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Local features are used in many computer vision tasks including visual object categoriza-
tion, content-based image retrieval and object recognition to mention a few. Local features
are points, blobs or regions in images that are extracted using a local feature detector. To
make use of extracted local features the localized interest points are described using a
local feature descriptor. A descriptor histogram vector is a compact representation of an
image and can be used for searching and matching images in databases. In this thesis the
performance of local feature detectors and descriptors is evaluated for object class detec-
tion task. Features are extracted from image samples belonging to several object classes.
Matching features are then searched using random image pairs of a same class. The goal
of this thesis is to find out what are the best detector and descriptor methods for such task
in terms of detector repeatability and descriptor matching rate.
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Paikallisia piirteitä käytetään monissa konenäön sovelluksissa, kuten visuaalisessa koh-
teiden luokittelussa, sisältöperusteisissa hakusovelluksissa ja kohteiden tunnistuksessa.
Paikalliset piirteet ovat tavallisesti pisteitä tai alueita, jotka irrotetaan kuvasta erityisen
piirrehavaitsijan avulla. Löydetyt piirteet kuvataan kuvaamisvektorilla. Tässä työssä ver-
tailtiin eri havaitsemis- ja kuvaamismenetelmien suorituskykyä kohteiden luokantunnis-
tustehtävässä. Testikuvien joukossa on yhteensä 250 satunnaisesti valittua näytekuvaparia
kymmenestä eri luokasta. Suorituskykytestit suoritettiin aina kuvaparin välillä. Havaitsi-
jatestiä varten kuvaparin molemmista näytekuvista irrotettiin piirteet, jonka jälkeen piir-
teitä kuvaavien ellipsien päällekkäisyyksiä tarkastelemalla saatiin laskettua vastaavien
piirteiden määrä. Vastaavasti kuvaamismenetelmien testissä kuvaparien väliltä etsittiin
kuvattujen piirteiden väliltä osumia. Työn tarkoituksena on selvittää, mikä havaitsemis-
ja kuvaamismenetelmistä on paras vaihtoehto kohteidenluokittelutehtävään.



4

CONTENTS

1 INTRODUCTION 7
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Local features in literature . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 Feature description and matching . . . . . . . . . . . . . . . . . 8

1.2 Applications of local features . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Wide-baseline stereo matching . . . . . . . . . . . . . . . . . . . 10
1.2.2 Visual object categorization . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Object recognition . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Goals and restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 LOCAL FEATURE DETECTORS 13
2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Properties of an ideal local feature . . . . . . . . . . . . . . . . . . . . . 13
2.3 Hessian detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Harris detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Harris-Laplace and Harris-Affine detectors . . . . . . . . . . . . . . . . . 19

2.5.1 Automatic scale selection . . . . . . . . . . . . . . . . . . . . . 19
2.5.2 Affine adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Hessian-Laplace and Hessian-Affine detectors . . . . . . . . . . . . . . . 22
2.7 Maximally Stable Extremal Regions (MSER) detector . . . . . . . . . . . 24
2.8 Speeded-Up Robust Features (SURF) detector . . . . . . . . . . . . . . . 24
2.9 Laplacian-of-Gaussian (LoG) and Difference-of-Gaussian (DoG) detectors 26

3 FEATURE DESCRIPTORS 29
3.1 Properties of ideal local feature descriptor . . . . . . . . . . . . . . . . . 29
3.2 Scale-Invariant Feature Transform (SIFT) . . . . . . . . . . . . . . . . . 29
3.3 Speeded Up Robust Features (SURF) . . . . . . . . . . . . . . . . . . . 31

4 DETECTOR AND DESCRIPTOR PERFORMANCE EVALUATION 33
4.1 Mikolajczyk’s test protocol for detectors . . . . . . . . . . . . . . . . . . 33

4.1.1 Ground truths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.2 Correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.3 Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.4 Testing procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Detector evaluation in this work . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 Image pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



5

4.2.2 Object outlines and landmarks . . . . . . . . . . . . . . . . . . . 36
4.2.3 Affine transform . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.4 Testing procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Mikolajczyk’s descriptor evaluation . . . . . . . . . . . . . . . . . . . . 39
4.4 Descriptor evaluation in this work . . . . . . . . . . . . . . . . . . . . . 40

4.4.1 The definition of match . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.2 Spatial validation of matches . . . . . . . . . . . . . . . . . . . . 41
4.4.3 Number of matches and coverage . . . . . . . . . . . . . . . . . 43
4.4.4 Testing procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 EXPERIMENTS 44
5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Setup for the local feature detector tests . . . . . . . . . . . . . . . . . . 44
5.3 Selected detector implementations . . . . . . . . . . . . . . . . . . . . . 45
5.4 Detector results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5 Setup for the local feature descriptor tests . . . . . . . . . . . . . . . . . 49
5.6 Selected descriptor implementations . . . . . . . . . . . . . . . . . . . . 49
5.7 Descriptor results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.8 Descriptor combinations . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.9 Verification of descriptor test results using a different testset . . . . . . . 53

6 DISCUSSION 56
6.1 Detector performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2 Descriptor performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7 CONCLUSIONS 58

REFERENCES 59

APPENDICES
Appendix 1: Caltech-101 example image pairs
Appendix 2: MinnaImageDatabase example image pairs
Appendix 3: Detector test results for individual classes

3.1 Repeatability rates for individual classes . . . . . . . . . . . . . . . . . . 66
3.2 Number of correspondences for individual classes . . . . . . . . . . . . . 68



6

ABBREVIATIONS AND SYMBOLS
CAD Computer-aided Design
DLT Direct Linear Transform
DoG Difference-of-Gaussian
LoG Laplacian-of-Gaussian
MSER Maximally Stable Extremal Regions
PCA Principal Component Analysis
SIFT Scale-Invariant Feature Transform
SURF Speeded Up Robust Features
VOC Visual Object Categorization

H Hessian matrix
I(x) Image intensity at location x = (x, y)

M Second-moment matrix
R Harris cornerness
s Euclidean distance
S Range of values
v Descriptor vector
v̂ Normalized descriptor vector
λ1, λ2 Eigenvalues in two dimensions



7

1 INTRODUCTION

The number of digital images in many kinds of archives starting from home computers is
rising rapidly. People carry cameras around constantly. The potential of consumer-grade
cameras has grown and almost everyone knows how to save and share photos over the
Internet. The wide use of digital cameras establishes a demand for intelligent systems to
organize, search and categorize images.

The development of software has made a lot of very sophisticated software available for
advanced users. The requirements of the used digital photograph editing and organizing
software are still going to be more demanding in the future. Increasing computational
resources will make more and more complex processing possible.

As a part of many successful image categorization and searching solutions, local features

are used. Local features can be thought as patterns in images that differ from the imme-
diate neighborhood. Such a pattern can be a corner, blob or region. To be able to exploit
found local features, the immediate neighborhoods need to be described in an efficient
and compact way to make it possible to match it to similar patterns in other images. A
local feature descriptor creates the description.

In this thesis main focus is on object recognition and categorization tasks, where there are
several sample images from a same class but not from a same scene. An evaluation and
comparison of the best available local feature detectors and descriptors was done using an
existing test protocol for detectors, and a novel test scheme for descriptors.

1.1 Background

Research on local features has been active over the last few decades. A quick overview of
the timeline is given for both local feature detecting and description methods.

1.1.1 Local features in literature

The use of local features has become more and more popular. Increased computational
power gives a lot more potential for applications analyzing and categorizing digital im-
ages. Despite the limitations of computational resources in the past decades, the history
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of local features is quite long. The theory used in current state-of-art methods was in-
troduced during the last few decades starting from 1970s, when the first actual detectors
were implemented. In this section, the major development steps of local feature detection
methods from the 1970s are discussed.

In the literature, as mentioned by Tuytelaars et al. [1], theory behind local feature detec-
tion goes back in 1954. Attneave [2] worked on the information theory and observed that
shape information is concentrated on points where object contour changes its direction
maximally. Early feature detection was concentrated on detecting simple objects in CAD
images or other very structured drawings rather than natural scenes [1]. Hessian detector,
proposed by Beaudet 1978 [3], is based on the Hessian matrix. It detects blobs and ridges
and works well with simple drawings with no background clutter. The Hessian detector
is discussed in more detail in Section 2.3.

Early work on the local features with natural scenes was done by Moravec from late
1970s [4]. Moravec’s interest operator is based on the intensity variation in the local
neighborhood of a pixel. An improved version, Harris corner detector, was proposed by
Harris and Stephens [5]. Since some of the currently used methods are based on Harris
corners, the method is described in Section 2.4.

Methods proposed in 1970s and 1980s were not scale-invariant in the sense that same
features would be extracted if an image is re-scaled. Several approaches were proposed,
e.g. using multi-scale variations of existing methods [6]. Important work on what current
scale-invariant methods are based was done in 1990s by Lindeberg [7, 8].

The methods compared in this thesis are published during the late 1990s and 2000s. The
detectors include Harris-Affine and Hessian-Affine from Mikolajczyk and Schmid [9],
Maximally stable extremal regions (MSER) from Matas et al. [10], Speeded-up robust

features (SURF) from Bay et al. [11], Difference-of-Gaussian (DoG) from Lowe [12] and
Laplacian-of-Gaussian (LoG) from Lindeberg [8].

1.1.2 Feature description and matching

The task of a local feature descriptor is to describe local image region such a way that it
can be distinguished from other regions and also matched effectively with those that are
similar enough. The descriptor is usually built after a feature has been detected using a
local feature detector. In the following, a rough overview is given over the development
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of feature description methods in the literature.

