages measured with the Exmap

Daemon Passive Client Active Client

Resident memory size is amount of virtual addressebmapped to physical RAM
memory. The mapped memory size contains also ammiuntapped virtual address
base, except memory can be stored into physical R&Mnto swap space [52].
Consequently, all mapped memory in all tests iated in RAM memory and swapping

was not needed.

Effective resident and mapped memory metrics areensophisticated metrics than
regular resident and mapped memory metrics. lretfeetive metrics, shared memories
are taken into account [52]. The Exmap recognibesesl pages and the page size are

divided by all process which uses the memory pagé [

71

The sole mapped size is same as the mapped silzeugth it contains only pages,
which are currently sole use by the process [5&3nde¢, pages can be shared. In
addition, writable memory size shows memory cuiyestored to pages, which are

marked to be writable by the process.

Memory usages of the PeerHood2 implementation fawe/s in Figure 25. As the heap
usage difference was major, the virtual memory esaghe PeerHood2 is also much

more than in the PeerHood1 implementation.

PeerHood2 Memory Usage

8000

7000 ~

6000

50001 o Effective Resident/Mapped

0O Writable
0O Sole Mapped

kB

4000 -

3000 B Resident/Mapped

2000

1000 +

Daemon Passive Client Active Client

Figure 25.PeerHood2 memory usages measured with the Exmap

The Exmap can show detailed memory usage for emcandic library and executable.
Figure 26 shows separated portion of the Qt framkevio the PeerHood2 memory
consumption. In the Figure 26 A) memory usage bQallibraries are shown for each
component: daemon, passive client and active clleraddition, Figure 26 B) contains
detailed information of how much for each Qt comgmnuses memory in the

PeerHood2 daemon use.

72

Memory Usage of All Used Qt Libraries

4500

1600

Memory Usage of Different Qt Libraries

4000

3500 1

3000

1400

1200

1000

2500 D500
2
2000 | 600
1500 |
400
1000
200
500 7
‘ 0
0 QtGui QtCore QtNetwork QtDBus QtXml QtBearer QtSysteminfo|
Daemon Passive Client Active Client 463 463 463 463 463 102 102
‘D Effective Resident/Mapped O Writable O Sole Mapped B Resident/Mapped ‘ ‘D Effective Resident/Mapped O Writable B Sole Mapped B Resident/Mapped ‘

Figure 26. A) Proportion of Qt libraries in the PeerHood2 meynaesage. B) Memory
usage for each Qt library in the PeerHood daemen us

With the Exmap, also the heap memory usages weasuned. Results of heap memory
usages can be seen in Figure 27. The results arpatable and align with the results

from Massif measurements.

Used Heap Size

350

300
250
200

2

150 —
100 +

50 —

0 T T T T
PH1 Daemon PH2 Daemon PH1 Passive PH2 Passive PH1 Active PH2 Active
Client Client Client Client

Figure 27.Heap memory usage differences between PeerHoodResrtHood2

6.4.2 CPU Usages

CPU usages of PeerHood implementations were mehsuth time command from
Linux command line tools. Thame shows used wall time — how long application

actually were running — and also user and kernedgiused by application under test.

73

CPU usages were measured for all processes rdlatadtive-passive test set. That
includes the PeerHood daemon, passive client anceagtient. In Figure 28 are shown
results of CPU usages. The test set was run on ibites. After 10 minutes,
applications were closed when application exittthee tool print result of applications

system time usage.

CPU usage time

03 O Daemon
W Passive client
O Active client

o o
o P
oGk o
L L L

Used CPU time of real time (%)
o
&

— N — N
© © © ©
o o o o
(@) (@) @] (@)
T T = T
(] (] (¢}]
(O] (O] (O]
o o o o
User time System time

Figure 28.PeerHood CPU usages

Both PeerHood implementations uses only small amainCPU time. However,

differences in CPU usages between PeerHood implati@ms are significant. One
explanation for CPU usage difference can be systemtoring used by the PeerHood?2
implementation. In that, WLAN listener is not usadhe PeerHood1 on desktop Linux

environment.

6.5 Correctness

During the PeerHood2 implementation, API tests wenplemented for verifying

correctness of the implementation. API tests carnhloegh as one part of extensive
qguality verification process. Moreover, more dedil evaluation and measuring
correctness requires a full quality assurance psocand detailed application

requirements [12]. Larger quality assurance wasfeasible in scope of this study.

74

Along with better correctness verification requisgsne test bed for testing device and
service discovering from network neighborhood usliffgrent network technologies.

6.6 Testability

PeerHood2 was implemented with the set of API tdgisstly these tests use APIs
provided by the QTest test library. The QTest pitesi a good tool set for Qt based
components testing. Test coverage’s for the AR$teere measured with tigeov[53]
tool and output generated witbov [54] tool. The results of the test coverage’s are

shown in Table 1.

Table 1.Test coverage results for the PeerHood2

Module Line Coverage (%) Function Coverage (%)
PH2Daemon N/A N/A
PH2Common 92,7 74,0
PH2Library 89,3 67,9
PH2Settings 98,7 82,6
PH2Reqgister 94,0 82,6

Using code coverage tools with testing can prowdduable information to test
developers. The test coverage data is good signabw well and inclusive tests are.
Hence, test coverage helps monitoring system tiéisgab how well codes are covered
by tests. However, the code coverage does not i@ guality of tests and are correct
things actually tested.

