Lappeenranta University of Technology
Faculty of Technology Management

Degree Program of Information Technology

Master's Thesis

Mikko Gynther

REAL-TIME MUSICAL PAIR IMPROVISATION ON MOBILE DEVICES

Examiners of the Thesis: Professor Jari Porras
D.Sc. Kari Heikkinen

Instructor of the Thesis: M.Sc. Tommi Kallonen

ABSTRACT

Lappeenranta University of Technology
Faculty of Technology Management

Degree Program of Information Technology

Mikko Gynther

REAL-TIME MUSICAL PAIR IMPROVISATION ON MOBILE DEVICES

Master's Thesis
2011

100 pages, 27 figures, 28 tables, 3 appendices
Examiners: Professor Jari Porras
D.Sc. Kari Heikkinen

Keywords: real-time, wireless communication, musical improvisation, mobile devices

This thesis discusses the design and implementation of a real-time musical pair
improvisation scenario for mobile devices. In the scenario transferring musical information
over a network connection was required. The suitability of available wireless communication
technologies was evaluated and communication was analyzed and designed on multiple
layers of TCP/IP protocol stack. Also an application layer protocol was designed and

implemented for the scenario.

The implementation was integrated into a mobile musical software for children using
available software components and libraries although the used platform lead to hardware and
software constraints. Software limitations were taken into account in design. The results
show that real-time musical improvisation can be implemented with wireless communication
and mobile technology. The results also show that link layer had the most significant effect

on real-time communication in the scenario.

i

TIVISTELMA

Lappeenrannan teknillinen yliopisto
Teknistaloudellinen tiedekunta

Tietotekniikan koulutusohjelma
Mikko Gynther

REAALIAIKAINEN MUSIHIKKI-IMPROVISAATIO PAREITTAIN MOBIILILAIT-
TEILLA

Diplomityd
2011

100 sivua, 27 kuvaa, 28 taulukkoa, 3 liitettd
Tarkastajat: Professori Jari Porras
TkT Kari Heikkinen
Hakusanat: reaaliaikainen, langaton kommunikaatio, musiikki-improvisaatio, mobiililaitteet

Keywords: real-time, wireless communication, musical improvisation, mobile devices

Tami tyd késittelee reaaliaikaisen musiikki-improvisaation suunnittelua ja toteutusta mo-
biililaitteille. Improvisaatio tapahtuu pareittain ja perustuu musiikillisen informaation siir-
toon verkkoyhteyden yli. Kéytettdvissd olleiden langattomien teknologioiden soveltuvuutta
arvioitiin ja kommunikointia analysoitiin ja suunniteltiin useilla TCP/IP -protokollapinon

kerroksilla. Myds sovelluskerroksen protokolla suunniteltiin ja toteutettiin.

Toteutus integroitiin lasten mobiiliin musiikkisovellukseen kéytettdvissd olleita ohjelmisto-
komponentteja ja -kirjastoja hyodyntden, vaikka ympéristd asetti laitteisto- ja ohjelmistora-
joitteita. Ohjelmistokomponenttien puutteet huomioitiin suunnittelussa. Tyon tulokset
osoittavat, ettd musiikki-improvisaatio voidaan toteuttaa langattoman tiedonsiirron ja mo-
biiliteknologian avulla. Tulokset osoittavat myds, ettd linkkikerroksella oli suurin merkitys

kommunikaation reaaliaikaisuuteen.

11

PREFACE

This theses was done in Communications Software Laboratory in Lappeenranta University
of Technology as a part of the Seventh Framework Programme UMSIC project. The author

would like to thank the Communications Software Laboratory and the UMSIC consortium

for a challenging and motivating project.

v

TABLE OF CONTENTS

1 INTRODUCTION......c.utiitieieeiesiteie ettt ettt et st e tesste st e e esaessaeseessesseenseensesseenseesnseesns 9
1.1 Usability of Music in Social Inclusion of Children...........ccccooceeviiniininiiinineeniieneen 9
1.2 Real-time pair improvisSation SCENATIO.........c.eervererreerreeireenreereesreessaesseeeseesssesnseeesnnes 10
1.3 Objectives and research qUESTIONS.ccveeeruiieerieeeieeeeeeereeeeree e ereeeeraeeeeeenenes 12
L 4 1o 1 SR USPRR 13

2 JAMMING MOBILE.....cooiiiitiiiiteeeet ettt sttt st et 15
2.1 JaMMO COMPONENLS.uvieeiiieeiiieeiieeeiteeeieeeeteeesteeesereeesereesseseeessseesnsseesnsseesasnsnseeeeeens 16
2.2 JamMo component relationShiPS......c.ueeecviieeiiiieeiiieeiieece e e e 17
2.3 NOKIA NOOO.......coeieieeiieieie ettt ettt et st e et e st e seesteeseesseenseeseeseenseeneenseennns 18
2.4 Communication teChNOIOZIES.cccuieriiiiiieiieeieee et 20

2.4.1 BIUCLOOTN. ...ttt et 20
242 WELAN. .ttt ettt ettt ettt et e st et e e s e a et e e nte s et enteene e aeenteennee 21

3 REAL-TIME PAIR IMPROVISATION.......cctiieitieieeieeiee ettt 23
3.1 TOIMINOLOZY ... veeeitieiiieiie ettt ettt ettt et e et e st e et e et eenb e e saeenbeesbeeenseesssesnseeeennees 23
3.2 REQUITEIMENLS. ...ccutieiiieiieeiieitie et eiee et et e ete et e eebeesteeeebeesseeesseesaesssaesseeasseeesnsseeesnsseeas 24
3.3 COMSITAINES. ..ceuteiutteiie ettt ettt ettt ettt e bt e et e bt e sab e e bt e eab e e bt e sat e e bt e eabeeeenbbeeeanbaeeas 28

3.3.1 COMMUNICATION.eiitrieeieiieeieieeeeeeeteeesteeesteeessaeeessseeessseessseeessseessseessseeesnssssseens 28
3.3.2 N900, Maemo and LIDIarI€S.......ccceiiiviiiiiiiiiieeieeeeeeeteeeeee ettt eeaare e e 37
3.3.3 ConStraint dISCUSSION.eeuiruietieieriierieete ettt ettt ettt ettt st e et e e e eaeeeaeeas 39
3.4 DISCUSSION. ...ttt ettt ettt et et e bt e e it e e bt e e it e e bt e s st e e bt e eab e e beesabeenbeeeabeenbeesabeesannees 41

4 COMMUNICATIONS DESIGN......ooiiiiiiiieiieieeeeie ettt eae e esesseesseenseeneeennes 42
4.1 TranSPOTE LAYET.....ccueieiiiieiieiieeie ettt ettt et e ettt e st e e bt esateenbeessbeenbeeeennseeeenneas 43
4.2 TANK JAYCT. ... viiiieiiieeiieete ettt ettt ettt st e et eesabeesbeessaeenbeesnseesseensseensaeennnees 47
RN o) o) N 1o 15 101 0 F: S USSR 49
4.4 SYNCHTONIZATION.eeitieiieeiieeiie ettt ettt ettt et ettt e sateebeesabeebeesnbeenbeeeenbeeeennees 52
4.5 DISCUSSION. ..cuteiteiienteeitesttest ettt ettt bt ettt ebt et et sh e e bt e st e ebtebeeatesbee bt esbeebeenbeenbeesanee 54

5 COMMUNICATION PROTOCOL......cooutiiiiieiieieeiesieeie ettt 57
BT B (ST o SRR 58
5.2 THMICTS...eeeetiee ettt ettt ettt et e e ete e et e e e etaeeebbeeesaeeesabee e aaeeesseeessseeensseeansssaeeeeannnssaeaeens 60

5.3 G OMSEANES ettt e e e e et e e e et e e e e e e e e e e e e e e e e ——aeea——aaaa——aaaa——_ 61

5.4 OPCIATION.uvieeieeiiieeiie ettt et te et etee s te et e essbeebeesabeesseeesseensaessseenseessseeeensseesansseeennseeeas 62
5.4.1 SYNCATONIZATION.iiiiiieiieiieeiieeie ettt e ete et e ete et e et e etaeenbaeeensaeesnsaeesnseeens 64

I 3 110) 04 T 1110 FO PR 67

543 ENAING. ...ttt ettt ettt ettt e et st e e e naeeens 71

5.5 DISCUSSION. ..c..eeutiiieiieieeite sttt ettt ettt ettt et sa et e at e sb e ettt e bt et ebte bt eateeatenbeenteenaeees 71

6 IMPLEMENTATION.......cuiiiiiiiietesttee ettt sttt sttt et naeeennneens 73
6.1 USEd COMPONENLS.......ueieiiiieiiieeiiieeitiee et esieeesteeesteeessaeeessaeeesseeessseessseessseesssneesssnes 73
6.2 Implemented COMPONENLS..........eeeruieirrieeiiieeiieeeeteeeeteeetreeesreeeessaeesssaeesseeesssaeeeeesnnnns 77
0.3 EVAIUATION. ...cutiitiiiiiiecteteeee ettt ettt et 84
0.4 DISCUSSION.eeutiiiiiiieteeie ettt ettt et ettt et et et e b e e st e st e ebe et e sbeenteeseesbeenseeaeenbeenneennneas 85

T CONCLUSION. ...ttt ettt ettt et et e st es e e st e s st entesseesseenseeseesnseesnseesnseesnneeans 87
REFERENCES...... .ottt ettt sttt e st et e st e ssaenseessesseenseenseennseeennes 91
APPENDIX 1: Byte level encoding of protocol messages...........cccvverueeriieniiieeniieeeniieeeennee 96
APPENDIX 2: Timer values in implementation.............cceerverieereenieenieniieeneeesireeesneeeeenes 99
APPENDIX 3: Constant values in implementation.............ccceeecveerciieeniiieeeeeeciiieee e 100

ABBREVIATIONS

ADHD
ALSA
API

BP
CEM
CHUM
CP
DCCP
DSSS
EDR
FHSS
GEMS
GPL
GPS
GNU
GUI
HSPA
IEEE
IETF
1P

ISM
JACK
JamMo
JSON
LAN
LLC
LOS
MAC
Mac OSX

Attention-Deficit Hyperactivity Disorder
Advanced Linux Sound Architecture
Application Programming Interface
Beacon Period

Cognitive Engineering Module
Child-centric Usability Module
Cross-platform

Datagram Congestion Control Protocol
Direct Sequence Spread Spectrum
Enhanced Data Rate

Frequency Hopping Spread Spectrum
General Middleware Services

General Public License

Global Positioning System

GNU's Not Unix

Graphical User Interface

High Speed Packet Access

Institute of Electrical and Electronics Engineers

Internet Engineering Task Force
Internet Protocol

Industrial, Scientific and Medical
JACK Audio Connection Kit
Jamming Mobile

JavaScript Object Notation

Local Area Network

Logical Link Control
Line-of-sight

Media Access Control

Macintosh Operating System X

MEAM
MIDI
MIMO
NTP
OFDM
OpenGL
PeerHood
QoS
RAM
RFC

RTP

RTS / CTS
RTT
SCTP

SIG

TCP
TCP-RTM
TCP SACK
TCPW
UDP

UHF

Ul
UMSIC
USB
WAN
Wi-Fi
WLAN
WVGA

Musical Engineering and Authoring Module
Musical Instrument Digital Interface
Multiple-Input Multiple-Output

Network Time Protocol

Orthogonal Frequency Division Multiplexing
Open Graphics Library

Peer-to-Peer Neighborhood

Quality of Service

Random Access Memory

Request for Comments

Real-time Transport Protocol

Request To Send / Clear To Send

Round Trip Time

Stream Control Transmission Protocol
Special Interest Group

Transmission Control Protocol

Transmission Control Protocol Real-time Mode

Transmission Control Protocol Selective Acknowledgement

Transmission Control Protocol Westwood
User Datagram Protocol
Ultra High Frequency

User Interface

Usability of Music in Social Inclusion of Children

Universal Serial Bus

Wide Area Network

Wireless Fidelity

Wireless Local Area Network

Wide Video Graphics Array

1 INTRODUCTION

This thesis was done in Usability of Music in Social Inclusion of Children (UMSIC) project.
The practical part of this thesis is a part of Jamming Mobile (JamMo) application which is
developed in UMSIC. In this chapter UMSIC, real-time pair improvisation scenario,

objectives, research questions and the structure of this thesis are presented.

1.1 Usability of Music in Social Inclusion of Children

UMSIC is a multidisciplinary and transnational science and technology project. It aims at
measuring and increasing social inclusion of children by the means of musical collaboration

and modern technology. The project started in 2008 and will end in 2011. [53]

UMSIC brings together expertise from developmental psychology, music education, music
technology, music therapy, software engineering and human computer interaction for
children. The project partners are University of Oulu, University of Central Lancashire,
University of Jyviskyld, Lappeenranta University of Technology, University of Ziirich,

Systema Technologies, Institute of Education University of London and Nokia.

There are two target groups: children with Attention-Deficit Hyperactivity Disorder (ADHD)
and immigrant children. Both groups may have difficulties with language and they are in a
risk to be marginalized [53]. Music therapy studies have shown that musical activities
improve self-regulation, self-esteem, self-expression, social functioning and interaction [53].
The use of technology improves digital literature and technological skills which is important
in the modern world [53]. The social inclusion of children of ages 3-12 is measured in
kindergartens and schools. Groups consisting of native and immigrant children are

researched in regular schools. Children with ADHD are researched in specialized schools.

In UMSIC there are four different scenarios based on the level of collaborative activities. In
Standalone scenario there is no collaboration between children and the musical activities take

place on a single mobile device. In Ad hoc scenario two children collaborate with two mobile

devices. In Public scenario a group of children collaborate in a classroom environment with
multiple mobile devices. Teacher is able to monitor and control the activities with a
computer. In Networked scenario a group of children collaborate with mobile devices

through a community server located in the Internet.

1.2 Real-time pair improvisation scenario

Musical improvisation is an activity in which a person creates new music by singing or
playing an instrument during a performance. The performance is not throughly composed
beforehand and a performer can reflect his or her mood to a great extent and spontaneously
react to the stimulus of other musicians or an audience. In collective improvisation
performers may imitate or complement each other. Turn-taking patterns, such as call-and-
response (also known as question-and-answer) and sequential solos, are common. For
instance jazz, blues, and various non-Western musical styles rely heavily on improvisation as
opposed to classical Western music which is strictly formalized by a composer. Improvised
music, however, typically has some compositional elements such as tempo, time signature,

motif, theme, structure, chord progression or scale.

In real-time pair improvisation scenario of UMSIC project two children aged from 7 to 12
create new music by playing virtual musical instruments along a backing track.
Improvisation takes place in real-time which means that children can hear themselves and
each other without a noticeable delay. Virtual instruments are software components that
produce instrument sounds according to user input. They are shown on the screens of mobile
devices and played by touching. A backing track is a musical recording which provides
harmonic, rhythmic and or melodic content to improvise on. The backing track can be seen
as a group of accompanying musicians whereas improvising children are soloists. Both
devices are able to store the whole performance for later listening and editing. Real-time pair
improvisation is a part of the Ad hoc scenario of UMSIC but it can be utilized in Public
scenario as well. Ad hoc scenario and classroom environment in Public scenario indicate that

peers are relatively close to each other as walls limit distances to a few meters.

