& Lappeenranta
University of Technology

Jussi Kasurinen

SOFTWARE TEST PROCESS DEVELOPMENT

Thesis for the degree of Doctor of Science (Technology) to be presented with
due permission for public examination and criticism in the Auditorium 1381
at the Lappeenranta University of Technology, Lappeenranta, Finland,

on the 18th of November, 2011, at 12:00.

Acta Universitatis
Lappeenrantaensis 443

Supervisors

Reviewers

Opponents

Professor Kari Smolander

Software Engineering Laboratory
Department of Information Technology
Lappeenranta University of Technology
Finland

Dr. Ossi Taipale

Software Engineering Laboratory
Department of Information Technology
Lappeenranta University of Technology
Finland

Dr. Mika Katara

Department of Software Systems
Tampere University of Technology
Finland

Associate Professor Robert Feldt

Department of Computer Science and Engineering
Chalmers University of Technology

Sweden

Professor Markku Tukiainen
School of Computing
University of Eastern Finland
Finland

Associate Professor Robert Feldt

Department of Computer Science and Engineering
Chalmers University of Technology

Sweden

ISBN 978-952-265-143-3
ISBN 978-952-265-144-0 (PDF)
ISSN 1456-4491

Lappeenrannan teknillinen yliopisto
Digipaino 2011

Abstract

Jussi Kasurinen

Software test process development
Lappeenranta, 2011

102 p.

Acta Universitatis Lappeenrantaensis 443

Diss. Lappeenranta University of Technology

ISBN 978-952-265-143-3, ISBN 978-952-265-144-0 (PDF).
ISSN 1456-4491

In this thesis, the components important for testing work and organisational test
process are identified and analysed. This work focuses on the testing activities in real-
life software organisations, identifying the important test process components,
observing testing work in practice, and analysing how the organisational test process
could be developed.

Software professionals from 14 different software organisations were interviewed to
collect data on organisational test process and testing-related factors. Moreover,
additional data on organisational aspects was collected with a survey conducted on 31
organisations. This data was further analysed with the Grounded Theory method to
identify the important test process components, and to observe how real-life test
organisations develop their testing activities.

The results indicate that the test management at the project level is an important
factor; the organisations do have sufficient test resources available, but they are not
necessarily applied efficiently. In addition, organisations in general are reactive; they
develop their process mainly to correct problems, not to enhance their efficiency or
output quality. The results of this study allows organisations to have a better
understanding of the test processes, and develop towards better practices and a
culture of preventing problems, not reacting to them.

Keywords: organisational test process, test process components, test process
improvement, test strategy

UDC 004.415.53:004.05:65.011.08

Acknowledgements

In the present climate of economic crisis and uncertainty, I must use this
acknowledgement to express how privileged I feel myself for being allowed to work
in such a creative and stable environment. As a man whose high school teacher
suggested he should focus on applications for polytechnic institutes, I found myself
astonished when I was accepted as a student at this fine university. Again, I was
pleasantly surprised when I was selected for a position of a research assistant during
the last year of Master’s Thesis, and felt it was almost magical when my first
publication was accepted for presentation at a conference. My first contribution to the
science community, a possibility to teach others things I personally had solved by
sheer curiosity and interest, truly a chance to change the world. Now, it feels like it
was a lifetime ago. Who knows, maybe it was the magical feeling, but it still lingers in
the air every time a new piece of work is accepted. What is the value of the science, if
it is not based on interest, a questioning in order to understand and a desire to
advance technology and ultimately mankind?

I would like to thank my supervisors, Prof. Kari Smolander and Dr. Ossi Taipale for
their contribution and help with this dissertation. I would also like to express my
gratitude towards my first supervisor, Dr. Uolevi Nikula, for helping me in learning to
master the graduate student work in practice.

Other thanks belong to the other co-authors, Prof. Per Runeson, Jari Vanhanen, Leah
Riungu and Vesa Kettunen for their part in this project which finally lead to a
dissertation. I would also like to thank Riku Luomansuu for his work with the survey.

In addition, the work of the reviewers of this dissertation, Dr. Mika Katara and Prof.
Robert Feldt, your feedback and ideas were a valuable tool for finalizing this work.

A word of acknowledgement for my colleagues at the IT department and friends, for
your discussions and support, it helped me greatly, both in this work and personally.
It also probably delayed it for at least two years, but who is counting?

Finally, I would like to thank my family, father Ossi and mother Sirpa, and also my
sister Kaisla for their support in helping me get through this project.

” A witty saying proves nothing.”

Francgois-Marie Arouet

I would also like to acknowledge the financial support of three contributors to
this dissertation, Tekes - Finnish Funding Agency for Technology and Innovation,
SoSE - Graduate School on Software Systems and Engineering, and LUT Foundation.

Lappeenranta, 3 October, 2011

Jussi Kasurinen

List of publications

IL

III.

Iv.

VL

Kasurinen, J., Taipale, O. and Smolander, K. (2009). “Analysis of Problems in
Testing Practices”, Proceedings of the 16t Asia-Pacific Software Engineering
Conference (APSEC), 1.12.-3.12.2009, Penang, Malaysia. doi:
/10.1109/APSEC.2009.17

Kasurinen, J.,, Taipale, O. and Smolander, K. (2010). “Software Test
Automation in Practice: Empirical Observations”, Advances in Software
Engineering, Special Issue on Software Test Automation, Hindawi Publishing
Co. doi: 10.1155/2010/620836

Kettunen, V., Kasurinen, J., Taipale, O. and Smolander, K. (2010), “A Study of
Agility and Testing Processes in Software Organization”, Proceedings of the

19th international symposium on Software testing and analysis (ISSTA), 12.-
16.7.2010, Trento, Italy, doi: 10.1145/1831708.1831737

Kasurinen, J., Taipale, O. and Smolander, K. (2010). “Test Case Selection and
Prioritization: Risk-based or Design-based?”, Proceedings of the 2010 ACM-
IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), 16.-17.9.2010, Bolzano-Bozen, Italy, doi:
10.1145/1852786.1852800

Kasurinen, J., Taipale, O. and Smolander, K. (2011), “How Test Organization
Adopt New Testing Practices and Methods?”, Proceedings of the Testing:
Academic & Industrial Conference: Practice and Research Techniques 2011
(TAIC PART) co-located with 4th IEEE International Conference on Software
Testing, Verification and Validation (ICST), 25.3.2011, Berlin, Germany, doi:
10.1109/ICSTW.2011.63

Kasurinen, J., Taipale, O., Vanhanen, J. and Smolander, K. (2011), “Exploring
Perceived Quality in Software”, Proceedings of the Fifth IEEE International
Conference on Research Challenges in Information Science (RCIS), May 19-21
2011, Guadeloupe - French West Indies, France, doi: 10.1109/
RCIS.2011.6006823

VII. Kasurinen, J., Runeson, P., Riungu, L. and Smolander, K. (2011), “Self-
Assessment Framework for Finding Improvement Objectives with ISO/IEC
29119 Test Standard”, Proceedings of the 18th European System & Software
Process Improvement and Innovation (EuroSPI) Conference, Roskilde,
Denmark, 27.-29.6.2011, doi: 10.1007/978-3-642-22206-1_3.

In this thesis, these publications are referred to as Publication I, Publication II,
Publication III, Publication IV, Publication V, Publication VI and Publication VII.

Symbols and abbreviations

ANTI

BSI
CMM
CMMi
EU
ICT
IEC
ISEB
ISO

ISO/IEC
12207

ISO/IEC
15504

ISO/IEC
25010

ISO/IEC
29119

ISTQB
LUT

MASTO

Application Strategies of New Technologies in
Industrial Automation Software Testing, Tekes
project

British Standards Index

Capability Maturity Model

Capability Maturity Model integration
European Union

Information and Communications Technology
International Electrotechnical Commission
Information Systems Examination Board
International Organization for Standardization

Software life cycle processes

Process assessment standard, SPICE

Software engineering —Software Product Quality
Requirements and Evaluation standard

Software and Systems Engineering— Software
Testing standard

International Software Testing Qualifications Board
Lappeenranta University of Technology

Towards Evidence-Based Software Quality:
Practices and Assessment, Tekes project

MES
Oou
PL
SIL
SME
SPI

SPICE

STS

SQuaRE

Tekes

TIM
TMMi

TPI

Manufacturing Execution System
Organisation Unit

(Safety) Performance Level

Safety Integrity Level

Small and Medium Enterprises, see (EC 2003)
Software Process Improvement

Software Process Improvement and Capability
dEtermination model

Socio-Technical System

Software product Quality Requirements and
Evaluation model, ISO/IEC 25010 model

Finnish Funding Agency for Technology and
Innovation

Test Improvement Model
Test Maturity Model integration

Test Process Improvement

Contents

1

2

INrOAUCHION ...ttt bsesens 13
Software testing and the viewpoints of the thesis 16
2.1 What is software testing?ccooereririiniiiiiec e 17
2.2 What are the test process COmMpONENts?..........c.ccoeevereererereeuereeccirenrrereeeenenens 19
2.3 Testing research in generalcccccoeoiniiiniiiniiiic 20
24 Testing as defined in the ISO/IEC 29119 Software Testing standard............. 22
2.5 The viewpoints of this thesisccceoeeriiiiiiiii 30
2.5.1 Test process COMPONENLS.......ccccevviiiriiiiiiiiiiiiiee s 30
252 Test process deVEIOPMENLcceueueuiuiinirirererieieieieieieree s 36
2.6 SUIMIMATY .ot 39
Research goal and methodology 40
3.1 Theresearch problem ... 41
3.2 Research subject and the selection of the research methods........................... 43
3.21 The research SUbJeCtcccocciviiiiiiiiiiiiiiiic e 46
3.2.2 The selection of the research methods...........cccccoeviiniiniiii 47
3.3 ReSEAICh PIOCESS.......ceuiurreieiiiiccicie s 48
3.3.1 Preliminary phase of the thesisccccccovnniiiiiiicce 49
3.3.2 Main data collection and analysis phase of the thesis........c.ccccccccoeeueuace. 50
3.3.3 Validation phase of the Studycccccceeevrrrririeieicciiir e 58
3.3.4 Finishing and reporting the thesiscccooooi 59

34 SUMMATIY c.oovieiiiiiiiiiictc et 62

Overview of the publications 63

4.1 Publication I: Overview of the real-life concerns and difficulties associated

with the software test process............oooieeeeiniiiicccc e, 64
41.1 Research objectives..........coeiieiiiiniiiiieieec e 64
412 RESULES .ottt 64
41.3 Relation to the Wholeccocoviiiiiiiiii 64
42 Publication II: Overview of the testing resources and testing methods
applied in real-life test organisationscccocoeueveieieioiccieec, 65
421 Research objectives.........ccociiiiiiiiniiiiieeeccc e 65
422 ReSUILS ..ottt 65
423 Relation to the Whole ..., 66
4.3 Publication III: Analysis of the effects the applied development method has
ON the teSt PIOCESScveviviiiccictc e 67
4.3.1 Research objectives.........ccoeiieiiiiniiiiieieecce e 67
432 ReSUILS ..ot 67
43.3 Relation to the Wholecccoiiiiiii 68
4.4 Publication IV: Analysis of the test case selection and test plan definition in
test OrganisationS ... 69
441 Research objectives.........ccocciieiieiniiiiieeeccc e 69
442 ReSUILS ..ot 69
4.4.3 Relation to the Whole ... 70
4.5 Publication V: Analysis of the requirements for developing test process or
adopting new testing methods in software organisations.............ccccceeuvununnne 71
451 Research ObJECHIVES.......c.cccceuiiiniriririricccccc e 71
452 ReESUILS ..ot 71
453 Relation to the Whole ... 72
4.6 Publication VI: Analysis of associations between perceived software quality
concepts and test Process activities.oooevveeeriieiniiiceeecc e, 72
4.6.1 Research ObJECHIVES.........cccceuiiinirirircciccc e 72
4.6.2 ReSULLS ..ot 73
4.6.3 Relation to the Whole ... 74
4.7 Publication VII Self-assessment Framework for Finding Improvement
Objectives with the ISO/IEC 29119 Test Standardccccovvvvniiiiiiinnnne. 75
471 Research ObJECHIVES.........cccceuiiiniiiriririciccce e 75
472 ReSUILS ..ot 75
4.7.3 Relation to the Wholecccoviniiii 78
4.8 About the joint publicationsccccovviviririiiiiiiiccce 78
Implications of the TeSUILS ...t 79
51 Implications fOr practiCe..........cocoiirnrrreiicciii e 79

52 Implications for further research............ccccccceueueiieinnnneeccccccrr e 85

6 CONCIUSIONS w.veeeerreeerereeeeceeeesseeesseeesseesssesssseesssessssessssessssessssassssessssassssessssessssassssassssases 87

6.1 Limitations of this theSiS.......cccociiiiiiiiiiiiiceiiceeee e 91
6.2 Future research topics.......cooceueueieioiiciicicic e 93
REEEIEIICES. ..ceceeeeereeeeeecreeesreesreeesaeessesesseesssessssassssassssassssssssssssssssssssessssessssessssessssessssessssessanes 95

Appendix I: Publications
Appendix II: Survey instrument

Appendix III: Theme-based questions for the interviews

1 Introduction

The software testing process is one of the core processes in software development, as
every successful software product is tested in one way or another. However, the
testing process often has to operate on limited resources in terms of time, personnel or
money (Slaughter et al. 1998). To compensate for lack of resources, the test process can
be adjusted to cater to the limitations set by the operating ecosystem; in fact, there are
studies which conclude that adequate testing can be achieved with low amount of
resources, even as low as 15 percent of the requested resources (Petschenik 1985,
Huang and Boehm 2006). On the other hand, it is also plausible to say that software
testing can become expensive and wasteful if it is done without any preceding
planning. A comprehensive set of the test cases including all possible scenarios and
outcomes simply cannot be done when software complexity starts rising (Myers 2004).
Finally, there is room for developing test process, if only to steer the testing practices
towards better efficiency and effectiveness (Bertolino 2007). Observing the software
testing from the viewpoint of loss of investment, it is easy to understand why
organisations should pay attention to testing activities. In United States alone, the lack
of resources and poor infrastructure in testing has been estimated to cause 21.2 billion
dollars worth of losses to the software developers. Combined with the losses caused to
the clients and customers, this estimate rises to 59.5 billion dollars, from which 22.2
could be saved by making reasonable investments on software testing (Tassey 2002).

The incentive to develop software testing and software quality has been addressed in
the development of software industry standards. The new standards, ISO/IEC 29119
(ISO/IEC 2010) for software testing and ISO/IEC 25010 (ISO/IEC 2009) for quality
define the testing processes and software quality characteristics. The ISO/IEC 29119

13

introduces three layers of testing activities; organisational process, divided to test
policy and test strategy, test management process and testing work itself, consisting
static and dynamic test processes. In this thesis, my research focuses on testing from
the organisational viewpoint. From this viewpoint, this thesis explores the concepts
presented in the test policies and strategies, such as available test resources, test
process activities, test management and quality aspects, basically the whole
organisational framework for doing the testing work. This study aims to answer to a
research problem “what components affect the software testing strategy and how
should they be addressed in the development of test process”. This problem is
approached from several viewpoints; how do different testing-related components
affect the company test process, how can the components defined in the test strategy
be used in the development of test process and finally, what concepts should the
company address in process development. Additionally, this thesis also discusses the
state of testing in software-producing organisations and possible application of
ISO/IEC 29119 testing standard to the benefit of actual testing processes in different
types of organisations.

For this thesis, both quantitative and qualitative methods were applied and the
empirical results were triangulated to improve the validity of the thesis. Our selection
of observed level in organisations was in organisational units (OUs) as described in
ISO/IEC 15504 (ISO/IEC 2002) to enable us to compare different sizes and types of
software companies and make observations on their test processes as a whole. Overall,
the high abstraction level constructs were used because using detailed level constructs
might have led to too complicated description of the software development process
and testing strategies. According to the results of the preliminary studies and existing
models such as TMMi2 (TMMi 2010) or ISTQB (ISTQB 2007), the affecting factors and
their relationships were analysed from the viewpoint of test process improvement and
testing strategy development. Describing the practice of software testing at a high
abstraction level was important because, for example, comparing methods, tools and
techniques of software testing has a high contextual relevance, and direct comparison
between different types of organisations is not feasible approach for scientific,
unbiased and universal observation and measurement.

The thesis is divided into two parts, an introduction and an appendix including seven
scientific publications. In the introduction, the research area, the research problem,
and the applied research methods are introduced, and overall results are presented
and discussed. The appendix contains seven publications, which describe the research
results in detail. The publications selected for the appendix have gone through
rigorous scientific referee process in respected and appropriate publication channels
in the software engineering discipline.

14

The first part, the introduction, contains six chapters. Chapter 2 introduces software
testing, viewpoints of the thesis, and the applied testing-related standards. Chapter 3
describes the research problem and subject, the selection of the research methods, and
the research process. In Chapter 4, the included publications are summarised. Chapter
5 combines the implications of this thesis for the practice and research. Finally,
Chapter 6 summarises the entire thesis, lists its contributions, identifies any possible
limitations of the application and suggests topics for further research.

15

2 Software testing and the viewpoints of the thesis

In this chapter, the central themes and concepts of the thesis are discussed and
explained to form a background for the research. The intention is to connect the study
to the appropriate context, and explain the viewpoints used in the research subject.
The definition of software test process used in this thesis was adopted from the draft
of the international standard ISO/IEC 29119 Software Testing Standard (ISO/IEC 2010).
According to the standard, software testing consists of three different layers, all of
which contribute to the software test process. By researching test processes, the
answer was sought to three questions: Which components affect the software testing
in practice, what are the important factors from the viewpoint of the test strategy, and
how should they be addressed in the development of the test process? In general,
what affects the strategy and what concerns should the strategy address.

The research problem can be evaluated from different perspectives, as the process is a
compilation of different components and factors, combining technical infrastructure
and human interactions to a larger socio-technical (Geels 2004) phenomenon. The
research work started with the selection of the viewpoints for this thesis. Test process
improvement and testing strategy development were selected as the viewpoints
according to the results of the preliminary studies and literature review. This selection
was made so as to observe the existing testing process practices from the point of view
of software designers, project managers and software testers. This selection enabled us
to concentrate research resources on the issues that respondents evaluated as
important, and observe the entire testing process, rather than focus on individual
mechanisms or process phase activities.

16

2.1 What is software testing?

The literature contains many definitions of software testing. In the joint ISO/IEC and
IEEE standard, a glossary of software engineering terminology, ISO/IEC/IEEE 24765-
2010 (ISO/IEC/IEEE 2010), testing is defined as:

(1) activity in which a system or component is executed under specified
conditions, the results are observed or recorded, and an evaluation is
made of some aspect of the system or component. IEEE Std 829-2008 IEEE
Standard for Software and System Test Documentation.3.1.46 (IEEE 2008).

The preparation actions, actual testing work and test reporting done in a software
project formulates a test process. For example, in ISTQB Glossary (ISTQB 2007) of
used terms used in software engineering, the software process is defined as follows:

test process: The fundamental test process comprises test planning and
control, test analysis and design, test implementation and execution,
evaluating exit criteria and reporting, and test closure activities.

Further, the working draft of the ISO/IEC 29119 standard (ISO/IEC 2010) specifies
three layers of testing process, dividing the process of conducting testing to following
components:

(1) Organisational test process, including test policy and test strategy

(2) Testing management processes, including test planning, test monitoring
and control and test completion.

(3) Fundamental test processes, are further divided into static test processes,
which constitute universal activities done with all test cases such as test
reporting or case design, and dynamic test processes, which constitute
changing activities, such as configuring of different tools or executing a
test case.

Related to these layers are the four different concepts of test process, which are
defined in the ISO/IEC 29119 glossary as follows:

test policy: A high level document describing the principles, approach and
major objectives of the organisation regarding testing.

test strategy: A high-level description of the test levels to be performed and
the testing within those levels for an organisation or programme (one or more
projects).

17

test management: The planning, estimating, monitoring and control of test
activities, typically carried out by a test manager.

test execution:

(1) The process of running a test on the component or system under test,
producing actual result(s).

(2) processing of a test case suite by the software under test, producing an
outcome (BSI 1998).

(3) act of performing one or more test cases (ISO/IEC/IEEE 24765, Systems and
Software Engineering Vocabulary (ISO/IEC/IEEE 2010))

Finally, Kaner and Bach present a shorter definition (2005) as follows:

A technical investigation of the product under test conducted to provide stakeholders with
quality-related information.

And in more technical sense in the “Art of Software Testing, 2" edition” by Myers
(2004) as follows:

Testing is the process of executing a program with the intent of finding errors.

Basically, software testing should be defined in these ways because it offers a broad
viewpoint on software development. By defining the testing work this way, different
approaches to testing tools, development models, resource availabilities and
organisation models could be accounted for. However, there is an argument that this
definition does not take into account the design-based shortcomings, where the
product is working correctly, but the product itself is not correct.

In a traditional sense of testing, the product definition and design are architectural
decisions made prior to the software test process. In this mind-set the testing work
itself is divided to different types of testing work. In unit testing one module from the
software system is tested to validate and verify its functionalities, and it is followed by
integration tests, where increasing number of these modules are tested together. Final
stages are the system testing, where the entire system is in working condition and
tested together and acceptance testing, where customer ensures that the software item
is working as intended (for example Behforooz and Hudson 1996). The other concepts
related to testing, such as test automation, usability testing or standard compliance,
are tools or form the objectives of these test types. This mind-set is also called
incremental testing by Kaner et al. (1999).

18

However, in the ISO/IEC 29119 model, all of the verification and validation activities
done during the software process are considered to belong to the test process.
Validation - confirming that the software is able to fulfil the intended use
(ISO/IEC/IEEE 2010) - and verification - confirming that the software complies with
the given requirements (ISO/IEC/IEEE 2010) - are both related to the objectives of the
test process as defined in the test policy, and exit criteria as defined in the test strategy.
Based on the ISO/IEC 29119 standard, the test process should not be understood solely
as the roadmap for the traditional development phase where the objective is to find
errors with different incremental test types, but in a larger organisational context,
including all of the development activities needed to verify and validate the item in
testing. By this definition, the test process in the ISO/IEC 29119 asserts all the
activities, which are needed to ensure software correctness and design feasibility,
namely the validation and verification activities, from first design draft to product
release and maintenance throughout the software life-cycle (for example Pfleeger and
Atlee 2006).

2.2 What are the test process components?

In this study, the test process is observed and analysed from the perspective of the
organisational process. One of the main themes of the study is to understand which
test process components have influence on the practical testing work. In this work, the
test process component is defined based on the principles of ISO/IEC 24765, in which
one of the definitions of a component is as follows:

2. one of the parts that make up a system. IEEE Std 829-2008 IEEE Standard
(IEEE 2008)

In the same standard, a process is defined as follows:

7. System of activities, which use resources to transform inputs into outputs.
ISO/IEC 25000:2005, Software Engineering — Software product Quality
Requirements and Evaluation (SQuaRE) — Guide to SQuaRE.4.41 (ISO/IEC
2005)

NOTE [ISO 9000:2005] The term "activities" covers use of resources. A
process may have multiple starting points and multiple end points. The
prescribed manner may be a partially ordered sequence. A process
specification can be a workflow specification. An enterprise specification may
define types of processes and may define process templates.

The test process components are understood as a group of concepts, which constitute
all of the items of the test process, such as test personnel, test tools, test methods, test

19

management, or other. As one of the themes of this study is to identify the important
test process components, these concepts are not limited to categories such as technical
or social aspects, but used as an umbrella term for every concept, item or activity that
has influence on the test organisation or testing work in practice.

2.3 Testing research in general

In software development, the basic objectives of software process are to produce
software, which fulfils the required functionalities, has acceptable quality, is
completed within budget, and released in time (Kaner et al. 1999). These attributes are
all important to the software end-product, as if any of these four — functionality,
quality, money and timing — is handled poorly the software is more likely to fail
economically. However, in the real world the software development is usually a
tradeoff between these four project attributes (Kaner et al. 1999). From this standpoint,
it is not very surprising that the testing research is used to develop practices towards
better coverage of testing to find more errors, or make the testing work cheaper and
quicker while maintaining the pre-existing quality.

Bertolino (2007) lists four desired objectives for the software testing research to
pursue: efficiency-maximized test engineering, 100% automatic testing, test-based
modelling, and universal test theory. The efficiency-maximised test engineering would
mean that the test process could be run on maximum efficiency and effectiveness with
the help of smart tools and efficiency-optimised testing methods to ensure good
quality (Harrold 2000). The second desired objective, the fully automated testing,
aims to build an advanced test automation system, which would be able to do
complete autonomous testing work. However, this objective is unlikely to be achieved
as even with high degree of automation the system would still need human
interaction to confirm results or at least configure and maintain the system (Bach
1997). The third vision of test-based modelling aims at developing software systems
towards modelling practices which allow easier and more comprehensive support for
testability. The difference between test-based modelling and model-based testing (for
example Utting and Legeard 2007) is in the premises; model-based testing tests the
software using the model, test-based modelling builds the models based on testability.
The last requisite of the universal test theory aims at developing a comprehensive,
coherent, and rigorous framework for assessing and comparing the strengths and
weaknesses of different testing approaches. The desired objectives of Bertolino may
not be very realistic to achieve in the short term, but they all aim at one objective,
making testing easier.

The impact of software engineering research in software configuration management is
discussed in an article by Estublier et al. (2005). In this discipline of software

20

engineering, the impact of academic studies has been studied in relation to the
software industry. Based on the results, it seems that software engineering research
and software industry have close relationship; the fundamental systems and new
concepts stem from the academia, while industry affects to the development of new
technologies. However, as observed by the Estublier et al., the industry may
sometimes take several years, even decades to adopt and fully implement the studied
concepts. Against this background the current state-of-the-art software engineering
and testing research may be still a completely new concept for a real-life software
organisation. In fact, in a study by Juristo et al. (2004) it was concluded that even
though testing techniques have been studied for over 25 years, there are still several
areas that should be examined in more details. Their conclusion is that the testing
technique knowledge is still limited, and that over half of the existing studies are
based on impressions and perceptions, not on formal foundations, that would allow
replicable results. Bertolino (2007) concludes that one way to create the foundation for
building test theory is to produce an empirical body of knowledge to understand
which factors can explain where the problems arise.

In software engineering and testing research, the empirical studies should be applied
to study real-world phenomenon, as the software engineering systems are amongst
the most complex systems ever created (Sjeberg et al. 2007). As for the recent
development in empirical software engineering and testing studies, Sjoberg et al.
(2007) collected metrics on the application of the empirical approach to software
engineering publications. They report that between the years 1993 and 2002
approximately 1,800 empirical studies on software engineering were reported in a
scientific venue, on average, twenty percent of the published articles. According to
Sjeberg et al. (2005), the most common themes of software engineering studies during
this period were related to methods and techniques, tools, inter-computer
communication, software life-cycles, and product quality.

Juristo and Moreno (2001) discuss the empirical software engineering. The application
of knowledge in software engineering discipline is not as straightforward as in other
fields. For example, by applying one method to one type of project the results may
vary greatly. In software engineering, the basis of acquiring knowledge is iterative; the
hypothesis are founded on existing knowledge, but during the observations and data
collection in the real world the original hypothesis changes. This process is defined in
three steps by Pfleeger (1999):

Reach an initial understanding, including identifying likely variables,
capturing magnitudes of problems and variables, documenting behaviours
and generating theories to explain perceived behaviours.

21

Test theories by matching theory with practice, eliminate variables and
identify new ones, determine the relative importance of variables, and
identify the range of variable values and probabilities.

Reduce uncertainty, but not always by determining cause and effect.

The important part is to continually question and improve the theory until it explains
the observed phenomenon. Some of the measurements may be fuzzy or inaccurate,
and some theories may only explain the phenomenon partially. However, it is better
to have a partial understanding that can serve as a basis for future theory than to
discard a result simply because it does not explain or cover everything (Pfleeger 1999).

2.4 Testing as defined in the ISO/IEC 29119 Software
Testing standard

The working draft of the upcoming ISO/IEC 29119 Software Testing standard
considers the test process and the testing work to include both the activities to validate
and verify the item being tested. Unlike earlier testing-related standards such as IEEE
829 (IEEE 2008) which outlines a standard for content of different test documentation,
or IEEE 1008 (IEEE 1987), which defines unit testing as an activity to plan, create and
use a set of test items, ISO/IEC 29119 aims to combine the concepts of the earlier and
more specific standards to one test process model encompassing the entire software
organisation. In the ISO/IEC 29119 standard, the test process encompasses the entire
organisation, beginning from the upper management, policies, and quality
requirements. The organisational policies and strategy steer the testing work at the
project level, where the project level management creates test plans, and monitors and
controls the testing activities at the fundamental level. Based on the fundamental level
results, a test completion report is created and used along with the feedback to
develop testing at both the project and organisational level. The process model is
illustrated in more detail in Figure 1.

22

Organizational processes (Organization has only one)

. - . Other policies (IT,
Quality policiess —) Test Policy <t ez

Strategy generates Policy affects
feedback to policy strategy

Affecting factors

and process > Test Strategy —— Mission statements
components

Organizational (general) test strategy,

Feedback, test completion
Including test policy and test strategy

reports
Project-level processes (Organization may have many)
Test management processes
Test monitorin Test completion
Test plan & P
and control report

Test plan, control and directives @ ﬁ Feedback, reports

Fundamental level processes

Static test processes Dynamic test processes

Test design &

. . Testin
f . Test reporting Test execution €
implementation

environment

Figure 1. ISO/IEC 29119 Test process test levels and structure

The ISO/IEC 29119 testing standard defines four main documents for the test process,
which define how the organisation and individual projects should perform testing.
These documents are test policy, test strategy, test plan and test completion report.
Test policy and test strategy are organisational level documents; the organisational
management defines these documents to steer the test process in the project level. At
the project level, project management is responsible for defining the test plans for the
project based on the organisational level policies and strategies. Project-level
management is also responsible for reporting feedback from the project to the

23

organisational management by compiling test completion reports, which then are
assessed and form a basis for the organisational test process improvement. The
process produces four documents; test policy, test strategy, test plan and test
completion reports.

Test policy is a short, two-page document defining the test process on a highly
abstract level. Test policy defines the scope, principles and rules for testing to which
the organisation should adhere. The main concept is that the test policy defines what
is accomplished with testing, leaving the actual implementation for the other
documents. Based on the standard, the following items should be addressed in a test
policy (ISO/IEC 2010):

Objectives of testing describing the purpose, goals, and overall scope of the
testing within the organisation.

Test process states the test process that the organisation follows.

Test organisation structure states the titles and positions of individuals who
belong to the test organisation and a diagram to illustrate the organisational
hierarchies.

Tester education states the required certifications and education required for
members of the test organisation.

Tester ethics state the ethics code to be upheld by the test organisation and
testers.

Standards define the standards the test process activities are required to
follow.

Test asset archiving and reuse strategy describes how test assets should be
archived and how the assets are to be reused.

Test process improvement states the methods for measuring and improving
test process in the future.

Measurement for value of testing defines how return of investment from
testing should be calculated.

Other relevant policies are also listed and defined in case the organisation
has overlapping or important policies beyond testing activities, such as
quality policy.

In addition to the test policy, the organisational management also defines test strategy,
which is a more specific and detailed document describing how test activities should

24

be done in the projects. According to the ISO/IEC 29119 standard, a test strategy
should address the following items:

Generic risk management should identify generic risks that may impact
testing activities and offer methods to reduce these risks.

Entry and exit criteria should be defined to determine when testing should be
started and what the criteria are for ending test activities for an item under
test.

Degree of independence should be established to define how technically,
managerially and financially independent the test organisation is from the
other parts of the organisation.

Test organisation structure should be defined in the test strategy if the test
organisation structure differs from the one defined in the test policy.

Test documentation strategy identifies the test documentation used in the
testing work.

Test phases, which phases are performed during testing, should be identified
and defined.

Test types, which types of testing should be performed as a part of the test
process.

Test techniques, which specific test techniques should be used in the testing
work should be identified.

Test selection and prioritization method for selecting applied test cases and
their internal prioritization should be defined.

Test environment strategy identifies the testing environments; where test
should be performed, who is responsible for the environment, where the test
data is located, who is responsible for test data and how the test data is
acquired.

Test automation and tools defines the organisational approach on test
automation, and identifies the test automation tools and their application in
the test process.

Retesting and regression testing should be described to establish the strategy
and conditions for retesting and regression testing.

25

Test completion criteria should be defined to establish a clear criteria for
conditions where the testing activities should be considered completed.

Incident management strategy should be described to establish how
incidents should be managed during testing activities.

The level of details in the test strategy is more refined than in test policy, and may
include clear indicators and thresholds to steer test process at the project-level. At the
project level, the test policy and strategy are applied as a foundation, when a new test
process is being defined. At the project-level, the management defines a third test
process definition, a test plan, based on the principles and criterion set by the
organisational documents. The test plan further elaborates on the same topics as
strategy, and should include the following items (ISO/IEC 2010):

Project and the processes and products the plan will be used for should be
defined.

Test item(s) should be identified to define which items, such as complete
software, interface between units or subsystem are covered in this test plan,
and describe the purpose of the system and possible references for more
information.

Test scope should define the high-level list of included and excluded parts of
the item in testing. The scope should also clearly specify the limits of the test
effort and identify systems, which are specifically excluded from the testing.

Test strategy should define the strategy that will be applied in this test plan,
including test phases, test types, test design techniques, test environment, test
tools, and deliverables from the testing work.

Estimates of the test tasks should describe the work break down of the
testing work within the scope of the test plan, identify the milestones, and
offer estimates for the test budget and cost estimates.

Staffing should be defined to establish tasks and responsibilities, hiring needs
and possible training needs for the test organisation.

A schedule should be presented to summarise the overall schedule of the
testing tasks and different test phases and different support processes.

Cross-reference to risks should depict the relationship between project risks
and how the different test activities acknowledge these risks.

26

Deviations from the organisational test strategy should also be separately
listed in cases where the test plan does not follow organisational strategy, and
identify the authorities which have approved these deviations.

In addition to designing test plan, the project-level management is also responsible for
providing feedback to the organisation from the completed test processes. In the
standard model, the project-level management can achieve this by compiling a test
completion report. This report summarises the testing work done during the project,
and lists the deviations, collected metrics, and reusable assets from the test process.
The test completion report should include the following information (ISO/IEC 2010):

Summary of testing performed summarising the testing performed in the
different test phases and the different test types.

Differences from planned testing should also be listed in the report to
provide information on the deviations from the plans.

Test completion criteria should be described and specified on how the testing
work met the set criteria, or why the testing was unable to reach the set
criteria.

Factors that blocked the process should be identified and described with
enough details to enable the organisation to remove them in future projects.

Lessons learned should document the results of the lesson learned (post-
mortem) meeting.

Test metrics should provide information on collected test metrics such as
amount of test cases, found defects and incidents.

New and changed risks should list the newly identified and changed risks
along with the taken actions to prevent these risks.

Test environment status should describe the final state of the test
environment after the testing was completed.

Test deliverables should list and reference the produced deliverables from
the project.

Reusable test assets should be listed for possible future projects, along with
the information regarding the location and availability of said assets.

Recommendations should define the recommended use of the test item based
on the results of the completed testing work.

27

These are the four main documents, which are used in design and improvement of
test process in the organisation. The standard also defines other document types, such
as test status reports and rules for test design, but they are more related to everyday
management and testing work steering activities than defining the actual test process.

Besides documentation, the standard process model is layered into three levels, which
are (1) organisational test processes, (2) test management processes in project-level
and (3) fundamental level, which constitutes (a) static and (b) dynamic test processes.
In these layers, the testing activities are further divided into sub processes, which
define the different activities happening in the layers. These processes are as follows
(ISO/IEC 2010):

The Organisational test process (OTP) is used to develop and manage
organisational test specifications, such as test policy and test strategy. It is also
responsible for monitoring and controlling that testing activities use the
organisational level specification.

Test management processes (TMP) are the project-level management
activities in the test process. TMP defines the test planning, test monitoring
and control and test completion. They are also responsible for updating the
test plan at the project-level.