6.7 Flexibility

Like the existing PeerHood implementation also tiesv PeerHood implementation

utilizes common design idioms and patterns fomtyyio keep PeerHood design flexible
and changeable. The new PeerHood implementatiamn @wes several independent
shared libraries. With shared libraries, the middliee can be updated or changed by

replacing only particular component or componentghoaut compiling entire

75

middleware. When using shared libraries and notpilomg entire middleware a binary
compatibility must guaranteed between components.

The Qt framework provides signals and slots meamanwhich can be used to increase
system flexibility. With the signals and slots, quunents and classes can be loosely
coupled. Consequently, dependencies of componantde decreased. Signals can be
connected or disconnected without communicatiom wetated component. Therefore,

application extension can be easier if signalsshois are used.

6.8 Usability

Even though PeerHood is API for third party applaras, usability can be evaluated
[13]. However, usability evaluation requires APlage evaluation with several
application developers. The usability evaluatiors wat of scope of this thesis work.

The PeerHood usability is look after with keepingeRHood documentation in good
level and up to date. The PeerHood?2 internal ckaase documented with the Doxygen
[55] to help understanding the internals of therHeed. In addition, PeerHood API

documentation is generated with the Doxygen fotthivel party application developers.

The use of general data types and structures fnen@Qt framework decreases learning
curve of the PeerHood API. The PeerHoodl contams implementations of device
and service lists. Instead of using common lists,ReerHood1 API publishes own list

structures, which third party application develgpeust learn as well.

6.9 Integrity

The PeerHood is research project and security ®fReerHood is not concentrated
really much. The integrity issues were leave outsodpe and data integrity of the
PeerHood2 is keep as it is in the PeerHoodl. The significant change is use of
dynamic library for the data registry. The use yriamic library can enable replacement
of data registry component. Replacing existing daaponent can enable some data

manipulation and fake data can be provided. Howekier is not probably a huge issue.

76

6.10 Portability

Maybe one of the biggest advantages of implemeritiegPeerHood on top of the Qt
framework is get excellent portability across dfetient platforms and devices. The Qt
framework itself provides a good portability acreasgported platforms. The most of
the PeerHood is implemented as a platform independay.

Some of PeerHood functionalities cannot be impldetemith tools provided by the Qt
framework. These parts need to be implemented platform specific functions and
will cause some porting effort when porting Peertid@m a platform to another. The
Qt framework does not support for example using EClihternet Control Message
Protocol) protocol [56] which is used in active sevmonitoring. In addition, when
implementing Bluetooth network plugin it must bendoin platform specific
implementation. In that, the Qt framework does piavide the Bluetooth controlling
functionalities. Bluetooth device control is neededpublish PeerHood service to be
found with Bluetooth Service Discovery Protocol (057, 22].

When implementing a platform specific code into ssrplatform code, use of
abstraction is important to keep portability in ddevel. In addition, platform specific
code is good to separate from other sources impthgct, so that platform specific
codes are only included into build when compilirg Specific platform. Moreover,
adding preprocessor conditions makes code hardezai and understand if a lot of

platform specific code is embedded into generiecod

One option to use of ICMP based device monitorstpiimplement device pinging on
top of the UDP protocol. In this way, the devicenaring can be implemented in the
cross-platform manner. In addition, in many netvgaitke ICMP ping is blocked by the
firewalls. Thus, the UDP based ping implementatman possible provide better

availability of the active device monitoring furatiality.

77

6.11 Reusability

The system architecture in the PeerHood2 is basechwdtiple dynamic components.
The PeerHood consist two different kind dynamic ponent uses. Independent and
common functions were separated in multiple compts® be linked to the PeerHood
in compile time. In the PeerHood1 some of commarctionalities was built in the both
PeerHood daemon executable and the PeerHood librdmigh increases the size of

binary.

As one of the PeerHood requirements was, the PeerHetworks must be extendable
with the plugins. These network plugins are impleted as runtime loadable dynamic
libraries. Hence, a new network supports can beadignamically into PeerHood. The

network plugins can use services from linkable plsgrovided by the PeerHood.

When using component based architecture with thefr@nework the common
components can be shared across different platfdmaddition, utilizing the signals
and slots mechanism components coupling can beedddhe loose coupling between
components enables flexible component reusability.

6.12 Interoperability

The PeerHood concept provides a good interopenalbly itself with dynamically
loaded plugins. With new plugins PeerHood interapen of other systems can be
extended. In addition, the data stream functioiesliin the Qt framework provide easy
way to implement interfaces with good interopetgbil As, the data stream
automatically convert data to the most signifidayte (MSB) order format.

78

7 DISCUSSIONS AND CONCLUSIONS

The objectives for this thesis were set to evaltlagefeasibility of Qt framework for
advanced communication middleware use and to amalyre advantages and
disadvantages for using the Qt. The feasibilitylgtwas done by remake existing Peer-
to-Peer middleware concept using the Qt framewarét the Qt mobility extension
APIs. The advantages and disadvantage of the Qtefrrk were evaluated in the
PeerHood quality evaluation. The new PeerHood tyuaths evaluated with the defined

guality factors.

Before Qt based implementation was done, the Peefldoncept and requirements of
that was clarified. In addition, the basic knowledgr use of the Qt framework and the
Qt Mobility extension was gathered. The Qt framdwastudy was done in
communication middleware point of view by leavinlg @UI related functions out of

scope.
7.1 Qt Framework in Middleware Use

The PeerHood concept was previously implementedLionx environment to be

available in different kind Linux based systemke linternet tablets or mobile phones.
The new PeerHood implementation was decided to kenuaing the Qt framework.