Real-time pair improvisation scenario is presented in Figure 1. In the figure there are two

10

users with mobile devices. Both devices run a musical application and send a real-time data
stream to each other. Sending data in real-time is required because users use headphones.
Children have to use headphones because there may be many pairs improvising
simultaneously in the same room. The use of speakers would create a lot of noise which
would make creating music difficult. Because peers can not hear each other from speakers it
is compulsory to transfer playing via a low latency network connection in order to avoid a
noticeable delay. Playing can be transferred as audio or control data, such as Musical
Instrument Digital Interface (MIDI). Improvisation may take place when the devices are in

the same network without the use of a centralized server.

User uses headphones. Iﬁ User uses headphones.lﬁ
i i i
1 1 1
i i i
| | |
1 1 1
1 1
L] 1]
Mobile device Mobile device
Application Application
<_ B - =]

i i

1 1

1 1

. .

Applications communicate over User
User a network connection. Both

applications send and receive a
real-time data stream.

Figure 1: Real-time pair improvisation scenario

Similar scenarios has been studied in wired networks. Zimmermann et al. have studied the
requirements for the scenario [57]. They created a system for transmitting MIDI and video
data to provide authentic distributed musical collaboration. Williams & Chapman have
created a system for transferring MIDI over the Internet and compared the performance of

different networking protocols [56].

Musical data has also been transferred over wireless technologies. Bartolomeu et al. have
researched and optimized Bluetooth protocol stack for transferring MIDI data [3]. Wireless
Local Area Network (WLAN) has been used in MIDI transfer by Maekawa et al. [35]. They

achieved acceptable network latency. Also audio has been streamed over WLAN [13].

11

1.3 Objectives and research questions

The focus of this thesis were the communications between the devices and the
implementation of the real-time pair improvisation scenario. The objective was to design and
implement the pair improvisation scenario in JamMo by using existing musical and

Graphical User Interface (GUI) components.

In the scenario there were many crucial aspects which were not part of this thesis. The
musical engineering aspects on a single device such as the implementation of virtual
instruments and a multi-track sequencer, were not considered. Moreover, the GUI
components for playing virtual instruments were not created. Furthermore, group
management and device discovery were not considered. Components with these
functionalities were used and slightly expanded or modified when required to suit the

scenario.

Educational aspects of musical improvisation were not part of this thesis. Turn-taking
patterns or scales were not designed to be forced. Instead, it was decided that during an
improvisation session children should be free to play their own virtual instruments when and
how they want to. Teachers can instruct children to play in a particular style, e.g. pentatonic
blues with the black keys of a keyboard, just like with physical instruments. Different

musical styles can be utilized with different backing tracks.

It was not specified how the devices should communicate in real-time. This lead to Research

Question 1:

Research Question 1: How should the devices communicate in real-time pair

improvisation scenario?

JamMo is a large piece of software consisting of several modules. Real-time pair
improvisation required the use, extension and creation of multiple components in different

modules which lead to Research Question 2:

12

Research Question 2: How to implement and integrate the real-time pair improvisation

scenario in JamMo?

1.4 Structure

The structure of this thesis is presented in Figure 2. Chapters form three parts. Chapters 1
and 2 describe the background of this thesis. Chapters 3 to 6 consider the practical part.

Chapters 7 discusses the done work. The chapters consider the following topics:

* Chapter 2 Jamming Mobile introduces the software developed in UMSIC and in this
thesis.

* Chapter 3 Real-time pair improvisation considers the scenario of the thesis from a
technical viewpoint. Concepts, technical requirements and constraints are considered.

* Chapter 4 Communications design discusses the design aspects of needed
communications on various networking layers.

e Chapter 5 Communication protocol defines the protocol used in communications.

* Chapter 6 Implementation considers the implementation and the issues during
implementation.

* Chapter 7 Conclusion discusses the done work, its results and future work.

13

Background

Practical part

Discussion

Figure 2: Structure of the thesis

14

2 JAMMING MOBILE

In this chapter Jamming Mobile (JamMo), its target device and the communication

technologies of the target device are presented.

JamMo is a music collaboration and learning tool. It is intended for children aged from 3 to
12. Based on age the features are different. Children aged from 3 to 6 can play a singing
game and a simple loop composition game in Standalone and Ad hoc scenarios. In loop
composition game only prerecorded audio loops can be used in compositions. Children aged
from 7 to 12 can also play virtual instruments and use recorded singing or playing with

instruments as parts of compositions in Public and Networked scenarios.

JamMo is targeted at Nokia N900 and Maemo operating system but it can be built and run on
other Linux distributions, such as Ubuntu Linux, as well. JamMo is written in C
programming language. Many subcomponents are GObject [17] classes. GObject is the

object oriented programming model of GLib [16] cross-platform software utility library.

In addition to JamMo application Teacher Server and Community Server are developed. The
servers are important in Public and Networked scenarios as they provide possibilities to
monitor the activities of children and to share created music. JamMo and the servers are

presented in Figure 3.

=<=component=: E
Teacher Server

=<=component== g =<=component== gl
JamMa Community Server

Figure 3: Components in UMSIC project
Installation instructions and binary releases are available on the JamMo website [47]. The

latest source code of JamMo can be downloaded from Gitorious project hosting service [15].

In total JamMo consists of more than 70 000 lines of code (including unit test programs).

15

JamMo is released under General Public License (GPL) version 2.

JamMo uses musical and graphical materials produced especially for JamMo. The musical
materials were made professionally and contain several backing tracks and dozens of audio
loops and virtual instrument samples. The graphical materials have been designed to look

appealing to children.

2.1 JamMo components

JamMo consists of four components: Child-centric Usability Module (CHUM), Musical
Engineering and Authoring Module (MEAM), General Middleware Services (GEMS) and

Cognitive Engineering Module (CEM). JamMo components are presented in Figure 4.

<<component>= E'
JamMo
<<component== E <<component== E
CHUM MEAM
<<component== E <<component>= E
CEM GEMS

Figure 4: JamMo Components

CHUM contains the user interface (UI) including various elements and the local application
logic including games and mentor. Tangle [50], developed in University of Oulu, and Clutter
[9] Graphical User Interface (GUI) libraries are used extensively in CHUM. Most sub-
components of CHUM are GObject classes while others are procedural C code and use

GLib.

MEAM consists of music making components. GStreamer [18], a streaming media
framework using GObject, is used extensively in MEAM. GStreamer hides complexity from
application programmers by encapsulating functionality inside elements. GStreamer

elements are supplied in plugin packages. They can also be programmed by deriving from

16

GStreamer element classes. MEAM consists mainly of GObject classes that control
GStreamer elements. Readily available and created GStreamer elements do the actual

processing when they are linked to each other.

GEMS consists of networking components. GEMS provides group management,
authentication and authorization, profile management and communications. It uses PeerHood
[44] to establish connections. PeerHood is an open source ad hoc connectivity and peer-to-
peer service framework library developed in Lappeenranta University Technology. It
provides seamless connectivity between networking technologies and an Application
Programming Interface (API) for providing services. GEMS consists of procedural C code

and uses Glib.

CEM is used to log user actions and other events for researchers. Logging provides
important information for social inclusion and musical learning research. For example, it can
be traced with whom the children have collaborated with and for how long. Also musical
learning can be evaluated based on logged data. CEM consists of procedural C code and uses

Glib.

2.2 JamMo component relationships

JamMo component relationships are presented in Figure 5. All components use CEM for
logging. CHUM uses GEMS for networking including communications within a group
during multiplayer games and getting information about group related events, such as peers
leaving or joining a group. CHUM uses subcomponents of MEAM for music making. GEMS

uses data structures from MEAM to transfer musical information over network.

17

<<component>: E

CEM <
M AN
=<component=z= =<component=z=
MEAM 2l GEMS 2]
AN M

=<=component=: E
CHUM

Figure 5: JamMo Component relationships

Dependencies (dashed arrows) in Figure 5 show that MEAM and GEMS are linked to
CHUM when building JamMo. All components are required for building JamMo.
Directional arrows indicate visibility, e.g. CHUM is able to use functions from GEMS.
Communication from GEMS to CHUM is implemented with callback functions to overcome

the limited visibility.

2.3 Nokia N900

Nokia N900 (see Figure 6) is the latest Internet Tablet by Nokia. It was released in 2009.
Unlike its predecessors (N810, N800, N770) it also has mobile phone functionality. A

summary of specifications of N900 are presented in Table 1.

18

Figure 6: Nokia N900[42]

Table 1: Nokia N900 specifications [43]

Feature

Description

Processor

ARM Cortex — A8 processor running at 600 MHz

Random Access Memory (RAM)

256 MB

Internal storage

32GB

Graphics

3D graphics accelerator with Open Graphics Library
(OpenGL) support

Operating system

Maemo 5

Connectivity Bluetooth v2.1, High Speed Packet Access (HSPA) 3.5G,
Universal Serial Bus (USB) 2.0, Wireless Local Area
Network (WLAN) 802.11 b/g

Display 3.5” Wide Video Graphics Array (WVGA) touch-screen,
800 x 480 resolution

Size 110.9 mm X 59.8 mm % 18 mm

Other features Global Positioning System (GPS), 5-megapixel digital

camera, QWERTY keyboard

As of 2010 Nokia N900 is still a powerful and versatile mobile phone based on its

specifications. It runs Maemo operating system which is Linux-based and derived from

19

Debian GNU/Linux. Lately Nokia has been developing MeeGo platform based on Maemo
and Moblin by Intel. In addition to Maemo also MeeGo can be run on N900. JamMo can
easily be built for MeeGo which is important for the future of JamMo.

2.4 Communication technologies

Available communications technologies of Nokia N900 include Bluetooth, 3.5G, USB and
WLAN. Bluetooth and WLAN are introduced in this section as they are suitable technologies
for the context of this thesis. USB was not considered feasible because it requires connecting
devices with a cable while 3.5G was not regarded fitting for the purpose due to heavy

infrastructure considering the scenario and high latency.

2.4.1 Bluetooth

Bluetooth is a short range communications technology developed by the Bluetooth Special
Interest Group (SIG) which consists of thousands of telecommunications, computing and
automotive companies, such as Ericsson, Intel, Lenovo, Microsoft, Motorola, Nokia and
Toshiba. The original purpose of Bluetooth was to replace cables. It operates in the 2.4 GHz
unlicensed Industrial, Scientific and Medical (ISM) radio range in 79 bands of 1 MHz. The
bands are used with Frequency Hopping Spread Spectrum (FHSS) technology. [4]

Over the years different versions of Bluetooth have been released. The original specification
was released in 1999. Subsequent version have improved many aspects, such as
interoperability, data rates, resistance to interference and energy consumption. Version 2.0
specified Enhanced Data Rate (EDR) technology which reached 2 Mbps data rate whereas
2.1 improved the data rate to 3 Mbps. Moreover, version 3.0 specified up to 24 Mbps data
rate using Institute of Electrical and Electronics Engineers (IEEE) 802.11 for data transfers.
Version 4.0 added Bluetooth low energy which reduces power consumption on short ranges

and low data rates. [4, 5]

Bluetooth consists of layers of protocols for different purposes. The protocols range from

link management and control to service discovery and standardized interface between hosts

20

and controllers. Moreover, the protocols include more specialized protocols for serial port

emulation, IP traffic, audio and video control and distribution and telephone control. [4, 6]

Bluetooth devices form piconets. In a piconet there is one master device and up to 7 active
slave devices. Piconet devices use the same frequency hopping pattern which enables
communication. Slave devices are only allowed to send when master polls them. Several
piconets can be joined through slaves to form a larger, logical scatternet which enables
communication between multiple piconets. Different piconets of a scatternet are not

frequency synchronized. Furthermore, they do not use the same frequency hopping pattern.

[5]

24.2 WLAN

WLAN was introduced as a wireless replacement for 802.3 Ethernet in 1997 by IEEE.
WLAN has used 2.4 GHz and 5 GHz ISM radio ranges and infrared. Various modulation
techniques such as FHSS, Direct Sequence Spread Spectrum (DSSS) and Orthogonal
Frequency Division Multiplexing (OFDM) have been used in WLAN. Lately the use of
Multiple-Input Multiple-Output (MIMO) has been introduced in WLAN to improve
performance. [23, 55]

Several amendments have been released for 802.11. Some amendments specify modulation
techniques whereas others enhance the technology otherwise, such as Quality of Service
(QoS) support in 802.11e and security in 802.11i [22]. The original standard specified 1 and
2 Mbps data rates [12]. The latest modulation amendment 802.11n enables data rates up to
600 Mbps [55].

The Wireless Fidelity (Wi-Fi) alliance certificates WLAN devices that conform certain
standards of interoperability. It was found in 1999 by 3Com, Aironet, Intersil, Lucent
Technologies, Nokia and Symbol Technologies to improve interoperability. Today there are

over 300 members in Wi-Fi alliance. [54]

WLAN utilizes the standard 802 Logical Link Control (LLC) and is indistinguishable from

21

wired 802 to higher networking layers. The issues related to wireless communication are

taken care of on the Media Access Control (MAC) sublayer. [24]

22

3 REAL-TIME PAIR IMPROVISATION

In this chapter the real-time pair improvisation scenario presented in chapter 1 is defined in

the viewpoint of technology. The used concepts are introduced, requirements elicited,

constraints considered and finally, the scenario is discussed.

3.1 Terminology

The important terms in real-time pair improvisation are presented in Table 2.

Table 2: Terms in real-time pair improvisation

Term

Definition

Control data

Information, e.g. MIDI, needed to produce desired audio by sound

synthesis.

Event

A unit of control data. The same as a MIDI message in MIDI protocol.

Local latency

The delay between receiving a local or network event and production of
sound. Includes processing inputs from UI or network, audio processing

and buffering latencies.

MIDI

A protocol for controlling musical hardware and software.

Network latency

The delay between sending and receiving an event on application layer.

Note-off event

An event that defines the ending of a particular musical note.

Note-on event

An event that defines the beginning of a particular musical note.

Sequencer

A software component that controls many tracks. Enables simultaneous

playback of various audio sources.

Sound synthesis

n

-- numerical algorithms that aim at producing musically interesting
and preferably realistic sounds in real time." [52] Includes the use of

existing audio files (sampling synthesis).

Total latency

The sum of network and local latency.

Track

A software component used in a sequencer responsible for producing

and/or storing audio with a virtual instrument or audio files for example.

Virtual instrument

A software component that produces audio from control data.

23

3.2 Requirements

Real-time pair improvisation is an extension to standalone virtual instrument improvisation.
There was implemented functionality for producing sound according to user actions and
storing the created music. Also device discovery and group management were already
implemented in the networking components. In terms of processing power simultaneous
playback of two virtual instruments and a backing track was required. The most important
new requirements were real-time communications and initializations, which were not already

implemented in JamMo. The communications also required some processing power.

Improvisation is extremely latency critical. When playing a virtual instrument latency is the
time between pressing a key or giving any other kind of an input and hearing a sound. It
consists of UI latency, audio latency of the sound card and possibly various buffering
latencies between the two. The term local latency is used in this thesis to distinguish it from
network latency. In UMSIC local latency should have been less than 10 ms according to the
requirements of the project. The musical components, however, were in active development
during this thesis and it was unknown whether this requirement could be satisfied. However,

it was assumed that 10 ms local latency is achievable on Nokia N90O0.

In real-time musical collaboration over a network there is always an additional network
latency for remote peers. According to Zimmerman et al. a total latency as low as 15 ms is
required for a rhythmically demanding piece and less than 50 ms is usually acceptable [57].
A shorter latency enables more complex performances [57]. As local latency consists of
various processing and buffering operations it was assumed that 10 ms latencies were present
in both communicating devices. Thus, network latency should have been at most 30 ms but

as little as possible was targeted to provide the best possible performance.