The Test planning process (ITPP) is the process which is responsible for
developing the test plan. Depending on the project phase, this may be a
project test plan, or a test plan for a specific phase such as system testing or
acceptance testing.

Test monitoring and control process (TMCP) ensures that the testing is
performed in line with the test plan and organisational test documents. It is
also responsible for identifying updates necessary for the test plan.

The Test completion process (TCP) is a process that includes activities, which
are done when testing is completed. It ensures that useful test assets are made
available for later use.

Static test processes (STP) describes how static testing activities, such as test
preparation, test result reviews and analysis and test follow-up are done.
These activities are the “general” activities, which are done to all test cases in
all test phases of the project, such as reserving test resources, reviewing the
test results and seeing through that necessary follow-up actions are done
based on results.

Dynamic test processes (DTP) describe how dynamic test activities such as
test implementation, test execution, test environment set-up, and test incident

28

reporting are done in the organisation. These activities are the “practical”
activities, which vary between different types of testing, including configuring
test tools, deciding test conditions based on test documents and practical tasks
of preparing test cases and test sets.

In the ISO/IEC 29119 standard, some of these processes, such as STP or DTP, are also
divided into smaller sub-categories within these definitions. This does not affect the
overall meaning of the process, but rather further illustrates and explains the purposes
of the activities they represent. Some processes, such as TMP, are also the owners of
the other processes of the standard. The relationships between the model processes
are illustrated in the Figure 2.

Organizational level

Overview on testing work,
Test plan

Test completion reports,

Organizational level management, OTP feedback

Project level

Project level management, TMP

TPP TMCP TCP

Test execution level

‘spio0dau Juapiou|

STP DTP

suodaJ sniels ased 159

Overview on project,
Test strategy and Test policy

Figure 2. ISO/IEC 29119 Test process processes divided into different test levels

The central theme of the ISO/IEC 29119 standard is the division of operating into two
main levels; organisational management, and individual projects. Even if the process
model is detailed, it should be adjustable to several different software domains. It is
obvious that control software of a jet fighter will probably be built differently than a
mobile game, but the process model aims to allow different approaches within the
same overall process model. This is achieved by adjusting the organisational
documents, which define the framework for the project-level work.

29

2.5 The viewpoints of this thesis

The effects of different test process components and test process development were
selected to be the viewpoints of this thesis in order to understand how test strategy
can be defined and where the organisations should focus their process improvement
effort. The scientific objective was to study how different test process components
affect the practical testing work, and how the test organisations could be developed
based on the principles and practices presented in the ISO/IEC 29119 test process
standard. In the following segment, some of the most interesting test process
components with possible influence on the test process activities are discussed,
followed by a segment briefly introducing the test process improvement and its
concepts in practice.

25.1 Test process components

In software testing, the test strategy encompasses several components, which have a
direct effect on the testing activities. The test strategy is the core of the test process; it
defines the test process concepts by setting an overall framework for testing: the
objectives and defining methods and resources available to the test work in the lower
layers of the model. The strategy is a high-level document, which has a large influence
on several test process components, as illustrated in the Figure 3. In Figure 3, the
different components which are identified by different test certificates (TMMi2 2010,
ISTQB 2010) and the upcoming ISO/IEC 29119 standard are collected and loosely
categorised into five categories. The sixth category “Possible areas of interest” is then
taken from the concepts suggested by the other sources, such as existing research
literature and previous research results from the ANTI project. The figure also divides
the components into the dissertation viewpoints; on the right hand side, the
components of interest, which define the organisational test strategy are listed, while
the left hand side constitutes the different levels of test process activities which
constitutes the organisational test process.

30

Test process in software Different test process components identified from ISO/IEC 29119, TMMi

organization 2 and ISTQB
Organizational level test process
2-page prime directive Testing software
Test Policy Management roles Testing tools Test environment
Corporate factors Test automation tools
— —~7//
. Test levels (unit, integration...)
Testing N . .
methods Test types (Explorative, automation, white box...)
1 Overall test model (V, incremental, prototyping...)
Test strategy:
How, . .
- | Affect Testing Responsibilities, Levels of independence
Who ’ N personnel Tester Requirements
¢ - Organization
When? L~ 8
Test case design Test cas:e Qe5|'gn principles
& selection :aske pnorlzatlont
_ isk managemen
Prioject level test process _/ N
\ 4 . Entry- and exit criteria
T Executive force Quality criteria Quality assurance and -control
Manages projects i i f
Management 8€s proj o Standards, which need to be complied with
Possible areas Development method?
Funtfamental of interest Customer, knowledge transfer?
testing work — | Outsourcing?
Other components identified from the literature

Figure 3. Different test process components and the levels of the ISO/IEC 29119
model in the test process of the software organisation

In the test strategy, the organisation defines several components for the test process,
which all affect the testing work, such as testing tools, available time and testing
personnel. It has been established, that the lack of investment in the testing
infrastructure causes losses worth several billion dollars (Tassey 2002), but the studies
also indicate that improving the testing infrastructure is not cheap or easy to
implement. In a study by Ng et al. (2004), the most common barrier on adoption of
new testing tools were considered to be the costs associated with the adoption
process, the time consumption the adoption process takes and the difficulty of
adopting new tools. Similarly, on adoption of testing methodologies, lack of expertise
was considered the most important reason preventing the adoption of new test
methodologies, and providing training was seen as too costly and time-consuming to
allow investment in a real software-producing organisation.

In the traditional software development models such as the waterfall model (for
example Pfleeger and Atlee 2006), the testing work usually follows the main
development phase of the software. In this approach, the testing phase should not
include changes to the design or requirements, but in reality, the software may still
undergo changes, especially if the customer has influence on the development
(Highsmith and Cockburn 2001). To address this issue, a new trend regarding the

31

software development approach, agile development, has been introduced (for
examply Abrahamsson et al. 2002). In a publication by Abrahamsson et al. (2002), agile
methods are described as an attempt to answer to the business community asking for
lighter-weight and more adaptable software development process. The agile models
differs from traditional, plan-driven, development models by promoting
communication between stakeholders and production of working releases instead of
excess documentation and design before implementation (Fowler and Highsmith
2001). In comparison between plan-driven approaches and agile methods, the main
difference can be characterised to be the amount of planning, as illustrated in Figure 4
by Boehm (2002).

Adaptive Milestone Milestone Inch-pebble
SW risk-driven plan-driven ironbound
Hackers XP development models models contract
Agile methods
Software CMM

CMM

Figure 4. Development methods using a planning spectrum (Boehm 2002)

In the planning spectrum, the agile methods and traditional methods are defined
based on the amount of planning in the development. By this definition, the different
development methods fall between two polar stereotypes; hackers, who make only
little to no plans before implementing code, and ironbound contracts, where every
change or addition to the software has to be agreed upon and documented. Overall,
the implication is that in plan-driven development, the process prepares for possible
hindrances, whereas in agile development, the process reacts to the issues that arise.

However, this model is a somewhat idealistic view on agile development. In practice,
not all development processes are possible to convert to agile practices simply by
making changes in the planning activities. For example, the size of the project or
criticality (Boehm and Turner 2003) of the end-product may steer the development
process towards a plan-driven approach. To express these considerations, a more
detailed model for general feasibility of agility in the development process has been
developed by Boehm and Turner (2003). Figure 5 illustrates this model. Based on the
model, the organisations that are on the outside rim of the model are more likely to
encounter difficulties in application of agile practices. However, this does not mean
that the agile practices are impossible to implement in large organisations; there are

32

cases, where large organisations have applied agile practices such as SCRUM (Deemer
et al. 2010) in their development process.

Personnel competence (%level 1B)
(% level 2 and 3)1

40—— 15
30—— 20
Criticality
20— 25 D .
(Loss due to impact of defects) ynamism
10—g— 30 (% requirements
Single life Discretionary change/month)
funds
Many lives
Essential
funds

300

10
Size Culture

(Number of personnel) (% thriving on chaos versus order)

Figure 5. Agile versus plan-driven methods (Boehm and Turner 2003)

Software testing aims to improve the quality of a software product, and in fact is a
major component on deciding if the software project is profitable (Huang and Boehm
2006). However, in the measurement of quality, the definition of quality can be
troublesome, as the concept of quality is closely related to a number of subjective
observations. For example, Garvin (1984) has discussed the definitions of quality and
made extensive definition work for establishing what the quality actually is and how
it affects product concepts such as profitability or market situation. Garvin defines five
different definitions for quality; transcendent, product-based, user-based,
manufacturing-based and value-based definition. Even though they define the same
phenomena, product quality, they vary greatly. For example, transcendent quality is
“innate excellence”, which is absolute and uncompromising standard for high
achievement, certainly identified if present. On the other hand, user-based quality is
the more common “satisfies user needs”-definition, whereas manufacturing-based

33

definition promotes conformance to the product requirements. Garvin also discusses
the different definitions by mentioning that it also explains why different people seem
to have differing opinions as to what constitutes quality; they tend to apply the
definition they are most familiar with.

The different aspects and definitions of quality also mean that the measurement of
software quality has some considerations. A paper by Jergensen (1999) introduces
three assumptions for establishing measurement for software quality: There are no
universal quality measurements, but meaningful measures for particular
environments. Secondly, widely accepted quality measurements require maturity in
research and thirdly, quality indicators predict or indirectly measure quality. In short,
Jorgensen establishes that there are no universal measurements, but the approaches
using quality indicators — characteristics and attributes — can be used to approximate
or predict software quality.

Jergensen also discusses the different aspects of software quality. In addition to a set
of quality factors, there also exist other definitions for quality; quality as user
satisfaction and quality as the degrees of errors in software. However, both of these
other models have serious flaws. In quality as user satisfaction, the most obvious flaw
lies in the question as to why the measurement of user satisfaction is called software
quality? There exist several groups of users for software, such as administrators and
basic users, so how can the total satisfaction be calculated? Furthermore, how can the
user group A’s “very satisfied” be related to group B’s “very satisfied”? They may not
even mean the same concept, or at least may not be based on the same features. In the
quality as the degrees of errors, the problem lies within the classification; how many
flaws in the user interface relate to a critical system error? Therefore, by Jorgensen’s
definition, the most sensible model for estimating quality seems to be based on the
characteristics, observing different aspects of the software. However, criticism also
exists towards this approach, for example by Salvaneschi and Piazzalunga (2008).

In the ISO/IEC 25010-3 Software product Quality Requirements and Evaluation
standard (2009), the definition of software quality is similar to the interpretation
presented by Jergensen. In the standard, the software quality is defined in generally
applicable and measurable terms. The quality is presented as a composite of eight
quality characteristics, such as operability, security, or compatibility. These
characteristics are further divided into sub-characteristics such as fault tolerance,
accuracy, or compliance, which aim to be measurable either by internal or external
measurements (ISO/IEC 2009). The product quality is understood to be an amalgam of
all of the quality characteristics, with a prioritization and weight distribution based on
the quality objectives. The quality model is illustrated in further detail in Figure 6.

34

Software product quality

—(Functional stability H Functional appropriateness, Accuracy, Compliance |

< Reliability ’< Maturity, Availability, Fault tolerance, Recoverability, Compliance |
|| Performance Time-behavior, Resource utilization, Compliance

efficiency
—{ Operability }— Appropriateness, Recognisability, Learnability, Ease of use,

Attractiveness, Technical accessibility, Compliance

—(Security)_ Confidentiality, Integrity, Non-repudiation, Accountability,
Authenticity, Compliance

—{ Compatibility ’_‘ Co-existence, Interoperability, Compliance |

_‘ Maintainability }— Modularity, Reusability, Analyzability, Changeability,
Modification stability, Testability, Compliance

" Portability |—— Adaptability, Installability, Replaceability, Compliance |

Figure 6: Software product quality model as presented in ISO/IEC 25010

In addition to the software quality characteristics, another indicator for software
quality requirements is the criticality (adapted from Boehm and Turner 2003, Huang
and Boehm 2006). Software criticality is an approximate indicator, indicating the worst
possible outcome for the software failure. Unlike other similar measurement such as
safety integrity level (SIL, see Brown 2000) or safety performance level (PL, see Soressi
2010) which both measure the probability of failure against hours operated, software
criticality is much more simple measurement as it does not require strict metrics or
measurements. It simply represents the possible worst-case scenario directly caused
by the failure of the software. The criticality is represented as a scale from one to five,
with the following descriptions for each level of criticality:

1: None or at most user irritation; for example “user has to reboot the game
system”

a7

2: Small economic losses; “the ticket fails to print and money is lost”, “no record of
sale is made”

3: Significant economic losses; “Store has to be closed for a couple of days”,
“product stock has to be scrapped”.

35

4: Bodily harm or great economic losses; “Operator loses hand”, “production line
has to be closed for repairs.”

5: Loss of human life; Operator or people depending on the software system are
killed.

The criticality of the software product may affect the quality objectives of a software
organisation, and possibly correspond with the amount of resources allocated to the
test process.

25.2 Test process development

The objective for this dissertation was to observe and identify important test
components to understand how they should be addressed from the viewpoint of test
process development. Identification of the important components could offer external
assistance to the organisations in the adoption of practices and operating models such
as the model illustrated in the ISO/IEC 29119 standard. This objective required the
study to observe the test process and test strategy from a viewpoint that consisted of
all test process components, and observations regarding how the real-life organisation
developed their testing practices.

The first objective was to assess whether the ISO/IEC 29119 model itself was feasible
enough to implement in a real-life organisation. To assess the test process model
feasibility, an understanding was required of the software process improvement (SPI)
in real-life organisations. SPI literature includes studies about the effect of different
factors on software process improvement. For example, a study by Abrahamsson
(2001) discusses the requirements for successful process improvements. The most
important factor according to the Abrahamsson study is the commitment to change
from all organisational levels. If some of the levels disagree with the process
improvement, the process improvement process tends to fail. In addition, the process
improvement has to be executed in a controlled, well-planned, and organised way to
ensure the possibility of permanent, positive improvements. In a more specific
example, Pino, Garcia and Piattino (2009) discuss process improvement in small-sized
companies. They conclude that process improvement should define management-
level commitments immediately after the improvement process is established, and
that improvement proposals are sometimes hard to align with the strategic planning
in the organisation. They also consider that organisations should have advisers to
initially trial the first few improvement iterations. Similar findings are also reported in
the articles by Sulayman and Mendes (2010) and Hardgrave and Armstrong (2005). In
addition, the article by Wong and Hasan (2008) also includes cultural influences in
process improvement considerations. Culture, whether it is organisational culture or
national culture, affects the requirements for effective process improvement. For this

36

reasoning, as process improvement would assume cultural changes, it is important to
also study the aspects of the social science in SPI (Conradi and Fugetta 2002).

In studies applying certain process models in organisations, the Hardgrave and
Armstrong study (2005) observed that their case organisation had trouble reflecting
their existing process in the theoretical models. In their paper, the organisation
estimated the time needed for process improvements to achieve CMMi (CMMi 2010)
level 2 as 10 months, when in fact the entire process took four years. In their reported
case, the organisation decided to employ external advisors after 16 months of internal
process improvement. Hardgrave and Armstrong also conclude that organisations
tend to lose the initial drive for process improvement because the drive for an
improvement process, in many cases, is not the internal need to develop, but rather to
reach out for certain external rewards, such as certifications. Kautz, Hansen and
Thaysen (2000) describe a case, where a simplified iterative development model was
introduced into an organisation and applied in the practice. Their main finding was
that organisations can adjust to given models, provided that the model itself is sound
and is not too strict with the process requirements.

Dyba (2003) conducted a study on SPI activities in different types of organisations.
They concluded that the company size does not hinder or restrict the process
improvement activities. Small organisations are at least as effective as large ones in
implementing process improvement. Small organisations tend to be less formal in
organisational hierarchy and in turbulent business environments they use explorative
test and development methods (see Kaner et al. 1999) more willingly. Another
interesting observation was also that organisations have a tendency to define their
own best practice methods, as regards what is working, while failure in process
improvement is considered an unacceptable possibility. As process improvement
projects often fail, companies tend to support the status quo if corrective actions are
not absolutely necessary. Dyba also discusses the explicit process definitions, which
should also be understood as a guideline; informal practices are used to supplement
the formal way of working, and collect experiences for the subsequent improvement
efforts.

Overall, the literature indicates that organisations can adopt different models if the
model is sound and reasonably adjustable (Kautz, Hansen and Thaysen 2000), and
that the size of organisation does not restrict their ability to make process
improvements (Dyb& 2003). It is also indicated, that process development is
dependent on several stakeholders and other contributing factors (Abrahamsson 2003,
Wong and Hasan 2008), and that organisations tend to have difficulties in observing
and changing their own processes without external assistance.

In the development of the process improvement framework, the general requirements
for any relevant construct should include, at least, that it is acceptable to the software

37

development community and that it is based on agreed software engineering
principles and practices (Burnstein et al. 1996). For example, the validity issues for
developing frameworks have been addressed in prior studies (Jung 2009, Karlstrom et
al. 2005). Jung (2009) developed a test process maturity model based on internal
needs, and validated the results via a case study and a survey. Similarly, with the
minimal test process framework (MTPF) developed by Karlstrom et al. (2011), the
initial model was designed based on observations in real-life organisations, and
further elaborated and validated with surveys and an empirical case study.

In large-scale process development, there are some testing-related process frameworks
for test process development, such as Test Maturity Model (TMM) (Burnstein et al.
1996), Test Process Improvement (TPI) model (Koomen and Pol 1999) and Test
Improvement Model (TIM) (Ericsson et al. 1997). The TMM framework was developed
from the principles of CMM and a group of other pre-existing practices (Burnstein et
al. 1996) to allow organisations to develop their test process towards better principles
and practices. TMM was developed with three main objectives. The first objective was
to create a set of levels that define testing maturity hierarchy, where each level
represented a stage of evolution towards mature testing capacity. The second objective
was to create a set of maturity goals for each level, which gives the organisation a
concrete example for development. The third objective was to create an assessment
model, which would allow the organisation to obtain a clear understanding of their
situation (Burnstein et al. 1996). Currently, the TMMIi reference model covers 16 test
process areas, divided into five different maturity levels from managed process at
level 2 to the self-optimizing process at maturity level 5 (TMMIi 2010).

Another model for test process development is the Test Process Improvement (TPI)
(Koomen and Pol 1999). TPI model is based on the assessment of maturity levels in
different key areas such as life-cycle model or metrics, and comparing the existing
level of maturity against the set objective level. The assessment model has corner
stones, several key areas and levels, which are defined in close detail, and which in
turn produce very detailed improvement suggestions. However, like other large
process development models, it has a number of limitations, especially in scalability
(Farooq and Dumke 2007) and applicability (Jung 2009) in practice.

Test Improvement Model (TIM) development has been based on developing the TMM
and CMM (See CMMi 2010) principles further, by introducing the positive traits of the
existing process models in a new context and new application method. The TIM
development focused on two major components, a framework consisting of level
ladders and key areas, and the assessment procedure itself. The important innovation
of the TIM model was the ability to assess the current state of the practice in the key
areas of testing independently, and put the assessed organisation “on the map” with
their current test process.

38

The viewpoint of this thesis as regards process development and test process
improvement is not as straightforward and objective as it may seem, as there are some
considerations in the development of a framework for adopting the existing process
model. The development of a framework for self-assessment and adoption was
necessary, as the test process models (such as the TMM and subsequently the ISO/IEC
29119 model) are rather difficult to adopt in a real-life organisation, as they lack the
guidelines in adoption of the process activities, and organisations tend to try to
preserve the status quo (Dyba 2003). Organisations also tend to favour only the
process improvement proposals, which they can relate to (Hardgrave and Armstrong
2005). Even if the adoption model exists, the adoption process is not easy to
implement; for example the TMM process adoption model TMMi (TMMi 2010) has
been criticised for being counter-intuitive (Jung 2009) and unrealistic to implement
(Oh et al. 2008) even if the model itself is fundamentally based on the best practices
and related standards (Burnstein 1996).

2.6 Summary

In this thesis, the software test process is evaluated from the viewpoint of test strategy
components and test process improvement. In the software process, the test process
and components related to the test process have a large influence on the product
outcome. The test process, as defined in the ISO/IEC 29119, goes beyond the
traditional concept of a waterfall-type project test phases, where product faults are
identified and corrected, to including all validation and verification activities for the
software item, during the software lifecycle, in an organisational and project-level
context. In the test process, test strategy defines several aspects such as test resources,
test planning activities, test management activities, quality criteria and applied test
methods, which create a framework for the test work in practice at the project level. By
identifying the most influential test process components and their relationship to the
whole software process, a framework for test process improvement can be defined to
steer the test work in real-life organisations towards better practices such as increased
cost-effectiveness or risk-avoiding techniques. Overall, the objective is to enable the
organisations to assess their test process needs more accurately, and be able to develop
their testing work towards better practices and better quality.

39

3 Research goal and methodology

In this chapter, the research goal is introduced and the applied research methodology
explained. This chapter also discusses the reasoning behind the selection of the
applied research approaches, and describes the data collection process.

To approach the research problem, i.e. “what components contribute to the software
testing process and how should they be addressed in the development of a test
process”, the problem was decomposed into a group of sub-problems which were
discussed separately in the respective publications. The objective of the first sub-
problem was to identify the contributing factors of the thesis from the prior research
into the topic. The objective of the other sub-problems was to study the effect and
relevance of the identified testing factors and derive process improvement hypotheses
by analysing the research subjects from selected viewpoints with quantitative and
qualitative methods.

Software testing and related software development in organisations formed the
research subject. To initially describe the studies subjects, international standards were
used to define a software organisation and the activities and sub-processes which
happened within the organisation. The standards ISO/IEC 12207, Software Life Cycle
Processes (2008), ISO/IEC 15504-1, Concepts and Vocabulary (ISO/IEC 2002), ISO/IEC
25010-3 Software Engineering — Software product Quality Requirements and
Evaluation (SQuaRE) - Quality Model (ISO/IEC 2009) and the working draft for
ISO/IEC 29119 Software and Systems Engineering— Software Testing (ISO/IEC 2010),
define a software organisation, which was used as an a priori framework for the
research subjects. The ISO/IEC 29119 test process model was applied in this study
even though the international standard was still only a draft as it defined a size and

40

maturity-independent definition of the test process in software organisations. The
concept of the standard model is to be applicable in any organisation testing software,
regardless of the size, business domain or product type, and simultaneously be
applicable in cooperation with other established international standards such as
ISO/IEC 12207 and ISO/IEC 15504. In this study, the research subject was initially
understood to have processes in both software development and testing; conducting
one coherent software process similarly as defined in the standards ISO/IEC 12207 and
ISO/IEC 15504 in development and ISO/IEC 29119 in testing.

The research process consisted of three phases: preliminary study (viewpoints of the
thesis), main data collection and analysis phase (identification of important factors)
and validation phase (studies in test process improvement). In the selection of the
research methods, the objective was to find the best method to approach the research
subject. For the preliminary phase of the thesis, the Grounded Theory method (Strauss
and Corbin 1990) was selected for the analysis of the prior data, a decision which was
based on the type of the existing data, and considered feasible approach for extended
application in the latter qualitative research phases. The survey method (Fink &
Kosecoff 1985) was used for the quantitative phase of the thesis.

3.1 The research problem

The research problem arose from the author’s research group’s research concerning
the software development and testing and a literature review on the existing studies
on software testing. The decision to focus on organisational aspects of the test process
and in the development of test process in organisation was also in accordance with
general research themes of research group’s new research project called MASTO,
which studied software testing and standardizations in real-life organisations.

According to the literature, more than 50 % of development effort is frequently
focused on testing (Kit 1995, Koomen and Pol 1999). On the other hand, testing can
also be effective with only a small portion of the “optimal” resources (Petschenik 1985,
Huang and Boehm 2006) and in many cases, the test processes have to adjust to
resource limitations (Slaughter et al. 1998), so as an organisation the test organisation
has to be adaptive and to some degree, even creative. However, the studies on
organisational decisions and activities concerning the test strategy composition and
test process components are less common. There are some organisation level studies
which introduce organisational level test process components (Ng et al. 2004) and
metrics (Chen et al. 2004, Afzal and Torkar 2008), but the studies on test process from
the viewpoint of the organisation and the test strategy were limited. The actual
research problem was elaborated from these considerations.

41

The research problem of this thesis is which test process components affect the test
strategy and how they should be addressed in test process development. The
identification of the important test process components should be done to ensure that
at the organisational level all the important factors of testing are addressed. When the
important factors are known, the test organisation can be developed towards better
practices by removing hindrances and introducing changes, which are not in conflict
with these components. Moreover, by understanding which components of the test
process are important, the different test process models such as the ISO/IEC 29119 can
be assessed for feasibility in a practical organisation.

As for the research approach to the organisational test strategy, the impact of different
factors such as tools, methods, personnel, test case design and quality criteria required
further investigation. One feasible approach was to analyse the practical impact of
different components to the test process, and determine how the test strategy differs
in different types of organisations. The identification of major contributing factors to
the test process efficiency and perceived end-product quality would be especially
helpful in allowing organisations to achieve better practices. If the identification was
successful, it could also be worthwhile investigating whether there are certain test
strategies for certain types of organisations which can be generalized into different
template models for test strategy. Based on literature review, this approach was
plausible, as the concept of “Generic Test Strategy” (De Grood 2008) already exists,
and is used to define the general approach for the test process. In addition to
generalization, developing the concept of preferred test strategies and identifying
important test process components for test organisations was also considered
beneficial outcome. In this way, the theoretical ISO/IEC 29119 model and practical
testing done in organisations could have been adjoined.

The research problem, i.e. which components affect the software testing strategy and
how they should be addressed in the development of test process, was decomposed
into sub-problems. The specification of the concepts and additional viewpoints of the
thesis (sub-problem 1) were needed to specify the scope of the thesis and give an
overview of the test processes. Sub-problems 2, 3, 4 and 6 were used in the qualitative
analysis of the current software test processes, concerning the emergent special
questions of how different test strategy components affect the test process and the
identification of the important test components from the viewpoint of the test process.
In sub-problems 2 and 6, additional data was collected by applying the quantitative
method to assess the sub-problem from additional viewpoints. Finally, sub-problems 5
and 7 (applying qualitative analysis) focused on assessing the test process and test
process improvement as an organisational activity. The objectives of the individual
studies in this thesis were derived from the specified sub-problems. Sub-problems,
objectives of the studies, and the respective publications are listed in Table 3.

42

Table 3. Decomposition of the research problem

Sub-problem

Objective of the study

Publication

1. Which are the current problems and
enhancement possibilities for software

Specification of the concepts and

additional viewpoints for the

Publication I

testing process? thesis.

2. Which methods and tools are | Identification and decomposition | Publication II
applied on real-world software | of common testing practices which

testing? are applied in real world testing.

3. How organisations develop software | Study the effect of development | Publication Il
and does the selected approach affect | methods and agile development on

the testing practices? the testing practices.

4. How does the organisation decide | Identify the different selection | Publication IV

on what has to be tested?

methods and prioritization process
of test cases in projects.

5. How and when do the organisations
develop their test processes?

Analysis of the requirements and
approaches applied
organisations decide to improve
their existing test process.

when

Publication V

6. How do the software quality-related
aspects reflect to the test process?

Analysis of the effect of quality-
related aspects from the viewpoint
of test process.

Publication VI

7. How applicable is the test standard
process from the viewpoint of the real
world organisations?

Development and analysis of a
process improvement framework,
which applies the ISO/IEC 29119
test process model.

Publication VII

3.2 Research subject and the selection of the research
methods

This thesis applies a mixed method research combining both quantitative and
qualitative research methods to approach the research subjects. The combination of
different research approaches and datasets is a form of methodological pluralism
(Hirschheim 1985), which itself is a way to increase the validity of the study results
(Onwuegbuzie and Leech 2007). Methodological pluralism allows the researcher to
observe the phenomenon from different viewpoints, and also to combine the
advantages of two different approaches, such as descriptive strengths of ethnography
and the analytical edge of Grounded Theory (Tan and Hall 2007). In the following, the
background and reasoning for combining different research approaches is explained.

Test organisation, which by the context definitely belongs to the domain of software
engineering discipline, can be considered a form of a socio-technical system (Geels
2004) as it has both social and technical aspects related to it, similarly as an

43

information system. The socio-technical systems, as they have considerable human or
social component in nature, share all the difficulties associated with the social
sciences. A scientific paradigm adopted by the natural sciences is appropriate to study
these types of systems only if the paradigm is also applicable in the social sciences. If
one contends that the social sciences embrace a different paradigm for acquiring
knowledge than their natural science counterpart, then information system study
should follow the principles of the social science paradigm. (Hirschheim 1985).

Based on the Hirschheim observations, this thesis studies both social and technical
aspects of the observed subjects. In a publication by Geels (2004), the social and
technical aspects of software systems are considered to form a larger ecosystem, a
socio-technical system (Figure 7), consisting of several elements from both social and
technical disciplines which are equally important. Overall, it can be argued that the
systems similar to the modern information systems consist of four different factors:

Social - norms, culture, laws, roles

Cognitive - semantics, attitudes, beliefs, ideas, morals
Information - programs, data, memory

Mechanical - hardware, computer, physical space

These should all be considered in research studying socio-technical systems.
(Whitworth 2006).

In methodological pluralism, the objective is to observe the phenomenon from
different viewpoints, and also to combine the advantages of two different approaches.
In this study, the selected methods were a Grounded Theory study, following the
principles of Strauss and Corbin (1990), and a survey (Fink and Kosecoff 1985).
Methodological pluralism accepts that there is not one conclusive methodological or
epistemological principle which is adequate for observing and analysing the observed
phenomena. As methodological pluralism emphasises, the object of study has many
different facets, and it is plausible to argue that it should be applied in studies on
information systems and software engineering processes such as organisational test
process.

44

Application domain,

Production technology-in-use

- . - -

- ~ i S
- .
id Transfer of knowledge ~ 7 ™
r ~ - Repair, maintenance ~

s “\ s

; - p \
b A
Scientific knowledge ‘ Human resources ‘ \ Regulations ‘ X

4
!

!
!
! — 1
| : |
Technological, design . Production of Use of artefacts in | 1
knowledge artefacts user practice :
|) ' L !
\
v v
\ % /

) =T 4
\ L parts \ /
Capital, money Tools, machines s s
” h N Complementary -
e ~ arefacts -
~ L4 ~ -

istril

infrastructure

-

Figure 7: The basic elements of socio-technical system (Geels 2004)

The application of multiple research approaches and the triangulation of the research
data also address some of the considerations as regards the different research
paradigms. In the IS field, and in general studies focusing on large ecosystems, this
consideration is the epistemological assumptions, namely that between the positivist
and interpretivist paradigms i.e. the quantitative and qualitative approaches. In
positivist research, the research results, in theory, claim intersubjective validity
between the results, whereas in the interpretivist approach the focus is on selecting
and applying appropriate research methods to understand the study subjects
individually (Becker and Niehaves 2007). Traditionally, positivism is usually
associated with the quantitative approaches, while interpretivism is closely associated
with qualitative methods (Chen and Hirschheim 2004). In some contexts, the
epistemological differences may even cause the research, which observes the same
phenomenon, not to be mutually understood, as some theories and constructs seem
different between these different viewpoints, such as theory on activity and the social
implementation of that said activity, or simply the way the researcher observed the
phenomena (Weber 2003).

To address this issue, a term of critical realism has been defined (For example Carlsson
2003, Pather and Remenyi 2004). Critical realism research aims to utilise both
qualitative and quantitative methods and strive beyond such limitations to explain
and understand the subjects of the study (Pather and Remenyi 2004). Critical realism
draws on the existing approaches, not committing to a single form of research, but
aiming to understand the object from all different aspects, while acknowledging the

45

possible fallibilities and limitations of their research (Mingers 2004, Pather and
Remenyi 2004). Therefore, the combination of both qualitative and quantitative
research is applied in this study to understand the research subjects and their
implementations of the test process components in detail, while still retaining the
ability to conduct intersubjective analysis between the research subjects on the test
process concepts and thesis topics.

3.21 The research subject

In this thesis, the ISO/IEC 12207 Software life cycle processes (ISO/IEC 2008) standard
was initially used to describe the research subjects, software-producing organisations
and their product outputs. In ISO/IEC 12207 the organisation and products are
described to compose a set of processes. This definition was expanded in the testing-
related processes with the test process model defined in the ISO/IEC 29119 Test
Standard (2010), which defines the organisation and process activities from the
viewpoint of testing. In addition of organisation model, ISO/IEC 15504-1 (ISO/IEC
2002) was applied to define the fundamental concepts for process improvement, as
this standard offers an assessment model for organisational processes defined in the
ISO/IEC 12207. These standards formed the a priori understanding of the research
subjects, defining the different activities and components the subject organisation was
considered to have.

In addition to the process models for development and testing, the definition of
software quality was taken from the standard ISO/IEC 25010 Software product quality
requirements and evaluation quality model (ISO/IEC 2009) to enable the study to
assess the output of the research subjects. In this model, the software quality is
defined as an amalgam of eight quality characteristics, which each have a number of
objectively measurable or evaluable sub-characteristics, which describe the software
specific activities and the system context on which the software is developed and
maintained.

From ISO/IEC 15504, a concept of an organisational unit (OU) was also derived to
define the organisational subsets studied in this research. As defined in ISO/IEC
15504-1 Concepts and Vocabulary (2002), an organisation unit is a part of an
organisation, which deploys one or more processes with coherent processes context
and operates within a coherent set of business goals. An organisational unit can
consist of one specific project or a specific group responsible for one product within a
larger corporation, but especially in micro and small-sized (EC 2003) companies, one
organisation unit can consist of the entire company. In larger organisations, an OU
operates mostly independently, but receives some amounts of organisational level
steering from the upper management. In smaller organisations, the organisational
management operates within the OU or is directly above it. As the large companies

46

may have different business goals than the small companies, it was unfeasible to
compare them directly; similarly different projects may have different purposes and
goals. The reason to apply OUs as an assessment unit instead of entire corporations or
projects was to normalise the differences between the organisations, and minimise the
effect of different objectives and business goals, and to enable direct comparison
between research subjects.

3.2.2 The selection of the research methods

In Grounded Theory (Glaser and Strauss 1967), the objective of the research is to
present an accurate description of what is being studied, and by methods of reduction
and generalisations to build a believable descriptive narrative and chain of evidence
from observations to a descriptive model with little or no interpretation on the studied
phenomenon (Strauss and Corbin 1990). The Grounded Theory method allows the
research question freedom to explore the phenomenon in depth, and allows a broader
viewpoint on the topic than quantitative approaches. The Grounded Theory method
was selected as an analysis method in the preliminary phase of the study, as the nature
of the research topic, and the existing data, was considered too broad and
unstructured for quantitative analysis. This method was considered appropriate, as
the Grounded Theory method is in general considered suitable to uncover and
understand complex phenomena founded on large ecosystems and gain novel and
fresh viewpoints on areas, which are otherwise generally well-known (Strauss and
Corbin 1990).

In the main data collection and analysis phase, the Grounded Theory method was
applied as it suited the purposes of the study as the research topic, test processes in
organisations, was considered a large and broad topic. The concept of conducting the
study by using some form of action research (for example, Susman and Evered 1978)
was rejected as the possibility of affecting the organisations and studying the effect of
the changes, which forms the core of the action research approach, was limited.

On selection of the Grounded Theory, the second decision was then between the
disciplines of Glaserian (outlined in Glaser 2002, van Niekerk and Roode 2009) and
Strauss-Corbin (1990) approaches. The Strauss-Corbin-approach focuses on coding
paradigms and in systematic categorisation and analysis of the collected data to
uncover the relevant factors behind observed phenomena, whereas the Glaserian
approach focuses on passive observation and emergence of strong codes from the data
which then can be used to identify the relevant factors. In the preliminary phase,
Strauss-Corbin was applied on the analysis of the existing data because of its
codification method, which allowed detailed and structured analysis on the collected
qualitative data set. In the latter phases, the Strauss-Corbin-method was applied as the
number of organisations participating in the study was relatively high for a qualitative

47

study, and the possibilities of passively and comprehensively observing the twelve
organisations to the degree required by the Glaserian approach was considered
unfeasible. Although the Glaserian approach is also a merited and appropriate
method, the practical limitations and applicability in our research context made the
Strauss-Corbin more suitable for the study purposes, and therefore it was applied
throughout the research process.

