

Lappeenranta University of Technology

Faculty of Technology Management

Degree Program in Information Technology

Master’s Thesis

Kimmo Kolehmainen

A COMMUNICATION MIDDLEWARE QUALITY ENHANCEMENT

WITH QT FRAMEWORK

Examiners: Professor Jari Porras
 M.Sc. Jussi Laakkonen

Supervisor: Assistant Petri Heinilä

ii

 ABSTRACT

Lappeenranta University of Technology

Faculty of Technology Management

Degree Program in Information Technology

Kimmo Kolehmainen

A Communication Middleware Quality Enhancement with Qt Framework

Master’s Thesis

2010

104 pages, 28 figures, 1 table, 3 appendices

Examiners: Professor Jari Porras

 M.Sc. Jussi Laakkonen

Keywords: PeerHood, Qt, Qt Mobility, middleware, quality, peer-to-peer, wireless

In this thesis, a Peer-to-Peer communication middleware for mobile environment is

developed using the Qt framework and the Qt Mobility extension. The Peer-to-Peer

middleware – called as PeerHood – is for service sharing in network neighborhood. In

addition, the PeerHood enables service connectivity and device monitoring

functionalities.

The concept of the PeerHood is already available in native C++ implementation on

Linux platform using services from the platform. In this work, the PeerHood concept is

remade to be based on use of the Qt framework. The objective of the new solution is to

increase PeerHood quality with using functionalities from the Qt framework and the Qt

iii

Mobility extension. Furthermore, by using the Qt framework, the PeerHood middleware

can be implemented to be portable cross-platform middleware.

The quality of the new PeerHood implementation is evaluated with defined quality

factors and compared with the existing PeerHood. Reliability, CPU usage, memory

usage and static code analysis metrics are used in evaluation. The new PeerHood is

shown to be more reliable and flexible that the existing one.

iv

TIIVISTELMÄ

Lappeenrannan teknillinen yliopisto

Teknistaloudellinen tiedekunta

Tietotekniikan koulutusohjelma

Kimmo Kolehmainen

Tietoliikennevälikerroksen laadun parantaminen Qt sovelluskehyksen avulla

Diplomityö

2010

104 sivua, 28 kuvaa, 1 taulukko, 3 liitettä

Työn tarkastajat: Professori Jari Porras

 DI Jussi Laakkonen

Hakusanat: PeerHood, Qt, Qt Mobility, väliohjelmisto, laatu, peer-to-peer, langaton

Keywords: PeerHood, Qt, Qt Mobility, middleware, quality, peer-to-peer, wireless

Tässä työssä toteutetaan Peer-to-Peer tietoliikenneväliohjelmisto mobiiliympäristöön

hyödyntäen Qt sovelluskehystä sekä Qt Mobility laajennusta. Peer-to-Peer

väliohjelmisto – nimeltään PeerHood – on tarkoitettu palveluiden jakamiseen. Lisäksi

PeerHood mahdollistaa palveluiden yhteyden muodostuksen, sekä toisten laitteiden

monitoroinnin.

PeerHood konseptista on olemassa C++ toteutus Linux alustalle hyödyntäen sen

tarjoamia palveluita. Tässä työssä PeerHood konsepti on uudelleen toteutettu

pohjautumaan Qt sovelluskehyksen käyttöön. Toteutettavan ratkaisun on tarkoitus

parantaa PeerHood väliohjelmiston laatua hyödyntäen Qt sovelluskehyksen ja Qt

v

Mobility:n tarjoamia palveluita. Kaiken lisäksi, hyödyntäen Qt sovelluskehystä,

PeerHood väliohjelmisto voidaan toteuttaa helposti siirrettäväksi toisille laitteille sekä

alustoille.

Uuden PeerHood:n toteutuksen laatua on arvioitu määriteltyjen laatutekijöiden avulla.

Uutta sekä vanhaa PeerHood toteutusta on myös verrattu keskenään. Luotettavuutta,

prosessorin käyttöä, muistin käyttöä sekä koodin laadun mittareita on käytetty

arvioinnissa. Työssä toteutettu PeerHood vaikuttaisi olevan luotettavampi, sekä

joustavampi kuin aikaisempi toteutus.

vi

PREFACE

This project is done as a part of the PeerHood project in communication software

laboratory of Lappeenranta University of Technology. I would like to thank for this

great opportunity to be involved of this project and provided guidance for my thesis

work. A special thanks to Petri Heinilä of good support and valuable information and

opinions.

Without a good background support, accomplishing this work could have been much

harder. Hence, I want to give my acknowledgements to my employer Digia Plc for

support of studying and graduating. Especially, I want to thank my family; thank you

my lovely spouse Eija and also mother and father. In addition, my friends have been

supporting me a lot during this project.

Lappeenranta, November 2, 2010

Kimmo Kolehmainen

1

TABLE OF CONTENTS

1 INTRODUCTION ..6

1.1 OBJECTIVES.. 8

1.2 SCOPE AND DELIMITATIONS .. 8

2 SOFTWARE QUALITY...10

2.1 QUALITY FACTORS IN SOFTWARE... 11

2.1.1 Product Operation ...11

2.1.2 Product Revision ..12

2.1.3 Product Transition ...13

2.2 SOFTWARE QUALITY METRICS... 13

2.2.1 Static Code Analysis...14

2.2.2 Efficiency..15

2.2.3 Correctness and Testability ...15

3 PEERHOOD COMMUNICATION MIDDLEWARE ...16

3.1 KEY REQUIREMENTS... 17

3.2 HIGH-LEVEL ARCHITECTURE.. 19

3.2.1 PeerHood Daemon...20

3.2.2 PeerHood Library ..21

3.2.3 PeerHood Plugins ..21

3.2.4 PeerHood Applications ..21

4 QT FRAMEWORK..23

4.1 QT OBJECT MODEL ... 24

4.2 SIGNALS AND SLOTS ... 27

4.3 EVENT LOOP AND EVENTS.. 29

4.4 QT CORE MODULE .. 31

4.4.1 Data Types, Containers and Smart Pointers ...31

4.4.2 I/O Devices, Data Array and Streams..33

4.4.3 Concurrent Programming..35

4.4.4 Timing ..37

2

4.4.5 Plugins ...38

4.4.6 Settings ...38

4.5 QT NETWORK MODULE... 39

4.6 D-BUS MODULE.. 40

4.7 QT TEST MODULE... 40

4.8 DEVELOPMENT FRAMEWORK IMPACT... 41

4.8.1 qmake ...41

4.8.2 Meta-Object Compiler ...42

4.8.3 Compiling...42

4.9 QT MOBILITY EXTENSION... 42

4.9.1 Bearer Management...43

4.9.2 Service Framework ..44

4.9.3 System Information ..44

5 PEERHOOD IMPLEMENTATION WITH QT FRAMEWORK.........................46

5.1 FEATURES IMPLEMENTED ... 46

5.2 ARCHITECTURE... 48

5.2.1 PeerHood Common..49

5.2.2 PeerHood Daemon...54

5.2.3 PeerHood Library ..56

5.2.4 PeerHood Network Plugins ...59

5.2.5 PeerHood Applications ..60

5.3 IMPROVEMENT IDEAS.. 60

6 EVALUATION ..62

6.1 TEST ENVIRONMENT ... 62

6.1.1 PeerHood Configuration..62

6.1.2 Active – Passive Client Test Set ...63

6.2 MAINTAINABILITY .. 64

6.3 RELIABILITY ... 67

6.4 EFFICIENCY... 68

6.4.1 Memory Usages..68

6.4.2 CPU Usages...73

3

6.5 CORRECTNESS... 74

6.6 TESTABILITY ... 75

6.7 FLEXIBILITY .. 75

6.8 USABILITY .. 76

6.9 INTEGRITY... 76

6.10 PORTABILITY .. 77

6.11 REUSABILITY .. 78

6.12 INTEROPERABILITY ... 78

7 DISCUSSIONS AND CONCLUSIONS...79

7.1 QT FRAMEWORK IN M IDDLEWARE USE .. 79

7.2 FUTURE WORK..81

REFERENCES ..82

Appendix 1. Existing PeerHood API

Appendix 2. Feature Comparison between PeerHood1 and PeerHood2

Appendix 3. New PeerHood API

4

ABBREVIATIONS

2D 2-Dimensional

3G Third Generation

API Application Programming Interface

CLR Common Language Runtime

CPU Central Processing Unit

FTP File Transfer Protocol

FURPS Functionality, Usability, Reliability, Performance, and Supportability

GCC GNU Compiler Collection

GPL General Public License

GPRS General Packet Radio Service

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IDE Integrated Development Environment

IMEI International Mobility Equipment Identity

IMSI International Mobile Subscriber Identity

IP Internet Protocol

I/O Input/Output

ISO International Organization for Standardization

KDE K Desktop Environment

LGPL Lesser General Public License

LOC Lines of Code

LSB Least Significant Byte

MMS Multimedia Messaging Service

moc Meta-Object Compiler

MSB Most Significant Byte

OS Operating System

P2P Peer-to-Peer

PH PeerHood

PH1 PeerHood1, existing PeerHood implementation

5

PH2 PeerHood2, Qt based PeerHood implementation

QML Qt Meta-object Language

RAM Random Access Memory

RFC Request For Comments

SDP Service Discovery Protocol

SMS Short Message Service

SSL Secure Sockets Layer

STL Standard Template Library

SVN Subversion

TCP Transmission Control Protocol

UDP User Datagram Protocol

UI User Interface

WLAN Wireless Local Area Network

XML eXtensible Markup Language

6

1 INTRODUCTION

Developing a communication middleware can be very challenging. In many cases, there

are needs for use a platform specific components and Application Programming

Interfaces (API), like sockets, threads and processes. For decreasing platform

dependencies in a software product, abstractions have to use much, which usually drives

to more complex system design.

On desktop environment, there are several frameworks for helping to create applications

without need of low-level platform APIs. The most well known frameworks are Java

framework [1] and .NET framework [2]. By nature, these frameworks are virtual

runtime environments, where applications are executed using byte code. On virtual

runtime environments, applications are not compiled to a native code execution

environment. Running application on runtime environment is not as efficient as

execution of native application, because of byte code is compiled to the native CPU

instructions at application runtime [2].

One interesting and potential cross-platform framework is a Qt (“cute”) framework [3].

At an early stage, the Qt was only cross-platform User Interface (UI) framework.

However, it has been evolved over time to be much more than just a mere User interface

framework. Current 4.6 Qt (14.6.2010) version offers components and tools for several

different application layers, like platform independent concurrent network programming

as well as Graphical User Interface (GUI) and much more.

Basic idea of the Qt framework is “Write once, compile everywhere”, which is very

different approach than in Java runtime environment or Common Language Runtime

(CLR), where application is executed on virtual machine. The Qt framework is written

with C++ and it provides a set of interfaces and libraries for use of application

developers. When using the Qt framework, application developers are not limited to use

only Qt libraries. In addition, the Qt framework enables mixed use with platform

specific libraries.

7

The 4.6 version of the Qt framework support numerous platforms where Qt applications

can be targeted and compiled. For example, a same Qt application can be compiled into

the Mac OS X, Linux, Solaris and Windows platforms. Excluding used platform

specific implementations, if those are needed.

The Qt framework is not only available for the desktop environments. In fact, after

Nokia bought Trolltech – the creator and owner of the Qt framework – it has use a lot of

effort to bring the Qt framework available on mobile platforms as well. Nowadays, the

Qt framework is also available on Windows CE, Symbian and Maemo mobile platforms

[4]. In addition, there are several projects ongoing to extend the Qt framework with

mobile device specific features. One of these projects is a Qt Mobility extension. The Qt

Mobility extension provide interfaces to manage location information, contacts,

connectivity and many others functionalities related domain of mobile devices [5].

One of the biggest problems of using the Qt framework has been very restricted license

policy. After acquisition of Trolltech by Nokia, the license policy has changed to dual

licensing. Currently, the Qt framework is available in GPL/LGPL [6, 7, 8] licensees and

commercial license for proprietary use as well. This means that the Qt framework and

sources of it are available for everyone’s use under the common open source licenses.

Anyhow, the closed licensing option provides ability to use and modify the Qt

framework without publishing changes of it [6].

In this thesis, the Qt framework is used as a base technology in communication

middleware programming. Rationale of this study is to enhance of existing Peer-to-Peer

neighborhood communication middleware concept, which is called PeerHood [9].

PeerHood is a communication middleware, which is for sensing devices and services

from wireless network neighborhood in proactive manner. The PeerHood provides

transparent connectivity to service located in local or remote device.

In this thesis the term PeerHood is used to refer Peer-to-Peer neighborhood concept;

PeerHood1 is used for the existing PeerHood implementation and PeerHood2 refers to a

new PeerHood implementation based on the Qt framework. The new PeerHood

8

implementation – PeerHood2 – is based on the PeerHood1 and it is implemented during

this thesis work.

1.1 Objectives

This work is part of a PeerHood project, which is research project of mobile Peer-to-

Peer communication middleware [9]. Motivation of this work is to improve quality of

an already implemented PeerHood middleware by utilizing the Qt framework. Quality

enhancement is supposed to be done with reusing components and functionalities from

the Qt framework and the Qt Mobility extension APIs. If needed, architecture of the

PeerHood is modified and remade to be well structured with the Qt framework.

The main objectives to use sophisticated and mature framework is to get more defect

free product with better extensibility and portability to other platforms. Current

implementation of the PeerHood – PeerHood1 – is implemented with plain C++

targeted to Linux based platforms. The Qt framework and especially the Qt Mobility

extension can enable a new use cases for the PeerHood. In addition, the Qt can enable

language bindings for PeerHood API. Language bindings provide ability to use the

PeerHood with other programming languages as well.

1.2 Scope and Delimitations

Even though the current PeerHood is implemented mainly on the Linux environment,

this work does not focus on any specific platform. Idea is to use the Qt framework as

enabler to create the PeerHood to be mainly implemented in a cross-platform manner.

For prototyping and testing purpose, the desktop Linux environment is used.

Scope of this thesis is to do experimental research by implementing existing PeerHood1

implementation with utilizing the Qt framework and the Qt Mobility APIs. First

objective is to evaluate how suitable the Qt framework is for communication

middleware use. Second objective is to analyze implemented middleware – what kind

advantages and disadvantages use of the Qt framework causes. The initial assumption is

that the most of PeerHood functionalities can be implemented with the Qt framework to

9

be portable across different platforms without large modifications to it. In addition, the

Qt framework is used to increase PeerHood quality and maturate by using Qt

functionalities instead of implementing those by self.

10

2 SOFTWARE QUALITY

Quality is in the major role when talking about accomplishing software product

improvements. Software quality must be defined and measured to follow up how good

software is and prevent software quality regressions during software development

process [10].

Software quality has been discussed a lot and it is a subject, which leads easily an

almost endless debate of what that actually is. Even term quality is ambiguously defined

in literature. A naive quality definition can be thought as a defect free product, thus if

software product has plenty of functional defects, it does not fulfill it requirements

anymore [10]. In the real world, software quality is a far away of defect free software.

Actually, it is very likely that most of software have some known or unknown defects.

Software quality is set of factors that alter in different applications in manner how these

factors are prioritized. Quality factors can depend from software customer as well –

things what they see important for the software product [10].

Developing a high quality software product is not always straightforward. Moreover,

middleware modules, which many third party applications rely on, have to work how

they are specified. In addition, developing middleware for mobile devices and

embedded devices are even harder than on desktop environment. Usually, available

resources are limited on mobile environment and application resource usage must pay

attention. In addition, in mobile devices, available networks can vary a lot and device

can easily run out of battery in intensive use.

There are many different things, which affect quality of a software product. Before

software can be evaluated, the software quality must be defined. In this thesis is utilized

a definition for software quality with different quality characteristics for giving a help to

evaluate and measure software quality more accurately.

11

2.1 Quality Factors In Software

Concept of a software quality factors is not a new thing; in fact Boehm, Brown and

Libow introduced quantitative evaluation of software quality in the 1976 [11] and after

that McCall, Richards and Walters defined McCall’s quality factors in the 1977 [12]

and still these factors are valid and used to describe quality of a software product.

McCall’s quality factors are not only quality model that is presented. There are

numerous different quality models like FURPS (Functionality, Usability, Reliability,

Performance, and Supportability) developed by Hewlett-Packard. ISO standardization

organization has also introduced ISO 9126 software quality factors [12].

It is very hard to select best quality model for use, in that many of these models are very

similar and uses same characteristics. For this study McCall’s quality factors seems to

be feasible set of characteristics for examined quality and quality improvements in

domain of this work.