Real-time pair improvisation can be implemented by transferring either audio or control data
(such as MIDI) between peers. Both require a low latency network but bandwidth is
significantly lower in control information transfer. Standard MIDI stream is 31.25 kb/s [37]
whereas 44 100 Hz 16 bit mono raw audio is approximately 690 kb/s. On the one hand

control data transfer requires less bandwidth which makes meeting the latency requirement

24

easier. On the other hand audio transfer has some other advantages. Both peers would not
need to have the same audio material that is needed in sound reproduction. Also it would not

be necessary to negotiate the instruments beforehand.

In JamMo a small logical subset of MIDI messages are used. The used data formats are
slightly different in order to make implementation easier. In JamMo only Note-on and Note-
off events are used. Note-on indicates that a specific note should start playing, whereas Note-
off is the opposite. Excluded MIDI messages include control changes, synchronizations and

many others [38].

As the number of messages is greatly reduced even smaller data rate than in MIDI protocol
can provide similar performance. JamMo is intended for children not professional musicians
which makes higher latencies acceptable. Moreover, the data rate can be reduced even more
as long as the total latency requirement is met. With a 10 ms sending interval and 10 byte
messages the bandwidth for application layer data would have been 1000 b/s. This number,
however, does not include the protocol overhead of the lower networking layers which are

unavoidable when using network connections instead of MIDI cables.

Typically in real-time applications, e.g. an audio or video stream, data is relevant only for a
short period of time. In such cases a lost or corrupted packet affects the application only for a
short period of time, e.g. a short missing video segment. In real-time improvisation
implemented with control data transfer a lost or corrupted packet may ruin the whole
performance. A single lost Note-off event may cause a note to play the full duration of the
improvisation which alters the performance dramatically (see Figure 7). Furthermore, the
data has to be processed in correct order. It is possible to get a stuck note also if later Note-
off event is processed before the corresponding Note-on event due to network connection

(see Figure 8). Thus, control data transfer has to be reliable.
In Figure 7 and Figure 8 circles represent received Note-on events and crosses Note-off

events. A rectangle in Figure 7 is a lost Note-off event which is never received and causes a

note to play the remaining duration of the improvised performance which was not intended.

25

Pitch ~
s Note-on

X Note-off
O Lost Note-off

Time ->

Figure 7: Lost Note-off event

Pitch ™
s Note-on
X Note-off
L —
X X
N L o
Time ->

Figure 8: Note-on and Note-off events received in the wrong order

In pair improvisation implemented with audio transfer lost or out of order packets would not

26

be as critical as with control data transfer. The effect of a lost or out of order packet is limited
to the duration of audio it contains, for example 10 ms. Out of order packets should be
ordered when possible without causing subsequent packets to be delayed later than their

playback time.

Needed initializations for pair improvisation include the selection of instruments and a
backing track. In JamMo there are multiple instruments and backing tracks available and
both devices have to produce the same audio. Although desirable, user interfaces for
selections were not considered as important as means to negotiate instruments and backing

track over a network connection.
The requirements for new components of real-time pair improvisation are summarized in

Table 3. Some requirements are different for control data and audio transfer. Tested column

shows in which part of this thesis the requirement was tested.

27

Table 3: Summary of requirements for real-time pair improvisation

ID | Requirement | Description Tested
1 |Processing Playback of two simultaneous virtual instruments|See section 3.3
power and a backing track plus processing required for|Constraints and
communications 3.4 Discussion
2 |Transfer of|Musical data has to be transferred to peer over a|See section 4.3
musical data |network connection. Application layer
3 |Bandwidth |Bandwidth for audio: 690 kb/s See section 3.3
Bandwidth for control data: Max. 31 kb/s Constraints
4 |Latency Maximum 50 ms in total (including network latency,|See section 3.3
sound processing and playback) [57]. Network|Constraints
latency approximately 30 ms.
5 |Reliability Control data: Note-off event may not be lost. Events|See section 3.3
can not be received in wrong order. Audio data: Constraints
Ordering of out of order packets without causing
subsequent packets to be delayed.
6 |Initializations | Means to negotiate instruments and a backing track | See section 6.1
over the network. Used components

3.3 Constraints

In the UMSIC project there were many constraints which were derived from Nokia N900

and Maemo operating system. Constraints of N900 include communication technologies and

processing power whereas Maemo and selected libraries in the UMSIC project introduced

software constraints. The implications of hardware and software constraints are discussed in

this section.

3.3.1 Communication

Although WLAN and Bluetooth are widely used technologies neither has been used

28

extensively in transferring real-time musical information. Thus, it was important to find out
whether real-time improvisation was possible with the given communication technologies.
There were a few commercial wireless MIDI systems available [8, 10, 29, 34] but most
companies did not specify the used technology. Kenton used Ultra High Frequency (UHF)
[29]. Some research have been done in the field of MIDI over IP with wired connections [56,

57].

For real-time improvisation latency and bandwidth requirements had to be met. Both WLAN
(802.11g 54 Mbps) and Bluetooth (2.1 3 Mbps) met the bandwidth requirements (see
Requirement 3) [4, 20] which made latency the most important issue. Bluetooth, however,

left less room for non-ideal throughput in audio transfer.

It has been measured that Bluetooth has an average latency of 20 ms with a protocol stack
optimized for low latency [3]. The network jitter, however, was dependent on the piconet
role of the sending node. For piconet slave the jitter was approximately 5 ms and for master
1 ms [3]. Moreover, the perceived maximum latencies were 25 to 70 ms and 22 to 27,
respectively [3], highlighting the asymmetric nature of communications. The average latency
was already majority of the maximum latency specified in Requirements section (3.2)
leaving little room for network jitter and retransmissions of lost packets in time. Bluetooth
has not been used in commercial MIDI systems. Kenton considered using Bluetooth in its

wireless MIDI system but soon noticed it was not possible due to high latencies [29].

The asymmetric latency issue of Bluetooth is not present in WLAN. In Bluetooth a slave
device has to be polled by the master in order to be able to send [3]. In WLAN, however, an
optional Request To Send (RTS) / Clear To Send (CTS) procedure is used instead making the

communications symmetric.

Less than 10 ms latency has been achieved in MIDI transfer over WLAN [35] which is less
than the required latency (see Requirement 4). Streaming audio over WLAN had been done
[13] but not in as latency critical setting as improvisation with a peer. When streaming audio
for listening there is no interaction and thus, big buffers which create long latencies are

acceptable and desirable to hide the unreliable nature of wireless communications. Real-time

29

improvising, however, is highly interactive as peers are creating music together in real-time.

A series of measurements were conducted to ensure the suitability of WLAN on N900 in pair
improvisation. The purpose was to ensure that low enough latency can be achieved in
application layer communications over WLAN and especially with Nokia N900s. For

comparison computers were also used.

In the measurements two networking devices measured Round Trip Time (RTT) over
WLAN. A WLAN router was used. One device was located approximately one and half
meters away from the router and the other approximately five (see Figure 9). There was line
of sight (LOS) propagation between one device and the router and no LOS between the other
device and the router. No LOS propagation was selected to ensure that similar or better

performance can be achieved in real application use.

The used devices were on default retransmission settings. RTS / CTS was used. The
performance using default settings was interesting as the end users of JamMo are not

expected to be able to configure the devices for optimal performance.

RTT measurements were performed using simple application layer client-server C programs.
RTT performance was measured using User Datagram Protocol (UDP), Transmission
Control Protocol (TCP) and TCP without Nagle's algorithm to rule out the effect of transport
layer. Nagle's algorithm concatenates data packets when sending in order to reduce protocol
overhead which may cause additional delays. Disabling Nagle's algorithm has been found to

improve MIDI over Internet Protocol (IP) performance [56].

One thousand measurements were performed for each program in series of 100
measurements to even the changing amount of noise. There was a 5 ms delay between each
measurement to simulate data streams. Measurements were performed sequentially and the
latency of one measurement did not affect the others in any way as would have happened
with a continuous stream of events. On the one hand it enabled accurate deviation
measurements of packets. On the other hand it made the measurements slightly unrealistic. It

was expected that the performance in real application use would be slightly worse due to

30

latency peaks which affect subsequent packets as well. Packet sizes on application layer were
11 bytes and 441 bytes to simulate control and audio data transfers respectively. The amount
of data in audio packets is equal to 5 ms of 44.1 kHz 16-bit mono audio. Due to low data

rates it was assumed that there is no need to send multiple packets at the same time.

OQbstacl

w

Obstacle

Obstacle

Obstacle

Obstacle |

Figure 9: RTT measurement setup

The first measurements were performed using two Nokia N900's. WLAN power saving was

on maximum on both devices. The results are presented in Table 4 and Table 5.

31

Table 4: Control data measurements on N900s with full power saving

UDP TCP TCP without Nagle
Average (ps) 79793 194067 98207
Standard deviation (ps) 169214 271976 213934
Average absolute deviation (ps) | 102078 247584 151438
Maximum (ps) 617157 615876 609436
Minimum (ps) 2411 2960 2808
Median (ps) 3662 4212 3662
Table 5: Audio data measurements on N900s with full power saving
UDP TCP TCP without Nagle
Average (ns) 69769 199877 136797
Standard deviation (ps) 127399 270868 249332
Average absolute deviation (ps) |72262 246960 205748
Maximum (ps) 609375 610046 610168
Minimum (ps) 4028 4089 4090
Median (ps) 5554 5433 4791

Averages and deviations are significantly greater than 60 ms and show that it is impossible to
improvise with two N900s with full WLAN power saving (see Requirement 4). Minimum
and median values show correlation between packet size and latency. Averages, deviations
and maximum values suffer from aggressive power saving. TCP without Nagle's algorithm
performed better than TCP. The same measurements were conducted without the power

saving. The results are presented in Table 6, Figure 10, Table 7 and Figure 11.

32

Table 6: Control data measurements on N900s without power saving

UDP TCP TCP without Nagle
Average (ps) 3550 3815 3801
Standard deviation (ps) 2198 990 1676
Average absolute deviation (us) | 663 416 563
Maximum (ps) 44586 22217 27039
Minimum (ps) 2564 2929 2625
Median (ps) 3174 3601 3540
4500
4000
3500
3000
2500
2000 B UDP
1500 B TCP
1000 O TCP w/o Nagle
500
; B]
Standard deviation Min
Average Average absolute deviation Median

Figure 10: Control data measurements on N900s without power saving

Table 7: Audio data measurements on N900s without power saving

UuDP TCP TCP without Nagle
Average (ps) 4510 4977 5153
Standard deviation (ps) 1724 2346 2689
Average absolute deviation (ps) 499 566 922
Maximum (ps) 37140 53650 38361
Minimum (ps) 3693 3997 3876
Median (ps) 4242 4700 4669

33

6000

5000
4000
3000 B UDP
mTCP
2000 [TCP wio Nagle
1000 [:]

Standard deviation Min
Average Average absolute deviation Median

Figure 11: Audio data measurements on N900s without power saving

The results show great performance improvement in average and deviation times although
minimum RTTs remained approximately the same. The assumption that few packets are
waiting on the link layer to be transmitted in real application use seems to be correct. In
addition to minimum and median times also averages show correlation between packet size
and latency. TCP without Nagle's algorithm did not provide advantage over TCP unlike with
power saving which could be due to link layer delays. Maximum times suggest that it may
still be possible to encounter greater RTT than the required network latency (see
Requirement 4) as almost double of the required latency was reached. It was assumed that
temporary latency peaks can be tolerated in the scenario as long as average latency is less

than required.

In general N90O is capable to achieve acceptable network latencies using WLAN. Without
power saving, however, battery is used fast and the device gets warm. The drawbacks can
not be fully avoided in the pursuit of satisfactory performance. Intermediate power saving
option on N900 was not used in measurements as the device was already found capable of

low latency communications.

For comparison the performance of a desktop and a laptop computer were measured in a
similar setting. WLAN power saving was on default settings on both computers. The results

are presented in Table 8, Figure 12, Table 9 and Figure 13.

34

Table 8: Control data measurements on two computers

UDP TCP TCP without Nagle
Average (ps) 3240 3954 3684
Standard deviation (ps) 14339 18283 11033
Average absolute deviation (ps) 3571 4621 3920
Maximum (ps) 390726 386142 211954
Minimum (ps) 781 821 819
Median (ps) 922 948 1194
20000
18000
16000
14000
12000
10000 B UDP
8000 B TCP
6000 O TCP w/o Nagle

4000
2000

1l

Standard deviation
Average

Min

Average absolute deviation

| ——

Median

Figure 12: Control data measurements on two computers

Table 9: Audio data measurements on two computers

UDP TCP TCP without Nagle
Average (ps) 5917 8315 8800
Standard deviation (ps) 3926 20709 22447
Average absolute deviation (ps) 913 4922 5781
Maximum (ps) 116187 230398 268531
Minimum (ps) 1176 1300 1175
Median (ps) 5667 5808 5807

35

25000

20000

15000
B UDP

10000 . TCP
O TCP w/o Nagle

0 [-
Standard deviation Min
Average Average absolute deviation Median

Figure 13: Audio data measurements on two computers

On Nokia N900 WLAN the minimum RTTs were higher than on computers. The difference
could be due to unconfigurable power saving on hardware, WLAN chip quality or different

link layer configurations.

The results show that in the used setting the performance of different transport layer
protocols was relatively similar on N900 and the used computers. While UDP was slightly
faster than TCP with or without Nagle's algorithm all protocols provided rather similar

performance.

With TCP the deviations increased with the increased amount of data. With UDP, however,
the deviations decreased which highlights the better performance over TCP in real-time
applications. The improved deviations can be explained by increased averages, minimums

and medians. Although the latencies were more stable they were higher in general.

Average latencies from all measurements are summarized in Table 10. The results show that
the power saving of N900 is too aggressive to be used in real-time pair improvisation. Link
layer performance is much more important than the selection of transport layer protocol.
Without power saving and on computers there was a correlation between the amount of data

and latency. Furthermore, TCP performed slightly worse than UDP and Nagle's algorithm

36

had little effect.

Table 10: Summary of average latencies

UDP TCP TCP without Nagle
N900 power saving / Control data 79793 194067 98207
N900 power saving / Audio data | 69769 199877 136797
N900 / Control data 3550 3815 3801
N900 / Audio data 4510 4977 5153
Computers / Control data 3240 3954 3684
Computers / Audio data 5917 8315 8800

3.3.2 N900, Maemo and libraries

In previous work by Gynther Nokia N810, the predecessor of N900, was found capable of
running virtual instruments [20]. Due to different libraries in Maemo and JamMo the
performance of N900 had to be evaluated. In addition to performance of N90O also the

selected communications library added constraints.

Maemo 5 and selected libraries were a serious performance constraint. Measuring the actual
effects were out of the scope of this thesis as the most processor intensive components were

not developed in this thesis.

Improvisation requires a lot of processing power (see Requirement 1) which may be a
problem with Nokia N900. MEAM components use GStreamer exclusively. GStreamer uses
heavily threaded approach which degrades performance on Nokia N900 probably due to
mutex implementation [11]. Especially achieving low latency was found difficult [11]. In the
requirements elicitation of UMSIC context switching, e.g. a change of a thread or a process,
on ARM processor architecture was found drastically slower compared to desktop

computers.