In addition to the qualitative study using the Grounded Theory approach,
quantitative data was collected from a survey (Fink and Kosecoff 1985). The survey
method is an appropriate method to collect data from a standardised group of
personel, such as software development professionals such as software project leaders
and test managers. According to Pfleeger and Kitchenham (2001), a survey is a
comprehensive method for collecting specific and measurable information to describe,
compare or explain knowledge, attitudes and behaviour.

The survey was also selected as an additional research method for the study to enable
triangulation of research data (Denzin 1978). The triangulation of data in research
means application and comparison of several types and sources of data to further
validate the results. According to the literature (Seaman 1999, Paré and Elam 1997), the
combination of quantitative and qualitative methods is usually more beneficial than
applying either approach separately: statistical relationships found between the
quantitative variables can be verified against qualitative data and vice versa. In this
study, the qualitative data collected with the interviews and quantitative data
collected with survey enabled the comparison between the data sources and was
applied to further validate the results, as demonstrated in Publication II and Publication
VI

3.3 Research process

The research process was divided into three phases. In the preliminary phase of the
thesis, the Grounded Theory method was applied on the previously collected
interview data, along with a literature review on the relevant topics to establish basic
understanding of the research area. Additional research topics were collected from the
expert group on the software testing, consisting of software engineering researchers
and industry representatives. In the second phase, the main data collection and
analysis, the research methods were a qualitative analysis using the Grounded Theory
method on collected interview data, supplemented with a quantitative survey. In the
third phase, the validation phase, the observations from the earlier phases were
studied with additional interviews and subsequent Grounded Theory analysis. The
research process, along with the different research phases, is illustrated in Figure 8.

48

Preliminary phase of the thesis
Literature review, expert group, previous research data, Publication I.

v

Main data collection and analysis phase

Quantitative data collection Qualitative data collection

Survey, sample of 31 OUs, Interviews, sample of 12 case OUs in 36

probability sampling, structured interviews, theoretical sampling.

questionnaire, survey method. Publications 11, 111, IV, VI, initial data

Publications 11, VI, frequencies, analysis, open and axial coding,

correlation and regression analysis. identification of categories and
dimensions, selective coding, Grounded
Theory method.

v

Validation phase
Interviews, 10 case OUs, 13 interviews, theoretical sampling.

Publications V, VII, data collection results, initial data analysis,
open and axial coding, identification of categories and
dimensions, selective coding, Grounded Theory method.

Figure 8. Research process and phases
3.3.1 Preliminary phase of the thesis

During the preliminary phase of the thesis, an extensive literature review was done to
better understand the test processes and search for categories of interest and specify
the viewpoints of the thesis. In addition to the literature review, the existing data from
previous research project ANTI, reported in (Karhu et al. 2009, Taipale and Smolander
2006, Taipale et al. 2006a, 2006b, 2006c), were examined to establish basic
understanding over real-life-testing and find appropriate seed categories (Miles and
Huberman 1994). The ANTI project was a software engineering research project
conducted by some of the researchers from our laboratory. The ANTI project focused
on test process costs and quality factors, applying first the Delphi method (Schmidt
1997) and then collecting more detailed data with the Grounded Theory approach.
More details on the ANTI research process and the results of the preliminary phase of
the thesis are reported in Publication L.

The previous research data was collected from five organisational units (OUs, see
Table 2) which participated in the previous research project ANTI. This data which
consisted of interview recordings, transcriptions, earlier codifications and interview

49

memos, was codified according to the Strauss & Corbin Grounded Theory principles
to identify strong categories in the interview themes of test process problems and
enhancement proposals.

Table 2. Analysed organisations from the preliminary phase

Business Company size Interviewed personnel
A MES producer and . . Testing manager, tester,
. P Large/international & &
integrator systems analyst
Software producer and . Testing manager, tester,
. pr . Small/national 5 &
testing service provider systems analyst

A process automation and
information management | Large/international
provider

Testing manager, tester,
systems analyst

Testing manager, 2 testers,

Electronics manufacturer | Large/international
systems analyst

Testing manager, tester,

Testing service provider Small/national
systems analyst

3.3.2 Main data collection and analysis phase of the thesis

In the main data collection and analysis phase, the focus of the research was on
collecting data on a large, heterogeneous group of real-life software organisations to
understand how software testing in real life works. The areas of interest were to test
whether the a priori constructs such as literature review and Publication I results were
still valid, and in collecting data on testing-related aspects in both software
development and in the testing itself. The data collection was done with two main
approaches intended to complement each other. Qualitative data was collected for the
Grounded Theory analysis in twelve “focus group” organisations based on theoretical
sampling, and quantitative data was collected with a survey from 31 organisations,
which were selected on supplementing the “focus group” with probability sampling.

Data collection

The beginning of a qualitative study includes the definition of a research problem,
possible a priori constructs, the selection of cases, and the crafting of instruments and
protocols for data collection (Eisenhardt 1989). The prior literature and research data,
in which 30 different software companies were interviewed and 5 subsequently
analysed in detail, were used in the initial design of research. The definition of priori
constructs and the selection of polar points was also based on the earlier ANTI
research project results and experiences, in terms of selection of the representative
cases.

50

Furthermore, the case selection criteria was set to include only organisation units,
which as their main type of business activity develop software or provide software
process-related services in a professional manner. Furthermore, on order to limit a
possible company bias, the number of participating organisation units was limited to
one OU per company, even if some larger companies could have participated with
several different OUs. According to Eisenhardt (1989), this approach is feasible. In
addition, in inductive theory building the a priori data should not affect the tested
theories or hypotheses. Therefore, no particular emphasis was put on the pre-existing
data or formal standard definitions when observing and analysing the studied
organisations.

For the case study, twelve OUs were selected as the “focus group” (see Table 3) based
on the previous results and identified domain types. The sampling was theoretical
(Paré and Elam 1997) and the cases were chosen to provide examples of polar types
(Eisenhardt 1989), which meant that the cases represented different types of OUs, with
differences in the business area, size of the company and market size. Theoretical
sampling (Glaser and Strauss 1967) describes the process of choosing research cases to
compare with other cases. The goal of theoretical sampling is not the same as with
probabilistic sampling; the goal is not to collect representative sample of the entire
population, but to gain a deeper understanding of the analysed cases and identify
concepts and their relationships. In practice, the organisations were selected from a
group of research partners and collaborators, and supplemented with additional
organisations to represent organisation types not present. The actual data collection
instruments were theme-based questionnaires and a survey, available as Appendixes
II and III.

The data collection phase included three theme-based interview rounds, of which the
second combined both qualitative and quantitative aspects. The companies were
visited personally and 36 recorded interviews were carried out for the case OUs of the
qualitative research, and an additional 19 interviews for the quantitative analysis to
achieve the requirements of statistical relevance. The duration of the interviews varied
between one and one and a half hours and they were all tape-recorded and
transcribed. The interviews were conducted under partial confidentiality agreement
by the project researchers to ensure that the interviewees understood the questions
correctly and could openly discuss matters that could potentially jeopardize trade
secrets. Under this partial confidentiality agreement, no full source data would be
publicly available, but partial, anonymized compositions of the interview data could
be used in the publications. A memo containing the issues emphasised was also
written during the interviews.

51

Table 3. Analysed organisations from the main data collection and analysis phase

C i A t of agil
ou Business, typical product type ompany.SIZe/ motn ,0 aglle
Operation practices!

MES producer and electronics

Case A | manufacturer, embedded software Small / National Low
for hardware product
Logisti ftware devel , . .

Case B OBISHCS Software developer Large / National High
software for hardware system

Case C | ICT consultant, service producer Small / National Low
Int t ice devel d

CaseD | [iernetservice deveioper an Small / National Low
consultant, service producer

Case E Maritime software system Medlum / Medium
developer, software product International
Safety and logistics system

Case F | developer, software for hardware Medium / National Low to none
system
Fi ial soft devel , .

Case G fnancial sottware developer Large / National Low to none
software product
ICT developer and consultant,

Case H | embedded software for hardware Large / International Low to none
product
Fi ial soft devel , .

Case I fnancal sottware developer. Large / International Low
software product

ME busi d agriculture ICT

Case] 5 ; business and agricutture c Small / National Medium
service provider, software product
MES produce.r and logistics service Medium / .

Case K | systems provider, embedded . Medium

International

software for hardware product
Modeli ft devel ,

Case L odeng sottware deveioper Large / International Low
software product

1

szrve Varies; from software consultancies

y to software product developers and | Varies Varies

only
hardware manufacturers.

cases

1See Publication III for more details

The first interview round that was completed during the qualitative analysis served
also as the review for the quantitative interview themes. The first interview round
contained only semi-structured (open) questions, and the objective was to understand
the basic practice of testing, identify the central themes for the next round, and in
general, identify central concepts and factors of the test process in the real-life
organisations. The interviewees were software or architecture developers or test
designers. In some interviews, there was more than one interviewee present, for
example a software developer and architecture developer. Such interviews usually
lasted more than one hour. The questions on the first round were themed around the

52

basics of the OU testing process, testing resources, software development processes
and testing environment.

The interviewees in the second round were test managers or project leaders
responsible for software projects. As earlier, the duration of the interviews varied
between one and one and half hours and consisted of a survey and a supplemental set
of semi-structured interviews, conducted by researchers working on the project. The
objective of the second interview round was to achieve deeper understanding of the
software testing practice and gain formal information on company testing framework
and practices. The interviewees were selected to be managers and leaders because it
was considered that they were more capable of assessing the test process from the
viewpoint of the entire organisation.

The questions were theme-based and concerned problems in testing, the utilisation of
software components, the influence of the business orientation, communication and
interaction, schedules, organisation and know-how, product quality aspects, testing
automation, and economy. The structure of the questions varied from structured
survey questions to supplemental, semi-structured, open questions. From the 19
interviews with the organisations only participating in the survey, the semi-structured
interview answers were not included in the qualitative data analysis as they lacked the
context and additional information regarding the organisation collected from other
interview rounds.

In the third interview round the interviewees were testers or programmers who had
extensive testing responsibilities in the same OUs that were interviewed during the
first and second round. Once again, in the third round, the interviews were held by
the researchers to ensure that the interviewees understood the questions correctly and
that all of the questions were answered to a satisfactory degree. The interviews in this
round focused on topics such as problems in testing — complexity of the systems,
verification, testability — the use of software components, testing resources,
outsourcing and customer influence in the test process. A full list of interview themes
and a description of the interviewee roles are listed in Table 4.

53

Table 4. Data collection rounds in the main data collection and analysis phase

Round Number of | Interviewee Description Themes
type interviews role
1) Semi- 12 focus OU | Designer or The interviewee Design and development
structured interviews Programmer was responsible methods, Testing strategy and
interview for or had methods, Agile methods,
influence on Standards, Outsourcing,
software design. Perceived quality
2) 31 OUs, Project The interviewee Test processes and tools,
Structured | including 12 | manager or was responsible Customer participation, Quality
survey focus OUs Testing for the sofware and Customer, Software Quality,
with Semi- manager project or testing Testing methods and -resources
structured phase of the
interview software product.
3) Semi- 12 focus OU | Tester or The interviewee Testing methods, Testing strategy
structured interviews Programmer was a dedicated and resources, Agile methods,
interview tester or was Standards, Outsourcing, Test
responsible for automation and services, Test
testing the tools, Perceived quality, Customer
software product. | in testing

In two of the first round interviews, the organisation elected two people for the
interview, as they considered that they do not have any individual worker, whose
responsibilities match with the desired interviewee role. Additionally, on one
occasion, the organisation was allowed to supplement their earlier answers in a later
interview as the interviewee thought that the original answers lacked some crucial
details.

Data analysis with the Grounded Theory

The grounded analysis was used to provide insight into the software organisations,
their software processes and testing activities. By interviewing people in different
positions from the software organisation, the analysis could gain additional
information on testing-related concepts, such as different testing phases, test
strategies, testing tools and case selection methods. Later this information was
compared between organisations, allowing hypotheses on the test process
components from several viewpoints and from the test process itself as a whole.

The Grounded Theory method contains three data analysis steps: open coding, axial
coding and selective coding. The objective for open coding is to extract the categories
from the data, whereas axial coding identifies the connections between the categories.
In the third phase, selective coding, the core category is identified and described
(Strauss and Corbin 1990). In practice, these steps overlap and merge because the

54

theory development process proceeds iteratively. Additionally, Strauss and Corbin
state that sometimes the core category is one of the existing categories, and at other
times no single category is broad enough to cover the central phenomenon. In
Publications I, 1I, 1II and VI the core category of the observed test concept was
identified to be such an umbrella category, whereas in Publications IV, V and VII the
core category was identified to be an existing or specific category from the research
data.

The objective of open coding is to classify the data into categories and identify leads in
the data, as shown in the Table 5. The interview data was classified into categories
based on the main issue, with any observation or phenomenon related to it being the
codified part. In general, the process of grouping concepts that seem to pertain to the
same phenomena is called categorising, and it is done to reduce the number of units to
work with. In this study, this was done using ATLAS.ti software (ATLAS.ti 2011)
which specialises on the analysis of qualitative data. The open coding process started
with “seed categories” (Miles and Huberman 1994) that were formed from the
research sub-question the publication was studying and prior observations from the
earlier publications. Overall, the analysis process followed the approach introduced
by Seaman (1999), which notes that the initial set of codes (seed categories) come from
the goals of the study, the research questions, and predefined variables of interest. In
the open coding, we added new categories and merged existing categories into others,
if they seemed unfeasible or if we found a better generalisation.

After collecting the individual observations into categories and codes, the categorised
codes were linked together based on the relationships observed in the interviews. For
example, the codes “Software process: Acquiring 3rd party modules”, “Testing
strategy: Testing 3rd party modules”, and “Problem: Knowledge management with
3rd party modules” were clearly related and therefore could be connected together in
the axial coding. The objective of axial coding is to further develop categories, their
properties and dimensions, and find causal, or any other kinds of connections
between the categories and codes. For some categories, the axial coding can also
include actual dimension for the phenomenon, for example “Personification-
Codification” for “Knowledge management strategy”, or “Amount of Designed Test
Cases vs. Applied” with dimension of 0-100%, where every property could be defined
as a point along the continuum defined by the two polar opposites or numeric values.
Obviously, for some categories, which were used to summarise different observations
such as enhancement proposals, opinions on certain topics or process problems,
defining dimensions was unfeasible. At first using dimensions for some categories
was considered, for example, “criticality of test automation in testing process” or “tool
sophistication level for automation tools” in the analysis, but later they were
discarded as they were considered superficial, obfuscated the actual observation, and
overall, yielded only little value in cases where the dimension was not apparent.

55

Table 5: Example of codification process

Interview transcript Codes, Category: Code

“Well, I would hope for stricter control or Enhancement proposal: Developing
management for implementing our testing testing strategy

strategy, as I am not sure if our testing covers

everything and is it sophisticated enough. On Strategy for testing: Ensuring case
the other hand, we do have strictly limited coverage

resources, so it can be enhanced only to some Problem: Lack of resources

degree, we cannot test everything. And perhaps,
recently we have had, in the newest versions, some
regression testing, going through all features, seeing
if nothing is broken, but in several occasions this | Problem: Lack of time
has been left unfinished because time has run
out. So there, on that issue we should focus.”

Our approach to analysis of the categories included Within-Case Analysis and Cross-
Case-Analysis, as specified by Eisenhardt (1989). Basically, this is a tactic of selecting
dimensions and properties with within-group similarities coupled with inter-group
differences based on the comparisons between different research subjects. In this
strategy, one phenomenon that clearly divided the organisations into different groups
was isolated, and looked into for more details explaining differences and similarities
within these groups. As for one central result, the appropriateness of OU as a
comparison unit was confirmed based on our size difference-related observations on
the data; the within-group- and inter-group comparisons did yield results in which
the company size or company policies did not have strong influence, whereas the
local, within-unit policies did. In addition, the internal activities observed in OUs were
similar regardless of the originating company size, meaning that in this study the OU
comparison was indeed a feasible approach.

Each chain of evidence was established and confirmed in this interpretation method
by discovering sufficient citations or finding conceptually similar OU activities from
the case transcriptions. Finally, in the last phase of the analysis, in selective coding, the
objective was to identify the core category — a central phenomenon - and
systematically relate it to other categories and generate the hypothesis and the theory.
Overall, in theory building the process followed the case study research described by
Eisenhardt (1989) and its implementation examples (Klein and Myers 1999, Paré and
Elam 1997).

The general rule in Grounded Theory is to sample until theoretical saturation is
reached. This means, until (1) no new or relevant data seem to emerge regarding a
category, (2) the category development is dense, insofar as all of the paradigm
elements are accounted for, along with variation and process, and (3) the relationships

56

between categories are well established and validated (Strauss and Corbin 1990). In
this study, saturation was reached during the third round, where no new categories
were created, merged or removed from the coding. Similarly, the attribute values were
also stable, i.e. the already discovered phenomena began to repeat themselves in the
collected data. As an additional way of ensuring the validity of the study and in order
to avoid validity threats, four researchers took part in the data analysis. The bias
caused by researchers was reduced by combining the different views of the
researchers (observer triangulation) and a comparison with the phenomena observed
in the quantitative data (methodological triangulation) (Denzin 1978).

Data analysis with the survey instrument

In the quantitative parts of the study, the survey method described by Fink and
Kosecoff (1985) was used as the research method. According to Fink (2003), a sample
is a portion or subset of a larger group called a population, which includes all
organisations which are potential survey respondents. The sample in the survey
should aim to be a miniature version of the population, having the same consistency
and representatives for all relevant domain types, only smaller in size. In this study,
the population consisted of organisational units as defined in ISO/IEC 15504-1. The
sample was constructed by taking the focus group collected for the qualitative
analysis, and supplementing it with probability sampling (see Fink & Kosecoff 1985)
to have sufficient statistical relevance, following principles presented by livari (1996).
In practice, the probability sampling was done by expanding the sample with 19
additional organisations, collected from the university and research group company
contacts by random selection and confirming by a phone call that the organisation
fitted the sample criteria. Out of a total of 30 organisations that were contacted, 11
were rejected based on this contact, as they either did not fit the sample criteria or
decided not to participate on the study.

For the selected approach, the actual methods of data analysis were partially derived
from livari (1996). He surveyed computer-aided software engineering tool adoption.
The sample was 109 persons from 35 organisations. He derived the constructs from
the innovation diffusion/adoption theory. livari estimated the reliabilities of the
constructs using Cronbach coefficient alpha (Cronbach 1951). In factor analysis, he
used principal component analysis (PCA) and in data analysis regression analysis. We
used also used Cronbach alpha for measuring the reliabilities of the constructs
consisting of multiple items and in comparisons of the correlations between different
constructs with Kendall’s tau_b correlation. In these calculations, a specialised
statistical analysis software SPSS (SPSS 2011) was used.

A validated instrument increases the reliability of the measurements, but such an
instrument was not available in the literature, so we designed our own interview
instrument based on the questionnaire derived from Dyba (2004). This questionnaire

57

was an instrument for measuring the key factors of success in software process
improvement, which we in our study adapted to study the perceived end-product
quality and the effect of different quality-related factors in software testing.

Related surveys can be categorised into two types: Kitchenham et al. (2002) divide
comparable survey studies into exploratory studies, from which only weak
conclusions can be drawn, and confirmatory studies, from which strong conclusions
can be drawn. This survey belongs to the category of exploratory, observational, and
cross-sectional studies as our intention was to study the different identified factors
and observe their effect on the test process and end-product quality.

The survey was conducted at the second interview round during the face-to-face
interviews. A few open-ended questions were located at the end of the questionnaire
to collect data for the qualitative study. The questionnaire was planned to be answered
during the interview to avoid missing answers because they make the data analysis
complicated, for example, for the calculation of correlation. For these reasons, a self-
assisted, mailed questionnaire was rejected and personal interviews were selected. In
addition, as Baruch (1999) has stated, the response rate for academic surveys is usually
less than two thirds depending on the surveyed population. Had the survey been a
mail-in questionnaire instead of an interview, it would have been probable that
besides missed questions, the sample size would have been even smaller. The
questionnaire was also piloted with three organisations and four private individuals
before the actual data collection round to test the form and the questions for clarity
and understandability.

3.3.3 Validation phase of the study

In the validation phase of the thesis study, the focus shifted from the identification of
testing work-effecting process components to the entire process organisation. In this
phase, the test process of the organisation, and subsequently the concepts of test
process improvement were studied. The objective was to understand how the
identified test process components should be addressed at an organisational level.
Additional concern was to test the feasibility of the ISO/IEC 29119 test process model
and develop a framework for organisations to develop their test process towards
better practices and conformance with the principles presented at the standard-
defined test process model.

Data collection

The validation phase of the study had a new set of data collection interviews with a
partially new group of participating organisations. Otherwise the interviews were
organised similarly, as in the main data collection and analysis phase interview
rounds one and three. The fourth round interviewees were test managers, as their

58

viewpoint was considered, from the project-level organisation, the most suitable to
assess and discuss the observations from earlier rounds and to assess the applicability
of the standard process model within the organisations. The interviews were theme-
based, including questions from themes such as test strategy, test policy, test planning,
testing work in general, software architecture, and crowd sourcing. These interviews
were held in cooperation with another dissertation study, so some of the interview
themes were not directly directed at this dissertation work. A list of interviewed
organisations is available as Table 6.

Table 6. Analysed organisations from the validation phase

. . Company size /
ou Business domain, product type Operation domain
Case A* | ICT developer and consultant, service producer Small / National
Case B* Safety and logistics systems developer, software products Medium / National
Case C Financial and logistics software developer, software Medium/ National
products
Case D MES producer and logistics system provider, embedded Medium / International
software for hardware products
Case E* MES producer and electronics manufacturer, embedded .
Small / National
software for hardware products
Case F* Maritime software systems developer, software products Medium / International
Case G ICT' consultant specialicing in testing, test consulting Medium / National
services
Case H* Modeling software developer, software products Large / International
Case I* ICT developer and consultant, software production .
. Large / International
consulting
Case J ICT' consultant specialicing in testing, test consulting Small / National
services

* This organisation also participated in interview rounds 1-3

In addition to the fourth round of interviews, a validation step of Publication VII also
included a study on four organisations based on the prior interview data. To confirm
the findings of this study, three of the organisations were interviewed to review and
collect feedback on the study results. A fourth organisation was offered the
opportunity, but due to the changes in their organisation, they declined to participate
in this part. Additionally, one interviewee from the fourth round interviews cancelled
the interview for personal reasons, but provided written answers by email.

Both of the interview sets, 4th interview round and wvalidation interviews for
Publication VII, were analysed with the Strauss-Corbin Grounded Theory -approach,
similarly to the previous research phase.

3.3.4 Finishing and reporting the thesis

Each phase of the thesis answered its part of the research problems, but also raised

new questions, which were addressed in the upcoming phases. In the preliminary
phase, the scope of the thesis was on identifying the potentially interesting and

59

important test process components from the previously collected data (Publication I),
literature review and software standards.

In the main data collection and analysis phase, the organisations participating in the
study were interviewed in three consecutive rounds to collect data on themes related
to the test process. The themes were selected based on previous study phase results,
literature review and topics of interest identified from the interviews themselves.
During the second interview round, a quantitative survey was also conducted in all of
the participating organisations, and in an additional 19 organisations participating
solely in the survey. The data collected during this study phase was published in
several publications. The overall testing resources and testing approach were
discussed in Publication II, which combined both the survey and interview results. In
Publication III, the effect of different development methods and the overall influence of
the agile principles in testing were assessed, while Publication IV focused on the
aspects related to the project-level management, test case selection and development
of a test plan. Publication VI combined both qualitative and quantitative data to study
the quality concepts and perceived quality in the software organisations and the effect
different testing activities may have on the perceived end-product quality.

The last phase of the study was the validation phase, where the organisations were
studied as a whole in order to study the feasibility of the ISO/IEC 29119 test process
model and establish a framework to allow organisations to identify possible
development needs and develop their test process activities towards better practices.
These topics are discussed in two publications. Publication V studies how the
organisations develop their test practice or adopt new testing methods as well as how
applicable the proposed standard model is in a real-life organisation. The final
publication of this dissertation, Publication VII, introduces a proof-of-concept for a self-
assessment framework which was developed based on the study observations. This
framework allows organisations to assess their current testing practices and develop
their test process towards concepts and activities presented in the ISO/IEC 29119
standard. The progress of this thesis work and the relationships between the different
studies included in this dissertation are illustrated in Figure 9.

60

Preliminary
study,
material

Main data
collection
and analysis

Validation

Prior research Software Literature review
data on testing and background
software problems and data to establish
testing, ANTI > observed < themes, ISO/IEC
project results enhancement standards and
proposals, international test
Publication 1. certifications.
A 4 >
Testing tools The effect of Decision- The effect of
and testing quality making in the development
methods requirements selection of test process to the
applied in real and quality- cases and test process in
world testing, related aspects development of practice,
Publication II. in testing, test plan, Publication III.
Publication VI. Publication IV.
A y A A 4
A 4 A 4

Software testing Development

practices from the and analysis of

process test process

improvement | improvement

viewpoint, "| framework based

Publication V. on ISO/IEC

29119, Publication
VIIL

Figure 9. Products and relationships between the thesis publications

61

3.4 Summary

The research phases and their essential methodical details and constructs are

summarised below in Table 7.

Table 7. The research phases

Phase Preliminary phase Main data collection and |Validation phase
analysis
Research What are the most Which test process factors [How do organisations
problem pressing test process have the most influence |develop their test
problems in real-life on the test work itself? processes? Is the standard
organisations? Which test process test process model feasible
Viewpoints for the thesis. |activities affect the in real-life organisations?
perceived end-product Development of a
quality? Affecting factors |framework to assess test
and their relationships. process maturity and
identify development
objectives.
A priori ANTI-project results. Viewpoints of the thesis, |Viewpoints of the thesis,
constructs ISO/IEC 29119 process affecting factors and their
model. relationships, ISO/IEC
29119 process model.
Case Steering group, expert 12 OUs in the qualitative |10 OUs in process
selection/ |group. analysis, 31 OUs in the improvement study, 4
interviewees quantitative survey. OUs in development of
self-assessment
framework.
Instruments |Literature review, Interviews, semi- Interviews, semi-
and interviews. structured questions, structured questions.

protocols for

survey, structured

data questionnaire.
collection
Data Qualitative analysis with |Statistical analysis with |Qualitative analysis with
analysis ATLAS.ti software SPSS software, qualitative |[ATLAS.ti software.
analysis with ATLAS.ti
software .
Applied 20 interviews with 4 OUs |36 qualitative interviews |13 supplemental
data set from ANTI-project. with 12 focus OUs and a |interviews, 36 qualitative
survey of 31 OUs interviews with 12 focus
OUs and a survey of 31
OUs.
Reporting |Publication 1 Publications 1I-1V, VI Publications V and VII

62

4 Overview of the publications

In this chapter an overview, and the most important results, of the included thesis
publications are shortly introduced. Besides this chapter, the results of this research
are presented in detail in the appendix consisting of the seven publications, in original
publication form and in full length.

The publications included to this thesis have been published separately in scientific
venues, which have all employed a peer-review process before acceptance for
publication. In this chapter, each of these publications, their objectives, results, and
relation to the whole, are discussed. The contents of these publications can be
condensed with the following objectives of the studies:

Publication I: Overview of the real-life concerns and difficulties associated with
the software test process.

Publication 1I: Overview of the testing resources and testing methods applied
to real-life test organisations.

Publication I1I: Analysis of the effects the applied development method has on
the test process.

Publication IV: Analysis of the test case selection and test plan definition in test
organisations.

Publication V: Analysis of the requirements for developing test process or
adopting new testing methods in software organisations.

63

e Publication VI: Analysis of associations between perceived software quality
concepts and test process activities.

e Publication VII: Introduction of a test process assessment framework
combining maturity levels and ISO/IEC 29119 standard test process model.

In the following, the publications are summarised based on the objectives, results and
impact as regards the whole thesis study.

4.1 Publication I: Overview of the real-life concerns and
difficulties associated with the software test process

411 Research objectives

The objective of this Grounded Theory study (Strauss & Corbin 1990, Glaser & Strauss
1967) was to reveal important testing process issues and generate insights into how
the testing processes could be enhanced from the viewpoint of the organisations, and
what factors in testing seem to be the most usual problematic areas.

4.1.2 Results

The results indicate that the main components associated with testing process
difficulties are most likely caused by the testing tools, knowledge transfer, product
design, test planning, or test resource issues. According to the results, standardisation
and automation levels in test process are not very high, and all cases the OUs had
several enhancement proposals for immediate improvements in test processes.
Similarly, it reinforced assumption that OU level comparisons between different sizes
and types of organisations are feasible, as the results indicated similar issues
regardless of the company of origin. Based on these results our study was able to
pinpoint several key issues that were incorporated into the categories of interest in the
following phase, and also gave insight on the testing infrastructure and operational
framework of a real-life test organisation.

4.1.3 Relation to the whole

The results of this preliminary study was to examine the existing data on software
organisations, to identify the test process components, and collect possible lead-in
seed categories (Miles and Huberman 1994) for the main data collection and
validation phase. Additionally, this preliminary publication was used to assess the
feasibility of applying the Grounded Theory approach to the data analysis, even
though the existing theory (Strauss and Corbin 1990) along with the studies by Sjoberg

64

et al. (2007) and Briand and Lapiche (2004) supported the empirical observations on
the test process research.

The results indicated several possible weaknesses in the test processes, such as,
resource availability and allocation, weak testability of the software product, and
testing tool limitations. The results also identified several possible enhancement
proposals in addition of process hindrances, although interestingly the enhancement
proposals and difficulties did not always intersect with each other. The study also
confirmed that in qualitative studies, different types of organisations could be studied
and compared against each other by conducting the study on the organisation units
(OU). Additionally, the study results indicated that an organisational study on
software test process could be fruitful; most of the identified issues could have been
handled by designing a better organisational approach, for example, by introducing
test and resourcing plans. Overall, the generated hypotheses and results of the
literature review in this publication were applied later in the development of the data
collection questionnaires.

4.2 Publication II: Overview of the testing resources and
testing methods applied in real-life test organisations

42,1 Research objectives

The objective of this mixed method study combining both the Grounded Theory
method (Strauss and Corbin 1990, Glaser and Strauss 1967) and statistical analysis was
to examine and identify the current state of testing tools and test automation in the
software industry. Another objective was to examine what types of software testing
are performed in the professional software projects, and what percentage of total
development resources are dedicated to software testing.

4.2.2 Results

The results presented further evidence on the practical test work, indicating that the
test processes in organisations are defined but in many cases, not in a very formal way.
Based on the results, it was established that majority of the organisations did have an
established procedures which could be understood as a formal test process but in
several cases these processes were only generally agreed principles or otherwise very
open to interpretation. The organisations on average dedicated one fourth of their
resources to the testing tasks, although variance between individual organisations was
considerable. In a few organisations the test process was considered to be fully
resourced, whereas other organisations reported that as low as 10 percent of the

65

optimal resource needs were available. The test resource results are indicated in Table
8.

Table 8. Testing resources available in software organisations

Max.|Min.|Median

Percentage of automation in testing. 90 |0 10
Percentage of agile (reactive, iterative) vs. plan driven methodsin |100 |0 30
projects.

Percentage of existing testers vs. resources need. 100 |10 |75
Percent of the development effort spent on testing 70 |0 25

As for the test tools and test automation, it was evident that automation is a costly
investment, which can be done correctly but requires dedication and continuous
commitment from the organisation in order to succeed. It was also established that
most of the organisations do have testing-dedicated tools, the most common groups
being test management tools, unit testing tools, test automation tools and performance
testing tools. Similarly, as shown in Publication I, the testing tools yielded results which
indicated that the tools need configurability and extendibility, as several organisations
also reported conducting test tool development themselves, not relying on the existing
options.

4.2.3 Relation to the whole

Overall, this publication gives an insight into the test infrastructure and current state
of software testing in the industry. The focus areas in this publication were on the
applied tools and the purposes they are used for, discussing the automation tools in
more detail. Other important observations in this publication concerned the test
resources other than test tools, namely time restraints and human resources, and the
types of testing methods applied in the test process.

The results of this study gave an insight into the amount of available resources in real-
life organisations. The survey results indicated that the organisations do have access
to a relatively high amount of test resources, as the average amount of resources was
70%', and that on average 27% of the project effort is spent on testing. These values are
somewhat different than those which could be expected based on prior results from
Publication 1. On a larger scale, the results of this study also meant that the test tools

! for example, if organisation had 3 testers and they considered that they would need 4, this would
translate to 75% of resources.

66

and test resourcing was generally at an acceptable level, and that the organisational
management issues were more prominent than prior studies indicated. Furthermore,
the average amount of effort allocated mainly to testing was less than expected, based
on the software engineering literature (for example Kit 1995, Behforooz and Hudson
1996, Pfleeger and Atlee 2006).

4.3 Publication III: Analysis of the effects the applied
development method has on the test process

43.1 Research objectives

The objective for this Grounded Theory study was to establish the relationship
between the development process and the test process, and assess how the
development method affects the practical implementation of testing.

43.2 Results

The results from this publication established several observations from test
organisations. First and foremost was the observation that the development method
itself is not a large influence on the way the testing is done, and that none of the
development methods applied in the case organisations are inherently better or worse
from the viewpoint of testing. In highly agile development, the approach allows more
time for testing, as testing tasks can be started earlier than in traditional waterfall
approach, although there are some difficulties in deployment of testing in the early
iterations. By applying agile methods the resource requirements for testing were also
more predictable. This can be considered an obvious advantage in organisations,
where testing resources are limited and distributed competitively between different
projects. In agile development, the customer participation or at least cooperation with
the clients is one of the key aspects. Overall, the agile practices when compared
against the traditional waterfall-development style changes the testing only in a few
ways. The customer needs to understand the requirements and differences of the
applied development method, the test strategy is focused on testing the new features
and functionalities, and the organisation resource need is more predictable. As for
problems in testing, the agile development may expose the organisation to problems
with making and following the test plans. The different prominent categories are
listed in Figure 10.

67

Level of
standardization

v v

Test organization Test strategy Problems in testing

Testing expertise

Effect of the
customer

| | | |
v

Effect of agile
development on testing

Figure 10: The aspects of agile development that affect the testing work

In general, the organisations which applied agile methods were also more flexible in
terms of implementing and testing changes in the product. However, the agile
approach also causes the development and testing to run in parallel, which is difficult
to execute in practice and requires more coordination than traditional approach. From
the viewpoint of strictly testing, agile methods offer some benefits such as early
involvement or predictable resource needs, but also hinders testing in some areas,
such as in availability and quality of documentation needed in the testing work, while
making the test management more laborious.

4.3.3 Relation to the whole

This publication studied the effect the development process has on the test process,
and concluded that the effect of development style is not very important from the
viewpoint of test process activities. Even though changing the development process
may change some process dynamics between development and testing, such as
resource needs in different phases and customer participation, test process activities
can be assessed separately from the development.

Additionally, the amount of agile development processes was relatively low. However,
the study results indicated that even if the software organisations did not apply the
entire agile development process, most of them had adopted some agile practices,
such as code reviews, daily meetings or daily builds. Only few organisations
considered agile practices to be completely unfeasible for their software process.

68

4.4 Publication IV: Analysis of the test case selection and
test plan definition in test organisations

441 Research objectives

The objective of this Grounded Theory study was to observe and study the project
level decision making in testing, and assess how the organisations decide on which
test cases are included and which excluded from the test plan. The study also studied
the prioritisation process of test cases, to establish if there were detectable patterns,
which could explain the motivation behind the decisions.

44.2 Results

The study identified several components, which affect the decision making process
and resulted to two stereotypical approaches on test case selection and prioritization
method, named risk-based and design-based selection methods. The risk-based
selection method was favoured in organisations, in which the test resources were
limited or competed, and the decisions on test cases were made by testers themselves
or designers in the lower levels of organisation. In design-based approach, the
selection and prioritization process was done by the project-level management or
dedicated expert. In the risk-based approach, the focus of testing was on verification,
“what should be tested to minimise possible losses from faulty product”, whereas the
design-based approach focused on validation, “what should be done to ensure that
the product does what it is supposed to do”. More details are available in Table 9.