McCall et al. identified three main aspects of a software product:

1. Product Operation

2. Product Revision

3. Product Transition

These aspects describe software behavior, flexibility for changes and adaptability to

other platforms. Each product aspects are divided into several quality factories [12],

which are show in Figure 1.

2.1.1 Product Operation

Product operation characteristics are related to software behavior – how well software

behaves and follows the product specification without any abnormal operations [12].

These characteristics are the most important for the end-user point of view and these has

biggest affects how the end-user experience used software.

• Correctness factor is about how well software operates as it is specified to do

and how well software fulfills the requirements.

12

• Reliability factor is about maturity of software. How accurately software can be

expected to operate specified tasks. In addition, reliability factor is about how

long software can operate without any abnormal behavior.

• Usability factor is about learning curve of the software and effort required to

operate it. In the middleware domain, this can also be how usable given APIs are

and how well APIs are documented [13].

• Integrity factor is about secure control of software and used data. How well

unauthorized data usage is protected.

• Efficiency factor is about software performance, amount of utilized resources

and amount of code required to operate specified functions.

Figure 1. McCall's software quality factors, reproduced from [12]

2.1.2 Product Revision

Product revision characteristics define software flexibility of changes in software

product. These characteristics are related to software architecture and they are very

important to software internal quality and how easy changes can be done to the system

[12]. The use of design patterns [14] in software design can have a big impact of these

characteristics and make a system more adaptable and changeable.

• Maintainability stands roughly for effort required to identify and fix an error in

the software. In addition, maintainability may include improvements and

adaptation of the software systems to changes in the environment and in

Maintainability
Flexibility
Testability

Portability
Reusability
Interoperability

Correctness
Reliability

Usability
Integrity

Efficiency

PRODUCT TRANSITION PRODUCT REVISION

PRODUCT OPERATION

13

requirements and functional specifications. A good documentation of the

software and its structure can increase software system maintainability a lot

[15].

• Flexibility is about how easy is make changes to software and how much it

causes other changes in the software and its entire structure.

• Testability is about how well software can be tested and how much it requires

effort for doing that.

2.1.3 Product Transition

Product transition aspect defines software adaptability to other environments. It is

rather, that same software shall be used in different operating systems and different

hardware’s.

• Portability is characteristic which describe dependencies to underlying

hardware and platform. Without a good abstraction, dependencies to underlying

system can cause many changes to software when porting software to other

systems. Even though the dependencies are abstracted well a platform specific

parts need to be implemented in different platforms.

• Reusability is about component sharing between other applications related to

software packaging and its functionalities. In addition, reusability can utilize

internally with shared components

• Interoperability is about effort needed to couple system to another. In generally

interoperability means ability of two or more systems or components to

exchange and use information together.

2.2 Software Quality Metrics

Software metrics can be divided into three categories: product metrics, process

metrics and project metrics [10]. This study concentrates only product metrics, which

includes product characteristics like size of the software, performance and metrics for

defined software quality factors.

14

In generally quality factors affected to software quality can be divided into two groups –

directly measurable factors and only indirect measurable factors [12]. McCall’s et al.

defined metrics for the proposed quality factors. Many of these defined metrics are only

subjectively measurable and cannot measure directly from the software [12].

For PeerHood quality evaluation, the McCall’s quality factors are examined. Many of

metrics for the McCall’s quality factors proposed by McCall’s et al. are very subjective

and cannot measure directly [12]. In addition, many of these proposed metrics requires

a long time analysis, which is not feasible in scope of this study.

Decision of rewrite the whole PeerHood with the Qt framework provides excellent

opportunity to evaluate a new PeerHood implementation by comparing it with the old

PeerHood implementation. With this approach, an influence of the Qt framework can be

shown. For this reason, quality metrics are chosen so that they can be measured and

compared together. Quality factors, which are more subjectively and cannot measure

directly are discussed and analyzed as well. The following metrics are measured in both

PeerHood implementations and results are compared together.

2.2.1 Static Code Analysis

With static code analysis, a several metrics for software quality evaluation can be

measured [16]. The static code analysis can be used to measure software metrics like

code complexity, size of code, comments on code and depth of code. In this case static

code analysis refers quantitative measurement of implemented software, not code

analyzers, which search common mistakes, like assign value instead of comparing

values or use of uninitialized variables.

One of the most important static code analysis metrics is a code complexity. The code

complexity has a big influence of code quality factors such as maintainability [15] and

reliability [17]. In addition, code complexity has influence of code usability, in that

complex code takes always more time to understand. Furthermore, the code size and

amount of comments affect usability and maintainability of the software.

15

2.2.2 Efficiency

Software efficiency is related to software performance and system resource usage. Used

resources can be CPU usage, Memory consumption and system resources, like network

and file system usages. The CPU usage and memory consumption is used to as a

metrics of execution efficiency of software [12]. In addition, memory consumption can

be divided to heap, stack and virtual memory usages. The CPU and memory usages are

important characteristic especially in embedded mobile devices, where available

resources are very limited.

2.2.3 Correctness and Testability

Software correctness is quite subjective quality factor. It means that software behaves as

expected without any abnormal behavior [12]. A real measuring of correctness would

require continuous bug tracking and detailed requirements. In scope of this study, the

software correctness is handled and measured of set of API tests, which are

implemented during developing a new PeerHood implementation. With API tests and

test coverage, testability can be increased [18] and software correctness can be proved

partially. Test coverage is measured for tests, to get metrics for the testability [18].

16

3 PEERHOOD COMMUNICATION MIDDLEWARE

PeerHood is a communication middleware [19] for a peer-to-peer (P2P) [20]

communication with a device neighborhood. The PeerHood concept is for mobile

devices to monitor constantly services from other devices in the network neighborhood

and provide transparent usage of services without any knowledge of the underlying

network technology. It supports functionalities like:

• Detect other devices using different network technologies

• Discover services from other devices

• Advertise own services to other devices

• Monitor status of devices in network neighborhood

The PeerHood searches devices on network neighborhood in proactive manner by using

available wireless network technologies. Ability to roam between different network

technologies is provided by the PeerHood middleware as well. [9]

The PeerHood middleware is currently mostly targeted on a Maemo platform, which is

based on the Linux operating system kernel and target to mobile devices such as Nokia

Internet tablets and Nokia N900 mobile phones [21]. The PeerHood is also implemented

on Symbian platform, but because of old limitations to create background server, it is

not implemented as completely as on the Linux environment [22]. This thesis uses the

Linux implementation as a reference PeerHood implementation and the Symbian

implementation is not covered at all.

Uses of different network technologies are implemented with plugin implementation

[9]. The PeerHood supports Bluetooth, WLAN and GPRS network technologies.

Moreover, new plugins can be added if needed. In Figure 2 is shown basic concept of

the PeerHood.

17

Figure 2. The concept of the PeerHood, reproduced from [9]

3.1 Key Requirements

Device discovery – system must be able to discovery other PeerHood capable devices

within range and the same device neighborhood [22]. Device detection can be depend

used network technology.

Service discovery – system must be able to discovery services from the local device

and other PeerHood devices in the device neighborhood [22]. System must have

capability to read service attributes as well with service discovery.

Service sharing – PeerHood must provide mechanism to register services and use them

by applications or middleware components [22]. Services can locate on local or remote

device. The PeerHood system must advertise registered services to other devices in a

PeerHood neighborhood.

Connection establishment – PeerHood must provide ability of connect to one or more

other PeerHood device in a PeerHood neighborhood [22]. Connect establishment must

be transparent for used underlying network technology.

18

Active monitoring of a device – PeerHood must provide way to set a selected device in

the PeerHood neighborhood under active monitoring. In the active monitoring state, a

PeerHood client is notified when the device under monitoring is out of range or when it

comes back in the range [22]. Proper response time and range are network technology

dependent attributes.

Data transmission between devices – PeerHood must provide data transmission

between connected PeerHood devices [22]. PeerHood should not take care of data being

transferred. User of the PeerHood must take care of data endianess and word length of

data.

Seamless connectivity – PeerHood should provide way to change used active network

technology automatically if established connection weakens or breaks [22]. PeerHood

should provide always the best possible connections for the user. Established

connection should be possible to monitoring for detecting connection changes, which

might cause change of used network technology [22].

Network management – PeerHood should be able to manage a specific network and

events from the network [23]. In addition, PeerHood should check availability of

network and get notifications of changes of the network.

Component management – PeerHood should provide events to PeerHood client of

changes and suspensions of discovering functionalities [23]. The PeerHood operates on

mobile devices where memory and power consumptions have to take care. Due to that,

used device environment is dynamic. As, if network interface might go power saving

state or it can be closed for freeing memory to other applications.

Communication concurrency base – PeerHood must support concurrent execution, in

that multiple connections are used and they need to get execution time evenly [23]. The

only exception for use of multiple simultaneous connections is if used network

technology limits multiple connections on the hardware level.

19

Event interface – PeerHood must provide event interface for be able to notify dynamic

changes to PeerHood client and itself [23].

Plugin architecture for networks – PeerHood must provide interface for its

functionalities to plugins [23]. Network plugins implements abstractions of connectivity

and device monitoring functionalities [23]. In addition, plugins handles device detection

and service sharing.

User control – PeerHood could provide ability to control PeerHood functionalities [23]

• Is PeerHood active

• What services are provided

• What services are accepted

This is a new requirement and that is not yet implemented in the existing PeerHood

implementation.

3.2 High-Level Architecture

In this chapter, a high-level architecture of the existing PeerHood implementation is

explained. PeerHood implementation can be separated to three different components.

These components are PeerHood library, daemon and network plugins. Network plugins

actually contains several plugins for networking of different network technologies.

PeerHood components are shown in Figure 3. and each component is explained more

detailed in following chapters.

20

Figure 3. Main Components of the PeerHood, reproduced from [24] and current
implementation

3.2.1 PeerHood Daemon

Daemon is the most important component in the PeerHood. Device and service

discoveries and advertises local services to other devices in the PeerHood neighborhood

are very heavy and resource consuming operations. The PeerHood daemon is used to

decrease this heavy processing from an each application. In addition, when using

background running daemon process approach, the information of remote services and

available devices are already gathered when a PeerHood application is launched. That

will reduce time required to get the PeerHood application ready for operating.

The PeerHood daemon gathers other PeerHood devices and their services from the

network neighborhood. PeerHood capable devices and information are stored to

neighborhood device registry. Registered device contains information about its services.

The PeerHood daemon has another registry for local services, which daemon is

advertise to other PeerHood devices. The daemon publishes a local socket interface for

a PeerHood library.

With the socket interface, a library instance can request available devices and services

from the daemon. In addition, new services can be inserted into daemon by the

PeerHood library. The daemon publishes these registered services to other devices in

21

the PeerHood neighborhood. Services registered by the PeerHood library can be

unregistered as well. The daemon utilizes network plugins for devices and service

discovery from the PeerHood neighborhood.

3.2.2 PeerHood Library

The PeerHood library is a dynamic library component, which applications can include

for use. The PeerHood library provides a PeerHood interface for use of third party

applications and middleware components. Third party components can use the

PeerHood only with the PeerHood interface. The PeerHood interface is available at

Appendix 1.

The PeerHood library functionality is separated to be a client for the PeerHood daemon

and providing ability to establish and manage connections between PeerHood devices.

Like the PeerHood daemon, the PeerHood library uses network plugins. The PeerHood

library uses network plugins indirectly through of abstractions. Used functionalities are

a connection abstraction and device monitoring abstraction.

3.2.3 PeerHood Plugins

With PeerHood Plugins network specific implementations are done. With network

plugins, support for new network technologies can be added easily. For each used

network technology, the PeerHood has an own plugin. Usually one plugin create

implementations for MAbstractPinger, MAbstractMonitor, MAbstractConnection and

MAbstractPlugin interfaces.

3.2.4 PeerHood Applications

Applications can link against the PeerHood library and communicate with the PeerHood

system through the MPeerHood interface (Appendix 1.). Applications can use the

PeerHood system without any special knowledge of underlying network technology.

22

Common way to use the PeerHood from an application is to provide services to be

available for other PeerHood applications in the PeerHood neighborhood or use services

provided by other PeerHood applications. An application can use and provide services

as well at the same time. Multiple PeerHood applications can operate on same device,

hence used service does not always locate on a remote PeerHood device. In addition,

with the PeerHood, device can be selected to be continuously monitored. If monitored

device moves out of the range, the application is notified of it.

23

4 QT FRAMEWORK

The Qt framework is a cross-platform application development framework. Cross-

platform support for the Qt framework is done a way of “Write once, compile

everywhere” principle, which means that same source code, can be used on several

platforms. With this principle, application is executed on native environment without

any virtual execution environment. The current 4.6 Qt framework is available on

multiple desktop and mobile platforms. These are following platforms [4]:

• Embedded Linux

• Mac OS X

• Windows

• Linux/X11

• Windows CE/Mobile

• Symbian

• Maemo

The Qt framework provides unique APIs, which are used as platform abstractions. The

platform specific implementations are wrapped behind of these APIs [25]. Because of

used abstractions, usually application developer does not need to care of target platform.

Of course, there are some exceptions and some restrictions as well. For example, a

desktop application can be very hard to get working on mobile platform without any

changes of it. At least some changes to application UI might need to be done to keep

application user experience in good level.

Maybe the most well know use of the Qt framework is in a KDE Project, they have long

history with the Qt framework and Trolltech Company. The KDE project has used the

Qt framework since 1996 when KDE project was started [26, 27]. The KDE project and

Trolltech made an agreement, where Trolltech promised to keep the Qt framework as a

free for the KDE project [28]. That agreement was for the KDE project, so they were

able to rely on that the Qt framework will be free software in use of the KDE Project.

Later on, the Qt framework published under GPL license [6], which made that

agreement useless and available the Qt framework free to use for everyone.

24

The Qt framework is usually known as a cross-platform graphical user interface (GUI)

framework. That has been true a long time ago. Nowadays, the Qt framework is much

more than just a sophisticate graphical user interface framework. The Qt framework

provides platform independent interfaces for many other purposes than GUI

programming use as well [3]. The Qt framework is component based; these main

components are presented in Figure 4. Multithreading and 2D Graphics Canvas are not

separate components, instead they are wanted to emphasize in the figure and they

belongs groups of Core and GUI modules. In subchapters, Qt components related in

scope of the PeerHood middleware are presented and basic Qt principles and models are

described. Additionally, an interesting Qt extension [5] – the Qt Mobility – is

introduced and some APIs of the Qt Mobility extension are described more detailed.

Figure 4. Qt Component Overview [3]

Even though the Qt framework is written with C++ language, it does not limit all

applications to be written with C++ language. There are available numerous language

bindings for the Qt framework. Trolltech official support Java and JavaScript language

bindings and bindings for Python, PHP, Ruby and .NET are provided by third parties

[28]. With these various language binding options, the Qt framework is even more

portable and versatile.

4.1 Qt Object Model

The Qt framework includes a built in object model, which is heart of the Qt framework.

The most important class for this Qt object model is a QObject class. The QObject has

several roles of the Qt object model and the QObject is base class for almost all objects

inside of the Qt framework [29].

25

Inside of the Qt object model, QObjects are related together in a Parent-Child

relationship. Internally, QObjects organizes relationship within an object tree [29]. The

object tree is a key enabler of an intelligent object management inside of the Qt

framework. With the object tree, the Qt object model can provide type of semi-

automatic memory management by enabling automatic child object deletion when

deleting the parent object. The parent for the QObject has to define explicitly and

habitually parent is given as the parameter of an object constructor. QObjects can query

all child objects that belong to it and parent object for itself. Note that the parent-child

relationship is not a same as inheritance in object-oriented languages. It is just

connection between two QObjects.

The Qt object model provides more flexibility and better object runtime information of

objects than standard C++. With the Qt, properties of an object are query able on

application runtime [29]. Some compilers make available object properties functionality

as well. However, for getting object properties working a way of cross-platform it is

done by using a Qt’s Meta-Object System (moc) [30] in the Qt framework.

Advantage for use of meta-object system is to keep dependencies for any compiler

specific options as minimal as possible [30]. Moreover, this system enables dynamic

runtime property declaration to Qt objects. The Qt meta-object system is based on three

things [30]:

• The QObject, which provides base class for all classes that, can take advantage

of meta-object system.

• Q_OBJECT macro, which must be defined in private scope at the beginning of a

class definition. The Q_OBJECT macro is used to enable meta-object features,

such dynamic properties and signals and slots mechanism.

• The Meta-object compiler, which generates meta-object code for each class,

which declare the Q_OBJECT macro. More about compiling and the meta-

object compiler is discussed later on.