In Maemo 5 PulseAudio sound server was added. In previous versions lightweight Advanced

37

Linux Sound Architecture (ALSA) library was used. PulseAudio is advanced but more
complex and heavier than ALSA. PulseAudio supports simultaneous audio streams with
different sample rates, networked sound and various other features whereas ALSA is a
simple API for sound input and output. In low latency audio work on Linux Jack Audio
Connection Kit (JACK) is typically used on top of ALSA. JACK can be run on Maemo but it
requires disabling PulseAudio and it is not fully supported as there is no real-time scheduling
in Maemo kernel. Disabling PulseAudio also disables the phone functionality of N900 which
was not desired in UMSIC project. Furthermore, the use of JACK requires detailed audio

configuration by the user.

Playing a virtual instrument was found a major task for N900. Measurements were done with
a software tool which measures processor usage of processes (top). When playing a virtual
instrument on N900 PulseAudio sound server used 15 to 30 % of the processing power. A
simplistic test program running a GUI and a single virtual instrument consumed 35 to 40 %
of processing power when playing calmly. Intense playing caused the sound to stop which
was a sign of lack of processing power. Compared to results on N810 with Advanced Linux
Sound Architecture (ALSA) library API instead of PulseAudio and GStreamer [20] the
performance was dramatically worse. On N810 several simultaneous virtual instrument
sounds were created using different algorithms [20] which is equivalent to running multiple
simultaneous virtual instruments. The musical components of JamMo, however, were under
intense development and it was unclear whether they would be more efficient. Moreover, the
measured results showed that the processing power of N900 would not be insufficient in an
order of magnitude. Slightly more powerful devices could meet processing power
requirement (see Requirement 1) easily. The processing power of full JamMo when playing a

virtual instrument could not be evaluated as the user interface was under development.

In addition to local processing also communications consume processing power. In providing
low latency real-time communications cause a lot of system calls including small reads and
writes. In addition the user space processing has to be done in small chunks of data.

Processing small amounts of data is unavoidable in the pursuit of low latency.

In addition to processing power also the communications were constrained. PeerHood

38

supported only TCP connections which ruled out UDP based network traffic. In the previous
section TCP was not seen as a problem for real-time pair improvisation. However, in a real
data stream a delayed packet may cause significant delay in subsequent packets as well

because TCP reorders the data.

3.3.3 Constraint discussion

The resources of Nokia N900 were found limited for real-time pair improvisation.
Heavyweight software libraries are used in JamMo and the local processing left little
resources for communications. In this thesis the musical components were not considered

and thus it was not possible to free resources for communications.

During the constraints evaluation it was unclear if the performance of N900 would be
sufficient. It was decided that if the processing power of N900 would not have been
sufficient for real-time improvisation more powerful devices, e.g. desktop and laptop
computers may have been utilized. Many JamMo components outside the scope of this thesis
used a lot of processing power. It was also understood that N900s could have also been used
to produce control data and audio could have been created with a more powerful device, such
as a laptop. Fast context switching combined and greater processing power of a modern
desktop or laptop it was clear that there would not be performance constraints on a computer.

Using a different device instead of changing the scenario was favored.

WLAN was found more suitable than Bluetooth. WLAN provided better performance in
bandwidth and in latency when power saving was not used. Although the use of Bluetooth
was not found impossible it was considered more feasible to utilize only WLAN due to

limited time. Requirement for latency (see Requirement 3) was met.

The transfer of control data provided better latency performance than audio due to smaller
amount of data. TCP suffered more from the increased amount of data than UDP. However,
acceptable latency was achieved with UDP and TCP protocols in audio and control data
transfer. Nagle's algorithm should be used as disabling it failed to provide advantage on

N900 without power saving. The use of PeerHood library constrained JamMo to use only

39

TCP. Although the performance of TCP was worse than UDP it was still acceptable.

Larger audio packets could be used on the expense of local latency. It was assumed that also
network latency per packet would be increased with a larger packet size although there
would be less packets in total. On the other hand there would be less protocol overhead.

Network bandwidth, however, was not seen as a limited resource.

In the communications temporary latencies due to power saving or other matters should be
taken into account. It should not be assumed that QoS is available in the used devices.
Timestamping the sent data would provide the receiver valuable information. Based on this
information late data can be discarded in order to avoid musical confusion. Furthermore, the
improvisation could be stopped altogether should the network latency turn out to be

unbearable.

A summary of constraints and their origins are presented in Table 11. How to overcome

column indicates how the problematic constraints were overcome.

Table 11: Summary of constraints

ID | Constraint | Origin How to overcome

1 |Limited Hardware (performance not fully comparable to|See section 3.4
processing different architectures), Operating system, selected | Discussion

power libraries

2 |WLAN Better performance than with Bluetooth. Lack of|Not problematic
time to study Bluetooth.

3 |No guarantee | Temporary latency peaks possible. QoS may not be|See section 4.3
of low latency | available. Application layer
4 |TCP PeerHood Not problematic

40

3.4 Discussion

The constraints of Nokia N900 presented in the previous section were partly conflicting with
the requirements for JamMo. Moreover, the hardware and software constraints were partly

conflicting as heavyweight libraries are used on a mobile device.

It was not clear if N900 would have been suitable for real-time pair improvisation in the
terms of processing power. Furthermore, it was not clear if N900 could handle even the local
processing of pair improvisation without any communications at all. As JamMo can be easily
built and run on a computer, the most resource intensive components were not part of this
thesis and the research questions focused on design and implementation using two computers
was regarded as a back-up environment. Using computers was seen as a way to overcome
Constraint 1 and to fulfill Requirement 1 without changing any other technologies or

software.

The other constraints limited design and implementation but were not considered
problematic. In order to provide understanding beyond the constraints also other transport
layer protocols than TCP were discussed in design. Due to limited time Bluetooth or other

link layer technologies were not considered.

41

4 COMMUNICATIONS DESIGN

In this chapter the effects of different protocols, design decisions and configurations are
considered. The real-time requirements of pair improvisation had on effect on various
networking layers of the TCP/IP protocol stack, see Figure 14. Moreover, different protocols
and configurations affect other layers. Transport layer is discussed first as it affects higher
and lower layers the most. Also algorithm for synchronizing the devices for improvisation is

considered.

Application layer

Type of transferred data
Type of data streams
Communication paradigm

Transport layer
Reliability
Real-time optimizations
Congestion control

Networking layer

Nothing to consider

_— Link layer
Retransmissions

RTS/CTS
Power saving
WLAN channel

Figure 14: The effect of real-time requirements on different networking layers
Only WLAN was considered for the link layer due to limited time (see Constraint 2). As the

link layer performance affects upper layers, the same constraint was also considered in

transport and application layer sections.

42

4.1 Transport layer

The most important transport layer considerations were reliability, real-time optimizations
and congestion control. There are various transport layer protocols available and they can be

categorized into reliable and unreliable.

Although the implementation of real-time pair improvisation was constrained to the use of
TCP (see Constraint 4) other protocols were considered as well. The evaluation of different
transport layer protocols and their consequences helped to provide understanding of real-

time communication and an answer to Research Question 1.

User Datagram Protocol (UDP) is unreliable which means that it works without guarantees
of receiving in sending order or receiving at all. Any required reliability has to be
implemented on the higher networking layers if UDP is used. Furthermore, UDP does not
provide any congestion control. Since there is minimal overhead in UDP it can provide fast

performance.

Transmission Control Protocol (TCP) is reliable meaning that the application layer will
receive all data. The delivery is also ordered which means that data will be received in the
sending order. If packets are lost on a lower layer any subsequent data can not be delivered
to the application before the lost packets are transmitted successfully. Reordering may cause

significant delays which can be harmful for real-time applications.

TCP slow-start algorithm used to avoid congestion causes problems in wireless networks. In
wireless environments the assumption that packet loss is always caused by congestion is
incorrect. Various radio effects cause temporary packet loss or connectivity problems which
trigger the congestion avoidance algorithm. Variants for TCP congestion avoidance
algorithm have been suggested. TCP Congestion Control introduced Fast Retransmit and
Fast Recovery in which recovery from congestion avoidance caused by lost segments was
faster than in the original algorithm [1]. TCP Selective Acknowledgement (SACK) made
possible to specify which segments were received or not for more efficient retransmissions

[36]. TCP New Reno specified a careful version of Fast Recovery in order to avoid multiple

43

retransmissions when TCP SACK is not available [14]. In TCP Westwood (TCPW) sender
monitors acknowledgement stream from receiver to be able to distinguish congestion from
random packet loss [7]. TCPW significantly increased throughput over a wireless link [7] but
the effect on single segment latency was not measured. TCP SACK was used in the kernel of
Maemo 5 by default. TCP Westwood was not available. Several other TCP congestion
avoidance algorithms have also been suggested, such as TCP Hybla [51]. These were not
considered in this thesis due to unsuitable assumptions in the algorithms, e.g. long RTTs over

satellite links.

Although the effect of congestion control algorithm has a significant effect on throughput the
effect on latency in pair improvisation is likely low. Bandwidth is sparsely used and RTT is
low which mean that most of the time there are few packets in transmission. The congestion
control algorithm, however, can make a difference when packets have been lost on the link
layer and there are many packets to be sent. If retransmitted packets are lost randomly
congestion control may seriously degrade the transfer speed. Measurements with different
congestion control algorithms in pair improvisation were considered out of the scope of this

thesis.

Transmission Control Protocol - Real Time Mode (TCP-RTM) is a modified version of TCP.
It allows skipping late data which improves real-time performance but also makes it only
partially reliable [33]. Thus, it is not immune to the lost Note-off event problem presented in
Requirements chapter. It was not implemented in modern versions of Linux kernel which is
why it could not have been used in the scope of this thesis. Moreover, implementing would
have required changing the running environment of JamMo which was not desired in the

UMSIC project.

Stream Control Transmission Protocol (SCTP) is a message oriented (like UDP) transport
layer protocol [49]. It is reliable but can provide unordered data transfer to overcome the
delays of TCP [49]. A single SCTP connection may be used to transfer multiple streams [49].

SCTP is also multi-homed, meaning packets can be sent to multiple destinations at once [49].

Datagram Congestion Control Protocol (DCCP) is a message oriented unreliable transport

44

layer protocol like UDP [30]. In contrast it provides two congestion control mechanisms: one
is similar to original TCP congestion control and the other minimizes abrupt changes in

sending rate [30].

Also application layer protocols implementing transport layer functionality, such as Real-
time Transport Protocol (RTP), have been used on top of UDP and TCP. Typically RTP is
used on top of UDP for better performance. Multiple RTP variants on top of TCP and TCP
implementations have been studied in Local Area Networks (LAN) and Wide Area Networks
(WAN) in transferring MIDI over IP [56]. The results show that a multi-threaded TCP
implementation performed better than RTP on top of TCP or the default TCP

implementation.

The presented transport layer protocols are compared in Table 12. More aspects of transport
layer protocols need to be considered with control data traffic than with audio. SCTP would
have suited control data transfer very well. It provides reliability, which diminishes the
burden on application layer, and faster performance than TCP. Still, the order of packets
would have had to be considered on application layer. SCTP, however, was not implemented
in Linux kernel. If an unreliable transport layer protocol is used in control data transfer
reliability has to be provided by the application layer. At least the lost Note-off and Note-on
and Note-off in wrong order problems have to be considered. Also retransmissions of lost

events should be considered when possible with a reasonable delay.

TCP would have suited audio transfer the worst. The other protocols do not always reorder
data which allows the application to get the the latest data in time. TCP-RTM would reorder
data that is received in time. In others it would have to be done on the application layer. With
unreliable protocol retransmissions of lost data should be considered when possible within

the playback time of the data.

45

Table 12: Comparison of transport layer protocols

Protocol | Advantages Disadvantages
UDP * Fast Unreliable, application layer has to provide
the needed reliability
TCP * Reliable * Slow, although there are differences
e Data is ordered between implementations
* Ordering of data causes delays when a
packet is lost
* Congestion control may cause inefficient
use of link layer
TCP- * Lost data does not cause|e Partially reliable, late data may be lost.
RTM delays to reading received data | Application layer has to provide the needed
reliability
SCTP * Faster than TCP (reordering
of data can be disabled)
» Reliable
DCCP | « Fast * Unreliable, application layer has to provide

the needed reliability

Transport layer protocol has a significant effect on lower and higher layers. Reordering and

reliability in transport layer simplify application layer a lot although reordering may

compromise performance. Reliability also affects optimal link layer configurations because

discarding late data on the link layer will only lead to retransmissions on the transport layer.

46

4.2 Link layer

Various link layer settings have an effect on real-time performance. Retransmissions of data
that is already late are not desired with an unreliable transport layer protocol. Request To
Send (RTS) / Clear To Send (CTS) handshake increases latencies but helps in hidden node
problems. WLAN power saving (see Constraints section 3.3) and bad selection of WLAN

channel can compromise real-time performance.

Also changes to link layer implementations, such as packet proxies for TCP connections,
have been suggested for improvements in throughput [2]. The proxies store packets and
utilize selective retransmissions to improve performance over lossy wireless links [2]. The
effect on latency is likely low in pair improvisation as there is supposed to be only one (if
any) WLAN access point between the devices. Changes to link layer implementations,

however, were considered out of the scope of this thesis.

As configuring the link layer requires root access in Linux JamMo can not make changes to
configurations. When administrating the used network and communicating devices many
optimizations can be done. With changes to configurations significant performance

improvements can be achieved.

With an unreliable transport layer protocol retransmissions should be adjusted such that late
packets are dropped. On some WLAN devices both retransmission count and time can be
adjusted. Retransmissions could be adjusted according to application layer sending interval
for optimal performance. With reliable protocols relatively high retransmission counts and
times should be utilized to avoid transport layer timeouts because of temporary packet losses
and lost connectivity. TCP timeouts use exponential back-off which may lead to long periods

of inactivity on link layer even when the connectivity has been regained.

By default 802.11 utilizes RTS / CTS handshake to overcome hidden node problem. In the
hidden node problem nodes that can not sense each other (e.g. A and C) try to send data to
another node (e.g. B) at the same time. The receiving node can not receive data from either

sending node because the radio signals get mixed on the shared transfer medium. RTS / CTS

47

mechanism is presented in Figure 15.

2. RTS
5: RTS

7T: Data

1: RTS B
4: Data

6: CTS
- -

3:CT5

A and C can not hear each other. [}1

Figure 15: RTS / CTS mechanism

RTS / CTS handshake degrades performance when there are no hidden nodes but with the
presence of hidden nodes RTS / CTS improves performance [27]. In real-time pair
improvisation RTS / CTS should be turned off for better performance if the used network is
dedicated to improvisation and the hidden node problem is unlikely. Otherwise RTS / CTS
should be used.

The power saving of 802.11 has been found inefficient in throughput and power usage and
other mechanisms have been suggested [28, 32]. In Constraints section (3.3) the WLAN
power saving of N900 was found insufficient for pair improvisation. A short Beacon Period
(BP) would improve the packet delay with 802.11 power saving [32]. At the start of each BP
the devices wake up and decide whether they need to stay awake for the rest of the BP based

on control communication with the other devices [28].

In 802.11g there are 13 channels in use in most parts of the world. One channel uses 20 MHz
spectrum in 2.4 GHz range and the channels are overlapping. Only three of 13 channels can
be used simultaneously without sharing any spectrum. The used channel should be selected
such that there is as little interference as possible from other 802.11, Bluetooth, ZigBee and

other devices. Interference has a significant effect on latency and throughput [19].

802.11e provides Quality of Service (QoS) which would improve latency performance

48

especially when there is other traffic in the same network. A high priority (voice) QoS setting

should be used in real-time pair improvisation when possible.

4.3 Application layer

On application layer there are many things to consider. These include the type of transferred
data, type of data streams and a communication paradigm meaning the model of roles that
the two software instances play. Application layer synchronization, required in some

circumstances, was separated as a section of its own for better readability.