Overall, the study observed several testing-related components, which were tied to
the test plan development. Such components as the test designers, the role of the
customer, the resource availability, and the development approach seemed to have
connection to the selected approach on test plan development. In addition, it was
established that explorative testing (see Kaner et al. 1999), i.e. testing without a
detailed case plan, was also connected to the test case selection approach: in many
organisations where the test plan was design-based, doing test work without planned
cases — “just using the system” — was considered an unproductive ad hoc approach.

69

Table 9. Two stereotypical approaches for test case selection

Category Risk-based selection Design-based selection
Test Developers: programmers and | Managers: test and project
designers testers managers
Development | Leans towards agile methods Leans towards plan-driven
approach methods
Testing Limited Sufficient
resources
Explorative | Applied commonly Applied rarely
testing
Effect of Small; most decisions done in | Large; most decisions are based

policies in
decisions on

project level.

on company policies or customer
requirements.

testing.
Customer In the testing process In the design process
influence
Limitations | Test case coverage may become | Test process may become
of the model | limited. laborous to manage
Design “What should be tested to ensure | “What should be tested to ensure
concept smallest losses if the product is | that the product does what it is

faulty?”

intended to do?”

However, test automation was observed to be rather independent from the test case
selection approach. It seemed that the decision to apply test automation in testing
work is based on other process factors, and test case selection or development of a test
plan has only a little influence on it.

4.4.3 Relation to the whole

This publication focused on the project-level management process activities. The
theme of the paper, the development of the test plan, and the prioritisation method of
test cases studied, not only defined the process for the tested features, but also the
low-level management of the testing work. The results indicated that all organisations
have some systematic approach to deciding what should be tested and that in all
observed organisations, some form of formal test management existed, even though in
some cases the role of the test manager was not defined. In addition, the observations
propose that the selection method for test cases and the fundamentals behind a test
plan tend to steer towards two identified strategies; risk-based or design-based
selections. With risk-based strategy, the main objective is to minimize the potential
losses caused by missed errors; to use the available resources for maximum test
coverage. With the design-based strategy, the objective is to validate the product;
define an effective plan to cover the required test coverage.

70

4.5 Publication V: Analysis of the requirements for
developing test process or adopting new testing
methods in software organisations

45.1 Research objectives

In this qualitative Grounded Theory study, the focus was on establishing the
requirements for organisation to start the test improvement process, and study how
they adopt new testing techniques. An additional area of interest was to study how
closely the ISO/IEC 29119 test process model (ISO/IEC 2010) fits the existing industry
organisations.

45.2 Results

The main results of the study focus on the test process improvement in the software
industry. The main observation of the study was that the organisations try to preserve
the status quo, meaning that they do not develop their test process or try out new
testing techniques unless the process is in dire need of changes. Even in organisations
that continuously collect performance data and feedback from the test process, the
results may be completely ignored if the existing process is “good enough”. As
process development exposes the organisation to a possibility of failure and
unnecessary costs, the threshold for conducting process development is high, even if
the applied change would be positive and sensible. Based on the collected data, a
model was defined for this process, along with an explanation of the limitations of
adopting new test techniques and the development of test processes in organisations.
The model is illustrated in Figure 11.

-

Management of Test

Inconveniences
Process Development

Process Development Effort Existing Test Process

if inconveniences

justify expenses { /
Status quo,

if inconveniences are acceptable

Development to
reduce inconveniences

Figure 11: Adopting new practices in test organisation.

The second topic of interest in this publication was the applicability and usability of
the ISO/IEC 29119 test process in the real-life software organisation. The organisation
representatives were asked to analyse how the proposed test process model differs
from the approach the organisation is currently using and based on their experience

71

and opinion, whether the model looks applicable or is it in need of changes. Based on
the study results, the most common difference between the standard-defined test
process model and the practical test process is in the number of organisational
management and feedback processes. The interviewed organisations considered the
model to have too many details in the upper management, and that the model itself
lacked support for actually adopting the process model. However, the overall concept
was considered feasible, not omitting any major components or important concepts.

4.5.3 Relation to the whole

This publication was the first that observed the entire software organisation, and
instead of one aspect of testing work, such as, project management or test
infrastructure, studied the organisation’s behaviour. This study also explored the state
of the test standard process model, finding some areas such as adaptability and the
amount of details, which were considered difficult for the organisations. This study
confirmed that the process model itself was feasible and did not omit anything
obvious from the viewpoint of real-life software developers. On the development of
the test processes, the study confirmed findings similar to those presented by Dyba
(2008). Organisations prefer a status quo, and only conduct process development if the
existing state becomes unbearable, even discarding the collected feedback data in a
case where the process is at least in acceptable state. The organisations need a strong
positive incentive to try out new techniques, even if the new method or proposed
change in the way testing is done would seem sensible.

4.6 Publication VI: Analysis of associations between
perceived software quality concepts and test process
activities

4.6.1 Research objectives

The objective for this mixed method study, combining both the quantitative survey
and qualitative Grounded Theory analysis, was to study the effect the quality-related
aspects in software development and in software testing. In this study, the different
quality characteristics as based on the ISO/IEC 25010 (ISO/IEC 2009) were tested in
organisations, while different testing-related aspects such as outsourcing, open-source
software in product and customer participation were studied from the viewpoint of
perceived quality. A study by Garvin (1984) has identified the different types of
software quality, and together with Jergensen (1999) expressed a method of measuring
the quality of a software product. In this study, these concepts were tested to see what
types of quality are important to the software organisations.

72

4.6.2 Results

The central theme of this publication was in the different quality characteristics as
defined in the ISO/IEC 25010 quality model, and studying how the perceived quality
and different testing activities are related to each other. One of the most important
observations of this publication was that almost all of the organisations do consider all
of the different quality characteristics at least somewhat valuable to their product. The
organisations were asked to evaluate how well the quality characteristic was taken
into account in their product on a scale of 1-5% the averages only differed from 3,3 to
4,2 between the answers. Moreover, organisations were allowed to give a score 0, “this
characteristic is irrelevant to us”, but this option was used only in 9 cases out of 248
assessments (3,6%), out of the 31 surveyed organisations. Because of these results, the
original concept that organisations producing different types of products focus on
different types of quality was rejected. Results for each quality characteristic are listed
in Figure 12.

Functional suitability
Reliability
Performance
Operability

Security
Compatibility
Maintainability

Transferability

Figure 12: The realisation of different ISO/IEC 25010 quality characteristics.

The most important phase of a software process as a source of product quality was
considered to be the development (average 4,3 on scale 1-5%), whereas the test process

21 = “this characteristic in our software is taken into account very badly”, 5 = “this characteristic in our
software is taken into account very well”

31 =“fully disagree, or this level is very bad in our organisation”, 5 = “fully agree, or this level is very good in
our organisation”

73

was considered less important (2,9). The results also indicated that within the
organisations, the level in which the organisations already follow the concepts of the
test process was somewhat low (3,3 on a scale of 1-5) in organisational activities, 3,4 on
project level management and 3,5 on fundamental level activities. Overall, the most
important factors in testing, which positively affected the perceived end-product
quality were identified to be the trust between the software organisation and the
clients, as well as existing process conformance with the concepts presented in the
ISO/IEC 29119 test process standard, and finally the identification and communication
of the desired quality characteristics throughout the software organisation. In
addition, some concepts such as customer participation in product design and general
control over the development project were identified to be somewhat important.

Besides the identification of testing aspects that affected the perceived end-product
quality, the other important results were the aspects that were considered not to be
very effective. Based on the survey and the qualitative analysis, such concepts as
software criticality, product/service-orientation or outsourcing did not have a strong
effect on the perceived end-product quality. Software criticality is obviously an
important factor when deciding on how the product is produced, but changes in
criticality do not alter the testing priorities or objectives of the testing work. Based on
the results, it seems that the product domain is the most important factor affecting the
selection of the tested components; software intended for Internet banking is generally
tested for similar faults whether the target customer for the software is an individual
users or a large corporations. Similarly, outsourcing was not considered a very
important aspect affecting the perceived quality, in fact large organisations tended to
think that outsourcing was helping the organisation to focus on the development of
important features. It was also interesting to observe that the organisations which
considered themselves to follow the principles of ISO/IEC 29119 test process model
were also more confident that their product was of high, or at least acceptable, quality
indicating a connection between the standard model and quality.

The last important observation was that the designers and testers rarely had similar
ideas on the most important quality characteristics. In only two organisations were the
same quality characteristics named and priorised in the same order between designers
and testers. Overall, this confirms some of the concepts presented by Garvin (1984).
The organisations do not have one clear image on the preferred quality, and attention
should be paid to identifying and communicating the desired quality characteristics to
all stakeholders.

4.6.3 Relation to the whole

This publication, along with Publication 1I, were the two studies where the survey data
was used as the main research method, qualitative analysis providing additional

74

viewpoints and validation for results which were considered important. In this
publication, the test process was observed from the viewpoint of quality. Based on the
survey results, it seems that development is considered a more important quality
factor than testing. However, this can be somewhat expected, as the main objective for
test process is in validating and verifying that the end-product is what was designed
and works appropriately (Behforooz and Hudson 1996, Pfleeger and Atlee 2006), and
quality can be understood in several contexts (Garvin 1984), one being that it “satisfies
the user needs”. If the user or customer satisfaction is not met in a design or
development, the testing work cannot fulfil that type of quality. If the users do not
think the product is of a high quality, it is difficult to argue that the product is actually
of a high quality, for example, because of its technical excellence. In this context, it is
plausible to say that the source of perceived quality is not in the test process, but in the
design and development. However, the test process does have an influence on the
end-product outcome and profitability (Huang and Boehm 2006, Tassey 2002).
Therefore, it can be argued that the test process is used to realise the potential quality
in the developed software.

4.7 Publication VII Self-assessment Framework for
Finding Improvement Objectives with the ISO/IEC
29119 Test Standard

471 Research objectives

The objective of this study was to construct a maturity level-based framework to
assess the existing test processes against the ISO/IEC 29119 standard process model
and do preliminary testing on the validity and applicability of the framework.

4.7.2 Results

The concept of this publication was to combine the elements from a well-known and
accepted software process evaluation model TIM (Ericson et al. 1997) to the draft of
the ISO/IEC 29119 standard model to create a concept for a self-assessment
framework. The objective was that the self-assessment framework could be applied to
discover enhancement objectives in the organisational test process and alleviate the
process adoption difficulties observed in the Publication V.

In the publication, a concept for combining the maturity levels from the Test
Improvement Model and test processes of ISO/IEC 29119 was introduced. The
different processes of the standard model (see Chapter 2.4) were assessed based on the
maturity levels of TIM, which were customised to fit to the context of the processes:

75

e Level 0, Initial: The organisation does not have defined methods for this process
activity.

e Level 1, Baseline: The organisation does have documented or at least generally
agreed guidelines for these process activities, the process is systematically
done to enable the finding and correcting of errors in the software.

e Level 2, Cost-effectiveness: The organisation tries to systematically promote cost-
effectiveness or increase the efficiency of the process activities.

e Level 3, Risk-lowering: The organisation has metrics or other methods to enable
the organisation to conduct risk-lowering and preventative actions in process
activities.

e Level 4, Optimizing: The organisation has activities that aim to optimise the
process; activities are done in a manner that is conceptually the same as in the
standard.

The TIM model was applied as it was conceptually very similar to the standard; the
key areas of TIM are assessed separately from each other, so that the organisation has
a better understanding of what test process areas need most improvement. The
evaluation work is easier to do as the number of simultaneously interacting concepts
is kept reasonably small for an organisational assessment. Furthermore, the key areas
of the TIM maturity model are similar to ISO/IEC 29119 processes; the organisation is
conceptually close to organisational management process (OTP), planning and tracking
to test management process (TMP) and TMCP, test cases to test plan process (TPP),

MobileSoft SoftPortals
4 4
3 3
2 2
| SEENERENRE
. . O | |
T™MP TPP TMCP TCP STP T™MP TPP TMCP TCP STP
DesignSoft GridSystems
4 4
3 3
2 2
MERSSSRERRRRRE
o) l
T™P TPP TMCP TCP STP T™MP TPP TMCP TCP STP

Figure 13: Assessment results using the experimental maturity levels

76

testware to STP and DTP, and reviews to TCP. Overall, four organisations from the
fourth round interview organisations were selected for the pilot study, and assessed
based on the interviews held during the research project. The resulting profiles are
illustrated in Figure 13.

Besides the developed profiles, a number of practical enhancement proposals were
derived based on the observations. The profiles were also tested out with three out of
the four profiled organisations to assess the accuracy and development needs for the
framework. The fourth case organisation had recently changed their process, so they
declined to participate in this assessment. The main points of this feedback is
presented in the Table 10, where “++” denotes very positive attitude towards the
assessed attribute, and “——" very negative.

Table 10. Feedback from the case organisations

the profile

more detailed.

MobileSoft DesignSoft SoftPortals
Suitability of |+; The applied approachis |++; Practical approach on +; Levels are too universal,
the generally feasible. quick and easy assessment of |but model itself seems to
framework the level of different testing |cover everything needed.

tasks.

Suitability of |- —; In large organisation, the |+; Usable, although some —; Levels in general are OK
the levels overlap, unnecessary |processes do not need to be |but the definitions should be
assessment |processes for some better than cost-effective. less ambiguous.
levels organisations.
Accuracy of |- ; The profile should be +; The profile was accurate |++; The profile represents the

enough, although with some
differences.

organisation quite well.

Accuracy of
the results

+; This type of feedback is
always good for bringing out
new ideas.

+; Results seemed usable.

++; Results same or similar to
the internal discussions.

party, internal review is not
accurate.

Framework |The assessment unit type and |More definite descriptions |The assessment needs
development |size should be clearly for each framework level to |practical examples and more
proposals defined. reduce the overlap. measurements.

Best profiler |An outsider from a third At least two manager-level |A quality manager with a

employees; can be used
internally.

handpicked group of people,
usable internally.

The overall attitude towards the developed framework was somewhat positive,
although a few problems and enhancement proposals were identified. For example,
the organisations considered that the framework profiling levels overlapped and were
not very definite. Moreover, additional practical examples of actions denoting certain

77

level of maturity were requested. However, the framework was applauded for the
applicability as a tool for easy and fast assessment, and the accuracy of the results for
being usable and similar to the issues discussed internally.

4.7.3 Relation to the whole

This publication discusses the test process from the viewpoint of process
improvement. All of the results and ideas derived from the earlier studies, including
the identified important test process components and applicability of the ISO/IEC
29119 standard, are applied in this publication in order to present a concept for an
assessment tool to derive process improvement objectives. Obviously, the framework
presented in this work is not complete, and it needs more studies before it can be
established as a serious process improvement tool. However, the results and collected
feedback from the proof-of-concept framework, so far at least, suggest that this type of
self-assessment method could be feasible to implement based on the ISO/IEC 29119
test process model.

4.8 About the joint publications

For Publication 1, the author analysed the previously collected interview data and
wrote major parts of the publication.

For Publication III, the author participated in the writing of the publication,
participated on the design and implementation of the data collection instruments,
participated on the collection of the data, and acted as a supervisor for the Master’s
Thesis dissertation the publication is based on.

For Publications II and [V-VII, the author participated in the design and
implementation of the data collection instruments, participated in the collection and
analysis of the data, and wrote the major parts of the publications.

78

5 Implications of the results

The purpose of this chapter is to extract the research results from the different
publications and present their implications as a conclusive summary. The original
research problem and the objectives for the thesis remained same throughout the
study. In this thesis, the overall research problem was approached by dividing the
topic into several sub-questions, which were answered in the included publications.
The objective of this thesis was to study the organisational test process, identify
important factors affecting the test process, and define guidelines for the organisations
in order for them to pursue better testing practices and develop their process towards
operating methods presented in the ISO/IEC 29119 testing standard (ISO/IEC 2010).
This objective was pursued by applying both qualitative and quantitative research
methods when observing the organisations, and trying to understand how test
processes work in real-life software development.

5.1 Implications for practice

The viewpoints of the thesis - organisational test processes and development of test
processes - were selected based on the themes of the research project MASTO, which
was a continuation project for the earlier project ANTI, focusing on the ISO/IEC 29119
testing standard and test processes of industrial organisations. In the preliminary
phase of the study, a literature review on the topics and discussions with an expert
group was used to understand the important factors of the study. Further concepts
were derived from the earlier research project ANTI, from which the interviews
regarding test process problems and enhancement proposals were used as a

79

foundation for the data collection and analysis phase. The background work and
analysis on test process problems based on the existing knowledge were reported in
Publication 1.

The assessment of different test strategy components was conducted in the second
phase of the study, in the main data collection and analysis. In this phase, the
components constituting the test strategy were divided to conceptual categories (see
Figure 3), which were analysed in Publications II-IV and VI. In addition to these
categories, an additional category of “Other” was also used based on the literature
review suggestions and earlier phase results in order to study other possible areas of
interest.

The first categories analysed were the testing tools and the testing personnel in
Publication II. This publication studied the test resources in the organisations, focusing
on identification of different types of test tools available in the organisations, the
amount and types of test automation and human resources. Based on the results we
were able to understand the situation of the testing work in the organisations, and
identify what kind of approaches the different organisations use for testing software.
The situation in industry was better than what could be expected based on the
literature review; there were some organisations in which there still were problems
with quality and availability of tools or testing resources in general. However, the
average amount of 70 percent of the test resources, when compared with the
organisation’s self-defined optimum, was more than expected based on the prior
knowledge established in Publication I and the ANTI-project results. This resourcing
level also indicated that the issues of testing are more related to the organising and
managing of the process itself, not on the availability of resources. It was also
apparent that the most important knowledge for testers was the domain knowledge,
which was mostly attained by working in the field. Additionally, even though the
organisations had positive attitudes towards different certifications and
standardisation programs, they are not very common in every-day application. Based
on these results, it seems that the testing work in industry is in a better condition than
could be expected based on the literature. It also implies that the management aspects
in testing are more important than originally thought; in many organisations the
resourcing was not an issue, but the test process still experienced problems, mostly in
the early test phases such as integration or unit testing.

Publication 11 focused on organisational aspects and on the effect of the development
method. The study results indicate that the production method has only limited effect
on the test process itself. The end-product may be of high quality regardless of the
applied production method, but based on the results it can be argued that successful
application of the agile methods allows testing more time to work with the application

80

in development and allows the organisation to be better prepared for test resource
needs.

The application level of agile development processes was generally low, even though
one organisation applied SCRUM principles in their development process. However,
several organisations did apply some principles or practices which can be considered
agile-oriented, such as daily builds, test automation, pair programming, code reviews
or daily meetings, even if the amount of purely agile developers was limited. It was
also apparent that agile development was favoured in patching and feature addition
projects, whereas “traditional approaches” were favoured in main version
development. This discussion was elaborated upon in Publication VI, in which the
effect of open source resources was discussed. The conclusion was that the open
source resources are useful when applicable in projects, but they do not offer
significant benefits over the “closed” - bought - third party modules, mainly because
the open source material has to be reviewed and tested before being accepted into the
product. From the viewpoint of the developers, it was also apparent that the source of
the code did not matter, as everything went through more or less the same
procedures. Overall, the results from Publication III indicate that the development
method does not necessarily affect the test process very much. The test work and
development are separable entities, and how the development work is implemented,
it may have only minor actual effect on how the testing work is organised. Based on
these results, it could be argued that in studies focusing on the test process, the
development process itself is not a major concern, provided that the development
follows at least some credible approach.

Publication IV continued with the test process implementation, and observed the test
process from the viewpoint of developing the test plan and selection of the test cases.
The most interesting result in this publication was the strong division of the test plan
development into two approaches, design-based and risk-based approaches. Based on
the observations the organisations divided into two main design approaches, “What
should be tested to ensure smallest losses if the product is faulty” and “What should
be tested to ensure that the product does what it is intended to do”. Stereotypically
the risk-based approach was favoured when the amount of resources was limited and
mainly the developers made the test planning decisions, whereas design-based
approach was used mainly when the amount of resources was not a limiting factor
and test planning decisions were affected by the customers and management.
However, one important observation was that the project-level management does
exist; in every organisation there was a person who was responsible for project-level
test management.

Other observations include the application of test automation, which did not seem to
follow the test plan pattern otherwise observed. Based on these results, it seems that

81

the decision to apply test automation is not related to the applied approach on
developing test plan. Another interesting finding was that the explorative testing was
considered unprofessional and unproductive in several organisations. One possible
explanation could be that the explorative testing is difficult to document, the results
are difficult to predict and the effectiveness is dependent on the experience and
professionalism of the tester doing the explorative testing. By applying these results in
practice, the selection and prioritisation of applied test cases can be improved.
Organisations should define what the test plan aims for, and based on that elaborate
on the test plan development and selection of applied test cases. These results also
confirm the existence of the project-level test management, indicating that the
improvement activities focusing on test management can also improve the overall
testing in projects.

The results of Publication IV can be used in organisations to develop the process of
creating a test plan, and understand the weaknesses and needs of the different
approaches. Basically, it seems that the objective of test process in project level is either
to minimize the possible losses or make sure that the required features are acceptable.
The results also indicate that at the project level, the test process activities are not
always very formal, in many organisations, the designers and developers had a major
influence on the testing decisions and even in large, well-resourced organisation some
of the important test cases may be discarded if they are considered too resource-
intensive. Furthermore, the role of the customer in development is not very active,
usually the customer only approves the end-product in some form, not actively
participating in the testing work.

The resulting end-product quality was observed in Publication VI. Based on the
discussions of test resources and test tools in Publication Il and the test plans in
practice in Publication IV, this publication assessed the outcome by means of quality
model as presented in the quality standard ISO/IEC 25010 (ISO/IEC 2009). The most
important observation of this publication was the uniformity in the quality
characteristics. The prior indication that different types of organisations would
strongly focus on certain types of quality did not hold true in practice. In fact, most
organisations did have at least some over all concern regarding the different quality
characteristics, and even when assessing the practical implementation of the said
characteristics in their products, the differences did not focus on any particular
characteristic. An additional interesting result was that the software criticality and
desired quality characteristics did not have a strong correlation; the desired quality
comes from the product domain, and has only a weak relationship with the possible
repercussions of the product. From the other quality-related concepts, customer
participation, product/service-orientation and outsourcing also had only a weak
correlation. The customer is an enabler for quality, but the customer has to either
provide substantial amounts of resources or a commitment to have any effect on

82

quality, and in large organisations, outsourcing was not considered to have any
meaningful effect on the perceived end-product quality.

A further interesting finding was that organisations, which considered themselves to
closely follow the concepts presented in the ISO/IEC 29119 test standard, also
considered themselves to produce good quality. This result indicates that if the
organisation has organised their testing work in a manner that has a systematic
approach, including the different documents and feedback system, they are more
confident about their work. Organisations that have a systematic or at least a codified
approach on testing, also have objectives for their testing work, and tend to know the
general level of quality they are pursuing. This would also imply that by introducing
the ISO/IEC 29119 concepts into an organisation the perceived end-product quality
would improve, and that communicating the preferred quality helps the test
organisation to focus on the important characteristics. Even if the test process does not
have a large influence on the origin of the quality, identifying and communicating the
preferred quality characteristics in test organisation improves the perceived quality.

In Publication V, the focus of the studied topics shifted from the different influential
test components to the test process itself. The main result of this publication was that
the organisations do not actively pursue new techniques or ideas. In fact,
organisations even discard the collected process feedback, if the process is “good
enough”. This status quo mentality can be explained by several factors. The process
improvement process and introduction of new ideas costs money, and there are no
guarantees that the improvements always justify the expenses, and the change
resistance causes conflicts. Additionally, as observed by Dyba (2003), large
organisations in particular have their own practices, which are based on their “history
of success”, which made them large to begin with. Against this history, the
organisations have a certain institutionalized routines, which in stable situations can
drive out the exploration for enhancements and better practices. Also Kaner et al.
(2002) mention instances, where organisations apply, and during the project discard,
overly ambitious test documentation practices which are dictated by their test
strategy. Instead of developing their practices towards usefulness, these organisations
blame the hindrances for causing oversights, and expect the strategy to work on their
next project.

Other important result established in this publication was the feasibility assessment of
the standard process model. In the earlier publications (II-IV, VI) the process
components were discussed, but the overall model feasibility was open to
interpretation. Based on the results, the model was feasible but had some criticism
over limitations in adoptability and excess details. Overall, the observation that the
organisations tend to resist process changes would indicate that the organisations are
reactive in nature, they do process improvement but mostly to fix problems, not to

83

improve outcomes. In practice, this would indicate that the organisations should
identify the process problems earlier, and in order to enhance output they should try
to implement process changes before absolutely necessary.

In Publication VII, the framework for assessing the test process against the ISO/IEC
29119 standard was introduced. Based on the prior results, this approach was
considered appropriate, as it was established that the test processes are usually at least
moderately resourced (Publication II), the development process does not excessively
interfere with testing (Publication III), the project-level management exists in practice
(Publication IV), there are aspects of quality which are affected by testing (Publication
VI), and the overall model is feasible enough for application in a practical
environment (Publication V). The framework was developed based on the concepts
presented in the Test Improvement Model (TIM) (Ericson et al. 1997), by combining
the TIM levels with the individual processes of the ISO/IEC 29119 model. This
framework allowed organisation to assess how their current test process compared to
the standard, and generated enhancement proposals to all levels of testing work, from
organizational policies to fundamental test work at project-level. In practice, the
objective was to create a light-weight process assessment tool, which could be used
within an OU to uncover problems in the testing practices. Based on the feedback
from organisations, the developed concept-level framework was a step towards a
helpful tool, implying that there is a use for such a tool. The proof-of-concept
framework can be seen as a one of the concepts from this study, which shows
considerable potential for future research.

Overall, the major implications for the test process development in practice can be
summarised into a number of major observations:

e The test process can be assessed and developed separately from the
development process. The development method does not affect the test
process activities to a large degree, as the development process creates a
product, and the test process validates and verifies this product (Publication
).

e Besides resourcing, the test process hindrances and critical areas for
development are also closely related to the organisational and project level
management, an observation which was established in several of the
publications (II-VI) in this dissertation.

e The concepts presented in the ISO/IEC 29119 test process model seem to
enable better end-product quality, as the organisations, which had
implemented test processes which followed the principles similar to the
standard, were also more confident regarding their end-product quality
(Publication VI).

84

e Even though the test process itself is not a major source of the perceived
product quality, the best way for the test process to enhance the perceived
end-product quality is to identify and communicate the preferred quality
characteristics to all test organisation participants (Publication VI).

¢ Organisations are reactive, they perform process improvements in order to fix
problems, not to improve outcome (Publication V). Organisations should
identify the process problems earlier, and in order to avoid larger problems,
try to implement process changes before they are absolutely necessary.

5.2 Implications for further research

The applied approach to the research problem enabled the study to identify a group of
important components of testing and allowed the study to define a framework for
self-assessment of test processes in organisations. Based on the existing knowledge on
applicability of the Grounded Theory approach (Strauss & Corbin 1990, Seaman 1999)
and the survey (Fink & Kosecoff 1985) applied, this study gained plausible results. It
can be argued that this mixed method approach of combining the qualitative and
quantitative data allowed us to observe the software organisations from the
appropriate viewpoint and understand the dependencies of different testing concepts
in a way which could have been difficult to do otherwise.

However, studying the entire software test process at several organisational levels
quickly devolves into a huge cacophony of concepts. In this thesis, the scope was
limited to observing the test process from the viewpoint of the test strategy and the
organisation. More detailed concepts such as daily management of testing work,
observing practical work in action, or assessment of the functional appropriateness of
the applied testing tools should be analysed further, as they may indicate practical
level problems related to the hypothesis and results presented in this work.

As well as approaching possible further research by examining the fundamental level
of testing, another possible object of interest would be the self-assessment framework,
which could be extended to a more serious assessment method, following the
concepts of models such as TIM (Ericson et al. 1997) or MPTF (Karlstrom et al. 2005).
To achieve this, more studies into organisations are needed to establish the thresholds
for different assessments of process maturity levels, and in order to validate the model
as a viable process development tool.

Overall, the major implications of this work for further test process research can be
summarised in a few major observations:

85

The organisations have difficulties in defining the objectives for test process
development. The framework defined in Publication VII is a proof-of-concept
for a tool that is lightweight enough to be used within an organisation unit,
but is still applicable with a larger ISO/IEC 29119 model. It seems that there
would be incentive for studying and developing these types of tools for
lightweight test process improvement within one OU.

In studies on test processes, the aspects from the development process are not
very influential providing that the development follows some credible
development method (Publication III). It would be a valid approach to conduct
research focusing mainly on the process components of testing.

More studies on test management at both an organisational and a project level
should be conducted to study and address the management issues (Publication
II-VI) of test processes.

86

6 Conclusions

In this chapter, the aim is to observe and discuss the research limitations and the
results of this thesis. The entire research process and gained results were presented in
the last chapters, so concerns regarding the applicability and usability of the
generated results should be addressed. This thesis describes a study consisting of
three separate but equally important phases; the preliminary phase, the main data
collection and analysis, and the validation phase. Each of these phases studied the
state of the software testing in a real-life organisation, offering a viewpoint on the
practice and results on different aspects of testing work.

This thesis makes three main contributions. The first contribution is based on the
results of the main data collection and analysis phase, in which the effect of different
test process-related aspects to the actual test process were identified and studied from
the viewpoints of both qualitative and quantitative data. The second contribution is
the assessment of the ISO/IEC 29119 test process model (ISO/IEC 2010) in practical
organisations. This work studied the model concepts and the applicability of the
model from the organisational viewpoint, assessing the feasibility of the model in
practical organisations, and highlighting improvement needs for the model. The third
contribution is the analysis of the test processes as a whole, studying the process
improvement process of test organisations, and identifying the process difficulties.

Based on the results presented in this dissertation, the test process is an entity, which
can be assessed and improved separately from the overall development process. The
observations and analysis on the test processes yielded the following hypotheses for
application in both research and industrial contexts:

87

1. The test strategy establishes a framework for testing work at the project level. The
following hypotheses promote the development of a test strategy to address the
factors important for the testing work:

The development of a test plan can be characterised as applying two
stereotypical approaches. The first approach promotes a design-based
approach, in which the testing work focuses on validating the object under
testing. The second approach promotes the risk-based approach, where the
testing work focuses on minimising the potential losses caused by the object
under testing (Publication 1V).

There is only a limited association between development methods and test
processes. The applied development method does not restrict the practical
testing work to any large degree, or require compromises in the test process
definitions (Publication III).

The most important aspects in the test process which have positive association
with the perceived end-product quality are trust between the customer and
producer, a test process which conforms to the self-optimising processes as
defined in the ISO/IEC 29119 standard and the communication of the
preferred quality characteristics to all of the process stakeholders (Publication

V).

In the test process resourcing, the organisations have an average of 70% of
their self-defined “optimal” amount of resources and dedicate on average 27%
of the total project effort to testing. Based on the study results presented in the
literature and the survey data, the test process hindrances are also based on
the efficiency factors and test management, in addition to simple resourcing
issues (Publication II).

2. The ISO/IEC 29119 test standard is a feasible process model for a practical
organisation with the following limitations as regards for applicability:

The standard model can be characterised as being overly detailed in the
definition of roles and activities. In the practical test organisations, the
boundaries of different levels, processes and roles are less organised than the
model presents (Publication 11, V, VI).

The process model is top heavy and places a considerable emphasis on the
organisational aspects of the test process. Based on the qualitative analysis,
the model defines several responsibilities for the upper management, many of
which are performed, in reallife organisations, at the project-level

88

management or at least not as systematically as defined in the model
(Publication V,VI).

e The current standard model does not include a roadmap or phased process
for adopting the model. This hinders the applicability of the model in
organisations, as the organisations had difficulties in creating an approach
which their existing process could adopt for the concepts presented in the
standard (Publication V, VII).

3. The organisations do not actively try out new test methods and prefer a status quo
in their test process. The following hypotheses relate to the test process development
at the organisational level:

e The organisations do not test out new testing tools or apply new testing
methods unless they have a significant external incentive to do so. Based on
the qualitative analysis, these incentives are things like the current state of the
existing process or business needs in the operating domain (Publication V).

¢ The organisational test process may have feedback processes in place to allow
continuous development, but in practice, the organisations tend to disregard
the evidence of process enhancement needs if the existing process still
performs at least at an acceptable efficiency (Publication V).

e In test process development, the organisations need a way of relating their
existing process to the proposed changes to understand the objectives, and
more pragmatically, the requirements the process improvement needs to
succeed (Publication V).

e The test process model presented in the ISO/IEC 29119 standard could be
applicable as a foundation for test process assessment and development tool
(Publication VII).

These conclusions are also listed in Table 11. In conclusion, the test process can be seen
as an autonomous part of the development process, which can be assessed and
developed separately from the actual development. In software organisations, the test
process is related to several components, and by developing the test process, it is
possible to enhance the perceived end-product quality and achieve better
cost/efficiency ratios. However, in practice, the organisations tend to avoid process
improvement, allowing the test process to exist in a state where it could be developed,
but there is not a great enough incentive to start the process improvement process. To
lower the threshold for process improvement, the organisations need practical
information to understand and relate to the requirements and objectives. One
approach to achieve this is to focus on the concepts highlighted in this study and

89

compare the existing process with the ISO/IEC 29119 standard model by applying the
conceptual framework introduced in this study. By continuing the qualitative research
on the test processes, this framework could be extended to allow more details and

better support for the organisations to develop their testing practices.

Table 11. The main contributions and implications of the thesis

Contribution

Associated areas of test processes and
testing work in general

The development of a test plan can be characterised
to two stereotypical approaches.

Test plan, test strategy.

There is only a limited association between
development methods and test processes.

Test plan, test strategy, test policy

Besides test resources, the test process hindrances
and areas for development are closely related to the
organisational and project level management.

Test strategy, test plan, test completion
reports

There are components in test process that have a
direct effect on the perceived end-product quality.

Test process development, quality

The concepts presented in the ISO/IEC 29119 test
process model enable better end-product quality.

Quality

The organisations have an average of 70% of their
preferred test resources and dedicate on 27% of the
total effort to testing.

Test resources, test plan

The ISO/IEC 29119 test standard is a feasible process
model for a practical organisation with some
limitations.

Test strategy

The standard model is too detailed in the definition
of roles and activities.

Test strategy, Test process development

The standard model is top heavy and places a
considerable emphasis on the organisational aspects
of the test process.

Test policy, test strategy, test plan

The standard model does not include a roadmap or
phased process for adopting the model, which
hinders its applicability.

Test process development

The organisations do not actively try out new test
methods and prefer a status quo in their test
process.

Test process development

The organisations do not try new testing tools or
testing methods unless they have a significant
external incentive to do so.

Test resources, Test process development

The organisation may have feedback processes in
place, but in practice, the evidence of process
enhancement needs is disregarded.

Test completion reports, Test process
development

In test process development, organisations need
pragmatic requirements and distinct objectives.

Test process development

The ISO/IEC 29119 test standard is a feasible
foundation for a test process development
framework.

Test process development

90

6.1 Limitations of this thesis

All research projects have shortcomings, threats to their validity and limitation on the
scope of their results, and this work is no exception. Overall, the first limitation of this
study is the applied scope of the study. The scope of organisational test process
restricts the study to the process concepts coming from the software organisation, and
thereby not taking into account the possible process hindrances caused by the external
stakeholders, such as upper management, public relations, marketing or sales.
However, this limitation has to be accepted to allow the comparison between
organisations of different sizes and operating domains, as the concept of an
organisation unit (OU) is used to normalise the differences between observed units
and allow meaningful comparison between organisation types.

Another limitation in the qualitative study is the sample organisation limitations. The
observed organisations are of a high technical ability and professional software
developers, meaning that the results may not reflect the problems of starting
organisations or organisations, which rely on volunteers, as is common in open source
communities. It is also possible to formulate more dimensions for defining new types
of software development organisations, and by applying those new definitions to
finding types of organisations, which were not covered in the theoretical sampling of
this study. An additional concern was also that all organisations were Finnish or at
least a Finnish subdivision of a larger multinational company. This concern would
require additional focusing, as for example a study by (Borchers 2003, Wong and
Hassan 2008) has observed that cultural differences have an impact on the software
organisation and organisational culture as well. However, as with qualitative studies
in general, the results of the study should be applied outside of its scope only as
guidelines and recommendations. When applied in a new context, such as in the
context of non-professional organisations, these results can be applied if the collected
evidence suggests that there are enough similarities within the results of this study
and the observations from the new context.

