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This thesis studies properties of transforms based on parabolic scaling, like Curvelet-,
Contourlet-, Shearlet- and Hart-Smith-transform. Essentially, two different questions
are considered: How these transforms can characterize Ho¨lder regularity and how
non-linear approximation of a piecewise smooth function converges.
In study of Ho¨lder regularities, several theorems that relate regularity of a function
f : R2 → R to decay properties of its transform are presented. Of particular interest is
the case where a function has lower regularity along some line segment than elsewhere.
Theorems that give estimates for direction and location of this line, and regularity
of the function are presented. Numerical demonstrations suggest also that similar
theorems would hold for more general shape of segment of low regularity. Theorems
related to uniform and pointwise Ho¨lder regularity are presented as well. Although
none of the theorems presented give full characterization of regularity, the sufficient
and necessary conditions are very similar.
Another theme of the thesis is the study of convergence of non-linear M−term ap-
proximation of functions that have discontinuous on some curves and otherwise are
smooth. With particular smoothness assumptions, it is well known that squared L2
approximation error is O(M−2(logM)3) for curvelet, shearlet or contourlet bases.
Here it is shown that assuming higher smoothness properties, the log-factor can be
removed, even if the function still is discontinuous.
Keywords: Curvelets, Shearlets, Hart Smith transform, Non-linear approximation,
Ho¨lder regularity.
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1 Introduction
Some of the most concrete visual element in images are edges. Edges contain the
information that machine vision systems build by man, as well as human brains,
need to understand the geometry of the environment that they are working with.
Therefore, efficient and robust methods to characterize and detect edges from images
are needed. Moreover, because most images have edges, it would be beneficial to be
able to store efficiently images that contain edges. Edge-like features are apparent
also in some physical non-visual situations, where sudden changes happen on some
boundary, for example conductivity changes inside an object. When these kind of
features are studied numerically, it is often beneficial to use methods that can present
them and find such boundaries efficiently.
In the beginning of this millennium, a new and mathematically very powerful tool for
analysis of images with edges, the curvelet transform [4, 3, 39, 40, 2, 5], was intro-
duced. Motivated by the success of curvelet transform, soon other similar transforms,
like shearlets and contourlets, were also presented [11, 34, 15, 13, 17, 16]. In this the-
sis some mathematical details about the characterization of direction of edges and
regularity properties with this kind of transforms are developed. Some interesting
theoretical result for approximation of images by using these transforms are given.
The Ho¨lder regularity of a function is related to the smoothness of the function and
the derivatives of it, and therefore also to the efficiency of polynomial approximation.
Ho¨lder regularity properties can also be used as features in signal classification or
pattern recognition [22, 41], as well as for signal de-noising or estimation [27]. The
Ho¨lder regularity of a function f can be explicitly analyzed for a relatively small
class of functions. Sometimes there exists no formula, but we only have some dis-
crete samples from f . In these cases, it still is possible to estimate the regularity
by investigating decay properties of the wavelet transform [19, 29]. Since wavelets
are isotropic, some other transform like curvelet or shearlet transform might be a
more natural choice in the case where some directional information about function is
needed. However, the author is not aware of any other research in characterization of
Ho¨lder regularities by using parabolic transforms than that presented in [24, 36, 33].
The thesis is organized as follows. The introduction is devoted to give readers unfa-
miliar with transforms, bases, and approximations some idea why they are used and
how they work. Although some mathematical definitions are given in this section,
statements given here are meant to be more descriptive than mathematically precise.
Section 2 gives more mathematical details of transforms that are particularly dis-
cussed in this thesis. Section 3. is all about proving some new results for convergence
of curvelet transform and non-linear approximation properties of curvelet basis. This
is one of the main contributions of this thesis. The last section deals with a study of
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characterization of functions and edges by curvelet and shearlet transform.
In this thesis, all theorems and lemmas which have proofs included are original con-
tributions made by the author. Results in Section 3 have not been published before.
Results in other sections are published in [36, 24]. In [36] the author of this thesis was
responsible for technical development of theorems and lemmas. In [24] the original
research idea was from the author, however collaborators, Lakhonchai and Sumetk-
ijakan, had the main responsibility in technical translation of theorems from [36] to
the shearlet case. All numerical demonstrations in [36, 24] were done by the author
of this thesis.
1.1 Geometry of images and basis functions
Let us think what kind of images there are stored in computers, cameras or mobile
phones. First, there is an object that we want to image. Often, this is done by taking
a photo from one direction with camera. If camera would have an infinite resolution,
a reasonable model for this image would be a function of two variables, f : R2 → R,
where f(x) would be associated to the color value in location x.
One of the main themes of this thesis is a theoretical investigation on how well certain
functions f : R2 → R can be approximated with a limited number M of coefficients
ci ∈ R, if each of indexes i is associated to some fixed building block fi. As a non-
mathematical example from such approximation, one could think that these building
blocks are like LegoTM blocks. Index i would define in what location on floor the
Lego block fi is, and what are its dimensions. Real numbers ci could define how
many blocks fi we would put on top of each others. If fi and fj would have same
location but different sizes, then smaller blocks would be placed on top of bigger ones.
If there would be no limit on how small these blocks can be, we could approximate
arbitrary well any smooth function f : R2 → R+ by building it from basic LegoTM
blocks! The geometry of building blocks fi is of course essential for how easily some
desired shapes can be constructed. For example, discontinuities of f along some line
can be seen as walls in Lego land. With Lego blocks the vertical and horizontal walls
are easier to build than diagonal walls. This would suggest that building blocks with
more orientations would be nice. However, the more special building blocks are used,
the more indexes i must be used. This makes the system more complicated, when
trying to choose the best building blocks fi and the associated coefficients ci.
In this thesis we restrict to functions with finite energy. This restriction is common
and, from a practical point of view, not very restrictive: most functions related to
real signals, at least to images, tend to have finite energy. This class of functions is
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commonly denoted as
L2(R2) :=
{
f : R2 → R | ‖f‖22 :=
∫
R2
|f(x)|2 dx <∞
}
, (1)
where the integral is Lebesgue integral.
In mathematical language, the building blocks fi are called as basis functions and
the set {fi}i is called basis if any function f ∈ L2(R2) can approximated arbitrary
well with some linear combination of fi, i.e. for all � > 0 exists coefficients ci such
that ‖f −∑i cifi‖2 < �. In many applications, like estimation or compression, it is
important that too many building blocks fi are not needed when � is fixed to some
reasonable small number.
The function space L2(R2) is very large, containing many different kind of functions.
Some functions might be very smooth, some very rough since the definition of L2(R2)
does not consider derivatives. Therefore, it is quite clear that same basis can not
be very efficient for approximation of all functions in L2(R2). Also, the domain of
functions, R2, is unnecessary large for most of applications: often values f(x) are
interesting only when x belongs to the unit square [0, 1]2, or to some other compact
set Ω ⊂ R2. In this case, the popular and simple method is to set f(x) = 0 if x /∈ Ω.
1.1.1 Wavelets in LegoTM land and some extensions
The wavelet bases are defined with little more mathematical details later, here the
simple geometric explanation is given. Roughly speaking, wavelet basis can be seen
as set of LegoTM blocks where all blocks are cubes with side the length l that scales
in powers of two, i.e. l = C2j, where j ∈ Z. This immediately suggests that wavelet
bases can be used to approximate functions that have horizontal or vertical edges,
but wavelets would not work in best way with diagonal edges. Wavelets would be
also very efficient in approximation of isotropic features like some sharp peaks. The
main geometric difference between Legos and wavelets is that wavelets have been
designed so that also smooth parts of functions can be presented efficiently by them.
Mathematically, this is simply done by demanding them to be smooth enough and
being orthogonal to polynomials of degree high enough, as well as each others. Even
if this sounds simple, keeping them compactly supported, i.e. non-zero only in short
interval, and providing nice digital implementation is not so simple but was a real
break through in the late 80’s [9, 32, 28].
If we could look for new basis every time when f changes, a good approximation for
f by using few fi would be easier to establish. The characteristics of a good basis
depend essentially on properties of f . Exploring those properties might be difficult
or at least a time consuming task. And the basis functions fi should have some clear
structure so that all information about their shapes would be easy to store. These
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bases are called “adaptive bases”. For example if an edge is not horizontal, we can
twist the image so that after twisting the edge is horizontal, and then do wavelet
approximation for this twisted image. Or, we can do the other way round: we twist
the wavelet basis functions so that they see the edge as a straight line. In both cases
we have to first recognize the edge and save information about it somewhere. Saving
the information of geometry is usually not the problem, but finding is. Bandelet basis
implements this idea of twisting wavelets in a very efficient way [26, 25, 31, 30].
Normal wavelets have essentially only two different orientation (third, diagonal ori-
entation, is very weak). One way to generalize wavelets is to increase the number of
orientations. There exists several such approaches like complex wavelets and steer-
able pyramids [35]. A common feature for these constructions is that the number of
orientations is fixed and the same at every scale. These variants of wavelet bases may
work quite nicely in practice sometimes, but theoretically they are far from optimal
in the sense of efficiency of approximation.
1.1.2 Scaling goes parabolic and number of orientations grows
If we want to stick to non-adaptive basis and avoid all problems of exploring geometry
of image, what could be done? As said earlier, more orientations would be nice. Before
adding those let us consider the geometry of smooth curves. Usually by “a smooth
curve” S in R2 we mean a curve that has a bounded second derivative. In that case,
there exists a constant C < ∞ such that a piece with length √a from this curve
will fit to a rectangle R that has length about
√
a and width about a. This gives an
idea that for efficient analysis or approximation of a function f ∈ L2(R2) that has
singularities along this kind of a smooth curve, we should use basis functions fi in
L2(R2) such that most of its energy is concentrated to this rectangle.
Since orientation for each piece of S can vary, we should use also functions fi with
multiple orientations. Also, we should use multiple scales a since we get otherwise
just rough approximation about S. Basis functions related to smaller scales a could
adapt better to S and therefore the use of them would refine approximation.
The number of orientations also should increase when the scale a gets smaller. This
is because the ratio between length and width of rectangles is about a−1/2. About
a−1/2 rectangles are needed to cover a ball with radius
√
a, i.e. to cover all possibly
interested orientations. So at least about a−1/2 differently oriented functions fi should
be available, otherwise they cannot adapt to geometry of S. Emmanuel Candes and
David L. Donoho introduced first this kind of basis functions, called curvelets for
approximation purposes. After that, inspired by curvelets, other bases with similar
properties were developed by other research groups. Best known are contourlets by
Do and Vetterli [11, 34] and shearlets by Kanghui and Labate [15]. Each of these
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transforms are discussed with more details in later sections.
1.2 Approximations of a function
When a photo is taken, we do not necessary get an optimal image (i.e. function
f) but only some approximation because of limited resolution of camera, unperfect
lenses, etc. When an image is saved to computer, camera or mobile, some more
approximations are usually done, even if original image is taken by digital camera.
This is because an image often is too big to save or transfer, and therefore must be
compressed. So, even with an imagined infinite resolution camera, the final image
would be just approximation.
Approximation or compression of a function f ∈ L2(R2) is often based on algorithms
where f is first represented as a linear combination of basis functions fi ∈ L2(R2),
i.e.
f =
∑
i
cifi,
where ci ∈ R, and then coefficients ci with small absolute values are rounded to zero.
In this kind of process the orthonormality of basis functions fi is often desired since
it gives an easy way to minimize error due to this rounding: If I is the index set
that contains those coefficients that are not rounded zero and f˜ :=
∑
i∈I cifi, then∥∥∥f − f˜∥∥∥2
2
=
∑
i/∈I |ci|2. In this case, if we want to use only M coefficients, the optimal
approximation f˜ for f is the one where all but M biggest coefficients ci are rounded
to zero. Coefficients ci are also simple to calculate in the case of orthonormal basis:
ci = 〈f, fi〉 :=
∫
R2 f(x)fi(x)dx.
However, a slightly more general property called “tight frame” provides the same
property [18]:
Definition 1 The set of functions B = {fi}i in L2(R2) is called a normalized tight
frame for L2(R2) if for any f ∈ L2(R2) there holds
‖f‖22 =
∑
i
|〈f, fi〉|2 . (2)
Corollary 2 If the set {fi}i in L2(R2) is a normalized tight frame, then any f ∈
L2(R2) has the representation f =
∑
i 〈f, fi〉 fi
An exact definition of best M -term non-linear approximation with tight frames can
be given as follows
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(a) (b)
Figure 1: (a) Graph of function f that is smooth; (b) Graph of function g that is
smooth apart from a smooth curve.
Definition 3 Let f =
∑
i cifi ∈ L2(R2), B = {fi}i be a normalized tight frame and
IM,f be the index set that contains indexes i for M coefficients ci with biggest absolute
value |ci|. Best M-term non-linear approximation of f in basis B is given then by
fM,B :=
∑
i∈IM,f
cifi, (3)
where ci = 〈f, fi〉.
When discussing convergence rates, the notation of type h(M) ≤ O(p(M)) will be
used frequently later. This means that for all M <∞ exists coefficients C, indepen-
dent of M such that h(M) ≤ Cp(M).
The rest of this section is devoted to clarify how different the behavior of bases might
be for different kind of functions. While emphasizing differences between bases, all
mathematical details are not mentioned here, some appropriate references are given
in [11, 29, 5].
Figure 1 illustrates graphs of two different kind of functions.
We now describe how the best M-term approximation of these would behave in three
different bases. Let
• F be Fourier-basis (i.e. functions fi are modulated versions of sines and cosines).
• W be wavelet basis (i.e. functions fi are translated and scaled versions of
single “generating” function ψ). This kind of basis is used, for example, in the
JPEG2000 image compression standard.
• C be curvelet, contourlet or shearlet basis (detailed definitions in later sections).
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The function f in Figure 1 a) is at least two times differentiable with bounded deriva-
tives. For this type of function we have
‖f − fM,F‖22 ≤ O(M−2)
‖f − fM,W‖22 ≤ O(M−2)
‖f − fM,C‖22 ≤ O(M−2)
Notice that in this case all transforms had the same approximation rate. Things
change dramatically when the function is taken from a different class. Suppose that
the function g has a discontinuity along a smooth curve and otherwise it has exactly
the same differentiability properties as f had. Function g is illustrated in Figure 1
b). For functions like g, the approximation now reads as:
‖g − gM,F‖22 ≤ O(M−1/2)
‖g − gM,W‖22 ≤ O(M−1)
‖g − gM,C‖22 ≤ O(M−2 log2(M)3)
The approximation rate with wavelet basis collapsed now far worse than what it was
for f . The approximation rate with Fourier basis was even worse than with wavelet
basis. Comparing Fourier and wavelet basis, the curvelet basis hardly noticed the
discontinuity of g.
In the above examples, the approximation rates for f were actually optimal, meaning
that there exist no other bases that could do better. For g, the curvelets achieved
also almost optimal approximation rate: for functions that are smooth apart from
(smooth) discontinuity curves the optimal rate would be O(M−2). Bandelets provide
this optimal rate, but bandelet basis is an adaptive basis [26]. So, comparing optimal
rate, the curvelet basis had only the extra factor log2(M)
3. However, in practical
applications M rarely is less than 210, which means that despite of logarithm, this
factor is still quite large. One of the main theme of this thesis is to investigate if
this factor can be removed from curvelet approximations, also when the function has
a discontinuity along a smooth curve. Theorem 17 states that under some extra
assumptions for smoothness this can be done.
1.3 From approximations to estimates
Despite of the fact that transforms based on parabolic scaling have some excellent
theoretical properties for approximation and compression, they have not been able to
make breakthrough on these fields yet. However, in some noise removal application,
these transforms are really superb compared to the wavelet transform, that has been
a popular method during last decades. Although this thesis does not focus to noise
removal or signal estimation, non-linear approximation can be powerful tool in solving
15
these problems. More precisely: approximations are good estimates. Therefore the
approximation theory that is considered in this thesis has a direct relation to signal
estimation and noise removal. In this section we shortly explain why.