Obviously, the previous PeerHood system was usedaabase for the new

implementation. The new PeerHood implementation natstargeted mainly on any
specific platforms. Purpose was to create the newrHood to be cross-platform
middleware by using the Qt framework.

The new PeerHood is implemented almost fully witle QQt framework in cross-
plattorm manner. Currently, the only exception e tiICMP ping implementation,
which is used only in the WLAN network plugin impilentation. All other parts of the
new PeerHood implementation are portable betwedfereint systems. In the
development phase, the PeerHood was tested witBZHsts and 64 bits Windows 7

and the Ubuntu Linux environments. The portabitifyhe PeerHood implementation is

79

tested only with these platforms. However, the m&erHood implementation should
be easily portable to the Maemo, Mac OS X and Sgmbiatforms. Some changes to

application deployment might need to be done fehgdatform.

The Qt based PeerHood implementation was evaluagedly by comparing it to the
existing PeerHood implementation. Especially, resewsage comparisons between
these two implementations were very instructivee @ifferences of CPU and memory
usages of the new PeerHood implementation and teone were significant.
Obviously, adding a new abstraction layer will g&se the system resource usage. Even
though the difference was large, the resource ssdge the new PeerHood

implementation were in satisfied and acceptablelltor use of mobile devices as well.

Probably the biggest advantage of using the Qtdwaonk is portability of it. The Qt
framework offers very rich set of fully portable WP Usually, communication
middleware’s are very depended on underlying systeetause of, them uses many
platform specific APIs, like sockets, threads anocpsses. With the Qt framework all

these functionalities can be used in cross-platfaay.

Second advantage of using the Qt framework is pealievent mechanisms. Notably,
the signals and slots mechanism provides powevkmtemechanism. Using the signals
and slots, components can be more loosely couptedpaovide almost transparent
event delivering from object to another. Hence,digmals and slots mechanisms enable
more flexible system design. For event-driven syste like the PeerHood is — use of

the Qt framework does not constraint to any paldicsystem architecture.

As a conclusion of the Qt framework, it provideswsophisticated functionalities for
the communication middleware use. With the Qt framork, a lot of middleware
functionalities can be implemented to be portabless-platform components. Even
though, the small disadvantage of the system resawsage, the Qt provide mature and
efficient environment for flexible cross-platformpg@ication and middleware
development.

80

7.2 Future Work

The PeerHood concept is very interesting way taeslsarvices between devices in
network neighborhood. With the Qt based implemématd new use cases for the
PeerHood can be implemented more easily. The gauthlplity of the PeerHood

enables use of PeerHood in many platforms inclusimigi laptops, mobile devices,
smart phones and desktop computers. The large staleilable systems can provide
totally different type systems and better interapdity between mobile and fixed

devices.

The implemented Qt based PeerHood system is osipall function set for to prove
feasibility of the Qt framework of middleware pragmming use. In the future a new
network plugins can be implemented to provide mexéended network use. The
PeerHoodl implementation contains network plugios the GPRS and Bluetooth
networks in addition of WLAN and localhost pluginat least, these two network
plugins could be implemented to the new PeerHoad efmabling more advanced

communication in network neighborhood.

The Qt Mobility extension contains API for the deevframework. The Qt service
framework has a similar aspect than the PeerHomlesy by sharing services.
PeerHood itself is easy to modify so that PeerHsexice is available from service
discovery. More interesting study could be inteiggathe PeerHood system into service
framework, so that each local and remote servioebeafound through of the Qt service
framework API. In addition, service publishing ®mote devices would be done with
service framework. Basically, in integration theeR¢0od API is replaced with the Qt
service framework and the PeerHood daemon provadkdmd extension for the service

framework.

Another usable addition to the PeerHood could leeQh meta-object language (QML)
[58] support in the PeerHood API. The QML suppsifor direct use of PeerHood API
from the QML context. The QML and Qt Quick [58] &te rapid application Ul
development for the Qt applications. The QML wdsoduced in the 4.6 Qt version and
the Qt Quick IS provided in the Qt 4.7 version.

81

REFERENCES

1.

James Gosling, Bill Joy, Guy Steele and Gilad Bnand’he Java™ Language
Specification. Second edition. Prentice Hall. 20688 pages. ISBN 978-0-321-
24678-3.

Jeffrey Richter. CLR via C#. Second edition. MiofiPress. 2006. 693 pages.
ISBN 978-0-7356-2163-3.

Nokia. Qt Modular Class Library [Internet pagekfgrred 4.9.2010]. Available:
http://gt.nokia.com/products/library

Nokia. Supported platforms for the Qt frameworkt¢imet page]. [referred
4.9.2010]. Available: http://doc.trolltech.com/4&6pported-platforms.html

Nokia. Qt Mobility [Internet document]. [referred .952010].
Available: http://qt.nokia.com/files/pdf/gt-mobyrwhitepaper-1.0.0

Nokia. The Qt framework licensing options [Interpeige]. [referred 5.9.2010].
Available: http://qt.nokia.com/products/licensing

Free Software Foundation. The GNU General Publmehse and the GNU
Lesser General public license [Internet page]. Wgmtla?7.4.2010. [referred
4.9.2010] Available: http://www.gnu.org/licenses/

Wu Ming-Wei and Lin Ying-Dar. Open Source Softwdbevelopment: An
Overview. Computer. vol. 46, issue 6. pages 33-BBSN 0018-9162.