Overall, it can be argued that the number of organisations in this study is also rather
low to allow a study of the effects of different concepts in the test process. Our
objective was to establish the general effect of the different test process components
and find the most important factors. It can be expected that by adding more
organisations to the sample, the list of affecting factors would be more detailed, but
the objective was not in compiling a comprehensive list of all possible variables, but to
establish an understanding of the most important factors.

As for the quantitative survey sample, a sample of 31 organisations may also seem
somewhat limited, but this limitation can also be avoided by designing the study to
cater to these limitations. In our study, similarly to livari (1996), the sample size is

91

small but sufficient if analysed correctly. In our study, the threat of overfitting the data
was addressed by selecting the organisations to represent different software domains
and types of organisations, and triangulating the data with different approaches. This
approach was also used to defer a non-response bias in the results; by maintaining
heterogeneity in the sample, the results do not favour certain types or sizes of
software producers. Additionally, in a paper by Sackett (2001) there is discussion
regarding conceptualisation of signal-to-noise-ratio in statistical research. Their
approach is to define confidence as being based in the practicality of observations:
confidence = (signal / noise) * square root of sample size. In practice, this indicates that
the confidence for the result being non-random weakens if the amount of noise
increases while the signal decreases. In the Sackett model, the attributes are
abstracted, meaning that the noise can be considered to be the uncertainty of the
answers or any source of variation. Even if this Sackett model is not mathematical but
more probably a logically defined conceptualisation, the concept is that the confidence
is strongly related to the noise in the survey data. In our study, the response rate was
74 % for the organisations originally considered for the survey, and the data collection
in all sample organisations was conducted by the same researchers who also
participated in the survey design to avoid misunderstandings of the questions and to
obtain a larger response rate from the sample (Baruch 1999). In this sense, it can be
argued that the noise-ratio in the survey data is low, allowing more confidence as to
the appropriateness of the survey answers and the data in general. This confidence is
important, as the study by Armstrong (2007) argues, in studies covering aspects from
social sciences there may be problems with statistical approaches and validation of
answers with a statistical approach.

As for the validity of the qualitative research, there are threats that should be
addressed to assert the validity of the results (for example Denzin 1978, Robson 2002,
Onwuegbuzie and Leech 2007). Golafshani (2003) discusses the validity and reliability
of qualitative research, and makes some notations on the reliability and validity
issues. The reliability and validity in a qualitative study are not the same as the
traditional mathematically proved concepts. In the quantitative study, the reliability
and validity are rather a conceptualisation of trustworthiness, rigor, and the quality of
the study. To increase the validity in a qualitative study, the research must eliminate
bias and remain truthful to the collected data and observed phenomena. Similar
observations are also discussed by Moret et al. (2007). Moret et al. points out that
qualitative and quantitative studies should not exclude, but rather complement each
other. Each approach has their method of validating the data, and if the research
question is quantitative by nature, it is appropriate to apply a quantitative approach to
collect that part of the data even if the overall subject requires a qualitative analysis.

To guarantee the validity of the study we used probability sampling when selecting
the OUs for the survey, and theoretical sampling when selecting the in-depth cases in

92

the qualitative study. Robson (2002) lists three threats to validity in this kind of
research: reactivity (the interference of the researcher’s presence), researcher bias, and
respondent bias and suggests strategies that reduce these threats. To avoid the
researcher bias, the interviews were conducted by the researchers and for the data
analysis, new researchers were brought in to participate in the data analysis to enable
observer triangulation (Denzin 1978). During the data analysis for new publications,
the new data (data triangulation) and the results were also compared with earlier
quantitative and qualitative results (method triangulation) to further validate the
study.

Overall, the mixed-method approach allows the study to validate the overall results
with comparisons and cross-referencing between different sources of data from both
qualitative and quantitative sources. In this sense, the threats to the validity of the
results from this study are low, as the results can be traced through different analysis
methods and are based on overlapping, but ultimately different data sets. Finally, as
Publications II-IV and VI all observe the same dataset, which is also a subset for
Publications V and VII, from several different viewpoints and test process areas, it can
be argued that this dissertation itself presents the theory triangulation for the overall
results.

6.2 Future research topics

The implications for future research were identified in the previous chapter.
Nevertheless, the possible future research topics, which are based on this study, are
numerous as the topic itself is based on an extensive background of testing-related
concepts.

One possibility for a future research topic is an exploration of the implications of the
new technology such as cloud computing or crowd sourcing in the application of
testing. In this research, one of the objectives was to study and identify the important
components of testing, which are important from the test process viewpoint
(Publications I-1V, VI). These publications cover several conventional aspects such as
development methods, testing tools and test management, but the implications of
changing software business and new technology along with distributed development
methods such as cloud computing and crowd sourcing could be elaborated upon.

Another possible topic for future research could also be the development and
extension of the self-assessment framework discussed in Publication VII. The proof-of-
concept study has established that the framework could be an efficient tool for
organisations and based on the literature related to the test process improvement
these types of frameworks are useful in addressing the process objective issues of the

93

organisations. By approaching the problem by combining concepts from related
research areas such as organisational studies, group learning or psychology, with
qualitative and comparative studies as regards existing process development models,
the framework could be further developed towards a lightweight assessment model
for application with the ISO/IEC 29119 test process standard.

94

References

Abrahamsson, P. (2001). “Commitment development in software process
improvement: critical misconceptions”, Proceedings of the 23rd International
Conference on Software Engineering, Toronto, Canada, pp. 71-80.

Abrahamsson, P, Salo, O., Ronkainen, J. andWarsta J. (2002). “Agile Software
Development Methods: Review and Analysis”, VIT Publications 478.

Afzal, W. and Torkar, R. (2008), ' Incorporating Metrics in an Organizational Test
Strategy’, IEEE International Conference on Software Testing Verification and
Validation Workshop (ICSTW’08), 9.4.-11.4., Lillehammer, Norway.

Armstrong, J.S. (2007). "Significance tests harm progress in forecasting". International
Journal of Forecasting 23: 321-327. doi: 10.1016/ j.ijforecast.2007.03.004

ATLAS.ti (2010). ATLAS.ti: The Qualitative Data Analysis Software, Scientific Software
Development. Available at http://www.atlasti.com/, referenced 2.5.2010.

Bach, J. (1997). “Test automation snake o0il”, 14th International Conference and
Exposition on Testing Computer Software, Washington D.C., USA.

Baruch Y. (1999). "Response Rate in Academic Studies - A Comparative Analysis,"
Human Relations, vol. 52, pp. 421-438.

Behforooz, A. and Hudson F.J. (1996). “Software Engineering Fundamentals”, Oxford
University Press, Oxford, NY, USA. ISBN: 0-19-510539-7

Becker, J. and Niehaves, B. (2007). “Epistemological perspectives on IS research: a
framework for analysing and systematizing epistemological assumptions”,
Information Systems Journal, 17: 197-214. doi: 10.1111/j.1365-2575.2007.00234.x

95

Bertolino, A. (2007). “Software testing research: achievements, challenges, dreams”. In
International Conference on Software Engineering,” 2007 Future of Software
Engineering, Minneapolis, MN, USA.

Boehm, B. (2002). “Get ready for Agile Methods, with Care”, Computer Vol. 35(1).
DOI: 10.1109/2.976920

Boehm, B. and Turner, R. (2003), "Using Risk to Balance Agile and Plan-Driven
Methods," Computer, vol. June, pp. 57-66.

Borchers, G. (2003). “The software engineering impacts of cultural factors on multi-
cultural software development teams”, In Proceedings of the 25th International
Conference on Software Engineering (ICSE '03). IEEE Computer Society,
Washington, DC, USA, 540-545.

Briand L. and Labiche, Y. (2004). "Empirical studies of software testing techniques:
challenges, practical strategies and future research”, ACM SIGSOFT Software
Engineering Notes, Vol. 29, Issue 5, pp. 1-3.

Brown, S. (2000). “Overview of IEC 61508. Design of electrical/electronic/
programmable electronic safety-related systems”. Computing & Control
Engineering Journal, Vol. 11(1), pp. 6-12, doi: 10.1049/ccej:20000101

BSI (1998). “7925-1:1998 Software testing: Vocabulary”, British Standards Index.

Burnstein, 1., Suwanassart, T., Carlson, R. (1996). “Developing a testing maturity
model for software test process evaluation and improvement”, International
Test Conference 1996 (ITC'96). doi: /10.1109/TEST.1996.557106

Carlsson, S.A. (2003). “Advancing Information Systems Evaluation (Research): A
Critical Realist Approach”, Electronic Journal of Information Systems
Evaluation, Vol. 6(2), pp. 11-20.

Chen, W. and Hirschheim, R. (2004). “A paradigmatic and methodological
examination of Information systems research from 1991 to 2001”. Information
Systems Journal, 14, 197-235.

Chen, Y., Probert, R.L. and Robeson, K. (2004), ‘Effective test metrics for test strategy
evolution’, CASCON '04 Proceedings of the 2004 conference of the Centre for
Advanced Studies on Collaborative research, pp. 111-123, 5.10.-7.10.2004,
Markham, Canada.

CMMi Product Team (2010). “CMMI for Development, Version 1.3”, Software
Engineering Institute, Carnegie Mellon University.

Conradi, R. and Fugetta, A. (2002) "Improving software process improvement", IEEE
Software, Vol. 19, Issue 4.

Cronbach L. J. (1951), "Coefficient Alpha and the Internal Structure of Tests,"
Psychometrika, vol. 16, pp. 279-334.

De Grood, D.-]. (2008). “Generic Test Strategy”, Testgoal, Springer Berlin Heidelberg,
pp. 119-123. ISBN 978-3-540-78828-7

Deemer, P, Benefield, G., Larman, C. and Vodde, B. (2010), “The Scrum primer”,
version 1.2, Scrum Foundation.

96

Denzin, N. K. (1978), The research act: A theoretical introduction to sociological
methods, McGraw-Hill.

Dyba, T. (2003). “Factors of software process improvement success in small and large
organizations: an empirical study in the Scandinavian context”, Proceedings of
the 9th European software engineering conference held jointly with 11th ACM
SIGSOFT international symposium on Foundations of software engineering,
pages 148-157, Helsinki, Finland. doi: 10.1145/940071.940092

EC (2003), "The new SME Definition User guide and model declaration" Enterprise
and Industry Publications, European Commission, 2003.

Eisenhardt, K. M. (1989), 'Building Theories from Case Study Research’, Academy of
Management Review, vol. 14, no. 4, pp. 532-550.

Ericson, T., Subotic, A., Ursing. S. (1997): TIM - A Test Improvement Model, Software
Testing, Verification & Reliability (STVR), vol. 7 (4), pp. 229-246, John Wiley &
Sons, Inc..

Estublier,]., Leblang, D., Hoek van der, A. Conradi, R., Clemm, G., Tichy, W. and
Wiborg-Weber, D. (2005). “Impact of software engineering research on the
practice of software configuration management”, Transactions on Software
Engineering and Methodology, Vol. 14(4). DOI: 10.1145/1101815.1101817

Faroogq, A. and Dumke, R.R. (2007). “Research directions in verification & validation
process improvement”, SIGSOFT Software Engineering Notes, Vol. 32(4). doi:
10.1145/1281421.1281425

Fink, A. (2003). “The Survey Handbook”, Second edition, SAGE Publications Inc.
ISBN: 0-7619-2580-5

Fink, A. and Kosecoff, J. (1985). How to conduct surveys A Step-by-Step Guide.
Newbury Park, CA: SAGE Publications, Inc..

Fowler, M. & Highsmith,]J. (2001), “The Agile Manifesto”, Software Development,
Aug. 2001, pp. 28-32.

Garvin, D.A. (1984). “What Does “Product Quality” Really Mean?”, Sloan
Management Review, Issue 4, pages 25-43.

Geels, F.W. (2004), “From sectoral systems of innovation to socio-technical systems
Insights about dynamics and change from sociology and institutional theory”,
Research Policy, Vol. 33, pp. 897-920. doi:10.1016/j.respol.2004.01.015

Glaser, B.G. (2002), “Constuctivist Grounded Theory?”, Forum: Qualitative Social
Research (FQS), Vol 3(3).

Glaser, B. and Strauss, A.L. (1967). The Discovery of Grounded Theory: Strategies for
Qualitative Research. Chicago: Aldine.

Golafshani, N. (2003). “Understanding Reliability and Validity in Qualitative
Research”, The Qualitative Report, Vol 8(4), December 2003, pages 596-607.

Hardgrave, B.C. and Armstrong, D.J. (2005). “Software process improvement: it's a
journey, not a destination”, Communications of the ACM, Vol. 48(11), pages 93-
96. DOI: 10.1145/1096000.1096028

97

Harrold, M.J. (2000). “Testing: a roadmap”, 22nd International Conference on Software
Engineering, The Future of Software Engineering, pp. 61-72.

Highsmith, J. and Cockburn, A. (2001). Agile Software Development: the Business of
Innovation. Computer, 34(9), 120-127. DOI: 10.1109/2.947100

Hirschheim, R. A. (1985), 'Information systems epistemology: an historical
perspective', in R. H. E Mumford, G Fitzgerald, T Wood-Harper (ed.), Research
Methods in Information Systems, North-Holland, Amsterdam.

Huang, L. and Boehm, B. (2006) How Much Software Quality Investment Is Enough: A
Value-Based Approach, IEEE Software, Vol. 23(5), pp. 88-95, doi:
10.1109/MS.2006.127.

IEEE (1987). “ANSI/IEEE Std 1008-1987 IEEE Standard for Software Unit Testing”,
IEEE Computer Society.

IEEE (2008). “829-2008 IEEE Standard for Software Test Documentation”, IEEE
Computer Society, 2008. DOI: 10.1109/IEEESTD.2008.4578383

livari, J. (1996). "Why Are CASE Tools Not Used," Communications of the ACM, vol.
39, pp. 94-103.

ISO/IEC (2002). ISO/IEC 15504-1, Information Technology - Process Assessment - Part
1: Concepts and Vocabulary, 2002.

ISO/IEC (2005) ISO/IEC 25000, Software engineering — Software product Quality
Requirements and Evaluation (SQuaRE) — Guide to SQuaRE, first edition, 2005.

ISO/IEC (2008). ISO/IEC 12207:2008 Systems and Software engineering - Software life
cycle processes, 2008.

ISO/IEC (2009). ISO/IEC 25010-3, Software Engineering — Software product Quality
Requirements and Evaluation (SQuaRE) - Quality Model, version 1.46, dated
28.1.2009.

ISO/IEC (2010). ISO/IEC WD 29119-2, Software and Systems Engineering — Software
Testing .— Part 2: Test Process, version 2.1, dated 27.05.2010.

ISO/IEC/IEEE (2010) “24765:2010 Systems and software engineering - Vocabulary”,
First edition, 15.12.2010, ISO/IEC and IEEE Computer Society. DOI:
10.1109/IEEESTD.2010.573383

ISTQB (2007). International Software Testing Qualifications Board (ISTQB), Certified
Tester Foundation Level Syllabus, version 01.05.2007.

Jung, E. (2009). “A Test Process Improvement Model for Embedded Software
Developments”, Proc. Of the 9th Internatinal Conference on Quality Software,
24.-25.8.2009, Jeju, South Korea.

Juristo, N. and Moreno, A.M. (2001). “Basics of Software Engineering
Experimentation”, Kluwer Academic Publishers, Boston, USA. ISBN: 0-7923-
7990-4

Juristo, N., Moreno, A.M. and Vegas, S. (2004). “Reviewing 25 years of testing
technique experiments”, Empirical Software Engineering, Vol. 9(1-2), pages 7-
44. DOI: 10.1023/B:EMSE.0000013513.48963.1b

98

Jorgensen, M. (1999). “Software quality measurement”, Advances in Engineering
Software, Vol 30(2), pages 907-912.

Kaner C. and Bach J. (2005). “Black Box Software Testing”, Association for Software
Testing.

Kaner, C., Bach, J. and Pettichord, B. (2002). “Lessons Learned in Software Testing: A
Context-Driven Approach”, John Wiley & Sons Inc., New York. ISBN: 0-471-
08112-4

Kaner, C,, Falk, J. and Nguyen, H.Q. (1999). “Testing Computer Software”, second
edition, John Wiley & Sons Inc., New York. ISBN: 0-471-35846-0

Karhu, K., Repo, T., Taipale, O. and Smolander, K. (2009). “Empirical Observations on
Software Testing Automation”, Proceeding of the 2nd International Conference
on Software Testing, Verification and Validation, Denver, CO, USA.

Karlstrém, D., Runeson, P., Nordén, S. (2005). “A minimal test practice framework for
emerging software organizations”, Software Testing, Verification and Reliability
(STVR), Vol. 15(3), pp. 145-166. DOI: 10.1002/stvr.317

Kautz, K., Hansen H.W. and Thaysen, K. (2000). “Applying and adjusting a software
process improvement model in practice: the use of the IDEAL model in a small
software enterprise”, Proceedings of the 22nd international conference on
Software engineering, Limerick, Ireland, pages 626-633. doi:
10.1145/337180.337492

Kit, E. (1995), Software Testing in the Real World: Improving the Process, Addison-
Wesley, Reading, MA.

Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, PW., Hoaglin, D.C., Emam,
K.E. and Rosenberg, J. (2002). "Preliminary Guidelines for Empirical Research
in Software Engineering," IEEE Transactions on Software Engineering, vol. 28,
pp- 721-733.

Klein, H.K. and Myers, M.D.(1999). "A set of principles for conducting and evaluating
interpretive field studies in information systems”, MIS Quarterly, vol. 23, pp. 67-
94.

Koomen, T. and Pol, M. (1999). “Test Process Improvement: A practical step-by-step
guide to structured testing”, Addison-Wesley, Great Britain. ISBN: 978-0-201-
59624-3

Locke, K. (2001).”Grounded Theory in Management Research”, SAGE Publications,
Thousand Oaks, CA, USA. ISBN: 0-7619-6427-4

Miles, M. B. and Huberman, A. M. (1994). Qualitative Data Analysis. SAGE
Publications, Thousand Oaks, CA, USA.

Mingers, J. (2004), “Real-izing information systems: critical realism as an
underpinning philosophy for information systems”, Information and
Organization, Vol 14(2) April 2004, pp. 87-103. doi:
10.1016/j.infoandorg.2003.06.001

Moret, M., Reuzel, R., van der Wilt, G. J. and Grin, J.(2007). “Validity and Reliability of
Qualitative Data Analysis: Interobserver Agreement in Reconstructing

99

Interpretative Frames”, Field Methods, Vol. 19(1), pages 24-39. DOL:
10.1177/1525822X06295630

Myers, G.J. (2004), “The Art of Software Testing”, 2nd edition, John Wiley & Sons, Inc.,
Hoboken, New Jersey, USA. ISBN: 0-471-46912-2

Ng, S.P, Murmane, T., Reed, K., Grant, D. and Chen, T.Y. (2004) ‘A preliminary survey
on software testing practices in Australia’, Proc. 2004 Australian Software
Engineering Conference (Melbourne, Australia), pp. 116-125.

Niekerk, van J.C. and Roode, J.D. (2009). “Glaserian and Straussian grounded theory:
similar or completely different?”, Proc. of the 2009 Annual Research Conference
of the South African Institute of Computer Scientists and Information
Technologists, DOI: 10.1145/1632149.1632163, Vanderbijlpark, South Africa.

Oh, H., Choi, B., Han, H., Wong, W.E. (2008). “Optimizing Test Process Action Plans
by Blending Testing Maturity Model and Design of Experiments”, Proc. of the
8th International Conference on Quality Software, pp. 57-66, doi:
10.1109/QSIC.2008.19 12.-13.8.2008, Oxford, UK.

Onwuegbuzie, A.J. and Leech, N.L. (2007). “Validity and Qualitative Research: An
Oxymoron?”, Quality and Quantity, Vol 41(2), pages 233-249. DOIL:
10.1007/s11135-006-9000-3.

Paré, G. and Elam, J.J. (1997). Using Case Study Research to Build Theories of IT
Implementation. The IFIP TC8 WG International Conference on Information
Systems and Qualitative Research, Philadelphia, USA. Chapman & Hall.

Pather, S. and Remenyi, D. (2004), “Some of the philosophical issues underpinning
research in information systems: from positivism to critical realism”, SAICSIT
'04 Proceedings of the 2004 annual research conference of the South African
institute of computer scientists and information technologists on IT research in
developing countries, Pretoria, South Africa, 2004.

Petschenik, N.H., (1985). “Practical Priorities in System Testing”, IEEE Software, Vol.
2(5), pp- 18-23. DOI: 10.1109/MS.1985.231755

Pfleeger, S.L. (1999). “Albert Einstein and Empirical Software Engineering”, Computer
Vol. 32(19), pp. 32-38. DOI: 10.1109/2.796106

Pfleeger, S.L. and Atlee,].M. (2006). “Software Engineering Theory and Practice”,
Third edition, Pearson International Edition, USA. ISBN: 0-13-198461-6

Pfleeger, S.L. and Kitchenham B.A. (2001).” Principles of survey research: part
1:turning lemons into lemonade”, ACM SIGSOFT Software Engineering Notes,
Vol. 26(6). DOI: 10.1145/505532.505535

Pino, F.J., Garcia, F. and Piattini, M. (2009). “Key processes to start software process
improvement in small companies”, Proceedings of the 2009 ACM symposium
on Applied Computing, Honolulu, Hawaii, USA. DOI: 10.1145/1529282.1529389

Robson, C. (2002). “Real World Research”, Second Edition. Blackwell Publishing.

Sackett, D.L. (2001). "Why randomized controlled trials fail but needn't: 2. Failure to
employ physiological statistics, or the only formula a clinician-trialist is ever
likely to need (or understand!)". CMAJ 165 (9): 1226-37, October.

100

Salvaneschi, P. and Piazzalunga, U. (2008). ”Engineering models and software quality
modes: an example and a discussion”, Proc. 2008 International workshop on
Models in software engineering, Leipzig, Germany, pages 39-44. DOLI:
10.1145/1370731.1370741

Schmidt, R.C., (1997). “Managing Delphi surveys using nonparametric statistical
techniques”, Decision Sciences Vol. 28, pp. 763-774.

Seaman, C.B. (1999). "Qualitative methods in empirical studies of software
engineering", IEEE Transactions on Software Engineering, vol. 25, pp. 557-572.

Sjeberg, D.LK. Dyba T. and Jorgensen, M. (2007). “The future of empirical methods in
software engineering research”, International Conference on Software
Engineering, 2007 Future of Software Engineering, Minneapolis, MN, USA.

Sjeberg, D.I.K., Hannay, J.E., Hansen, O., Kampenes, V.B., Karahasanovic, A., Liborg,
N.-K. and Rekdal, A.C. (2005). "A survey of controlled experiments in software
engineering," Software Engineering, IEEE Transactions on , vol.31, no.9, pp. 733-
753. DOI: 10.1109/TSE.2005.97

Slaughter, S.A., Harter, D.E. and Krishnan, M.S. (1998)."Evaluating the cost of software
quality”, Communications of the ACM, Vol. 41, Issue 8.

Soressi, E. (2010). “Introduction in safety rules EN954-1, EN13849 and EN62061”, 5th
International Conference on System Safety 2010, 18.-20.10.2010, Manchester,
UK, pp. 1-6. doi: 10.1049/cp.2010.0824

SPSS (2011). SPSS 17.0. Chicago: SPSS Inc. http://www.spss.com. Referenced 2.5.2011.

Strauss, A. and Corbin J. (1990). Basics of Qualitative Research: Grounded Theory
Procedures and Techniques. SAGE Publications, Newbury Park, CA, USA.

Sulayman, M. and Mendes, E. (2010). “Quantitative assessments of key success factors
in software process improvement for small and medium web companies”,
Proceedings of the 2010 ACM Symposium on Applied Computing, Sierre,
Switzerland, pages 2319-2323. DOI: 10.1145/1774088.1774568

Susman, G.I. and Evered, R.D. (1978). "An Assessment of the Scientific Merits of
Action Research," Administrative Science Quarterly, (23), pp. 582-603.

Taipale, O. and Smolander, K. (2006). “Improving Software Testing by Observing
Causes, Effects, and Associations from Practice”, the International Symposium
on Empirical Software Engineering, Rio de Janeiro, Brazil.

Taipale, O., Smolander, K. and Kélvidinen, H. (2006a). “Cost Reduction and Quality
Improvement in Software Testing”, Software Quality Management Conference,
Southampton, UK.

Taipale, O., Smolander, K. and Kalvidinen, H. (2006b). “Factors Affecting Software
Testing Time Schedule”, the Australian Software Engineering Conference,
Sydney. IEEE Comput. Soc, Los Alamitos, CA, USA.

Taipale, O., Smolander, K. and Kalvidinen, H. (2006c). “A Survey on Software Testing”,
6th International SPICE Conference on Software Process Improvement and
Capability dEtermination (SPICE2006), Luxembourg.

101

Tan, M.T.K. and Hall, W. (2008). “Beyond Theoretical and Methodological Pluralism in
Interpretive IS Research: The Example of Symbolic Interactionist Ethnography”,
Communications of the Association of Information Systems, Vol. 19(1), article
nbr. 26.

Tassey, G. (2002). The Economic Impacts of Inadequate Infrastructure for Software
Testing. U.S. National Institute of Standards and Technology report, RTI Project
Number 7007.011.

TMMi (2010). ” Test Maturity Model integration”, Version 3.1, TMMi Foundation,
Ireland.

Utting, M. and Legeard, B. (2007). “Practical model-based testing: a tools approach”,
Elsevier Inc.. ISBN: 978-0-12-372501-1

Weber, R. (2003) Editor’s comment: theoretically speaking. MIS Quarterly, 27, pp. 3-12.

Whitworth, B. (2006). “Socio-Technical Systems”, Encyclopedia of Human Computer
Interaction, ed. Claude Ghaoui, pp. 559-566. Hershey PA: Idea Group Reference.

Wong, B. and Hasan, S. (2008). “Cultural influences and differences in software
process improvement programs”, Proceedings of the 6th international
workshop on software quality, Leipzig, Germany, pages 3-10. DOL:
10.1145/1370099.1370101

102

Appendix I: Publications

Publication I

Analysis of Problems in Testing Practices

Kasurinen, J., Taipale, O. and K. Smolander (2009), 16th Asia-Pacific Software
Engineering Conference (APSEC), Batu Ferrenghi, Penang, Malaysia, 01.-03.12.2009.
doi: /10.1109/APSEC.2009.17.

© 2009 IEEE. Reprinted, with permission.

Analysis of Problems in Testing Practices

Jussi Kasurinen, Ossi Taipale and Kari Smolander
Department of Information Technology
Lappeenranta University of Technology

Lappeenranta, Finland
jussi.kasurinen | ossi.taipale | kari.smolander@]lut.fi

Abstract—The objective of this qualitative study was to explore
and understand the problems of software testing in practice
and find improvement proposals for these issues. The study
focused on organizational units that develop and test technical
software for automation or telecommunication domains, for
which a survey of testing practices was conducted and 26
organizations were interviewed. From this sample, five
organizations were further selected for an in-depth grounded
theory case study. The analysis yielded hypotheses indicating
that a software project design should promote testability as
architectural attribute and apply specialized personnel to
enhance testing implementation. Testing tools should also be
selected based on usability and configurability criteria. These
results of this study can be used in developing the efficiency of
software testing and in development of the testing strategy for
organization.

Keywords-software testing, test
enhancement proposals, grounded theory

process, problems,

L INTRODUCTION

Software testing is an essential part of software
engineering and a central component which largely affects
the final product quality [1, 2, 3, 4]. However, testing still
has much potential to grow, as illustrated, for example, in the
paper by Bertolino [1]. Bertolino discusses the future of
testing and offers several objectives, like test-based modeling
or completely automated testing, to aim for in the future.
Similarly, Sjoberg et al. [5] also discuss the relevance of
empirical research as a method for examining the usefulness
of different software engineering activities in real-life
situations. Additionally, Briand and Lapiche [6] also discuss
empirical software engineering research from the viewpoint
of applicability. Their opinion is that research on testing
techniques should be tested in industrial settings. The human
impact and experience are important factors in testing-related
research, and therefore the most applicable results are gained
by observing professional testing personnel [6].

A test process has practical limitations in resources, as
well. A previous study by Taipale et al. [7] suggests that the
main cost items for testing are personnel costs and
automation costs. Process improvement, increased
automation, and experience-related ‘“know-how” were the
major components in testing efficiency. The economic
impact of improving testing infrastructure has also been
discussed by Tassey [4] and Slaughter et al. [3], who
established that process improvement increased software

quality, and decreased the number of defects and subsequent
testing and debugging costs.

Conradi and Fugetta [8] discuss software process
improvement and maintain that the process improvement is
not completely straight-forward model adoption. Even if
there are process improvement models available such as
ISO/IEC15504 [9] or CMMI [10], better results are achieved
when the improvement is business- or user-oriented [8].
Therefore, the improvement process should be based on
problems observed, and implement internal improvement
proposals, not just acquire and adapt to external process
models.

In this study, our specific objective is to identify the
problematic areas of software testing in real-world
organizations. We aim to understand better the difficulties
that testing practitioners face, and based on that
understanding, to derive hypotheses on how these difficulties
or issues could be addressed. We do this by applying the
grounded theory research method [11, 12] on observations
made in real-life, industrial software producing
organizations.

This study is conducted in accordance with the grounded
theory research method introduced by Glaser and Strauss
[11] and later extended by Strauss and Corbin [12].
Grounded theory was selected because of its ability to
uncover issues from the practice under observation that may
not have been identified in earlier literature [12]. This study
is also a continuation for a series of studies in software
testing in software business domain. These studies approach
software testing practice empirically from various
viewpoints, including process improvement [13, 14],
schedules [15], outsourcing [7, 13], and test automation [16].

The paper is organized as follows: Firstly, we introduce
the related research. Secondly, the research process and the
grounded theory method are described in Section 3. The
analysis results are presented in Section 4. Finally, the
discussion and conclusions are given in Section 5.

II. RELATED RESEARCH

Software testing and software quality are discussed in
several studies with many different approaches to process
improvement [e.g. 2, 3, 4, 17, 18, 19]. Software quality
improvement and increased testing efficiency are also central
themes in trade literature [e.g. 20, 21]. There are also
international standards such as ISO 9126 [22], which have

been created to define software quality, although not without
their own clarity issues [23].

Besides user-perceived quality, the software industry also
has an economic incentive to commit to the development of
better testing practices. For example, Tassey [4] reports the
impact of inadequate testing infrastructure. This report
discusses the effect of poor quality and insufficient testing
practices in great detail, focusing on testing metrics, testing
frameworks and improvement methods. Overall, the report
indicates that in the U.S. alone, insufficient testing
infrastructure causes annually 21.2 billion dollars worth of
additional expenses to the software developers. From this
estimate, 10.6 billion could be reduced with reasonable
infrastructure and testing framework improvements [4]. The
effect of the improvement of software quality as a cost
reduction method is also discussed by other authors, such as
Slaughter et al. [3] or Menzies and Hihn [19].

The research on quality enhancement and testing
practices has also produced smaller, method-oriented studies
to propose testing process enhancements. For example,
Johnson [18] discusses the approach using technical reviews
and formal inspections to enhance software quality. Johnson
relates that although the technical review is a powerful tool,
it is usually expensive and prone to human errors such as
personality conflicts or ego-involvement. However, by
adopting an operating environment and suitable support tools
the technical review process is improved as the issues are
addressed. The quality aspects are also an interest point for
business themselves; some private corporations have
documented their own improvement proposals and ways to
enforce good testing practices and policies [e.g. 24]

Kelly and Oshana [2] have introduced statistical methods
as a way to improve software quality. Their approach was
able to increase the cost-effectiveness of software testing by
applying a testing strategy to unit testing and by constructing
usage models for each tested unit. If the usage model was
appropriate, the number of errors found increased, resulting
in better quality.

Cohen et al. [25] also noticed that the result of testing
ultimately depends on the interpersonal interactions of the
people producing the software. Capiluppi et al. [26] discuss
the practice of outsourcing, which causes new requirements
for testing and quality control, as knowledge on software
systems and knowledge transfer with third parties affect the
final quality.

As for the industry-wide studies on software testing, Ng,
Murmane and Reed [27] have conducted a study on software
testing practices in Australia. In the study, 65 companies
located in major cities and metropolitan areas were surveyed
for testing techniques, testing tools, standards and metrics.
The central themes in this study were that the test process
does not easily adopt new tools or techniques, as they are
time-consuming to learn and master. A lack of expertise by
practitioners was considered a major hindrance, as were the
costs of adopting new techniques or training specialized
testers.

Overall, there seems to be a multitude of approaches to
control difficulties and gain benefits in software testing,

ranging from technology-oriented tool introduction processes
to observing and enhancing stakeholder interaction.

III. RESEARCH PROCESS

Software testing practice is a complex organizational
phenomenon with no established, comprehensive theories
that could be tested with empirical observations [3].
Therefore, an exploratory and qualitative strategy following
the grounded theory approach [11, 12] was considered
suitable for discovering the basis of testing difficulties.
According to Seaman [28], a grounded approach enables the
identification of new theories and concepts, making it a valid
choice for software engineering research, and consequently,
appropriate for our research.

Our approach was in accordance with the grounded
theory research method introduced by Glaser and Strauss
[11] and later extended by Strauss and Corbin [12]. We
applied the process of building a theory from case study
research as described by Eisenhardt [29]. Principles for an
interpretive field study were derived from [30] and [31].

A. Data Collection

The standard ISO/IEC 15504-1 [9] specifies an
organizational unit (OU) as a part of an organization that is
the subject of an assessment. An OU deploys one process or
has a coherent process context, and operates within a set of
business goals. An OU is typically a part of a larger
organization, although a small organization may in its
entirety be only one OU. The reason to use an OU as an
assessment unit was that normalizing company size makes
the direct comparison between different types of companies
possible.

The population of the study consisted of OUs from small,
nationally operating companies to large internationally
operating corporations, covering different types of software
manufacturers from hardware producers to contract testing
services.

For the first interview round, the selection from the
population to the sample was based on probability sampling.
The population was identified with the help of authorities,
and the actual selection was done with random selection
from the candidate pool. For the first round, a sample of 26
OUs was selected. From this group, five OUs were further
selected as the case OUs for the second, third and fourth
interview rounds. These five cases were selected based on
the theoretical sampling [31] to provide examples of polar
types of software businesses [29]. These selected cases
represented different types of OUs, e.g. different lines of
business, different sizes and different kinds of operation,
enabling further rounds in order to approach the test process
concepts from several perspectives. Managers of
development and testing, testers, and systems analysts were
selected as interviewees because these stakeholders face the
daily problems of software testing and are most likely able to
come up with practical improvement proposals. The
interviews lasted approximately one hour, and were
conducted by two researchers to avoid researcher bias [32,
33]. The OUs and interviewees are described in Table 1.

TABLE 1.

OUS AND INTERVIEWEES

the turnover and services 51.6%.

was 75 persons.

Interview ou Business Company size' Interviewees
round(s)
First All 26 OUs, Automation or OUs from large companies (53%) Managers; 28% were responsible
cases telecommunication domain, and small/medium-sized enterprises | for testing, and 20% were
included products represented 48.4% of (47%). The average size for OU responsible for development, 52%

both.