The history of local feature description can be thought to start from the 1970s. Find-
ing basic correspondences between two images has been studied since then. The use of
local features makes it computationally easier to find candidate matches instead of ex-
haustive search on the images. Later the performance has become even more important
when images are retrieved from large databases by finding images having similar set of
descriptors.

During the 1980s and 1990s, many methods based on shape, appearance, frequency con-
tent and intensity changes have been used to build local feature descriptors [13]. There are
other categories, but most of the descriptors can be put to at least one of these categories.
During the 1990s there was already some success in many applications of local features.

The most widely known descriptor today, Scale-invariant Feature Transform (SIFT), was
introduced by Lowe in 1999 [12]. Since then, many variations of SIFT have been pro-
posed, like PCA-SIFT [14] and GLOH [9]. The current descriptors, such as the SIFT,
have reached a level of maturity where the descriptor matching can be considered as a
standard tool, ready for use in many applications. Since the performance has been quite
good for a while now, interest has switched to developing faster methods for matching.
One of the recent descriptors is SURF [11]. SURF provides both a robust detector and
descriptor for very fast detection and description of features.

In this thesis, the selected set of descriptors contains SIFT from Lowe [12] and SURF
from Bay et al. [11]. The descriptors were selected based on their performance in earlier
studies and preliminary tests for this work. For SIFT there were two different implemen-
tations that were used with several detector implementations in the tests.

1.2 Applications of local features

In this thesis local feature extraction and description methods are evaluated and compared.
To give motivation for such comparison, some of the most important application areas for
local features are shortly introduced. The target is to shortly describe how local features
can be used in these application areas.
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1.2.1 Wide-baseline stereo matching

Wide-baseline matching is one of the natural applications for local features. It means
finding corresponding pixels from two images taken from a same scene but from different
viewpoints. The word baseline originally refers to the distance between the two cameras
in a stereo system, but later the expression “wide baseline” is used to denote situations
where significant change occurs between two images [15]. In wide-baseline matching,
several assumptions are often made [15]:

• A corresponding point for any of the original points may be anywhere in the other
image

• Neighborhoods cannot be directly compared around corresponding points since the
neighborhoods have been transformed by the camera movement

• The camera may be moved in any way, but the same objects must be visible in both
images and viewed from “the same side”

• Camera parameters including focal length and other internal parameters may have
changed

• Objects visible in one image may be occluded in the other.

The problem of finding corresponding features from two images of the same scene has
been studied at least since 1970s. Some success in image matching and registration was
achieved in the 1980s [16]. During the 1990s and 2000s the wide-baseline matching
using local features has become quite reliable as several robust local feature detectors and
descriptors exist. A matching example is given in Fig. 1. Circles in green are matched
features and circles in blue are features without matches. Pink lines are drawn between
two matching features. It is clearly visible that there are only a few “incorrect” matches
which are not real correspondences.

1.2.2 Visual object categorization

In visual object categorization (VOC), the problem is to find categories for a given im-
age set. If a set of classes is known beforehand, a system is supervised, and otherwise
unsupervised. Use of local features has become quite popular in such task.

Local feature descriptors are usually used to build a codebook by clustering descriptor
data. Descriptors are vectors, containing for example gradient histograms of local fea-
ture pixel neighborhoods. Clustering is statistical technique for grouping similar data.
Training data is used to group similar samples that form groups, clusters. When local
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(a)

(b)

Figure 1. (a) An image pair showing a few buildings from two different viewpoints and (b) SIFT
matches showing the corresponding features.

features are used in visual object categorization, usually descriptor vectors are compared
and descriptors that are similar enough, form clusters. Each cluster represents a word in
the codebook. After training the system, new images can be classified by comparing new
descriptors to words in the codebook. Images belonging to a same class often contain
quite similar set of codewords of the codebook and can thus be distinguished from the
other classes.

1.2.3 Object recognition

In an object recognition task there are usually several object classes and the task is to
find out to which class an object in a given image belongs to. Depending on the task,
one, several or no objects may appear in an image. Local features are used for many
kinds of object recognition tasks. How local features are used, is task-dependent. In the
following, two different kinds of object recognition system types are shortly described to
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show examples of using local features in object recognition.

One example is recognition of an object in two different scenes. An object may be
partially occluded in the other scene, and local features have obvious advantages over
methods based on appearance of a whole object. SIFT descriptors can be used and even
partially occluded objects can be recognized [12]. However, the use of local features
is feasible only when objects have at least some textures or other visual details to form
distinctive descriptions.

An other example of using local features is as intermediate level of representation in an
object class recognition task [17]. Based on the local features and their locations, very
compact representation of an image can be formed. The idea is that depending on the
approach, feature descriptions and locations are used to calculate a signature for a class.
Clustering can be used to form classes from training data. After training the system, new
samples can be classified using trained clusters.

1.3 Goals and restrictions

The main goal of this thesis is to identify the best methods for local feature detection and
matching. The problem in this thesis is defined as matching different objects belonging to
a same category, e.g. motorbikes, faces or stop signs. The task is a bit different than in the
case of wide-baseline stereo matching where there is a single object (scene) and multiple
view points. The main goal is to find out how well the current state-of-art detectors and
descriptors can perform in this kind of task.

1.4 Structure of the thesis

Section 1 is an introduction to use of local features in machine vision tasks. Sections 2 and
3 will give details about local feature detectors and descriptors. Performance evaluation
methods for detectors and descriptors are described in Section 4. The experiments that
were done are explained in Section 5. The results are discussed in Section 6 and finally a
short conclusion of the work done is given in Section 7.
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2 LOCAL FEATURE DETECTORS

When it comes to local features, local feature detectors do the part of the process where
local features are extracted. Many robust approaches for such task exist. First, a few
general remarks about feature detectors are given.

2.1 Terminology

Several established terms related to local features in the literature may be a bit misleading
[1]. The terms are widely used in the literature, but to avoid confusion they are now
clarified. First, the term local feature is used in this thesis. There are many other terms
used in the literature, e.g. interest points, interest regions and keypoints. The problem
is that some detectors detect corners, i.e. points and some others blobs or ridges, i.e.
regions. In that sense, both, interest region or interest point are incorrect for some of the
features. The term local feature covers all the features and is thus the correct one.

Feature detector is not actually a detector, since it does not have a priori knowledge on
the blobs, edges etc. in the image. The correct term would be extractor, but since detector

is widely used, it will be used in this thesis also.

Similar problem exist with terms “invariant” and “covariant”. If a function is invariant to
some transform, its value remains the same, i.e. it is invariant. If a function commutes
with a transform, its output will change as the transform imposes, so it is “covariant”.
Many local feature detectors are then actually covariant to scale and affine transforms,
not invariant. But as above, the term “invariant” is widely used and it is used in this thesis
as well.

2.2 Properties of an ideal local feature

It is not obvious what kind of local features are ideal. A way to detect semantically
meaningful parts sounds ideal, but it is not feasible in practice. It means that local features
are just patterns found in images. Tuytelaars and Mikolajczyk have listed six properties
of an ideal local feature scheme: [1]

• Repeatability: When features are extracted from two sample images, a high propor-
tion of the same features should be found in both images.
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• Distinctiveness: Patterns found should be informative, i.e. distinguishable from the
other local features when matched.

• Locality: The features should be local enough to be found from two images taken
from a different view point of the same scene. For such features deformations such
as noise, scale and rotation between the images can be handled.

• Quantity: Sufficiently large number of features is usually beneficial. Ideally a de-
tector has also a threshold value that makes it possible to detect more or less features
depending on the application. Still, of course, number of features should reflect the
amount of shapes and interesting areas in an image.

• Accuracy: The location of the detected features should be accurately placed in
image coordinates. The same also applies for scale and shape adaptation.

• Efficiency: The quicker the better. Important for time-critical applications.

2.3 Hessian detector

Hessian detector was proposed by Beaudet [3]. The detector is based on the Hessian

matrix H, i.e. partial second-order derivatives of the image intensity function I(x). The
terms Ixx, Ixy and Iyy denote the partial second-order derivatives of I(x) at location x =

(x, y):

H =

[
Ixx(x) Ixy(x)

Ixy(x) Iyy(x)

]
. (1)

In Fig. 2, the second derivatives and the determinant of the Hessian matrix are shown. In
Fig. 4, an example determinant image is shown. White spots in the image denote local
maxima of determinant response when IxxIyy − I2xy is calculated over the image. Finally
the local peaks higher than predefined threshold are selected. To make illustration clearer
the image has been filtered to remove lower maxima. Blobs detected by Hessian detector
are shown in Fig. 4.

2.4 Harris detector

Harris corner detector was proposed by Harris and Stephens [5]. The basic assumption
of Harris detector is that at a corner, the intensity of an image will change in multiple
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(a) (b)

(c) (d)

Figure 2. Components of the Hessian matrix. (a) Ixx (b) Iyy (c) Ixy (d) IxxIyy − I2xy.

directions. The detector is based on the second moment matrix M, that describes the
intensity change in the local neighborhood of a point x = (x, y):

M = g(σ)

[
I2x(x) IxIy(x)

IxIy(x) I2y (x)

]
(2)

with

Ix(x) =
∂

∂x
I(x) (3)

Iy(x) =
∂

∂y
I(x) (4)

g(σ) =
1

2πσ2
e−

x2+y2

2σ2 . (5)

First, derivatives Ix(x) and Ix(x) are computed in x and y directions. Then, Ix2, IxIy and
Iy

2 are calculated. Finally the derivatives are smoothed using Gaussian window of size
σ. Each step is illustrated in Fig. 3. Full derivation of the second moment matrix M, also
known as auto-correlation matrix, is shown in [18, 19]. It has several properties that make
finding corners efficient. The corners can be found in an image where the signal change
is significant in both directions, i.e. the points where both eigenvalues are large.