Jari Porras, Petri Hiirsalmi, Ari Valtaoja. Peergeer Communication

Approach for a Mobile Environment. 37th IEEE Anndi#waii International
Conference on System Sciences. 2004. ISBN- 0-7685-2

82

10.

11.

12.

13.

14.

15.

16.

17.

Stephen H. Kan. Metrics and Models in Software @udEngineering. 1st
Edition. Addison-Wesley Publishing Company. 19944 ages. ISBN 0-201-
63339-6.

B. W. Boehm, J. R. Brown, M. Lipow. Quantitative afvation of software
quality. Proceedings of the 2nd international coariee on Software
engineering. 1976.

Roger S. Pressman. Software Engineering: a Paawtitis Approach. 5th
Edition. McGraw-Hill. 2001. 860 pages. ISBN 0-0753G8-3.

Steven Clarke. Measuring APl Usability. Dr. Doblosihal. May 2004. Pages
S6-S9.

Erich Gamma, Richard Helm, Ralph Jonson, John Mkss Design patterns —
Elements of Reusable Object-Oriented software. sattiwWesley. 1995. 416
pages. ISBN 0-201-63361-2.

Jie-Cherng Chen and Sun-Jen Huang. An empiricdlysisaof the impact of
software development problem factors on softwaréentamability. Journal of

Systems and Software. Volume 82, Issue 6. Pages9931 Jun 2009.

Indar Sugiarto. Static Code Analysis for Softwargaf@y Improvement: A Case
Study in BCI Framework Development. Jurnal Inforikeat January 2008. Vol
9. No 2.

Linda Rosenberg, Ted Hammer, and Jack Shaw. Saftwaetrics and

reliability. Technical report, NASA Software Assuoce Technology Center.
November, 1998.

83

18.

19.

20.

21.

22.

23.

24.

25.

Jerry Gao and Ming-Chih Shih. A Component TestgbModel for Verification
and Measurement. Computer Software and ApplicatiGosiference, 2005.
COMPSAC 2005. 29th Annual International. pages 218- July 26-28. 2005.
ISSN: 0730-3157.

Andrew T. Cambell, Geoff Coulson and Michael E. Kauvis. Managing
complexity: Middleware explained. IT ProfessionlfEE Computer Society.
pages 22-28. September/October 1999.

Rudiger Schollmeier. A Definition of Peer-to-PeeretNorking for the
Classification of Peer-to-Peer Architectures anghligations. In Proceedings of
the IEEE 2001 International Conference on PeereexZomputing (P2P2001).
Linkping, Sweden. August 27-29. 2001.

Maemo community. Maemo Software Platform [Interrge]. [referred
23.3.2010]. Available: http://maemo.org/intro/ptath/.

PeerHood project. PeerHood subsystem specificatiensjon 0.2 [development
resource]. [referred 5.9.2010, SVN revision 186]. vadable:
https://www?2.it.lut.fi/svn/public/peerhood/trunk/@&lood_documentation/speci

fication.doc.

PeerHood project. Functional and non-functional rReed requirements
[Internet page]. [referred 5.9.2010]. Available:
http:/imwww?2.it.lut.fi/wiki/doku.php/peerhood/speiétion.

Arto Hamalainen, Jari Porras and Pekka JappinanicgeDiscovery in Mobile
Peer-to-Peer Environment. 5th Workshop on Applceti of Wireless
Communications (WAWC'07), 2007

Nokia. 4.6 Qt Reference Documentation [Internetepafreferred 25.9.2010]
Available: http://doc.qt.nokia.com/4.6/index.html.

84

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

KDE Community. A Brief History of KDE Project [Inteet page]. [referred
23.3.2010]. Available: http://www.kde.org/commurfitistoryy/.

KDE Community. A New KDE Project Announcement [imtet page]. [referred
23.3.2010]. Available: http://www.kde.org/annoanments/announcement.php

Johan Telin. Foundations of Qt Development. Apr@gf7. 528 pages. ISBN
978-1-59059-831-3.

Nokia. Introduction to Qt object model [Internetged [referred 20.8.2010].
Available: http://doc.gt.nokia.com/4.6/object.html.

Nokia. Introduction to Qt Meta-object system [Imer page]. [referred
20.8.2010]. Available: http://doc.qt.nokia.com/4n@taobjects.html.

Nokia. Introduction to Qt signals and slots systgnternet page]. [referred
21.8.2010]. Available: http://doc.qgt.nokia.com/4ighalsandslots.html.

Nokia. Introduction to Qt events [Internet pageg¢f¢rred 21.8.2010]. Available:
http://doc.qt.nokia.com/4.6/eventsandfilters.html.

Douglas Schmidt, Michael Stal, Hans Rohnert andhlkEBuschmann. Pattern-
Oriented Software Architecture, Patterns for Corentrand Networked Objects.

Volume 2. John Wiley & Sons. 2000. 633 pages. ISBM71606952.

The Unicode consortium. Unicode 4 specificatioriginet document]. [referred
23.8.2010]. Available: http://www.unicode.org/venss/Unicode4.0.0/.

Nokia. Qt containers explained [Internet page]femed 23.8.2010]. Available:
http://doc.qt.nokia.com/4.6/containers.html.

85

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Freedesktop.org project. Introduction to D-BUS ¢hmet page]. [referred
26.8.2010]. Available: dbus.freedesktop.org.

Nokia. QTest library manual [Internet page]. [reéer 24.8.2010]. Available:
http://doc.qt.nokia.com/4.6/qtestlib-manual.html

Nokia. gmake manual [Internet page]. [referred ZR80]. Available:

http://doc.qt.nokia.com/4.6/gmake-manual.html

Nokia. Qt Mobility API documentation [Internet pdggreferred 9.9.2010].
Available: http://doc.qgt.nokia.com/gtmobility-1.0/.