Testing service provider

2nd, 3rd and 4th Case A A MES producer and integrator Large/international ;F:z;;r;% manager, tester, systems
2nd, 3rd and 4th Case B Soﬂyvare prqducer and testing Small/national Testing manager, tester, systems
service provider analyst
2nd, 3rd and 4th Case C A process automation and .
. . - . Testing manager, tester, systems
information management Large/international
. analyst
provider
2nd, 3rd and 4th CaseD Electronics manufacturer Large/international Testing manager, 2 testers,
systems analyst
2nd, 3rd and 4th Case E

Small/national

Testing manager, tester, systems
analyst

The first interview round contained both structured and
theme-based questions. The objective was to understand the
basic practices in testing, identify process problems, and
collect improvement proposals. The interviewees were
managers of development or testing, or both. The questions
of the first round concerned general information regarding
the OU, software processes and testing practices, and the
development environment of the OU. The interviewees of
the second round were managers of testing, those of the third
round were actual testers, and in the fourth round they were
systems analysts. The objective of these interview rounds
was to achieve a deeper understanding of software testing
practice from different viewpoints, and further elaborate on
the testing process difficulties. The questions reflected this
objective, being theme-based and focusing on the aspects of
testing such as the use of software components, the influence
of the business orientation, knowledge transfer, tools,
organization and resources.

Before proceeding to the next interview round, all
interviews were transcribed and analyzed for new ideas to
emerge during the data analysis. The new ideas were then
reflected in the following interview rounds.

B. Data Analysis

The grounded theory method contains three data analysis
steps: open coding, where categories of the study are
extracted from the data; axial coding, where connections
between the categories are identified; and selective coding,
where the core category is identified and described [12].
First, the prior data was analyzed to focus on the issues in the
later interview rounds. The categories and their relationships
were derived from the data to group concepts pertaining to
the same phenomena into categories.

The objective of the open coding was to classify the data
into categories and identify leads in the data. The process
started with “seed categories” [35] that contained essential
stakeholders and known phenomena based on the literature.

'SME definition [34]

Seaman [28] notes that the initial set of codes (seed
categories) comes from the goals of the study, the research
questions, and predefined variables of interest. In the open
coding, new categories appeared and existing categories
were merged because of new information that surfaced in the
coding. At the end of the open coding, the number of codes
exceeded 196 and the codes were grouped to 12 categories.

The objective of second phase, the axial coding, was to
further develop separate categories by looking for causal
conditions or any kinds of connections between the
categories.

The third phase of grounded analysis, the selective
coding, was used to identify the core category [12] and relate
it systematically to the other categories. As based on [12],
the core category is sometimes one of the existing categories,
and at other times no single category is broad or influential
enough to cover the central phenomenon. In this study, the
examination of the core category resulted in a set of software
testing concepts, categorized into lists of issues coupled with
improvement proposals.

IV. ANALYSIS RESULTS

In the categorization, the factors that caused the most
problems in software testing and resulted in the most
improvement ideas were identified from the research data,
grouped, and named. We developed the categories further by
focusing on the factors that resulted in or explained the
problems or improvement ideas, while abandoning
categories that did not seem to have an influence on the
testing activities. The categories are listed in Table 2.

A. Developed Categories

Overall, the categories were developed to describe the
common themes of test process observations of different
OUs. The categories either described process difficulties in
the organization or proposed enhancement over existing
procedure. In some cases, the category-related topic did
caused problems in the test process, but the organization did

TABLE IL

CATEGORIES FOR THE CASE OUS

Category

Description

Testing tools

Attributes associated with testing tools, for example availability, usability, and upkeep.

Testing automation

Testing automation-related issues and improvement proposals.

Knowledge transfer between
stakeholders

Issues related to knowledge transfer between stakeholders in the software development organization.

Product design

Development and testing issues related to, for example, the product architecture, feature definition, and design.

Testing strategy and planning
planning, and test case management.

Problems and improvement proposals related to, for example, the testing strategy, resource allocation, test case

Testing personnel

Issues related to the testing personnel and personal expertise.

Testing resources

Issues related to the availability or amount of resources allocated to testing.

not offer any solution or enhancement proposal to correct
this situation. Similarly, in some cases the category topic had
enhancement proposal without actually being perceived as an
actual process problem.

The category “testing tools” described the quality
attributes of the tools, for example, availability and usability.
Related problems, the complexity of using the tools, as well
as the design errors in the tools and in the user interfaces
were included in this category. Also improvement proposals
including tool requests or application suggestions were
included in this category.

The category “testing automation” described problems
from any level or type of testing automation. For the
improvement proposals, the application areas, ways to
increase testing effectiveness with automation or cost-saving
proposals for existing test automation were included.

The category “knowledge transfer between stakeholders”
described the problems and improvement proposals for
knowledge transfer and -sharing within the OU and between
clients or third party participants.

The category “product design” described the
shortcomings and possibilities related to the product
architecture, feature definition or design phase-related testing
problems, such as unclear features or late architectural
revisions.

The category “testing strategy and planning” described
the barriers caused by the lack of a testing strategy or test
case planning. This category also incorporated issues caused
by the testing priorities and the relationship between product
development and product testing.

The category “testing personnel” described the staff-
related problems and improvement proposals for personnel-
related issues. These included, for example, the lack of
expertise in testing, unavailability of in-house knowledge or
purely a lack of human resources.

Finally, the category “testing resources” described the
resource-related issues as in the availability of tools, funding
or time to complete test phases.

B. Observations and Hypotheses

Based on the categories defined from the observed
problems in software testing practice, we formed hypotheses
to explain the process difficulties or summarize the observed
phenomena. The hypotheses were shaped according to the

analysis and categorized observations, which are presented in
Table 3.

The line of business or company type did not seem to
have a major influence on the fundamental difficulties
encountered in the test process, further indicating that the
OU-level observations are useful in analyzing testing
organizations. However, there were some concerns and
differences which were caused by the upper, corporate level,
differences. Large companies with separate testing facilities
and in-house developed testing tools seemed to be more
vulnerable to testing tool errors, and had to use their
resources in maintenance of their testing tools. Additionally,
these companies usually had requirements to direct project
resources to comply with design standards or offer legacy
support. Small businesses were more vulnerable to resource
limitations and they had to optimize their resources more
carefully to minimize redundancy and overheads. For
example, testing tool development as an in-house production
was an unfeasibly large investment to a small company.
However, smaller companies benefited from personal level
knowledge transfer and had more freedoms in adjusting
testing strategy to respond to the project realities, as there
were fewer corporate policies to comply and follow.

In the following, we will present the results of our
analysis in the form of a condensed list of hypotheses.

1) Hypothesis 1: Product design for testability should be
a focus area in architectural design. In all case OUs, the
test process could be enhanced by taking the test design into
account during product planning. Systematic architecture,
clearly defined feature sets, and early test personnel
participation should contribute to ease the test planning and
to achieve a better test coverage or savings in the project
budget.

“Yes it [test planning] has an effect [on the project], and
in fact, we try to influence it even at the beginning of the
product definition phases, so that we can plan ahead and
create rhythm for the testing.” — Testing manager, Case C.

“The cost effectiveness for [errors] found is at its best if,
in the best case, the errors can be identified in the definition
phase.” — Test Manager, Case E

Case C also reported that by standardizing the system
architecture they could more easily increase the amount of
testing automation in the software process.

“When the environment is standardized, the automation
can be a much more powerful tool for us.” — Tester, Case C

2) Hypothesis 2: The testing processes need to clearly
define the required resources and separate them from the
other project resources. This condition persists in all of the
case OUs. In general, the large companies had a tendency to
cut testing to meet the deadline, whereas the small
companies either worked overtime or scaled down the test
coverage. On two OUs, the development process was even
allowed to use testing resources if it was running overtime.
All case OUs reported that they needed better testing
strategy or plan more to help resource allocation.

“And of course these schedules are tight, and it may be
that the time left for testing is not sufficient, but we can
pretty much manage these issues because of the early
planning.” — Tester, Case A.

In some OUs, the testing department had a limited option
to change the product deadlines to allow more testing. Some
OUs also expressed that the testing team should be able to
send the product back to development if certain minimum
criteria are not met.

“We should not do redundant work. If the release is of

TABLE III. PROBLEMS AND ENHANCEMENT PROPOSALS OF THE CASE OUS
Case OU Case A Case B Case C Case D Case E
Category
Testing Problem Complicated tools | Commercial tools | Complicated tools | Complicated Commercial tools
tools cause errors. have limited cause errors. tools cause errors. | have limited
usability usability
Enhancement | - Over- Error database to Less error-prone Multiple tools
proposal investmentshould observe test testing tools eliminate tool bias
be avoided. process. in results.
Testing Problem - Reliability issues Unused, no - High prices limit
automation cause expenses. suitable personnel. the automation
applicability.
Enhancement | Dedicated testers Component - Test report Automate
proposal to use automation | compatibility tests automation regression testing
should be
automated.
Knowledge Problem Outdated, Too little Misunderstandings | Redundant Deficient product
transfer unusable communication. between testing investments. testing.
between documentation. and development.
stakeholders | Enhancement | Developers to Promote Promote Results available | Dedicated people
proposal participate in communication communication to all project for inter-team
testing team between teams between teams participants. communication.
meetings
Product Problem Tailored features Feature Support for legacy | - Product design
design cause additional development uses | systems restrict uses resources
testing. testing resources. design. from testing.
Enhancement | Design should Design should Systematic Design should Systematic
proposal promote promote architecture would | promote architecture
testability. testability. help testing. testability. would help
testing.
Testing Problem The last test Testing is done on | The last test Testing has a Lack of resources
strategy and phases are scaled overtime if phases are scaled guaranteed but causes scaling
planning down if necessary. down if necessary. | fixed timetable. down testing.
necessary.
Enhancement | Testing strategy Testing strategy to | Features frozen Testing strategy Testing strategy to
proposal to minimize the prevent after set deadline to help focus on help prevent
time-related unnecessary to help test critical test cases. | unnecessary
risks. testing. planning. testing.
Testing Problem - - - Carelessness, Expertise is
personnel "battle fatique" in | expensive to
testing work. acquire.
Enhancement | Specialized testers | Testers should - Separate teams Specialized testers
proposal would enhance work in pairs with for system and would enhance
the process. designers. integration tests. total process.
Testing Problem Low product - Not enough time Infrastructure Lack of testing
resources volume limits for thorough costs limit environments
resource testing. testing. limit test process.
investments.
Enhancement | Own test - Bug-tracing - Own test
proposal laboratory to process for testing laboratory to
speed up the tools. speed up the
process. process.

such a poor quality that it should not be tested [for release]
at all, do not have the option of sending it back to
development for additional debugging.” —System Analyst,
Case E

Different from the other, Case D reported that they have
a guaranteed, fixed time allocation for testing. In this case,
the testing strategy was used to optimize the testing process
to cover the critical areas.

“[Based on the testing strategy] if there is a product with
new features with specifications that need to be tested, we
can be sure that it is tested and verified before the product is
built.” —Tester, Case D

3) Hypothesis 3: The selection of testing tools and
testing automation should focus on the usability and
configurability of possible tools. All large companies
reported that the false positives due to complicated or faulty
testing tools cause additional resource losses, whereas small
companies related that the limited technology support for
commercial tools restricted their test processes.

“When an error is found, we should immediately
establish whether or not the error was in the testing
environment. This could save us one unnecessary working
stage.” — System Analyst, Case D

The interviewees thought widely that automation tools
were error-prone or costly, but also that they could be used to
automate recurring test cases.

“We should automate as many areas as possible, but then
we should also have people to create testing automation...” —
System Analyst, Case A

4) Hypothesis 4: Testing should be executed by
specialized personnel. Specialized testers seemed to make
the overall testing phase more efficient by enabling faster
reactions to encountered problems. Both small company-
based OUs reported that they would benefit from creating a
completely independent testing laboratory, but were unable
to do so because of resource restrictions.

“We should keep everything in our own hands. The
extreme scenario where we have private testing
environments, however, is too much for us now.” — System
Analyst, Case B

The large company-OUs proposed additional human
resources to eliminate testing errors and focus on creating
parallel testing phases for product modules.

“...it would be optimal if simultaneously, while software
engineers figure out why [the error took place], we could
verify that they are not caused by the testing environment.” —
System Analyst, Case D

V. DISCUSSION AND CONCLUSIONS

The objective of this study was to understand the
problems of software testing and based on this
understanding, to develop hypotheses of how the testing
practice should be improved.

We observed that testing personnel issues, test process
and strategy issues were rather independent from the
business orientation or the company size. Therefore the OU-
level comparison of different types of software companies,
such as in this study, can be used to observe, compare, and
develop internal activities such as testing.

In our study, four main hypotheses were derived. The
first hypothesis emphasizes testability as an architectural
design objective. This is easily bypassed, which leads to
slower and more complicated testing processes. This
problem may well be the root cause for the second
hypothesis, the requirement of a well-defined test plan and
realistically allocated resources for the test infrastructure.

The third hypothesis, the maintainability and usability of
testing tools is one of the reasons why test resources should
be separated from the development resources. For several
organizations ill-suited or defective test tools were causing
the test organization to waste time on manual confirmation
of the tool results, which was practically a redundant task.
Similarly the fourth hypothesis, the requirement of separate
testers in the organization is understandable. It could be a
waste of resources to use developers to do the testing work,
which could be done more efficiently by dedicated testing
personnel.

These basic findings seem to be in line with a similar,
earlier study by Ng, Murmane and Reed [27]. Their study
concluded that time restraints prevent new techniques from
being introduced and that expenses hinder test process
improvement. Our results imply the same, and indicate that
testing tool applicability and their general usability are major
additional factors for testing efficiency. These phenomena,
testing tool applicability, time constraints and personnel
expertise, also seem to be general problems, because they
were found in all types of case OUs in our study, regardless
of business area, available resources or company size.

Our analysis suggests that testing organizations do not
gain any special benefits from belonging to a large
organization. All case OUs reported that allocated time was
the first issue in testing, restricting the test process to cover
only the bare essentials. All of the organizations had also
recognized that their products needed better testability, and
that their resource base was too limited. It is plausible to
believe that most of these issues are best handled by
designing a better test strategy, including, for example,
testing- and resourcing plans.

The limitation of this study is the number of case OUs. It
is obvious that increasing the number of cases could reveal
more details. However, our target was not to create a
comprehensive list of issues that affect testing organizations,
but to increase understanding of problems in testing practices
by covering important factors from the viewpoint of our case
OUs.

We believe that paying more attention to the known
fundamental issues when organizing testing - selecting a
testing strategy, planning and reserving testing resources -
the efficiency and results of testing can be improved
significantly. The results of this study can be used in the
development of testing organizations and generally to avoid
common pitfalls.

ACKNOWLEDGMENT

This study was supported by the ANTI project
(www.it.lut.fi/project/anti) and by the ESPA project
(http://www.soberit.hut.fi/espa/), both funded by the Finnish

Funding Agency for Technology and Innovation, and by the
companies mentioned in the project pages.

(1]

[2]

[3]

[5]

[6]

[7]

8]
9]

[10]
(11

[12]

[13]

[14]

[15]

[16]

REFERENCES

A. Bertolino, “Softare testing research: achievements, challenges,
dreams”. In International Conference on Software Engineering,” 2007
Future of Software Engineering, Minneapolis, MN, USA, 2007.

D.P. Kelly and R.S. Oshana, "Improving software quality using
statistical testing techniques", Information and Software Technology,
Vol 42, Issue 12, 2000.

S.A. Slaughter, D.E. Harter and M.S. Krishnan, "Evaluating the cost
of software quality", Communications of the ACM, Vol. 41, Issue 8,
1998.

G. Tassey, “The Economic impacts of inadequate infrastructure for
software testing”, U.S. National Institute of Standards and
Technology report, RTI Project Number 7007.011, 2002

D.LK. Sjoberg, T. Dybd and M. Jorgensen, “The future of empirical
methods in software engineering research”, International Conference
on Software Engineering, 2007 Future of Software Engineering,
Minneapolis, MN, USA, 2007.

L. Briand and Y. Labiche, "Empirical studies of software testing
techniques: challenges, practical strategies and future research", ACM
SIGSOFT Software Engineering Notes, Vol. 29, Issue 5, pp. 1-3,
2004.

O. Taipale, K. Smolander and H. Kilvidinen, “Cost reduction and
quality improvement in software testing”, Software Quality
Management Conference, Southampton, UK, 2006.

R. Conradi and A. Fugetta, "Improving software process
improvement", IEEE Software, Vol. 19, Issue 4, 2002.

ISO/IEC, ISO/IEC 15504-1, Information Technology - Process
Assessment - Part 1: Concepts and Vocabulary, 2002.
Capability Maturity Model Intergration (CMMI), version
Carnegie Mellon Software Engineering Institute, 2006.

B. Glaser and A.L. Strauss, The Discovery of Grounded Theory:
Strategies for Qualitative Research. Chicago: Aldine, 1967.

A. Strauss and J. Corbin, Basics of Qualitative Research: Grounded
Theory Procedures and Techniques. Newbury Park, CA: SAGE
Publications, 1990.

O. Taipale and K. Smolander, “Improving software testing by
observing practice”, International Symposium on Empirical Software
Engineering, Rio de Janeiro, Brazil, 2006.

1.2,

O. Taipale, K. Smolander and H. Kélvidinen, “A survey on software
testing”, 6th International SPICE Conference on Software Process
Improvement and Capability = dEtermination (SPICE2006),
Luxembourg, 2006.

O. Taipale, K. Smolander and H. Kilvidinen, “Factors affecting
software testing time schedule”, the Australian Software Engineering
Conference, Sydney, Australia, 2006.

K. Karhu, T. Repo, O. Taipale and K. Smolander, “Empirical
observations on software testing automation”, IEEE Int. Conf. on
Software Testing Verification and Validation, Denver, USA, 2009.

[17]

[18]

[19]

[20

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31]

[32]
[33]

[34]
[35]

V.R. Basili and R.W. Selby, "Comparing the effectiveness of
software testing strategies", IEEE Transactions on Software
Engineering, Vol. SE-13, Issue 12, 1987.

P.M. Johnson, H. Kou, M. Paulding, Q. Zhang, A. Kagawa, and T.
Yamashita, "Improving software development management through
software project telemetry", IEEE Software, Vol. 22, Issue 4, 2005.
M. Menzies and J. Hihn, “Evidence-based cost estimation for better-
quality software”, IEEE Software, Vol. 23, Issue 4, pp. 64-66, 2006.

E. Dustin, Effective Software Testing: 50 Specific Ways to Improve
Your Testing, Addison-Wesley Professional., 2002.

G.J. Myers, The Art of Software Testing, 2nd Edition. John Wiley &
Sons, Inc, 2004.

ISO/IEC, ISO/IEC 9126-1, Software engineering — Product quality -
Part 1: Quality model, 2001

H.-W. Jung, S.-G. Kim and C.-S. Chung, “Measuring software
product quality: a survey of ISO/IEC 9126”. IEEE Software, Vol. 21,
Issue 5, pp. 88-92, 2004.

R. Chillarege, “Software testing best practices”, Technical Report
RC21457. IBM Research, 1999.

C.F. Cohen, S.J. Birkin, M.J. Garfield and H.W. Webb, "Managing
conflict in software testing," Communications of the ACM, vol. 47,
2004.

A. Capiluppi, J. Millen and C. Boldyreff, “How outsourcing affects
the quality of mission critical software”, 13th Working Conference on
Reverse Engineering, Benevento, Italy, 2006.

S.P. Ng, T. Murmane, K. Reed, D. Grant and T.Y. Chen, “A
preliminary survey on software testing practices in Australia”, Proc.
2004 Australian Software Engineering Conference (Melbourne,
Australia), pp. 116-125, 2004

C.B. Seaman, "Qualitative methods in empirical studies of software
engineering", IEEE Transactions on Software Engineering, vol. 25,
pp. 557-572, 1999.

K.M. Eisenhardt, "Building theories from case study research”,
Academy of Management Review, vol. 14, pp. 532-550, 1989.

H.K. Klein and M.D. Myers, "A set of principles for conducting and
evaluating interpretive field studies in information systems”, MIS
Quarterly, vol. 23, pp. 67-94, 1999.

G. Pare” and J.J. Elam, “Using case study research to build theories of
IT Implementation”, IFIP TC8 WG International Conference on
Information Systems and Qualitative Research, Philadelphia, USA,
1997.

N.K. Denzin, The research act: A theoretical introduction to
sociological methods. McGraw-Hill, 1978.

C. Robson, Real World Research, Second Edition. Blackwell
Publishing, 2002.

EU, "SME Definition," European Commission, 2003.

M.B. Miles and AM. Huberman, Qualitative Data Analysis.
Thousand Oaks, CA: SAGE Publications, 1994.

Publication II

Software Test Automation in Practice: Empirical
Observations

Kasurinen, J., Taipale, O. and Smolander, K. (2010), Advances in Software
Engineering, Special Issue on Software Test Automation, Hindawi Publishing Co. doi:
10.1155/2010/620836.

Copyright © 2010 Jussi Kasurinen et al. All rights reserved.

Software Test Automation in Practice: Empirical
Observations

Jussi Kasurinen, Ossi Taipale, Kari Smolander
Lappeenranta University of Technology, Department of Information Technology, Laboratory of Software Engineering
P.0.Box 20, 53851 Lappeenranta, Finland
jussi.kasurinen@lut.fi, ossi.taipale@Iut.fi, kari.smolander@Iut.fi

The objective of this industry study was to shed light on the current situation and improvement needs in software
test automation. To this end, 55 industry specialists from 31 organizational units were interviewed. In parallel
with the survey, a qualitative study was conducted in 12 selected software development organizations. The
results indicated that the software testing processes usually follow systematic methods to a large degree, and
have only little immediate or critical requirements for resources. Based on the results, the testing processes
have approximately three fourths of the resources they need, and have access to a limited, but usually sufficient
group of testing tools. As for the test automation, the situation is not as straightforward: based on our study, the
applicability of test automation is still limited and its adaptation to testing contains practical difficulties in usability.
In this study, we analyze and discuss these limitations and difficulties.

Keywords: software testing, test automation, software industry, case study, survey, grounded theory.

1. INTRODUCTION

Testing is perhaps the most expensive task of a software project. In one estimate, the testing phase took over 50%
of the project resources [1]. Besides causing immediate costs, testing is also importantly related to costs related to
poor quality, as malfunctioning programs and errors cause large additional expenses to software producers [1, 2].
In one estimate [2], software producers in United States lose annually 21.2 billion dollars because of inadequate
testing and errors found by their customers. By adding the expenses caused by errors to software users, the
estimate rises to 59.5 billion dollars, of which 22.2 billion could be saved by making investments on testing
infrastructure [2]. Therefore improving the quality of software and effectiveness of the testing process can be seen
as an effective way to reduce software costs in the long run, both for software developers and users.

One solution for improving the effectiveness of software testing has been applying automation to parts of the
testing work. In this approach, testers can focus on critical software features or more complex cases, leaving
repetitive tasks to the test automation system. This way it may be possible to use human resources more
efficiently, which consequently may contribute to more comprehensive testing or savings in the testing process and
overall development budget [3]. As personnel costs and time limitations are significant restraints of the testing
processes [4,5], it also seems like a sound investment to develop test automation to get larger coverage with same
or even smaller number of testing personnel. Based on market estimates, software companies worldwide invested
931 million dollars in automated software testing tools in 1999, with an estimate of at least 2.6 billion dollars in 2004
[6]. Based on these figures, it seems that the application of test automation is perceived as an important factor of
the test process development by the software industry.

The testing work can be divided into manual testing and automated testing. Automation is usually applied to
running repetitive tasks such as unit testing or regression testing, where test cases are executed every time
changes are made [7]. Typical tasks of test automation systems include development and execution of test scripts
and verification of test results. In contrast to manual testing, automated testing is not suitable for tasks in which
there is little repetition [8], such as explorative testing or late development verification tests. For these activities
manual testing is more suitable, as building automation is an extensive task and feasible only if the case is
repeated several times [7,8]. However, the division between automated and manual testing is not as
straightforward in practice as it seems; a large concern is also the testability of the software [9], because every
piece of code can be made poorly enough to be impossible to test it reliably, therefore making it ineligible for
automation.

Software engineering research has two key objectives: the reduction of costs and the improvement of the quality of

products [10]. As software testing represents a significant part of quality costs, the successful introduction of test
automation infrastructure has a possibility to combine these two objectives, and to overall improve the software

Advances in Software Engineering — Software Test Automation 2009

Software Test Automation in Practice: Empirical Observations

testing processes. In a similar prospect, the improvements of the software testing processes are also at the focus
point of the new software testing standard ISO 29119 [11]. The objective of the standard is to offer a company-level
model for the test processes, offering control, enhancement and follow-up methods for testing organizations to
develop and streamline the overall process.

In our prior research project [4, 5, 12, 13, 14], experts from industry and research institutes prioritized issues of
software testing using the Delphi method [15]. The experts concluded that process improvement, test automation
with testing tools, and the standardization of testing are the most prominent issues in concurrent cost reduction and
quality improvement. Furthermore, the focused study on test automation [4] revealed several test automation
enablers and disablers which are further elaborated in this study. Our objective is to observe software test
automation in practice, and further discuss the applicability, usability and maintainability issues found in our prior
research. The general software testing concepts are also observed from the viewpoint of the ISO 29119 model,
analysing the test process factors that create the testing strategy in organizations. The approach to achieve these
objectives is twofold. First, we wish to explore the software testing practices the organizations are applying and
clarify the current status of test automation in the software industry. Secondly, our objective is to identify
improvement needs and suggest improvements for the development of software testing and test automation in
practice. By understanding these needs, we wish to give both researchers and industry practitioners an insight into
tackling the most hindering issues while providing solutions and proposals for software testing and automation
improvements.

The study is purely empirical and based on observations from practitioner interviews. The interviewees of this study
were selected from companies producing software products and applications at an advanced technical level. The
study included three rounds of interviews and a questionnaire, which was filled during the second interview round.
We personally visited 31 companies and carried out 55 structured or semi-structured interviews which were tape-
recorded for further analysis. The sample selection aimed to represent different polar points of the software
industry; the selection criteria were based on concepts such as operating environments, product and application
characteristics (e.g. criticality of the products and applications, real time operation), operating domain and customer
base.

The paper is structured as follows. First, in Section 2, we introduce comparable surveys and related research.
Secondly, the research process and the qualitative and quantitative research methods are described in Section 3.
Then the survey results are presented in Section 4 and the interview results in Section 5. Finally, the results and
observations and their validity are discussed in Section 6 and closing conclusions in Section 7.

2. RELATED RESEARCH

Besides our prior industry-wide research in testing [4,5,12,13,14], software testing practices and test process
improvement have also been studied by others, like Ng et al. [16] in Australia. Their study applied the survey
method to establish knowledge on such topics as testing methodologies, tools, metrics, standards, training and
education. The study indicated that the most common barrier to developing testing was the lack of expertise in
adopting new testing methods and the costs associated with testing tools. In their study, only 11 organizations
reported that they met testing budget estimates, while 27 organizations spent 1.5 times the estimated cost in
testing, and 10 organizations even reported a ratio of 2 or above. In a similar vein, Torkar and Mankefors [17]
surveyed different types of communities and organizations. They found that 60% of the developers claimed that
verification and validation were the first to be neglected in cases of resource shortages during a project, meaning
that even if the testing is important part of the project, it usually is also the first part of the project where cutbacks
and downscaling are applied.

As for the industry studies, a similar study approach has previously been used in other areas of software
engineering. For example, Ferreira and Cohen [18] completed a technically similar study in South Africa, although
their study focused on the application of agile development and stakeholder satisfaction. Similarly, Li et al. [19]
conducted research on the COTS-based software development process in Norway, and Chen et al. [20] studied the
application of open source components in software development in China. Overall, case studies covering entire
industry sectors are not particularly uncommon [21, 22]. In the context of test automation, there are several studies
and reports in test automation practices [such as 23, 24, 25, 26]. However, there seems to be a lack of studies that

Advances in Software Engineering — Software Test Automation 2009 2

Software Test Automation in Practice: Empirical Observations

investigate and compare the practice of software testing automation in different kinds of software development
organizations.

In the process of testing software for errors, testing work can be roughly divided into manual and automated
testing, which both have individual strengths and weaknesses. For example, Ramler and Wolfmaier [3] summarize
the difference between manual and automated testing by suggesting that automation should be used to prevent
further errors in working modules, while manual testing is better suited for finding new and unexpected errors.
However, how and where the test automation should be used is not so straightforward issue, as the application of
test automation seems to be a strongly diversified area of interest. The application of test automation has been
studied for example in test case generation [27, 28], GUI testing [29, 30] and workflow simulators [31, 32] to hame
a few areas. Also according to Bertolino [33], test automation is a significant area of interest in current testing
research, with a focus on improving the degree of automation by developing advanced techniques for generating
the test inputs, or by finding support procedures such as error report generation to ease the supplemental
workload. According to the same study, one of the dreams involving software testing is 100% automated testing.
However, for example Bach’'s [23] study observes that this cannot be achieved, as all automation ultimately
requires human intervention, if for nothing else, then at least to diagnose results and maintain automation cases.

The pressure to create resource savings are in many case the main argument for test automation. A simple and
straightforward solution for building automation is to apply test automation just on the test cases and tasks that
were previously done manually [8]. However, this approach is usually unfeasible. As Persson and Yilmaztirk [26]
note, the establishment of automated testing is a costly, high risk project with several real possibilities for failure,
commonly called as “pitfalls”. One of the most common reasons why creating test automation fails, is that the
software is not designed and implemented for testability and reusability, which leads to architecture and tools with
low reusability and high maintenance costs. In reality, test automation sets several requisites on a project and has
clear enablers and disablers for its suitability [4,24]. In some reported cases [27, 34, 35], it was observed that the
application of test automation with an ill-suited process model may be even harmful to the overall process in terms
of productivity or cost-effectiveness.

Models for estimating testing automation costs, for example by Ramler and Wolfmaier [3], support decision-making
in the trade-off between automated and manual testing. Berner et al. [8] also estimate that most of the test cases in
one project are run at least five times, and one fourth over 20 times. Therefore the test cases, which are done
constantly like smoke tests, component tests and integration tests, seem like ideal place to build test automation. In
any case, there seems to be a consensus that test automation is a plausible tool for enhancing quality, and
consequently, reducing the software development costs in the long run if used correctly.

Our earlier research on the software test automation [4] has established that test automation is not as
straightforward to implement as it may seem. There are several characteristics which enable or disable the
applicability of test automation. In this study, our decision was to study a larger group of industry organizations and
widen the perspective for further analysis. The objective is to observe, how the companies have implemented test
automation and how they have responded to the issues and obstacles that affect its suitability in practice. Another
objective is to analyze whether we can identify new kind of hindrances to the application of test automation and
based on these findings, offer guidelines on what aspects should be taken into account when implementing test
automation in practice.

3. RESEARCH PROCESS

3.1 Research population and selection of the sample

The population of the study consisted of organization units (OUs). The standard ISO/IEC 15504-1 [36] specifies an
organizational unit (OU) as a part of an organization that is the subject of an assessment. An organizational unit
deploys one or more processes that have a coherent process context and operates within a coherent set of
business goals. An organizational unit is typically part of a larger organization, although in a small organization, the
organizational unit may be the whole organization.

The reason to use an OU as the unit for observation was that we wanted to normalize the effect of the company

size to get comparable data. The initial population and population criteria were decided based on the prior research
on the subject. The sample for the first interview round consisted of 12 OUs, which were technically high level

Advances in Software Engineering — Software Test Automation 2009 3

Software Test Automation in Practice: Empirical Observations

units, professionally producing software as their main process. This sample also formed the focus group of our
study. Other selection criteria for the sample were based on the polar type selection [37] to cover different types of
organizations, for example different businesses, different sizes of the company, and different kinds of operation.
Our objective of using this approach was to gain a deep understanding of the cases and to identify, as broadly as
possible, the factors and features that have an effect on software testing automation in practice.

For the second round and the survey, the sample was expanded by adding OUs to the study. Selecting the sample
was demanding because comparability is not determined by the company or the organization but by comparable
processes in the OUs. With the help of national and local authorities (the network of the Finnish Funding Agency
for Technology and Innovation) we collected a population of 85 companies. Only one OU from each company was
accepted to avoid the bias of over-weighting large companies. Each OU surveyed was selected from a company
according to the population criteria. For this round, the sample size was expanded to 31 OUs, which also included
the OUs from the first round. The selection for expansion was based on probability sampling; the additional OUs
were randomly entered into our database, and every other one was selected for the survey. In the third round, the
same sample as in the first round was interviewed. Table 1 introduces the business domains, company sizes and
operating areas of our focus OUs. The company size classification is taken from [38].

TABLE 1: Description of the interviewed focus OUs (see also Appendix A).

ou Business Company size' / Operation
Case A MES' producer and electronics manufacturer Small / National
Case B Internet service developer and consultant Small / National
Case C Logistics software developer Large / National
Case D ICT consultant Small / National
Case E Safety and logistics system developer Medium / National
Case F Naval software system developer Medium / International
Case G Financial software developer Large / National
Case H MES producer and logistics service systems provider Medium / International
Casel SME’ business and agriculture ICT service provider Small / National
CaseJ Modeling software developer Large / International
Case K ICT developer and consultant Large / International
Case L Financial software developer Large / International

' Manufacturing Execution System “ Small and Medium-sized Enterprise, definition [38]

3.2 Interview rounds

The data collection consisted of three interview rounds. During the first interview round, the designers responsible
for the overall software structure and/or module interfaces were interviewed. If the OU did not have separate
designers, then the interviewed person was selected from the programmers based on their role in the process to
match as closely as possible to the desired responsibilities. The interviewees were also selected so that they came
from the same project, or from positions where the interviewees were working on the same product. The
interviewees were not specifically told not to discuss the interview questions together, but this behavior was not
encouraged either. In a case where an interviewee asked for the questions or interview themes beforehand, the
person was allowed access to them in order to prepare for the meeting. The interviews in all three rounds lasted
about an hour and had approximately 20 questions related to the test processes or test organizations. In two
interviews, there was also more than one person present.

The decision to interview designers in the first round was based on the decision to gain a better understanding on
the test automation practice and to see whether our hypothesis based on our prior studies [4, 5, 12, 13, 14] and
supplementing literature review were still valid. During the first interview round, we interviewed 12 focus OUs,
which were selected to represent different polar types in the software industry. The interviews contained semi-
structured questions and were tape-recorded for qualitative analysis. The initial analysis of the first round also
provided ingredients for the further elaboration of important concepts for the latter rounds. The interview rounds
and the roles of the interviewees in the case OUs are described in Table 2.

TABLE 2: Interviewee roles and interview rounds.

Number of interviews Interviewee role Description
Round typ€
1) Semi- Designer or The interviewee is responsible for software design
12 focus OUs . L
structured Programmer or has influence on how software is implemented.
2) Structured/ 31 OUs quantitative, Project or The interviewee is responsible for software

Semi-structured

including 12 focus OUs
qualitative

testing manager

development projects or test processes of software
products.

3) Semi-
structured

12 focus OUs

Tester

The interviewee is a dedicated software tester or is
responsible for testing the software product.

Advances in Software Engineering — Software Test Automation 2009

Software Test Automation in Practice: Empirical Observations

The purpose of the second combined interview and survey round was to collect multiple choice survey data and
answers to open questions which were based on the first round interviews. These interviews were also tape-
recorded for the qualitative analysis of the focus OUs, although the main data collection method for this round was
a structured survey. In this round, project or testing managers from 31 OUs, including the focus OUs, were
interviewed. The objective was to collect quantitative data on the software testing process, and further collect
material on different testing topics, such as software testing and development. The collected survey data could also
be later used to investigate observations made from the interviews and vice versa, as suggested in [38]. Managers
were selected for this round, as they tend to have more experience on software projects, and have a better
understanding of organizational and corporation level concepts and the overall software process beyond project-
level activities.

The interviewees of the third round were testers or, if the OU did not have separate testers, programmers who
were responsible for the higher-level testing tasks. The interviews in these rounds were also semi-structured and
concerned the work of the interviewees, problems in testing (e.g. increasing complexity of the systems), the use of
software components, the influence of the business orientation, testing resources, tools, test automation,
outsourcing, and customer influence for the test processes.

The themes in the interview rounds remained similar, but the questions evolved from general concepts to more
detailed ones. Before proceeding to the next interview round, all interviews with the focus OUs were transcribed
and analyzed because new understanding and ideas emerged during the data analysis. This new understanding
was reflected in the next interview rounds. The themes and questions for each of the interview rounds can be found
on the project website http://www2.it.lut.fi/project/ MASTO/.