Locations of corners are quite simple to calculate after the second-moment matrix for a
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(a) (b)

(c) (d)

Figure 3. Components of the second moment matrix: (a) IxIx, (b) IyIy, (c) IxIy and (d) det(M)−
α trace2(M).

point has been composed. First, the 2× 2 second-moment matrix M can be written as:

M =

[
A C

C B

]
. (6)

Harris proposed the cornerness measure R, that describes the cornerness of the local
neighborhood of a point. R is computed using the trace and determinant of the matrix
M. In the following equations the calculation of cornerness based on the second moment
matrix is shown. The trace and the determinant of such matrix are straightforward to
calculate:

tr(M) = λ1 + λ2 = A+B (7)

det(M) = λ1λ2 = AB − C2. (8)

Cornerness can then be easily derived. Actually there is no need to calculate the eigenval-
ues λ1 and λ2 since:

R = det(M)− αtrace2(M) (9)

= λ1λ2 − α(λ1 + λ2)
2 (10)

= AB − C2 − α(A+B)2. (11)

A constant α is used for balancing the terms in the equation. Typical value for α is 0.04
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[1]. Cornerness measure R can be used to roughly classify the responses found (also
behavior of eigenvalues in such cases are denoted):

1. R ≈ 0 (λ1 ≈ λ2) : a flat region is found

2. R < 0 (λ1 � 0 ∨ λ2 � 0) : an edge is found

3. R > 0 (λ2 � 0 ∧ λ2 � 0) : a corner is found.

If only one of the eigenvalues is significantly higher than zero, an edge is found. A
corner is considered to be found only if both eigenvalues are significantly larger than
zero. Finally local maxima of R above a given threshold are considered as found Harris
corners. An example of the corners detected by Harris detector are shown in Fig. 5.
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Figure 4. Local features detected with Hessian detector.

Figure 5. Local features detected with Harris detector.
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2.5 Harris-Laplace and Harris-Affine detectors

With Harris corner detector, scale changes make detecting more difficult. If scale change
is known, detected corners can be scaled, but if the scale change is unknown, the only
option is to use multi-scale approach, where corners are detected in multiple scales. This
approach also has a disadvantage: it is not feasible to have ten times more features because
of the scale adaptation.

Another challenge is a viewpoint change. If images of the same scene are taken from
different viewpoints, neighborhood of a local feature changes. This Harris detector cannot
adapt to. To overcome these limitations, Harris-Laplace, scale invariant local feature
detector, and later Harris-Affine, a scale and affine invariant detector have been developed
by Mikolajczyk and Schmid [9].

2.5.1 Automatic scale selection

Scale invariant local features can be obtained by searching stable features in many scales,
by building a scale-space presentation of an image [20]. A scale-space presentation con-
tains a family of smoothed images with many different scales, σ. Different resolution
levels L are given by convolutions with the Gaussian kernel:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (12)

G(x, y, σ) =
1

2πσ2
e

−(x2+y2)

2σ2 (13)

where G(x, y, σ) is the Gaussian kernel in the scale σ and I represents the original image.
While the original scale being σ0, scales for various levels are obtained by:

σn = knσ0 (14)

where n is a scale level and k is the factor of scale change between two successive scales.
In the original version of Harris-Laplace detector, values for the initial scale σ0 and the
factor k between the scales, were set to 1.5 and 1.2, respectively. [21] The scale-space pre-
sentation can be used to find the characteristic scale for a local feature. The characteristic
scale is found in local maxima of F (x, sn) where F is the normalized Laplacian:

| LoG(x, σn) | = σn
2 | Lxx(x, σn) + Lyy(x, σn) |. (15)
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Since the response of a derivative of Gaussian decreases as the σ increases, to compensate
the weakening response, the derivatives are multiplied with σ. Since Laplacian operator
uses second derivatives, the normalization is done using σ2 as shown in Eq. 15. The full
description of the scale-adaptation is given in [8].

The same automatic scale-selection method is used for both Hessian- and Harris-based
scale-invariant and affine-invariant detectors. For demonstration, in Fig. 6, features de-
tected with Hessian-Laplace in two images at different scales. The same characteristic
scale is recognized for all features in the both images. The Hessian threshold is set to
4000 to give only the strongest responses, making the illustration clearer.

Figure 6. Hessian-Laplace features detected in two scales.

2.5.2 Affine adaptation

Extending scale-invariant detector to be affine-invariant makes it possible to detect the
same features when a picture of a same scene is taken from an arbitrary location. That
may introduce changes in the scale, orientation and shape of a local feature. An affine-
invariant detector is able to find the same features despite the affine transform.

Affine adaptation algorithm used by Mikolajczyk and Schmid contains several steps and
is based on properties of the second moment matrix and affine transform. The full descrip-
tion of the adaptation process is described in [22, 9]. In the following, the most important
steps are shown.
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The following description of the Harris-Affine procedure is directly from [1]:

1. Detect the initial region with the Harris-Laplace detector.

2. Estimate the affine shape with the second moment matrix.

3. Normalize the affine region to a circular one.

4. Re-detect the new location and scale in the normalized image.

5. Go to step 2 if the eigenvalues of the second moment matrix for the new point are
not equal.

The main goal of affine adaptation is to find regions from the images that are related
through an affine transform A. For a given point x, that is present in both images referred
as R and L, the relation is then

xR = AxL. (16)

To make it possible to find same structures invariant to the transform, a local feature
that is affine-invariant, must be normalized. The second moment matrices MR and ML

for two features representing the same local structure, found in two different images,
contain the shape information about the feature in two arbitrary positions. The normalized
features are identified by the both eigenvalues being equal, i.e. the ellipse is normalized
to a circle. The second moment matrix holds the shape information and the eigenvalue
equalization can be obtained by taking square root of the matrix: M1/2. Therefore, using
their properties, the relation can be written

MR
1/2xR = RML

1/2xL (17)

where R is the rotation between the two features. To obtain affine invariant points and
regions, an iterative algorithm is used. The iterative algorithm is used to find features
that have equal eigenvalues. The algorithm forms a shape for the local feature with equal
eigenvalues. In each step a new second moment matrix, that has more equal eigenvalues,
is calculated. Convergence criterion εC of the iterative algorithm is based on the isotropy

measure:

1−
λmin(µ)

λmax(µ)
< εC . (18)

The isotropy measure can have values in the range [0...1]. Value of 0 means that the
eigenvalues are equal, and the bigger the value goes, the bigger is the difference. Typical
allowed error used in the convergence criterion, is: εc = 0.05.

Illustration of normalizing ellipses is shown in Fig. 7. Both neighborhoods of the features,
xL and xR, shown in Figs. 7(a) and 7(c) are normalized using second moment matrices
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ML and MR:

xL −→M
(1/2)
L x′L (19)

xR −→M
(1/2)
R x′R. (20)

After normalization, skew and stretch are removed and there is just pure rotation R be-
tween the two normalized neighborhoods of features (Figs. 7(b) and 7(d)):

x′L −→ Rx′R. (21)

(a) (b)

(c) (d)

Figure 7. Harris-Affine features are normalized to circles. After normalization of ellipses (a) and
(c), shapes of the two features in (b) and (d) are similar.

2.6 Hessian-Laplace and Hessian-Affine detectors

Hessian-Laplace and Hessian-Affine use the same techniques as their Harris corner-based
counterparts, Harris-Laplace and Harris-Affine. The difference is that Hessian-detectors
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Figure 8. Local features detected with Harris-Affine detector.

are based on the Hessian matrix described in Section 2.3 instead of Harris corners. Blobs
detected using Hessian-Affine are shown in Fig. 9. It can be seen in Figs. 8 and 9 that in
practice many of the detected locations seem to be same for both detectors. Still, the both
methods have different definitions and usually the center points of detected features are
not exactly the same. Some parts in images may be formed such way that both Harris-
Affine and Hessian-Affine features are found from the same locations.

Figure 9. Local features detected with Hessian-Affine detector.
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2.7 Maximally Stable Extremal Regions (MSER) detector

Maximally Stable Extremal Regions, MSER, was proposed by Matas et al. [10]. The
algorithm finds areas where intensity change is minimal, i.e. areas that are constantly
brighter or darker than an outer boundary of a region. The idea of the algorithm is in
sequential thresholding the image with all possible values, i.e. S = {0, ..., 255} for 8-bit
gray-scale image. The maximally stable extremal regions stay spatially stable, i.e. shape
does not change.

The computational complexity of the original algorithm is O(n log(log(n))), i.e. almost
linear. A more efficient version with the worst-case O(n) is proposed by Nistér and
Stewénius [23].

Challenging part with MSER is potential complexity of found regions. Typically found
regions are converted to ellipses and information about the shape is lost. In Fig. 10 MSER
regions (a) and fitted ellipses (b) are shown. In the example pair it is clearly visible that
some of the regions can be represented correctly using ellipses and some not. However,
in the matching task the most important property is spatial stability of the fit, i.e. ellipse
description should be invariant to affine transformation.

(a) (b)

Figure 10. Local features detected with MSER. (a) The original MSER regions and (b) the fitted
ellipses.