Improvisation can be implemented by transferring control data or audio. Control data (such
as MIDI) needs less bandwidth but lost and out of order data may cause problems (see
Requirements section 3.2). It consists of information what kind of audio should be produced
and when without any actual audio data. Thus, control data needs less bandwidth (see

Requirements chapter for more details).

There are a few protocols and implementations available for transferring MIDI over IP
networks. Real-time Transport Protocol (RTP) Payload Format for MIDI utilizes RTP for
transferring MIDI [31]. It was published as an Internet Engineering Task Force (IETF)
Request for Comments (RFC). RTP Payload Format for MIDI or RTP do not specify a means
synchronizing two or more devices [31, 48] which is needed in pair improvisation. A
commercial MIDI over IP solution called MIDIoverLAN Cross-platform (CP) exists for
Windows and Macintosh Operating System X (Mac OSX) [39] and is available for purchase.
NetJack [41] is able to transmit MIDI over LAN. In NetJack slave machines are

synchronized to the audio clock of the master [41].

When utilizing an unreliable transport layer protocol a lost control event that stops a note
from playing may ruin a performance completely (see Requirements chapter) whereas lost
audio segment only causes short disturbance in audio stream. In some circumstances a lost
audio segment can be effectively approximated based on other audio segments by an audio

concealment algorithm [13].

49

When control data is transferred with an unreliable transport layer protocol application layer
procedures are needed for required reliability. RTP Payload Format for MIDI addresses this
issue by a recovery journal [31]. The recovery journal is sent in all packets and it contains
the history of the stream since the previous checkpoint [31]. It would also be possible to
utilize acknowledgements and retransmits for all or the most critical events.
Acknowledgements and retransmissions would save bandwidth but the latency performance

would be worse as there would be more transmissions over the wireless link.

Both control and audio data streams could utilize variable bit rates. With control data transfer
empty events, signaling that the stream is alive but there is nothing to send, are necessary.
Some empty events can be omitted on the expense of monitoring accuracy of the stream. In
MIDI protocol, however, this is not specified. In audio transfer silence could be transferred
with a special message omitting most of the data. Utilizing audio compression would also be
possible. In this thesis it was assumed that audio compression and decompression would
consume at least most of the latency gain on the wireless link. Moreover, compression and
decompression would require processing power which was seen very limited in Constraints

section (3.3).

Two models of roles which fulfill Requirement 2 were considered. In Master and Slave
model master pulls the data from slave and sends the created audio stream to slave (see
Figure 16). This way devices do not need to be synchronized before starting improvisation as
they are both synchronized to the audio clock of Master. A similar model is used in NetJack
[41], a networked extension of JACK Audio Connection Kit (JACK) sound server [26]. In
NetJack, however, the slave machine is not playing audio through a sound card. Playback on
slave could create noise due to differences in clock rates on master and slave. Local audio

concealment techniques could be used to solve this problem.

50

Master pulls audio
or control data

from Slave
=
Master Slave
[
Master sends mixed
audio stream to Slave
Mixed stream to Mixed stream to
headphones headphones

Figure 16: Master and Slave model

In Peer-to-Peer model both devices create their audio locally and only send control data or
audio of their own track to the other peer (see Figure 17). This makes workload balanced and
if using control data transfer also bandwidth requirement smaller. Furthermore, some

network bandwidth is saved and latency avoided due to less hops over the wireless link.

A sends audio or
control data to B

A B
-
B sends audio or
control data to A
\ v
Mixed stream to Mixed stream to
headphones headphones

Figure 17: Peer-to-Peer model

51

The Master and Slave and Peer-to-Peer models presented in Figure 16 and Figure 17 are

compared in Table 13.

Table 13: Comparison of models

Model Advantages Disadvantages
Master and Slave |+ Synchronization not| * Audio transfer required
required * Complicated communications

* Master does more processing

Peer-to-Peer * Simple communications * Synchronization required

e Control data transfer
possible

e Balanced workload

On the application layer it can not be assumed that link and transport layer configurations are
optimal and data is always received shortly after sending. RTP Payload Format for MIDI
addresses this issue by timestamping data [31] which gives valuable information to receiver.
It is possible to receive application layer data much later than current playback time. In pair
improvisation it may be better to skip the late data instead of e.g. playing a sound a second

later than it was intended (see Constraint 3).

4.4 Synchronization

In Peer-to-Peer model presented in the previous section the devices used in pair
improvisation must be synchronized before the performance may start. Synchronization

provides a means to start playback at the same wall clock time on both devices.

Synchronization of clocks over IP networks is a well researched area. Simple and complex

protocols, such as Daytime Protocol [45], Time Protocol [46] and Network Time Protocol

52

(NTP) [40], have been created. These protocols and definitions address synchronization of
clocks over a multi-hop network with varying degree of precision. The synchronization is
usually done gradually over a long period of time if high precision, such as one millisecond,

is desired.

In pair improvisation, however, the needs for synchronization are different. Clock times on
the devices do not need to be the same as long as playback starts at the same time with as

high precision as possible. In addition the synchronization process should be fast.

Simultaneous playback can be started by letting one peer decide the start time relative to
current time and informing the other by a message sent over a network. Peers are able to start
playback at the same time if one peer is able to evaluate the network delay and compensate
the starting time. With a short RTT compared to audio latency it is possible to neglect the
effect of network delay completely.

NTP takes RTT into account but does not offer means to measure or evaluate one way
delays. Thus, it was assumed that one way delays are symmetric. With the previous

assumption synchronization can be done with Master and Slave roles as follows:

* Master measures RTT by sending a message to Slave and waiting for a reply.

* Measurement is done multiple times. If RTT is low enough for improvisation Master
sends a message containing the relative start time, e.g. one second after the present
time.

» Slave starts after the time Master specified.

* Master starts after the time specified plus RTT divided by two which is the assumed

start time of Slave.
During improvisation remaining clock differences or clock skews can be corrected by

adjusting the clocks. Adjustments to clock can be done by seeking the sequencer to the

correct location.

53

4.5 Discussion

Due to limited time it was not possible to implement multiple options presented in this

chapter. It was compulsory to select one combination of options for implementation.

In JamMo it was compulsory to use TCP on transport layer but without using PeerHood
others would have been possible too. UDP or RTP would have suited better to the real-time
nature of communication as all late data would not have been retransmitted automatically.
DCCP would not have improved the performance of UDP as congestion would not have been
an issue on low data rates. SCTP would have provided reliability and fast operation because
of unordered delivery. As TCP had to be used there was no risk of lost events and
Requirement 5 was satisfied. Furthermore, a RTP Payload for MIDI style recovery journal
was not needed. Moreover, TCP also makes sure that there is no need to synchronize events

with peer after improvisation for saving the performance.

TCP has not been used extensively in real-time applications because its performance is not
optimal due to reordering of packets. Moreover, the performance of TCP over wireless
connections has been found non-ideal. The measurements in Constraints section (3.3),
however, show that in the scenario of this thesis the performance of TCP is not considerably
weaker than UDP. Due to lack of time it was not possible to measure the performance of
different congestion avoidance algorithms in pair improvisation. In Maemo 5 SACK is used

by default and it was assumed feasible.

It is possible to develop real-time pair improvisation on top of TCP but it should be ensured
that it is unlikely to end up in situations where TCP performs badly. This can be done by
monitoring RTT before starting improvisation because packets lost on link layer will increase
RTT. Still, it is possible to encounter performance problems because of TCP. Reordering of
data may cause long delays in application level data stream if multiple packets are lost. To
avoid hanging notes all playing notes should be turned off if nothing has been received in a

while. It was assumed that silence is more user-friendly than hanging notes.

Peer-to-Peer model was preferred. It is simpler than Master and Slave and enables control

54

data transfer. NetJack, utilizing Master and Slave model, is intended at wired LANs where
latencies are significantly lower than in wireless networks. Synchronization procedure,

which was required in Peer-to-Peer model, was presented in the previous section.

Control data transfer was preferred as it was easier to implement in JamMo. The API of
virtual instruments supported real-time input of control data but there was no audio
streaming functionality implemented. Moreover, lower latency could be achieved with

control data transfer as shown in Constraints section (3.3).

An existing MIDI over IP protocol should not be used. Firstly, there was no library
implementation for RTP Payload Format for MIDI. Secondly, RTP over TCP performed
worse than TCP on a study [56]. Thirdly, JamMo did not utilize MIDI standard. In a custom

protocol it is possible to utilize the same data types as in JamMo to simplify implementation.

The idea of timestamping in RTP Payload for MIDI was found helpful. The timestamps
could have been used in decision making. Although because of TCP there was no risk of
receiving out of order data, timestamps could have been used in monitoring the data stream.
It was considered more user-friendly not to play a note received much later than it was
played on the peers device. Furthermore, major clock differences could have been detected

when a timestamp ahead of the current clock time was received.

The summary of communications design is presented in Table 14.

55

Table 14: Summary of design decisions

Design aspect Decision Justification

Transport protocol | TCP Constraint 4

Application layer | Peer-to-Peer Simpler than Master and Slave.

model

Type of transferred|Control data, Easier to implement than audio data. Lower

data custom protocol network latency.

Synchronization Custom algorithm | Required for control data transfer. NTP does not
based on RTT|offer a more sophisticated way to estimate
measurements network latency.

The same communications could have been used for other scenarios as well, such as All
JamMos Real-time scenario. In the scenario N900s are used as controllers only. Audio is

generated on a server and played back from speakers.

56

5 COMMUNICATION PROTOCOL

The protocol for real-time control data connections in pair improvisation is presented in this
chapter. Messages, timers and constants are defined. Finally, the operation of the protocol is

presented.

The protocol enables sending and receiving JammoMidi events between two peers. By
sending JammoMidi playing of one peer can be transferred over a network. Playing is
transferred as Note-on and Note-off events. Note-on indicates that user has started playing a
sound, e.g. pressed a key of the keyboard on the touch screen of a mobile device. Note-off
means that user has stopped playing a previously started sound, e.g. released a key of the

keyboard.

There are two types of communication modes: one-way and two-way. In both modes there
are two roles: sender and receiver. In one-way communication one entity acts as a sender and
the other as a receiver. One-way communication can be utilized in using one device as a
controller only, e.g. playing a virtual instrument on N900 and generating sound on a
computer. In two-way communication both entities play the sender and receiver roles which
is intended in real-time pair improvisation. Two-way communication enables more efficient
stream monitoring and thus it should be implemented even when there is nothing to be sent

to one direction.

The protocol is described in five sections. Details of messages (5.1), timers (5.2) and
constants (5.3) are presented first. Operation (5.4) defines the operation of sender and
receiver. Finally, the implications of different aspects of the protocol are considered in

Discussion section (5.5).

The protocol is an application layer protocol intended to be built on top of TCP or other
reliable protocol with ordered delivery of data. The communication is supposed to happen
over a wireless link with few hops, e.g. two devices communicating through an access point

or ad hoc. Due to the wireless link it is not assumed that data is always received without

57

disturbing delays.

5.1 Messages

In this section messages are defined on a high level of abstraction. Byte level encoding of
messages presented in this section are defined in Appendix 1. The Error message presented

in Table 15 is used in improvisation and synchronization phases.

Table 15: Error message

Message Description Contents
Error There has been an unrecoverable error and connection|Message type
should be closed.

The messages presented in Table 16 are used in synchronization phase of real-time

connection.

58

Table 16: Synchronization messages

Message Description Contents

Synclnit Slave contacts master. Message type

SyncRTT Master requests slave to send a SyncRTTreply message. Message type
Master measures RTT.

SyncRTTreply |Slave responds to SyncRTT from master. Message type

SyncStart Master specifies how many milliseconds slave should wait | Message type

before synchronization is finished. Includes the number of| Time

milliseconds to the start time of Improvisation phase.

SyncStartOK Slave responds to SyncStart from master. Message type

SyncRTTaverage | Master reports the average RTT to slave. In future versions | Message type
of this protocol this value could be used for calibrating | Average RTT

timers and constants. Includes the average RTT in

microseconds.

The messages presented in Table 17 are used in real-time communication after

synchronization.

59

Table 17: Messages after synchronization

Message Description Contents
Note-on User has started playing a note. The message includes a note Message
value similar to MIDI standard and a timestamp in|type
nanoseconds. Note value
Timestamp
Note-off User has finished playing a note. The message includes a note | Message
value similar to MIDI standard and a timestamp in|type
nanoseconds. Note value
Timestamp
EmptyEvent | Empty events indicate that the data connection is working. The | Message
message includes a timestamp in nanoseconds. type
Timestamp
Resync The clocks of peer do not appear to be synchronized. The|Message
difference is intolerable. A new synchronization is needed. type
ClockDiff |The clocks of peer do not appear to be synchronized. The|Message
difference is tolerable. ClockDiff specifies the difference in|type
milliseconds to enable more accurate stream monitoring. Clock
Difference
5.2 Timers

The timers utilized in real-time connection protocol are presented in Table 18. Example

values used in the implementation are specified in Appendix 2.

60

Table 18: Timers

Timer

Description

RT DELAYQUIT

The time that connection is considered valid if no events are

received.

RT EMPTY INTERVAL

The interval of sending Empty events.

RT ENDTHRESHOLD

The time that needs to be waited after reaching the end of
connection. During this time peers have are supposed to

have sent all their events.

RT MAXWAITFORSLAVE

The maximum time Master waits for slave to contact in

synchronization.

RT NOTEHANGDELAY

The time that connection is considered real-time if no events

are received.

RT SLAVETIMEOUT

The time that slave waits for messages from Master in

synchronization.

5.3 Constants

The constants utilized in real-time connection protocol are presented in Table 19. Example

values used in the implementation are specified in Appendix 3.

61

Table 19: Constants

Constant

Description

RT DIFFSENDTHRESHOLD

The threshold value for correcting clock difference or

sending clock difference to peer.

RT LATESTSYNCPOINT

The point of performance after synchronization is not
done anymore. The time of the latest synchronization
point is calculated by multiplying the duration with
RT LATESTSYNCPOINT.

RT LATETHRESHOLD

The time that Note-on events are considered valid.

RT MAXSYNCHRONIZATION

The maximum number of synchronizations.

RT RTT COUNT

The times to monitor RTT before and after specifying

the start time.

RT RTT THRESHOLD

The maximum acceptable RTT time in synchronization.

RT SYNCTHRESHOLD

The maximum time peer clock is allowed to be ahead
without considering the previous synchronization failed

and requesting a new synchronization.

5.4 Operation

Operation is divided into three phases which are synchronization, improvisation and ending.

Prior to synchronization initializations must have been carried out by out-of-band means.

Initializations include connection creation and negotiations of used instruments and backing

track. The used backing track specifies the duration of connection.

In this section many messages, timers and constants are mentioned but not discussed in

detail. Refer to previous sections for definitions. Messages are defined in section 5.1. Timers

and example values are specified in section 5.2 whereas Constants and example values are

defined in section 5.3. Any other received data than the specified messages should be

discarded.

62

During improvisation sender sends timestamped events to receiver. Timestamps have two
purposes. Firstly, they indicate the original time of the event which is needed in storing the
playing. Secondly, timestamps are used in monitoring networking latency. For the second
purpose the clock difference of peers is important information. Although the devices are

synchronized it can not be assumed that the clocks are perfectly synchronized.

Several variables are needed. Required variables are presented in Table 20. Other variables

may also be needed depending on implementation.

Table 20: Required variables

Variable Purpose

Diff To measure the current clock difference of peer. Only peer ahead difference
is measured because it can be distinguished from the network latency. If
clock difference has changed more than RT DIFFSENDTHRESHOLD from

the previous sent value it should be sent to peer as a ClockDiff message.