3.3 Grounded analysis method

The grounded analysis was used to provide further insight into the software organizations, their software process
and testing policies. By interviewing people of different positions from the production organization, the analysis
could gain additional information on testing- and test automation-related concepts like different testing phases, test
strategies, testing tools and case selection methods. Later this information could be compared between
organizations, allowing hypotheses on test automation applicability and the test processes themselves.

The grounded theory method contains three data analysis steps: open coding, axial coding and selective coding.
The objective for open coding is to extract the categories from the data, whereas axial coding identifies the
connections between the categories. In the third phase, selective coding, the core category is identified and
described [39]. In practice, these steps overlap and merge because the theory development process proceeds
iteratively. Additionally, Strauss and Corbin [40] state that sometimes the core category is one of the existing
categories, and at other times no single category is broad enough to cover the central phenomenon.

TABLE 3: Open coding of the interview data

Interview transcript Codes, Category: Code

“Well, 1 would hope for stricter control or management Enhancement proposal: Developing testing strategy
for implementing our testing strategy, as | am not sure if
our testing covers everything and is it sophisticated Strategy for testing: Ensuring case coverage
enough. On the other hand, we do have strictly limited Problem: Lack of resources

resources, so it can be enhanced only to some degree,
we cannot test everything. And perhaps, recently we have
had, in the newest versions, some regression testing, going
through all features, seeing if nothing is broken, but in
several occasions this has been left unfinished because
time has run out. So there, on that issue we should focus.””

Problem: Lack of time

The objective of open coding is to classify the data into categories and identify leads in the data, as shown in the
Table 3. The interview data is classified to categories based on the main issue, with observation or phenomenon
related to it being the codified part. In general, the process of grouping concepts that seem to pertain to the same
phenomena is called categorizing, and it is done to reduce the number of units to work with [40]. In our study, this
was done using ATLAS.ti software [41]. The open coding process started with “seed categories” [42] that were
formed from the research question and objectives, based on the literature study on software testing and our prior

Advances in Software Engineering — Software Test Automation 2009 5

Software Test Automation in Practice: Empirical Observations

observations [4, 5, 12, 13, 14] on software and testing processes. Some seed categories, like “knowledge
management”, “service-orientation” or “approach for software development” were derived from our earlier studies,

while categories like “strategy for testing”, “outsourcing”, “customer impact” or “software testing tools” were taken
from known issues or literature review observations.

The study followed the approach introduced by Seaman [43], which notes that the initial set of codes (seed
categories) comes from the goals of the study, the research questions, and predefined variables of interest. In the
open coding, we added new categories and merged existing categories to others if they seemed unfeasible or if we
found a better generalization. Especially at the beginning of the analysis, the number of categories and codes
quickly accumulated and the total number of codes after open coding amounted to 164 codes in 12 different
categories. Besides the test process, software development in general and test automation, these categories also
contained codified observations on such aspects as the business orientation, outsourcing, and product quality.

After collecting the individual observations to categories and codes, the categorized codes were linked together
based on the relationships observed in the interviews. For example, the codes “Software process: Acquiring 3rd
party modules”, “Testing strategy: Testing 3rd party modules”, and “Problem: Knowledge management with 3rd
party modules” were clearly related and therefore we connected them together in axial coding. The objective of
axial coding is to further develop categories, their properties and dimensions, and find causal, or any kinds of,
connections between the categories and codes.

For some categories, the axial coding also makes it possible to define dimension for the phenomenon, for example
“Personification-Codification” for “Knowledge management strategy”, where every property could be defined as a
point along the continuum defined by the two polar opposites. For the categories that are given dimension, the
dimension represented the locations of the property or the attribute of a category [40]. Obviously for some
categories, which were used to summarize different observations like enhancement proposals or process
problems, defining dimensions was unfeasible. We considered using dimensions for some categories like “criticality
of test automation in testing process” or “tool sophistication level for automation tools” in this study, but discarded
them later as they yielded only little value to the study. This decision was based on the observation that values of
both dimensions were outcomes of the applied test automation strategy, having no effect on the actual suitability or
applicability of test automation to the organization’s test process.

Our approach for analysis of the categories included Within-Case Analysis and Cross-Case-Analysis, as specified
by Eisenhardt [37]. We used the tactic of selecting dimensions and properties with within-group similarities coupled
with inter-group differences [37]. In this strategy, our team isolated one phenomenon that clearly divided the
organizations to different groups, and searched for explaining differences and similarities from within these groups.
Some of the applied features were, for example, the application of agile development methods, the application of
test automation, the size [38] difference of originating companies and service orientation. As for one central result,
the appropriateness of OU as a comparison unit was confirmed based on our size difference-related observations
on the data; the within-group- and inter-group comparisons did yield results in which the company size or company
policies did not have strong influence, whereas the local, within-unit policies did. In addition, the internal activities
observed in OUs were similar regardless of the originating company size, meaning that in our study the OU
comparison was indeed feasible approach.

We established and confirmed each chain of evidence in this interpretation method by discovering sufficient
citations or finding conceptually similar OU activities from the case transcriptions. Finally, in the last phase of the
analysis, in selective coding, our objective was to identify the core category [40] — a central phenomenon — and
systematically relate it to other categories and generate the hypothesis and the theory. In this study, we consider
test automation in practice as the core category, to which all other categories were related as explaining features of
applicability or feasibility.

The general rule in grounded theory is to sample until theoretical saturation is reached. This means, until (1) no
new or relevant data seem to emerge regarding a category, (2) the category development is dense, insofar as all of
the paradigm elements are accounted for, along with variation and process, and (3) the relationships between
categories are well established and validated [40]. In our study, the saturation was reached during the third round,
where no new categories were created, merged or removed from the coding. Similarly, the attribute values were
also stable, i.e. the already discovered phenomena began to repeat themselves in the collected data. As an
additional way to ensure the validity of our study and avoid validity threats [44], four researchers took part in the
data analysis. The bias caused by researchers was reduced by combining the different views of the researchers

Advances in Software Engineering — Software Test Automation 2009 6

Software Test Automation in Practice: Empirical Observations

(observer triangulation) and a comparison with the phenomena observed in the quantitative data (methodological
triangulation) [44,45].

3.4 The survey instrument development and data collection

The survey method described by Fink and Kosecoff [46] was used as the research method in the second round. An
objective for a survey is to collect information from people about their feelings and beliefs. Surveys are most
appropriate when information should come directly from the people [46]. Kitchenham et al. [47] divide comparable
survey studies into exploratory studies from which only weak conclusions can be drawn, and confirmatory studies
from which strong conclusions can be drawn. We consider this study as an exploratory, observational, and cross-
sectional study that explores the phenomenon of software testing automation in practice and provides more
understanding to both researchers and practitioners.

To obtain reliable measurements in the survey, a validated instrument was needed, but such an instrument was not
available in the literature. However, Dyba [48] has developed an instrument for measuring the key factors of
success in software process improvement. Our study was constructed based on the key factors of this instrument,
and supplemented with components introduced in the standards ISO/IEC 29119 [11] and 25010 [49]. We had the
possibility to use the current versions of the new standards because one of the authors is a member of the
JTC1/SC7/WG26, which is developing the new software testing standard. Based on these experiences a
measurement instrument derived from the ISO/IEC 29119 and 25010 standards was used.

The survey consisted of a questionnaire (available at http://www?.it.lut.fi/project/MASTO/) and a face-to-face
interview. Selected open-ended questions were located at the end of the questionnaire to cover some aspects
related to our qualitative study. The classification of the qualitative answers was planned in advance.

The questionnaire was planned to be answered during the interview to avoid missing answers because they make
the data analysis complicated. All the interviews were tape-recorded, and for the focus organizations, further
qualitatively analyzed with regard to the additional comments made during the interviews. Baruch [50] also states
that the average response rate for self-assisted questionnaires is 55.6%, and when the survey involves top
management or organizational representatives the response rate is 36.1%. In this case, a self-assisted, mailed
guestionnaire would have led to a small sample. For these reasons, it was rejected, and personal interviews were
selected instead. The questionnaire was piloted with three OUs and four private persons.

If an OU had more than one respondent in the interview, they all filled the same questionnaire. Arranging the
interviews, traveling and interviewing took two months of calendar time. Overall, we were able to accomplish 0.7
survey interviews per working day on an average. One researcher conducted 80% of the interviews, but because of
the overlapping schedules also two other researchers participated in the interviews. Out of the contacted 42 OUs,
11 were rejected because they did not fit the population criteria in spite of the source information, or it was
impossible to fit the interview into the interviewee’s schedule. In a few individual cases, the reason for rejection was
that the organization refused to give an interview. All in all, the response rate was, therefore, 74%.

4. TESTING AND TEST AUTOMATION IN SURVEYED ORGANIZATIONS
4.1. General information of the organizational units

The interviewed OUs were parts of large companies (55%) and small and medium-sized enterprises (45%). The
OUs belonged to companies developing information systems (11 OUs), IT services (5 OUs), telecommunication (4
OUs), finance (4 OUs), automation systems (3 OUs), the metal industry (2 OUs), the public sector (1 OU), and
logistics (1 OU). The application domains of the companies are presented in Figure 1. Software products
represented 63% of the turnover, and services (e.g. consulting, subcontracting, and integration) 37%.

Advances in Software Engineering — Software Test Automation 2009 7

Software Test Automation in Practice: Empirical Observations

IT development

IT services

Finances

Telecommunications

Ind. Automation

Metal industry

Logistics

Public sector

Figure 1. Application domains of the companies.

The maximum number of personnel in the companies to which the OUs belonged was 350 000, the minimum was
four, and the median was 315. The median of the software developers and testers in the OUs was 30 persons.
OUs applied automated testing less than expected, the median of the automation in testing being 10%. Also, the
interviewed OUs utilized agile methods less than expected: the median of the percentage of agile (reactive,
iterative) vs. plan driven methods in projects was 30%. The situation with human resources was better than what
was expected, as the interviewees estimated that the amount of human resources in testing was 75%. When
asking what percent of the development effort was spent on testing, the median of the answers was 25%. The
cross-sectional situation of development and testing in the interviewed OUs is illustrated in Table 4.

TABLE 4: Interviewed OUs

Max. Min. Median
Number of employees in the company. 350 000 4 315
Number of SW developers and testers in the OU. 600 o' 30
Percentage of automation in testing. 90 0 10
Percentage of agile (reactive, iterative) vs. plan driven 100 0 30
methods in projects.
Percentage of existing testers vs. resources need. 100 10 75
How many percent of the development effort is spent on 70 0 25
testing?

' 0 means that all of the OUs developers and testers are acquired from 3rd parties
20 means that no project time is allocated especially for testing

The amount of testing resources was measured by three figures; first the interviewee was asked to evaluate the
percentage from total project effort allocated solely to testing. The survey average was 27%, the maximum being
70% and the minimum 0%, meaning that the organization relied solely on testing efforts carried out in parallel with
development. The second figure was the amount of test resources compared to the organizational optimum. In this
figure, if the company had two testers and required three, it would have translated as 66% of resources. Here the
average was 70%; six organizations (19%) reported 100% resource availability. The third figure was the number of
automated test cases compared to all of the test cases in all of the test phases the software goes through before its
release. The average was 26%, varying between different types of organizations and project types. The results are
presented in Figure 2, in which the qualitative study case OUs are also presented for comparison. The detailed
descriptions for each case organization are available in Appendix A.

Advances in Software Engineering — Software Test Automation 2009 8

Software Test Automation in Practice: Empirical Observations

Survey Average

Case L

Case K

Case J

Case |

Case H

Case G

Case F

Case E

Case D

Case C

Case B

Case A

0 20 40 60 80 100

O percentage of project effort allocated solely to testing
M percentage of tests resources from optimal amount (has 2 needs 3 equals 66%)

O percentage of test automation from all test cases

Figure 2. Amount of test resources and test automation in the focus organizations of the study
and the survey average.

4.2. General testing items

The survey interviewed 31 organization managers from different types of software industry. The contributions of the
interviewees were measured using a five-point Likert scale where 1 denoted “l fully disagree” and 5 denoted “I fully
agree”. The interviewees emphasized that quality is built in development (4.3) rather than in testing (2.9). Then the
interviewees were asked to estimate their organizational testing practices according to the new testing standard
ISO/IEC 29119 [11], which identifies four main levels for testing processes: the test policy, test strategy, test
management and testing. The test policy is the company level guideline which defines the management, framework
and general guidelines, the test strategy is an adaptive model for the preferred test process, test management is
the control level for testing in a software project, and finally, testing is the process of conducting test cases. The
results did not make a real difference between the lower levels of testing (test management level and test levels)
and higher levels of testing (organizational test policy and organizational test strategy). All in all, the interviewees
were rather satisfied with the current organization of testing. The resulted average levels from quantitative survey
are presented in Figure 3.

Advances in Software Engineering — Software Test Automation 2009 9

Software Test Automation in Practice: Empirical Observations

Quality is built in development

Quality is builtin testing

The OUs test policy is excellent

The OUs test strategy is
excellent

The OUs test management is
excellent

The OUs test execution is
excellent

45 5

Figure 3. Levels of testing according to the ISO/IEC 29119 standard

Besides the organization, the test processes and test phases were also surveyed. The five-point Likert scale with
the same one to five - one being fully disagree and five fully agree - grading method was used to determine the
correctness of different testing phases. Overall, the latter test phases - system, functional testing — were
considered excellent or very good, whereas the low level test phases such as unit testing and integration received
several low-end scores. The organizations were satisfied or indifferent towards all test phases, meaning that there
were no strong focus areas for test organization development. However, based on these results it seems plausible
that one effective way to enhance testing would be to support low-level testing in unit and integration test phases.
The results are depicted in Figure 4.

Conformance testing is
excellent ‘ ‘ ‘ ‘

System testing is excellent ‘ 3.6

Functional testing is
excellent ‘ ‘ ‘ ‘

|3.8

Usability testing is excellent ‘ 3.1

Integration testing is ‘
excellent ‘ ‘ ‘

Unit testing is excellent ‘ 2.8

1.0 15 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Figure 4. Testing phases in the software process

Finally, the organizations surveyed were asked to rate their testing outcomes and objectives (Figure 5). The first
three items discussed the test processes of a typical software project. There seems to be a strong variance in
testing schedules and time allocation in the organizations. The outcomes 3.2 for schedule and 3.0 for time
allocation do not give any information by themselves, and overall, the direction of answers varied greatly between
“Fully disagree” and “Fully agree”. However, the situation with test processes was somewhat better; the result 3.5
may also not be a strong indicator by itself, but the answers had only little variance, 20 OUs answering “somewhat
agree” or “neutral”. This indicates that even if the time is limited and the project schedule restricts testing, the
testing generally goes through the normal, defined, procedures.

Advances in Software Engineering — Software Test Automation 2009 10

Software Test Automation in Practice: Empirical Observations

The fourth and fifth items were related to quality aspects, and gave insights into the clarity of testing objectives. The
results of 3.7 for the identification of quality attributes indicate that organizations tend to have objectives for the test
processes and apply quality criteria in development. However, the prioritization of their quality attributes is not as
strong (3.3) as identification.

Testing stays in schedule H 3.2

Testing phases are kept _ 3.5
Testing has enough time _ 3.0
We have identified the most important
ty atri I :
quality attributes.

We have prioritized the most important 3
quality attributes. F ’

10 15 20 25 30 35 40 45 50

W

Figure 5. Testing process outcomes

4.3 Testing environment

The quality aspects were also reflected in the employment of systematic methods for the testing work. The majority
(61%) of the OUs followed a systematic method or process in the software testing, 13% followed one partially, and
26% of the OUs did not apply any systematic method or process in testing. Process practices were derived from,
for example, TPI (Test Process Improvement) [51] or the RUP (Rational Unified Process) [52]. Few Agile
development process methods such as Scrum [53] or XP (eXtreme Programming) [54] were also mentioned.

A systematic method is used to steer the software project, but from the viewpoint of testing, the process also needs
an infrastructure on which to operate. Therefore, the OUs were asked to report which kind of testing tools they
apply to their typical software processes. The test management tools, tools which are used to control and manage
test cases and allocate testing resources to cases, turned out to be the most popular category of tools; 15 OUs out
of 31 reported the use of this type of tool. The second in popularity were manual unit testing tools (12 OUs), which
were used to execute test cases and collect test results. Following them were tools to implement test automation,
which were in use in 9 OUs, performance testing tools used in 8 OUs, bug reporting tools in 7 OUs and test design
tools in 7 OUs. Test design tools were used to create and design new test cases. The group of other tools
consisted of, for example, electronic measurement devices, test report generators, code analyzers, and project
management tools. The popularity of the testing tools in different survey organizations is illustrated in Figure 6.

Advances in Software Engineering — Software Test Automation 2009 11

Software Test Automation in Practice: Empirical Observations

Test case management

Unit testing

Test automation

Performance testing

Bug reporting

Test design software

Quality control tools

Other

Figure 6. Popularity of the testing tools according to the survey

The respondents were also asked to name and explain the three most efficient application areas of test automation
tools. Both the format of the open-ended questions and the classification of the answers were based on the like
best (LB) technique adopted from Fink & Kosecoff [46]. According to the LB technique, respondents were asked to
list points they considered the most efficient. The primary selection was the area in which the test automation
would be the most beneficial to the test organization, the secondary one is the second best area of application, and
the third one is the third best area. The interviewees were also allowed to name only one or two areas if they were
unable to decide on three application areas. The results revealed the relative importance of software testing tools
and methods.

The results are presented in Figure 7. The answers were distributed rather evenly between different categories of
tools or methods. The most popular category was unit testing tools or methods (10 interviewees). Next in line were
regression testing (9), tools to support testability (9), test environment tools and methods (8) and functional testing
(7). The group ‘others’ (11) consisted of conformance testing tools, TTCN-3 (Testing and Test Control Notation
version 3) tools, general test management tools such as document generators and methods of unit and integration
testing. The most popular category, unit testing tools or methods, also received the most primary application area
nominations. The most common secondary area of application was regression testing. Several categories ranked
third, but concepts such as regression testing, and test environment-related aspects such as document generators
were mentioned more than once. Also testability-related concepts - module interface, conformance testing — or
functional testing — verification, validation tests — were considered feasible implementation areas for test
automation.

Advances in Software Engineering — Software Test Automation 2009 12

Software Test Automation in Practice: Empirical Observations

Unit testing

Regression testing

Testability-related

Test environment-related

Functional testing

Performance testing

Other

12

O Primary @ Secondary O Tertiary

Figure 7. The three most efficient application areas of test automation tools according to the
interviewees

4.4 Summary of the survey findings

The survey suggests that interviewees were rather satisfied with their test policy, test strategy, test management,
and testing, and did not have any immediate requirements for revising certain test phases, although low-level
testing was slightly favoured in the development needs. All in all, 61% of the software companies followed some
form of a systematic process or method in testing, with an additional 13% using some established procedures or
measurements to follow the process efficiency. The systematic process was also reflected in the general approach
to testing; even if the time was limited, the test process followed a certain path, applying the test phases regardless
of the project limitations.

The main source of the software quality was considered to be in the development process. In the survey, the test
organizations used test automation on an average on 26% of their test cases, which was considerably less than
could be expected based on the literature. However, test automation tools were the third most common category of
test-related tools, commonly intended to implement unit and regression testing. As for the test automation itself, the
interviewees ranked unit testing tools as the most efficient tools of test automation, regression testing being the
most common secondary area of application.

Advances in Software Engineering — Software Test Automation 2009 13

Software Test Automation in Practice: Empirical Observations

5 TEST AUTOMATION INTERVIEWS AND QUALITATIVE STUDY

Besides the survey, the test automation concepts and applications were analyzed based on the interviews with the
focus organizations. The grounded theory approach was applied to establish an understanding of the test
automation concepts and areas of application for test automation in industrial software engineering. The qualitative
approach was applied in three rounds, in which a developer, test manager and tester from 12 different case OUs
were interviewed. Descriptions of the case OUs can be found in Appendix A.

In theory-creating inductive research [55], the central idea is that researchers constantly compare theory and data
iterating with a theory which closely fits the data. Based on the grounded theory codification, the categories
identified were selected in the analysis based on their ability to differentiate the case organizations and their
potential to explain the differences regarding the application of test automation in different contexts. We selected
the categories so as to explore the types of automation applications and the compatibility of test automation
services with the OUs testing organization. We conceptualized the most common test automation concepts based
on the coding and further elaborated them to categories to either cater the essential features such as their role in
the overall software process or their relation to test automation. We also concentrated on the OU differences in
essential concepts such as automation tools, implementation issues or development strategies. This
conceptualization resulted to the categories listed in Table 5.

TABLE 5: Test automation categories

Category Definition
Automation application Areas of application for test automation in the software process.

. The observed roles of test automation in the company software process and the effect of
Role in software process this role

The observed method for selecting the test cases where automation is applied and the level

Test automation strategy of commitment to the application of test automation in the organizations.

Automation development The areas of active development in which the OU is introducing test automation.
Automation tools The general types of test automation tools applied.
Automation issues The items that hinder test automation development in the OU.

The category “Automation application” describes the areas of software development, where test automation was
applied successfully. This category describes the testing activities or phases which apply test automation
processes. In the case where the test organization did not apply automation, or had so far only tested it for future
applications, this category was left empty. The application areas were generally geared towards regression and
stress testing, with few applications of functionality and smoke tests in use.

The category “Role in software process” is related to the objective for which test automation was applied in
software development. The role in the software process describes the objective for the existence of the test
automation infrastructure; it could, for example, be in quality control, where automation is used to secure module
interfaces, or in quality assurance, where the operation of product functionalities is verified. The usual role for the
test automation tools was in quality control and assurance, the level of application varying from third party-
produced modules to primary quality assurance operations. On two occasions, the role of test automation was
considered harmful to the overall testing outcomes, and on one occasion, the test automation was considered
trivial, with no real return on investments compared to traditional manual testing.

The category “Test automation strategy” is the approach to how automated testing is applied in the typical software
processes, i.e. the way the automation was used as a part of the testing work, and how the test cases and overall
test automation strategy were applied in the organization. The level of commitment to applying automation was the
main dimension of this category, the lowest level being individual users with sporadic application in the software
projects, and the highest being the application of automation to the normal, everyday testing infrastructure, where
test automation was used seamlessly with other testing methods and had specifically assigned test cases and
organizational support.

The category of “Automation development” is the general category for OU test automation development. This
category summarizes the ongoing or recent efforts and resource allocations to the automation infrastructure. The
type of new development, introduction strategies and current development towards test automation are
summarized in this category. The most frequently chosen code was “general increase of application”, where the
organization had committed itself to test automation, but had no clear idea of how to develop the automation
infrastructure. However, one OU had a development plan for creating a GUI testing environment, while two

Advances in Software Engineering — Software Test Automation 2009 14

Software Test Automation in Practice: Empirical Observations

organizations had just recently scaled down the amount of automation as a result of a pilot project. Two
organizations had only recently introduced test automation to their testing infrastructure.

The category of “Automation tools” describes the types of test automation tools that are in everyday use in the OU.
These tools are divided based on their technological finesse, varying from self-created drivers and stubs to
individual proof-of-concept tools with one specified task to test suites where several integrated components are
used together for an effective test automation environment. If the organization had created the tools by themselves,
or customized the acquired tools to the point of having new features and functionalities, the category was
supplemented with a notification regarding in-house-development.

Finally, the category of “Automation issues” includes the main hindrances which are faced in test automation within
the organization. Usually, the given issue was related to either the costs of test automation or the complexity of
introducing automation to the software projects which have been initially developed without regards to support for
automation. Some organizations also considered the efficiency of test automation to be the main issue, mostly
contributing to the fact that two of them had just recently scaled down their automation infrastructure. A complete
list of test automation categories and case organizations is given in Table 6.

TABLE 6: Test automation categories affecting the software process in case OUs

Qategory Automation sﬁ?tl\z;?e aut(;rrisattion Automation Automation Automation
application development tools issues
ou process strategy
GUI testing, Functionalit Part of the General increase Ind':\éftusaﬂiigo'& Co;\:jr:etﬁ]ty o
Case A regression verifi(:ationy normal test of application in—house' automati%n t% test
testing infrastructure pp
development processes
casen | Peromance | ouay | Fm RS | cuitesg une | POp00R [Lot
smoke testing control tool . testing . -
infrastructure development implementation
Functionality,
regression . Part of the . Test suite, Cost of
- Quiality General increase . .
Case C testing, normal test - in-house automation
. control tool . of application N
documentation infrastructure development maintenance
automation
Quiality
Functionality control for Project-related Upkeep for L Costs (.’f
Case D X S Individual tools automation
testing secondary cases existing parts .)
implementation
modules
System stress Quality Part of the General increase Costs of
Case E Y testin assurance normal test of application Test suite implementing new
9 tool infrastructure pp automation
Unit and Manual testing
Case F module tesnpg, QC, overall Individual users Recently scaled Individual tools seen more
documentation | effect harmful down .
é efficient
automation
Rggressmn Quiality Part of the General increase) Cost o_f
Case G testing for use assurance normal test L Test suite automation
: of application "
cases tool infrastructure maintenance
ngtriﬁssflgrn cgml':ra;:t?or Part of the General increase Test suite, U(;tiﬁ;ez}lfrggtgn
Case H 9 normal test - in-house .
module secondary . of application automated testing
. infrastructure development "
interfaces modules on quality
. . . . - ; Costs of
Functionality Quality Project-related Application pilot Proof-of-concept .
Case | X ; automation
testing control tool cases in development tools . -
implementation
Case J Automanon not | QA, no effect Individual users Appllcanon pilot Proof-of-concept No Qevelqpment
in use observed in development tools incentive
Self-created Manual testing
Case K Small scal_e QC, overall Individual users Recently scaled tools; drivers and seen more
system testing effect harmful down .
stubs efficient
o Adapting L Complexity of
System stress Verifies Project-related automation to Indl_v idual tools, adapting
Case L . module X in-house X
testing compatibilit cases the testing development automation to test
p Y strategy p processes

We elaborated further these properties we observed from the case organizations to create hypotheses for the test
automation applicability and availability. These resulting hypotheses were shaped according to advice given by
Eisenhardt [37] for qualitative case studies. For example, we perceived the quality aspect as really important for the
role of automation in software process. Similarly, the resource needs, especially costs, were much emphasized in

Advances in Software Engineering — Software Test Automation 2009 15

Software Test Automation in Practice: Empirical Observations

the automation issues category. The purpose of the hypotheses below is to summarize and explain the features of
test automation that resulted from the comparison of differences and similarities between the organizations.

Hypothesis 1: Test automation should be considered more as a quality control tool rather than a frontline
testing method.

The most common area of application observed was functionality verification, i.e. regression testing and GUI event
testing. As automation is time-consuming and expensive to create, these were the obvious ways to create test
cases which had the minimal number of changes per development cycle. By applying this strategy, organizations
could set test automation to confirm functional properties with suitable test cases, and acquire such benefits as
support for change management and avoid unforeseen compatibility issues with module interfaces.

“Yes, regression testing, especially automated. It is not manually “hammered in” every time, but used so that the
test sets are run, and if there is anything abnormal, it is then investigated.” — Manager, Case G

“...had we not used it [automation tests], it would have been suicidal.” — Designer, Case D

“It's [automated stress tests] good for showing bad code, how efficient it is and how well designed... stress it
enough and we can see if it slows down or even breaks completely.” —Tester, Case E

However, there seemed to be some contradicting considerations regarding the applicability of test automation.
Cases F, J and K had recently either scaled down their test automation architecture or considered it too expensive
or inefficient when compared to manual testing. In some cases, automation was also considered too bothersome to
configure for a short-term project, as the system would have required constant upkeep, which was an unnecessary
addition to the project workload.

“We really have not been able to identify any major advancements from it [test automation].” — Tester, Case J
“It [test automation] just kept interfering.” — Designer, Case K

Both these viewpoints indicated that test automation should not be considered a “frontline” test environment for
finding errors, but rather a quality control tool to maintain functionalities. For unique cases or small projects, test
automation is too expensive to develop and maintain, and it generally does not support single test cases or
explorative testing. However, it seems to be practical in larger projects, where verifying module compatibility or
offering legacy support is a major issue.

Hypothesis 2: Maintenance and development costs are common test automation hindrances that
universally affect all test organizations regardless of their business domain or company size.

Even though the case organizations were selected to represent different types of organizations, the common theme
was that the main obstacles in automation adoption were development expenses and upkeep costs. It seemed to
make no difference whether the organization unit belonged to a small or large company, as in the OU levels they
shared common obstacles. Even despite the maintenance and development hindrances, automation was
considered a feasible tool in many organizations. For example, cases | and L pursued the development of some
kind of automation to enhance the testing process. Similarly, cases E and H, which already had a significant
number of test automation cases, were actively pursuing a larger role for automated testing.

“Well, it [automation] creates a sense of security and controllability, and one thing that is easily underestimated is
its effect on performance and optimization. It requires regression tests to confirm that if something is changed, the
whole thing does not break down afterwards.” — Designer, Case H

In many cases, the major obstacle for adopting test automation was, in fact, the high requirements for process
development resources.

“Shortage of time, resources... we have the technical ability to use test automation, but we don't.” — Tester, Case J

“Creating and adopting it, all that it takes to make usable automation... | believe that we don't put any effort into it
because it will end up being really expensive.” — Designer, Case J

In Case J particularly, the OU saw no incentive in developing test automation as it was considered to offer only little
value over manual testing, even if they otherwise had no immediate obstacles other than implementation costs.

Advances in Software Engineering — Software Test Automation 2009 16

Software Test Automation in Practice: Empirical Observations

Also cases F and K reported similar opinions, as they both had scaled down the amount of automation after the
initial pilot projects.

“It was a huge effort to manually confirm why the results were different, so we took it [automation] down.” — Tester,
Case F

“Well, we had gotten automation tools from our partner, but they were so slow we decided to go on with manual
testing.” — Tester, Case K

Hypothesis 3: Test automation is applicable to most of the software processes, but requires considerable
effort from the organization unit.

The case organizations were selected to represent the polar types of software production operating in different
business domains. Out of the focus OUs, there were four software development OUs, five IT service OUs, two OUs
from the finance sector and one logistics OU. Of these OUs, only two did not have any test automation, and two
others had decided to strategically abandon their test automation infrastructure. Still, the business domains for the
remaining organizations which applied test automation were heterogeneously divided, meaning that the business
domain is not a strong indicator of whether or not test automation should be applied.

It seems that test automation is applicable as a test tool in any software process, but the amount of resources
required for useful automation compared to the overall development resources is what determines whether or not
automation should be used. As automation is oriented towards quality control aspects, it may be unfeasible to
implement in small development projects where quality control is manageable with manual confirmation. This is
plausible, as the amount of required resources does not seem to vary based on aspects beyond the OU
characteristics, such as available company resources or testing policies applied. The feasibility of test automation
seems to be rather connected to the actual software process objectives, and fundamentally to the decision whether
the quality control aspects gained from test automation supersede the manual effort required for similar results.

“... before anything is automated, we should calculate the maintenance effort and estimate whether we will really
save time, instead of just automating for automation’s sake.” —Tester, Case G

“It always takes a huge amount of resources to implement.” — Designer, Case A

“Yes, developing that kind of test automation system is almost as huge an effort as building the actual project.” —
Designer, Case |

Hypothesis 4: The available repertoire of testing automation tools is limited, forcing OUs to develop the
tools themselves, which subsequently contributes to the application and maintenance costs.

There were only a few case OUs that mentioned any commercial or publicly available test automation programs or
suites. The most common approach to test automation tools was to first acquire some sort of tool for proof-of-
concept piloting, then develop similar tools as in-house-production or extend the functionalities beyond the original
tool with the OU’s own resources. These resources for in-house-development and upkeep for self-made products
are one of the components that contribute to the costs of applying and maintaining test automation.

“Yes, yes. That sort of [automation] tools have been used, and then there’s a lot of work that we do ourselves. For
example, this stress test tool...” — Designer, Case E

“We have this 3rd party library for the automation. Well, actually, we have created our own architecture on top of
it...” — Designer, Case H

“Well, in [company name], we've-, we developed our own framework to, to try and get around some of these,
picking which tests, which group of tests should be automated.” — Designer, Case C

However, it should be noted that even if the automation tools were well-suited for the automation tasks, the
maintenance still required significant resources if the software product to which it was connected was developing
rapidly.

“Well, there is the problem [with automation tool] that sometimes the upkeep takes an incredibly large amount of
time.” — Tester, Case G

Advances in Software Engineering — Software Test Automation 2009 17

Software Test Automation in Practice: Empirical Observations

“Our system keeps constantly evolving, so you'd have to be constantly recording [maintaining tools]...” — Tester,
Case K

6. DISCUSSION

An exploratory survey combined with interviews was used as the research method. The objective of this study was
to shed light on the status of test automation and to identify improvement needs in and the practice of test
automation. The survey revealed that the total effort spent on testing (median 25%) was less than expected. The
median percentage (25%) of testing is smaller than the 50-60% that is often mentioned in the literature [38, 39].
The comparable low percentage may indicate that that the resources needed for software testing are still
underestimated even though testing efficiency has grown. The survey also indicated that companies used fewer
resources on test automation than expected: on an average 26% of all of the test cases apply automation.
However, there seems to be ambiguity as to which activities organizations consider test automation, and how
automation should be applied in the test organizations. In the survey, several organizations reported that they have
an extensive test automation infrastructure, but this did not reflect on the practical level, as in the interviews with
testers particularly, the figures were considerably different. This indicates that the test automation does not have
strong strategy in the organization, and has yet to reach maturity in several test organizations. Such concepts as
quality assurance testing and stress testing seem to be particularly unambiguous application areas, as the cases E
and L demonstrated. In Case E, the management did not consider stress testing an automation application,
whereas testers did. Moreover, in Case L the large automation infrastructure did not reflect on the individual project
level, meaning that the automation strategy may strongly vary between different projects and products even within
one organization unit.

The qualitative study which was based on interviews indicated that some organizations, in fact, actively avoid using
test automation, as it is considered to be expensive and to offer only little value for the investment. However, test
automation seems to be generally applicable to the software process, but for small projects the investment is
obviously oversized. One additional aspect that increases the investment are tools, which unlike in other areas of
software testing, tend to be developed in-house or are heavily modified to suit specific automation needs. This
development went beyond the localization process which every new software tool requires, extending even to the
development of new features and operating frameworks. In this context it also seems plausible that test automation
can be created for several different test activities. Regression testing, GUI testing or unit testing, activities which in
some form exist in most development projects, all make it possible to create successful automation by creating
suitable tools for the task, as in each phase can be found elements that have sufficient stability or unchangeability.
Therefore it seems that the decision on applying automation is not only connected to the enablers and disablers of
test automation [4], but rather on tradeoff of required effort and acquired benefits; In small projects or with low
amount of reuse the effort becomes too much for such investment as applying automation to be feasible.

The investment size and requirements of the effort can also be observed on two other occasions. First, test
automation should not be considered as an active testing tool for finding errors, but as a quality control tool to
guarantee the functionality of already existing systems. This observation is in line with those of Ramler and
Wolfmaier [3], who discuss the necessity of a large number of repetitive tasks for the automation to supersede
manual testing in cost-effectiveness, and of Berner et al. [8], who notify that the automation requires a sound
application plan and well-documented, simulatable and testable objects. For both of these requirements, quality
control at module interfaces and quality assurance on system operability are ideal, and as it seems, they are the
most commonly used application areas for test automation. In fact, Kaner [56] states that 60-80% of the errors
found with test automation are found in the development phase for the test cases, further supporting the quality
control aspect over error discovery.

Other phenomena that increase the investment are the limited availability and applicability of automation tools. On
several occasions, the development of the automation tools was an additional task for the automation-building
organization that required the organization to allocate their limited resources to the test automation tool
implementation. From this viewpoint it is easy to understand why some case organizations thought that manual
testing is sufficient and even more efficient when measured in resource allocation per test case. Another approach
which could explain the observed resistance to applying or using test automation was also discussed in detail by
Berner et al. [8], who stated that organizations tend to have inappropriate strategies and overly ambitious
objectives for test automation development, leading to results that do not live up to their expectations, causing the
introduction of automation to fail. Based on the observations regarding the development plans beyond piloting, it
can also be argued that the lack of objectives and strategy also affect the successful introduction processes.