2.8 Speeded-Up Robust Features (SURF) detector

Speeded-Up Robust Features have been proposed by Bay et al. [11]. It is intented to be
extremely fast but still not sacrifice detector or descriptor performance. Low computa-
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tional complexity is achieved by using integral images, introduced by Viola and Jones
[24]. They provide a way to calculate responses for box-type filters in constant time. Af-
ter building the structure in the beginning, response for any boxfilter of any size inside the
image can be built in constant time:∑

= A−B − C +D. (22)

An example image is shown in Fig. 11.

B

C

D

A

Figure 11. With integral images, only four operations are needed to calculate the sum of intensities
inside any rectangular area in the image.

The base technique for local feature detection in SURF is the Hessian matrix, shown in
Eq. 1. In the case of SURF the Hessian matrix is approximated roughly using simple box
filters of size 9× 9. The box filter approximations are shown in the right side of Fig. 12.
Responses similar to those shown in Fig. 2 are computed with:

det(Happrox) = DxxDyy − (wDxy)
2. (23)

Weight w is used for balancing the effect of the terms in the equation. In SURF, constant
w = 0.9 is used is used for all the scales [11].

-2

1

1

1

1-1

-1

Figure 12. From left to right: the discretized second-order gaussian derivatives Lyy and Lxy and
SURF approximations for Lyy and Lxy.

A scale-space representation is needed to detect features in various sizes. As with DoG,
the scale-space is divided to octaves. An octave is a set of images filtered with increasing
kernel size. In each octave, the filter is scaled up by the factor of 2. The fast filter response
calculation allows SURF to scale up the filters instead of down-scaling the image. The
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scales for first three octaves are shown in Fig. 13. Numbers in the boxes are filter sizes
used, i.e. for the first octave, fhe filter sizes are 9× 9, 15× 15, 21× 21 and 27× 27. The
filter size doubles on each octave (as shown in the x-axis), i.e. on the first octave the filter
sizes are increased by 6 in each step, in the second octave by 12 in each step and finally
in third octave by 24 in each step.

Finally local features are selected as local maxima in 3×3×3 neighborhood in the scale-
space. A fast method for non-maximum suppression proposed by Neubeck and Van Gool
is used to locate these extrema points [25].

O
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Scale1 2 4 8

9 15 21 27

15 27 39 51

27 51 75 99

Figure 13. The filter sizes of the first three SURF octaves. Each octave contains 4 filters with
various sizes. The form of the filters is square, i.e. filter size 15 means that filter size 15 × 15 is
used.

2.9 Laplacian-of-Gaussian (LoG) and Difference-of-Gaussian (DoG)
detectors

Laplacian-of-Gaussian proposed by Lindeberg [8] is based on the second derivatives of
the Gaussian. Difference-of-Gaussian provides a good approximation for Laplacian and
is more widely used because of its better computational performance [12]. The use of
the LoG or DoG approach eliminates the need of calculating the derivatives in x and y
directions [26]. Plots of both functions are shown in Fig. 14.

The first phase in Difference-of-Gaussian approach is to build a pyramid of filtered im-
ages for the scale-space analysis. The pyramid consists of octaves which are images
subsampled by the factor of 2. An octave consists of images convolved with the Gaussian
kernel using multiple increasing values of σ. The edges are then found in images formed
by subtracting the image convolved with (k − 1)σ from the images convolved with kσ.
DoG-pyramid is shown in Fig. 15. The approximation of Laplacian-of-Gaussian can be
written as

G(x, y, kσ)−G(x, y, σ) ≈ (k − 1)σ2∇2G (24)
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Figure 14. Difference-of-Gaussian can be used as an approximation of Laplacian-of-Gaussian.

where k =
√
2. Lindeberg has shown that the Laplacian must be normalized by the factor

σ2 to achieve true scale invariance [8]. An example image in two scales and a DoG image
are shown in Fig. 16.

The edges can be identified as local maxima in the scale-space. Layers of a scale-space
are illustrated in Fig. 15. Each pixel in each DoG-layer is compared to 9 surrounding
pixels on the layer above, 8 pixels on the same layer and 9 pixels on the layer below. If
the pixel has higher value than any of its neighbors, it is selected as a local maximum. The

Figure 15. The pyramid contains images smoothed by Gaussian with scale kσ. Each higher
octave contains smoothed images subsampled by the factor of 2. Difference-of-Gaussian images
are calculated from adjacent smoothed images.

Laplacian approximation used gives a strong response along the edges. In those locations
the local maxima may be weak because the intensity change occurs only in one direction.
For that reason, redundant responses must be eliminated to have feasible results. The
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elimination is based on the properties of the Hessian matrix H:

H =

[
Ixx(x) Ixy(x)

Ixy(x) Iyy(x)

]
(25)

and Harris cornerness measure R that was discussed in Section 2.4. For DoG, second
derivatives in H are approximated by calculating differences of sample points in the local
neighborhood of a maxima. The trace and the determinant for the H are the sum and the
product of the two eigenvalues. Both were also discussed earlier and are given in Eqs. 7
and 8.

As with the Harris detector, only the ratio of the two eigenvalues is needed. The relation
between the two eigenvalues λ1 and λ2 can the be written as λ1 = rλ2. Then,

Tr(H)2

Det(H)
=

(λ1 + λ2)
2

λ1λ2
=

(rλ2 + λ2)
2

rλ2
2 =

(r + 1)2

r
. (26)

Now the measurement (r + 1)2/r is at minimum when the eigenvalues are equal. There-
fore, the measure can be used to filter out local maxima with the change mostly occurring
in one direction. Eliminating the redundant local maxima is then straightforward:

Tr(H)2

Det(H)
<

(r + 1)2

r
. (27)

If the result is false, a maximum is discarded. With the measurement, Lowe reports that
value r = 10 was used for the maximum allowed ratio between the eigenvalues in the
original implementation [26].

(a) (b) (c)

Figure 16. (a) I(kσ), (b) I(σ) and (c) I(kσ)− I(σ).
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3 FEATURE DESCRIPTORS

Local feature detectors are used to find areas of interest in the images. A local feature
descriptor is used to build a description of a local feature.

3.1 Properties of ideal local feature descriptor

An ideal local feature descriptor has several properties:

• Distinctiveness: Low probability of mismatch

• Efficiency: Must be computationally efficient to calculate

• Invariance to common deformations: Matches should be found even if several of
the common deformations are present:

– image noise

– changes in illumination

– scale

– rotation

– skew

Although these are features of an ideal descriptor, the methods used in this comparison
fullfil these requirement quite well. In the context of object categorization, visual variation
of local features makes the task more challenging. The most challenging “deformation”
is visual variation of local features between image samples. Features in same spatial
locations vary in shape, color and size making the features look different.

3.2 Scale-Invariant Feature Transform (SIFT)

Scale-Invariant Feature Transform (SIFT) is a combination of a detector (DoG, discussed
in Section 2.9) and a descriptor, SIFT key. It is a robust descriptor that can provide highly
distinctive description of local features extracted using DoG or some other detector. In
the following, construction of SIFT descriptors is explained.

In this phase, local features are already detected using the DoG detector. When SIFT fea-
tures are detected, scale-space presentation is used to find local extrema, i.e. characteristic
scales for features. A detected feature belongs then to some level σ of the pyramid and to
a pixel location L(x, y, σ) of the scale-space.
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The gradient magnitude m(x, y) and orientation θ(x, y) are computed in every pixel lo-
cation L(x, y, σ) belonging to a selected neighborhood of a detected local feature. The
computation is made using simple pixel differences [26]:

m(x, y) =

√
(L (x+ 1, y)− L (x− 1, y))2 + (L (x, y + 1)− L (x, y − 1))2 (28)

θ(x, y) = tan−1
(
L (x, y + 1)− L (x, y − 1)

L (x+ 1, y)− L (x− 1, y)

)
. (29)

An orientation histogram containing 36 bins for a feature is formed to cover gradient di-
rections and magnitudes in sectors surrounding a feature. The whole 360 degrees around
a feature is covered, using 10 degrees for each bin. Gradient samples are weighted by
their distance using Gaussian-weighted circular window with σ = 1.5 and by their mag-
nitude. Each of the 36 bins contains a measurement of intensity change in one direction.
The highest of those measurements is selected as dominant orientation of the descriptor.
If other peaks with a value over 80% of the highest are found, they are considered as ad-
ditional descriptors and found local maxima are used as the dominant orientations of the
additional descriptors.

The descriptor construction is illustrated in Fig. 17. Arrows in the first part of the image
present the gradient magnitudes and orientations calculated earlier. They are later rotated
according to the dominant orientation. The circle around the local pixel neighborhood
illustrates the Gaussian weights that are applied to gradients to make the nearest gradients
the most significant. In the middle of the figure, a 2×2 SIFT descriptor is shown. Each of
the four cells contains accumulated gradients to 8 directions calculated from 4×4 sample
array. Although other sizes can be used, usually 4× 4 sample arrays are used with SIFT,
because they are reported to give the best results [26]. A final built SIFT descriptor is a
vector with 128 dimensions. All vector components are 8-bit unsigned integers, i.e. range
of values S = {0, ..., 255}.