Although, the Q_OBJECT macro is used to enable dynamic properties and signals and

slots, the Qt documentation recommends use that macro for all QObject classes,

26

regardless of is features provided by the meta-object system used. E.g. the Qt provide

qobject_cast method for casting QObjects, however outcome of that method is

undefined if Q_OBJECT macro is not used in object to be casted.

Every QObject instance has a unique identity in the Qt object model. Use of unique

identity causes some limitation for classes inherited from the QObject. In that, copy

constructor and assignment operator has been disabled by implementing them in private

scope by default. Therefore, all objects inherited from the QObject have to move

between methods using pointers or object references.

The Qt framework has two event systems, which provides ability to deliver events

between objects. The Qt object model enables these event mechanisms. These event

models are a Qt event system, which allows sending and posting events to registered

event listeners and a Signals and Slots mechanism. Signals and Slots mechanisms are

used to communicating between QObjects. These both models are introduced more

detailed in following chapters.

The Listing 1 shows a basic example of the Qt style class definition, which is inherited

from the QObject and it utilize signals and slots mechanism. Important parts are

numerated inside of comments in the example code. All these numerated lines are

explained.

27

Listing 1. Example class inherited from the QObject
#ifndef MYEXAMPLE_H
#define MYEXAMPLE_H

#include <QtCore/QObject> // 1.
#include <QtCore/QDebug>

class MyExample : public QObject
{
 Q_OBJECT // 2.
public:
 MyExample(QObject* parent=0) // 3.
 : QObject(parent)
 {}

public slots: // 4.
 void receiveSignal()
 {
 qDebug("signal received");
 }

signals: // 5.
 void mySignal(); // 6.
};

#endif // MYEXAMPLE_H

1. Include of the QObject. Defined MyExample class is inherited from the

QObject, which is located inside of the QtCore module.

2. To enable use of signals and slots mechanism, the Q_OBJECT macro must be

defined in the private scope at the beginning of the class definition.

3. The QObject as the parameter of the MyExample class constructor is forwarded

to the QObject constructor. Delivering the parent object to the QObject

constructor enables instance of the MyExample class to be part of parent object

tree.

4. Public slots scope for defining slots in the MyExample class

5. Signals scope for defining signals, what MyExample class can emit

6. A definition of a MySignal. The signal does not contain any parameters.

4.2 Signals and Slots

One of the interesting tools in the Qt framework is Signals and Slots mechanism [31]. It

is powerful seamless connection system between QObjects and subclasses of the

QObject. With the signals and slots mechanism, events between objects can be sent

without any known of receiver object or objects. The Signals and Slots mechanism is

one kind replacement of callback mechanism by providing type safe notifications to

event receivers called as slots. By nature signal-slot connection is many to many

28

connections, thus multiple slots can be connected to same signal. Furthermore, multiple

signals can be connected to a same slot as well. Figure 5 shows how signals and slots

can be connected. In addition, signals can be connected to other signals. When

connecting signals to slots the function signatures must match together. However,

exception is a case where signals have more parameters than a slots, then slots is called

and extra parameters are ignored. The signal and slots are loosely coupled and thus,

connections to unavailable or misused signal and slots does not cause any compile time

errors. The Qt system prints out warning message at the runtime if connection is failed.

Figure 5. Signals and slots model [31]

Classes inherited from the QObject can define signals and slots. When defining slots or

signals in a class definition, the meta-object system must be enabled with the

Q_OBJECT macro at the beginning of the class definition [31].

For the Signals and Slots mechanism, the Qt has extended C++ keywords with extra

words. New keywords are signals, emit and slots. Keywords signals and slots are used

in a class definition like visibility scope operations. The slots keyword is used with

public, protected or private visibility scope operators. For the signals this visibility

scope operators are not used. Section 4 and 5 in the Listing 1 shows how slots and

29

signals keywords can be used. emit keyword is used in code when defined signal is

wanted to emit.

Signals are only abstract methods without any implementation. The Signal definition is

used as a template what kind function signature has to have for a receiver slot. All

signals, which class can emit should be defined in the scope of signals keyword.

Nevertheless, inherited signals can be used without redefine. In the Listing 1, the

section 6 is shown how to signals can be defined. In the example, mySignal signal is

defined without any parameters. Signals can never have a return value hence void return

type must be used.

Slots can be thought as normal methods, which can be connected with signals. Only

exception to normal methods is how they are introduced in a class definition. Slots must

be defined in scope of slots keyword with a visibility keyword. Defined slots can

connect to signals and when connected signal is emitted slot is executed. However, slots

can be called also like normal method depending scope of visibility. Slots can be

invoked from any component regardless of scope of visibility via signal-slot connection.

With signal-slot connection visibility of a slot defines only access level of connection

establishment to slot. Thus, slot in private scope can be connected only inside of the

class. When slot is called from signal emit, the return value of slot is ignored. Usually,

return values of all slots are defined to be void. Slots can be defined to be virtual as

well.

When using the signals and slots mechanism, a developer cannot ever assume that slot

is called directly after signal is emitted [28]. In that, signals can be connected to slots

using direct connection or queued connection. Furthermore, when signal is emitted from

different thread than receiver object is the slot connection is always made in queued

connection.

4.3 Event Loop and Events

Almost all Qt applications are event-driven applications, excluding the simplest hello

world console application. Events for an application are delivered from the Qt’s event

30

loop [32]. By nature, the Qt event loop is like Reactor design pattern [33], which is

used to provide events to registered event handlers.

Event loop can be controlled with a QAbstractEventDispatcher. Global instance of the

QAbstractEventDispatcher can be reached from QAbstractEventDispatcher::instance()

method. The Qt allow implement an own event dispatcher as well by inherit the

QAbstractEventDispatcher class. For using own event dispatcher, it must be created

before Q(Core)Application is created.

The main event loop is executed in the applications main thread and it is responsible to

keep the application running until application exit. The main event loop must run in the

main thread in the Qt. At the beginning of Qt application startup, the main event loop is

usually started. A QCoreApplication and a QApplication inherited from the

QCoreApplication are used to start main event loop. Both have a method exec(), which

is generally synchronous method all over Qt classes.

Usually main function of a Qt application is implemented so that it does first some

initialization. After application is initialized an exec() method is called from the

QCoreApplication or the QApplication object. The exec() method starts the Qt main

event loop. Habitually, the application exits directly when the main event loop is quit

and the exec() method call returns back to main function.

The QApplication is part of a QtGui module and it is used when an application uses

Graphical User Interface [28]. The QCoreApplication is defined in the QtCore module

and it is used in case when application is console application, like background daemon.

Because of Qt event system is based on event loop, the Qt cannot deliver events before

the main event loop is started [32]. This consist all events and signals based on queued

connection. However, direct signal connection is possible because those are executed

without event loop. Furthermore, Qt dialogs can be used before event loop is started, in

that they uses own event loop to receive events.

31

Events in the Qt system can be delivered to its receiver in two ways [32]. These options

are post events and send events. The differences between these two methods are that

posted events uses main event loop and sent events are delivered directly without event

loop to receiver. In addition, posted events must be allocated from the stack and the

ownership of the event object is taken immediately when post is done.

4.4 Qt Core Module

The Qt core module named as QtCore is module, which provides core functionalities to

other Qt modules and Qt based applications [25]. All fundamental Qt classes, like

QObject, are included in the core module. The Qt core does not include any classes

related to graphical user interfaces. In following subchapters, tools and functionalities

provided by the Qt core module are introduced.

4.4.1 Data Types, Containers and Smart Pointers

Primitives

The Qt core module contains a several extended and improved data types from C++

types [25]. As all other Qt classes, provided data types are implemented in cross-

platform manner. One pitfall of cross-platform development is sizes of primitive types.

Usually, the native integer size depends on system bit wide. For example, int primitive

can be 16 bit in some systems and 32 in some other system. For this reason, the Qt

framework provides size defined primitive types. The size defined primitives are

guaranteed to be same size on all platforms [25].

Strings

Maybe the most used non-primitive data type is string. A QString is Qt implementation

of string type. It has a full Unicode [34] support on all platforms where the Qt is

supported. Unicode 4 is used as a native character set for the Qt framework. Moreover,

the Qt framework Unicode support provides detection of Windows so the Unicode

support is available even though Windows platform does not support it natively. The

QString implementation uses an implicit sharing [25] like many other Qt classes. The

implicit sharing optimizes memory usage of strings.

32

Pointers

The Qt Core module provides also useful helper classes for safer pointer use [25].

Everyone who has developed software with C or C++ knows how error prone using

pointer can be. For making things much easier, the Qt framework provides a set of

smart pointer classes. These classes help avoiding memory leaks of dynamically

allocated objects and protect against of dangling pointers.

QPointer class provide guarded pointer for classes based on the QObject. The QPointer

behaves like a normal C++ pointer, except it is automatically set to 0 when referenced

object is deleted. Hence, the QPointer is useful pointer when need to refer some pointer,

which is owned by someone else. With the QPointer, the use of invalid pointer cannot

happen. The QPointer can be used only with subclasses of QObject.

A QScopedPointer is a bit different kind pointer class than the QPointer. Use of the

QScopedPointer is not limited just QObject based classes. The QScopedPointer simplify

use of heap objects in a particular scope. Conventionally the QScopedPointer itself is a

heap object in the scope of a method. When execution of the method goes out of the

scope, the QScopedPointer instance get deleted and so is deleted allocated memory that

the QScopedPointer instance is referring. Unlike the QPointer, the QScopedPointer

refers a memory, which must be owned. In addition, the QScopedPointer can contain

any kind of objects, not just the QObject based objects. One exception is traditionally

allocated arrays, which must be stored to QScopedArrayPointer. The

QScopedArrayPointer uses delete[] instead of the delete operator for deleting contained

memory.

Containers

The Qt framework provides a set of generic template based container classes [35]. C++

Standard Template Library (STL) provides same kind set of containers, but the Qt

versions are designed to be easier and safer to use. The Qt container set contains

optimized sequential and associated containers. All Qt container classes use implicit

sharing to decreasing memory consumption [35]. In addition, containers are reentrant

and in situation where container is read-only, it is thread-safe as well.

33

Qt containers can be traversed either Java-style iterators or STL-style iterators [35]. The

STL-style iterators are a bit efficient than Java-style iterators are, although the Java-

style iterators provide high-level functionality and they are easier to use. With the STL-

style iterators, a STL’s generic algorithms can be used [35]. A QtAlgorithms header

offers access to STL’s generic algorithms [25].

4.4.2 I/O Devices, Data Array and Streams

QIODevice

A good data handling classes can provide a great help for the communication

middleware use. The Qt framework consist nice abstraction of I/O device, which is base

of socket handling as well. A QIODevice is a base class for all I/O devices in the Qt

framework [25]. The QIODevice provides common interface for devices that support

reading and writing blocks of data. It is abstract class and cannot be instantiated

directly. The QIODevice based classes are made for handling input and output to and

from external devices, files or processes. In addition, instead of handling some regular

I/O device the QIODevice interface can be used to write and read data in QByteArrays

as well.

The QIODevice provides support for two types of devices – random-access devices and

sequential devices [25]. Random-access devices support seeking to arbitrary position

using seek() method. Opposed to random-access devices, seeking are not supported with

sequential-devices, hence data must be read in one pass. Type of device can be

determined from QIODevice with a method isSequential().

Several device types are always asynchronous by nature. Asynchronous write and read

operations are returned immediately and operation complete later on. The QIODevice

contains signals readyRead and bytesWritten to react when a new data is available for

read or data payload is written to device. Methods bytesAvailable and bytesToWrite are

usually use with these signals to find out amount of data available or sent to device.

The QIODevice allow to make asynchronous write and read operations to be

synchronous. This can be done with waitForReadyRead and waitForBytesWritten. With

34

these methods, a calling thread is blocked without going back to event loop, which

makes possibility to use QIODevice without an event loop or in separate thread.

Subclasses of QIODevice can provide other device specific blocking methods as well.

QByteArray

Since the QString is based on 16-bit Unicode characters, it is good to have some type,

which can contain 8-bit data. For that reason, a QByteArray can be used [25]. The

QByteArray is data storage for both raw bytes and traditional 8-bit ‘\0’ terminated

strings. The QByteArray is more advanced data container than C++ arrays are and the

QByteArray always ensure that the ‘\0’ terminator follows the data. In addition, like

many others Qt containers the QByteArray use implicit sharing to reduce memory usage

and avoid unnecessary memory copies.

When using the QByteArray it is good to remember that when using raw bytes the ‘\0’

termination is added [25]. Without knowing that issue, it can cause unexpected behavior

in some cases. The QByteArray can use like C++ arrays by pointing specific array

position with [] operator. Like C++ arrays, the QByteArray uses 0-based indices as

well.

QTextStream and QDataStream

For powerful I/O device usage the Qt framework offers two stream classes for use to

application developers. With streams, the Qt framework handles the most platform

differences such as endianess and use of proper line endings [25]. Therefore, application

developers do not need to take care as much of platform compatibility. QTextStream is

for reading and writing a text with I/O device. Moreover, for reading and writing binary

data with I/O device a QDataStream can be used. With both stream operators << and >>

can be used to read and write data in streams. Streams provide data serialization of C++

primitive types and basic Qt types. Serialization of more complex classes depends on

class implementation. Many Qt classes’ offers overridden << and >> operators for

stream them into streams.

35

By default, the QDataStream handles data internally in most significant byte (MSB)

order format [25], which gives better interoperability with other devices. Using MSB

format ensures the cross-platform compatibility. Binary stream of encoded information

is 100% platform independent. Nevertheless, data encoding can be changed to little

ending format, which is not recommended as it breaks the platform compatibility.

4.4.3 Concurrent Programming

Processes

Processes and threads provide common approach to implement application concurrency.

The Qt framework provides convenient and cross-platform classes to handle processes

and threads. In addition, the Qt framework comes with the advanced threading options,

like thread pool functionally [33]. Concurrent programming has been challenging with

native C++ environment, in that using processes and thread are handled in a different

ways by different operating systems. Hence, porting application from environment to

another has been challenging.

A QProcess is class for controlling other processes. It provides interface for spawn

processes and communicate with them. Even though, the QProcess is cross-platform

implementation for handling processes, some actions depends user permissions. For

example, process kill and terminate requires PowerMgmt capabilities on Symbian

platforms. If required capability is missing, action will fail [25].

Threads

Using threads is a second – a much lightweight – solutions to implement concurrency in

application. Threads can be created and controlled in the Qt framework through of a

QThread class [25]. Qt thread model permits the prioritized of threads as well. When

using threads in Qt, the signals and slots mechanism and event posting can be used. It is

remarkable, that when using signals and slots between different threads with automatic

connection type, the queued connection type is always used. The QThread has a virtual

run() method which is executed after thread is started. The run() method is a thread

entry point, like main() function is for the application. The QThread emits signal started

36

when execution of thread is started and finished signal when execution is finished.

Thread execution ends when run() method returns. Default implementation of the run()

method calls only exec() to start event loop for the current thread.

When using threads in the Qt, there are some limitations, which must be followed [25].

Each threads consist own surroundings, which means that each thread can have own

event loop and each created QObject based objects belongs to current thread by default.

QObject can be moved to another thread with moveToThread() method. First limitation

is, that child objects cannot be in a different thread than the parent. Second limitation is

that, all event driven objects may only be used in one thread. Meaning that, for example,

socket cannot connect or timer cannot start from another thread where object is. Third

limitation or more like requirement is that all objects created in a thread must be deleted

before QThread instance is deleted. In addition, it is good to remember that if event loop

is not running on a thread, objects cannot receive posted events or signals.

Thread Pool

Third option to implement concurrency using the Qt is use a thread pool based solution

[25], which recycles threads. When using thread pool, there are no needs to create a new

thread every time. Creating thread is known as operation, which is non-deterministic

and time-consuming operation [33]. Using thread pool with the Qt is very

straightforward. First subclass of a QRunnable must be implemented with

implementation of virtual run() method offered by the QRunnable. After that, runnable

class can be started with global thread pool instance. Each Qt application has one global

QThreadPool instance. The QThreadPool provide interface for configuring thread pool

options. The QRunnable provide control of class auto deletion. If QRunnable auto

deletion is set on (the default), then the runnable object is deleted automatically after

execution is accomplished.

Mutexes and Semaphores

When discussing about concurrent programming it is always important to remember of

data synchronization and protection. Mutexes and semaphores are usually used for data

protection and synchronization between concurrent instances. The Qt comes with mutex

37

and semaphore implementations [25] and a few nice utility classes. Utility classes give

ability to use mutexes more safely and more optimized. QMutex represent Qt mutex

implementation and a QSemaphore offers semaphore functionalities.