Suppose that f is corrupted by noise from a measurement devise or some other source.
If the magnitude of noise e is independent of values of f , the model between f and
observed function m is given by
m = f + e.
The problem is to find an estimate for f when m is given (measured). Now m can be
written as
m =
∑
i
〈m, fi〉 fi =
∑
i
(〈e, fi〉+ 〈f, fi〉)fi.
From this form it can be seen that if fi are designed so that |〈e, fi〉| tend to be small
as compared to the M largest values of |〈f, fi〉|, then largest values of 〈m, fi〉 are close
to values of 〈f, fi〉. This is the usual case when the noise level ‖e‖22 / ‖f‖22 is not too
high and the basis is such that best M -term approximation is efficient. To be a bit
more precise, we can write
mM,B =
∑
i∈IM,m
〈m, fi〉 fi
=
∑
i∈IM,m
〈e, fi〉 fi +
∑
i∈IM,m
〈f, fi〉 fi
=
∑
i∈IM,m
〈e, fi〉 fi + fM,B + h,
where
h =
∑
i∈IM,m\IM,f
〈f, fi〉 fi −
∑
i∈IM,f\IM,m
〈f, fi〉 fi =
∑
i∈J
〈f, fi〉 fi
If M is not too large compared to the noise level, the index set J is probably
quite small, even empty. Also in this case if k ∈ J , then probably |〈f, fk〉| ≈
min {|〈f, fi〉| : i ∈ IM,f}. If M is too large, then all |〈f, fk〉|, k ∈ J , are relatively
small (the level and pattern of the noise e essentially limit how small), but there may
be a lot of them: the size of the set might start to grow in the worst case almost
linearly with respect to M . For the estimation error we can write
‖f −mM,B‖ ≤ ‖f − fM,B‖+ ‖fM,B −mM,B‖
≤ ‖f − fM,B‖+
∥∥∥∥∥∥
∑
i∈IM,m
〈e, fi〉 fi
∥∥∥∥∥∥+ ‖h‖
= ‖f − fM,B‖+
√ ∑
i∈IM,m
|〈e, fi〉|2 + ‖h‖
= E1 + E2 + E3
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The term E22 increases approximately linearly with respect to M . Therefore, small
M is desired. Because E1 is just a M -term approximation error of f , it is important
that this error decreases as fast as possible, since we no not want to have a large
M . Moreover, as explained above, E3 tends to grow also when M grows too large.
Because all of this, fast convergence of ‖f − fM,B‖ is important. It is worth to note
that the faster is the decay rate of E1, the more early E3 start to grow with respect
to M . This somehow tells that the noise can not be removed totally, no matter how
efficient M -term approximation is. This is natural, since random noise causes always
some uncertainty.
For functions that are smooth apart from a smooth discontinuity curve, curvelets are
actually almost optimal basis for this kind of estimation [4, 39].
In addition to this simple thresholding method, the remaining coefficients also can
be shrunk and this might visually improve the estimate [12]. However, even for this
shrinking method, it is essential that a basis with good non-linear approximation
properties is used.
2 Multiscale transforms based of parabolic scaling
2.1 Mathematical notations
Let us start with some notations that will be used frequently later. The dilatation
(or scaling) matrix D 1
a
that provides a parabolic scaling is given as
D 1
a
:=
( 1
a
0
0 1√
a
)
. (4)
Denote by R−θ the matrix affecting planar rotation of θ radians in clockwise direction,
i.e.
R−1−θ :=
(
cos(θ) sin(θ)
− sin(θ) cos(θ)
)
(5)
Inverses of these matrices are therefore D−11
a
= Da and R
−1
−θ = Rθ.
For general (non-index) vectors x = (x1, x2) ∈ R2, we denote xν := xν11 xν22 and norm
is the usual Euclidean norm ‖x‖ :=
√
x21 + x
2
2. For each scale a and direction θ, let
us define the norm
‖v‖a,θ :=
∥∥∥D 1
a
R−θv
∥∥∥ for v ∈ R2. (6)
An immediate consequence of the above definitions is that ‖v‖√
a
≤ ‖v‖a,θ ≤ ‖v‖a when
0 < a ≤ 1.
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The vector vθ is defined as the unit vector parallel to the major axis of the ellipsoidal
‖v‖a,θ = 1, i.e.
vθ := Rθ(0, 1)
T . (7)
The length of the major axis of this ellipsoidal is
√
a and the length of the minor axis
is a, i.e. ellipsoidal becomes more and more needle like when scale a goes to zero.
Partial derivatives of a function f : R2 → R are denoted by ∂νf = ∂ν11 ∂ν22 f where
∂i means the partial derivative with respect to the i
th-variable and the index vector
ν = (ν1, ν2) is in N20, with |ν| = ν1 + ν2.
The Fourier transform is defined by
fˆ(ξ) :=
∫
R2
f(x)e−2piix·ξ dx, for ξ ∈ R2, (8)
so that the Plancherel’s formula becomes
〈f, g〉 = 〈fˆ , gˆ〉, (9)
and the Fourier inversion formula reads
f(x) =
∫
R2
fˆ(ξ)e2piiξ·x dξ. (10)
Although for general f ∈ L2(R2) the Fourier transform should be defined in a bit
more complicated way (see the definition for example from [29]). However, Fourier
transforms are applied in proofs only to functions for which the above definitions are
equivalent.
We will often use the notation
θ =
pi
2
ka1/2,
where 0 ≤ |k| ≤, a−1/2. The advantage of this notation will make sense in later
sections, when we investigate convergence of non-linear approximations.
Characteric function χA : R2 → {0, 1} of a set A is defined as
χA(x) :=
{
1 , x ∈ A
0, x /∈ A (11)
2.2 Wavelet transform
To emphasize new ideas of curvelets, shearlets and contourlets compared to wavelets,
some basics about wavelet bases and transforms are first revised.
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2.2.1 Continuous wavelet transform
Like the Fourier-transform defined in the previous section, Continuous Wavelet Trans-
form (CWT) is an integral transform defined by the formula
Wf (a, b) :=
∫
R2
f(x)ψab(x)dx,
where the
ψab(x) := a
−1ψ(diag(a−1, a−1)(x− b)),
a > 0, b ∈ R2 and ψ ∈ L2(R2). Mother wavelet ψ should also satisfy the so called
admissability conditions that ensure the existence of inverse transform. Some details
can be found in [10]. The most interesting property that follows in practical situations
from admissability conditions is that∫
R2
ψ(x)dx = 0. (12)
This means that a wavelet should have a zero-order vanishing moment. In practice,
also higher order vanishing moments are demanded. These vanishing moments are the
key for approximation properties. In comparison, curvelets, contourlets and shearlets
have directional vanishing moments, defined in section 2.7.1, that wavelets do not
necessary have. Especially, the scaling law of wavelets means that even if ψ has
directional vanishing moments to some directions, the number of directions do not
grow when the scale a decreases, as it does with parabolic scaling.
A direction parameter can be easily added to wavelet transform, just simply add the
rotation
Wf (a, b, θ) :=
∫
R2
f(x)ψabθ(x)dx,
ψabθ(x) = a
−1ψ(diag(a−1, a−1)Rθ(x− b)).
However, this rotation does not add any more directional vanishing moments.
2.2.2 Wavelet basis
When constructing wavelet bases for L2(R2), the usual approach that leads to efficient
digital implementation is to construct three different mother wavelets ψ(i) : R2 → R,
i = 1, 2, 3 by tensor products applied to a mother wavelet and a so called scaling
function (or father wavelet) that are related to multiresolution analysis. Basis func-
tions for L2(R2) are found then by properly sampling parameters a and b for functions
ψ
(i)
ab (x). However, usually digital implementation is actually made with finite impulse
response (FIR) filters. This approach gives wavelets with three different orientations.
Details can be found for example in [29]. Using more than one generating func-
tion is also the idea used with shearlets and contourlets, which also leads to more
straightforward digital implementation than what curvelets have.
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2.3 Hart Smith transform
The first transform that is considered is the Hart Smith transform. According to our
knowledge, only continuous Hart Smith transform is introduced in literature and a
related basis for L2(R2) has been never presented.
Originally this transform was defined in Fourier domain and L1-normalization was
used[38]. In this thesis we use the variation that was described in [6, 7] which adopts
L2-normalization.
For a given ϕ ∈ L2(R2), a family of functions ϕabθ is defined by
ϕabθ(x) = a
− 3
4ϕ
(
D 1
a
R−θ (x− b)
)
,
for θ ∈ [0, 2pi), b ∈ R2, and 0 < a < a0, where a0 is a fixed coarsest scale. The Hart
Smith’s directional wavelet transform is defined as an integral transform
Γf (a, b, θ) := 〈ϕabθ, f〉 .
This is a true affine transform based on parabolic scaling, i.e., the family {ϕabθ}
is generated by translating, rotating, and parabolically dilating a single generating
function ϕ.
Because of this, we can think that the energy of ϕabθ is essentially concentrated
on the ellipse centered at b with minor axis of length “about” a and major axis of
length “about”
√
a pointing in the direction vθ. This means that the kernel function
ϕabθ becomes “needle shaped” when the scale goes small. The only visible difference
to directional wavelet transform is the use of parabolic scaling instead of isotropic
scaling.
High-frequency function is a square integrable function whose Fourier transform is
supported outside a ball of some fixed radius. For high-frequency functions the fol-
lowing reconstruction formula is proposed in [6]. See also [38, 7].
Theorem 4 There exists a Fourier multiplier M of order 0 so that whenever f ∈
L2(R2) is a high-frequency function supported in frequency space ‖ξ‖ > 2
a0
, then
f =
∫ a0
0
∫ 2pi
0
∫
R2
〈ϕabθ,Mf〉ϕabθ db dθ da
a3
. (13)
The function Mf is defined in the frequency domain by a multiplier formula M̂f(ξ) =
m(‖ξ‖)fˆ(ξ), where m is a standard Fourier multiplier of order 0 (that is, for each
k ≥ 0, there is a constant Ck such that for all t ∈ R, |m(k)(t)| ≤ Ck (1 + |t|2)−k/2).
The restriction to high frequency functions makes the reconstruction formula a bit
useless in some situations. In the study of characterization of regularity, the problems
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do not arise: a general f ∈ L2 can be first divided to low and high frequency parts fL
and fH , i.e. produce fL first by lowpass filtering and then set fH = f − fL. Because
fL is always infinitely differentiable, regularity properties of f = fL+fH depend only
on fH . Therefore tools for working with just high frequency functions are enough for
this problem. However, this kind of preprocessing with lowpass filter is not necessary
(see for example the proof of Theorem 24).
Another inconvenience in using Hart Smith transform is that we have to use a Fourier
multiplier M . Generally, by Plancherel’s formula we get
〈ϕabθ,Mf〉 =
〈
ϕ̂abθ,m(‖·‖)fˆ
〉
=
〈
m(‖·‖)ϕ̂abθ, fˆ
〉
= 〈Mϕabθ, f〉 .
Because of this and the fact that ϕabθ and Mϕabθ are duals [6, 7], the reconstruction
formula can be written also in the form
f =
∫ a0
0
∫ 2pi
0
∫
R2
〈Mϕabθ, f〉ϕabθ db dθ da
a3
=
∫ a0
0
∫ 2pi
0
∫
R2
〈ϕabθ, f〉Mϕabθ db dθ da
a3
.
The geometrical properties of the functions ϕabθ and Mϕabθ are very similar. First,
because translation in spatial domain means modulation in frequency domain, the
parameter b will just translate Mϕabθ. Secondly, since m is purely a radial function
in Fourier domain, it does not affect rotation properties, i.e. θ act as a rotation
parameter also for Mϕabθ. True parabolic scaling is the only property that is lost
because of Fourier multiplier. In Section 2.7.3 it is shown that if ϕ is properly chosen
then ϕabθ and Mϕabθ have essentially the same decay properties (see Lemma 11).
This will lead to the fact that ϕabθ and Mϕabθ can be used in exactly the same way
when investigating regularity properties with techniques presented in this thesis.
2.4 Curvelet transform
Since curvelets are the most used basis and curvelet transform the most used trans-
form in this thesis, they are reviewed in details in this section. The continuous curvelet
transform (CCT) is used in regularity analysis in Section 4.2 and the discrete curvelet
transform, i.e. curvelet basis, is utilized in theorems of Section 3.
2.4.1 Continuous Curvelet transform
There exists different constructions of curvelets, the one used in [6, 7] is reviewed
in this section. This continuous curvelet transform (CCT) has a simpler inversion
formula than that of Hart Smith transform. Still, it has essentially similar decay
properties as ϕabθ, just like Mϕabθ have. See Lemma 11.
21
CCT is defined in the polar coordinates (r, ω) of the Fourier/frequency domain. Let
W be a positive real-valued function supported inside
(
1
2
, 2
)
, called a radial window,
and let V be a real-valued function supported on [−1, 1], called an angular window.
Windows W and V should meet the following admissibility conditions:∫ ∞
0
W (r)2
dr
r
= 1 and
∫ 1
−1
V (ω)2 dω = 1. (14)
At each scale a, 0 < a < a0, γa00 is defined by
γ̂a00 (r cos(ω), r sin(ω)) = a
3
4W (ar)V
(
ω/
√
a
)
for r ≥ 0 and ω ∈ [0, 2pi).
For each 0 < a < a0, b ∈ R2, and θ ∈ [0, 2pi), a curvelet γabθ is defined by
γabθ(x) = γa00 (Rθ (x− b)) , for x ∈ R2. (15)
Notice that now curvelets have a little bit different generating function γ for each scale.
This is different to Hart Smith or wavelet transform. Also, because of definition of
radial window, functions γabθ are high frequency functions.
The continuous curvelet transform is, just like Hart Smith or wavelet transform, an
integral transform
Γf (a, b, θ) := 〈γabθ, f〉 for all 0 < a < a0, b ∈ R2, and θ ∈ [0, 2pi) .
In [6] it was assumed that V and W are C∞, which implies that the curvelets and
their derivatives have rapid decay. For purposes of this thesis, it would be enough
to assume only that V and W are CN for N large enough. This assumption would
then ensure that the resulting curvelets and their derivatives up to desired order (in
regularity analysis, largest α of interest), would decay fast enough. Anyway, to keep
notations a bit more nice, the assumption that V,W ∈ C∞ is used also in this thesis.
Lemma 10 will state that this construction will lead to directional vanishing moments
with increasing number of directions when a degreases.
The following reconstruction formula exists for curvelet transform, for all f ∈ L2(R2)
[7].
Theorem 5 There exists a bandlimited purely radial function Φ such that for all
f ∈ L2(R2),
f =
∫
R2
〈Φb, f〉Φb db+
∫ a0
0
∫ 2pi
0
∫
R2
〈γabθ, f〉 γabθ db dθ da
a3
, (16)
where Φb(x) = Φ(x− b).
Just like with Hart Smith transform the low frequency part
∫
R2 〈Φb, f〉Φb db of func-
tion f is uninteresting in this thesis since continuous curvelet transform is used here
only in regularity analysis.
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2.4.2 Discrete Curvelet transform
Candes and Donoho have presented a slightly different way to construct curvelet tight
frames [7, 4], both leading to essentially similar basis functions. We give a fast review
on how the construction used in [5] is related to CCT defined above. The aim is not
to be very rigorous mathematically, but clarify that the construction can be done
essentially so that basis functions have the same geometric properties as γabθ related
to CCT. Details can be found in [5].
First, remember that γ̂a00 in CCT was defined as product of a (smooth) radial and
angular window. In the discrete curvelet transform we have a very same starting point:
compactly supported and smooth angular and radial windows are first defined, and
then a window w1 is defined as product of those windows. Next this window is moved
to left side of the ξ1-axis by reflecting it around ξ2 axis, let us denote this by w2. The
final window is then γ̂a00 := w1 + w2.