Figure 17. Building a SIFT descriptor using gradients around a detected feature. First, gradients
are weighted using a Gaussian (the circle in the image). Then, in the middle, gradient orientations
in 4 × 4 grid are accumulated to form the descriptor. Finally a normalized histogram containing
the magnitudes to each direction in each cell can be computed.
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3.3 Speeded Up Robust Features (SURF)

Building a SURF descriptor is very fast as the feature extraction discussed in Section
2.8. Integral images are exploited also in descriptor building to calculate filter responses
very quickly. SURF descriptor is rotation-invariant. Invariance is achieved by finding
reproducible orientation for the local neighborhood of a feature. When the scale of a
detected feature is s, Haar wavelet responses for circular neighbordhood of size 6s are
calculated. Haar wavelets are simple filters shown in Fig. 18. After calculating the filter
responses, the local neighborhood is weighted with Gaussian, σ = 2, to make the nearest
intensity changes the most significant.

Figure 18. Haar-wavelets. Responses to Haar-wavelets are very efficient to calculate using inte-
gral images.

Wavelet responses are handled as points in space, as shown in Fig. 19. X- and Y-axes
represent response strengths in horizontal and vertical directions, respectively. A sliding
window of size π

3
(gray sector in the figure) is used around the feature surroundings to

calculate sum of horizontal and vertical response strengths. Sums of response strengths
are used to calculate a local orientation vector for each direction. The longest such vector
is finally selected to represent the dominant orientation of a descriptor.

dy

dx

Figure 19. Wavelet response strengths in horizontal and vertical directions are shown as dots
in space. Gaussian-weighted responses inside the sliding window are summed to form a local
orientation vector. The longest such vector (green arrow) is selected to represent the dominant
orientation.

Responses of Haar wavelets are used also in building the actual descriptor. First an area
around the keypoint (detected in scale s) of size 20s is selected. That region is split up
into 4 × 4 sub-regions. For each sub-region, Haar wavelet responses are calculated for
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5 × 5 blocks from a grid of sample points. In practice, however, to decrease compu-
tational complexity, the wavelet responses are calculated using the unrotated image and
then approximated for various descriptor orientations as needed.

All 16 sub-regions that form the whole region are shown in Fig. 20. First, as the circle in
the figure denotes, the responses around the keypoint are Gaussian-weighted (σ = 3.3s).
Each of these 16 sub-regions contain 2 × 2 smaller regions where response strengths are
summed. A feature vector v calculated from these response strength sums of sub-regions
is then:

v = (
∑

dx,
∑

dy,
∑
|dx|,

∑
|dy|). (30)

When the 16 vectors are combined, 16 × 4 = 64 dimensional vector is formed. By
definition, SURF sums are invariant to illumination changes. To be invariant to contrast
(scaling factor), a feature vector is finally turned into a unit vector, i.e. the vector is
divided by its length:

v̂ =
v

‖v‖
. (31)

dx

dy

Figure 20. A SURF descriptor is divided into 16 sub-regions that all contain 2×2 smaller regions.
Sums for these sub-regions (like detached square in the figure) are formed to build feature vector
v, as shown in Eq. 30.
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4 DETECTOR AND DESCRIPTOR PERFORMANCE
EVALUATION

Performance evaluation of local feature detectors and descriptors is a challenging task.
Mikolajczyk et al. have done studies on both detectors and descriptors [27, 13] and their
evaluation protocol for detectors was used for detector evaluation. For descriptor perfor-
mance, a novel test scheme was developed. In the following, Mikolajczyk’s approach is
explained and later differences to this work.

4.1 Mikolajczyk’s test protocol for detectors

For detector performance evaluation, a test protocol developed by Mikolajczyk et al. [27]
was used. In the original comparison, there were several images from a few scenes. Vari-
ous deformations were present in the images, such as changes in viewpoint angle, changes
in scale, blur, JPEG compression and changes in lighting conditions. The performance
evaluation in that case meant how well the same local features could be found in the
same spatial locations despite a deformation, i.e. how well the detectors can cope with
deformations that are often present in the real world images.

4.1.1 Ground truths

In Mikolajczyk’s test, a reference image is compared to several deformed images. There
is a known, pre-calculated affine homography between the images compare. Features of
each deformed test image are then projected to the reference image for comparison.

Examples of the test images are shown in Fig. 21. In these sample images, the deformation
between samples is rotation. In Fig. 21(a), there is a reference image. In Figs. 21(b) and
21(c) there are the first two images that features of the reference image are tested against.
In the original test various types of scenes were used. For rotation, scale change, view-
point change and blur tests two types of test scene images were used. One of the scenes
was structured and containing well-distinctive regions, as a graffiti shown in Fig. 21. The
other one contains finer texture-like structures, such as bricks on a wall or leaves in a tree.
All the test images are available in the Internet [28].
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Figure 21. Examples of viewpoint change test images used in [13].

4.1.2 Correspondences

When features from two images are compared, there are two groups of ellipses in various
sizes and poses. An exhaustive search is done to find overlapping ellipses. In this work, as
in Mikolajczyk’s original tests, 40% overlap error was allowed. In overlap measurement,
the sizes of ellipses have an effect on results. The bigger the ellipses are the smaller is
the overlap error in the measurement. For that reason, all the ellipses are normalized to
a radius of 30 pixels before calculating the overlap error. The effect of rescaling ellipses
for the overlap measurement is illustrated in Fig. 22. The effect of growing relative size
of the overlapping gray area is clearly visible.
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Figure 22. Rescaling an ellipse has an effect on the overlap measurement.

Number of correspondences is a measurement that tells the number of ellipse pairs found
whose overlap error is below 40%. It is not usually feasible to use this measurement by
itself, because it does not take into account the percentage of the overlapping ellipses.
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4.1.3 Repeatability

Repeatability is the most important measure for detector comparison. When the number
of correspondences is known, it is straightforward to calculate the repeatability rate:

repeatability rate =
# of correspondences

min(# of reg in img A,# of reg in img B)
· 100%. (32)

For the region count, only regions present in both images are included. Features in both
images are projected to each other using a known homography, and some of the features
are not necessarily present in both images after the transform.

4.1.4 Testing procedure

First, features are detected in all test images in a set using all the detectors. Then, the
features in the first image are compared to each other image in the set. Features detected
in both images are projected to each other using the known homography between the
images. Features that are not present in both images are discarded. For features present
in both images, correspondences are searched by comparing each ellipse to all ellipses
in the other image. If overlap error for two ellipses is less than 40%, a correspondence
is found. When all the correspondences are found, it is straightforward to calculate the
repeatability rate using Eq. 32.

4.2 Detector evaluation in this work

There are several differences in evaluation in this work to Mikolajczyk’s original com-
parison. The assumption is that features found in the reference image are found also in
the other image in the same spatial location. Similar assumption was made in this work
when detector performance was evaluated. There are sample images belonging to certain
classes, such as motor bikes, faces or dollar bills. It is assumed that spatially similar lo-
cations in these samples look similar and local features sharing approximately the same
shape can be found.



36

4.2.1 Image pairs

In Mikolajczyk’s comparison, features in an other, deformed image were compared to
features in a reference image of that test set to see how well the detectors can cope with
several types of deformation. In this work, there is no reference image. In the main tests
there are 25 randomly selected image pairs from each of the ten classes. Features are then
detected in both of the images in a pair.

4.2.2 Object outlines and landmarks

In this work, only objects in the test images are considered. In the test images outlines
of the sample objects are known. There are 2 × n matrices containing n (x, y)-pairs for
locations of the object contour. In the detector tests, features with centroids outside of the
object outline are discarded. Features outside the object outlines contain no information
about the objects. Some random corresponding features could be found in some cases,
but it has no use. In Mikolajczyk’s test protocol, only features that are present in both
images after features are projected to each other, are selected. In this work, objects are
fully visible even after features in the first image have been projected to the other one.
And since only features inside the object outlines are accepted, no checking needs to be
done for presence of the features left.

Three examples of accepted and discarded SURF features are shown in Fig. 23. Object
outline is drawn in blue. Features are drawn in green if inside and in red if outside of an
object outline.

(a) (b) (c)

Figure 23. The selected SURF features are shown in green, object outlines in blue and discarded
SURF features in red. Sample images are representing classes (a) motorbikes, (b) airplanes and
(c) revolvers.
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The ground truths are used to eliminate features outside of the object contour because
object detection is not in the scope of this work. The other ground truth information is
“landmarks” which are marked in every sample image to annotate semantically similar
parts of the sample objects. A few examples of landmark locations are shown in Fig. 24.

(a) (b) (c) (d)

Figure 24. Landmark examples for (a)-(b) two airplanes and (c)-(d) two dollar bills.

4.2.3 Affine transform

The performance evaluation of detector methods is based on finding features in same
spatial locations from two samples of a class forming an image pair. If a pose and location
of the object are not exactly the same in two images, the assumption that features are
located in same parts of the image is not true. To overcome this limitation, landmarks are
used to calculate an estimate for unknown affine homography between the two sample
objects. An estimate of an affine homography was also used in Mikolajczyk’s original
comparison.

An affine transform is a weak perspective transform. In a projective transform, straight
lines stay straight. If parallel lines remain parallel, an affine transform with six degrees of
freedom is enough. An affine homography between two point sets x and x′ is defined as
[29]:

x′ = HAx =

[
A t

0T 1

]
x =

a11 a12 tx

a21 a22 ty

0 0 1

x (33)

where parameters of A determine a rotation, shearing, scaling and parameters of t de-
termine a translation. An unknown affine homography between two point sets can be
acquired exactly if three point correspondences are defined. If less points are used, there
are many solutions and if more are used, an exact solution may not exist. An exact solu-
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tion HA for three points can be defined as [29]:x
′
1 x′2 x′3

y′1 y′2 y′3

1 1 1

 = X′ = HAX = HA

x1 x2 x3

y1 y2 y3

1 1 1

⇒ HA = X′X−1 (34)

where {(x1, y1), (x2, y2), (x3, y3)} are the original points and {(x′1, y′1), (x′2, y′2), (x′3, y′3)
are the corresponding points in a transformed domain. As visible in Eq. 33, the last row
of HA always contains values 0, 0 and 1 in affine transform.