PeerDiff To calculate the network latency from timestamps and clock. The value is

updated whenever a ClockDiff message is received from peer.

PreviousDiff | To notice changes in clock difference. Used in comparison with Diff in
decision whether to send the difference to peer. The latest sent difference

should be stored in this variable.

RecvTime To monitor the data stream. The time of received message during

Improvisation is stored to this variable.

SyncFails To count the number of failed synchronizations.

Synchronization and Improvisation phases use messages of their own with the exception of
common Error message. Whenever Error is received communication should be ended and

the connection terminated.

63

5.4.1 Synchronization

Before actual improvisation devices need to synchronize to ensure that improvisation will
start at the same time on both devices. Synchronization is based on RTT measurements and
there are two roles: master and slave. Master measures RTT and if RTT is feasible (less than
RT RTT THRESHOLD) it should tell slave when to start. Start time is specified in
milliseconds from the current time. Slave should start when specified and master tries to
estimate the start time of slave. The starting time specified should be regarded as the actual
starting time. If starting the playback takes time due to implementation it should be taken

into account.

While waiting for the starting time master should measure RTT to make sure that it is still
feasible. If RTT is more than RT RTT THRESHOLD master should cancel the
improvisation by sending Error message. A successful synchronization procedure is

presented in Figure 18.

The roles for synchronization are selected as follows. For the first synchronization the roles
are selected by out-of-band means. In later synchronizations the peer that requested

synchronization is master and the other is slave.

It is possible that synchronization fails. Whenever a synchronization fails the value of
SyncFails should be incremented. Slave may fail to send a proper message or it may take too
long. If improper messages are received synchronization should be considered failed.
Synchronization should be tried again with the same roles if it fails. During the whole
connection synchronization should be tried at least RT MAXSYNCHRONIZATION times if
synchronizations keep failing. [f RT MAXSYNCHRONIZATION is reached Error message

should be sent, communication ended and connection closed.

64

Slave Master

f

|

l[! 1: Synclnit
|
oo

loop 2: SyncRTT - Master measures RTT for a
configurable number of
3: SyncRTTreply times,
___________________________________ =) ———
RTT was found acceptable. Limit is configurable and not specified in the
protocol. Improvisation should be aborted if RTT is not acceptable.
Master tells slave when to
> 4 Synestatt] start in milliseconds relative
5: SyncStartOK to present time.
___________________________________)
L‘g% 6: SyncRTT Master measures RTT for a
7 SyncRTTraply configurable number of
- =) - - - -|times,
RTT was found acceptable. Improvisation should start after the N
relative time specified in SyncStart message. Master also waits for the
measured RTT of SyncStart and SyncStartOK messages.

_b 8: Timeout of start timer 8: Timeout of start timer F

Improvisation started synchronously. H

Figure 18: Sequence diagram of synchronization

The state machine of master node in synchronization is presented in Figure 19. In the figure
states and messages are explained. For better readability all timeouts are not included. If no
message is received in RT MAXWAITFORSLAVE the synchronization should be

considered failed and synchronization procedure started again from the beginning.

In Count state Master approximates the starting time of slave by adding half of the RTT of
SyncStart and SyncStartOK messages to count time. If any other message is received it
should be ignored and synchronization considered failed. The synchronization procedure,

however, does not need to be started again.

65

Syncinit / SyncRTT
SyncRTTreply / SyncRTT

SyncRTTreply / SyncStart

SyncStartOK / SyncRTT

SyncRTTreply / SyncRTT W

—=0

SyncRTTreply /

W

Timeout of start timer /

Figure 19: State machine of master node in synchronization

The state machine of slave node in synchronization is presented in Figure 20. Similarly to
state machine of master node all timeouts are not presented. If no message is received in
RT SLAVETIMEOUT the synchronization should be considered failed and started again
from the beginning.

66

Messages: N

Syncinit - Slave contacts master
SyncRTT - Master requests slave to
send a message for RTT measurement
SyncRTTreply - Slave responds to SyncRTT
SyncStart - Master tells Slave a relative time
States: in milliseconds for starting improvisation
WaitForStart - Slave responds to SyncStartOK - Acknowledgement for SyncStart
SyncRTT messages : : :
Count - Slave waits for time to start All inputs are received from Master except Timeout
and responds to SyncRTT of start timer which is an internal input.
messages
. All outputs are sent to Master.
[Synclnit

SyncRTT / SyncRTTreply

N
—

SyncRTT / SyncRTTreply P SyncStart [SyncStartOK

Count

Timeout of start timer /

Figure 20: State machine of slave node in synchronization

If any other data than the messages specified for synchronization are received the data should
be discarded and the synchronization considered failed. Any other received message should
be ignored and synchronization considered failed. The synchronization procedure, however,

does not need to be started again.

Synchronization should also be considered failed if desired precision is not achieved. Clock

differences are monitored in Improvisation phase (see the next section).

5.4.2 Improvisation

During improvisation Note-on and Note-off events are sent according to playing of users. In
one-way only one device sends. In two-way both devices send. Events should be sent
immediately when asked to be sent to avoid any excess delays. EmptyEvents are needed for
discovery of any possible network problems, such as temporary latency. EmptyEvents
should be sent periodically after RT EMPTY INTERVAL of previous sent event. All sent

and received Note-on and Note-off events should be stored for later editing and listening.

67

Peers need to have a clock. Sender needs it for timestamping events. Sent timestamps should
always be the current clock value. Receiver needs the clock for discovery of networking
latency and synchronization issues. The clock should be started from 0 immediately after

synchronization has finished. Precision of one microsecond is preferred but not required.
Six different messages are used during improvisation. The reaction to each message is

different. The reactions to different received messages are presented in Table 21. Any

message specifies a common reaction and is not a message of its own.

Table 21: Reactions to received messages

Received message | Reaction

Any message The local clock time of receiving should be stored. This makes

monitoring the stream possible.

Note-on The receiving time should be compared to the sum of timestamp of the
received message, PeerDiff variable and RT LATETHRESHOLD. If

receiving time is smaller or equal the event should be passed to virtual

instrument.

Note-off The event should be passed to virtual instrument.

EmptyEvent No need to do anything message specific.

Resync A new synchronization should be done. Receiving peer is slave in
synchronization.

ClockDiff PeerDiff variable should be updated according to the value in the

received message.

Error Communication should be ended and the connection terminated.

Receiver should monitor the connection (see Figure 21). It should store the receiving time of
last received event. If receiver does not receive any events in RT NOTEHANGDELAY it
should assume that there is a problem in communications and should turn all playing notes

off to avoid stuck notes. If receiver does not receive any events in RT DELAYQUIT an error

68

message should be sent and connection closed, In one-way communication it is not possible

to send an error message to peer.

In all figures of this section event is either a Note-on, a Note-off or an EmptyEvent. The

actual type is not specified when the type does not make a difference.

Sender Receiver
T
| 1:event
| 2: Nothing received in RT_NOTEHANGDELAY
| 3: event
All playing notes of Sender should be turned off by
: svent passing fitting Note-off events to virtual instrument.
1|_ 6: event . . .
; | 3: Nothing received in RT_DELAYQUIT
u
T:Error :
:

Figure 21: Monitoring communication errors

Receiver should pass all received Note-off events to a virtual instrument. Note-on events that
have an earlier timestamp than current time plus PeerDiff plus RT LATETHRESHOLD
should be passed to a virtual instrument (see Pseudo code 1). Note that all values should be

converted to the same time unit. Timestamp is sent as nanoseconds and clock difference in

milliseconds.

Pseudo code 1:
if clock <= timestamp + PeerDiff + RT LATETHRESHOLD then
pass Note-on to virtual instrument

else

do not pass Note-on to virtual instrument

Resynchronization should be requested if it is apparent that peers are not synchronized well

69

enough and it is not possible to change the clock time. Synchronization problems can be
discovered by comparing the timestamps of received events and the current clock time. If the
timestamp value is ahead more than RT _SYNCTHRESHOLD the previous synchronization
should be considered failed, the value of SyncFails incremented and a new synchronization
requested with a Resync message (see Figure 22). After synchronization the improvisation

should be started from the beginning.

Sender Receiver

[[
| 1: event |

gl

Diff is updated. In this case It is greater than Iﬁ

RT_SYMCTHRESHOLD.

1.1: Resync

Figure 22: Requesting a new synchronization

If the timestamp value of a received message is ahead less than RT SYNCTHRESHOLD the
clock time should be changed to the timestamp value. If possible the backing track should be
seeked to the timestamp value. If seeking is not possible the difference of the received
timestamp and the clock should be stored to the Diff variable. When a new value for Diff is
calculated it should be compared to PreviousDiff. If the absolute difference of these variables
is more than RT DIFFSENDTHRESHOLD is should be sent to peer as a ClockDiff message
(see Figure 23). The sent value should be stored to PreviousDiff variable.

In one way communication the discovery of synchronization issues is not always possible. It
is impossible to distinguish clock differences from network delay when the clock of receiver

is ahead.

A new synchronization should not be requested after the time of RT LATESTSYNCPOINT.
If a Resync message is received after the time of RT LATESTSYNCPOINT an error

message should be sent and connection closed.

70

Sender Receiver

| 1: event

Diff is updated. In this case it is less than
RT_SYMNCTHRESHOLD but the absolute difference of
new Diff and PreviousDiff is greater than
RT_DIFFSENDTHRESHOLD,

1.1: ClockDiff
<
[

Figure 23: Sending clock difference to peer

5.4.3 Ending

After pair-improvisation is over due to finished duration or an error sender should stop
sending events. To indicate finishing sender should send one Empty event with a greater
timestamp than the duration of improvisation. When all events have been received receiver
may close connection. Finally all playing notes of sender should be switched off by receiver
with Note-off events. In one-way communication sender should wait for

RT _ENDTHRESHOLD after finishing the improvisation.

5.5 Discussion

Timeout and constants values were not specified in this protocol. They have to be tailored for
each scenario. Example values were given to illustrate the magnitude of suitable values.
Future work of this thesis includes finding out if there are values that perform better than
others. It would also be important to study what values work in what kind of situations.
Evaluations with actual users would provide important information about the values for

timers and constants.
Fixed length packets waste some bandwidth but make implementation easier. Due to lower

layer protocols the excess overhead is not significant, e.g Internet Protocol (IP) version 4

header is at least 20 bytes long [25] and there are more headers on other layers.

71

Resynchronization is not possible in one-way communication. It is possible to implement
two-way communication with only empty events in one direction if possibility to discover

synchronization issues and resynchronization are needed.

72

6 IMPLEMENTATION

In this chapter the implementation of real-time pair improvisation in JamMo is considered.
Source code of the implementation is released under GPL version 2. It is available in a fork

of JamMo at Gitorious [21].

Real-time pair improvisation required implementation of three new components (see Figure
24). JammoCollaborationRTpairlmprovisation component is a GObject class which controls
the used components in pair improvisation. JammoCollaborationGameSelection is a simple
menu for creating and joining pair improvisations. It consists of a C code file and a
JavaScript Object Notation (JSON) file that defines the user interface.

Gems_rt communication implements the communication protocol presented in the previous

chapter.
=<component =z gl <<component=z {l
CHUM GEMS
=<component=z g] <<component== gl
JammoCollaborationRTpairlmprovisation —| gems_rt_communication
------- >
==component==> @
JammoCollaborationGameSelection

Figure 24: Implemented components

The structure of the chapter is the following. Firstly, the components used in real-time pair
improvisation are presented. Secondly, the implemented components are described. Thirdly,
the performance of the implementation is considered. Finally, the implementation is

discussed.

6.1 Used components

Real-time pair improvisation used many other components in addition to implemented

73

components (see Figure 25). The used components include musical components, GUI and
the main networking components of JamMo. MEAM components were required for audio
production. CHUM components are related to local application logic and Ul. GEMS
components were utilized in creating and joining a group, creating the dedicated PeerHood
connection and initializations. To keep Figure 25 simple relationships between used
components are not visible. The purpose is to illustrate what components are used in the
implementation. White components were created for pair improvisation and dark gray

components were modified.

<<component== El
MEAM
<<component=:> El
JammoBackingTrack
/ /]
<<component=:=
JammoSequencer <<component== El
JammoMidi
| 1
A [
|
1
<<component=>> El
CHUM
<<component== E <<=component>> El
JammoCollaborationRTpairlmprovisation GEMS
— =~
<<component>= g
gems_rt_communication
=<=component>> gl
JammoCollaboration
GameSelection <<=component=:=
\ groupmanager
<<component== El
JammoMidiTrackView
<<=component==
/ y T > collaboration El
<<component== El
JammoTrackView

Figure 25: Used components

The used CHUM components consist of JammoMiditrackView, JammolnstrumentGUI and
JammoTrackView. JammoMidiTrackView is an abstraction of a virtual instrument track
controlling a GUI element and a musical component. It is derived from JammoTrackView
which is also needed because base class functionality is used. Track views are required by
JammolnstrumentGUI which is the GUI for playing a virtual instrument. Depending on the

used instrument JammolnstrumentGUI shows a piano keyboard or drum pads. Some

74

modifications were needed in JammolnstrumentGUI. Many buttons that normally are used

for changing views, e.g. to MIDI editor, were disabled in pair improvisation mode.

MEAM components consists of JammoSequencer, JammolnstrumentTrack,
JammoBackingTrack and JammoMidi. JammoSequencer controls all the tracks.
JammolnstrumentTrack controls a virtual instrument. JammoBackingTrack plays the
selected backing track. JammoMidi contains a C language structure representing an event

and functions for using lists of events.

Slight modifications were also needed to a MEAM component. A callback system was added
to JammolnstrumentTrack which allows reporting of JammoMidi events to
JammoCollaborationRTpairlmprovisation. These events are then stored to a list for file
creation and sent to peer. Direct function calls to CHUM were not available because MEAM

can not see CHUM component.

GEMS components consist of groupmanager, collaboration and communication.
Groupmanager is responsible for creating and joining groups which are needed in all
collaboration games in JamMo. Collaboration handles messages and callbacks needed in
collaboration games. Communication is responsible for creating connections between the
devices. The functionality to create a dedicated connection for real-time data was added to it.
When a group for real-time pair improvisation has been created both devices try to create a
new PeerHood connection to each other utilizing a timed function. Before each new
connection attempt it is checked if a connection initiated by peer already exists. This way

creating multiple connections is avoided.

Initial information needed in pair improvisation (see Requirement 6) were transferred in a
normal GEMS message called Song Info prior to creating a dedicated connection. These
initializations included the types of instruments and the location of the backing track. The
instruments were specified using the same integer values as in MEAM. Backing track was
specified with the relative location of the file to the audio folder. Thus, it is required to have
the same data files available which was the situation during this thesis. Data files are

downloaded during the installation of JamMo and different versions refuse to communicate.

75

Moreover, it was not possible to create new backing tracks in JamMo yet. The format for the

Song Info message was not final because it was not specified by the time of implementation.

During improvisation the playing of a child is transferred to peer as single events. In the
following explanation devices are called A and B. A child starts pressing a key of the
keyboard on A (see Figure 26). JammolnstrumentGUI (GUI in Figure 27) registers the
pressing and informs JammolnstrumentTrack (InstrTrack) of it. JammolnstrumentTrack
passes a Note-on event to JammoCollaborationRTpairlmprovisation (RTpairlmpro). Next,
the event is passed to gems_rt communication (gems rt com) which sends the event to B
over a network connection. Gems_rt_communication component receives the event from A
and passes the event to JammoCollaborationRTpairlmprovisation which in turn passes it to
JammolnstrumentTrack. Finally, the event is passed to a virtual instrument (Instr) for
playback. This sequence is illustrated in Figure 27. On one device events are passed from
one software component to another using function calls. In addition to sending an event to B
the sound is also played on A which is omitted from Figure 27 for readability. Note-off

events are transferred similarly when a key is released.