We would like to note that other conditions for window functions are little different
from the admissability conditions presented in the continuous case. These so called
”partition of unity” properties, are explained in [5] with details.
Next the translation parameter is constructed. First define rectangles r1 and r2 s.t.
supp(wa) ⊂ r1∪r2. For L2(r1∪r2) define now orthonormal basis by using orthonormal
basis of complex exponentials in both directions ξ1 and ξ2. For this basis {fa,b}b the
index b = (b1, b2) describes coefficients in exponents of basis function. Curvelet basis
functions γab0 for fixed scale a and orientation θ = 0 are defined now in Fourier
domain by
γ̂ab0 = γ̂a00 · fa,b.
Notice, essentially, that multiplying in Fourier domain by complex exponential means
the same as translation of function in spatial domain. Therefore, by taking inverse
Fourier transform of γ̂ab0, the term fa,b affects essentially as a translation while the
term γa00 describes the shape of γab0. Basis functions fa,b are chosen so that when
b1 changes by one, translation in x1 direction is about length a, and if b2 changes by
one, translation in x2 direction is about a
1/2.
Note: to be specific, fa,b does not affect only as an translation for ψ, but that part of
it that would affect the shape can be included in the original radial window. Details
can be found again from [5].
The rotation parameter is now easy to add. Just define γabθ(x) := γab0(R−θx).
It is still unclear how parameters a and θ should be discretized. As discussed in the
Section 1.1.2, from the approximation point of view it would be good if there are
about a−1/2 different angles. Therefore, the only question is how to discretize a. For
example, a = 2−j would work otherwise fine, but then the number of orientations is
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not always integer, and therefore it should be rounded on every other scale. So, from
implementation point of view, the choice a = 4−j = 2−2j might be better. Generally
any discretization of type a = c−j, where c > 1 is constants, would lead to same
results [5].
The last thing would be to introduce some basis functions Φb that are concentrated
to low frequencies, just as in the continuous case. However, from a theoretical point,
these are not very interesting: in regularity analysis the low frequencies do not matter,
and for the convergence of the M -term approximation the fixed single scale can not
contain too many basis functions with with large coefficients, as long as these basis
functions have a rapid decay. Once again, details of construction of Φb are given in
[5]. The set {γabθ} ∪ {Φb} forms now the normalized tight frame for L2(R2) [5].
2.5 Shearlet transform
In this section only a short revision on shearlet transform is given. The aim is to
emphasize its differences to curvelet and contourlet transforms. In later sections
some theorems related to shearlets are revised from [24], and numerical examples
are given. All this will demonstrate that shearlets are very similar to curvelets and
contourlets.
2.5.1 Continouous Shearlet transform
This section follows the definitions and notations in G. Kutyniok and D. Labate[23].
Previously the function ψ was related to wavelets. Wavelets are not considered in
later sections and ψ is from now on related to shearlets. While other transforms
had rotation parameter θ, corresponding parameter for shearlets is shearing s, which
emphasize the difference.
Given ψ1 and ψ2 ∈ L2(R), let ψ ∈ L2(R2) be defined by
ψˆ(ξ) := ψˆ1(ξ1)ψˆ2
(
ξ2
ξ1
)
(17)
when ξ = (ξ1, ξ2) ∈ R2 with ξ1 6= 0.
Definition 6 Let ψ ∈ L2(R2) be given by (17) where
i. ψ1 ∈ L2(R) satisfies the admissibility condition, and ψˆ1 ∈ C∞(R) with supp ψˆ1 ⊂
[−2,−1
2
] ∪ [1
2
, 2];
ii. ‖ψ‖2 = 1, and ψˆ2 ∈ C∞(R) with supp ψˆ2 ⊂ [−1, 1] and ψˆ2 > 0 on (−1, 1).
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Such a function ψ is called a shearlet function. Notice that the roles of ψ1 and ψ2
are somewhat similar to the roles of angular and radial window functions in CCT,
although polar coordinates are not used. The use of polar coordinates is the key
point that make a digital implementation of curvelet transform a bit problematic and
shearlets try to avoid that.
A continuous shearlet system is the set of functions generated by ψ, namely,{
ψast = a
− 3
4ψ
(
M−1as (· − t)
)
: a ∈ I ⊂ R+, s ∈ S ⊂ R, t ∈ R2
}
,
where Mas = BsDa, Bs is the shear matrix
(
1 −s
0 1
)
, and Da is the diagonal matrix(
a 0
0
√
a
)
. The continuous shearlet transform (CST) of f is then defined by
SHψf(a, s, t) = 〈f, ψast〉 , a ∈ I ⊂ R+, s ∈ S ⊂ R, t ∈ R2.
The most striking difference between shearlet and curvelet transform is that the
rotation matrix is now replaced by shearing matrix. This shearing matrix changes
the geometry while the rotation matrix kept the geometry. The bigger s is, the more
the geometry of ψast differs from the geometry of ψa0t. This might make a direct
interpretation of the values of SHψf(a, s, t) a bit complicated. For shearlets, the
proper choice for set I of scales is a bit more delicate question, that will be specified
a little later, as well as a set S of shear parameters.
Directly from the definition of ψ we have
ψ̂ast(ξ) = a
3
4 e−2piiξtψˆ1(aξ1)ψˆ2
(
1√
a
(
ξ2
ξ1
− s
))
.
The support for each function ψˆast satisfies therefore
supp ψ̂ast ⊆
{
(ξ1, ξ2) : ξ1 ∈
[
−2
a
,− 1
2a
]
∪
[
1
2a
,
2
a
]
,
∣∣∣∣ξ2ξ1 − s
∣∣∣∣ ≤ √a} .
For this shearlet system the following reconstruction formula holds.
Theorem 7 Let I = R+, S = R, and ψ ∈ L2(R2) be a shearlet function. Then, for
all f ∈ L2(R2),
f =
∫
R2
∫
R
∫
R+
〈ψast, f〉ψast da
a3
ds dt . (18)
A drawback in the above reconstruction formula is that the interval for shearing
parameter is huge comparing to interval [0, 2pi) for θ in 16.
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If the set S is not all of R, then two different type of shearlets are needed: horizontally
and vertically oriented.
The original shearlet do well as long as the shearing parameter s is not large. Consider
the subspace of L2(R2) given by L2(C)ˇ = {f ∈ L2(R2) : supp fˆ ⊂ C} where C is given
by
C =
{
(ξ1, ξ2) ∈ R2 : |ξ1| ≥ 2 and
∣∣∣∣ξ2ξ1
∣∣∣∣ ≤ 1} .
Theorem 8 Let I = {a : 0 < a < 1}, S = {s : |s| ≤ 2} and ψ ∈ L2(R2) be a shearlet
function. Then, for all f ∈ L2(C )ˇ,
f =
∫
R2
∫ 2
−2
∫ 1
0
〈ψast, f〉ψast da
a3
ds dt. (19)
From now on S = {s : |s| ≤ 2} and I = {a : 0 < a < 1}. Theorem 8 takes care of f
that are supported on horizontal cones in Fourier domain.
Next define “vertical” shearlets that can reproduce the functions that are supported
on vertical cones in Fourier domain. Most easily this is done by changing roles of ξ1
and ξ2 in every formula above:
ψ̂(v)(ξ) = ψ̂(v)(ξ1, ξ2) = ψˆ1(ξ2)ψˆ2
(
ξ1
ξ2
)
(20)
where ψˆ1, ψˆ2 are defined as in Definition 6. The shearlets ψ
(v)
ast are defined by ψ
(v)
ast =
a−
3
4ψ
(
(M
(v)
as )−1(· − t)
)
, where M
(v)
as = B
(v)
s D
(v)
a with B
(v)
s = BTs and D
(v)
a =
(√
a 0
0 a
)
.
Then
{
ψ
(v)
ast
}
is a continuous shearlet system for L2(C(v))ˇ where C(v) is the vertical
cone;
C(v) =
{
(ξ1, ξ2) ∈ R2 : |ξ2| ≥ 2 and
∣∣∣∣ξ2ξ1
∣∣∣∣ > 1} .
“Vertical” continuous shearlet transform is then
SH(v)ψ f(a, s, t) =
〈
f, ψ
(v)
ast
〉
,
and we have ψ̂
(v)
ast(ξ) = a
3
4 e−2piiξtψˆ1(aξ2)ψˆ2
(
1√
a
(
ξ1
ξ2
− s
))
, hence
supp ψ̂
(v)
ast ⊆
{
(ξ1, ξ2) : ξ2 ∈
[
−2
a
,− 1
2a
]
∪
[
1
2a
,
2
a
]
,
∣∣∣∣ξ1ξ2 − s
∣∣∣∣ ≤ √a} .
Now the part C(v) ∪C of Fourier plane is taken care and only the low frequency part
R2 \ (C(v) ∪C) is left. As argued before, this might not be very interesting in context
of this thesis but it can be done: Let W (x) be such that Ŵ (ξ) ∈ C∞(R2) and
|Ŵ (ξ)|2 + χC1(ξ)
∫ 1
0
|ψˆ1(aξ1)|2da
a
+ χC2(ξ)
∫ 1
0
|ψˆ1(aξ2)|2da
a
= 1, for a.e. ξ ∈ R2,
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where C1 =
{
(ξ1, ξ2) ∈ R2 : | ξ2ξ1 | ≤ 1
}
and C2 =
{
(ξ1, ξ2) ∈ R2 : | ξ2ξ1 | > 1
}
.
Then it follows that W is a C∞-window function on R2 with Ŵ (ξ) = 1 for ξ ∈
[−1/2, 1/2]2 and Ŵ = 0 outside the box [−2, 2]2. Finally, let P̂C1f = fˆχC1 and
P̂C2f = fˆχC2 . Then, for each f ∈ L2(R2) we have
f(x) =
∫
R2
〈W (· − t), f〉W (x− t) dt+
∫
R2
∫ 2
−2
∫ 1
0
〈ψast, PC1f〉ψast(x)
da
a3
ds dt
+
∫
R2
∫ 2
−2
∫ 1
0
〈
ψ
(v)
ast, PC2f
〉
ψ
(v)
ast(x)
da
a3
ds dt.
It is worth to notice that functions ψast and ψ
(v)
ast are actually very similar. Their
supports go away from origin of the Fourier plane essentially similarly as what happen
for curvelets when scale a degreases.
2.5.2 Discrete Shearlet transform
Moving from continuous transform to discrete transform happens with shearlets in
a quite similar way as it happened with curvelets: sampling parameters a, t and s
of continuous shearlets. This must be done separeately for horizontal and vertical
shearlets. As an example, in horizontal case the samples are of form aj = 2
−2j for
j ≥ 0, sjk = k√aj = k2−j for −2j ≤ k ≤ 2j and tjkm = BsjkDajm for m ∈ Z2.
With some extra conditions for ψ1 and ψ2, this kind of straightforward construction
leads to tight frames for L2(R2). Details can be founded in [14].
2.6 Contourlet transform
The contourlet transform is not a main theme of this thesis, since none of theorems in
the thesis is written for contourlets. However, there is a good reason to believe that
similar theorems might exist also for contourlets, since this transform is so similar to
curvelet and shearlet transform. Here we discuss similarities and differences of the
contourlet transform as compared to transforms presented in earlier sections.
The major difference is that the contourlet transform is defined with iterated (di-
rectional) filter bank structure. So, the nature of transform is discrete and it has an
efficient implementation with digital filters. Contourlet basis functions are defined via
these filters, but there is no real need to construct basis functions since all numerical
calculations are done directly by using filters.
Essentially, two different kind of approaches are proposed to design these filters. First
is the method that tries to maximize the number of directions for directional van-
ishing moments. The second method proposes to use filters with (approximately)
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ideal frequency selectivity. This method leads to a very similar frequency support
for basis functions as with shearlets. If these filters are designed so that they lead to
rapidly decaying basis functions, then contourlet basis functions would have essen-
tially similar properties as those of shearlet or curvelet basis functions. In that case,
theorems similar to the ones presented in Section 3 for curvelets might hold also for
contourlets. However, the author of the thesis is not aware of existence of this kind
of filters. If filters with finite length are used in design of contourletes, then related
contourlet basis functions have compact support but ideal frequency selectivity, that
was mentioned before, is not possible. For more information about contourlets and
filter desing, see [11, 34, 8].
2.7 General properties of transforms
In this section it is shown that all functions ϕabθ, Mϕabθ, and γabθ do have the same
essential properties that are needed for proofs of theorems in later Sections 3 and 4.
This will make all of them almost equivalent when investigating Ho¨lder regularities
in the Section 4. For approximation of function, that is discussed in Section 3, only
properties of curvelets γabθ are important since those theorems are related only to
curvelets. Although proofs for theorems in this section are written only for γabθ that is
defined as in CCT, they would be almost identical for basis functions of curvelet tight
frames since, discussed in Section , the construction is essentially similar. Lemmas as
presented in this section are from [36]. Similar lemmas hold also for shearlets [24].
2.7.1 Directional vanishing moments
For any nonzero vectors v and v′ in R2, let us denote the angle from v to v′ in clockwise
direction by ∠(v, v′).
Definition 9 A function f of two variables is said to have a L-order directional
vanishing moments along a direction v = (v1, v2)
T (suppose that v1 6= 0; if v1 = 0
then v2 6= 0 and we can swap the two dimensions) if∫
R
tnf(t, tv2/v1 − c)dt = 0, ∀c ∈ R, 0 ≤ n ≤ L.
Essentially, the above definition means that any 1-D slices of the function have vanish-
ing moments of order L. Notice from the definition that f has directional vanishing
moment along direction v if and only if the same holds along direction −v. The
Lemma 10 below essentially relates directions of vanishing moments to scale a.
Lemma 10 There exists C < ∞ (independent of a, b and θ) such that the curvelet
functions γabθ have directional vanishing moments of any order L < ∞ along all
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directions v that satisfy pi/2 ≥ |∠(vθ, v)| ≥ Ca1/2. Moreover, if there exists finite and
strictly positive constants C1, C
′
1 and C2 such that supp(ϕˆ) ⊂ [C1, C ′1] × [−C2, C2],
then the above is true also for functions ϕabθ and Mϕabθ.
Proof. Because m is smooth and bounded, the Fourier transforms ϕ̂abθ(ξ) and
m(‖ξ‖)ϕ̂abθ(ξ) of functions ϕabθ and Mϕabθ have the same compact support (and the
same order of differentiability). This makes them equivalent in the sense that both
satisfy conditions of the Lemma and therefore it is enough to produce a proof for
ϕabθ. Moreover, compact support in frequency domain implies that ϕabθ and Mϕabθ
are in C∞.