Landmarks are sets of (x, y)-pairs describing certain parts of objects in a class that can be
used to estimate a homography between two sample objects. As usually five or six cor-
respondences are defined by landmarks, it is preferable to use the information from every
point. Direct linear transform (DLT) can be used to estimate an unknown homography.
Similarity equations are formed as homogeneous linear equations that can be solved [29].
In this work for calculating homography estimations, publicly available homography es-
timation toolbox was used [30].

An example image pair is shown in Fig. 25. Two object samples are shown in Figs. 25(a)
and 25(b). Blue lines around the objects are the outlines. Red circles in both images
(a) and (b) are features that are discarded because their location is outside of the object
outline. In Fig. 25(c) red circles are the original features shown in green in Fig. 25(b). The
green circles in Fig. 25(c) are the circles projected from Fig. 25(a). It is clearly visible
that the transform overlays the features adequately. The spatial information can be used
e.g. to validate descriptor matches.

(a) (b) (c)

Figure 25. Accepted features (green) from (a) are projected to the other image (b) in the pair to
overlay both features (c). In (c) accepted features from (a) projected to (b) are shown in green
color and accepted features in (b) are shown in red color.
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4.2.4 Testing procedure

For all image pairs and chosen detectors:
1. Calculate homography between an image pair based on the landmarks

2. Extract local features from the both images

3. Select in the both images only the features whose centroids are located inside the
region defined by Caltech_101 outlines

4. Find corresponding regions, i.e. the overlapping ellipses between the two images

5. Calculate the repeatability rate using Eq. 37

There are some number of image pairs randomly selected from a database. Features in all
the images are detected using all given detectors. As explained above, homographies for
image pairs are estimated using landmarks. A publicly available script from Mikolajczyk
is used to calculate correspondences and repeatability rates as explained in Section 4.1.4
[28].

4.3 Mikolajczyk’s descriptor evaluation

Several steps of descriptor performance evaluation in [13] are similar to detector perfor-
mance evaluation described in Section 4.1. In an image set, the first image is used as a
reference image. Detected features and their descriptions in other images are compared
to the first one. A known homography between an image pair is used to project found
features to each other. Features present in both images after the projection procedure are
selected and correspondences are searched.

In descriptor performance evaluation, the found feature correspondences are used as
ground truth for descriptor evaluation. Descriptor matches are first searched using three
methods explained in Section 4.4.1. If also source features (ellipses) of matching descrip-
tions overlap, a match is considered to be correct. If features do not match, a match is a
false match.

For all detectors and image pairs:
1. Estimate the homography between the image pair

2. Extract local features from the both images

3. Project features from the first image to the second and vice versa

4. Select features that are present in both images after the projections

5. Calculate overlap errors from each feature to all other features
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6. Select features with overlap error below 40% as correspondences

7. Calculate repeatability using Eq. 32

4.4 Descriptor evaluation in this work

The basis for descriptor performance evaluation is different than in the original compar-
ison by Mikolajczyk and Schmid [13]. Their goal was to find best methods for finding
matches between images taken from different view points of a scene. In this evaluation
the goal is to find out if the matching can be extended to visual object categorization
where matches are searched between two samples of a same class.

Descriptor tests are based on matches that are found between two images. Numbers of
matches are used to calculate averages and medians for datasets and classes. Also a
coverage measure is introduced to see how compherensive the matching performance of
a descriptor is.

4.4.1 The definition of match

A local feature descriptor is a vector that describes a feature extracted from an image.
Often matching descriptors are searched to find corresponding regions from a database or
an other image. A matching example is shown in Fig. 26. In Fig. 26(a) stop signs are
matched using SIFT-descriptors built on Laplacian-of-Gaussian features and in Fig. 26(b)
faces are matched using SURF-descriptors built on SURF features. Pink lines in the
example show a connection between two regions that are found to be visually similar
enough in both images and fulfill the spatial requirements. When local feature descriptors
are matched, distances between descriptors are calculated. Usually Euclidean distances
are used and distance s of descriptors a and b is defined as

s(a,b) =

√√√√ n∑
i=1

(ai − bi)2 (35)

where n is the number of dimensions, e.g. for the SIFT it is 128.

Mikolajczyk tested three matching strategies. If a simple threshold is used, distances to
other descriptors are calculated and if distance is below the threshold, a match is found.
In the nearest-neighbor strategy, only the nearest neighbor of all the other descriptors is
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(a) (b)

Figure 26. A matching example containing (a) LoG-vireo+SIFT-vireo descriptor matches on stop
signs and (b) SURF+SURF descriptor matches on faces.

considered as a match, if the distance to it is below the threshold. The problem of these
thresholds is that it is not trivial to select a threshold value, since the distance variation
between descriptors is usually quite high. The third option is to use nearest-neighbor strat-
egy with relative threshold, using the ratio of distances between the nearest and second-
nearest neighbors.

In this work, the last one is used. The threshold value is 1.5. For every descriptor, dis-
tances to all descriptors from the other image are calculated and sorted. If the distance to
the nearest descriptor is smaller than 1.5 times the distance to the second-nearest, a match
is found.

There are two images from the Caltech car side class. They form one of the pairs in the
dataset. In Figs. 27(a) and 27(b), the results for different parameters used in the test are
shown. Spatial distance limit s is 0.05, i.e. 5% of the image diagonal, and descriptor
distance threshold d is 1.5. The number of matches is low, but the significance of the
matches is high. It can be seen in Figs. 27(c)-(h) that when the descriptor match threshold
is lowered, the number of matches goes up quite fast. When that is combined with less
strict spatial limit, the results can be seen in Figs. 27(i) and 27(j). Most of the “matches”
are implied by the small structures of the background.

4.4.2 Spatial validation of matches

Matches are defined as explained above. In pure descriptor matching there is no informa-
tion about spatial location of descriptors in the sample images. Usually it is preferable that
matches are semantically correct, i.e. “correct” matches often represent similar structures



42

in sample images. In Fig. 26 this kind of visual similarity of structures is clearly visible.
The situation where less strict spatial and descriptor matching threshold values generate
matches that do not share visual similarity is shown in Fig. 27.

Since pure descriptor matching does not imply any spatial restrictions for matches, all de-
scriptor matches are validated after candidate matches have been found. As with features
earlier, matching locations of the first image in an image pair are projected to the second
one using a known homography between the images. After the transform, Euclidean dis-
tance s between the two locations is calculated. Since sample images vary in size, image

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 27. Example matches using SIFT descriptor on the left and SURF descriptor on the right
side, with various parameters: (a) SIFT d= 1.5, s= 5%, (b) SURF d= 1.5, s= 5%, (c) SIFT
d=1.5, s=10%, (d) SURF d=1.5, s=10%, (e) SIFT d=1.2, s=5%, (f) SURF d=1.2, s=5%,
(g) SIFT d=1.2, s=10%, (h) SURF d=1.2, s=10%, (i) SIFT d=1.0, s=15% and (j) SURF
d=1.0, s=15%.
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diagonal d is used for threshold scaling. A coefficient k is used to tune test settings. If the
following is true, a candidate match is accepted as validated match:

s < kd. (36)

The value for k in the experiments was 0.05, i.e. 5% of the image diagonal.

4.4.3 Number of matches and coverage

Performance of the descriptors is determined using plain numbers of matches. Number
of matches found for each image pair in a testset using each detector and descriptor com-
bination are calculated. Averages and medians can be calculated for individual classes
and a whole testset. The most important figures are per-class median and average number
of matches. E.g. per-class average tells how many matches in average is found from a
sample pair belonging to a class. Using these figures, it is simple to find out which is the
best detector for a given class or to see which descriptor gives the best results for a whole
testset.

A coverage is an other way to express descriptor performance. It is a number of sample
image pairs with at least one match found. It is also used in combination with numbers,
i.e. coverage-5 tells a number of image pairs with at least 5 matches.

4.4.4 Testing procedure

For all image pairs and chosen detectors and descriptor pairs:

1. Calculate homography between an image pair based on the landmarks

2. Detect local features in both images and build descriptors for detected regions

3. Select in the both images only the features whose centroids are located inside the
object outline

4. Find matching descriptors

5. Project the features of the first image to the other image

6. Validate matches using spatial distance between two matching features
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5 EXPERIMENTS

Experiments were divided into two separate test setups. The intention of the first test
was to measure the performance of the local feature detectors. In the second test, the
performance of the local descriptors was measured. For both the tests, MATLAB scripts
were written to run the tests. In the detector test also code from K. Mikolajczyk [27] was
used.

5.1 Data

Caltech-101 is a popular dataset for object recognition and categorization systems per-
formance evaluation. It contains objects belonging to 101 categories. There are 40-800
sample images per category. Object outlines for every sample are annotated. [31]

All the tests in this work were done using 250 image pairs from Caltech-101 dataset.
Both tests require “landmarks” to be annotated beforehand. The landmarks are manually
marked locations in images that can be used to estimate the transform from an image to
another. Landmarks are available for ten classes, and 25 image pairs from each class were
randomly selected to build the dataset.

Example images from Caltech-101 are included as Appendix 1. Two examples of images
pairs for each class are shown in Fig. A1.1. There are four images in each row. The first
two images in each row form an image pair and the next two form an other pair. All these
samples are real image pairs from the dataset used in this work.