Nokia. Qt Mobility API platform compatibility tabl¢internet page]. [referred
9.9.2010]. Available: http://doc.qt.nokia.com/qtnimy-1.0/#platform-
compatibility.

Matthias Ettrich. Designing Qt-Style C++ APIs [Imiet document]. Trolltech.
Qt Quarterly. 2005. [referred 3.9.2010]. Available:
http://doc.trolltech.com/qq/qql13-apis.html.

Qt Gitorious. Qt Coding Conventions [Internet pag&fpdated 25.2.2010.
[referred 3.9.2010]. Available: http://qt.gitorionsy/qt/pages/QtCodingStyle.

Jussi Laakkonen. PeerHood as UMSIC middleware neoddbster's Thesis.

Lappeenranta University of Technology. 2009.

Herb Sutter. Pimples--Beauty Marks You Can Depemd ©O++ Report, from
More C++ Gems. Cambridge University Press. 200BNI®78-0521786188.

PeerHood project. PeerHoodl implementation [versimtrol system].
[referred 30.8.2010, SVN revision 170]. Available:
https://www?2.it.lut.fi/svn/public/peerhood/trunk/@#lood_core.

86

46.

47.

48.

49.

50.

51.

52.

53.

54,

PeerHood2 implementation [version control systepgferred 30.8.2010, Git

tree shal 9723046]. Available: http://www.gitoricurg/peerhood/peerhood?2.

Campwood Software. SourceMonitor, a static codelyamay tool [Internet
page]. [referred 16.9.2010]. Available:

http://www.campwoodsw.com/sourcemonitor.html.

Steve McConnell. Code Complete. Second Edition.rddicft Press. 2004. 960
pages. ISBN: 0735619670.

Balister Philip, Dietrich Carl and Reed, Jeffrey Memory Usage of Software
Communication Architecture Waveform. SDR Forum Tmechl Conference.
2007.

The Valgrind Developers. Massif tool in the Valgtifinternet page]. [referred
18.9.2010]. Available: http://valgrind.org/docs/mialims-manual.html

John Nordby. MassifG — a Massif output visualizitgpl [Internet pagel].
Updated 8.2.2010. [referred 19.9.2010]. Available:
http://www.jonnor.com/2010/08/introducing-massifegt0

John Berthels. Exmap — a memory analyzing toolefimtt page]. [referred
19.9.2010]. Available: http://www.berthels.co.ukdfeaxp/.

The GCC team. gcov — a tool for instrument and mné@ag code coverage
[Internet pagel]. [referred 23.9.2010]. Available:
http://gcc.gnu.org/onlinedocs/gcc/Geov.html.

Linux test project. Icov — a tool for generate raald output of the gcov results

[Internet page]. Update 16.8.2010. [referred 2390. Available:
http://Itp.sourceforge.net/coverage/lcov.php.

87

55.

56.

S7.

58.

Dimitri van Heesch. Doxygen — a source code docuatem tool [Internet
page]. [referred 23.9.2010] Available: www.doxygeg/.

J. Postel. Internet Control Message Protocol (ICRRPL [Internet document].
Network Working Group. 1981. [referred 17.9.2010]Available:
http://www.ietf.org/rfc/rfc792.txt.

Bluetooth Special Interest Group. Bluetooth speatfon [Internet document].
[referred 18.9.2010]. Available:
www.bluetooth.com/English/Technology/Building/Pai§secifcation.aspx.

Nokia. Introduction to Qt Quick for C++ developejmternet document].

[referred 26.10.2010]. Available: http://qt.nokiana/files/pdf/qt-quick-for-c-
developers

88

APPENDIX 1. Existing PeerHood Interface

/**

* @memo Definition of the PeerHood interface.
* @doc Definition of the PeerHood interface. This
* API of the whole PeerHood library.

*

*/
cl ass MPeerHood
public:

/**

* @memo Default destructor.

* @doc Default destructor. Currently this does n
* base classes without a destructor are <i>ev
*

* @return none

*/

virtual ~MPeerHood() {};

/**

* @memo Method used to create a new instance of
* @doc Method used to create a new instance of t
* only way to create the instance is via this me

* called for the very first time a new instance

* Subsequent calls will return a pointer to the

*

* @param aCallback Pointer to the callback that
* from the PeerHood library.

*

* @return pointer to a PeerHood instance

*/

interface defines the public

othing but is here because
il</i>.

the PeerHood interface.

he PeerHood interface. The
thod. When this method is
of the interface is created.
existing instance.

will receive notifications

st ati ¢ MPeerHood* Get | nst ance(CBasicCallback* aCallback = NULL);

/**

* @memo Initializes the PeerHood instance.

* @doc Initializes the PeerHood instance. These
* to the PeerHood daemon and setting up the debu
* internal variables are initialized. This metho

* once.

*

* @param aArgc The number of parameters.

* @param aArgv Array containing the parameters.
*

* @return true if the object was initialized suc

*/

virtual bool Init(int aArgc, char** aArgv)=0;

/**

* @memo Gets a list of all nearby devices and th
* @doc Gets a list containing all nearby devices
* resources. Note that this function reserves th
*list and it's caller's responsibility to free

* returned list contains <i>all</i> devices in r

* without PeerHood capability. If no devices are
* list is empty.