Let a > 0, b ∈ R2 and θ = 0, so vθ = (0, 1)T . Let v = (v1, v2)T = (cos θ′, sin θ′)T
be a unit vector such that |∠(v0, v)| ≥ Ca1/2. We make now a restriction to values
θ′ ∈ [0, pi/2), i.e. 0 < ∠(v0, v) ≤ pi/2. On this interval we always have ∠(v0, v) <
tan(∠(v0, v)). Choose now C = C2/C1. Because
v1
v2
= tan (∠(v0, v)) > ∠(v0, v) ≥ Ca1/2 = C2a
−1/2
C1a−1
,
it follows that the lines passing through the origin with slopes ±v1
v2
do not intersect
the rectangle [a−1C1, a−1C ′1]× [−a−1/2C2, a−1/2C2]. In particular, since supp(ϕ̂ab0) is
a subset of the rectangle, it does not intersect with the line ξ2 = −v1v2 ξ1. Now, since
rotation commutes with Fourier transform, we have supp(ϕ̂abσ) = Rσ supp(ϕ̂ab0) and
so
supp(ϕ̂ab0) ∩ {(ξ1, ξ2) : ξ2 = −v1
v2
ξ1} = ∅
⇐⇒ supp(ϕ̂ab(−θ′)) ∩ R−θ′{(ξ1, ξ2) : ξ2 = −v1
v2
ξ1} = ∅
⇐⇒ supp(ϕ̂ab(−θ′)) ∩ {(ξ1, ξ2) : ξ1 = 0} = ∅
Consequently, all partial derivatives of ϕ̂ab(−θ′) vanish on the ξ2-axis. This property
of ϕab(−θ′) implies that it has directional vanishing moments along the direction of
x1-axis of any order L. Indeed, if we denote g(x2) :=
∫
xn1ϕab(−θ′)(x1, x2)dx1 then
differentiating under the integral sign gives
0 = ∂n1 ϕ̂ab(−θ′)(0, ξ2)
= (−2pii)n
∫ (∫
xn1ϕab(−θ′)(x1, x2)dx1
)
e−2piix2ξ2dx2
= (−2pii)n
∫
g(x2)e
−2piix2ξ2dx2
= (−2pii)ngˆ(ξ2),
for all ξ2 ∈ Rˆ, which implies that g(x2) ≡ 0. Therefore, ϕab0 has vanishing moments
along the direction v. For angles θ′ ∈ (pi/2, pi] one can make similar derivations since
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[a−1C1, a−1C ′1] × [−a−1/2C2, a−1/2C2] is symmetric about the ξ1-axis. And proof for
the case θ = 0 is complete.
The general case for θ ∈ [0, 2pi) follows easily from the fact that θ just rotates the
function ϕabθ. Because ϕabθ has directional vanishing moments along the direction v
if and only if ϕab0 have directional vanishing moments along direction R−θv and
|∠(vθ, v)| = |∠(R−θvθ,R−θv)| = |∠(v0,R−θv)| ,
we can denote R−θv := (cos θ′, sin θ′)T and make exactly same calculations as in
the case θ = 0. For curvelets, one can use exactly the same proof because clearly
supp(γ̂a00) ⊆ [a−1C1, a−1C ′1] × [−a−1/2C2, a−1/2C2] for some strictly positive C1, C ′1
and C2.
2.7.2 Smoothness of kernel and basis functions
Smoothness of basis functions is an important subject in approximation and compres-
sion applications. If basis functions are very rough, the visual quality might be bad
even if the error ‖f − f,M,B‖2 is fairly small. With basis functions used in this thesis
this is not an issue since all basis functions had compact support in Fourier domain,
that makes them to be C∞ functions.
2.7.3 Decay of kernel and basis functions
A result on the decay of ∂νϕabθ, ∂
νMϕabθ, and ∂
νγabθ is given below.
Lemma 11 Suppose that the windows V and W in the definition of CCT are C∞
and have compact supports. Then for each N = 1, 2, ... there is a constant CN such
that
∀x ∈ R2 |∂νγabθ(x)| ≤ CNa
−3/4−|ν|
1 + ‖x− b‖2Na,θ
. (21)
Moreover, if ϕˆ ∈ C∞ and if there exist finite and strictly positive constants C1, C ′1,
and C2 such that supp(ϕˆ) ⊂ [C1, C ′1] × [−C2, C2], then (21) also holds for functions
ϕabθ and Mϕabθ.
Proof. We produce a proof only for Mϕabθ. The proof is identical for ϕabθ and, at
the end of the proof, we will point out differences of proof for curvelets.
We first recall the basic properties of the Fourier transform:
f(x) = (−2piix)νg(x) ⇔ fˆ(ξ) = ∂ν gˆ(ξ)
f(x) = ∂νg(x) ⇔ fˆ(ξ) = (2piiξ)ν gˆ(ξ).
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Therefore we have ∫
R2
∆kgˆ(ξ)e2piix·ξdξ = (−4pi2 ‖x‖2)kg(x), (22)
where ∆ is the Laplacian i.e. ∆ := ∂21 + ∂
2
2 . We restrict first ourself to the case θ = 0
and b = 0. Fix an index vector ν := (ν1, ν2) and define
ga(x) := Mϕa00(Dax) and ha(x) := ∂
νga(x) = a
ν1+
ν2
2 (∂νMϕa00)(Dax).
A straightforward computation yields
hˆa(ξ) = (i2piξ)
ν gˆa(ξ)
= (2piiξ)νa−3/2M̂ϕa00(D1/aξ)
= (2piiξ)νa−3/2m(
∥∥D1/aξ∥∥)ϕˆa00(D1/aξ)
= (2piiξ)νa−3/2m(
∥∥D1/aξ∥∥)a−3/4ϕˆ(ξ)a3/2
= (2piiξ)νa−3/4m(
∥∥D1/aξ∥∥)ϕˆ(ξ).
(23)
If we now replace gˆ by hˆa and x by D1/ax in equation (22) we get∣∣∣(−4pi2 ∥∥D1/ax∥∥2)kaν1+ν2/2(∂νMϕa00)(x)∣∣∣
=
∣∣∣(−4pi2 ∥∥D1/ax∥∥2)kha(D1/ax)∣∣∣
=
∣∣∣∣∫
R2
(∆khˆa)(ξ)e
2piiD1/ax·ξdξ
∣∣∣∣
≤
∫
R2
∣∣∣(∆khˆa)(ξ)∣∣∣ ∣∣e2piiD1/ax·ξ∣∣ dξ
=
∫
R2
∣∣∣(∆khˆa)(ξ)∣∣∣ dξ
= a−3/4
∫
R2
∣∣∆k((2piiξ)νm(∥∥D1/aξ∥∥)ϕˆ(ξ))∣∣ dξ
≤ Ca−3/4.
In the last step we used the observation that
∣∣∆k((2piiξ)νm(∥∥D1/aξ∥∥)ϕˆ(ξ))∣∣ ≤ C
where C is independent of a. This is a direct consequence of the fact that if ξ ∈
supp(ϕˆ) then∣∣m(n)(∥∥D1/aξ∥∥)∣∣ ≤ C ∥∥D1/aξ∥∥−n ≤ C ∥∥(a−1C1, 0)T∥∥−n = Can. (24)
When k = 0 this reduces to∣∣aν1+ν2/2(∂νMϕa00)(x)∣∣ ≤ Ca−3/4.
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By combining the above estimates, we get
aν1+ν2/2(1 + 4kpi2k
∥∥D1/ax∥∥2k) |∂νMϕa00)(x)|
=
∣∣aν1+ν2/2(∂νMϕa00)(x)∣∣+ ∣∣∣(−4pi2 ∥∥D1/ax∥∥2)kaν1+ν2/2(∂νMϕa00)(x)∣∣∣
≤ Ca−3/4,
which finally gives the inequality
|∂νMϕa00)(x)| ≤ Ca
−3/4−ν1−ν2/2
1 + (2pi)2k
∥∥D1/ax∥∥2k ≤ Ca
−3/4−ν1−ν2/2
1 +
∥∥D1/ax∥∥2k .
Now we give brief arguments how we get estimate for general θ and b. Because
translation do not change regularity properties, it is clear that all above would hold
also for a general b. Rotation will clearly change properties of partial derivatives of a
function. However, taking partial derivative of a smooth function Mϕabθ with respect
to x1 is the same as taking directional derivative of Mϕab0 to direction R−θ(1, 0)T .
Since a directional derivative is a linear combination of partial derivatives, and partial
derivatives with respect to x1 and x2 in the above calculations produced factors
a−ν1−ν2/2, in the worst case we will get factor a−ν1−ν2 = a−|ν| instead of a−ν1−ν2/2.
For curvelets the only essential difference is that we choose ga(x) := γa00(Dax), which
leads to formula
hˆa(ξ) = (2piiξ)
ν a−3/4ϕˆa00(D1/aξ)
= (2piiξ)ν a−3/4W
(√
ξ21 + aξ
2
2
)
V
(
a−1/2 arctan
a1/2ξ2
ξ1
)
.
(25)
From compact supports of V and W we easily see that there exists positive constants
C ′ and C ′′ s.t. ξ ∈ supp(hˆa) implicates C ′ ≤ ξ1 ≤ C ′′ and |ξ2| ≤ C ′′ for all sufficiently
small a. Therefore it is also easy to see from (25) that partial derivatives of hˆa(ξ) are
bounded by Ca−3/4, and so we get the same estimate as before.
We would like to remark that, by geometric arguments, the above lemmas would be
valid also when supp(ϕˆ) ⊂ (([−C ′1, C1] ∪ [C1, C ′1])× [−C2, C2]). This is important if
one prefers a real valued function ϕ.
3 Approximation of piecewise smooth functions by
Curvelets
In later sections we will constantly build estimates for expressions that contain pa-
rameters a, b and k or θ (recall the notation θ = pi
2
ka1/2). Although some of these
estimates hold for all a, b and k, for our purposes it does not matter if estimates hold
only for a < a0, for some constant a0. This is because at coarse scale the Φb are used.
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Many estimates consider how the transform start to decay when the angle parameter
|k| exceeds some constant value k0, that depends only on f and γ. The optimal value
for k0 is out of interest here since it would just affect to a constant in front of final
estimates. Therefore, we will define that the notation
expression1(a, b, k) ≈ expression2(a, b, k)
is equivalent to the existence of a constant C ∈ R, independent from a, b and k (i.e.
θ) such that
expression1(a, b, k) = C · expression2(a, b, k)
for all b ∈ R2, a < a0 and k > k0. Similarly
expression1(a, b, k) . expression2(a, b, k)
is equivalent to that there exists a constant C ∈ R, independent from a, b and k such
that
expression1(a, b, k) ≤ C · expression2(a, b, k)
for all b ∈ R2, a < a0 and k > k0. With help of these notations we do not have to
update constant coefficients all the time.
3.1 Piecewise smooth functions
In the introduction, the class of piecewise smooth functions was discussed without
mathematical details. Here we will give a bit more rigorous definitions. We restrict
to functions f ∈ L2(R2) that have singularities only along smooth curves S ∈ R2. We
start by giving rigorous definition for a smooth curve. In [5] where the convergence
rates of ‖f − fM‖22 are studied, S is defined in polar coordinates. However, inside the
proofs the boundary is often considered locally as function of one variable. This is
close to the approach used in design of bandelets [26], that are adaptive orthogonal
basis which have optimal convergence rate of ‖f − fM‖22. We choose to define the
boundary in this way since we can use then smoothness properties more directly in
proofs.
Definition 12 Assume that a plane curve S ∈ R2 has tangent in all points and sp,r
is a square centered at p and having side length r. Inside this square the coordinates
are defined so that x1-axis is parallel to the tangent of S at p, x2-axis orthogonal to
x1-axis and origin in p. If there exists r0 > 0 s.t. ∀r < r0 inside sp,r the curve S
is a function gp,r : R → R, gp,r ∈ Cn, and all first n derivatives of gp,r are bounded
by a constant C (independent from p and r), then we say that S is Cn smooth with
bounded derivatives.
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Next we define the class Fα,n of functions for which the convergence of ‖f − fM,B‖22
is studied.
Definition 13 We say that f ∈ Fα,n if it is of the form f = χR2\Af1 + χAf2, where
f1, f2 ∈ Cα(R2) and have bounded derivatives and compact supports, and A is a
compact set with boundary curve S that is Cn smooth with bounded derivatives.
Now, for example, if f ∈ F2,2 then curvelets have the approximation rate ‖f − fM,C‖22 ≤
CM−2(log(M))3 but wavelets still have only the rate ‖f − fM,W‖22 ≤ CM−1.
We make some remarks on Definition 13. In practice, supports are often restricted
to the square [0, 1]2 (or more generally a rectangle) since this is quite standard in
real applications, as in analysis of images. Secondly, Fα,n does not contain functions
where S could have corners, which is usually the starting point. In some publications,
such as [5] a careful analysis of the effect of corner points to the approximation rate
is performed, but often it is omitted, see [11, 15]. Third, the author is not aware of
any research with n, α > 2 when transforms based on parabolic scaling are studied.
With adaptive basis like bandelets [25] this kind of research is done. The last note
is that there could be more than one region and boundary curve if those would not
intersect each others. However in literature only this simple case of one curve is
usually considered since techniques for proofs of theorems are the same.
3.2 Decay of transforms of piecewise smooth functions
The next theorem shows that by assuming more smoothness for f and S, the trans-
form will decay faster when orientation turns away from orientation of S.
Theorem 14 Let f ∈ Fn,n, b ∈ S and θ′ ≈ ka1/2 be angle between major axis of γabθ
and tangents of S in point b, then
∣∣∣∣∫
R2
f(x)γabθ(x)dx
∣∣∣∣ .

a3/4 , |θ′| . a1/2
a3/4
|k|3 , n = 2, |θ′| & a1/2
a3/4
|k|3+ε , n ≥ 3, |θ′| & a1/2
(26)
for any fixed ε < 2.
Proof. From the parabolic scaling law its clear that∣∣∣∣∫
R2
f(x)γabθ(x)dx
∣∣∣∣ . a3/4. (27)
We use this estimate for ”small” angles |θ′| . a1/2. The real challenge is to find good
estimate when |θ′| & a1/2. The proof is somewhat long, so we divide it in five different
steps:
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1. Localization of function and definition of appropriate coordinate systems
2. Partitioning of R2
3. Performing local twisting of function
4. Technical calculation of estimates of integrals in restricted domain
5. Extending estimates to whole domain.
1. Localization of function and defining appropriate coordinate systems For simplicity,
we define x1-axis as in the definition 12. In that case θ
′ = θ. We also choose b = 0,
although it would be sufficient that ‖b‖a,θ . 1.
The main ingredient of the proof is “twisting” the discontinuity curve to a straight
line to gain maximum advantage from vanishing moments of γabθ. We actually make
that twisting by a change of variable in integration. To avoid the error between
twisted and real integral being too large, we do not make this change in the whole
domain but only in a small region.
Next, we define wr ∈ C∞(R2) to be a smooth window function s.t. wr(x) = 0 when
‖x‖ > r/2 and wr(x) = 1 when ‖x‖ < r/4. Therefore∣∣∣∣∫
R2
fγabθdx
∣∣∣∣ ≤ ∣∣∣∣∫
R2
(1− wr)fγabθdx
∣∣∣∣+ ∣∣∣∣∫
R2
wrfγabθdx
∣∣∣∣ . (28)
Because the size of window wr is independent of a and γ has rapid decay, it is clear
that for all N <∞ there exists CN s.t.∣∣∣∣∫
R2
(1− wr)fγabθdx
∣∣∣∣ ≤ CNaN . (29)
Now fix r be so small that S can be presented as a function g(x1) inside the support
of wr. By definition of Fn,n it follows that if n ≥ 2, then
g(0) = g′(0) = 0. (30)
2. Partitioning of R2. We will divide R2 to small parallelograms by dividing it first
by horizontal lines and then by lines parallel to major axis of γabθ.
First we divide R2 with horizontal lines to slices Ri,a, i ∈ Z, that have same heights
hR which obey
hR = a
1/2 |sin(θ)| . a1/2 |θ| ≈ a |k| . (31)
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We can then write ∣∣∣∣∫
R2
wrfγabθdx
∣∣∣∣ =
∣∣∣∣∣∣
∞∑
|i|=1
∫
R2
χRi,awrfγabθdx
∣∣∣∣∣∣
≤
∞∑
|i|=1
∣∣∣∣∫
R2
χRi,awrfγabθdx
∣∣∣∣
(32)
Next, make a division with lines parallel to the main axis of γabθ. We set distance
between each line being the same as length of translations caused to curvelet γabθ
when b1 increase or decrease by one, i.e. this length is about a. This divides each Ri,a
to parallelograms Ri,a,l that are aligned with major axis of γabθ. Notice that each of
these parallelogram fit inside some rectangle that have side lengths about a and a1/2
and orientation angel equal to θ. Also it is essential to notice that now each slice Ri,a
is constructed from these disjoint parallelograms Ri,a,l.