A QMutexLocker is one of mutex utility classes. The QMutexLocker implements

common Scoped locking design pattern [33]. The Scoped locking design pattern is

intent to simplify mutex locking and especially unlocking. The QMutexLocker is a

simple class, which is meant to be allocated from heap. When heap object goes out of

scope, the mutex is released by the QMutexLocker object destructor. With scoped

locking solution, mutex is always released when method returns.

Second utility class is QReadWriteLocker, which can be used to increase performance

of multithreading system. The QReadWriteLocker utilize Read-Write Locking design

pattern [33]. The Read-Write locking is intent to increase availability of data. When

using some common data from multiple threads it must be protected from changes. The

idea of Read-Write locking is that multiple instances can lock data for reading at the

same time. Only if data is wanted to change, the write lock is acquired and then other

instances will not get access to it until lock is released again.

4.4.4 Timing

Using the Qt, a timing functionality can be implemented with two ways [25]. The

QObject itself provides methods for start object timing. In this way, a subclass of the

QObject needs to implement virtual timerEvent() method for receiving timing events.

Timing events are wrapped inside of a QTimerEvent class.

Second option to create timed operation is use a QTimer class. If timed operation need

to be done only once, the QTimer provides a static singleShot() method for simplifying

use of timing. When continuous timing is needed the QTimer must be instantiated and

connect timeout signal to some slot. The timeout signal is emitted when timer interval is

elapsed. The QTimer provides basic interface for controlling timing and settings of

timing.

38

Accuracy of timers depends on the underlying operating system and hardware. Most

systems support at least one millisecond resolution. It is guaranteed by the Qt, that timer

never timeout until exact specified timeout value is reached.

4.4.5 Plugins

There are two different APIs for creating plugins with Qt. High-level API is for creating

extension plugins for the Qt itself [25]. Moreover, Low-level API is for creating

application extension plugins. Because of the scope of this study, the High-level API is

not handled at all.

The low-level plugin API is more interesting in application developer point of view.

API enables run-time loading of shared library plugins into application. For

implementing use of dynamic extensions into application, the application developer

must create a pure virtual interface and declare it with Q_DECLARE_INTERFACE

macro. The defined macro publishes interface to meta-object system. After interface is

defined, a QPluginLoader can be used to load shared libraries from wanted location.

Finally, with qobject_cast method, the loaded plugin instances can validate to be correct

type.

Finally, implemented plugin object must be exported with Q_EXPORT_PLUGIN2

macro. After these steps, the application can load compiled dynamic library from

location where binaries are deployed into. The implemented plugin class must be

derived from QObject, if implemented pure virtual class is not. When plugin is loaded

into application, the QPluginLoader verify that plugins are build against same Qt

version than the application has.

4.4.6 Settings

Several applications need to store or retrieve some configuration information for

application. There is not available common way to handle application settings in

different platforms. The Qt provides an abstraction for handling settings in same way in

all different platforms [25]. QSettings class enables store and read settings without

39

taking care of underlying platform. The QSettings is persistent map of key/value pairs.

It is reentrant and same settings can be read or write from multiple thread or processes

at a same time. Changes performed to settings are not visible for other processes until a

sync() method is called for settings. The sync() method is automatically called in

settings destructor. In Addition, sync() is called in regular interval by the event loop.

Hence, usually application developers do not need to take care of that. In a same

process, changes made to settings will be immediately visible to other settings objects,

which are using the same settings.

4.5 Qt Network Module

A Qt network module provides tools for programming portable network applications.

The Qt network module is named as a QtNetwork and it contains low-level and high-

level networking tools [25]. High-level networking tools provide APIs to handle HTTP

(Hypertext Transmission Protocol) and FTP (File Transfer Protocol) client connections

without using any low-level networking. In scope of this work only low-level

networking tools are included.

Using networking in communication middleware has been a bit challenging, since

network sockets are generally very low level APIs and very platform depended [33].

The Qt provides fully cross-platform network sockets for local host connections, TCP

(Transmission Control Protocol) connections, UDP (User Datagram Protocol)

connections and SSL-connections (Secure Sockets Layer). In addition, it provides

classes for handling incoming TCP connection requests and incoming local socket

connections. Additionally, the Qt offers a socket abstraction of common socket

functionalities for all socket types.

All Qt sockets are inherited from QIODevice, hence stream classes makes socket use

very convenient and straightforward. When using QDataStream, used byte order is

already managed by the Qt to be in platform compatible MSB (Most Significant Byte)

format [25].

40

Sockets in the Qt are always asynchronous it however, there are methods for blocking

execution without going to event loop. Signals and slots mechanism gives a nice ability

to handle asynchronous socket operations. With the signals and slots dependencies are

loosely coupled, which gives better flexibility of change.

4.6 D-Bus Module

D-Bus is a message bus system, which enables inter-process communication between

applications [36]. The D-Bus is mostly used in different Linux and UNIX operating

systems. A QtDBus module provides ability to use D-Bus functionalities in these

platforms. The QtDBus component is one of the platform specific Qt components.

Applications using the QtDBus module can share provided services to remote

applications by exporting objects [25]. Moreover, shared services exported by other

applications can be used. The QtDBus module extend the Signals and Slots mechanism

by providing ability to connect signals from remote application, as well as connect local

signals to remote slots.

In software portability manner, use of the QtDBus is not recommended. Certainly, it

could be used to wrap some platform specific functionalities to Qt based application. In

fact, using D-Bus is required in several cases. For instance, handling Bluetooth with

BlueZ on Linux is relying on use of the D-Bus message system.

4.7 Qt Test Module

The Qt framework includes unit-test framework for the Qt based applications [37]. With

a QtTest module, application developers can write different kind test sets for

applications. The application developer can write basic unit tests, data-driven unit tests

or GUI tests for applications or interfaces. Furthermore, the QtTest library provides tool

for monitoring emitted signals for testing purposes.

In Addition, benchmark tests with varying data can be implemented with the QtTest

library. The benchmark tool provides way to measure execution time for the specific

41

operations. The results of the benchmarking can be plotted to graphical form with

qtestlib-tools [37].

4.8 Development Framework Impact

A Qt application development environment can be almost same than C++ application

development environment. Addition of the Qt libraries, two tools for compiling a Qt

application is needed. First tool is a qmake tool, which is used to generate platform

specific makefiles from Qt’s project files (.pro and .pri files). Second tool which is

required for compile Qt application is Meta-Object Compiler (moc) tool [30].

Other additional development tools are not needed, however, in Qt application

development, a Qt Creator IDE is a good tool intended to Qt cross-platform

development. Qt Creator Integrated Development Environment (IDE) comes with a

cross compiling environment, which helps application development to different

environment, especially mobile environments.

4.8.1 qmake

A qmake is a tool, which simplify build process on different platforms. With the qmake,

the Qt can offer cross-platform ideology in project configuration and build system as

well [38]. In that, Qt project files and qmake unify varying make file systems on

different platforms. The qmake generate natively used make files from project files. For

example, on Linux environment, the qmake generate Makefiles and on Symbian

environment, it generates bld.inf files and pkg-files for creating deployment packages.

The qmake can be used for any C++ software projects whether is it a Qt based project or

not [38].

The qmake uses project files, which defines project to be build. The project files use

.pro file extension. Moreover, .pri file extension is used for files, which can be included

project files. The qmake provide sophisticated way of define software projects in multi-

platform usage. The qmake includes a set of operational functions, variables, and

conditional statements [38].

42

4.8.2 Meta-Object Compiler

Meta-Object compiler (moc) is for preprocessing extended C++ code from used Qt code

in the project [30]. The moc tool handles all header files from the project and generates

meta-object code from classes, which declares the Q_OBJECT macro. The meta-object

code is required for the signals and slots mechanism, the object run-time information

and the dynamic property system.

Meta-Object system is very transparent for application developer. Moreover, usually

application developers do not need to take care of meta-object system. Except, declare

of the Q_OBJECT macro in class definition. Generated C++ files must compile and link

with class implementations, nevertheless qmake system can automatically include meta-

object codes into build process.

4.8.3 Compiling

Compiling Qt application depends on target platform. A make process can vary between

different platforms. Usually, the GCC (GNU Compiler Collection) compiler can be used

on each platform. However, used compiler is not limited anyhow. Hence, Qt

applications can be compiled with third party compilers and vendor-supplied compilers

as well. More about supported compilers and platforms can be found from the Qt’s

supported platforms web page [4].

4.9 Qt Mobility Extension

The Qt Mobility Extension is targeted to being a key enabler for use of the Qt

framework effectively in cross-platform mobile application development [5]. The Qt

Mobility is a collection of APIs. The Qt Mobility version 1.0 was released on 27.4.2010

and last update 1.0.2 was released on 27.7.2010. All APIs of the Qt Mobility extension

are available on Symbian and Maemo platforms [39]. In addition, with a few missing

functionalities the Qt Mobility Extension is available for Windows CE/Mobile, Linux,

Windows and Mac OS X desktop environments [40].

43

The Qt Mobility API provides a large scale of functionalities mostly targeted on mobile

application development. There are available functions like handle sensor information

of device, control contacts information, retrieve location and using SMS, MMS or email

functionalities [39]. In addition, there are APIs for Bearer Management, System

Information and Service Framework, which are discussed more detailed in following

subchapters.

4.9.1 Bearer Management

Purpose of the Bearer Management API is for control connectivity state of device [39].

Using this API, application developer can access information of what kind bearer types

there are available or are device currently online. Moreover, with the Bearer

Management, network interfaces can be started or stopped. However, network

configurations itself cannot be managed with this API, as configurations can only be

used.

The Bearer Management API is the first Qt Mobility Extension API, which is already

migrated into main Qt Network library. The Bearer management API is included in 4.7

Qt version. The release candidate of Qt 4.7 is already released on 12.9.2010 and

probably the final release will be released soon.

Network configuration contains information of network interface and configuration for

that network interface. Network configuration information is used to specify network

more detailed, like how network interface can be started [39]. For example, in WLAN

connection, access point details, such a data encryption and credential information for

establish a connection is needed. The Bearer Management API provides information of

available network configurations and control of start and stop specified network

configuration for communication. In addition, the Bearer Management API enables

actively monitoring changes of network configurations or device connectivity status.

44

4.9.2 Service Framework

The Qt Service Framework is a concept, which enables loosely coupled service usage.

Services are independent components (plugins), which allow clients to perform

specified operations [39]. Service can be registered to the service framework, where

other application can discover needed services by name and version of the service. If

service is found, application can load and use defined operations of the service. Services

can be added or removed at runtime to service framework. Services are installed via

XML file, which contains Meta data of service and location where service can be found.

The Meta data contains available interfaces, descriptions for the interface and

capabilities for the interface.

4.9.3 System Information

A system information API enables a common way to retrieve information and

capabilities of underlying system and hardware [39]. The System Information API

consist a several categories, which information are provided. These categories are

device information, display information, network information, screen saver information

and storage information. In addition, there is also general information category. In scope

of this work, device information and network information are the most interesting

options.

Device information is available through of a QSystemDeviceInfo class. That class

makes available information of underlying device. With the QSystemDeviceInfo class

user can retrieve information of device IMEI (International Mobility Equipment

Identity) code and IMSI (International Mobile Subscriber Identity) code, which can be

used as unique identifiers. Also this API provides information of currently used

operation profile (e.g. silent profile, loud profile or normal profile) and power state

status. The power state status indicates is device operated for example in battery mode

or fixed power mode. Furthermore, battery level can be retrieved. Finally, the

QSystemDeviceInfo can offer asynchronous notifications of changes in battery, profile

or power states.

45

Information of general mobile network can obtain with a QSystemNetworkInfo, which

belongs to the network information category. The QSystemNetworkInfo class provides

interface, which can be used to retrieve information of network name, network cell id,

current location code and home network and country codes. With the

QSystemNetworkInfo class, network signal strength can be read and monitored in

asynchronous way. Moreover, the network status can be retrieved with the network

information interface.

46

5 PEERHOOD IMPLEMENTATION WITH QT FRAMEWORK

In the next, an implementation of the PeerHood middleware concept based on the Qt

framework is described (PeerHood2). The existing PeerHood (PeerHood1)

implementation is used as a base for the new implementation. At the beginning of the

project, it was decided that target is not just rewrite PeerHood1 again using the Qt

framework. Without limitations and dependencies of existing protocols, – which were

not well documented –enhance of the existing PeerHood implementation can be done

better without problems. That decision enables doing things way of Qt and make

PeerHood2 to be cross-platform middleware. Thus, PeerHood2 do not need to be

compatible with the PeerHood1 implementation.

5.1 Features Implemented

In the chapter of PeerHood communication middleware introduction, the key features of

the PeerHood concept were presented. Most of these requirements were implemented

into PeerHood1. In addition, most of these were implemented to the new PeerHood2.

The detailed comparison table of PeerHood implementations can be found from

Appendix 2. Represented features can be roughly divided into two groups: group for the

PeerHood API features and group for PeerHood internal – less user-centric – features.

Basis for a new PeerHood API functionality was to keep API as much same as it was in

the previous PeerHood API. For that reason, there were no big changes in the

functionality of the new PeerHood API. The biggest changes for the API come from use

of the signals and slots mechanism to replace formerly used call back mechanism.

Additionally, the new PeerHood API was harmonized to use a Qt coding conventions

[41, 42]. Besides, the whole PeerHood implementation was put inside of a PH

namespace to avoid name conflicts between PeerHood and third party applications. The

new PeerHood API can be found from Appendix 3.

With the PeerHood2 interface, third parties applications can publish own services and as

well discover other services and devices from network neighborhood. The PeerHood2

47

support as well connection to services with an abstracted connection. The connection

abstraction enables application developer to use service connection in network

transparent manner. The data transmission is not depending on the PeerHood

implementation after connection is established and moved to PeerHood client.

Moreover, the PeerHood API enables monitoring remote device actively or by using

signal strength of connection.

Event interface for PeerHood1 was implemented using Observer design pattern [14],

where callback interface instance was provided to PeerHood. The PeerHood uses

provided callback instance for notifying events to client. For callback mechanism, the

Qt framework provides solution, which is better suitable for particular application. The

signals and slots mechanism are used for provide events to PeerHood clients.

The second key feature group is PeerHood internal features. Most of these features were

implemented into the PeerHood2 as well. One of missing functionalities is the user

control of PeerHood daemon, which was not implemented in PeerHood1 either. In

addition, the network roaming functionality is not implemented.

The common structure of the PeerHood2 is a pretty much same than in the PeerHood1

implementation. Accordingly, use of network plugins in PeerHood2 is based on

dynamic plugins, which are loaded at application startup. The connection network

plugin interface provides channel for receiving events from a connection manager. With

the connection manager, different networks and network plugins can be controlled.

Communication concurrency in the PeerHood2 is relying on the Qt event system, hence

multithreading is not used. Concurrency provided by the Qt event system seems to be

enough for the PeerHood use, however design of the new PeerHood2 is implemented in

such manner that multithreading can be taken easily into use if needed. The decision of

not to use multiple threads is made for resource saving point of view. Furthermore,

multiple threads increases complexity of the system and make debugging much harder.

48

5.2 Architecture

Mostly the existing PeerHood implementation is event-driven system using event loop

to receive events and deliver them to correct handler. Both PeerHood daemon and

library uses infinite loops for handle incoming events and timed operations. The

PeerHood library can be divided into two different parts. One part handles incoming

service connections and another part provides interface for all PeerHood functionalities.

Incoming service connections are handled in reactive manner based on events from

network. Second part handles PeerHood API functions mostly communicating with the

daemon and establishing connections to other services.

The Qt applications uses a same kind event loop systems than the PeerHood1 uses.

Therefore, taking the Qt framework in use for the PeerHood does not cause major

changes of the PeerHood design. Hence, the existing PeerHood1 design can be utilized.

The biggest changes of the PeerHood structure comes from use of the signals and slots

mechanism, which can help increase flexibility of the system. With use of the signals

and slots mechanism, the use of Observer design pattern can be removed. Consequently,

component coupling can be decreased with utilizing signal and slot mechanism in

design.

As a basic structure of the PeerHood2 does not differ much from the PeerHood1, the

use of daemon, library and network plugins were obvious. Moreover, PeerHood

functionalities were separated to independent dynamic libraries. By use of independent

dynamic libraries, a better reusability and changeability can be reached. In the

PeerHood1 a lot of code is compiled to both, peerhoodd executable and peerhood

dynamic library. New components for the PeerHood are common, settings and register.

In the Figure 6 are shown PeerHood2 components and their relations.