&

Figure 26: Playing a sound in improvisation

76

Gul InstrTrack | RTpairlmpro | gems_rt_com gems_rt_com | RTpairlmpro | InstrTrack Instr

Device A Iﬁ Device B I'_H
|
I

R

Figure 27: Transferring events in the implementation

6.2 Implemented components

Real-time pair improvisation could not use normal communication provided by GEMS. By
default GEMS uses encryption to protect the privacy of users which causes communication
and processing overhead. The data transferred during pair improvisation does not contain
personal information and transferring it without encryption was considered suitable.
Gems_rt communication uses a dedicated PeerHood connection. In addition to avoiding
communication and processing overhead also message buffering in JamMo was avoided by a

dedicated connection.

Gems_rt communication utilizes callback functions for communication with
JammoCollaborationRTpairlmprovisation because GEMS component can not see CHUM.
Additionally, the callback structure makes communications component re-usable because it
does not need to be aware of the component that is using it. The callbacks are registered

using C language function pointers and consist of information of the data stream and

77

received events. Messaging system of GObject could not be used as GEMS components are

procedural C code. The API of gems_rt communication is presented in Table 22.

Table 22: Gems_rt_communication API

Function name Parameters Description
gems_rt communication init | Peer user id Used in initializing sending only.
_send_only Get time function

Stream info function
Duration

Master or slave

gems_rt communication_init | Peer user id Used in initializing receiving only.
_recv_only Get time function
Stream info function
Duration

Master or slave

Event callback
gems_rt_communication_init |Peer user id Used in initializing sending and
_send and recv Get time function | receiving.

Stream info function
Duration

Master or slave

Event callback
gems_rt communication_sen |Peer user id Used in sending an event to peer.
d event Event type
Note
Timestamp
gems_rt_communication_end | Peer user id Used in ending communication before
duration is reached.
gems_rt communication_set | Peer user id Used in setting duration for the
duration Duration communication.

78

In gems rt communication API peer user id is used in differentiating connections.
Simultaneous connections to different peers can exist but only one connection with a
particular peer is allowed. Get time function is called whenever the current time of
improvisation is needed. Stream info function is called when
JammoCollaborationRTpairlmprovisation needs to be notified of changes in connection,
such as starting playback or turning all events off due to problems in communication. Event

callback function is called when an event is received.

Gems_rt communication uses g timeout functions extensively. Creating dedicated
PeerHood connections, receiving events, sending EmptyEvents and starting synchronizations

are timed with g_timeout.

The callback functions presented in Table 22 are described in Table 23. Game object is the
JammoCollaborationRTpairlmprovisation object that uses the connection. The object is
always given as a parameter when a method is called from a GObject. The Game object is
stored as a GObject instead of JammoCollaborationRTpairlmprovisation because GEMS

components can not see JammoCollaborationRTpairlmprovisation which is located in

CHUM.

Table 23: Callback functions

Function Parameters Description

get time func Game object Used in querying the time from the game

object. The function returns the current time.

stream_info func | Game object Used in reporting incidents during real-time
Type communication. Type specifies the incident.

event callback Game object Used in informing of a received control
Note event. Received on time or not is used in
Event type decision whether to play a sound or not
Timestamp when a Note-on event is received.

Received on time or not

79

The possible types for stream_info func consist of the incidents presented in Table 24. The

types are defined in gems rt communication as numeric values. Event types of

event_callback consist of Note-on and Note-off and are defined in JammoMidi component in

MEAM. Events received from peer are stored to a list during improvisation for later use.

Also the events from local user are stored to a list.

Table 24: Stream info types

Type

Description

SYNCHRONIZATION_FAILED

Synchronization has failed for the maximum number of

times and improvisation should not be continued.

SYNCHRONIZATION DONE

Synchronization is successfully done and playback

should be started. Peers should start sending events to

each other.
ERROR An unrecoverable error has been encountered in
communications. Improvisation should be ended.
FINISHED Connection has been finished successfully.
GOT_SYNCHRONIZATION RE |Peer requested synchronization. Playback should be
QUEST stopped and a new synchronization waited.

REQUESTED SYNCHRONIZAT
ION

A new synchronization has been requested due to
problems in communications. Playback should be

stopped and a new synchronization waited.

TIMEOUT

There has been temporary problems in

communications. All playing notes are turned off to

avoid hanging notes.

CONNECTION_LOST

Connection has been lost completely. Improvisation

should be ended.

JammoCollaborationRTpairImprovisation implements the local application logic in real-time

pair improvisation. It initiates gems rt communication, controls musical components during

improvisation and stores improvisation after it has finished. Real-time pair improvisation can

80

be initiated by creating a new real-time pair improvisation with
jammo_collaboration_rtpair new function and by calling jammo_collaboration rtpair_start.
When jammo_collaboration rtpair_start is called a group is created or joined depending on

parameters. Jammo_collaboration_rt start requires parameters as follows:

* A pointer to real-time pair improvisation object
* Whether a new game should be created or an existing game joined
* Group id if a group is joined

* Group owner id if a group is joined
JammoCollaborationRTpairlmprovisation has several states which are presented in Table 25.

States are changed when stream information function is called by gems rt communication

(see Table 26) or the used JammoSequencer stops (see Table 27).

Table 25: States of JammoCollaborationR Tpairlmprovisation

State Description

RTPAIRSTATE INIT Waiting for starting.

RTPAIRSTATE _STARTED Improvising with peer.

RTPAIRSTATE FINISHED Improvisation has finished. Try to store the
improvisation.

RTPAIRSTATE GENERATING MIX | Storing improvisation as audio and JammoMidi
files.

RTPAIRSTATE ERROR Unrecoverable error encountered. Improvisation will
be ended.

When gems rt communication calls stream information function the state of
JammoCollaborationRTpairlmprovisation is typically changed to another state regardless of
the current state. RT COMMUNICATION ERROR and
RT COMMUNICATION CONNECTION LOST are exceptions. They are only taken into
account in RTPAIRSTATE INIT and RTPAIRSTATE STARTED states. However, this is

81

trivial as communications are not utilized in later states.

Table 26: Reactions to stream information types

Stream information type Reaction

SYNCHRONIZATION FAILED |Change state to RTPAIRSTATE ERROR. Stop

sequencer.

SYNCHRONIZATION DONE |Change state to RTPAIRSTATE STARTED. Start

sequencer.

ERROR If improvisation has been long enough to be saved
change to state RTPAIRSTATE FINISHED. Otherwise
change state to RTPAIRSTATE ERROR. Stop

seéquencer.

FINISHED Change state to RTPAIRSTATE FINISHED and stop

sequencer.

GOT_SYNCHRONIZATION_RE |Change state to RTPAIRSTATE INIT, delete stored

QUEST control event lists and stop sequencer.

REQUESTED SYNCHRONIZA |Change state to RTPAIRSTATE INIT, delete stored

TION control event lists and stop sequencer.
TIMEOUT Turn all playing notes off.
CONNECTION_LOST If improvisation has been long enough to be saved

change to state RTPAIRSTATE FINISHED. Otherwise
change state to RTPAIRSTATE ERROR. Stop

sequencer.

Based on stream information sequencer is stopped in many situations. It should be noted that
when sequencer is stopped further state changes may take place. This makes implementation
simpler and more robust. Storing improvisation is initiated only when sequencer has stopped
and the state is RTPAIRSTATE FINISHED although sequencer may have been stopped
because the backing track had ended or communication had ended. Furthermore, real-time

pair improvisation is finished only after sequencer has stopped in

82

RTPAIRSTATE GENERATING MIX or RTPAIRSTATE ERROR states.

Table 27: State changes when sequencer stops

Old state New state Description
RTPAIRSTATE INIT RTPAIRSTATE INIT Wait for sequencer to start.
RTPAIRSTATE STARTED |RTPAIRSTATE GENERA |The end of the backing track has
TING MIX been reached.
RTPAIRSTATE FINISHED | RTPAIRSTATE GENERA |Gems_rt communication has
TING_MIX informed that the communication
has been finished.
RTPAIRSTATE GENERAT |Final Improvisation has been stored.
ING MIX
RTPAIRSTATE ERROR Final Unrecoverable error has been
encountered.

When improvisation is stored the events from both peers are stored from lists to text files and
an audio file is generated. Event files enable later editing whereas audio file contains the
improvisation as it took place on the devices. In the audio file generation the events from
lists are used with their original timestamps. This way no network latency is present in the
generated audio file. During improvisation events from peer are played slightly later than on

the peers device.

JammoCollaborationGameSelection shows currently available real-time pair improvisation
groups. A group can be joined by touching the image of the group. It is also possible to create
a new group. When a new group is created or an existing group joined a
JammoCollaborationRTpair object is created. The available pair improvisation groups are
stored in a Ul container. The available groups are periodically queried from GEMS and

updated to the UI. The updating procedure is taken care of by a g_timeout function.

The statistics of implementation are presented in Table 28. The JSON file of

JammoCollaborationGameSelection is not included in Lines of code field.

83

Table 28: Statistic of implemented components

Component Lines of code Functions
JammoCollaborationRTpairlmprovisation | 831 36
gems_rt_communication 1250 19
JammoCollaborationGameSelection 154 4

Total 2235 59

6.3 Evaluation

Real-time pair improvisation worked on Nokia N900 although it was uncertain during earlier
stages of this thesis. The performance, however, was worse than on computers. Local latency
of 10 ms could not be achieved as from time to time latency was easy to notice by playing.
GStreamer and PulseAudio automatically used a longer latency. Manually adjusting the
latency was not considered feasible as there were already audible glitches in audio playback
from time to time. Using a lower latency would have degraded the audio quality more. The
perceived latency was suitable for playing slowly. Latency measurements were not
considered as musical components were not part of this thesis. During improvisation
approximately 80 % of processing power was used which explains the problems in audio
playback. When a background process required processor time all audio processing could not

be done in time.

The described performance was achieved when JamMo was started from the applications
menu or standard output and error streams were forwarded to the null device (/dev/null).
Otherwise JamMo printed a lot of log messages to terminal which caused audio playback and

synchronization problems.

The communications worked well on N900. The events from peer were received smoothly
and network latency could not be distinguished from the local latency. Network delay peaks

were rare and there were no long periods of missed notes. The implementation of pair

84

improvisation was considered successful.

The synchronization never succeeded when one N900 and one computer were used. This was
due to the processing the musical components required for starting playback. The problem
could have been overcome by estimating the required wall clock time for starting and
subtracting that from the waiting time in synchronization. The estimation was not
implemented due to lack of time. When similar hardware, e.g. two computers or two N900s,

were used the synchronization procedure succeeded.

On two computers pair improvisation worked well. Local latency and network latency were

acceptable and the communications robust.

6.4 Discussion

There were two possible ways to receive the JammoMidi events produced by the user. The
events could have been received from the JammolnstrumentTrack class of MEAM or the
instrument GUI of CHUM. Both options would have required additions to the components.
JammolnstrumentTrack was chosen for better re-usability. The implemented callback system
can be used on any JammolnstrumentTrack in any or even without a GUI view whereas

using GUI would have restricted receiving events to that view.

Gems_rt communication was not implemented as a GObject class for consistency. Other
GEMS components are procedural C code. Using GObject in gems rt communication
would have made signaling between objects easier and creating a callback system

unnecessary.

A few problems were encountered in the implementation. They were all related to
synchronization of devices. Firstly, synchronization could not be implemented as a polling
function run periodically in main loop of JamMo due to limited accuracy of timing. A
specified thread was not used as in the development of JamMo avoiding threads was
instructed. Instead, the synchronization procedure was implemented as two functions (one

for master, the other for slave) that do not allow any other functions of JamMo to be run

85

during synchronization. In other words Ul does not respond and normal GEMS

communication does not happen during synchronization.

Secondly, starting of playback takes a variable time caused by GStreamer pipeline
initialization. This issue makes synchronization less accurate. Thirdly, clock differences
could not be adjusted without a new synchronization. Seeking GStreamer pipelines with
virtual instrument was not fast, accurate and robust enough. Instead a new synchronization
was required. The outcome of the playback starting and seeking problems was a need to
synchronize devices a couple of times before the playback could start. Also means to
measure and inform peer of clock differences were added to the communication protocol

presented in chapter 5 due to seeking problems.

86

7 CONCLUSION

This thesis was done in UMSIC project. UMSIC aims at measuring and increasing social
inclusion of children by collaborative musical activities. In the project a musical software,
JamMo, is developed. JamMo is an open source musical collaboration and learning tool for
children aged 3 to 12. JamMo is targeted at Nokia N900 mobile phone but it can be run on

computers as well.

In this thesis a scenario of UMSIC was designed, implemented and integrated into JamMo.
In the scenario two children improvise with virtual instruments on N900 in real-time. Both
children can hear themselves, each other and a common backing track. Children use
headphones to minimize noise and to enable multiple simultaneous musical activities in a

classroom.

The use of headphones in the scenario required transferring musical information in real-time
over a wireless connection. The latency and bandwidth requirements for data transfer were

evaluated. Also other requirements were elicited for the scenario.

Research Question 1 was how should the devices communicate in real-time pair
improvisation scenario. Different transport layer protocols were measured and evaluated.
Link layer configurations and technologies were considered with performance issues in
mind. Different application layer communication paradigms were discussed. Transferring
different types of data was considered. The effects of decisions on one layer to the other

layers were considered.

It was found out that pair improvisation can be implemented in different ways. Constraints
on one layer can be taken into account on the other layers of TCP/IP protocol stack. Link
layer was seen as the most important layer in terms of performance. Both audio and control
data could be transferred over different transport layer protocols in real-time with suitable
link layer configurations. Reordering of packets on transport layer was seen as undesirable as

it can prevent application layer from receiving already transferred data on time. Control data

87

transfer had slightly lower latency and less possible problems, such as audible effects of
clock differences and lost audio segments due to low latency streaming. Control data
transfer, however, required reliability. A lost or out of order Note-off event may alter a
performance significantly. A communication protocol for control data transfer was designed

with the link and transport layer constraints in mind.

Many aspects of Research Question 1 were not considered in detail due to limited time. The
timers and constants in the communication protocol were not fine tuned based on
measurements. Furthermore, a protocol for audio transfer was not developed at all.
Moreover, WLAN was the only thoroughly considered link layer technology. Thus, Research

Question 1 was not specific enough to be fully answered in the scope of this thesis.

Research Question 2 was how to implement the real-time pair improvisation scenario in
JamMo. Real-time pair improvisation was implemented according to the module structure of
JamMo. Local application logic was encapsulated in a CHUM component whereas
communication was located in GEMS. The GEMS component used a dedicated PeerHood
connection for real-time data stream to avoid overhead as much as possible. It implemented
the communication protocol designed in this thesis. Available software libraries and
communication technologies were utilized in the implementation. Only slight changes and

additions were made to existing JamMo components.

The results of this thesis show that it is possible to develop real-time musical applications for
mobile devices. Moreover, wireless and mobile technologies are suitable for real-time
communication even with low latency requirements. The performance on Nokia N900 was
not as robust as desired. The performance issues were due to processing required by musical
components and limited resources of N900. However, it was shown that the implementation
described in chapter 6 was sufficient. On computers there were no signs of performance
problems. It can assumed that with future mobile devices the performance will be similar to

computers today.