We will first investigate the slice Ri,a that contains x1-axis and is therefore most
“corrupted” by the singularity curve. Without loss of generality, the partition R2 =
∪∞|i|=1Ri,a can be chosen so that the index i that refer to this slice is i = i′ = 0.
Let us investigate a point u = (u1, u2) ∈ S. Because g′(0) = 0 and g′′ is bounded,
|u2| ≤ |u1|2. Therefore with relatively small values of |l|, inside in each Ri′,a,l there
exists a much smaller region Ai′,a,l (another parallelogram with sides oriented similarly
to sides of Ri′,a,l) such that u ∈ Ri′,a,l only if u ∈ Ai′,a,l. By the construction, the side
of Ai′,a,l that is aligned with the x1-axis has always the same length d,
d ≈ a
sin(θ)
. a
a1/2 |k| ≈
a1/2
|k| , (33)
but the heights can vary. However, techniques we use later require that this height,
let denote it by hA, is the same for all Ai′,a,l. We set this height to be
hA ≈ a|k|ε , (34)
where ε ≥ 0. The particular choice ε = 0 will lead to the decay estimate that provides
well known non-linear approximation rate O(M−2(log(M))3. However, by choosing
ε > 0 and assuming f and S being a bit smoother, we will gain a decay estimate that
will provide the approximation rate O(M−2).
Next we derive the bound lmax such that
x ∈ S, x ∈ Ri′,a,l, |l| < lmax ⇒ x ∈ Ai′,a,l (35)
Since
sup
x∈Ai′,a,l
|x1| ≈ hA|tan(θ)| + |l| d, (36)
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we get
sup
x∈Ai′,a,l
|g(x1)| . sup
x∈Ai′,a,l
|x1|2
≈
(
hA
tan(θ)
+ |l| d
)2
.
(
a1/2
|k|1+ε +
|l| a1/2
|k|
)2
.
( |l| a1/2
|k|
)2
=
l2a
k2
.
(37)
Because we need supx∈Ai′,a,l |g(x1)| ≤ hA, we will put a condition for l:
l2a
k2
. hA
⇔ |l| . |k|1−ε/2
(38)
We denote now the bound found as
lmax ≈ |k|1−ε/2 . (39)
By the construction, we can set regions Ai′,a,l so that ∪∞|l|=0Ai′,a,l is a horizontal slice
of R2 and ∪lmax|l|=0Ai′,a,l is parallelogram. We add to this parallelogram two “small”
right-angled triangles, A1 and A2, so that
RT :=
(∪lmaxl=1 Ai′,l,a) ∪ A1 ∪ A2 (40)
is rectangle. Notice that area of A1 and A2 is really negligible compared to the area
of ∪lmax|l|=0Ai′,a,l.
3. Performing local twisting of function Inside RT we will perform a “twisting”, i.e.,
make a change of variable that will allow us to consider f as smooth in direction of
x1-axis.
Let us define the twisting operator Tg : R2 → R2 by formula
Tg(x1, x2) :=
{
(x1, x2 − hA−|x2|hA g(x1)) , (x1, x2) ∈ RT
(x1, x2) , (x1, x2) /∈ RT (41)
For a subset R of R2 operator Tg is defined similarly
TgR := {Tg(x1, x2) | (x1, x2) ∈ R} . (42)
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It is essential to notice that
TgRT = RT . (43)
Even more vital is to notice that if apart from S, f is n times continuously differ-
entiable (with bounded derivatives) and first n derivatives of g are continuous and
bounded, then first n derivatives of the function
f˜(x) := χRi′,awrf(Tgx), (44)
in direction of x1-axis are bounded and continuous inside RT , and elsewhere in slide
Ri′,a function f˜(x) behaves essentially like f .
We perform now the change of variable
x = Tgy, (45)
dx =
{
det(J(y))dy , y ∈ RT
dy , y /∈ RT
=
{
∂x2
∂y2
dy , y ∈ RT
dy , y /∈ RT
=
{
(1 + sqn(y2)
g(y1)
hA
)dy , y ∈ RT
dy , y /∈ RT ,
(46)
which gives ∣∣∣∣∫
R2
(1Ri′,awrf)(x)γabθ(x)dx
∣∣∣∣ = ∣∣∣∣∫
R2
f˜(y) det(J(y))γ˜abθ(y)dy
∣∣∣∣ , (47)
where
h(y) := f˜(y) det(J(y)) =
{
f˜(y) det(J(y)) , y ∈ RT
f(y) , y /∈ RT (48)
and
γ˜abθ(y) := γabθ(Tgy). (49)
Notice that with this kind of change of variables the integration must be done sep-
arately inside and outside of region RT , if regularity properties are used. This is
because the mapping Tg might destroy all regularity properties on the border of RT .
We observe now some properties of h and γ˜abθ. Since
|g(y1)| . y21, |g′(y1)| . |y1| , 0 ≤
hA − |y2|
hA
≤ 1, (50)
it is quite clear that
|h(y)| . 1, y ∈ R2, (51)
38
∣∣∣∣∂h(y)∂y1
∣∣∣∣ . { |y1|hA , y ∈ RT1 , y /∈ RT (52)
and for 2 ≤ m ≤ n ∣∣∣∣∂mh(y)∂ym1
∣∣∣∣ . { 1hA , y ∈ RT1 , y /∈ RT (53)
On the border of RT the function γ˜abθ is discontinuous but all decay properties of γ˜abθ
(and it’s derivatives) remain. Also
γ˜(y) = γ(y),∀y /∈ RT . (54)
However, unlike γabθ, the function γ˜abθ does not have directional vanishing moments.
Because of that we will “recreate” function γabθ:∣∣∣∣∫
R2
(1Ri′,awrf)(x)γabθ(x)dx
∣∣∣∣
=
∣∣∣∣∫
R2
h(y)γ˜abθ(y)dy
∣∣∣∣
=
∣∣∣∣∫
R2
h(y)(γ˜abθ(y)− γabθ(y) + γabθ(y))dy
∣∣∣∣
≤
∣∣∣∣∫
R2
h(y)(γ˜abθ(y)− γabθ(y))dy
∣∣∣∣+ ∣∣∣∣∫
R2
hγabθ(y)dy
∣∣∣∣ .
(55)
4. Technical calculation of estimates of integrals in restricted domain Estimates for
the integrals
I1 =
∣∣∣∣∫
R2
h(y)(γ˜abθ(y)− γabθ(y))dy
∣∣∣∣ = ∣∣∣∣∫
RT
h(y)(γ˜abθ(y)− γabθ(y))dy
∣∣∣∣ (56)
and
I2 =
∣∣∣∣∫
R2
hγabθ(y)dy
∣∣∣∣ (57)
can be made separately. We first consider the integral I2.
Remember, that in domain Ri′,a function h is smooth in direction of y1-axis and
therefore we can use efficiently directional vanishing moments of γ. For that we
construct function P so that it is good polynomial approximation for h in y1-direction.
First we take a 1-D slice hy2(y1) of h in direction of y1, i.e.
hy2(y1) := h(y1, y2). (58)
Then we define
P (y) := Py2(y1), (59)
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where Py2(y1) is n − 1:th order Taylor polynomial of hy2(y1). Next we use a basic
trick to divide integral I2 to two different integrals
I2 =
∣∣∣∣∫
R2
hγabθdy
∣∣∣∣
=
∣∣∣∣∫
R2
(h− P + P )γabθdy
∣∣∣∣
≤
∣∣∣∣∫
R2
(h− P )γabθdy
∣∣∣∣+ ∣∣∣∣∫
R2
Pγabθdy
∣∣∣∣
=I21 + I22
(60)
Because of directional vanishing moments of γ,∫
R
Py2(y1)γabθ(y1, y2)dy1 = 0. (61)
Since Pγabθ is absolutely integrable (because of rapid decay of γ), we can use the
theorem of Fubini to make integration first in direction of y1 and get
I22 =
∣∣∣∣∫
R2
Pγabθdy
∣∣∣∣ = 0. (62)
From now on let us denote
RI :=
(∪|l|≤lmaxRi′,l,a) ∪ A1 ∪ A2. (63)
Integral I21 is first divided to three parts
I21 =
∣∣∣∣∫
R2
(h− P )γabθdy
∣∣∣∣
=
∣∣∣∣∣
∫
Ri′,a
(h− P )γabθdy
∣∣∣∣∣
≤
∣∣∣∣∣
∫
Ri′a\RI
(h− P )γabθdy
∣∣∣∣∣+
∣∣∣∣∫
RI\RT
(h− P )γabθdy
∣∣∣∣+ ∣∣∣∣∫
RT
(h− P )γabθdy
∣∣∣∣
= I211 + I212 + I213.
(64)
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The key for creating an estimate for I211 is rapid decay of γ:
I211 =
∣∣∣∣∣
∫
Ri′a\RI
(h− P )γabθdy
∣∣∣∣∣
≤
∫
Ri′,a\RI
|h− P | |γabθ| dy
.
∫
Ri′,a\RI
max {1, ‖y1‖n} a
−3/4
1 + ‖y‖Ka,θ
dy
.
∞∑
|l|=lmax
∫
Ri′,a,l
max {1, |dl|n} a
−3/4
1 + |l|K dy
.
∞∑
|l|=lmax
hRdmax {1, |dl|n} a
−3/4
1 + |l|K
.
∞∑
|l|=lmax
hRd
a−3/4
1 + |l|K−1−n
. hRda−3/4 |lmax|−K+2+n
. a |k| a
1/2
|k| a
−3/4 |k|(−K+2+n)(1−ε/2)
≈ a
3/4
|k|K(1−ε/2)−(1−ε/2)(2+n)
.
(65)
When ε < 2 and K is chosen to be large enough this estimate is clearly acceptable.
For integral I212 the approach is quite similar, now we just use Taylor’s theorem to
bound |h− P |;
I212 =
∣∣∣∣∫
RI\RT
(h− P )γabθdy
∣∣∣∣
.
lmax∑
|l|=0
∫
Ri′,a,l\Ai,a,l
|h− P | a
−3/4
1 + ‖y‖Ka,θ
dy
.
lmax∑
|l|=0
∫
Ri′,a,l\Ai,a,l
|d(|l|+ 1)|n a
−3/4
1 + |l|K dy
.
lmax∑
|l|=0
hRd |d|n a
−3/4(|l|+ 1)n
1 + |l|K
. hRd |d|n a−3/4
. a |k|
(
a1/2
|k|
)n+1
a−3/4.
(66)
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Estimate used for ‖y‖a,θ follows from the fact how we divided R2 to ”grid” of paral-
lelograms Ri′,a,l: just have to count how many grid lines has to be crossed when move
from origin to point y. From above we especially get
n = 2 ⇒ I212 ≤ a7/4 |k|−2 ≤ a3/4 |k|−4 , (67)
n ≥ 3 ⇒ I212 ≤ a9/4 |k|−3 ≤ a3/4 |k|−6 , (68)
that are acceptable. For integral I213 the approach is identical to I212
I213 =
∣∣∣∣∫
RT
(h− P )γabθdy
∣∣∣∣
.
lmax∑
|l|=0
∫
Ai,l,a
|h− P | a
−3/4
1 + |y|Ka,θ
dy
.
lmax∑
|l|=0
∫
Ai,l,a
|d(|l|+ 1)|n
hA
a−3/4
1 + |l|K dy
.
lmax∑
|l|=0
d |d|n a
−3/4(|l|+ 1)n
1 + |l|K
. d |d|n a−3/4
.
(
a1/2
|k|
)n+1
a−3/4.
(69)
Notice that when n = 2 this bound is a3/4 |k|−3 and when n = 3 the bound is
a2
|k|4a
−3/4 ≤ a3/4k−5 i.e. it is acceptable.
As a summary, if we wish to get I2 bounded by a
3/4 |k|−3, then n = 2 is enough. If we
wish to get bound I2 by a
3/4 |k|−3−ε for 2 > ε > 0, then n ≥ 3 is a sufficient condition.
Now we turn to investigate I1. The key point is to make an estimate for the difference
|γ˜abθ(y)− γabθ(y)|. We first remind that
|γ˜abθ(y)− γabθ(y)| = |γabθ(Tgy)− γabθ(y)| . (70)
The difference between the arguments is therefore
|Tg(y)− y|
=
∣∣∣∣(y1, y2)− (y1, y2 − hA − |y2|hA g(y1))
∣∣∣∣
=
∣∣∣∣(0, hA − |y2|hA g(y1))
∣∣∣∣
. hA − |y2|
hA
y21.
(71)
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Notice, especially, that in y1 direction there is no difference in arguments. Now by
remembering that derivatives of γabθ have rapid decay (11), we can write that inside
Ai′,l,a holds
|γabθ(Tgy)− γabθ(y)|
. hA − |y2|
hA
y21 sup
y∈Ai′,l,a
∣∣∂(0,1)γabθ(y)∣∣
. hA − |y2|
hA
y21
a−7/4
1 + |l|K
≤ y21
a−7/4
1 + |l|K
. (72)
Another important fact to notice is that
y ∈ Ai,l,a ⇒ |y1| . hA |tan(θ)|+ d |l| . d |l| . (73)
With these observations, and since h is bounded, we finally get∣∣∣∣∫
R
h(y)(γ˜abθ(y)− γabθ(y))dy
∣∣∣∣
.
∫
R
|γ˜abθ(y)− γabθ(y)| dy
=
∫
RT
|γ˜abθ(y)− γabθ(y)| dy
.
lmax∑
|l|=0
∫
Ai′,l,a
|γ˜abθ(y)− γabθ(y)| dy
.
lmax∑
|l|=1
∫
Ai′,l,a
(dl)2
a−7/4
1 + |l|K dy
.
lmax∑
|l|=1
hAd(dl)
2 a
−7/4
1 + |l|K
.hAd3a−7/4
≈ a
3/4
|k|3+ε
(74)
Since we got I1, I2 . a
3/4
|k|3+ε , the estimate is now ready for the slice Ri′,a = R0,a.
5. Extending estimates to the whole domain For other slices Ri,a we use similar
approach. The key is to notice how in all estimates we used rapid decay property of
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γabθ, in form
1
1+|l|K . Although we never wrote it before, we divide the summation over
l as
lmax∑
|l|=0
cl
1
1 + |l|K .
lmax∑
|l|=1
cl
1
|l|K (75)
when calculating any estimates. With this trick we do not have to worry about l = 0.
Now for slices Ri,a, i 6= 0, the essential decay estimate is
1
|i+ l|K ≤
1
|i|K + |il|K/2 + |l|K
≤ 1
|i|K/2
1
|l|K/2
. (76)
This means that in all calculations compared to case i = 0, we get an extra factor
1
|i|K/2 . We divide investigation to ”small” and ”large” values of |i|. Let investigate
first the case |i| & |k|κ, where 0 < κ < 1/2.
∞∑
|i|=|k|κ
∣∣∣∣∫
R2
1Ri,awrfγabθdx
∣∣∣∣
.
∞∑
|i|=|k|κ
∞∑
|l|=0
a3/2
a−3/4
1 + |i+ l|K
.
∞∑
|i|=|k|κ
(
a3/4
|i|K +
∞∑
l=1
a3/2
a−3/4
1 + |i+ l|K
)
.
∞∑
|i|=|k|κ
(
a3/4
|i|K +
1
|i|K/2
∞∑
l=1
a3/2
a−3/4
|l|K/2
)
.
∞∑
|i|=|k|κ
a3/4
|i|K/2
. a
3/4
|k|(K/2−1)κ
.
(77)
With a fixed κ we just have to choose K large enough.