*

* @return a list of found devices or NULL if an
*/
virtual TDeviceList* Get Devi ceListL()=0;

routines include connecting
g output. In addition, all
d should be called only

cesfully

eir services.

and their services and

e memory required by the
it. Also note that the

ange - inluding those
found then the returned

error occurred

(continue)

APPENDIX 1. (continued)

/**

* @memo Returns a list of devices that offer the
* @doc This function builds and returns a list t

* that offer the requested service. Note that th

* memory allocated for the returned list. If no

* returned list will be empty.

*

* @param aServiceName The service that should be
*

* @return a list of devices that offer the reque
* error occurred

*/

vi rtual TDeviceList*

/**

* @memo Returns all locally registered services.
* @doc Returns all locally registered services o
* allocated for the returned list is not freed a

* must take care of it. If no services are regis

* will be empty.

*

* @return a list of locally registered services
* error
*/

virtual TServiceList* Get Local Servi ceListL()=0;

/**

* @memo Creates a connection to a local service.
* @doc Creates a connetion to a local service.

* Destination address and technology prototype a
* connection object is returned then it's caller

* it in a controlled way.

*

* @param aService The service to connect to.
*

* @return a new connection object or NULL if an
*/
vi rt ual MAbstractConnection*

/**

* @memo Creates a connection to a service on ano
* @doc Creates a connetion to a service on anoth

* Destination address and technology prototype a

* connection object is returned then it's caller

* it in a controlled way.

*

* @param aDevice The remote device.

* @param aServiceName Remote service's name.
*

* @return a new connection object or NULL if an
*/
vi rtual MAbstractConnection*

asked service.

hat contains all devices

e caller must free the
devices are found then the

looked for.

sted service or NULL if an

Get Devi celLi st L(const std::string* aServiceName) = 0O;

n a list. The memory
utomatically so the caller
tered then the returned list

or NULL in the case of an

re taken from the parameters. If a
's responsibility to delete

error happened

Connect (TServicelterator& aService) = 0;

ther PeerHood capable device.
er PeerHood capable device.

re taken from the parameters. If a
's responsibility to delete

error happened

Connect (TDevicelterator& aDevice,

const std::string aServiceName) = 0;

(continue)

APPENDIX 1. (continued)

/**

* @memo Registers a service so that other PeerHo
* @doc Registers a service so that other PeerHoo
* it. This method contacts the PeerHood daemon t
* advert the service through its currently runni

*

* @param aName The name of the service.

* @param aAttributes Service's attributes in one

* @param aPort Service's port.

*

* @return port number if the service could be re

*/

od devices can find it.

d devices can find and use
hat in turns starts to

ng plugins.

string.

gistered, otherwise 0

virtual unsigned short RegisterService(const std:string& aName,

const std::string& aAttributes,
const std::string& aPort) = 0;

/**

* @memo Registers a service so that other PeerHo
* @doc Registers a service so that other PeerHoo
* it. This method contacts the PeerHood daemon t
* advert the service through its currently runni

*

* @param aName The name of the service.

* @param aAttributes Service's attributes in one

*

* @return port number if the service could be re
*/

od devices can find it.

d devices can find and use
hat in turns starts to

ng plugins.

string.

gistered, otherwise 0

virtual unsigned short RegisterService(const std::string& aName,

/**

* @memo Unregisters a previously registered ser
* @doc Unregisters a previously registered servi

* other devices are unable to find and call the

* that the unregistration procedure doesn't dele

* this should be done by the actual server appli

*

* @param aName The name of the service to be unr
*

* @return true if the service could be unregiste
*/

const std::string& aAttributes) = 0;

vice.

ce. After unregistration
unregistered service. Note
te the service object so
cation.

egistered.

red

virtual bool UnregisterService(const std::string& aName) = 0;

/**

* @memo Unregisters a previously registered ser
* @doc Unregisters a previously registered servi

* other devices are unable to find and call the

* that the unregistration procedure doesn't dele

* this should be done by the actual server appli

*

* @param aName The name of the service to be unr
*

* @return true if the service could be unregiste
*/

vice.

ce. After unregistration
unregistered service. Note
te the service object so
cation.

egistered.

red

virtual bool UnregisterService(const std::string& aName,
const std::string& aPort) = 0;

(continue)

APPENDIX 1. (continued)

/**

* @memo Sets a device under constant monitoring.
* @doc Sets a device under constant monitoring.

* back in range) takes place then the registered

* notified. An application must derive from the

* class and implement the defined methods in ord

* events.

*

* @param aDevice The device that should be monit
*

* @return true if the monitoring could be starte

*/

If a change (out of range,
callback interface is
<code>CBasicCallback</code>
er to receive callback

ored.

d

virtual bool MbnitorDevi ce(TDevicelterator& aDevice) = 0;

/**

* @memo Stops the monitoring of a device.

* @doc Stops the monitoring of a device. After t
* given device is no longer monitored.

*

* @param aDevice The target device.

*

* @return true if the monitoring could be cancel
*/

his function is called the

ed succesfully

virtual bool UnnonitorDevi ce(TDevicelterator& aDevice) = 0;

/**

* @memo Sets a device under constant monitoring

* @doc Sets a device under constant monitoring u

* |f a change (out of range,

* back in range) takes place then the registered

* notified (Not currently used). An application

* <code>CBasicCallback</code> class and implemen
* in order to receive callback events.