The register component is an independent component for storing information of current

devices on network neighborhood and information of locally registered services. The

register interface enable insert, remove and search devices and services from the

register.

49

The PeerHood settings can be handled with the settings component. The settings

component can be used from every component, if access of common PeerHood settings

information is needed. The settings component is based on use of the Qt settings class

and therefore settings can be accessed from different processes easily without problems.

However, this PeerHood component is not published to use of third parties. For third

parties, the library component provide an own settings interface.

Figure 6. Component diagram for a new PeerHood structure

The Qt’s signals and slots mechanism enables to remove a listener framework [43] and

listener plugins from the PeerHood1 implementation. The listener framework was

implemented to provide events of system changes. In the PeerHood2 system, events can

be received with different Qt components via signals.

5.2.1 PeerHood Common

All general utility classes and common functionalities needed by PeerHood library and

daemon are included in the common component. The common component provides

functionality for plugin management, PeerHood data streaming to I/O devices and data

containers for service and device information. The most of the PeerHood core services

are included into common library.

50

Connection Manager

One of the most important functionalities in the PeerHood common component is a

connection manager. The connection manager is responsible to load and control

different networks with available network plugins. The connection manager is needed in

both PeerHood daemon and library processes, due to both needs network connectivity in

different networks. The connection manager controls plugins which are loaded. Loaded

plugins depends of information what network types the device can handle. Network

plugin is not loaded, if the network is not supported by the device. However, based by

settings, some of plugins can force to be loaded. In addition, loaded plugins can be

limited only for restricted plugins. The connection manager uses Bearer management

API from the Qt Mobility extension to resolve available network configurations.

Moreover, the connection manager receives events of added, removed or changed

network configurations. In Figure 7 are shown classes related to the connection

manager.

Figure 7. Classes related to Connection Manager

A ConnectionManager interface provides notifications of plugin state changes and

ability to control system connectivity. In addition, the ConnectionManager provides a

way to control some specific network types by events. The ConnectionManager

interface is exported interface for use of other libraries. The ConnectionManager uses a

Private Implementation (Pimpl) idiom [44] to enable better changeability without taking

care of binary compatibility issues.

51

In the connection manager plugins are loaded with a ConnectionPluginLoader class.

The ConnectionPluginLoader class is based on use of the QPluginLoader. Most of

plugin loading functionalities are abstracted to AbstractPluginLoader class, which uses

virtual functions to configure where plugins are loaded. Finally when plugins are

loaded, a real plugin instance accepting is requested from concrete subclass. The

subclass of the AbstractPluginLoader handles plugin casting to correct plugin type. If

plugin type is not correct the instance is ignored.

After plugins are loaded with the ConnectionPluginLoader, the ownership of the plugin

instances is taken by the ConnectionManager. The ConnectionManager can send

different kind events to concrete plugin instance. These events can be like notifications

of low battery level or request to going offline state.

Common Data Transmission

Service and device data transmission is unified in the PeerHood2 implementation. The

PeerHood common component provides classes for sending and receiving device and

service information without knowing how data transmission is actually done. With

Reader-Writer classes, a single instances or list of instances can be send and receive in

I/O devices. The Reader-Writer classes are used to abstract real communication between

remote peer. The Reader-Writer classes are abstracted into level of the QIODevice.

Hence, used device where data is sent or read can be process, socket or even file. In

Figure 8 are shown Reader-Writer classes and a DataManager class.

The DataManager class provides an interface for sending information of registered data.

The data can be locally registered services or discovered devices. In Addition, the

DataManager enable common way to read information of remote device and send local

device information to remote peers. Purpose of the DataManager is to provide a safe

way to read information from register and send it to remote peer. This way, the data

protection of registered data can be done better. The DataManager safely locks used

data for read to avoid simultaneous data usage problems which might happen when

multiple threads are used.

52

The common data transmission is used all over the new PeerHood implementation.

Therefore services and devices are serialized to stream in same way when information is

shared between daemon and client or between remote devices during network

advertising. This way transmission logic is only for Reader-Writer classes and data

containers. The data containers implements data serialization and deserialization from

stream and Reader-Writer classes contains information of how single or list of data is

transferred.

Figure 8. DataManager and Reader-Writer classes

Daemon Client

PeerHood daemon access is provided by the DaemonClient. The DaemonClient is part

of the PeerHood common library. Purpose of the DaemonClient is to hide a real

communication between client and PeerHood daemon. The DaemonClient provides

interface of how daemon can serving its clients. Like Figure 9 shows there are two

related classes for the DaemonClient.

53

The DaemonClient utilizes Acceptor-Connector design pattern [33]. At the beginning a

DaemonConnector established a connection to the daemon. After that, the

DaemonConnector initiates a DaemonClientService and provide instance of it to the

DaemonClient. Using the DaemonClientService the DaemonClient can communicate

with the daemon.

The Acceptor-Connector design pattern separates the connection handling from

connection establishment. As a consequence of that, all communication logic is only in

the DaemonClientService, which is easy to modify or replaced. Current implementation

contains only ability to request something from the daemon, however in the future the

DaemonClientService can also provide events from the daemon.

Figure 9. Classes related to DaemonClient

Factory

A Factory class utilizes common Factory design pattern [14]. With the Factory class,

concrete implementations of provided abstract interface classes can be created. There

are available abstract interfaces for remote device pinging, remote device monitoring,

network advertising and for connectivity. Each network plugins register a creator

instance in the Factory. The creator instance is used to create a concrete instance. If

network plugin creator does not support functionality, it can return a null instance. The

concrete creator registration and instance creation sequence are shown in Figure 10.

54

Figure 10. Sequence diagram of concrete creator and instance creation

5.2.2 PeerHood Daemon

Compared to the PeerHood1 daemon implementation in the PeerHood2 daemon

implementation has been changed a lot. In the PeerHood1, daemon implementation was

one a huge CDaemon class, which contains all daemon related functionalities. In the

PeerHood2 implementation, that class has been split to several classes. The main

Daemon class uses these classes by aggregation. Internal structure of the daemon and

class relations is shown in the Figure 11.

The daemon has two fundamental functions, which are it responsibilities. The daemon

is responsible for publish information to other devices and discover information from

other devices in the network neighborhood. Likewise, the daemon provide interface for

clients to request information maintained by the daemon. In Addition, PeerHood clients

can insert and remove own services to be published.

55

Figure 11. Classes and their relations in the PeerHood daemon

Actually, either of the PeerHood1 and the PeerHood2 daemon implementations does not

contain device discovery and publish information. That functionality is divided into

each network plugins. Only responsibility of the daemon is to start network advertising

functionality for each network plugins. After advertising is started, plugins handle

device information publishing and discovering. The daemon constructs advertisers for

the each network plugins with the Factory provided by the common library.

Second daemon function is to provide interface for daemon clients. The clients must be

able to fetch information of detected devices and available services. In addition, clients

must be able to register services and remove registered services.

The daemon provides a local socket interface for clients. For handling incoming

connections, the daemon utilizes Acceptor-Connector design pattern as well. A

DaemonServer is used to listening incoming client connections. When a new connection

arrives the DaemonServer accept the connection and create instance of a

DaemonClientPeer class. After the DaemonClientPeer instance is done, the

56

DaemonServer shift connection responsible to the created DaemonClientPeer instance.

The DaemonClientPeer handles connection until connection is closed.

5.2.3 PeerHood Library

Like in the daemon implementation, also the library implementation was divided to

several smaller classes. Purpose of the creating smaller pieces is to create classes with

clear independent functionality. The PeerHood class is a Façade [14] for the whole

PeerHood system. That class provides service connectivity functionality, device

monitoring functionality and functionality provided by the PeerHood Daemon interface.

Figure 12 shows classes related to the PeerHood API class. For keeping figure clear

enough private implementation class for the PeerHood class is not drawn. However,

The PeerHood API utilizes Private implementation idioms for the PeerHood API as

well.

Service Connection

The PeerHood library handles connection establishment between services. The

connection establishment consist accepting incoming service connections and initiate

service connections to other services locally or remotely. The PeerHood library uses the

Acceptor-Connector design pattern for this purpose as well.

Figure 12. Classes and their relation in the PeerHood application

57

A class ServiceConnectionAcceptor is responsible for accepting incoming connections.

The ServiceConnectionAcceptor creates connection instances for all available network

types and start each of them to listening incoming connections. When an incoming

connection arrives, the ServiceConnectionAcceptor creates an instance of a

ServiceConnectionHandler class. The ServiceConnectionHandler initiates connection

and notify PeerHood API client with newConnection signal. Execution sequence for

incoming service connection is shown in Figure 13.

Figure 13. Incoming service connection

For connecting to another service a ServiceConnector class can be used. The

ServiceConnector provide only simple interface for initiating connection to wanted

service. Internally the ServiceConnector first establish a connection to another service

located on local or remote device. After connection is established the ServiceConnector

initialized the connection by sending some additional information. Sequence of Service

connection initialization is shown in Figure 14.

58

Figure 14. Service connection initialization

Device Monitoring

The PeerHood contains two different kind device monitoring functions. These are

device monitoring based on active device pinging and device monitoring by signal

strength between devices. For feasible device signal monitoring the direct connection

between devices is required. Otherwise, signal monitoring is done of connection

between device and access point, like connection between device and WLAN router.

The both monitoring options are included into a DeviceMonitorWorker class. In the

PeerHood1 monitoring was done in separate threads and for that reason both monitors

are included the DeviceMonitorWorker, hence monitoring functionalities are easy to

move to run in another thread if needed.

An abstract signal monitor interface was built insight that the Qt Mobility extension

provides functionality to receive events of signal strength changes. Signal strength

events come from the Qt Mobility without any active polling by the PeerHood. As

opposite to signal monitoring, the active monitoring requires operate pinging within

interval. The QTimer is used for active monitoring timing.

59

5.2.4 PeerHood Network Plugins

Like the PeerHood1, also the PeerHood2 contains dynamic plugin extension system for

including different network specific implementations. In the current PeerHood2, only

plugins for local host and WLAN connectivity are implemented. The local host network

plugin provides only ability to create local host based connection instances, in that other

functionalities are not supported on local host. In addition, the WLAN network plugin

contain all functionalities, which network plugins can provide for the PeerHood.

The plugin system and interfaces are very similar in the PeerHood2 than in the

PeerHood1 implementation. However, some things are done a bit different way than in

PeerHood1. Two major changes to plugins system are a new interface for service

advertising and capability to receive and send events by plugin interface. Classes related

to WLAN network extension are shown in Figure 15.

Figure 15. Class relations in WLAN connection plugin

Advertising Interface

The network advertising control functionality was included in the plugin interface in the

PeerHood1 implementation. The new PeerHood2 implements an own AbstractAdverter

interface. The AbstractAdverter can be used to manage network advertising. Like

60

other abstract interfaces for network plugin the AbstractAdverter can be created via

Factory class. Even though, advertise controlling is moved to own interface it provides

same functionalities as earlier.

Network Plugin Events

Network plugins interface – an AbstractConnectionPlugin – is extended to have ability

to receive and send events. The AbstractConnectionPlugin interface utilizes the signals

and slots mechanism for events. The connection manager can notify plugins with the

event system. Events for plugins can be notifications of common events like low battery

or control events like request to go offline state. Thus, the ConnectionManager can

control all plugins with events. Furthermore, the network plugin can notify others if it

changes state. It is notably that action for events depend plugin implementation, as a

result, plugin implementation can ignore provided request, like going in battery saving

mode.

5.2.5 PeerHood Applications

The biggest change for the PeerHood API using is that the new PeerHood API requires

use of the Qt framework also. If use of the Qt framework is not possible in third party

application, a C++ wrapper for the PeerHood API can be implemented into PeerHood.

Other impacts or limitations for the third party applications the new PeerHood API does

not cause.

The previous PeerHood implementation rejects incoming service connections if

callback instance was not given at PeerHood init. The PeerHood2 uses similar model by

recognizing is newConnection signal connected to any slot. If signal is not connected,

the PeerHood rejects incoming service connection requests, as there is no one to accept

incoming connections.

5.3 Improvement Ideas

Using the Qt framework enables ability to extend the PeerHood with new uses cases.

The Qt provides several APIs to get notifications of changes in the system and device.

61

With the event system for network plugins, the ConnectionManager can be extended to

control network plugins, like reduce power consumption when device is running out of

battery. In addition, network plugins must be implemented to change their behavior

when events are provided by the ConnectionManager.

Second improvement idea is related to device detection and information sharing in

network neighborhood. Currently, in both PeerHood1 and PeerHood2 responsibility of

device detection and information sharing is in network plugins. With the connection

abstraction, these functionalities can be centralized to daemon. In that model device,

detection logic is only in one place and there is no need to implement that in all network

plugins. Network plugins can be used to parameterized inquiries and other needed

things based on network type or some other details. Centralized model decreases also

dependencies of network plugins.

The PeerHood1 contains support for the Bluetooth network as well. In the PeerHood2,

the Bluetooth was leave out of scope, because of the Qt framework does not provide

needed functionalities for that. Hence, Bluetooth implementation must be implemented

in the platform specific way. The Bluetooth plugin implemented in the PeerHood1 can

be used in the PeerHood2 with a small modifications and integration to existing plugin

system.

62

6 EVALUATION

In this chapter, the new PeerHood2 implementation is evaluated. Evaluation is done

with using explained McCall’s quality factors. In addition, the Peerhood2

implementation is compared with the PeerHood1 implementation to see impacts of the

Qt framework into PeerHood implementation.

6.1 Test Environment

All tests were executed on 10.04 Ubuntu with 2.6.32-24-generic kernel version running

on VMware player 3.0 virtual machine. As a host platform, Asus EeePC (Intel Atom

N450 @ 1,66GHz, 1Gt RAM memory) with 32bit Windows 7 Starter operating system

was used. The virtual player was configured to have 640 MB RAM memory.

6.1.1 PeerHood Configuration

Both PeerHood implementations were measured as same configuration as can be. The

test configuration consist network plugins for localhost and WLAN networking. The

WLAN advertising interval is set to one second in both PeerHood implementations. In

addition, the old PeerHood implementation contains feature for customizing what

information the PeerHood shares between devices. This feature is set to be aligning with

the new PeerHood implementation, which share service and device information between

devices.

The PeerHood2 is built with Qt 4.6.3 version and 1.0.2 version of the Qt Mobility

extension APIs are used as well. The Qt framework and the Qt Mobility are compiled to

Linux environment with default configuration. All builds – including PeerHood1 – are

done with the GNU C++ compiler. The used PeerHood1 version is SVN revision 170 of

public PeerHood1 SVN repository [45]. The PeerHood2 version can be found from

Gitorious [46].

63

6.1.2 Active – Passive Client Test Set

Purpose of an Active-Passive test set is to cover common PeerHood actions in a same

test set. The test set is limited to local connectivity to avoid disruption caused by

network transmission. The proposed test set contains functionalities of service

registration, service resolving and connection to provided service. Figure 16 shows the

test set and steps of the test. The test set is based on active – passive PeerHood client

pairs. All active and passive clients are running in own processes.

Figure 16. Used PeerHood test set

First, for each active clients must start a passive client (step 1). For each passive client

registers a service, which active client pair is going to use. After all, when passive

clients are started, active clients can be started. The active clients execute the following

test set in five seconds interval (Figure 16):

2. Register a new service

3. Read all services and verify that at least two services are found. These two

services must be service registered by the passive client pair and second

must be service registered by self.

4. Find and connect to service published by the passive client pair

64

5. Passive client accept a service connection. After connection is made. The

active client verifies result of connection and disconnects the created

connection.

6. Finally active client unregister service which was registered in the step 2.

All executed test steps are verified by the active client. If some step fails, the execution

of the active client is interrupted and the execution time is logged.

6.2 Maintainability

For the maintainability, the static code analysis is used to give some overview of

differences between the PeerHood1 and the PeerHood2 implementations. The static

code analysis is done with SourceMonitor 2.6.3 application [47], which is freeware

source code analyzing tool. For the PeerHood1 implementation, only main PeerHood,

localhost plugin and WLAN plugin are analyzed. Hence, the both PeerHood1 and

PeerHood2 are comparable together. The Bluetooth and GPRS plugins are excluded

because the lack of functionalities in PeerHood2.

Static code analysis results are divided into two different groups. The first group is a

quantitative metrics of PeerHood implementations and second group is more qualitative

metrics of PeerHood implementations. Figure 17 shows quantitative metrics of

PeerHood implementations. The amount of Files, Lines of Code (LOC) and class

definition metrics are obvious and does not need explanation, nevertheless statements,

branches and functions may need.

The statements metrics is amount of computational statements in the source code [47].