Next consider values i . |k|κ. We note that “twisting” is not necessary if we do not
let |l| grow too large, i.e. if region RI do not intersect with S. In the case i = 0
the bound |l| < lmax was used only when estimating I22 to take care of large values
of |l|. The value for lmax was chosen so that “twisting error I21 does not grow too
large. If RI ∩ S = ∅, we do not need any twisting, so generally in this case we could
consider some other (smaller) bound for |l|. However, it turns out that |l| . |k|1−ε/2
will provide RI ∩ S = ∅ when 0 < |i| . |k|κ. We check this now.
For every region Ri,a,l
y ∈ Ri,a,l ⇒
{ |y1| . |i| a1/2 + |l| d . (|i|+ |l/k|)a1/2
|y2| ≈ |ik| a (78)
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and
y ∈ Ri,a,l ⇒ |g(y1)| . |y1|2 . (|i|+ |l/k|)2a. (79)
Therefore
|ik| a & (|i|+ |l/k|)2a ⇒ Ri,a,l ∩ S = ∅. (80)
Now we just have to check that the left hand side of (80) holds for all |i| . |k|κ. This
can be done simply by noticing that
(|i|+ |l/k|)2 . (|i|+ |k|−ε/2)2 . |i|2 . |k|2κ , (81)
and |k| & |k|2κ we get
|ik| a & |k|2κ a & (|i|+ |l/k|)2a. (82)
We have now shown that
0 < |i| . |k|κ , |l| ≤ lmax ⇒ Ri,a,l ∩ S = ∅ (83)
which means that for all slices Ri,a we can use exactly same techniques (in case i 6= 0
twisting step can be omitted). By remembering that in the case i = 0 we used in
all non-zero estimates the rapid decay property of γ, it’s clear that with general i we
get again therefore an extra factor 1|i|K/2 . Detailed steps to create
1
|i|K/2 are the same
as in case |i| & |k|κ and we omit them. The estimate for with small values of |i| is
therefore
|k|κ∑
|i|=0
∣∣∣∣∫
R2
χRi,awrfγabθdx
∣∣∣∣
≤
|k|κ∑
|i|=0
a3/4
|k|3+ε |i|−K/2
≤ a
3/4
|k|3+ε ,
(84)
and the final estimate ∣∣∣∣∫
R2
f(x)γabθ(x)dx
∣∣∣∣ . a3/4|k|3+ε (85)
comes now by putting (77) and (84) together.
The previous theorem considered only the case when b ∈ S. However, this is hardly
ever the case, if we do not consider a continuous transform but coefficients of a
discrete curvelet transform. If γ would have compact support, then this would not
be so restrictive since we could do exactly the same calculations for b such that
supp(γabθ) ∩ S 6= ∅. Unfortunately, this is not possible since γ has compact support
in Fourier domain. All calculations in the proof of theorem still work same way
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for some finite number of b that that are closest to point p ∈ S. However, since
supp(γabθ) ∩ S 6= ∅ for all b, we are interested also how
∣∣∫
R2 f(x)γabθ(x)dx
∣∣ decay as
function of b when the distance between b and S grows. The next theorem give some
estimate for this.
Theorem 15 Let f ∈ FN,n, N ≥ n, p ∈ S be point that minimizes L = |DaRθ(b− p)|
and θ′ ≈ ka1/2 be the angle between major axis of γabθ and tangent of S at point p.
Then for any K > 0 and 0 < ε < 2∣∣∣∣∫
R2
f(x)γabθ(x)dx
∣∣∣∣
.

max
{
a3/4+N , a
3/4
LK
}
, |θ′| . a1/2
max
{
a3/4+N/2, a
3/4
|k|3LK
}
, n = 2, |θ′| & a1/2
max
{
a3/4+N/2, a
3/4
|k|3+εLK
}
, n ≥ 3, |θ′| & a1/2
(86)
Proof. We divide the investigation in two parts: |k|1−ε/2 . L and |k|1−ε/2 & L.
The case |k|1−ε/2 . L is quite simple to check. Let A be a rectangle with side lengths
La and La1/2, center in DaRθb and orientation the same as with γabθ.
We can use similar tricks as in the proof of Theorem 14. Let us think the coordinate
system where x1 axis is parallel to major axis of γabθ, x2 axis is parallel to minor
axis of γabθ and b is in origin. First we take slices from f in direction of x2 axis and
construct Taylor polynomials Px1(x2) of one variable for those slices. Then we define
a polynomial P : R2 → R by P (x) := Px1(x2). We have∣∣∣∣∫
R2
f(x)γabθ(x)dx
∣∣∣∣
≤
∣∣∣∣∫
R2
(f(x)− P (x))γabθ(x)dx
∣∣∣∣+ ∣∣∣∣∫
R2
P (x)γabθ(x)dx
∣∣∣∣
≤
∣∣∣∣∫
R2
|f(x)− P (x)| |γabθ(x)| dx
∣∣∣∣
=
∣∣∣∣∫
R2\A
|f(x)− P (x)| |γabθ(x)| dx
∣∣∣∣+ ∣∣∣∣∫
A
|f(x)− P (x)| |γabθ(x)| dx
∣∣∣∣
= I1 + I2.
(87)
Because of rapid decay of γ, by using very similar calculations as for I211 in the proof
of Theorem 14, we get
I1 .
a3/4
L2K
. a
3/4
|k|(1−ε/2)K LK
, (88)
that is clearly acceptable since K can be arbitrary large. Because A ∩ S = ∅, the
integral I2 can be handled similarly to I212 in (66) by using Taylor’s approximation
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theorem. This gives
I2 . a3/4+N . (89)
In calculations of I1 and I2, instead of parallelograms Ri,a,l that were used in proof
of Theorem 14, we use rectangulars that are oriented like γabθ and take a double
summation over both i and l, so that the whole domain R2 is handled at one time.
The advantage of the use of rectangulars instead of parallelograms is that we get the
factor aN instead of (a1/2/ |k|)N . By combining I1 and I2 it follows that∣∣∣∣∫
R2
f(x)γabθ(x)dx
∣∣∣∣ . max{a3/4+N , a3/4|k|K LK
}
, ∀k1−ε/2 . L. (90)
Now we turn to case |k|1−ε/2 & L.
First we investigate that the smoothness of S implies that point p must belong to x1
axis always if |k| > k0, for some k0 <∞, and |k|1−ε/2 & L.
Let assume that p ≈ (a1/2i, aj) /∈ x1-axis. With this notation, |i|+ |j| ≈ L . |k|1−ε/2.
Since in this coordinate system
∣∣g′(a1/2i)∣∣ ≈ a1/2 |k|, it follows that∣∣g(a1/2i+ a1/2)− g(a1/2i)∣∣ & a |k|. However, if u is the intersection point of S and
x1-axis, then is |u1 − p1| ≈ a1/2j/ |k|. Therefore there exists k0 s.t. for all k > k0
holds ‖b− u‖θ,a < ‖b− p‖θ,a. This contradict the definition of that p should be closest
point and therefore the assumption p /∈ x1-axis must be wrong.
By the same arguments that were used in the case |k|1−ε/2 . L, for those |k| < k0
that satisfy ‖b− u‖θ,a > ‖b− p‖θ,a we give estimate∣∣∣∣∫
R2
f(x)γabθ(x)dx
∣∣∣∣ . max{a3/4+N , a3/4LK′
}
. (91)
Now we can concentrate only to the situation where x1 axis intersects with S in point
p. The calculations for estimate follow the proof of Theorem 14. Without loss of
generality, we can restrict b ∈ RL,a. Essentially in the Theorem 14 was p = b. Now,
since L = |DaRθ(b− p)|, rapid decay of γabθ give an extra factor L−K to estimate
(74) that restricted to slice R0,a, i.e.,∣∣∣∣∣
∫
R0,a
fγabθdx
∣∣∣∣∣ .
{
a3/4
|k|3LK , n = 2
a3/4
|k|3+εLK , n ≥ 3.
(92)
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Let us investigate other slices Ri,a a bit more careful. With similar calculations as in
the proof of Theorem 14 we get
∞∑
|i|=1
∞∑
|l|=|k|1−ε/2
∣∣∣∣∣
∫
Ri,a,l
fγabθdx
∣∣∣∣∣
≤
∞∑
|i|=1
C
a3/4
(1 + |L− i|K) |k|(1−ε/2)K
≤ C a
3/4
|k|(1−ε/2)K
≤ C a
3/4
|k|K′ LK′ ,
(93)
where K ′ can be arbitrary big since K can be chosen to be arbitrary large. The last
step comes from the assumption L . |k|1−ε/2. When |l| < |k|1−ε/2 and i 6= 0, f can be
assumed to be in CN(∪|l|<|k|1−ε/2Ri,a,l) and therefore again, with similar calculations
as in proof of Theorem 14, we get
∞∑
|i|=0
lmax∑
|l|=0
∣∣∣∣∣
∫
Ri,a,l
fγabθdx
∣∣∣∣∣
.
∞∑
|i|=1
a3/4+N/2
1 + |L− i|K
. a3/4+N/2.
(94)
The final estimate comes noticing that from estimates (90), (92), (91), (93) and (94)
the estimates (92) and (94) dominate over other estimates.
3.3 Convergence rate of non-linear approximation
It has been proved that the following theorem holds for curvelets, contourlets and
shearlets [5, 11, 15].
Theorem 16 Let fM,B be M-term non-linear approximation of f by using curvelets,
contourlets or shearlets. If f ∈ F2,2, then ‖f − fM,B‖22 ≤ O(M−2(log2(M))3).
The next theorem states that by assuming more regularity, we can eliminate the fac-
tor (log2(M))
3. We note that Theorem 17 and the proof are written for curvelets
but they would be probably similar for contourlets and shearlets (with compact sup-
port in Fourier domain). For compactly supported contourlets and shearlets some of
techniques used in the proof may not work.
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Theorem 17 Let fM,C be M-term non-linear approximation of f by using curvelets.
If f ∈ F5,3, then ‖f − fM,C‖22 ≤ O(M−2).
Proof. Slightly different discretizations and notations may be used. We choose
a = 2−j and θ′ = k2−j/2.
Estimate (86) gets now the form∣∣∣∣∫
R2
fγabθ
∣∣∣∣ . max{2(−5/2−3/4)j, 2−3j/4 |k|−3−ε L−K} . (95)
We will look how many of the coefficients
∫
R fγabθ have magnitude over �, i.e., we
demand that
� <
∣∣∣∣∫
R2
fγabθ
∣∣∣∣ . (96)
We will investigate separately ”distant domain”, ”smooth domain” and ”rough do-
main” curvelets.
First we look at the distant domain. Let us take a ball B that has diameter about
double the size of diameter of support the of f . Let us assume a while that boundary
of this ball would be a discontinuity curve. In that case we can use for all b /∈ B
the estimate
∣∣∫
R2 fγabθ
∣∣ . 2−3j/4 |k|−3−ε L−K , without any problem. By applying
this to (96) we can calculate the number of remaining ”distant domain coefficients”,
denoted by Md. Calculations are exactly similar to those we will do later for Mr, the
number of remaining rough domain coefficients, so we omit the details here. That
way calculating the estimate will be
Md . �−2/3. (97)
Next we move on to smooth domains. On every level j there exists Nj . 2j2j/22j/2 ≈
22j curvelets that are centered inside ball B. Curvelets on ”smooth domain” are those
that are centered so far away from discontinuity curve S that
2(−5/2−3/4)j & 2−3j/4 |k|−3−ε L−K .
In that case
∣∣∫
R2 fγabθ
∣∣ . 2−13j/4. Therefore (96) gives a bound for scale j ≤
log2
(
�−4/13/C
)
. With higher scales (96) can not be true. This means that the total
number Ms(�) of smooth domain coefficients that obey (96) is bounded by
Ms(�) .
log2(�−4/13/C)∑
j=1
22j . �−8/13 . �−2/3. (98)
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Finally, we move on to rough domain. Here curvelets are so close to the discontinuity
curve that
2(−5/2−3/4)j . 2−3j/4 |k|−3−ε L−K .
In this case
� <
∣∣∣∣∫
R2
fγabθ
∣∣∣∣ . 2−3j/4 |k|−3−ε L−K . (99)
From (99) we get a bound Lm for L:
Lm ≈ �−1/K2−3j/(4K) |k|(−3−ε)/K . (100)
By substituting L = 1 into (99), we get a similar bound km for |k|,
km ≈ �−1/(3+ε)2−3j/(4(3+ε)), (101)
and finally by substituting L = 1, k = 1 we get bound jm for j:
jm := log2
(
�−4/3/C
)
. (102)
Since the discontinuity curve S has finite length, there exists about 1/(a/ |sin(θ)|) .
1/(2−j/(|k| 2−j/2)) ≈ 2j/2 |k| basis functions γabθ s.t. angle between the major axis of
γabθ and tangent of S is about |k| 2−j/2 and ‖b− p‖a,θ ≈ 1. Moreover, with fixed p and
k, the number of parameters b that satisfy ‖b− p‖a,θ ≈ L is clearly bounded by L2.
Therefore, the upper bound for total number of essentially similarly oriented basis
functions is about |k| 2−j/2L2. This bound is of course all but sharp, but it does not
matter because K in (95) can be arbitrary big, as we will see. Notice that if Fourier
domain window functions in definition of curvelets would not be C∞ we would have
to be much more careful with this bound. We are now ready to derive a bound for
Mr, the number of rough domain curvelets that satisfy (96).
Mr .
jm∑
j=1
km∑
k=1
2j/2 |k|
Lm∑
L=1
L2
≈
jm∑
j=1
km∑
k=1
2j/2 |k|L3m
≈ �−3/K
jm∑
j=1
2j(1/2−9/4K)
km∑
k=1
|k|3(−3−ε)/K+1
≈ �−3/K
jm∑
j=1
2j(1/2−9/4K)k3(−3−ε)/K+2m
≈ �−2/(3+ε)
jm∑
j=1
2j(1/2−6/(4(3+ε)))
≈ �−2/(3+ε)�−4/3(1/2−6/(4(3+ε)))
≈ �−2/3.
(103)
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The last step follows just by simplifying the exponent and using standard summation
formula. Notice that above the exponent (1/2− 6/(4(3 + ε))) would be zero if ε = 0.
In that case, taking sum over range of j we would get log factor to final estimate, and
this would lead to the approximation error O(M−2(log(M))3).
The total number M of coefficients above threshold � (as a function of �) is
M = Md +Ms +Mr . �−2/3, (104)
and it follows that � (as function of M) has the bound
�(M) .M−3/2. (105)
Now, because the functions γabθ form a tight frame, we can write an error estimate
for a non-linear approximation where only M terms that obey (96) are kept. Let p
be permutation operator that rearranges a sequence to descending order. Then
‖f − fM,C‖22 =
∞∑
m=M
p(
{∣∣〈f, γabθ〉2∣∣}abθ)
≤
∞∑
m=M
(�(m))2
.
∞∑
m=M
(m−3/2)2
≈
∞∑
m=M
m−3
≈M−2.
(106)
4 Characterization of Ho¨lder regularities
4.1 Definitions of Ho¨lder regularities
Ho¨lder regularity of functions of two variables is defined as follows.
Definition 18 Let α > 0 and α /∈ N. A function f : R2 → R is said to be pointwise
Ho¨lder regular with exponent α at u, denoted by f ∈ Cα(u), if there exists a polyno-
mial Pu of degree less than α and a constant Cu such that for all x in a neighborhood
of u
|f(x)− Pu(x− u)| ≤ Cu‖x− u‖α. (107)
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Let Ω be an open subset of R2. If (107) holds for all x, u ∈ Ω with Cu being a
uniform constant independent of u, then we say that f is uniformly Ho¨lder regular
with exponent α on Ω or shortly, f ∈ Cα(Ω).
The uniform and pointwise Ho¨lder exponents of f on Ω and at u are then defined as
αl(Ω) := sup{α : f ∈ Cα(Ω)}
and
αp(u) := sup{α : f ∈ Cα(u)}.