*

* @param aDevice The device that should be monit
*

* @return true if the monitoring could be starte
*/

using signal-level monitoring.
sing signal-level monitoring.

callback interface is
must derive from the
t the defined methods

ored.

d

virtual bool Signal MonitorDevice(TDevicelterator& aDevice) = 0;

/**

* @memo Stops the signal-level monitoring of a d
* @doc Stops the signal-level monitoring of a de
* the given device is no longer monitored.

*

* @param aDevice The target device.
*

* @return true if the monitoring could be cancel
*/
virtual bool Signal UnnonitorDevice()=0;

/**

I8

* @memo Sets the plugin prefered by the current
* @doc Sets the plugin prefered by the current a
* PeerHood will try to use the given plugin when

* will override the value read from the configur

* plugin can be changed during runtime. However,
* performed after the call i.e. the running serv

*

* @param aPluginName The name of the prefered pl
*

* @return none
*

evice.
vice. After this function is called

ed succesfully

application (Not used currently).
pplication. This means that
ever possible. This method
ation file. The prefered

it affects only the actions

ices are not affected.

ugin.

virtual void SetPreferedPl ugi n(const char*aPluginName) = 0;

APPENDIX 2. Feature Comparison between PeerHoodl an
PeerHood2

Requirement PeerHood 1 PeerHood 2
Device discovery Implemented Implemented
Service discovery Implemented Implemented
Service sharing Implemented Implemented
Connection

Implemented Implemented

establishment

Implemented; signal level and
Active monitoring of a| Implemented; signal level | ping based monitoring. Ping
device and ping based monitoring based implementation is only

available on Linux environment

Data transmission
_ Implemented Implemented
between devices

Not implemented,

Seamless connectivity Implemented implementation was left out of
scope
Network management Implemented Implemented

Not implemented; event systen

Component implemented for network
Implemented . -
management plugins. The Qt and Qt Mobility,
provides needed events
Communication Implemented; based on | Implemented; single thread
concurrency base multithreading based on Qt event loop system
_ Implementedbased on Implemented; based on use of
Event interface _ _
callback interface Qt signals
Implemented; WLAN,
Plugin architecture forf GPRS, Bluetooth and Implemented; WLAN and
networks localhost plugins are localhost plugins are available.
available

User control Not implemented Not implemented

APPENDIX 3. New PeerHood API

*%

** Copyright (C) 2010 Kimmo Kolehmainen,

*x kimmo@omamaailma.net,

b www.omamaailma.net

*%

** Copyright (C) 2010 Lappeenranta University of T
ki Information Technology,

*x Communications software labo

*%

**All rights reserved.

*%

** PeerHood is free software: you can redistribute
** jt under the terms of the GNU Lesser General Pu
** yersion 2 as published by the Free Software Fou

** PeerHood is distributed in the hope that it wil

** put WITHOUT ANY WARRANTY; without even the impl
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR

** GNU Lesser General Public License for more deta

** You should have received a copy of the GNU Less
** License along with PeerHood. If not, see <http:

*k

#i f ndef PEERHOOD_H
#def i ne PEERHOOD_H

/I INCLUDES
#i ncl ude <QtCore/QObject>
#i ncl ude <QtCore/QStringList>

#i f defined(PHLIBRARY_LIBRARY)

define PHLIBRARYSHARED_EXPORT Q_DECL_EXPORT

#el se

defi ne PHLIBRARYSHARED_EXPORT Q_DECL_IMPORT

#endi f

/I NAMESPACES
nanmespace PH {

/I FORWARD DECLARATIONS
cl ass Device;

cl ass Service;

cl ass AbstractConnection;

cl ass PeerHoodPrivate;

/**

* @enum EDeviceStatus
* Enumeration for device status provided by monit
* @value Devicelost, event for monitored device f
* @value DeviceFound, event for monitored device
* @value WeakLink, event for weak link, weak link
* strength goes below of 25% of maximum si
* @value VeryWeakLink, evetn for very weak link,
* when signal strength goes below of 10% o
*/
enumEDeviceStatus
{
DevicelLost = 0x00,
DeviceFound,
WeakLink,
VeryWeakLink

echnology,

ratory

it and/or modify
blic License
ndation.

| be useful,

ied warranty of
POSE. See the
ils.

er General Public
Ilwww.gnu.org/licenses/>.

/

or functionalities

ound

lost

is notified when signal
gnal strength

very weak link is notified

f maximum signal strength

(continue)

APPENDIX 3. (continued)

/**
* @class PeerHood
* @brief PeerHood class provide user access to Pe
* class user can get services and devices
* and initiate connection to services. Use
* be monitored and get notifications when
* back in range. With PeerHood user can re
* published on other devices and local Pee
* @sa Device Service AbstractConnection
*/
cl ass PHLIBRARYSHARED_EXPORT PeerHood :

Q_OBJECT
publi c:

/**
* instance
* Singleton implementation, this is only way
* instance
* @return PeerHood*, singleton peerhood insta
* is not moved.
*
st at i ¢ PeerHood* instance();

/**
* ~PeerHood
* default virtual c++ destructor
*/
virtual ~PeerHood();
/**
* init
* init MUST call before peerhood can be used.
* @return bool, status of initialization. Tru

* use and if false is returned peerho
* probably in case of false is return
* not running.
*
virtual bool init();
/**
* devicelList
* @return const QList<Device*>, list of curre
* is constantly changing information
* list might be totally different. Li
* situation. Ownerships of device ins
* and caller is responsible to free i
*

needed.
*/
virtual const QList<Device*> deviceList();

/**
* deviceList
* Returns filtered device list.
* @param const QString&, service which wanted
* devices
* @return QList<Device*>, returns filtered de

* devices will have given service. Ow
* are moved to caller and calleris r

* when they are not needed.