These statements includes all C++ statements including branches such if statements and

loops such for and while.

Statements that cause break for sequence execution of code are counted in the branches

metric [47]. The branches metric is percentage value of the all statements. The branch

statements are for example for, while, if and switch case statements.

65

Functions metric is total amount of functions declared out of class definitions [47]. This

metric includes all functions although function is defined in the source code file scope

with the static definition to be out of global namespace. The functions metric counts the

main function as well. The PeerHood1 contains C API for the PeerHood as well, which

causes that big difference between amount of functions in the PeerHood1 and the

PeerHood2 implementations.

Quantitative Metrics

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180

Files
Lines of Code (x100)

Statements (x100)

Branches (%)

Class Definitions

Functions

U
n

its

PeerHood1
PeerHood2

Figure 17. Quantitative metrics for both PeerHood implementations

Especially the difference of lines of code is remarkable in maintainability point of view.

Evidently, the quantitative metrics is nothing without analyzing quality of code. Code

quality metrics are shown in Figure 18. Kiviat graphs for the PeerHood1 (A) and the

PeerHood2 (B) contains information such a code complexity and a code depth.

Moreover, average amount of statements in methods and code comments are available.

In the Figure 18 the green area and values inside of angle brackets are preferred values

of each metrics [47]. The exact metric values of the implementation are shown in each

axis description. Except, the maximum depth value is limited to nine and all statements

at the deeper level are counted as in depth nine [47].

66

 A) B)

Figure 18. Static code analysis metrics for A) PeerHood1 and B) PeerHood2

The depth metrics describes nested blocks in a method or a function. The nested blocks

are usually introduced with execution control statements such if and loops statements

[47]. Hence, depth metrics are related to conditions in a code. More conditions in code

make code harder to read. Namespace blocks are not calculated into depth metrics.

The code complexity metrics are calculated from code condition options. For each

conditional statements increases execution paths in a method or a function. The code

complexity is calculated from these execution paths, which increases the complexity of

method [47]. The code complexity calculation is based on definition by Steven

McConnell presented in his book Code Complete [48].

Combining lines of code with the code complexity give a good overview of code to be

maintained. Code with a high complexity value tends to be difficult to maintain and

usually has high defect density [16]. Furthermore, there are relation between complexity

and software reliability as well [17].

All differences of quantitative and qualitative metrics between PeerHood

implementations are not only related to use of the Qt framework. A lot of code has been

refactored during the new PeerHood implementation and some features like connection

67

roaming was dropped off the PeerHood2. However, the Qt framework provide a lot of

functionalities to PeerHood, which helps to keep internal structures more simple and

code less by self. .

6.3 Reliability

In reliability testing the introduced active-passive client test set were used. The purpose

of reliability test was to verify how all PeerHood components work in long running

operation. Time frame for test was set to 12 hours. The PeerHood system should work

that time without any abnormal behavior. The active client verifies all operations and

terminates client execution if some operation failed. The active-passive client tests set

were run with five client pairs and all executions expected to last 12 hours.

Figure 19 shows results of the reliability test. The PeerHood1 implementation fails after

85 minutes to socket assertion error. For that reason, PeerHood1 implementation was

tested three times. Every time all clients fail in that same runtime. It seems that some

sockets are not closed proper way in PeerHood1 implementation and finally socket

creation fails. The PeerHood2 ran 12 hours without any abnormal behavior. The test

execution was stopped after 12 hours was elapsed.

12h Run test with 5 active-passive client pairs

0 2 4 6 8 10 12

Test1

Test1

Test2

Test3

P
ee

rH
oo

d2
P

ee
rH

oo
d1

Total run time (h)

Service5

Service4

Service3

Service2

Service1

Daemon

Figure 19. Reliability test results

68

Deeper analysis of the PeerHood1 failure in the reliability testing was not done. The

failure was very deterministic and it occurs in every test run almost at the same time. As

the previous chapter states, there are relations of the code reliability and code

complexity, which can be partially seen in this reliability test as well.

6.4 Efficiency

PeerHood efficiency is evaluated with measuring resource usage of both PeerHood

implementations. Memory usage and CPU usage of both implementations are measured

and compared in following subchapters.

6.4.1 Memory Usages

PeerHood implementations memory usages were analyzed with two different memory

usage tools to get better reliability for the results. The memory measurements were done

on Linux platform, which uses virtual memory. The virtual memory can be a bit

challenging when measuring memory usage, due the fact that memory areas can be

reused between multiple processes [49].

Memory usage is measured for all related executables in the active-passive test set. The

test set consist executables for PeerHood daemon, passive client and active client. In the

memory usage tests, the test set was executed with the five active-passive client pairs in

duration of ten minutes. All memory measurements were done from application start to

application close.

Massif

PeerHood memory usages are measured with a Massif tool, which is heap profiler tool

in the Valgrind [50]. Output of the Massif is visualized with a MassifG tool [51]. The

Massif can be used for measuring how much heap memory application consumes. In

addition, the Massif can measure use of stack memory and extra bytes of heap

allocation. Extra bytes are allocated in book-keeping and alignment purposes [50].

Moreover, the Massif can expose memory leaks on application runtime. The runtime

69

memory leaks cannot be determined with regular memory leak tools if application

cleans allocated memory correctly at the application exit.

In Figure 20 are shown heap and stack memory usage of the PeerHood1 daemon and in

Figure 21 are shown heap and stack usage of the PeerHood2 daemon. Difference of

memory usage is significant between native application and the Qt based application.

However, the memory usage level in the PeerHood2 is in usable range.

Figure 20. Memory usage in the PeerHood1 daemon, measured with the Massif tool

Figure 21. Memory usage in the PeerHood2 daemon, measured with the Massif tool

Between the active and the passive clients, the differences of memory usage were

negligible and for that reason only memory usage of the passive clients are presented. In

70

Figure 22 is shown memory usage of the passive client which uses the PeerHood1

implementation. In Figure 23 is shown memory usage of the passive client with using

the PeerHood2 implementation. As already mentioned, the Massif tool can point out

application memory leaks, which can be seen in PeerHood1 based passive client. The

difference of passive and active client memory usages was a bit larger than between

daemon executables.

Figure 22. Memory usage of passive client using PeerHood1

Figure 23. Memory usage of passive client using PeerHood2

Exmap

Second tool for memory usage measurements is Exmap tool [52]. The Exmap can

provide more detailed information of used memory. The Exmap can take into account of

71

shared memory between processes by providing information of effective, mapped and

resident memory in addition to heap memory. The result of Exmap memory measuring

is a snapshot of currently running process. For that reason, memory usage results are

average values of snapshots in time after minute, five minutes and ten minutes runtime.

In Figure 24 are shown different memory usage results. In all tests, resident and mapped

memory was same amount of memory. For that reason, resident and mapped memory

usages are grouped together in all related figures.

PeerHood1 Memory Usage

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Daemon Passive Client Active Client

kB

Effective Resident/Mapped

Writable

Sole Mapped

Resident/Mapped

Figure 24. PeerHood1 memory usages measured with the Exmap

Resident memory size is amount of virtual address base mapped to physical RAM

memory. The mapped memory size contains also amount of mapped virtual address

base, except memory can be stored into physical RAM or into swap space [52].

Consequently, all mapped memory in all tests is located in RAM memory and swapping

was not needed.

Effective resident and mapped memory metrics are more sophisticated metrics than

regular resident and mapped memory metrics. In the effective metrics, shared memories

are taken into account [52]. The Exmap recognizes shared pages and the page size are

divided by all process which uses the memory page [49].

72

The sole mapped size is same as the mapped size, although it contains only pages,

which are currently sole use by the process [52]. Hence, pages can be shared. In

addition, writable memory size shows memory currently stored to pages, which are

marked to be writable by the process.

Memory usages of the PeerHood2 implementation are shown in Figure 25. As the heap

usage difference was major, the virtual memory usage in the PeerHood2 is also much

more than in the PeerHood1 implementation.

PeerHood2 Memory Usage

0

1000

2000

3000

4000

5000

6000

7000

8000

Daemon Passive Client Active Client

kB

Effective Resident/Mapped

Writable

Sole Mapped

Resident/Mapped

Figure 25. PeerHood2 memory usages measured with the Exmap

The Exmap can show detailed memory usage for each dynamic library and executable.

Figure 26 shows separated portion of the Qt framework in the PeerHood2 memory

consumption. In the Figure 26 A) memory usage of all Qt libraries are shown for each

component: daemon, passive client and active client. In addition, Figure 26 B) contains

detailed information of how much for each Qt component uses memory in the

PeerHood2 daemon use.

73

With the Exmap, also the heap memory usages were measured. Results of heap memory

usages can be seen in Figure 27. The results are comparable and align with the results

from Massif measurements.

Used Heap Size

0

50

100

150

200

250

300

350

PH1 Daemon PH2 Daemon PH1 Passive
Client

PH2 Passive
Client

PH1 Active
Client

PH2 Active
Client

kB Heap Size

Figure 27. Heap memory usage differences between PeerHood1 and PeerHood2

6.4.2 CPU Usages

CPU usages of PeerHood implementations were measured with time command from

Linux command line tools. The time shows used wall time – how long application

actually were running – and also user and kernel times used by application under test.

Memory Usage of All Used Qt Libraries

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Daemon Passive Client Active Client

kB

Effective Resident/Mapped Writable Sole Mapped Resident/Mapped

A)

Memory Usage of Different Qt Libraries

0

200

400

600

800

1000

1200

1400

1600

QtGui
4.6.3

QtCore
4.6.3

QtNetwork
4.6.3

QtDBus
4.6.3

QtXml
4.6.3

QtBearer
1.0.2

QtSystemInfo
1.0.2

kB

Effective Resident/Mapped Writable Sole Mapped Resident/Mapped

B)
Figure 26. A) Proportion of Qt libraries in the PeerHood2 memory usage. B) Memory

usage for each Qt library in the PeerHood daemon use.

74

CPU usages were measured for all processes related to active-passive test set. That

includes the PeerHood daemon, passive client and active client. In Figure 28 are shown

results of CPU usages. The test set was run on 10 minutes. After 10 minutes,

applications were closed when application exit the time tool print result of applications

system time usage.

CPU usage time

0
0,05
0,1

0,15
0,2

0,25
0,3

0,35
0,4

0,45
0,5

P
e

e
rH

oo
d

1

P
e

e
rH

oo
d

2

P
e

e
rH

oo
d

1

P
e

e
rH

oo
d

2

User time System time

U
se

d
 C

P
U

 ti
m

e
o

f r
ea

l t
im

e
(%

)

Daemon
Passive client
Active client

Figure 28. PeerHood CPU usages

Both PeerHood implementations uses only small amount of CPU time. However,

differences in CPU usages between PeerHood implementations are significant. One

explanation for CPU usage difference can be system monitoring used by the PeerHood2

implementation. In that, WLAN listener is not used in the PeerHood1 on desktop Linux

environment.

6.5 Correctness

During the PeerHood2 implementation, API tests were implemented for verifying

correctness of the implementation. API tests can be though as one part of extensive

quality verification process. Moreover, more detailed evaluation and measuring

correctness requires a full quality assurance process and detailed application

requirements [12]. Larger quality assurance was not feasible in scope of this study.

75

Along with better correctness verification requires some test bed for testing device and

service discovering from network neighborhood using different network technologies.

6.6 Testability

PeerHood2 was implemented with the set of API tests. Mostly these tests use APIs

provided by the QTest test library. The QTest provides a good tool set for Qt based

components testing. Test coverage’s for the API tests were measured with the gcov [53]

tool and output generated with lcov [54] tool. The results of the test coverage’s are

shown in Table 1.

Table 1. Test coverage results for the PeerHood2

Module Line Coverage (%) Function Coverage (%)

PH2Daemon N/A N/A

PH2Common 92,7 74,0

PH2Library 89,3 67,9

PH2Settings 98,7 82,6

PH2Register 94,0 82,6

Using code coverage tools with testing can provide valuable information to test

developers. The test coverage data is good signal of how well and inclusive tests are.

Hence, test coverage helps monitoring system testability – how well codes are covered

by tests. However, the code coverage does not guarantee quality of tests and are correct

things actually tested.

6.7 Flexibility

Like the existing PeerHood implementation also the new PeerHood implementation

utilizes common design idioms and patterns for trying to keep PeerHood design flexible

and changeable. The new PeerHood implementation also uses several independent

shared libraries. With shared libraries, the middleware can be updated or changed by

replacing only particular component or components without compiling entire

76

middleware. When using shared libraries and not compiling entire middleware a binary

compatibility must guaranteed between components.

The Qt framework provides signals and slots mechanism, which can be used to increase

system flexibility. With the signals and slots, components and classes can be loosely

coupled. Consequently, dependencies of components can be decreased. Signals can be

connected or disconnected without communication with related component. Therefore,

application extension can be easier if signals and slots are used.

6.8 Usability

Even though PeerHood is API for third party applications, usability can be evaluated

[13]. However, usability evaluation requires API usage evaluation with several

application developers. The usability evaluation was out of scope of this thesis work.

The PeerHood usability is look after with keeping PeerHood documentation in good

level and up to date. The PeerHood2 internal classes are documented with the Doxygen

[55] to help understanding the internals of the PeerHood. In addition, PeerHood API

documentation is generated with the Doxygen for the third party application developers.

The use of general data types and structures from the Qt framework decreases learning

curve of the PeerHood API. The PeerHood1 contains own implementations of device

and service lists. Instead of using common lists, the PeerHood1 API publishes own list

structures, which third party application developers must learn as well.

6.9 Integrity

The PeerHood is research project and security of the PeerHood is not concentrated

really much. The integrity issues were leave out of scope and data integrity of the

PeerHood2 is keep as it is in the PeerHood1. The only significant change is use of

dynamic library for the data registry. The use of dynamic library can enable replacement

of data registry component. Replacing existing data component can enable some data

manipulation and fake data can be provided. However, this is not probably a huge issue.

77

6.10 Portability

Maybe one of the biggest advantages of implementing the PeerHood on top of the Qt

framework is get excellent portability across of different platforms and devices. The Qt

framework itself provides a good portability across supported platforms. The most of

the PeerHood is implemented as a platform independent way.

Some of PeerHood functionalities cannot be implemented with tools provided by the Qt

framework. These parts need to be implemented with platform specific functions and

will cause some porting effort when porting PeerHood from a platform to another. The

Qt framework does not support for example using ICMP (Internet Control Message

Protocol) protocol [56] which is used in active device monitoring. In addition, when

implementing Bluetooth network plugin it must be done in platform specific

implementation. In that, the Qt framework does not provide the Bluetooth controlling

functionalities. Bluetooth device control is needed to publish PeerHood service to be

found with Bluetooth Service Discovery Protocol (SDP) [57, 22].

When implementing a platform specific code into cross-platform code, use of

abstraction is important to keep portability in good level. In addition, platform specific

code is good to separate from other sources in the project, so that platform specific

codes are only included into build when compiling to specific platform. Moreover,

adding preprocessor conditions makes code harder to read and understand if a lot of

platform specific code is embedded into generic code.

One option to use of ICMP based device monitoring is to implement device pinging on

top of the UDP protocol. In this way, the device monitoring can be implemented in the

cross-platform manner. In addition, in many networks the ICMP ping is blocked by the

firewalls. Thus, the UDP based ping implementation can possible provide better

availability of the active device monitoring functionality.

78

6.11 Reusability

The system architecture in the PeerHood2 is based on multiple dynamic components.

The PeerHood consist two different kind dynamic component uses. Independent and

common functions were separated in multiple components to be linked to the PeerHood

in compile time. In the PeerHood1 some of common functionalities was built in the both

PeerHood daemon executable and the PeerHood library, which increases the size of

binary.

As one of the PeerHood requirements was, the PeerHood networks must be extendable

with the plugins. These network plugins are implemented as runtime loadable dynamic

libraries. Hence, a new network supports can be added dynamically into PeerHood. The

network plugins can use services from linkable plugins provided by the PeerHood.

When using component based architecture with the Qt framework the common

components can be shared across different platforms. In addition, utilizing the signals

and slots mechanism components coupling can be reduced. The loose coupling between

components enables flexible component reusability.

6.12 Interoperability

The PeerHood concept provides a good interoperability by itself with dynamically

loaded plugins. With new plugins PeerHood interoperation of other systems can be

extended. In addition, the data stream functionalities in the Qt framework provide easy

way to implement interfaces with good interoperability. As, the data stream

automatically convert data to the most significant byte (MSB) order format.