5.2 Setup for the local feature detector tests

The test setup for detector performance evaluation includes required binaries for detector
implementations from various sources, and both MATLAB and C code from Mikolajczyk
to evaluate the performance of a detector. A MATLAB script was written to control test
execution, calculate affine transforms between the image pairs and to visualize detector
performance. When comparing the detectors, the first measure is how many correspond-

ing regions, i.e. ellipses that can be found in the both images after the regions in the first
image are projected to the second image and vice versa. For the two ellipses that are
considered to be corresponding, overlap error must be less than 40%.
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It is important to notice that ellipses were normalized to an even size, a diameter of 30
pixels, before calculating the overlap to eliminate the effect of ellipse size. The other
restriction is that only features with centroid point inside the object outline are considered.
Others are discarded, because corresponding object parts want to be found and randomly
corresponding background features are not object parts.

The most important measure that is used for comparing the detectors is the repeatability

rate. The formula is given in Eq. 37. The number of correspondences in both images
are compared, and the smaller of the numbers is used as minimum when calculating the
repeatability. In this case only the features that are present in the scene in the both images
after the transform are considered.

repeatability rate =
# of correspondences

min(# of reg in img A,# of reg in img B)
· 100% (37)

The number of correspondences found is a raw measure and gives additional information
about the results of repeatability comparison. The repeatability measurement tends to give
better results if the number of correspondences is higher. If such problem is believed to
bias the results, the number of correspondences can be used to determine what is actually
causing the high score.

5.3 Selected detector implementations

Nine different detectors were tested. The detectors are based on five different approaches.
There were three implementations of Hessian-Affine, referred to as hesaff, hesaff-alt and
hesslap-vireo. The two preceeding ones are from Mikolajczyk, hesaff-alt being the orig-
inal implementation that was used in [27]. Hesaff is a newer version that is implemented
using a slightly different parameters. Hesslap-vireo is implemented by Zhao [32] and is
only a partial implementation of Hessian-Affine and is thus referred as Hessian-Laplace.
Harlap-vireo is based on the Harris corners and it is a partial implementation of Harris-
Affine.

Detectors referred as dog-vireo and sift use Difference-of-Gaussian to approximate the
Laplacian. The log-vireo uses real Laplacian values instead of an approximation. Dog-
vireo and log-vireo are implemented by Zhao [32] and sift is vlfeat’s implementation [33].

The other detectors included were SURF and MSER, referred as surf and mser. The set of
detectors is selected based on their performance on earlier studies and in the preliminary
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tests for this comparison. All the selected detectors are listed in Table 1.

Table 1. Selected detectors for detector evaluation.

Detector Referred as Implementation
SURF surf ETH [11]
MSER mser featurespace [34]
DoG sift vlfeat [33]
Hessian-Affine hesaff featurespace [34]
Hessian-Affine hesaff-alt featurespace [34]
LoG log-vireo LIP-VIREO [32]
Hessian-Laplace hesslap-vireo LIP-VIREO [32]
Harris-Laplace harlap-vireo LIP-VIREO [32]
DoG dog-vireo+sift-vireo LIP-VIREO [32]

5.4 Detector results

In the first test the detectors were evaluated. In the detector test results seemed quite good,
as average repeatability rates for the whole dataset were commonly in the range of 20 −
35%, as shown in Fig. 28. In Figs. 28(b)-(c) average and median repeatabilities are shown
for each class and for the whole dataset. In Figs. 28(c)-(d) numbers of correspondences
are shown. The repeatability is the most important measure, but it is important to notice
that the number of correspondences is also useful for interpretation of the results and
identifying properties of the detectors.

The top three detector implementations were dog-vireo, surf and hesslap-vireo, with a bit
over 30% of average repeatability rate. Dog-vireo and surf got the best repeatability rates
in most categories. Hesslap-vireo was almost as good in repeatability, but outperformed
the other two clearly in the number of correspondences. Therefore, hesslap-vireo was the
best detector. The performance of the next four, dog-vireo, surf, hesaff and log-vireo was
almost equal. Within these four, dog-vireo and surf got the best repeatability rates, but
higher number of corresponding features was detected by hesaff and log-vireo.

After the best five detectors, also the next three could be identified. Harlap-vireo, hesaff-
alt and sift got almost identical results for repeatability rate, around 20 − 25%, while
number of corresponding features was the highest for harlap-vireo. In the test clearly the
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worst detector was mser. It got the lowest scores for the both repeatability and number of
correspondences.

More detailed test results for individual classes are shown in Appendix 3. Repeatability
rates are shown in Fig. A3.1 and numbers of correspondences in Fig. A3.2. The results
are shown using boxplots, i.e. the most important characteristics of the data are shown
in the plots. Whiskers, i.e. vertical dashed lines with horizontal endpoints, show the
minimum and maximum values of the data. Measurements considered as outliers are
marked with crosses in the plots. Boxes over the whiskers are used to show percentiles of
25th and 75th, meaning that 25 percent of the measurements are below the 25th percentile.
Similarly 25 percent of the measurements are above the 75th percentile. Median values of
measurements are shown as horizontal lines inside the boxes.
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Figure 28. (a) Average and (b) median repeatability rates for classes. (c) Average and (d) median
number of correspondences for classes.
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5.5 Setup for the local feature descriptor tests

A test protocol was needed for the descriptor test, and Mikolajczyk’s test procol used in
[27] would have been an obvious choice. However, it turned out that the Mikolajczyk’s
test protocol was not suitable for this work, since matching performance was worse than
expected from the beginning. If Mikolajczyk’s test protocol would have been used, the
small number of matches compared to number of all features would have made compari-
son of various methods hard. The chosen, newly-developed approach, gives results which
make comparison of various methods straightforward. The task in Mikolajczyk’s com-
parison was to see what is the best of the several good methods. In this work the question
was that can any of these methods can provide more than just a few random matches?

Usually when descriptors are used in object recognition or similar tasks, more than a few
matches are required. Higher number of matches makes any decisions more reliable. For
that reason, the descriptors are evaluated based on the number of matches that can be
found between the two images that form a pair. Preliminary tests showed that numbers
for the actual test will probably be quite low and for that reason the approach is just to
look for number of matches.

5.6 Selected descriptor implementations

Six detector and descriptor combinations were chosen to this evaluation. SIFT is an ob-
vious choice, since it is the most popular one and used widely. Two implementations of
SIFT were used, vlfeat’s [33] and Zhao’s [32] implementations, referred as sift and sift-
vireo. An other descriptor method used is SURF. All the selected detector and descriptor
pairs are listed in Table 2. First combination, sift+sift uses vlfeat’s implementations of

Table 2. Selected detector and descriptor pairs for descriptor evaluation.

Detector Descriptor Referred as Implementation
SIFT SIFT sift+sift vlfeat [33]
Hessian-Affine SIFT hesaff+sift featurespace [34]
MSER SIFT mser+sift featurespace [34]
DoG SIFT dog-vireo+sift-vireo LIP-VIREO [32]
Hessian-Laplace SIFT hesslap-vireo+sift-vireo LIP-VIREO [32]
SURF SURF surf+surf ETH [11]



50

SIFT descriptor and DoG detector. Hesaff+sift and mser+sift features and descriptors are
acquired by using the binary used in Mikolajczyk’s tests [27]. Dog-vireo+sift-vireo and
hesslap-vireo+sift-vireo are referring to Zhao’s implementation of many popular detectors
and descriptors, lip-vireo [32]. In dog-vireo+sift-vireo, algorithm similar to original SIFT
is used. Hesslap-vireo is a partial implementation of Hessian-Affine, and the combination
hesslap-vireo+sift-vireo is very similar to hesaff+sift. Surf+surf is a combination of the
SURF detector and descriptor.

The GLOH is an extension to SIFT that performed well in [13] and [17]. It involves
dimensionality reduction using PCA, representing the original 272-dimensional vectors
using only 128 dimensions. To be able to use PCA successfully, a training is necessary.
Since different data was used in [13], the basis file provided was not suitable for the
data used in this work. Several technical problems made it not possible to use GLOH.
Therefore, the GLOH was left out from the tests.

5.7 Descriptor results

In the second test descriptors were evaluated and statistics about successful matches were
collected. In Fig. 30 descriptor test results are shown.

In Figs. 30(a)-(b) coverage-1 and coverage-5 are shown. Since there were 25 image pairs
from each class, the maximum result for both coverages is 25. Also an average perfor-
mance for each method is given and is referred as “all” in the coverage figures. Surf got the
highest coverage-1, but coverage-5 and average number of matches show that hesaff+sift
is the best combination. With surf, it was possible to find a few matches in even quite dif-
ficult cases, but in less difficult cases it did not perform as well has Hessian-affine-based
combinations hesaff+sift and hesslap+sift-vireo.

In Figs. 30(c)-(d) average and median matches per class are shown. Average and median
over all 250 samples are referred as “all”. The highest average, 2.4 matches per image
pair was achieved by hesaff+sift, but median was 0, coverage-1 being 124/250, i.e. for
more than half of the image pairs the result was 0 matches. On the other hand, for surf
the median was 1, while coverage-1 was 144/250 and average number of matches was
2.1. Dog-vireo+sift-vireo and sift+sift performed almost equally compared to hesaff+sift,
but got in easier categories significantly less matches. As in the detector test, mser+sift
was the worst combination. It seems that it is less suitable than others to this kind of task,
because the found regions cannot be exactly the same.