Following [37], we define the local Ho¨lder exponent as follows.
Definition 19 Let (In)n∈N be a family of nested open sets in R2, i.e. In+1 ⊂ In, with
intersection ∩nIn = {u}. The local Ho¨lder exponent of a function f at u, denoted by
αl(u), is
αl(u) = lim
n→∞
αl(In).
In many situations, local and pointwise Ho¨lder exponents coincide, e.g., if f(x) = |x|β
then αp(0) = αl(0) = β. However, local Ho¨lder exponents αl(u) is also sensitive to
oscillating behavior of f near the point u. A simple example is f(x) = |x|β sin (1/ |x|γ)
for which αp(0) = β but αl(0) =
β
1+γ
, i.e., αl is influenced by the wild oscillatory
behavior of f near 0. For more on the nature of αl and αp see [37, 21]
Finally, we give a definition of directional regularity.
Definition 20 Let v ∈ R2 be a fixed unit vector and u ∈ R2. A function f : R2 → R
is pointwise Ho¨lder regular with exponent α at u in the direction v, denoted by
f ∈ Cα(u; v), if there exist a constant Cu,v and a polynomial Pu,v of degree less than
α such that
|f(u+ λv)− Pu,v(λ)| ≤ Cu,v|λ|α
holds for all λ in a neighborhood of 0 ∈ R.
If one can choose Cu,v so that it is independent of u for all u ∈ Ω ⊆ R2 and the
inequality holds for all λ ∈ R such that u + λv ∈ Ω, then we say that f is uniformly
Ho¨lder regular with exponent α on Ω in direction v or f ∈ Cα(Ω; v).
A simple example of functions with varying directional Ho¨lder regularities at the
origin is f(x) = rα(θ), where (r, θ) are the polar coordinates at x and α(θ) is any
continuous positive function. It is easy to see that f ∈ Cα(θ)(0; (cos θ, sin θ)). In
applications, the problem of determining directional smoothness arises naturally in
medical imaging such as the X-ray pictures of bones [1]. Whether or not it is possible
to prescribe arbitrary directional smoothness at different points is still open, see [20].
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4.2 Characterizations of Ho¨lder reqularities by CCT and Hart
Smith transform
4.2.1 Characterization of uniform regularity by CCT and Hart Smith
transform
Let us first note here that in the proofs of Theorems 21 and 23 we do not need
vanishing moments in more than one direction (for example in the direction of x1-
axis). In fact,∫
R2
φabθ(x)Pu(x− u)dx =
∫
R2
φa00(x)Pu(Rθ(x− u) + b)dx = 0,
because Pu(Rθ(x− u) + b) is a polynomial.
The following theorem gives a necessary condition for Ho¨lder regularity in terms of
decay of Hart Smith or curvelet transforms.
Theorem 21 If a bounded function f ∈ Cα(R2), then there exist a constant C and
a fixed coarsest scale a0 for which
|〈φabθ, f〉| ≤ Caα+ 34
for all 0 < a < a0, b ∈ R2, and θ ∈ [0, 2pi).
Proof. Without loss of generality, we can assume that b = 0 and θ = 0. The general
case follows by simple translation and rotation of f because uniform regularity is
invariant under those operations.
We first recall that uniform regularity of f means that there exist a constant C
independent of u ∈ R2 and, for each u, a polynomial Pu of degree less than α such
that
|f(x)− Pu(x− u)| ≤ C‖x− u‖α
for all x ∈ R2. Therefore, for each x2 ∈ R, there exists a polynomial P(0,x2) such that,
for all x1 ∈ R,
|f(x1, x2)− P(0,x2)(x1, 0)| ≤ C‖(x1, x2)− (0, x2)‖α = C|x1|α. (108)
Also, since φa00 has rapid decay, the integral
∫
R2
∣∣P(0,x2)(x1, 0)φa00(x)∣∣ dx is finite which
allows us to apply Fubini’s theorem and write∫
R2
P(0,x2)(x1, 0)φa00(x) dx =
∫
R
(∫
R
P(0,x2)(x1, 0)φa00(x1, x2)dx1
)
dx2
=
∫
R
0 dx2 = 0, (109)
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where we have used the assumption that φa00 has directional vanishing moments of
any order along the x2-axis for a sufficiently small. By using (108), (109) and (21)
we get
|〈φabθ, f〉| =
∣∣∣∣∫
R2
(
f(x)− P(0,x2)(x1, 0)
)
φa00(x)dx
∣∣∣∣
≤
∫
R2
∣∣f(x)− P(0,x2)(x1, 0)∣∣ |φa00(x)| dx
.
∫
R2
|x1|α |φa00(x)| dx
.
∫
R2
|x1|α
∣∣∣∣∣ a−3/41 + ‖x‖2Na,0 .
∣∣∣∣∣ dx
.
∫
R2
|ay1|α
∣∣∣∣ a3/41 + ‖y‖2N .
∣∣∣∣ dy
. aα+3/4.
A sufficient condition for a function f to be Cα is given in the next theorem. Un-
fortunately, the condition here is not the same to the necessary condition presented
above, due to the effect of parabolic scaling.
Theorem 22 Let f ∈ L2(R2) and α > 0 a non-integer. If there is a constant C <∞
such that
|〈φabθ, f〉| ≤ Caα+ 54 ,
for all 0 < a < a0, b ∈ R2, and θ ∈ [0, 2pi), then f ∈ Cα(R2).
We omit the proof of this theorem since it is essentially the same as that for the
pointwise case, see Theorem 24.
4.2.2 Characterization of pointwise regularity by CCT and Hart Smith
transform
Pointwise regularity estimates are harder to obtain than those for uniform regularity.
Necessary conditions and sufficient conditions derived here will differ even more than
in the uniform case.
Theorem 23 If a bounded function f ∈ Cα(u), then there exists C <∞ such that
|〈φabθ, f〉| ≤ Caα2+ 34
(
1 +
∥∥∥∥b− ua1/2
∥∥∥∥α) (110)
for all 0 < a < a0, b ∈ R2, and θ ∈ [0, 2pi).
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Proof. Because f is bounded, the polynomial approximation property (107) holds in
all R2 although by definition it holds only in some neighborhood of point u. Therefore
the proof is similar to that for uniform regularity, but we obviously do not have varying
polynomials for different x2. We do have
|〈φabθ, f〉| ≤
∫
R2
|φabθ(x)| |f(x)− Pu(x− u)| dx
. a− 34
∫
R2
‖x− u‖α
1 + ‖x− b‖2Na,θ
dx
≈ a− 34
∫
R2
‖x− u‖α
1 + ‖D1/aR−θ(x− b)‖2N dx
≈ a− 34+ 32
∫
R2
‖RθDay + b− u‖α
1 + ‖y‖2N dy
. Ca− 34+ 32
∫
R2
‖RθDay‖α + ‖b− u‖α
1 + ‖y‖2N dy
. Ca 34+α2
(
1 +
∥∥∥∥b− ua1/2
∥∥∥∥α) ,
since we can choose N large enough so that the last integral is finite. We have also
used the fact that RθDa is a bounded linear operator with norm ‖RθDa‖ = a1/2.
Theorem 24 Let f ∈ L2(R2) and α be a non-integer positive number. If there exist
C <∞ and α′ < 2α such that
|〈φabθ, f〉| ≤ Caα+ 54
(
1 +
∥∥∥∥b− ua1/2
∥∥∥∥α′
)
, (111)
for all 0 < a < a0, b ∈ R2, and θ ∈ [0, 2pi), then f ∈ Cα(u).
Proof. First we divide f ∈ L2(R) to low and high frequency parts fL and fH .
As discussed before, regularity of the function f depends only on regularity of high
frequency part fH , and therefore it’s enough to calculate estimates only for fH . It
is clear that, for a small enough,
〈
φˆabθ, fˆL
〉
= 0 as the frequency support of φabθ is
moving farther away from the origin. Because of that and by Plancherel’s formula,
we have
〈φabθ, f〉 = 〈φabθ, fL〉+ 〈φabθ, fH〉 = 〈φabθ, fH〉 .
Therefore the assumption (111) gives
|〈φabθ, fH〉| . aα+ 54
(
1 +
∥∥∥∥b− ua1/2
∥∥∥∥α′
)
. (112)
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Without loss of generality, we can choose a0 = 1 in (13). We use the notation
x = u+λv, where ‖v‖ = 1. Here we can set u = 0, the general case follows by simple
translation. The reconstruction formula (13) can be rewritten
fH(x) =
−1∑
j=−∞
∆j(x), (113)
where
∆j(x) :=
∫ 2j+1
2j
∫ 2pi
0
∫
R2
〈φabθ, fH〉φ]abθ(x) db dθ
da
a3
.
We try to approximate fH by polynomial
P0(λv) :=
bαc∑
k=0
λk
k!
−1∑
j=−∞
(v · ∇)k∆j(0).
Next we investigate how fast the terms (λv · ∇)k∆j(λv) go to zero when j → −∞.
First, by using assumptions of the theorem, implication (112) and the decay estimate
(21), we can derive∣∣∂k−l1 ∂l2∆j(x)∣∣
=
∣∣∣∣∣
∫ 2j+1
2j
∫ 2pi
0
∫
R2
〈φabθ, fH〉 ∂k−l1 ∂l2φ]abθ(x) db dθ
da
a3
∣∣∣∣∣
.
∫ 2j+1
2j
∫ 2pi
0
∫
R2
aα+5/4
(
1 +
∥∥∥∥ ba1/2
∥∥∥∥α′
)
a−3/4−k
1 + ‖x− b‖2Na,θ
db dθ
da
a3
≈
∫ 2j+1
2j
∫ 2pi
0
∫
R2
(
1 +
∥∥∥∥x− RθDaya1/2
∥∥∥∥α′
)
aα+5/4−k+3/2−3/4
1 + ‖y‖2N dy dθ
da
a3
.
∫ 2j+1
2j
∫ 2pi
0
∫
R2
aα−k+2
(
1 + a−α
′/2
(
‖x‖α′ + ‖RθDay‖α
′))
1 + ‖y‖2N dy dθ
da
a3
.
∫ 2j+1
2j
∫ 2pi
0
∫
R2
aα−k+2
(
1 + ‖y‖α′ + a−α′/2 ‖x‖α′
)
1 + ‖y‖2N dy dθ
da
a3
.
∫ 2j+1
2j
aα−k−1
(
C + a−α
′/2 ‖x‖α′
)
da
. 2j(α−k) + C2j(α−k−α′/2) ‖x‖α′ . (114)
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Therefore∣∣(v · ∇)k∆j(λv)∣∣ = ∣∣∣(v1∂1 + v2∂2)k ∆j(λv)∣∣∣
=
∣∣∣∣∣
k∑
l=0
(
k
l
)
vk−l1 v
l
2∂
k−l
1 ∂
l
2∆j(λv)
∣∣∣∣∣
.
k∑
l=0
(
k
l
) ∣∣vk−l1 vl2∣∣ (2j(α−k) + 2j(α−k−α′/2)|λ|α′)
.
(
2j(α−k) + 2j(α−k−α
′/2)|λ|α′
)
. (115)
Then, by the triangle inequality,
|fH(λv)− P0(λv)| =
∣∣∣∣∣∣
−1∑
j=−∞
∆j(λv)−
bαc∑
k=0
λk
k!
−1∑
j=−∞
(v · ∇)k∆j(0)
∣∣∣∣∣∣
≤
−1∑
j=−∞
∣∣∣∣∣∣∆j(λv)−
bαc∑
k=0
λk
k!
(v · ∇)k∆j(0)
∣∣∣∣∣∣ .
We investigate now coarse and fine scales separately and therefore we choose J such
that 2J−1 ≤ |λ| ≤ 2J . It’s essential to notice that our generic constant C can remain
independent of J in all calculations. By noticing that each summand is the absolute
error of the approximation of ∆j(λv) by its Taylor polynomial of degree bαc, we get,
for coarse scales,
−1∑
j=J
∣∣∣∣∣∣∆j(λv)−
bαc∑
k=0
λk
k!
(v · ∇)k∆j(0)
∣∣∣∣∣∣
≤
−1∑
j=J
|λ|bαc+1
(bαc+ 1)! suph∈[0,λ]
∣∣(v · ∇)bαc+1∆j(hv)∣∣
.
−1∑
j=J
|λ|bαc+1
(
2j(α−bαc−1) + 2j(α−bαc−1−α
′/2)|λ|α′
)
. |λ|bαc+1
((
2J+1
)(α−bαc−1)
+
(
2J+1
)(α−bαc−1−α′/2) |λ|α′)
. |λ|bαc+1
(
|λ|(α−bαc−1) + |λ|(α−bαc−1−α′/2)|λ|α′
)
. |λ|α ,
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where the estimate (115) was used in the second inequality. At fine scales we use
directly the estimate (115) and get
J−1∑
j=−∞
∣∣∣∣∣∣∆j(λv)−
bαc∑
k=0
λk
k!
(v · ∇)k∆j(0)
∣∣∣∣∣∣
.
J−1∑
j=−∞
(2jα + 2j(α−α′/2)|λ|α′)+ bαc∑
k=0
|λ|k
k!
2j(α−k)

. |λ|α .
The assumption α′ < 2α was needed to make infinite summations to converge. Be-
cause ‖x‖ = |λ|, the theorem is proved.
4.2.3 Characterization of singularity lines by CCT and Hart Smith trans-
form
In this section we study what kind of directional information the decay of the trans-
forms can provide. Comparing to previous theorems, we now approve a weaker rate of
decay of |〈φabθ, f〉| for some angle θ0. Loosely speaking, this angle can define direction
where f has low regularity, for example 1-dimensional singularity. We first consider
new sufficient conditions for regularity.
Theorem 25 Let f ∈ L2(R2), u ∈ R2, and assume that α > 0 is not an integer. If
there exist α′ < 2α, θ0 ∈ [0, 2pi], and C <∞ such that
|〈φabθ, f〉| ≤

Caα+
5
4
(
1 +
∥∥∥∥b− ua1/2
∥∥∥∥α′
)
, if |θ − θ0| & a1/2
Caα+
3
4
(
1 +
∥∥∥∥b− ua1/2
∥∥∥∥α′
)
, if |θ − θ0| . a1/2
for all 0 < a < a0, b ∈ R2, and θ ∈ [0, 2pi), then f ∈ Cα(u).
Proof. Let us denote Iθ0,a := θ0 + Ca
1/2[−1, 1]. The only difference from the proof
of Theorem 24 is that, in the derivation of (114), we split the integral with respect to
the angle θ into ∫
[0,2pi]
dθ =
∫
[0,2pi]\Iθ0,a
dθ +
∫
Iθ0,a
dθ.
The first integral obviously gives the same estimate as in (114), while the second
yields an extra factor of 2Ca1/2 instead of 2pi.
We now give a simple example. Let f(x1, x2) = g(x1, x2)|x2|α, where g is a bounded
positive C∞(R2) function. Then f ∈ Cα({(x1, 0)|x1 ∈ R}, v0) ∩ C∞(R2, vpi/2). First
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we recall that φabθ has vanishing moments of any order to all directions v such that
|∠(v, vθ)| & a1/2. Therefore it is clear that
|〈φabθ, f〉| . aN whenever
∣∣∠(vpi/2, vθ)∣∣ & a1/2
for any N < ∞. With similar methods as in the uniform regularity case, we can
derive
|〈φabθ, f〉| . aα+3/4 whenever
∣∣∠(vpi/2, vθ)∣∣ . a.
For angles a .
∣∣∠(vpi/2, vθ)∣∣ . a1/2, the same estimate cannot be so easily obtained.
The next theorem gives more precise necessary decay condition for special type of
functions that includes our example. Essentially these functions might have aligned
singularity lines. Because local Ho¨lder exponent is used in the assumption of this the-
orem, we actually consider not only traditional singularities but also wild oscillatory
behavior.