79

7 DISCUSSIONS AND CONCLUSIONS

The objectives for this thesis were set to evaluate the feasibility of Qt framework for

advanced communication middleware use and to analyze the advantages and

disadvantages for using the Qt. The feasibility study was done by remake existing Peer-

to-Peer middleware concept using the Qt framework and the Qt mobility extension

APIs. The advantages and disadvantage of the Qt framework were evaluated in the

PeerHood quality evaluation. The new PeerHood quality was evaluated with the defined

quality factors.

Before Qt based implementation was done, the PeerHood concept and requirements of

that was clarified. In addition, the basic knowledge for use of the Qt framework and the

Qt Mobility extension was gathered. The Qt framework study was done in

communication middleware point of view by leaving all GUI related functions out of

scope.

7.1 Qt Framework in Middleware Use

The PeerHood concept was previously implemented on Linux environment to be

available in different kind Linux based systems, like Internet tablets or mobile phones.

The new PeerHood implementation was decided to remake using the Qt framework.

Obviously, the previous PeerHood system was used as a base for the new

implementation. The new PeerHood implementation was not targeted mainly on any

specific platforms. Purpose was to create the new PeerHood to be cross-platform

middleware by using the Qt framework.

The new PeerHood is implemented almost fully with the Qt framework in cross-

platform manner. Currently, the only exception is the ICMP ping implementation,

which is used only in the WLAN network plugin implementation. All other parts of the

new PeerHood implementation are portable between different systems. In the

development phase, the PeerHood was tested with the 32 bits and 64 bits Windows 7

and the Ubuntu Linux environments. The portability of the PeerHood implementation is

80

tested only with these platforms. However, the new PeerHood implementation should

be easily portable to the Maemo, Mac OS X and Symbian platforms. Some changes to

application deployment might need to be done for each platform.

The Qt based PeerHood implementation was evaluated mainly by comparing it to the

existing PeerHood implementation. Especially, resource usage comparisons between

these two implementations were very instructive. The differences of CPU and memory

usages of the new PeerHood implementation and the old one were significant.

Obviously, adding a new abstraction layer will increase the system resource usage. Even

though the difference was large, the resource usages for the new PeerHood

implementation were in satisfied and acceptable level for use of mobile devices as well.

Probably the biggest advantage of using the Qt framework is portability of it. The Qt

framework offers very rich set of fully portable APIs. Usually, communication

middleware’s are very depended on underlying system. Because of, them uses many

platform specific APIs, like sockets, threads and processes. With the Qt framework all

these functionalities can be used in cross-platform way.

Second advantage of using the Qt framework is provided event mechanisms. Notably,

the signals and slots mechanism provides powerful event mechanism. Using the signals

and slots, components can be more loosely coupled and provide almost transparent

event delivering from object to another. Hence, the signals and slots mechanisms enable

more flexible system design. For event-driven systems – like the PeerHood is – use of

the Qt framework does not constraint to any particular system architecture.

As a conclusion of the Qt framework, it provides very sophisticated functionalities for

the communication middleware use. With the Qt framework, a lot of middleware

functionalities can be implemented to be portable cross-platform components. Even

though, the small disadvantage of the system resource usage, the Qt provide mature and

efficient environment for flexible cross-platform application and middleware

development.

81

7.2 Future Work

The PeerHood concept is very interesting way to share services between devices in

network neighborhood. With the Qt based implementation a new use cases for the

PeerHood can be implemented more easily. The good portability of the PeerHood

enables use of PeerHood in many platforms including mini laptops, mobile devices,

smart phones and desktop computers. The large scale of available systems can provide

totally different type systems and better interoperability between mobile and fixed

devices.

The implemented Qt based PeerHood system is only a small function set for to prove

feasibility of the Qt framework of middleware programming use. In the future a new

network plugins can be implemented to provide more extended network use. The

PeerHood1 implementation contains network plugins for the GPRS and Bluetooth

networks in addition of WLAN and localhost plugins. At least, these two network

plugins could be implemented to the new PeerHood for enabling more advanced

communication in network neighborhood.

The Qt Mobility extension contains API for the service framework. The Qt service

framework has a similar aspect than the PeerHood system by sharing services.

PeerHood itself is easy to modify so that PeerHood service is available from service

discovery. More interesting study could be integrating the PeerHood system into service

framework, so that each local and remote service can be found through of the Qt service

framework API. In addition, service publishing to remote devices would be done with

service framework. Basically, in integration the PeerHood API is replaced with the Qt

service framework and the PeerHood daemon provide backend extension for the service

framework.

Another usable addition to the PeerHood could be the Qt meta-object language (QML)

[58] support in the PeerHood API. The QML support is for direct use of PeerHood API

from the QML context. The QML and Qt Quick [58] enable rapid application UI

development for the Qt applications. The QML was introduced in the 4.6 Qt version and

the Qt Quick is provided in the Qt 4.7 version.

82

REFERENCES

1. James Gosling, Bill Joy, Guy Steele and Gilad Brancha. The Java™ Language

Specification. Second edition. Prentice Hall. 2005. 688 pages. ISBN 978-0-321-

24678-3.

2. Jeffrey Richter. CLR via C#. Second edition. Microsoft Press. 2006. 693 pages.

ISBN 978-0-7356-2163-3. .

3. Nokia. Qt Modular Class Library [Internet page]. [referred 4.9.2010]. Available:

http://qt.nokia.com/products/library .

4. Nokia. Supported platforms for the Qt framework [Internet page]. [referred

4.9.2010]. Available: http://doc.trolltech.com/4.6/supported-platforms.html

.

5. Nokia. Qt Mobility [Internet document]. [referred 5.9.2010].

Available: http://qt.nokia.com/files/pdf/qt-mobility-whitepaper-1.0.0 .

6. Nokia. The Qt framework licensing options [Internet page]. [referred 5.9.2010].

Available: http://qt.nokia.com/products/licensing .

7. Free Software Foundation. The GNU General Public License and the GNU

Lesser General public license [Internet page]. Updated 27.4.2010. [referred

4.9.2010] Available: http://www.gnu.org/licenses/ .

8. Wu Ming-Wei and Lin Ying-Dar. Open Source Software Development: An

Overview. Computer. vol. 46, issue 6. pages 33-38. ISSN 0018-9162.

9. Jari Porras, Petri Hiirsalmi, Ari Valtaoja. Peer-to-peer Communication

Approach for a Mobile Environment. 37th IEEE Annual Hawaii International

Conference on System Sciences. 2004. ISBN- 0-7695-2056-1 .

83

10. Stephen H. Kan. Metrics and Models in Software Quality Engineering. 1st

Edition. Addison-Wesley Publishing Company. 1994. 344 pages. ISBN 0-201-

63339-6.

11. B. W. Boehm, J. R. Brown, M. Lipow. Quantitative evaluation of software

quality. Proceedings of the 2nd international conference on Software

engineering. 1976. .

12. Roger S. Pressman. Software Engineering: a Practitioner’s Approach. 5th

Edition. McGraw-Hill. 2001. 860 pages. ISBN 0-07-365578-3.

13. Steven Clarke. Measuring API Usability. Dr. Dobbs Journal. May 2004. Pages

S6-S9.

14. Erich Gamma, Richard Helm, Ralph Jonson, John Vlissides, Design patterns –

Elements of Reusable Object-Oriented software. Addison-Wesley. 1995. 416

pages. ISBN 0-201-63361-2. .

15. Jie-Cherng Chen and Sun-Jen Huang. An empirical analysis of the impact of

software development problem factors on software maintainability. Journal of

Systems and Software. Volume 82, Issue 6. Pages 981-992. Jun 2009.

16. Indar Sugiarto. Static Code Analysis for Software Quality Improvement: A Case

Study in BCI Framework Development. Jurnal Informatika. January 2008. Vol

9. No 2. .

17. Linda Rosenberg, Ted Hammer, and Jack Shaw. Software metrics and

reliability. Technical report, NASA Software Assurance Technology Center.

November, 1998. .

84

18. Jerry Gao and Ming-Chih Shih. A Component Testability Model for Verification

and Measurement. Computer Software and Applications Conference, 2005.

COMPSAC 2005. 29th Annual International. pages 211-218. July 26-28. 2005.

ISSN: 0730-3157. .

19. Andrew T. Cambell, Geoff Coulson and Michael E. Kounavis. Managing

complexity: Middleware explained. IT Professional. IEEE Computer Society.

pages 22–28. September/October 1999. .

20. Rüdiger Schollmeier. A Definition of Peer-to-Peer Networking for the

Classification of Peer-to-Peer Architectures and Applications. In Proceedings of

the IEEE 2001 International Conference on Peer-to-Peer Computing (P2P2001).

Linkping, Sweden. August 27-29. 2001. .

21. Maemo community. Maemo Software Platform [Internet page]. [referred

23.3.2010]. Available: http://maemo.org/intro/platform/. .

22. PeerHood project. PeerHood subsystem specification, version 0.2 [development

resource]. [referred 5.9.2010, SVN revision 186]. Available:

https://www2.it.lut.fi/svn/public/peerhood/trunk/PeerHood_documentation/speci

fication.doc.

23. PeerHood project. Functional and non-functional PeerHood requirements

[Internet page]. [referred 5.9.2010]. Available:

http://www2.it.lut.fi/wiki/doku.php/peerhood/specification.

24. Arto Hämäläinen, Jari Porras and Pekka Jäppinen. Service Discovery in Mobile

Peer-to-Peer Environment. 5th Workshop on Applications of Wireless

Communications (WAWC'07), 2007 .

25. Nokia. 4.6 Qt Reference Documentation [Internet page]. [referred 25.9.2010]

Available: http://doc.qt.nokia.com/4.6/index.html. .

85

26. KDE Community. A Brief History of KDE Project [Internet page]. [referred

23.3.2010]. Available: http://www.kde.org/community/history/. .

27. KDE Community. A New KDE Project Announcement [Internet page]. [referred

23.3.2010]. Available: http://www.kde.org/announcements/announcement.php

28. Johan Telin. Foundations of Qt Development. Apress. 2007. 528 pages. ISBN

978-1-59059-831-3.

29. Nokia. Introduction to Qt object model [Internet page]. [referred 20.8.2010].

Available: http://doc.qt.nokia.com/4.6/object.html. .

30. Nokia. Introduction to Qt Meta-object system [Internet page]. [referred

20.8.2010]. Available: http://doc.qt.nokia.com/4.6/metaobjects.html. .

31. Nokia. Introduction to Qt signals and slots system [Internet page]. [referred

21.8.2010]. Available: http://doc.qt.nokia.com/4.6/signalsandslots.html. .

32. Nokia. Introduction to Qt events [Internet page]. [referred 21.8.2010]. Available:

http://doc.qt.nokia.com/4.6/eventsandfilters.html.

33. Douglas Schmidt, Michael Stal, Hans Rohnert and Frank Buschmann. Pattern-

Oriented Software Architecture, Patterns for Concurrent and Networked Objects.

Volume 2. John Wiley & Sons. 2000. 633 pages. ISBN 0471606952.

34. The Unicode consortium. Unicode 4 specification [Internet document]. [referred

23.8.2010]. Available: http://www.unicode.org/versions/Unicode4.0.0/. .

35. Nokia. Qt containers explained [Internet page]. [referred 23.8.2010]. Available:

http://doc.qt.nokia.com/4.6/containers.html.

86

36. Freedesktop.org project. Introduction to D-BUS [Internet page]. [referred

26.8.2010]. Available: dbus.freedesktop.org. .

37. Nokia. QTest library manual [Internet page]. [referred 24.8.2010]. Available:

http://doc.qt.nokia.com/4.6/qtestlib-manual.html

38. Nokia. qmake manual [Internet page]. [referred 25.8.2010]. Available:

http://doc.qt.nokia.com/4.6/qmake-manual.html

39. Nokia. Qt Mobility API documentation [Internet page]. [referred 9.9.2010].

Available: http://doc.qt.nokia.com/qtmobility-1.0/. .

40. Nokia. Qt Mobility API platform compatibility table [Internet page]. [referred

9.9.2010]. Available: http://doc.qt.nokia.com/qtmobility-1.0/#platform-

compatibility.

41. Matthias Ettrich. Designing Qt-Style C++ APIs [Internet document]. Trolltech.

Qt Quarterly. 2005. [referred 3.9.2010]. Available:

http://doc.trolltech.com/qq/qq13-apis.html.

42. Qt Gitorious. Qt Coding Conventions [Internet page]. Updated 25.2.2010.

[referred 3.9.2010]. Available: http://qt.gitorious.org/qt/pages/QtCodingStyle.

43. Jussi Laakkonen. PeerHood as UMSIC middleware module. Master’s Thesis.

Lappeenranta University of Technology. 2009. .

44. Herb Sutter. Pimples--Beauty Marks You Can Depend On. C++ Report, from

More C++ Gems. Cambridge University Press. 2000. ISBN 978-0521786188.

45. PeerHood project. PeerHood1 implementation [version control system].

[referred 30.8.2010, SVN revision 170]. Available:

https://www2.it.lut.fi/svn/public/peerhood/trunk/PeerHood_core.

87

46. PeerHood2 implementation [version control system]. [referred 30.8.2010, Git

tree sha1 9723046]. Available: http://www.gitorious.org/peerhood/peerhood2.

47. Campwood Software. SourceMonitor, a static code analyzing tool [Internet

page]. [referred 16.9.2010]. Available:

http://www.campwoodsw.com/sourcemonitor.html.

48. Steve McConnell. Code Complete. Second Edition. Microsoft Press. 2004. 960

pages. ISBN: 0735619670. .

49. Balister Philip, Dietrich Carl and Reed, Jeffrey H. Memory Usage of Software

Communication Architecture Waveform. SDR Forum Technical Conference.

2007.

50. The Valgrind Developers. Massif tool in the Valgrind [Internet page]. [referred

18.9.2010]. Available: http://valgrind.org/docs/manual/ms-manual.html

51. John Nordby. MassifG – a Massif output visualizing tool [Internet page].

Updated 8.2.2010. [referred 19.9.2010]. Available:

http://www.jonnor.com/2010/08/introducing-massifg-0-1/.

52. John Berthels. Exmap – a memory analyzing tool [Internet page]. [referred

19.9.2010]. Available: http://www.berthels.co.uk/exmap/. .

53. The GCC team. gcov – a tool for instrument and measuring code coverage

[Internet page]. [referred 23.9.2010]. Available:

http://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

54. Linux test project. lcov – a tool for generate readable output of the gcov results

[Internet page]. Update 16.8.2010. [referred 23.9.2010]. Available:

http://ltp.sourceforge.net/coverage/lcov.php.

88

55. Dimitri van Heesch. Doxygen – a source code documentation tool [Internet

page]. [referred 23.9.2010] Available: www.doxygen.org/.

56. J. Postel. Internet Control Message Protocol (ICMP) RFC [Internet document].

Network Working Group. 1981. [referred 17.9.2010]. Available:

http://www.ietf.org/rfc/rfc792.txt.

57. Bluetooth Special Interest Group. Bluetooth specification [Internet document].

[referred 18.9.2010]. Available:

www.bluetooth.com/English/Technology/Building/Pages/Specifcation.aspx.