51

The overall performance of descriptors indicates that any of these methods is not suitable
for this kind of task. In the results, surf’s better tolerance for noise was visible through
some matches in very difficult matching pairs. In Figs. 29(a)-(d) it is clearly visible that
coverage results decreased quickly as more matches were required. For coverage-1 the
highest value was 144 by surf but for coverage-5 only hesaff+sift was able to get a result
over 50, i.e. from only a bit over 20% of the image pairs at least 5 matches were found.
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Figure 29. Coverages for (a) 1, (b) 2, (c) 3 and (d) 5 matches required.
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Figure 30. (a) Coverage-1 and (b) coverage-5 per class. (c) Average and (d) median number of
matches per class.
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5.8 Descriptor combinations

Since the number of matches was very low, combinations of methods were tested. In
Fig. 31 performance boost is shown for the best single descriptors and the best combina-
tions of two and three descriptors. In Fig. 31(a) average matches per image are shown. For
each single descriptor the average was ≈ 2 and with two and three methods, the averages
were ≈ 4 and ≈ 6, respectively. The median of matches per image behaved similarly,
results being 1, 2 and 3 for one, two and three method combinations. In Fig. 31(b) same
information is shown using absolute value for the whole dataset. With the best single
descriptors 400 − 500 matches were found. 950 − 1100 and 1400 − 1600 matches were
found when two and three methods were combined.

In Fig. 31(c) coverage-1 results of all the best combinations are shown. For the best
single method, surf, the coverage-1 was 144/250. For the best combination of two meth-
ods, surf+surf and dog+sift-v, the coverage result was 177/250. The highest coverage-
1, 198/250 was obtained by the combination of surf, dog-vireo+sift-vireo and hesslap-
vireo+sift-vireo.
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Figure 31. Key figures for the whole dataset: (a) average matches per image, (b) number of
matches and (c) coverage-1.

5.9 Verification of descriptor test results using a different testset

To verify the test results for Caltech images, an other set with 119 high quality images
was used. There were sample images from 12 categories. From phones category there
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were nine sample pairs and from all the other categories the number of image pairs was
ten. The testing procedure was exactly the same that was used before for the descriptor
test. Example images from the dataset are shown in Appendix 2. An image pair from all
12 categories is shown in Fig. A2.1.

Results of the verification test are shown in Fig. 32. The maximum result for per-class
coverages is 10 for all the classes but phones, for which it is 9. Category “all” refers to
the average over all the categories. As in the main descriptor test, hesaff+sift was the best
combination. In coverage-5 hesaff+sift is the best and in coverage-1 the second best. As
in the main descriptor test, the best over-all results were obtained in traffic sign classes,
stop signs and crosswalk signs.

The second and third best methods were sift+sift and surf+surf which performed almost
equally. Coverage-wise these two were approximately as good as hesaff+sift. Hesaff+sift
outperformed the others by reaching high number of matches in traffic sign classes. After
the top three methods, the other three managed to get almost equal measurements in the
test. Each of mser+sift, hesslap-vireo+sift-vireo and dog-vireo+sift-vireo was able to find
at least one match from 40− 50% of all the sample images.

There were some differences to the first descriptor tests. In the verification test, the meth-
ods can be divided to two categories based on their performance in the test. In the first
descriptor test all the methods performed almost equally, except that mser+sift was clearly
the worst. In the verification test mser+sift was not the worst, but belonged to the second
group of methods with lower performance.
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Figure 32. (a) Coverage-1 and (b) coverage-5 per class. (c) Average and (d) median number of
matches per class.
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6 DISCUSSION

The results for the tests are quite intriguing. The local feature detectors showed to perform
quite well in the context of visual object categorization. On the other hand, the perfor-
mance of the local feature descriptors seemed worse than expected. In the following, the
possible reasons behind the both are discussed.

6.1 Detector performance

Local feature detectors do not have any kind of intelligence. They are just based on the
intensity changes of pixels in digital images. The detected features are corners, blobs or
regions depending on the detector method used. When this kind of technique is used to
find similar features from the two different objects in the same category, an assumption is
that objects in the same category share at least some sufficiently similar shapes and that
these shapes are in approximately same spatial location in 2D images.

The results of the detector test show that the assumption is quite feasible. The repeatability
rates are significantly lower than in the original Mikolajczyk’s case when matching was
done between views of a same scene. For most of the detectors, the median number,
i.e. for half of the sample images, number of correspondences found was 15 − 50 per
image pair for the whole dataset and the median repeatability rate 20−35%, which seems
adequate performance.

To verify the results, also a test was done using incorrect image pairs from various classes,
i.e. the compared samples were not from the same class. The results show that the re-
peatability for that kind of verification test set was practically zero for these detectors.
Based on that it is rather safe to assume that the repeatability rates for the detectors are
not based on random overlaps with the ellipses, but on the fact that objects from the same
categories share similarities as assumed in the first place.

6.2 Descriptor performance

While detectors performed quite well in the tests, the match numbers for the descriptors
were poor. The medians of matches per image showed that the typical number of matches
per image is only one for the best methods. Average is slightly higher, since for example
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for stop signs, faces and dollar bills the results are significantly better than for the other
classes. Classes that have some man-made structures contain many structures that look
practically the same in all objects in the class. In caltech-250 dataset the stop signs are
a typical example of this kind of object set. It can be clearly seen in Figs. 30(c) and
30(d) that the stop signs are the only category for which the studied descriptors perform
moderately. Faces and dollar bills are two other categories with more matches than one.
The median is 2− 3 matches per image for them, which is still not a sufficient number of
matches for most applications.

In other classes the results were even worse, median for the whole dataset being one match
per image for the best methods. Combining various methods boosted the performance.
The best two and three-method combinations reached medians 2 and 3. Percentage wise
the increase seems high, but still a lot more matches would be needed. The insufficient
performance of local feature descriptors is such bad, that for many applications sufficient
number of matches can not be found using any of the current detector and descriptor pairs.
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7 CONCLUSIONS

The goal of this thesis was to find the best local feature detector and descriptor for visual
object categorization task by comparing existing methods using a suitable test scheme.
Suitability of these methods for such a task was not known exactly beforehand.

Test setups for the both detectors and descriptors were created. For the detectors, the
test setup was similar to one developed by Mikolajczyk [27]. Because of the different
situation than in [13], no suitable test protocol for descriptor comparison was found. A
test scheme was developed, as described in Section 4.4.

For the detectors, the test results were adequate. The repeatability rates were not high
if compared to typical wide-baseline scenario, but still 20 − 35%. A bit surprisingly the
highest scores were obtained by SURF and Zhao’s DoG implementation. One of the
main discoveries was that there are significant performance variations between various
implementations of the same methods.

When it comes to descriptors, the performance was worse than expected. For classes
where visual variation between samples is high, only a few matches were found between
the image pairs. For classes that share more similarities between samples, like human
faces or stop signs, the results were significantly better. In some cases, the performance
can be boosted by combining the matches from several methods. The best descriptors
were SURF that was the best for difficult categories, and Hessian-Affine that performs
well for the easier categories. The interesting fact is, that the well performed SURF and
DoG are computationally the fastest ones. In addition to being very fast, SURF is able to
cope very well with the noise [11], and in this case, with visual variation of the samples.

The results of this work imply that a better descriptor for visual object categorization pur-
poses is needed. The current performance of the descriptors is not enough for most appli-
cations. Could the good performance of the detectors imply that a better “voc-descriptor”
could be built on them?
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Appendix 1. Caltech-101 example image pairs

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure A1.1. Example image pairs from (a)-(b) faces, (c)-(d) motorbikes, (e)-(f) airplanes, (g)-(h)
car sides and (i)-(j) dollar bills.

(continues)



Appendix 1. (continued)

(k) (l)

(m) (n)

(o) (p)

(q) (r)

(s) (t)

Figure A1.1. Example image pairs from (k)-(l) euphoniums, (m)-(n) revolvers, (o)-(p) star fish,
(q)-(r) stop signs and (s)-(t) watches.



Appendix 2. MinnaImageDatabase example image pairs

(a) (b)

(c) (d)

(e) (f)

Figure A2.1. Example image pairs from (a) airplanes, (b) revolvers, (c) bikes, (d) cars, (e) cars
extra and (f) crosswalk signs.

(continues)



Appendix 2. (continued)

(g) (h)

(i) (j)

(k) (l)

Figure A2.1. Example image pairs from (g) motorbikes, (h) mugs, (i) phones, (j) balloons, (k)
stop signs and (l) watches.



Appendix 3. Detector test results for individual classes

Abbreviations used in the figures

dogv = dog-vireo logv = log-vireo sift = sift
heslv = heslap-vireo hesaff = hesaff mser = mser
harlv = harlap-vireo ahesaff = hesaff-alt surf = surf

3.1 Repeatability rates for individual classes
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Figure A3.1. Repeatability rates for classes (a) faces, (b) motorbikes, (c) airplanes, (d) car sides,
(e) dollar bills and (f) euphoniums.

(continues)



Appendix 3. (continued)
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Figure A3.1. Repeatability rates for classes (g) revolvers, (h) starfish, (i) stop signs and (j)
watches.

(continues)



Appendix 3. (continued)

3.2 Number of correspondences for individual classes
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Figure A3.2. Number of correspondences for classes (a) faces, (b) motorbikes, (c) airplanes, (d)
car sides, (e) dollar bills and (f) euphoniums.

(continues)



Appendix 3. (continued)
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Figure A3.2. Number of correspondences for classes (g) revolvers, (h) starfish, (i) stop signs and
(j) watches.
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