Many things were left undone because of the limited scope of this thesis. The future work of

this thesis includes testing, measurements and extensions. The communication protocol

88

could be improved.

Field testing was not done. It is unknown whether children aged 7 to 12 find the achieved
performance satisfactory. Furthermore, it is unknown whether the performance achieved with
a low amount of network traffic can be achieved in the classroom when a wireless access
point gets more congested. Particularly if the required performance can not be achieved it
would be important to study the performance of dedicated ad hoc networks over one
centralized access point. Ad hoc WLAN networks could be created for pair improvisation on
a free WLAN channel. Afterwards the centralized access point could be rejoined for creating
and joining new improvisation sessions. Moreover, the effect of WLAN signal strength on

latency performance was not measured.

Pair improvisation could be extended in multiple ways. In this thesis only one type of two
instruments of JamMo were used. In addition to JammoSampler based instruments also
JammoSlider instruments could be added in pair improvisation. With JammoSlider one can
play various slides and slurs not typical to Western music. For JammoSlider support the
communication protocol would have to be extended because slider uses floating point

frequencies instead of integer note values.

User experience of pair improvisation could be improved. Menus for instrument and backing
track selection could be created. Furthermore, the avatar of peer could be shown while
improvising. While waiting for a peer to join a improvisation session a game could be played
or at least a waiting image could be shown. Also a picture could be shown during

synchronization.

Improvisation could be extended to group improvisation of three to four peers. For group
improvisation the communications should be considered once again. The performance of
multicast traffic should be compared with point-to-point connections. With multicast the

amount of traffic from peers to access point would be greatly reduced.

The constants and timers were left unspecified in the communication protocol. Performance

measurements should be conducted in order to find out guidelines for values. It would be

89

important to find out if some values perform better even when other variables are changed.
The protocol should be evaluated in other scenarios, such as using N900 as a controller only,

as well.

90

REFERENCES

[1] Allman, M., Paxson, V. Stevens. W. TCP Congestion Control. 1999.
http://www.ietf.org/rfc/rfc2581.txt. Retrieved 2010-10-27.
[2] Balakrishnan, H., Padmanabhan, V.N., Seshan, S., Katz, R.H. A comparison of

mechanisms for improving TCP performance over wireless links. 1997. IEEE/ACM
Transactions on Networking (TON), Volume 5 Issue 6.

[3] Bartolomeu, P.; Fonseca, J.; Rodrigues, P.; Girao, L. 2006. Evaluating the Timeliness of
Bluetooth ACL Connections for the Wireless Transmission of MIDI. ETFA '06. IEEE
Conference on Emerging Technologies and Factory Automation, 2006.

(4] BLUETOOTH SPECIFICATION Version 2.1 + EDR. 2007.
http://www.bluetooth.com/Specification%20Documents/Core_V21 EDR.zip. Retrieved
2010-10-19.

[5] BLUETOOTH SPECIFICATION Version 4.0. 2010.
http://www.bluetooth.com/Specification%20Documents/Core_V40.zip. Retrieved 2010-10-
21.

[6] Bluetooth specification documents.
http://www.bluetooth.com/English/Technology/Building/Pages/Specification.aspx. Retrieved
2010-10-21.

[7] Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M.Y., Wang, Ren. TCP Westwood: End-to-
End Congestion Control for Wired/Wireless Networks. 2002. Wireless Networks. Volume 8§,
Issue 5. September 2002.

[8] Classical MIDI Works, Wireless MIDIjet Pro International, Wireless MIDI system,

http://www.midiworks.ca/products/details/189/8/wireless-midi-products/wireless-midijet-

pro-international. Retrieved 2010-10-15.

[9] Clutter. Open source graphical user interface library. http://www.clutter-project.org/.
Retrieved 2010-10-21.

[10] CME WIDI-X8, Wireless MIDI system, http://www.cme-pro.com/en/product-
detail.php?product id=8. Retrieved 2010-10-15.

[11] Contreras, F. GStreamer, embedded and low latency are a bad combination. 2010.

http://felipec.wordpress.com/2010/10/07/gstreamer-embedded-and-low-latency-are-a-bad-

91

combination/. Retrieved 2010-10-21.

[12] Crow, B.P., Widjaja, 1., Kim, J.G., Sakai, P.T. IEEE 802.11 Wireless Local Area
Networks. 1997. IEEE Communications Magazine. September 2007.

[13] Floros, A., Avlonitis, M., Vlamos, P. 2007. Frequency-domain stochastic error
concealment for wireless audio applications reconstruction of lost packets in pcm stream.
MobiMedia '07: Proceedings of the 3rd international conference on Mobile multimedia
communications.

[14] Floyd, S., Henderson, T., A. Gurtov. The NewReno Modification to TCP's Fast
Recovery Algorithm. 2004. http://www.ietf.org/rfc/rfc3782.txt. Retrieved 2010-10-27.

[15] Gitorious project hosting service. JamMo Project. http:/gitorious.com/jammo.
Retrieved 2010-10-11.

[16] GLib Reference Manual. http://library.gnome.org/devel/glib/. Retrieved 2010-09-16.
[17] GObject Reference Manual. http://library.gnome.org/devel/gobject/. Retrieved 2010-09-
16.

[18] GStreamer. Open source multimedia framework. http://gstreamer.net/. Retrieved 2010-

09-16.

[19] Gummadi, R., Wetherall, D., Greenstein, B., Seshan, S. Understanding and Mitigating
the Impact of RF Interference on 802.11 Networks. 2007. SIGCOMM '07: Proceedings of
the 2007 conference on Applications, technologies, architectures, and protocols for computer
communications.

[20] Gynther, M. 2008. Avoimen ldhdekoodin musiikkiteknologia (Open Source Musical
Engineering). Bachelor's Thesis. = Lappeenranta University = of Technology.

https://oa.doria.fi/handle/10024/43266?1ocale=len&author=. Retrieved 2010-10-11.

[21] Gynther, M. 2010. Real-time Musical Pair Improvisation source code at Gitorious.
http://gitorious.org/~mgynther/jammo/mgynther-jammo/commits/rtpair. Retrieved 2010-11-
16.

[22] IEEE 802.11 WORKING GROUP PROJECT TIMELINES.
http://www.ieee802.org/11/Reports/802.11_Timelines.htm. Retrieved 2010-10-21.

[23] IEEE Std 802.11g-2003. http://standards.ieee.org/getieee802/download/802.11¢-
2003.pdf. Retrieved 2010-10-19.

[24] IEEE Std 802.11-2007. http://standards.ieee.org/getieee802/download/802.11-2007.pdf.
Retrieved 2010-11-09.

92

[25] Internet Protocol version 4. 1981. Information Sciences Institute, University of Southern
California. http:/www.ietf.org/rfc/rfc791.txt. Retrieved 2010-10-11.

[26] JACK Audio Connection Kit. http://jackaudio.org/. Retrieved 2010-10-15.

[27] Jasani, H., Alaraje, N. Evaluating the Performance of IEEE 802.11 Network using
RTS/CTS Mechanism. 2007. IEEE International Conference on Electro/Information
Technology, 2007.

[28] Jung, E., Vaidya, N.H. Improving IEEE 802.11 power saving mechanism. 2008.
Wireless Networks, Volume 14 Issue 3.

[29] Kenton MidiStream. Wireless MIDI system.
http://www.kentonuk.com/products/items/wireless/midistream.shtml. Retrieved 2010-10-15.

[30] Kohler, E., Handley, M., Floyd, S. Datagram Congestion Control Protocol (DCCP).
2006. http://www.ietf.org/rfc/rfc4340.txt. Retrieved 2010-10-29.

[31] Lazzaro, J., Wawrzynek, J. 2006. RTP Payload Format for MIDI. RFC 4695, IETF
Proposed Standard Protocol. http://www.rfc-editor.org/rfc/rfc4695.txt. Retrieved 2010-10-11.

[32] Lee, J., Rosenberg, C., Chong, E.K.P. Energy efficient schedulers in wireless networks:
design and optimization. 2006. Mobile Networks and Applications, Volume 11 Issue 3.

[33] Liang, S., Cheriton, D. TCP-RTM: Using TCP for Real Time Multimedia Applications.
2002. http://www-dsg.stanford.edu/sliang/rtm.pdf. Retrieved 2010-10-19.

[34] Limex Wireless 3. Wireless MIDI system. http:/www.limexmusic.com/cgi-

bin/content.pl?

g=bD11lbmdsaXNoJmlkPWFra29yZGVvbg§ion=produkte&eintragid=4531. Retrieved
2010-10-15.

[35] Maekawa, T., Nishimoto, K., Mase, K., Tadenuma, M. A wireless, networked musical
environment consisting of wearable MIDI instruments. 2003. 10th International Conference
on Telecommunications, 2003. ICT 2003.

[36] Mathis, M., Mahdavi, J., Floyd, S., Romanow, A. TCP Selective Acknowledgment
Options. 1996. http://www.ietf.org/rfc/rfc2018.txt. Retrieved 2010-10-27.

[37] MIDI Media Adaptation Layer for IEEE-1394. 2000. MMA/AMEI RP-027. Version 1.0.
http://www.midi.org/techspecs/rp27v10spec(1394).pdf. Retrieved 2010-10-15.

[38] MIDI Messages. http://www.midi.org/techspecs/midimessages.php. Retrieved 2010-10-
18.

[39] MIDIoverLAN CP. A commercial implementation of a custom MIDI over IP protocol.

93

http://www.musiclab.com/products/rpl_info.htm. Retrieved 2010-10-28.
[40] Mills, D., Delaware, U., Martin, J., Burbank, J., Kasch, W. Network Time Protocol
Version 4. 2010. http://www.ietf.org/rfc/rfc5905.txt. Retrieved 2010-10-20.

[41] NetJack, Realtime Audio Transport over a generic [P Network.
http://netjack.sourceforge.net/. Retrieved 2010-10-15.
[42] Nokia. Maemo website. N900. http://maemo.nokia.com/n900/. Retrieved 2010-10-07.

[43] Nokia. N900 specifications. http://maemo.nokia.com/n900/specifications/. Retrieved
2010-10-08.
[44] PEERHOOD SUBSYSTEM SPECIFICATION version 0.2. 2004.

https://www?2.it.lut.fi/svn/public/peerhood/trunk/PeerHood documentation/. Retrieved 2010-
10-21.

[45] Postel, J. Daytime Protocol. 1983. http://www.faqgs.org/rfcs/rfc867.html. Retrieved
2010-10-20.

[46] Postel, J., Harrenstien K. Time Protocol. 1983. http://www.fags.org/rfcs/rfc868.html.
Retrieved 2010-10-20.

[47] Rantalainen, A. 2010. JamMo website. http://jammo.garage.maemo.org/. Retrieved
2010-10-11.

[48] Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V. RTP: A Transport Protocol for
Real-Time Applications. 2003. http://www.ietf.org/rfc/rfc3550.txt. Retrieved 2010-10-28.
[49] Steward, R.Stream Control Transmission Protocol. 2007.
http://www.ietf.org/rfc/rfc4960.txt. Retrieved 2010-10-29.

[50] Tangle Toolkit. http://gitorious.org/tangle. Retrieved 2010-10-21.

[51] TCP Hybla Homepage. http://hybla.deis.unibo.it/. Retrieved 2010-11-22.

[52] Tolonen, T., Vilimdki, V., Karjalainen, M. Evaluation of Modern Sound Synthesis
Methods. 1998. Report no. 48 / Helsinki University of Technology, Department of Electrical
and Communications Engineering, Laboratory of Acoustics and Audio Signal Processing.
TKK, Otaniemi. http://www.acoustics.hut.fi/publications/reports/sound synth report.pdf.
Retrieved 2010-09-16.

[53] Usability of Music in Social Inclusion of Children. http://www.umsic.org/. Retrieved
2010-09-08.

[54] The Wi-Fi Alliance. Organization. http://www.wi-fi.org/organization.php. Retrieved
2010-10-21.

94

[55] The Wi-Fi Alliance. Wi-Fi CERTIFIEDTM n:Longer-Range, Faster-Throughput,
Multimedia-Grade Wi-Fi® Networks. 2009. http://www.wi-fi.org/register.php?file=wp Wi-

Fi CERTIFIED n Industry.pdf. Retrieved 2010-10-21.
[56] Williams, J. P., Chapman, R. O.: A musical duet performance MIDI over IP system.

2005. Journal of Computing Sciences in Colleges. Volume 21 Issue 2.
[57] Zimmermann, R., Chew, E., Ay, S. A., Pawar, M. 2008. Distributed musical
performances: Architecture and stream management. Transactions on Multimedia

Computing, Communications, and Applications (TOMCCAP). Volume 4 Issue 2.

95

APPENDIX 1: Byte level encoding of protocol messages

All messages are 10 bytes long. All integers are in network byte order. See sections
Operation and Abstract Messages in chapter 5 for the usage and purpose of messages.
Integers are signed unless explicitly specified unsigned. Error message is used in
Synchronization and Improvisation phases. All other messages are specific to

Synchronization or Improvisation.

Error

Message Type (1 byte) Padding (9 bytes)

5 (1 byte integer)

The following messages are used in Synchronization.

Synclnit

Message Type (1 byte) Padding (9 bytes)
10 (1 byte integer)

SyncRTT

Message Type (1 byte) Padding (9 bytes)

11 (1 byte integer)

(continued)

96

SyncRTTreply

(APPENDIX 1 continued)

Message Type (1 byte)

Padding (9 bytes)

12 (1 byte integer)

SyncStart

Message Type (1 byte)

Count Time (4 bytes)

Padding (5 bytes)

13 (1 byte integer)

4 byte integer

SyncStartOK

Message Type (1 byte)

Padding (9 bytes)

14 (1 byte integer)

SyncRTTaverage

Message Type (1 byte)

Average RTT (4 bytes)

Padding (5 bytes)

15 (1 byte integer)

4 byte integer

97

(continued)

(APPENDIX 1 continued)

The following messages are used in real-time connection after synchronization.

Note-on

Message Type (1 byte)

Note value (1 byte)

Timestamp (8 bytes)

0 (1 byte integer)

1 byte unsigned
Values 0-96.

integer.

8 byte unsigned integer.

Note-off
Message Type (1 byte) Note value (1 byte) Timestamp (8 bytes)
1 (1 byte integer) 1 byte wunsigned integer.| 8 byte unsigned integer.
Values 0-96.

Empty event

Message Type (1 byte)

Padding (1 byte)

Timestamp (8 bytes)

2 (1 byte integer)

8 byte unsigned integer.

Resync

Message Type (1 byte)

Padding (9 bytes)

3 (1 byte integer)

ClockDiff

Message Type (1 byte)

Padding (1 byte)

Clock Difterence (8 bytes)

4 (1 byte integer)

8 byte unsigned integer.

98

APPENDIX 2: Timer values in implementation

Timer Example Value
RT DELAYQUIT 5s

RT EMPTY INTERVAL 100 ms

RT _ENDTHRESHOLD 100 ms

RT MAXWAITFORSLAVE 2s

RT NOTEHANGDELAY 150 ms

RT SLAVETIMEOUT

23

99

APPENDIX 3: Constant values in implementation

Constant Example Value
RT DIFFSENDTHRESHOLD 5 ms

RT LATESTSYNCPOINT 0.5

RT LATETHRESHOLD 50 ms

RT MAXSYNCHRONIZATION 20

RT RTT COUNT 5

RT RTT THRESHOLD 50 ms

RT SYNCTHRESHOLD 40 ms

100