Theorem 26 Let f be bounded with local Ho¨lder exponent α ∈ (0, 1] at point u and
f ∈ C2α+1+ε(R2, vθ0) for some θ0 ∈ [0, 2pi) with any fixed ε > 0. Then there exist
α′ ∈ [α− ε, α] such that for a > 0 and b ∈ R2,
|〈φabθ, f〉| .

aα+
5
4 , if |θ − θ0| & a1/2,
aα
′+ 3
4
(
1 +
∥∥∥∥b− ua
∥∥∥∥α′
)
, if |θ − θ0| . a1/2.
Proof. From Definition 19, for all ε > 0, there exists a ball B(u, rε) such that
αl(B(u, rε)) ≥ α− ε. This means that
|f(x)− f(y)| ≤ Cε ‖x− y‖αl(B(u,rε)) ≤ Cε ‖x− y‖α−ε , ∀x, y ∈ B(u, rε)
For simplicity we assume again that u = 0 and θ0 = 0, the general case follows by
simple translation and rotation. For angles θ such that |∠(v0, vθ)| ≤ Ca1/2 we can
write that
|〈φabθ, f〉| =
∣∣∣∣∫
R2
(f(x)− f(0, x2))φabθ(x)dx
∣∣∣∣
.
∫
R2
∥∥(x1, 0)T∥∥αl(B(0,rε))( a−3/4
1 + ‖x− b‖2Na,θ
)
dx
.
∫
R2
‖x‖αl(B(0,rε))
(
a−3/4
1 + ‖x− b‖2Na,θ
)
dx
.
∫
R2
(
(a ‖y‖)αl(B(0,rε)) + ‖b‖αl(B(0,rε))
)( a3/4
1 + ‖y‖2N
)
dy
≈ aαl(B(0,rε))+3/4
(
1 +
∥∥∥∥ ba
∥∥∥∥αl(B(0,rε))
)
.
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So we choose α′ = αl (B(0, rε)). We then turn to the investigation of angles θ
such that |∠(v0, vθ)| & a1/2. Our method is similar as making the integration of
〈φabθ, f〉 by taking line integrals to direction of x2. This idea arises from the fact that
f has the high uniform regularity in that direction. Since the regularity property
that we will use now is invariant under translation, the estimate we will get here is
the same for all b and we can restrict to the case b = 0. We start by taking the
rectangle Aa := [−a−c, a−c]2 for some 0 < c < 1/2, to be determined later. We notice
that RθDaAa is oriented similarly to the essential support of φabθ and Aa → R2 and
RθDaAa → 0 when a → 0. We will also use here the notation v(x) := x1vθ/ |cos(θ)|,
i.e. v(x) lies on major axis of RθDaAa and v(x)− x is always parallel to x2-axis.
|〈φabθ, f〉| =
∣∣∣∣∫
R2
(
f(x)− Pv(x)(x− v(x))
)
φa0θ(x)dx
∣∣∣∣
≤
∣∣∣∣∫
R2\RθDaAa
(
f(x)− Pv(x)(x− v(x))
)
φa0θ(x)dx
∣∣∣∣
+
∣∣∣∣∫
RθDaAa
(
f(x)− Pv(x)(x− v(x))
)
φa0θ(x)dx
∣∣∣∣ .
For the first integral we can write∣∣∣∣∫
R2\RθDaAa
(
f(x)− Pv(x)(x− v(x)
)
φa0θ(x)dx
∣∣∣∣
. a− 34
∫
R2\RθDaAa
∣∣f(x)− Pv(x)(x− v(x))∣∣
1 + ‖x‖2Na,θ
dx
≈ a 34
∫
R2\Aa
|f(RθDay)− Py′(RθDay − y′)|
1 + ‖y‖2N dy ≤ Ca
K ,
where y′ = v(RθDay) and K can be chosen arbitrarily large. That is because
i) 1 + ‖y‖2N will clearly dominate the integration since it grows much faster than
f(RθDay) − Py′(RθDay − y′) when we choose N large enough (since f is bounded)
and ii) ‖y‖ ≥ a−c, i.e., when c is first fixed, we just choose N large enough to make
K as large as necessary.
The length l of the part of the line parallel to the x2-axis lying inside the rectangle
RθDaAa is at most |l| ≤
√
2a1/2−c. Let us now assume that f ∈ Cαs(R2, vθ0) i.e. for
every y ∈ R2 there exists a polynomial Py such that
|f(x)− Py(x− y)| ≤ C ‖x− y‖αs , when (x− y) ‖ vθ0
for all x in some neighborhood of y. Now RθDaAa ⊂ B(0, r) clearly for any fixed r
when a is just small enough. Therefore, for x ∈ RθDaAa,∣∣f(x)− Pv(x)(x− v(x))∣∣ . |l|αs . a(1/2−c)αs .
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With these, we obtain an estimate for the second integral∣∣∣∣∫
RθDaAa
(
f(x)− Pv(x)(x− v(x))
)
φabθ(x)dx
∣∣∣∣
.
∫
Aa
a(
1
2
−c)αsa
3
4
1 + ‖y‖2N dy . a
αs( 12−c)+ 34 .
Therefore we have the condition
αs(1/2− c) + 3/4 ≥ αl(0) + 5/4.
Now we remember that we can choose any c ∈ (0, 1/2) and, therefore, for any small ε
we can choose c =
ε
4αl + 2 + 2ε
. With this the above condition is clearly true when
αs ≥ 2αl(0) + 1 + ε.
4.3 Characterization of Ho¨lder regularities by CST
Similar theorems as those presented in the previous section hold also for the contin-
uous shearlet transform. Proofs are quite similar to the case of CCT and Hart Smith
transform, see [24].
Theorem 27 If a bounded function f ∈ Cα(R2), then there exists a constant C such
that
|〈ψast, f〉| ≤ Caα+ 34 and
∣∣∣〈ψ(v)ast, f〉∣∣∣ ≤ Caα+ 34
for all 0 < a < 1, s ∈ [−2, 2] and t ∈ R2.
Notice, especially, how similar the above theorem is to Theorem 21 that was related
to curvelet and Hart Smith transform. Next three theorems are shearlet versions from
Theorems 22, 23 and 24.
Let us recall that (PEf )̂ = fˆχE where E is either the cones C1, C2 defined in Section
2.5.1, or T = {(ξ1, ξ2) : |ξ1| < 2 and |ξ2| < 2}.
Theorem 28 Let f ∈ L2(R2) and α > 0 be a non-integer. If there is a constant
C <∞ such that, for each 0 < a < 1, s ∈ [−2, 2] and t ∈ R2,
|〈ψast, PC1f〉| ≤ Caα+
5
4 and
∣∣∣〈ψ(v)ast, PC2f〉∣∣∣ ≤ Caα+ 54 ,
then f ∈ Cα(R2).
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Theorem 29 If a bounded function f ∈ Cα(u) then there exists C <∞ such that
|〈ψast, f〉| ≤ Caα2+ 34
(
1 +
∥∥∥∥t− ua1/2
∥∥∥∥α) and∣∣∣〈ψ(v)ast, f〉∣∣∣ ≤ Caα2+ 34 (1 + ∥∥∥∥t− ua1/2
∥∥∥∥α) (116)
for all 0 < a < 1, s ∈ [−2, 2] and t ∈ R2.
Theorem 30 Let f ∈ L2(R2), u ∈ R2, and α be a non-integer positive number.
Suppose there exist C <∞ and α′ < 2α such that, for all 0 < a < 1, s ∈ [−2, 2] and
t ∈ R2,
|〈ψast, PC1f〉| ≤ Caα+
5
4
(
1 +
∥∥∥∥t− ua1/2
∥∥∥∥α′
)
(117)
and ∣∣∣〈ψ(v)ast, PC2f〉∣∣∣ ≤ Caα+ 54
(
1 +
∥∥∥∥t− ua1/2
∥∥∥∥α′
)
. (118)
Then f ∈ Cα(u).
Let Γu denote the vertical line passing through u and Γu,s0 denote the line passing
through u with slope − 1
s0
. Observe that we may write Γu = Γu,0 so that (x1, x2) ∈
Γu,s0 if and only if x1 = −s0(x2 − u2) + u1. The next theorem characterizes again a
direction and regularity of a singularity. It is written in a bit more general form than
the corresponding Theorem 26 for curvelets, since assumptions are a bit weaker.
Theorem 31 Let f be bounded with f ∈ Cα(Γu,s0 ,R2; (1, 0)) when α ∈ (0, 1] and f ∈
C2α+1+ε(R2; Bs0(0, 1)) for some s0 ∈ [−2, 2] with any fixed ε > 0 and u = (u1, u2) ∈ R.
Then there exists C <∞ such that for 0 < a < 1, t = (t1, t2) ∈ R2, and s ∈ [−2, 2],
|〈ψast, f〉| ≤
 Ca
α+ 5
4 , if |s− s0| &
√
a,
Caα+
3
4
(
1 +
∣∣∣∣t1 + s0t2 − u1 − s0u2a
∣∣∣∣α) , if |s− s0| . √a.
4.4 Regularity estimates by discrete curvelet and shearlet
transforms
All theorems that state necessary conditions would be straightforward to state also in
discrete case by demanding that values for a, θ, b, t and s are taken from some discrete
sets. In theorems that state sufficient conditions, the reconstruction formula is needed
in proofs. Transformation of proofs for discrete case would go again quite painless,
instead triple integrals we would have just triple summations whenever reconstruction
formulas would be used. Of course then we could not use change of variable in
estimates, but we would use decay lemmas in similar way as in proofs in section 3.
62
4.5 Numerical demonstrations of convergence rates
In this section it is demonstrated by simple example how parameters s0, θ0 and α
from Theorems 25, 26, 30 and 31 can be estimated numerically. Demonstrations are
done for continuous shearlet transform and Hart Smith transforms.
4.5.1 Test settings
As generating kernel function φ the tensor product of the Meyer scaling function
φM : R → R and wavelet function ψM : R → R i.e., φ(x1, x2) = ψM(x1)φM(x2) is
used. Support of this function in Fourier domain meets the conditions in Lemmas
10 and 11, hence is suitable for our analysis. For more details about Meyer scaling
function and wavelet, see for example [10].
We first choose the test set S of functions
S =
{
f(Rθ0x) : f(x) = e
−‖x‖|x1|α, α ∈ (0, 1], θ0 ∈ [0, pi]
}
.
All functions f ∈ S clearly meets the conditions in Theorem 26. Notice also that for
a particular f ∈ S, the local and pointwise Ho¨lder exponents at the origin are the
same.
As a test case we pick f(x) = e−‖x‖|x1|0.25 ∈ S. From the formula of f we clearly see
that α = 0.25 and θ0 = 0. The question is: Can we explore these values from some
graphs if we only know that f ∈ S? It turns out that one can read these values from
the behavior of the Hart Smith transform or shearlet transform.
Theorems related to Ho¨lder regularity in this thesis considered only line shaped singu-
larity curves. However, it is interesting to try if numerical calculations would suggest
that similar theorems may hold also for more general shapes of singularity curves. For
this, we numerically estimate shearlet transform of function h(x) = e−‖x‖|x1−x22|0.25.
Notice that h is otherwise similar to f but has singularity along parabola instead of
line. Graphs of f and h are shown in Figure 2.
4.5.2 Numerical calculations with Hart Smith transform
Numerically the transform can be calculated just for some finite discrete set of scales
in finite time. We investigate scales a = 2−i, i ∈ I ⊂ N, i.e., we use similar scales
that are often used for discrete shearlet, curvelet or contourlet transform.
Let us define the function
Iθb(i) := log2 (|〈ϕ2−ibθ, f〉|)
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(a) (b)
Figure 2: (a) Graph of f ; (b) Graph of h .
Figure 3: Decay behavior of Iθ0(s) across scales a = 2
−i at various angles θ for the
function f(x) = e−‖x‖|x1|0.25
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and numerically evaluate its values when b = 0. This is illustrated in Figure 3.
The fact that Ca1/2 = C2−i/2 is the critical angle, i.e. θ0 = 0, is more clearly
emphasized once we define
g(i, j) := Iθ0(i) + (α + 3/4)i, where j := −2 log2 |θ|,
whose graph is shown in Figure 4.
Figure 4: Graph of g(i, j) with different scales a = 2i and angles C = 2−j/2 for the
function f(x) = e−‖x‖|x1|0.25
There clearly exists a line i = j+ c, where c is a constant, that divides the domain of
g into two parts, the one where g is approximately constant (these are “small angles”
where Iθ0(i) decays slower) and another one where g still decays (these are “large
angles” where Iθ0(i) decays faster).
From Figures 3 and 4 we can see that Iθ0(i) ≈ −(0.25 + 3/4)i + C for angles small
enough compared to the scale (|θ| < Cpi2−j/2), i.e., it satisfies a sufficient condition
on small angles for f being in C0.25(0). For |θ| larger than Cpi2−j/2, Iθ0(i) ≤ −(0.25+
5/4)i + C. So sufficient condition on large angles is also clearly satisfied. Therefore
Theorem 25 suggest that α ≥ 0.25. To be precise, similar calculations should be done
also for b 6= 0. Since Iθ0(i) ≈ −(0.25 + 3/4)i + C for |θ| < C2−j/2, Theorem 26 says
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that the Ho¨lder exponent cannot be higher than 0.25. Therefore, the estimate is that
α ≈ 0.25.
In this simple example, we actually get a pretty good estimate αe for α from the
investigation of a function αe(i, θ) := Iθ0(i+ 1)− Iθ0(i). Figure 5 shows how the error
E(i, j) := log10 |α− αe(i, θ)| behaves.
Figure 5: Estimation error E(i, j) with different scales a = 2−i and angles θ = C2−j/2
for the function f(x) = e−‖x‖|x1|0.25
Naturally E(i, j) behaves very similarly to g(i, j) and small estimation errors occur
only on the domain where g is constant. Moreover, these errors seem to decrease
along the lines i = j + c, i.e., the finer scales (and the smaller angles) we use, the
better estimation accuracy we get. However, our implementation limits the accuracy
of the estimation errors to be about 10−3 (this accuracy is achieved in many (i, j)
couples), the peak value being 10−3.8 at scale i = 5.
In the examples, values of inner products 〈f, ϕabθ〉 are estimated by approximating
integrals by sum of samples. Since lengths of supports of ΦM and Ψ are infinite,
tails must be cut off. For both functions the support is chosen to be [−10, 10]. This
causes significant relative error for values when scale is small and true values of inner
products should be small. Strange behavior in some graphs at fine scales and angles,
where the transform is too small in value, are caused by errors numerical estimation
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of inner products. All implementations are made with Matlab.
4.5.3 Numerical calculations with shearlet transform
Regularity analysis of f is done in the same way with shearlets as with Hart Smith
transform. The only small difference is in implementation: shearlet transform uses
shearing matrix Ms while Hart Smith transform uses rotation matrix Rθ.
Similarly to Figure 3, Figure 6 illustrates the logarithmic decay rate of the continuous
shearlet transform
Ist(i) := log2 (|〈ψ2−ist, f〉|) .
Moreover, similarly to Figure 4, also shearlet transform can be represented in a more
illustrative form if the shear parameter s is written in the form s = C2−j/2 and the
function
g(j, i) := I(C2−j/2)0(i) + (α + 3/4)i
is considered. Figure 7 shows this graph for functions f and h, whose graphs were
shown in Figure 2. It is interesting to notice that even if h does not posses a singularity
line but singularity along parabola, the decay behavior is very similar to f . The
transition from slow decay to fast decay just seems to take a few more scales for h
than for f .
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Figure 6: Decay behavior of shearlet transform across scales a = 2−i at various shear
parameter s for the function f(x) = e−‖x‖|x1|0.25
.
(a) (b)
Figure 7: Illustration of decay behavior of shearlet transform of (a) f ; (b) h .
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