58. Nokia. Introduction to Qt Quick for C++ developers [Internet document].

[referred 26.10.2010]. Available: http://qt.nokia.com/files/pdf/qt-quick-for-c-

developers

APPENDIX 1. Existing PeerHood Interface

/**
 * @memo Definition of the PeerHood interface.
 * @doc Definition of the PeerHood interface. This interface defines the public
 * API of the whole PeerHood library.
 *
 */
class MPeerHood
{
 public:
 /**
 * @memo Default destructor.
 * @doc Default destructor. Currently this does n othing but is here because
 * base classes without a destructor are <i>ev il</i>.
 *
 * @return none
 */
 virtual ~MPeerHood() {};

 /**
 * @memo Method used to create a new instance of the PeerHood interface.
 * @doc Method used to create a new instance of t he PeerHood interface. The
 * only way to create the instance is via this me thod. When this method is
 * called for the very first time a new instance of the interface is created.
 * Subsequent calls will return a pointer to the existing instance.
 *
 * @param aCallback Pointer to the callback that will receive notifications
 * from the PeerHood library.
 *
 * @return pointer to a PeerHood instance
 */
 static MPeerHood* GetInstance(CBasicCallback* aCallback = NULL);

 /**
 * @memo Initializes the PeerHood instance.
 * @doc Initializes the PeerHood instance. These routines include connecting
 * to the PeerHood daemon and setting up the debu g output. In addition, all
 * internal variables are initialized. This metho d should be called only
 * once.
 *
 * @param aArgc The number of parameters.
 * @param aArgv Array containing the parameters.
 *
 * @return true if the object was initialized suc cesfully
 */
 virtual bool Init(int aArgc, char** aArgv) = 0;

 /**
 * @memo Gets a list of all nearby devices and th eir services.
 * @doc Gets a list containing all nearby devices and their services and
 * resources. Note that this function reserves th e memory required by the
 * list and it's caller's responsibility to free it. Also note that the
 * returned list contains <i>all</i> devices in r ange - inluding those
 * without PeerHood capability. If no devices are found then the returned
 * list is empty.
 *
 * @return a list of found devices or NULL if an error occurred
 */
 virtual TDeviceList* GetDeviceListL() = 0;

 (continue)

APPENDIX 1. (continued)

 /**
 * @memo Returns a list of devices that offer the asked service.
 * @doc This function builds and returns a list t hat contains all devices
 * that offer the requested service. Note that th e caller must free the
 * memory allocated for the returned list. If no devices are found then the
 * returned list will be empty.
 *
 * @param aServiceName The service that should be looked for.
 *
 * @return a list of devices that offer the reque sted service or NULL if an
 * error occurred
 */
 virtual TDeviceList* GetDeviceListL(const std::string* aServiceName) = 0;

 /**
 * @memo Returns all locally registered services.
 * @doc Returns all locally registered services o n a list. The memory
 * allocated for the returned list is not freed a utomatically so the caller
 * must take care of it. If no services are regis tered then the returned list
 * will be empty.
 *
 * @return a list of locally registered services or NULL in the case of an
 * error
 */
 virtual TServiceList* GetLocalServiceListL() = 0;

 /**
 * @memo Creates a connection to a local service.
 * @doc Creates a connetion to a local service.
 * Destination address and technology prototype a re taken from the parameters. If a
 * connection object is returned then it's caller 's responsibility to delete
 * it in a controlled way.
 *
 * @param aService The service to connect to.
 *
 * @return a new connection object or NULL if an error happened
 */
 virtual MAbstractConnection* Connect(TServiceIterator& aService) = 0;

 /**
 * @memo Creates a connection to a service on ano ther PeerHood capable device.
 * @doc Creates a connetion to a service on anoth er PeerHood capable device.
 * Destination address and technology prototype a re taken from the parameters. If a
 * connection object is returned then it's caller 's responsibility to delete
 * it in a controlled way.
 *
 * @param aDevice The remote device.
 * @param aServiceName Remote service's name.
 *
 * @return a new connection object or NULL if an error happened
 */
 virtual MAbstractConnection* Connect(TDeviceIterator& aDevice,

 const std::string aServiceName) = 0;

 (continue)

 APPENDIX 1. (continued)

 /**
 * @memo Registers a service so that other PeerHo od devices can find it.
 * @doc Registers a service so that other PeerHoo d devices can find and use
 * it. This method contacts the PeerHood daemon t hat in turns starts to
 * advert the service through its currently runni ng plugins.
 *
 * @param aName The name of the service.
 * @param aAttributes Service's attributes in one string.
 * @param aPort Service's port.
 *
 * @return port number if the service could be re gistered, otherwise 0
 */
 virtual unsigned short RegisterService(const std::string& aName,
 const std::string& aAttributes,
 const std::string& aPort) = 0;

 /**
 * @memo Registers a service so that other PeerHo od devices can find it.
 * @doc Registers a service so that other PeerHoo d devices can find and use
 * it. This method contacts the PeerHood daemon t hat in turns starts to
 * advert the service through its currently runni ng plugins.
 *
 * @param aName The name of the service.
 * @param aAttributes Service's attributes in one string.
 *
 * @return port number if the service could be re gistered, otherwise 0
 */
 virtual unsigned short RegisterService(const std::string& aName,
 const std::string& aAttributes) = 0;

 /**
 * @memo Unregisters a previously registered ser vice.
 * @doc Unregisters a previously registered servi ce. After unregistration
 * other devices are unable to find and call the unregistered service. Note
 * that the unregistration procedure doesn't dele te the service object so
 * this should be done by the actual server appli cation.
 *
 * @param aName The name of the service to be unr egistered.
 *
 * @return true if the service could be unregiste red
 */
 virtual bool UnregisterService(const std::string& aName) = 0;

 /**
 * @memo Unregisters a previously registered ser vice.
 * @doc Unregisters a previously registered servi ce. After unregistration
 * other devices are unable to find and call the unregistered service. Note
 * that the unregistration procedure doesn't dele te the service object so
 * this should be done by the actual server appli cation.
 *
 * @param aName The name of the service to be unr egistered.
 *
 * @return true if the service could be unregiste red
 */
 virtual bool UnregisterService(const std::string& aName,
 const std::string& aPort) = 0;

 (continue)

APPENDIX 1. (continued)

/**
 * @memo Sets a device under constant monitoring.
 * @doc Sets a device under constant monitoring. If a change (out of range,
 * back in range) takes place then the registered callback interface is
 * notified. An application must derive from the <code>CBasicCallback</code>
 * class and implement the defined methods in ord er to receive callback
 * events.
 *
 * @param aDevice The device that should be monit ored.
 *
 * @return true if the monitoring could be starte d
 */
 virtual bool MonitorDevice(TDeviceIterator& aDevice) = 0;

 /**
 * @memo Stops the monitoring of a device.
 * @doc Stops the monitoring of a device. After t his function is called the
 * given device is no longer monitored.
 *
 * @param aDevice The target device.
 *
 * @return true if the monitoring could be cancel ed succesfully
 */
 virtual bool UnmonitorDevice(TDeviceIterator& aDevice) = 0;

 /**
 * @memo Sets a device under constant monitoring using signal-level monitoring.
 * @doc Sets a device under constant monitoring u sing signal-level monitoring.
 * If a change (out of range,
 * back in range) takes place then the registered callback interface is
 * notified (Not currently used). An application must derive from the
 * <code>CBasicCallback</code> class and implemen t the defined methods
 * in order to receive callback events.
 *
 * @param aDevice The device that should be monit ored.
 *
 * @return true if the monitoring could be starte d
 */
 virtual bool SignalMonitorDevice(TDeviceIterator& aDevice) = 0;

 /**
 * @memo Stops the signal-level monitoring of a d evice.
 * @doc Stops the signal-level monitoring of a de vice. After this function is called
 * the given device is no longer monitored.
 *
 * @param aDevice The target device.
 *
 * @return true if the monitoring could be cancel ed succesfully
 */
 virtual bool SignalUnmonitorDevice() = 0;

 /**
 * @memo Sets the plugin prefered by the current application (Not used currently).
 * @doc Sets the plugin prefered by the current a pplication. This means that
 * PeerHood will try to use the given plugin when ever possible. This method
 * will override the value read from the configur ation file. The prefered
 * plugin can be changed during runtime. However, it affects only the actions
 * performed after the call i.e. the running serv ices are not affected.
 *
 * @param aPluginName The name of the prefered pl ugin.
 *
 * @return none
 */
 virtual void SetPreferedPlugin(const char* aPluginName) = 0;
};

APPENDIX 2. Feature Comparison between PeerHood1 and

PeerHood2

Requirement PeerHood 1 PeerHood 2
Device discovery Implemented Implemented

Service discovery Implemented Implemented

Service sharing Implemented Implemented

Connection

establishment
Implemented Implemented

Active monitoring of a

device

Implemented; signal level

and ping based monitoring

Implemented; signal level and

ping based monitoring. Ping

based implementation is only

available on Linux environment

Data transmission

between devices
Implemented Implemented

Seamless connectivity Implemented

Not implemented;

implementation was left out of

scope

Network management Implemented Implemented

Component

management
Implemented

Not implemented; event system

implemented for network

plugins. The Qt and Qt Mobility

provides needed events

Communication

concurrency base

Implemented; based on

multithreading

Implemented; single thread

based on Qt event loop system

Event interface
Implemented; based on

callback interface

Implemented; based on use of

Qt signals

Plugin architecture for

networks

Implemented; WLAN,

GPRS, Bluetooth and

localhost plugins are

available

Implemented; WLAN and

localhost plugins are available.

User control Not implemented Not implemented

APPENDIX 3. New PeerHood API

/** **************************
**
** Copyright (C) 2010 Kimmo Kolehmainen,
** kimmo@omamaailma.net,
** www.omamaailma.net
**
** Copyright (C) 2010 Lappeenranta University of T echnology,
** Information Technology,
** Communications software labo ratory
**
** All rights reserved.
**
** PeerHood is free software: you can redistribute it and/or modify
** it under the terms of the GNU Lesser General Pu blic License
** version 2 as published by the Free Software Fou ndation.
**
** PeerHood is distributed in the hope that it wil l be useful,
** but WITHOUT ANY WARRANTY; without even the impl ied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR POSE. See the
** GNU Lesser General Public License for more deta ils.
**
** You should have received a copy of the GNU Less er General Public
** License along with PeerHood. If not, see <http: //www.gnu.org/licenses/>.
**
*** *************************/

#ifndef PEERHOOD_H
#define PEERHOOD_H

// INCLUDES
#include <QtCore/QObject>
#include <QtCore/QStringList>

#if defined(PHLIBRARY_LIBRARY)
define PHLIBRARYSHARED_EXPORT Q_DECL_EXPORT
#else
define PHLIBRARYSHARED_EXPORT Q_DECL_IMPORT
#endif

// NAMESPACES
namespace PH {

// FORWARD DECLARATIONS
class Device;
class Service;
class AbstractConnection;
class PeerHoodPrivate;

/**
 * @enum EDeviceStatus
 * Enumeration for device status provided by monit or functionalities
 * @value DeviceLost, event for monitored device f ound
 * @value DeviceFound, event for monitored device lost
 * @value WeakLink, event for weak link, weak link is notified when signal
 * strength goes below of 25% of maximum si gnal strength
 * @value VeryWeakLink, evetn for very weak link, very weak link is notified
 * when signal strength goes below of 10% o f maximum signal strength
 */
enum EDeviceStatus
{
 DeviceLost = 0x00,
 DeviceFound,
 WeakLink,
 VeryWeakLink
};

 (continue)

APPENDIX 3. (continued)

/**
 * @class PeerHood
 * @brief PeerHood class provide user access to Pe erHood middleware. With this
 * class user can get services and devices from network neighbourhood
 * and initiate connection to services. Use r can also set devices to
 * be monitored and get notifications when device is out of range and
 * back in range. With PeerHood user can re gister new services to be
 * published on other devices and local Pee rHood applications.
 * @sa Device Service AbstractConnection
 */
class PHLIBRARYSHARED_EXPORT PeerHood : public QObject
{
 Q_OBJECT
public:

 /**
 * instance
 * Singleton implementation, this is only way to access to peerhood
 * instance
 * @return PeerHood*, singleton peerhood insta nce, ownerhip of instance
 * is not moved.
 */
 static PeerHood* instance();

 /**
 * ~PeerHood
 * default virtual c++ destructor
 */
 virtual ~PeerHood();

 /**
 * init
 * init MUST call before peerhood can be used.
 * @return bool, status of initialization. Tru e if peerhood is ready to
 * use and if false is returned peerho od cannot use. The most
 * probably in case of false is return ed the peerhood daemon is
 * not running.
 */
 virtual bool init();

 /**
 * deviceList
 * @return const QList<Device*>, list of curre ntly available devices. This
 * is constantly changing information and next call content of the
 * list might be totally different. Li st is a snapshot of current
 * situation. Ownerships of device ins tances are moved to caller
 * and caller is responsible to free i nstances when they are not
 * needed.
 */
 virtual const QList<Device*> deviceList();

 /**
 * deviceList
 * Returns filtered device list.
 * @param const QString&, service which wanted to be in the returned
 * devices
 * @return QList<Device*>, returns filtered de vice list. All returned
 * devices will have given service. Ow nerships of device instances
 * are moved to caller and caller is r esponsible to free instances
 * when they are not needed.
 */
 virtual const QList<Device*> deviceList(const QString& service);

 (continue)

APPENDIX 3. (continued)

 /**
 * localServiceList
 * @return const QList<Service*>, list of curr ently available services
 * registered on local device. This is constantly changing
 * information and next call content o f the list might be totally
 * different. List is a snapshot of cu rrent situation. Ownerships
 * of device instances are moved to ca ller and caller is
 * responsible to free instances when they are not needed.
 */
 virtual const QList<Service*> localServiceList();

 /**
 * registerService
 * Method provide ability to register services to be published to other
 * devices and local PeerHood applications.
 * @param const QString&, name of service
 * @param const QStringList&, attributes for s ervice
 * @param unsigned int, preferred port to be u sed
 * @return int, used service port
 */
 virtual int registerService(const QString& name,
 const QStringList& attributes = QStringList(),
 unsigned int port = 0);

 /**
 * unregisterService
 * @param const QString&, name of service to b e removed. The removed
 * service must be registered in the sa me process
 * @param unsigned int, port number of service to be removed. This value is
 * optional. Status of remove operation , true if service is
 * removed.
 * @return bool
 */
 virtual bool unregisterService(const QString& name, unsigned int port = 0);

 /**
 * connectToService
 * Initiate connection to service in given dev ice.
 * @param Device*, device where wanted to be c onnected
 * @param const QString&, name of service wher e wanted to connected.
 * @return AbstractConnection*, connected conn ection instance or null if
 * cannot connect or service is not av ailable. Ownership of
 * instance is moved to method caller.
 */
 virtual AbstractConnection* connectToService(Device* devic e,

 const QString& servicename);

 /**
 * connectToService
 * Connect to service located on local device.
 * @param Service*, service which wanted to be connected. Ownership of
 * instance is not moved.
 * @return AbstractConnection*, connected conn ection instance or null if
 * cannot connect. Ownership of instan ce is moved to method caller
 */
 virtual AbstractConnection* connectToService(Service* serv ice);

 /**
 * hasPendingConnection
 * Method for check is pending connections in given port.
 * @param int, (service)port number
 * @return bool, true if pending connection(s) available.
 */
 virtual bool hasPendingConnections(int servicePort);

 (continue)

APPENDIX 3. (continued)

 /**
 * nextPendingConnection
 * Method for accepting pending connection for service.
 * @param int, (service)port number.
 * @return AbstractConnection*, Accepted conne ction if any available.
 * If there is no connections pendign for that service port
 * null is returned. Ownership of inst ance is moved to method
 * caller.
 */
 virtual AbstractConnection* nextPendingConnection(int servicePort);

 /**
 * monitorDevice
 * Start monitor actively given device.
 * @param Device*, device which wanted to bein g monitored. Ownership is
 * not moved.
 * @return bool, true if monitoring was starte d succesful.
 */
 virtual bool monitorDevice(Device* device);

 /**
 * unMonitorDevice
 * Stop device monitoring.
 * @param Device*, Device which are monitored and wanted to stop
 * monitoring. Ownership is not moved.
 */
 virtual void unMonitorDevice(Device* device);

 /**
 * signalMonitorDevice
 * Start signal monitoring given device. Conne ction strenght which are
 * monitored depends a lot of connection type. It can be signal strength
 * between device to device or connection betw een device to access point.
 * @param Device*, device which connection is wanted to be monitored.
 * Ownership of instance is not moved.
 * @return bool, true if monitoring was starte d succesful.
 */
 virtual bool signalMonitorDevice(Device* device);

 /**
 * signalUnMonitorDevice
 * Stop signal monitoring of given device.
 * @param Device*, Device which are monitored and wanted to stop
 * monitoring. Ownership is not moved
 */
 virtual void signalUnMonitorDevice(Device* device);

signals:
 /**
 * newConnection
 * This signal is emitted when new connection is arrived. PeerHood cannot
 * accept connections before this signal is no t connect to any slot.
 * @param int, service port number, where conn ection is tried to establish
 * @param int, id for connection.
 */
 void newConnection(int servicePort, int connectionId);

 /**
 * deviceStatusChanged
 * This signal is emitted when monitored devic e connection changed.
 * @param PH::EDeviceStatus, notified event.
 * @param QString, address of devices which st atus was changed.
 */
 void deviceStatusChanged(PH::EDeviceStatus status, QStr ing address);

 (continue)

APPENDIX 3. (continued)

protected:
 /**
 * Singleton implementation. Prevent other ins tance creations.
 */
 explicit PeerHood(QObject *parent = 0);

 /**
 * This is for monitoring is newConnection sig nal connected-
 */
 void connectNotify(const char* signal);
 /**
 * This is for monitoring is newConnection sig nal disconnected.
 */
 void disconnectNotify(const char* signal);

protected: // data
 // private implementation to protect binary com patibility
 PeerHoodPrivate* d;

private:
 // Disable copy of PeerHood instance.
 Q_DISABLE_COPY(PeerHood);
};

} //namespace PH

#endif // PEERHOOD