*

virtual const QList<Device*> deviceList(

erHood middleware. With this
from network neighbourhood
r can also set devices to
device is out of range and
gister new services to be
rHood applications.

publ i ¢ QObject

to access to peerhood

nce, ownerhip of instance

e if peerhood is ready to
od cannot use. The most
ed the peerhood daemon is

ntly available devices. This
and next call content of the
st is a snapshot of current
tances are moved to caller
nstances when they are not

to be in the returned

vice list. All returned
nerships of device instances
esponsible to free instances

const QString& service);

(continue)

APPENDIX 3. (continued)

/**
* localServiceList
* @return const QList<Service*>, list of curr
* registered on local device. This is

* information and next call content o
* different. List is a snapshot of cu

* of device instances are moved to ca
* responsible to free instances when
*/

virtual const QList<Service*> localServiceList();

/**

* registerService
* Method provide ability to register services
* devices and local PeerHood applications.
* @param const QString&, name of service
* @param const QStringList&, attributes for s
* @param unsigned int, preferred port to be u
* @return int, used service port
*

virtual int registerService(

const QString& name,

ently available services
constantly changing

f the list might be totally
rrent situation. Ownerships
ller and caller is

they are not needed.

to be published to other

ervice
sed

const QStringList& attributes = QStringList(),
unsi gned i nt port=0);

/**

* unregisterService
* @param const QString&, name of service to b
* service must be registered in the sa
* @param unsigned int, port number of service
* optional. Status of remove operation
* removed.
* @return bool
*/

virtual bool unregisterService(

/**
* connectToService
* nitiate connection to service in given dev
* @param Device*, device where wanted to be ¢
* @param const QString&, name of service wher
* @return AbstractConnection*, connected conn

const QString& name,

e removed. The removed
me process

to be removed. This value is
, true if service is

unsi gned i nt port =0);

ice.

onnected

e wanted to connected.
ection instance or null if

* cannot connect or service is not av ailable. Ownership of
* instance is moved to method caller.
*/
vi rtual AbstractConnection* connectToService(Device* devic e,
const QString& servicename);
/**

* connectToService
* Connect to service located on local device.
* @param Service*, service which wanted to be

* instance is not moved.

* @return AbstractConnection*, connected conn
* cannot connect. Ownership of instan

*/

vi rtual AbstractConnection* connectToService(Service* serv

/**
* hasPendingConnection
* Method for check is pending connections in
* @param int, (service)port number
* @return bool, true if pending connection(s)
*
virtual bool hasPendingConnections(

connected. Ownership of

ection instance or null if
ce is moved to method caller

ice);

given port.

available.

i nt servicePort);

(continue)

APPENDIX 3. (continued)

/**
* nextPendingConnection
* Method for accepting pending connection for
* @param int, (service)port number.
* @return AbstractConnection*, Accepted conne

* If there is no connections pendign
* null is returned. Ownership of inst
* caller.

*

vi rtual AbstractConnection* nextPendingConnection(

/**
* monitorDevice
* Start monitor actively given device.
* @param Device*, device which wanted to bein
* not moved.
* @return bool, true if monitoring was starte
*/
virtual bool monitorDevice(Device* device);

/**
* unMonitorDevice
* Stop device monitoring.
* @param Device*, Device which are monitored
* monitoring. Ownership is not moved.
*
virtual voi d unMonitorDevice(Device* device);

/**
* signalMonitorDevice
* Start signal monitoring given device. Conne
* monitored depends a lot of connection type.
* between device to device or connection betw
* @param Device*, device which connection is
* Ownership of instance is not moved.
* @return bool, true if monitoring was starte
*
virtual bool signalMonitorDevice(Device* device);

Vi

* signalUnMonitorDevice
* Stop signal monitoring of given device.
* @param Device*, Device which are monitored

* monitoring. Ownership is not moved
*
virtual voi d signalunMonitorDevice(Device* device);
signals:
/**

* newConnection
* This signal is emitted when new connection
* accept connections before this signal is no
* @param int, service port number, where conn
* @param int, id for connection.
*/
voi d newConnection(i nt servicePort,

/**
* deviceStatusChanged
* This signal is emitted when monitored devic
* @param PH::EDeviceStatus, notified event.

* @param QString, address of devices which st
*

voi d deviceStatusChanged(PH::EDeviceStatus status, QStr

service.
ction if any available.

for that service port
ance is moved to method

i nt servicePort);

g monitored. Ownership is

d succesful.

and wanted to stop

ction strenght which are
It can be signal strength
een device to access point.
wanted to be monitored.

d succesful.

and wanted to stop

is arrived. PeerHood cannot
t connect to any slot.
ection is tried to establish

i nt connectionld);

e connection changed.
atus was changed.

ing address);

(continue)

APPENDIX 3. (continued)

pr ot ect ed:

ok
/: Singleton implementation. Prevent other ins
/expl i ci t PeerHood(QObject *parent = 0);
Jxx
:/This is for monitoring is newConnection sig

voi d connectNotify(const char * signal);
ok
/:/This is for monitoring is newConnection sig

voi d disconnectNotify(const char * signal);

prot ect ed: // data
/I private implementation to protect binary com
PeerHoodPrivate* d;

private:

/I Disable copy of PeerHood instance.
Q_DISABLE_COPY(PeerHood);

h
} /Inamespace PH

#endi f // PEERHOOD

tance creations.

nal connected-

nal disconnected.

patibility