Advances in Software Engineering — Software Test Automation 2009 18

Software Test Automation in Practice: Empirical Observations

Similar observations of “automation pitfalls” were also discussed by Persson and Yilmazturk [26] and Mosley and
Posey [57].

Overall, it seems that the main disadvantages of testing automation are the costs, which include implementation
costs, maintenance costs, and training costs. Implementation costs included direct investment costs, time, and
human resources. The correlation between these test automation costs and the effectiveness of the infrastructure
are discussed by Fewster [24]. If the maintenance of testing automation is ignored, updating an entire automated
test suite can cost as much, or even more than the cost of performing all the tests manually, making automation a
bad investment for the organization. We observed this phenomenon in two case organizations. There is also a
connection between implementation costs and maintenance costs [24]. If the testing automation system is
designed with the minimization of maintenance costs in mind, the implementation costs increase, and vice versa.
We noticed the phenomenon of costs preventing test automation development in six cases. The implementation of
test automation seems to be possible to accomplish with two different approaches: by promoting either
maintainability or easy implementation. If the selected focus is on maintainability, test automation is expensive, but
if the approach promotes easy implementation, the process of adopting testing automation has a larger possibility
for failure. This may well be due to the higher expectations and assumption that the automation could yield results
faster when promoting implementation over maintainability, often leading to one of the automation pitfalls [26] or at
least a low percentage of reusable automation components with high maintenance costs.

7. CONCLUSIONS

The objective of this study was to observe and identify factors that affect the state of testing, with automation as the
central aspect, in different types of organizations. Our study included a survey in 31 organizations and a qualitative
study in 12 focus organizations. We interviewed employees from different organizational positions in each of the
cases.

This study included follow-up research on prior observations [4, 5, 12, 13, 14] on testing process difficulties and
enhancement proposals, and on our observations on industrial test automation [4]. In this study we further
elaborated on the test automation phenomena with a larger sample of polar type OUs, and more focused approach
on acquiring knowledge on test process-related subjects. The survey revealed that test organizations use test
automation only in 26% of their test cases, which was considerably less than could be expected based on the
literature. However, test automation tools were the third most common category of test-related tools, commonly
intended to implement unit and regression testing. The results indicate that adopting test automation in software
organization is a demanding effort. The lack of existing software repertoire, unclear objectives for overall
development and demands for resource allocation both for design and upkeep create a large threshold to
overcome.

Test automation was most commonly used for quality control and quality assurance. In fact, test automation was
observed to be better suited to such tasks than to actual front-line testing, where the purpose is to find as many
faults as possible. However, the high implementation and maintenance requirements were considered the most
important issues hindering test automation development, limiting the application of test automation in most OUs.
Furthermore, the limited availability of test automation tools and the level of commitment required to develop a
suitable automation infrastructure caused additional expenses. Due to the high maintenance requirements and low
return on investments in small-scale application, some organizations had actually discarded their automation
systems or decided not to implement test automation. The lack of a common strategy for applying automation was
also evident in many interviewed OUs. Automation applications varied even within the organization, as was
observable in the differences when comparing results from different stakeholders. In addition, the development
strategies were vague and lacked actual objectives. These observations can also indicate communication gaps [58]
between stakeholders of the overall testing strategy, especially between developers and testers.

The data also suggested that the OUs that had successfully implemented test automation infrastructure to cover
the entire organization seemed to have difficulties in creating a continuance plan for their test automation
development. After the adoption phases were over, there was an ambiguity about how to continue, even if the
organization had decided to further develop their test automation infrastructure. The overall objectives were usually
clear and obvious — cost savings and better test coverage — but in practise there were only few actual development
ideas and novel concepts. In the case organizations this was observed in the vagueness of the development plans:
only one of the five OUs which used automation as a part of their normal test processes had development plans
beyond the general will to increase the application.

Advances in Software Engineering — Software Test Automation 2009 19

Software Test Automation in Practice: Empirical Observations

The survey established that 61% of the software companies followed some form of a systematic process or method
in testing, with an additional 13% using some established procedures or measurements to follow the process
efficiency. The main source of software quality was considered to reside in the development process, with testing
having much smaller impact in the product outcome. In retrospect of the test levels introduced in the ISO/IEC29119
standard, there seems to be no one particular level of the testing which should be the research and development
interest for best result enhancements. However, the results from the self-assessment of the test phases indicate
that low-level testing could have more potential for testing process development.

Based on these notions, the research and development should focus on uniform test process enhancements, such
as applying a new testing approach and creating an organization-wide strategy for test automation. Another focus
area should be the development of better tools to support test organizations and test processes in the low-level test
phases such as unit or integration testing. As for automation, one tool project could be the development of a
customizable test environment with a common core and with an objective to introduce less resource-intensive,
transferable and customizable test cases for regression and module testing.

8. ACKNOWLEDGEMENTS

This study is a part of the ESPA project (http://www.soberit.hut.fi/espa/), funded by the Finnish Funding Agency for
Technology and Innovation (project number 40125/08) and by the participating companies listed on the project web
site.

REFERENCES

[1] Kit, E., Software Testing in the Real World: Improving the Process. Addison-Wesley, Reading, MA, USA, 1995.
[2] Tassey, G., The Economic Impacts of Inadequate Infrastructure for Software Testing. U.S. National Institute of
Standards and Technology report, RTI Project Number 7007.011, 2002.

[3] Ramler, R. and Wolfmaier, K. Observations and lessons learned from automated testing. Proceedings of the
2006 international workshop on Automation of software testing, Shanghai, China, Pages: 85 — 91, 2006.

[4] Karhu, K., Repo, T., Taipale, O. and Smolander, K., Empirical Observations on Software Testing Automation,
Proceeding of the 2nd International Conference on Software Testing, Verification and Validation, Denver, CO,
USA, 2009.

[5] Taipale, O. and Smolander, K. Improving Software Testing by Observing Causes, Effects, and Associations
from Practice. the International Symposium on Empirical Software Engineering, Rio de Janeiro, Brazil, 2006.

[6] Shea, B., Sofware Testing Gets New Respect, InformationWeek, July 3 issue, 2000.

[7] Dustin, E., Rashka, J. and Paul, J., Automated software testing: introduction, management, and performance.
Addison-Wesley, Boston, 1999.

[8] Berner, S., Weber, R. and Keller, R.K. Observations and lessons learned from automated testing. Proceedings
of the 27th international conference on Software engineering, St. Louis, MO, USA, Pages: 571 — 579, 2005

[9] Whittager, J.A., What is Software Testing? And Why is it So Hard?, IEEE Software, 17(1), pages 70-79, 2000.
[10] Osterweil, L.J., Software processes are software too, revisited: an invited talk on the most influential paper of
ICSE 9, presented at the International Conference on Software Engineering, Proc. 19th International Conference
on Software Engineering, Boston, 1997.

[11] ISO/IEC, ISO/IEC 29119-2, Software Testing Standard — Activity Descriptions for Test Process Diagram, 2008.
[12] Taipale, O., Smolander, K. and Kalvidinen, H. Cost Reduction and Quality Improvement in Software Testing.
Software Quality Management Conference, Southampton, UK, 2006.

[13] Taipale, O., Smolander, K. and Kalvidinen, H. Factors Affecting Software Testing Time Schedule. the
Australian Software Engineering Conference, Sydney. IEEE Comput. Soc, Los Alamitos, CA, USA, 2006.

[14] Taipale, O., Smolander, K. and Kalvidginen, H. A Survey on Software Testing. 6th International SPICE
Conference on Software Process Improvement and Capability dEtermination (SPICE'2006), Luxembourg, 2006.
[15] Dalkey, N.C., The Delphi method: An experimental study of group opinion, RAND Corporation, Santa Monica,
CA 1969.

[16] Ng, S.P., Murmane, T., Reed, K., Grant, D. and Chen, T.Y., A Preliminary Survey on Software Testing
Practices in Australia, in Proc. 2004 Australian Software Engineering Conference (Melbourne, Australia), Pages
116-125, 2004.

[17] Torkar, R. and Mankefors, S., A survey on testing and reuse, presented at the IEEE International Conference
on Software - Science, Technology and Engineering (SWSTE'03), Herzlia, Israel, 2003

Advances in Software Engineering — Software Test Automation 2009 20

Software Test Automation in Practice: Empirical Observations

[18] Ferreira, C. & Cohen, J. Agile Systems Development and Stakeholder Satisfaction: A South African Empirical
Study, Proc. SAICSIT 2008, Wilderness, South Africa, Pages 48-55, 2008.

[19] Li, J., Bjgrnson, F.O., Conradi R. and Kampenes, V.B. An empirical study of variations in COTS-based
software development processes in the Norwegian IT industry, Empirical Software Engineering, 11(3), 2006.

[20] Chen, W., Li, J., Ma, J., Conradi, R., Ji, J. and Liu, C. An empirical study on software development with open
source components in the Chinese software industry, Software Process: Improvement and Practice, 13(1), 2008.
[21] Dossani R. and Denny, N. The Internet’s role in offshored services: A case study of India, ACM Transactions
on Internet Technology (TOIT), 7(3), 2007.

[22] Wong, K.Y. An exploratory study on knowledge management adoption in the Malaysian industry, International
Journal of Business Information Systems, 3(3), 2008.

[23] Bach, J. Test Automation Snake Oil, Proc. 14th International Conference and Exposition on Testing Computer
Software, 1999.

[24] Fewster, M. Common Mistakes in Test Automation, Grove Consultants, 2001.

[25] Hartman, A., Katara, M. and Paradkar, A., Domain specific approaches to software test automation. Proc. 6th
joint meeting of the European software engineering conference and the ACM SIGSOFT symposium on the
foundations of software engineering, Dubrovnik, Croatia, Pages: 621-622, 2007.

[26] Persson, C. and Yilmazturk, N. Establishment of automated regression testing at ABB: industrial experience
report on ‘avoiding the pitfalls'. Proceedings of the 19th International Conference on Automated Software
Engineering, Pages: 112- 121, 2004.

[27] Auguston, M., Michael, J.B. and Shing, M.-T. Test automation and safety assessment in rapid systems
prototyping. The 16th IEEE International Workshop on Rapid System Prototyping, Montreal, Canada, Pages: 188-
194, 2005.

[28] Cavarra, A., Davies, J., Jeron, T., Mournier, L., Hartman, A. and Olvovsky, S., Using UML for Automatic Test
Generation, Proceedings of ISSTA'2002, Aug. 2002.

[29] Vieira, M., Leduc, J., Subramanyan, R. and Kazmeier, J. Automation of GUI testing using a model-driven
approach. Proceedings of the 2006 international workshop on Automation of software testing, Shanghai, China,
Pages: 9 — 14, 2006.

[30] Xiaochun, Z., Bo, Z., Juefeng, L. and Qiu, G., A test automation solution on GUI functional test, 6th IEEE
International Conference on Industrial Informatics, 2008. INDIN 2008, 13-16 July, Pages: 1413 — 1418, 2008.

[31] Kreuer, D., Applying test automation to type acceptance testing of telecom networks: a case study with
customer participation, 14th IEEE International Conference on Automated Software Engineering, 12-15 Oct.,
Pages: 216-223, 1999.

[32] Yu, W.D. and Patil, G., A Workflow-Based Test Automation Framework for Web Based Systems, 12th IEEE
Symposium on Computers and Communications, 2007. ISCC 2007,1-4 July, Pages: 333 — 339, 2007.

[33] Bertolino, A. Software Testing Research: Achievements, Challenges, Dreams, in Future of Software
Engineering: IEEE Computer Society, Pages: 85-103, 2007.

[34] Blackburn, M., Busser, R. and Nauman, A. Why Model-Based Test Automation is Different and What You
Should Know to Get Started. International Conference on Practical Software Quality, 2004.

[35] Santos-Neto, P., Resende, R. and Padua, C. Requirements for information systems model-based testing,
Proceedings of the 2007 ACM symposium on Applied computing, Seoul, Korea, Pages: 1409 — 1415, 2007.

[36] ISO/IEC, ISO/IEC 15504-1, Information Technology - Process Assessment - Part 1: Concepts and Vocabulary,
2002.

[37] Eisenhardt, K. M., Building Theories from Case Study Research. Academy of Management Review. 14,
Pages: 532-550, 1989.

[38] EU, European Commission, The New SME definition: User guide and model declaration, 2003.

[39] Paré, G. and Elam, J. J. Using Case Study Research to Build Theories of IT Implementation. The IFIP TC8
WG International Conference on Information Systems and Qualitative Research, Philadelphia, USA. Chapman &
Hall, 1997.

[40] Strauss, A. and Corbin, J., Basics of Qualitative Research: Grounded Theory Procedures and Techniques.
SAGE Publications, Newbury Park, CA, USA, 1990.

[41] ATLAS.ti - The Knowledge Workbench. Scientific Software Development, 2005.

[42] Miles, M. B. and Huberman, A. M. Qualitative Data Analysis. SAGE Publications, Thousand Oaks, CA, USA,
1994,

Advances in Software Engineering — Software Test Automation 2009 21

Software Test Automation in Practice: Empirical Observations

[43] Seaman, C. B., Qualitative Methods in Empirical Studies of Software Engineering. IEEE Transactions on
Software Engineering. 25, Pages: 557-572, 1999.

[44] Robson, C., Real World Research, Second Edition. Blackwell Publishing, 2002.

[45] Denzin, N. K., The research act: A theoretical introduction to sociological methods. McGraw-Hill,1978.

[46] Fink, A. and Kosecoff, J. How to Conduct Surveys: A Step-By-Step Guide. Beverly Hills, CA: SAGE, 1985.

[47] Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., Emam, K.E. and Rosenberg, J.,
Preliminary Guidelines for Empirical Research in Software Engineering, IEEE Transactions on Software
Engineering, 28, No. 8, Pages: 721-733, 2002.

[48] Dyba, T., An Instrument for Measuring the Key Factors of Success in Software Process Improvement,
Empirical Software Engineering, 5, Pages: 357-390, 2000.

[49] ISO/IEC, ISO/IEC 25010-2, Softaware Engineering — Software product Quality Requirements and Evaluation
(SQuaRE) Quality Model, 2008.

[50] Baruch, Y., Response Rate in Academic Studies - A Comparative Analysis, Human Relations, 52(4), Pages:
421-438, 1999.

[51] Koomen, T. and Pol, M., Test Process Improvement: a Practical Step-by-Step Guide to Structured Testing,
Addison-Wesley, 1999.

[52] Kruchten, P., The Rational Unified Process: An Introduction, second edition. Addison-Wesley Professional,
1998.

[53] Schwaber, K. and Beedle, M., Agile software development with Scrum, Prentice Hall, 2001.
[54] Beck, K., Extreme Programming Explained: Embrace Change, 2000.

[55] Glaser, B. and Strauss, A. L., The Discovery of Grounded Theory: Strategies for Qualitative Research. Aldine,
Chicago, 1967.

[56] Kaner, C. Improving the Maintainability of Automated Test Suites. Software QA, 4(4), 1997.
[57] Mosley D.J. and Posey B.A. Just Enough Software Test Automation. Prentice Hall, 2002.
[58] Foray, D., Economics of Knowledge. The MIT Press, Cambridge, MA, 2004.

Advances in Software Engineering — Software Test Automation 2009 22

Software Test Automation in Practice: Empirical Observations

APPENDIX A: CASE DESCRIPTIONS

Case A, Manufacturing execution system (MES) producer and electronics manufacturer. Case A produces
software as a service (SaaS) for their product. The company is a small-sized, nationally operating company that
has mainly industrial customers. Their software process is a plan-driven cyclic process, where the testing is
embedded to the development itself, having only litle amount of dedicated resources. This organization unit
applied test automation as a user interface and regression testing tool, using it for product quality control. Test
automation was seen as a part of the normal test strategy, universally used in all software projects. The
development plan for automation was to generally increase the application, although the complexity of the
software- and module architecture was considered major obstacle on the automation process.

Case B, Internet service developer and consultant. Case B organization offers two types of services;
development of Internet service portals for the customers like communities and public sector, and consultation in
the Internet service business domain. The origination company is small and operates on a national level. Their
main resource on the test automation is in the performance testing as a quality control tool, although addition of
GUI test automation has also been proposed. The automated tests are part of the normal test process, and the
overall development plan was to increase the automation levels especially to the GUI test cases. However, this
development has been hindered by the cost of designing and developing test automation architecture.

Case C, Logistics software developer. Case C organization focuses on creating software and services for their
origin company and its customers. This organization unit is a part of a large-sized, nationally operating company
with large, highly distributed network and several clients. The test automation is widely used in several testing
phases like functionality testing, regression testing and document generation automation. These investments are
used for quality control to ensure the software usability and correctness. Although the OU is still aiming for larger
test automation infrastructure, the large amount of related systems and constant changes within the inter-module
communications is causing difficulties in development and maintenance of the new automation cases.

Case D, ICT consultant. Case D organization is a small, regional software consultant company, whose customers
mainly compose of small business companies and the public sector. Their organization does some software
development projects, in which the company develops services and ICT products for their customers. The test
automation comes mainly trough this channel, as the test automation is mainly used as a conformation test tool for
the third party modules. This also restricts the amount of test automation to the projects, in which these modules
are used. The company currently does not have development plans for the test automation as it is considered
unfeasible investment for the OU this size, but they do invest on the upkeep of the existing tools as they have
usage as a quality control tool for the acquired outsider modules.

Case E, Safety and logistics system developer. Case E organization is a software system developer for safety
and logistics systems. Their products have high amount of safety critical features and have several interfaces on
which to communicate with. The test automation is used as a major quality assurance component, as the service
stress tests are automated to a large degree. Therefore the test automation is also a central part of the testing
strategy, and each project has defined set of automation cases. The organization is aiming to increase the amount
of test automation and simultaneously develop new test cases and automation applications for the testing process.
The main obstacle for this development has so far been the costs of creating new automation tools and extending
the existing automation application areas.

Case F, Naval software system developer. The Case F organization unit is responsible for developing and
testing naval service software systems. Their product is based on a common core, and has considerable
requirements for compatibility with the legacy systems. This OU has tried test automation on several cases with
application areas such as unit- and module testing, but has recently scaled down test automation for only support
aspects such as the documentation automation. This decision was based on the resource requirements for
developing and especially maintaining the automation system, and because the manual testing was in this context
considered much more efficient as there were too much ambiguity in the automation-based test results.

Case G, Financial software developer. Case G is a part of a large financial organization, which operates
nationally but has several internationally connected services due to their business domain. Their software projects
are always aimed as a service portal for their own products, and have to pass considerable verification and
validation tests before being introduced to the public. Because of this, the case organization has sizable test
department when compared to other case companies in this study, and follows rigorous test process plan in all of
their projects. The test automation is used in the regression tests as a quality assurance tool for user interfaces

Advances in Software Engineering — Software Test Automation 2009 23

Software Test Automation in Practice: Empirical Observations

and interface events, and therefore embedded to the testing strategy as a normal testing environment. The
development plans for the test automation is aimed to generally increase the amount of test cases, but even the
existing test automation infrastructure is considered expensive to upkeep and maintain.

Case H, Manufacturing execution system (MES) producer and logistics service system provider. Case H
organization is a medium-sized company, whose software development is a component for the company product.
Case organization products are used in logistics service systems, usually working as a part of automated
processes. The case organization applies automated testing as a module interface testing tool, applying it as a
quality control tool in the test strategy. The test automation infrastructure relies on the in-house-developed testing
suite, which enables organization to use the test automation to run daily tests to validate module conformance.
Their approach on the test automation has been seen as a positive enabler, and the general trend is towards
increasing automation cases. The main test automation disability is considered to be that the quality control aspect
is not visible when working correctly and therefore the effect of test automation may be underestimated in the wider
organization.

Case |, Small and medium-sized enterprise (SME) business and agriculture ICT-service provider. The case |
organization is a small, nationally operating software company which operates on multiple business domain. Their
customer base is heterogeneous, varying from finances to the agriculture and government services. The company
is currently not utilizing test automation in their test process, but they have development plans for designing quality
control automation. For this development they have had some individual proof-of-concept tools, but currently the
overall testing resources limit the application process.

Case J, Modeling software developer. Case J organization develops software products for civil engineering and
architectural design. Their software process is largely plan-driven with rigorous verification and validation
processes in the latter parts of an individual project. Even though the case organization itself has not implemented
test automation, on the corporate level there are some pilot projects where regression tests have been automated.
These proof-of-concept-tools have been introduced to the case OU and there are intentions to apply them in the
future, but there has so far been no incentive for adoption of the automation tools, delaying the application process.

Case K, ICT developer and consultant. Case K organization is a large, international software company which
offers software products for several business domains and government services. Case organization has previously
piloted test automation, but decided against adopting the system as it was considered too expensive and resource-
intensive to maintain when compared to the manual testing. However, some of these tools still exist, used by
individual developers along with test drivers and interface studs in unit- and regression testing.

Case L, Financial software developer. Case L organization is a large software provider for their corporate
customer which operates on the finance sector. Their current approach on software process is plan-driven,
although some automation features has been tested on a few secondary processes. The case organization does
not apply test automation as is, although some module stress test cases have been automated as pilot tests. The
development plan for test automation is to generally implement test automation as a part of their testing strategy,
although amount of variability and interaction in the module interfaces is considered difficult to implement in test
automation cases.

Advances in Software Engineering — Software Test Automation 2009 24

Publication III

A Study of Agility and Testing Processes in
Software Organizations

Kettunen, V., Kasurinen, J., Taipale, O. and Smolander, K. (2010), Proceedings of the
19th international symposium on Software testing and analysis (ISSTA), 12.-16.7.2010,
Trento, Italy, doi: 10.1145/1831708.1831737

© 2011 Association for Computing Machinery, Inc. Reprinted by permission.

A Study on Agility and Testing Processes in Software

Organizations

Vesa Kettunen, Jussi Kasurinen, Ossi Taipale, and Kari Smolander
Lappeenranta University of Technology, Laboratory of Software Engineering
Skinnarilankatu 34, P.O. Box 20
FI-53851 Lappeenranta, Finland
+358 400 213 864

vesa.kettunen | jussi.kasurinen | ossi.taipale | kari.smolander@Iut.fi

ABSTRACT

In this paper, we studied the differences in testing activities
between software organizations which apply agile development
methods and organizations which take the traditional plan-driven
approach. Our focus was on the concepts which allow the
software organization to successfully apply agile development
methods or plan-driven methods. We also observed the test
process enhancements and hindrances, which originate in the
selected development method. We interviewed 12 organizations,
which were selected to represent different polar types of software
production. The interviews were tape-recorded and transcribed for
further analysis. The study yielded hypotheses which were
derived by applying the qualitative grounded theory method. The
results indicated that in practice, agile methods can improve the
position of testing through the early involvement of testing
activities in development, and also have a positive influence on
end-product satisfaction. By applying these results, organizations
can improve their processes and avoid pitfalls when transitioning
to agile methods.

Categories and Subject Descriptors
D.2.9 [**Software Engineering]: Management — Productivity,
D.2.8 [**Software Engineering]: Metrics — Process metrics

General Terms
Management, Economics, Human Factors

Keywords

Agile development, test process, case study, empirical study.

1. INTRODUCTION

Several different approaches can be applied to software
development. The software development process is based on
traditional plan-driven methods such as prototyping [7] or
waterfall [27] or agile development methods such as SCRUM [24]
or Extreme Programming (XP) [2]. In theory, the main incentive
for applying agile development in industry is to gain cost savings
and faster development cycles [11], as the development is focused

on communication and reacting to the process objectives instead
of excessive design. Both plan-driven and agile development
methods have their advantages and disadvantages. Hence it is seen
that they have their own home grounds [4] and project types they
fit into. However, it can be argued [8, 19] that agile development
may require some adjustments in the developer organization. For
example, one difficulty in the application of agile methods could
be fitting the testing activities into the production process while
ensuring that the scope of testing is sufficient and designing the
test cases around a rapidly evolving software product. As testing
is one of the most costly parts of the software process [3] — a
common estimation is at least 50 percent of the development costs
- testing activities in agile development are an interesting field of
research.

Applying agile development methods has effects on the software
test process. Several agile methods promote early testing activities
as a part of the program, meaning that the test phase is involved in
the development. In that way testing, is not left as the final phase
of development, as in plan-driven methods, and there may be
more time to perform testing activities and correct defects found
in testing. However, most of the agile methods do not give enough
guidance on how testing should be arranged in parallel with
development work [12]. Testing carried out by developers is
emphasized, and therefore, the issue is raised whether testers are
needed in agile development at all [31].

In this study, we observed the effect of agile development
methods from the viewpoint of the test process and test activities.
Our goal was to determine how agile methods affect the execution
of software testing in practice. The focus was on the organization
of testing and on the test strategy. The study was conducted as a
qualitative one using the grounded theory research method [29].
The research material consisted of interview data collected from
three different interviewees from each of the twelve organization
units participating in the study.

This paper is a part of a larger study conducted by our research
group on software organizations and test processes. Our earlier
publications have covered such topics as test automation [15], test
process difficulties and enhancement proposals [17], and test
resources, testing tools and testing practices [16].

The paper is structured as follows: Section 2 presents related
research from relevant fields, and Section 3 introduces the
research method and data collection methods applied in this study.
Section 4 presents the results and the hypothesis. Section 5
discusses the findings and the observations, and Section 6 closes
the paper with conclusions.

2. RELATED RESEARCH

Earlier studies on software testing with agile methods have been
mostly case studies. For example, several studies [22,26,28,30,31]
have made experimental observations in one organization when
applying agile methods. The authors study the topic by
concentrating on their experiences of testing practices in an agile
development environment. However, a wider perspective is taken
in a study by Itkonen et al. [12]. In addition, Ambler [1] takes
software testing into account in his study that considers scalability
of agile software development. Ambler introduces a team of
independent testers in the application of agile methods at scale.

In the study by Talby et al. [31], testing carried out by developers
is emphasized because quality assurance is every team member’s
responsibility. The tradeoff in testing by developers is that the
time required for testing is taken from the development of new
functionalities. Talby et al. discovered that the traditional view of
applying an independent tester is not sufficient in an agile
development project. Testers working in isolation from developers
resulted in an almost worthless approach, and management saw
that developers could effectively test the software themselves.
Testers working in close interaction with developers were seen as
a more suitable approach for agile projects. However, Talby et al.
did not provide any concrete results of this approach.

Sumrell [30] struggled with quality assurance activities when
trying to move from the waterfall model to agile development.
After discussions with agile consultants, Sumrell identified that
unit testing done by developers is crucial for their project and that
developers have to take responsibility for the quality of the
product, as well. In that way, testers could focus on acceptance
and functional testing. In order to successfully accomplish testing
activities during the iterations, testing should start from the very
beginning of the project [30]. In addition, the use of lightweight
test automation tools is emphasized.

Test automation was seen as a key factor in agile testing in
Puleio’s [22] study. With test automation, it was possible to keep
testing and development in synchronization. In Puleio’s project,
they applied Scrum and XP together to experiment with agile
techniques. Their results state that one of the main challenges they
faced was software testing; insufficient understanding of software
testing raised questions inside the development team, while
communication between stakeholders was the key to solving this
matter. Finding a common language helped the team to
communicate and understand the effort testing requires. Another
issue was the estimation of the testing activities. Testers could not
divide the testing tasks into appropriate pieces of work that would
be possible to complete during the iterations. However,
estimations improved during the development process, even
though one of the testers did not approve breaking down the
testing into smaller tasks.

In Shaye’s [26] experience, test automation plays the greatest role
in agile testing. Shaye describes an excessive test automation
environment and strategy for agile development in her paper.
Continuous testing would have been impossible to attain without
test automation. With the right priorities, testing was targeted to
high risk areas of the product. Testing conducted by developers
was not emphasized, as in the studies of Talby and Sumrell.
Testers were required to develop test automation and to
implement more complex testing, e.g. exploratory testing. Testers

and developers were paired to work together to provide quick
feedback on the developed functions.

A recent study by Stolberg [28] supports the use of test
automation to make testing faster in an agile environment.
However, Stolberg also had problems with testing when applying
agile methods. According to him, it was difficult to test in parallel
with development. Again, with the help of test automation,
continuous testing was made possible. The building of test
automation required a large amount of consideration; however, it
was worth the effort. In this case, acceptance and unit tests were
automated. Unit tests were written by developers and acceptance
tests by testers.

Itkonen et al. [12] studied the topic by comparing the practices in
plan-driven methods and in agile methods. As seen from the
presented studies, an iterative and fast development environment
brings challenges to software testing. Itkonen et al. lists the
challenges brought by agile principles and also the challenges that
plan-driven testing principles introduce (e.g. independence of
testing). They evaluated the agile quality assurance activities with
the Cycles of Control (CoC) framework. This CoC framework
illustrated in which time segment a quality assurance activity is
positioned. Itkonen et al. suggested that introducing an
independent tester could bring improvements to agile testing.
However, they emphasized the need for more research on the
topic in order to gain knowledge of whether additional testing
practices are even needed in agile methods.

Based on these studies, it seems that test automation is a crucial
part of testing in an agile environment. Another aspect is that
testing practices used in plan-driven methods may not be
compatible with agile processes. In addition, it seems that the role
of testers is not as clearly defined in agile development as it is in
plan-driven development. As for our study, these findings were
used as a basis for qualitative research. Our objective was to
observe how applying agile development, or agile practices, to the
software process affects the testing process, and which the most
prominent factors are that cause it.

3. RESEARCH METHOD

Software testing at the organizational level has several aspects,
which can be considered to affect the effectiveness of the test
process, and ultimately, the quality of the end-product. These
seem to vary between different types of organizations and
software projects, as even in the seemingly similar organizations
the approach to the software and test process may differ
significantly [16]. Some of this can be attributed to the human
factors in the process. The testing work involves many actors,
such as developers or testers, and communication between these
actors, meaning that these factors should be addressed in
observing the organizations [23].

3.1 Grounded theory

Acknowledging these conditions, we selected the grounded theory
approach [10 and 29] to conduct an empirical analysis of the
software testing practices. The grounded theory approach was
considered suitable, as observing and describing organizations and
phenomena are its strong areas. For example, Seaman [25]
discusses grounded theory research as a way to identify new
theories and concepts, making it a valid choice for research in
software process and testing practices, and therefore suitable for
our needs.

Grounded theory was first introduced by Glaser and Strauss [10]
as a method for collecting data and creating theories in social
sciences. The modern methodology has two main approaches:
Glaser, as introduced in [9] and Strauss and Corbin, as introduced
in [29]. In this study, we applied the Strauss and Corbin approach,
which places a greater emphasis on the systematic categorization
of observations and abductive reasoning [32]. In theory building,
we followed guidelines by Eisenhardt [5], with additional input
and principles for interpreting field study results derived from
[18], [20] and [21].

3.2 Data collection

In our study, the focus was set on the level of organizational units
(OUs), as described in the standard ISO/IEC 15504-1 [13]. The
organizational unit is a part of an organization, deploying one
process or more within a coherent process context, operating
within set policies and objectives. Typically, an OU is one part of
a larger organization, but especially in micro- and small-sized
businesses, as defined in European Union SME definition [6], an
OU consist of the entire corporation. In other definitions, such as
TMMi [33], the definition of an OU is further elaborated. The
daily activities and management of the processes in OUs are
internal, but the activities are steered from upper level
management with motivators such as corporate policies or
operational strategies. However, the OUs usually have some
ability, albeit a limited one, to affect these steering motivators,
with activities such as enhancement proposals or feedback [15].
Overall, the OU was selected as an assessment unit because the
use of an OU normalizes the company size and makes direct
comparisons between different types of companies possible.

In our study, we interviewed 12 OUs, which represented different
operating domains and polar types [5] of software industry. Our
selection varied from small, national companies to large
international software producers; from electronics producers to
software houses. The amount of agile practices in the participating
organizations varied greatly. One organization applied a complete

SCRUM-based approach in software projects, while another had a
completely design-based approach in software development.
However, in almost all organizations some agile practices were
applied; for example, explorative testing, iterative development
cycles and feature set-based approach were common. The
participants can be roughly divided to three groups based on their
agility: low, medium, and high, based on the amount of applied
practices. In the high level, an organization applies agile
development method in all activities. In medium, the main
development process may be design-based, but additional projects
like feature development or updates, are done with agile approach.
Also organizations that applied several agile practices were
considered medium. Low is the level where only individual users
or individual projects applied agile practices. From “low”
organizations, three applied almost strictly design-based
development processes. On the other hand, one organization was
dedicated in introducing agile practices to their processes. A brief
description of the OUs - and their main agile practices —
participating in all of the data collection rounds, is available in
Table 1.

The initial population was selected based on our prior research
[15, 16 and 17] on with the combination of the polar type
selection method, meaning that the organizations were selected to
be as heterogeneous as possible and included as many different
types of business activities in the software development business
as possible. The participants were selected from our research
partners, and supplemented with additional organizations to fulfill
the polar type requirements. All of the selected organizations were
professional software producers of a high technical level,
producing software as their main activity.

Our objective was to gain insight and understanding of the
software test process in selected organizations, and later analyze
which concepts affected the test activities and how the test
organizations worked. To approach this problem, we decided to
interview several people from the organization during three
interview rounds, in which we used semi-structured questions on

Table 1: Description of the Interviewed OUs

— - —
ou Business Compapy size / | Amount gnd types of agile practices in
Operation the organization
T f N T ;
Case A MES" producer and electronics Small / National Low; gxp}oratlve testing, focus on
manufacturer communication between stakeholders
Case B ICT consultant Small / National Low; develops software as feature sets
Case C Logistics software developer Large / National High; applies SCRUM [24]
Internet service developer and . Low; testing activities interweaved to
Case D consultant Small / National development
Case E Safety and logistics systems developer | Medium / National ::[;Ae’cttso none; module reuse in non-critical
. . . Medium; applies iterative development cycles
Case F Maritime software systems developer Medium / International in most projects
Case G Financial software developer Large / National Low to none; unit testing done by developers
Case H ICT developer and consultant Large / International Low to none; unit testing done by developers
Casel Financial software developer Large / International Low; piloting agile practices in development
Case J SME busmess and agriculture ICT Small / National Medium; process able to adapt to the product,
service provider feature sets based on customer requests
MES? producer and logistics systems . . Medium; daily builds, some SCRUM [24]
Case K provider Medium / International activities, test automation
Case L Modeling software developer Large / International Low; explorative testing

Manufacturing Execution System 2SME definition [6]

Table 2: Organization of interview rounds

Round type Number of interviews

Interviewee role

Description

1) Semi-structured 12 OU interviews

Designer or Programmer

The interviewee was responsible for or had influence in
the software design.

2) Structured and Semi- | 31 OUs, including 12 OUs

structured from 1st and 3rd round Manager

Development or Testing | The interviewee was responsible for a sofware project or

a testing phase for a software product.

3) Semi-structured 12 OU interviews

Tester or Programmer

The interviewee was a dedicated tester or was responsible
for testing the the software product.

themes such as the development method, testing tools, test
automation, perceived quality aspects and such.

The data collection was completed in three rounds, in which we
interviewed software designers, development or test managers and
actual testers, one from each participating OU. Typically, the
interviews lasted approximately one hour and were held face-to-
face at a location selected by the interviewee, typically at their
office. All of the interviews were tape-recorded for later analysis.
If the organization did not have separate designers or testers, we
interviewed the person, wusually a programmer, whose
responsibilities matched the desired role description. On two
occasions, the OU selected two persons for an interview, as they
considered that they did not have only one individual with
sufficient knowledge on the interview topics. The interviewed
persons were also allowed to see the questions beforehand and
prepare for the interview if they deemed it necessary.

As a supplemental source of information, on the second round we
also conducted a structured survey on the participating OUs. This
was decided to gather also quantitative information on the test
resources and current state of the overall test process. The
quantitative survey was conducted in 31 OUs, all of the 12
interviewed organizations included. As for the grounded theory
analysis, the answers to the qualitative questions in the second
round from 19 additional OUs were discarded. The qualitative
data was subsequently used as an additional source of information
in the data analysis, in establishing relationships between different
categories. A summary of the data collection rounds and
participants is presented in Table 2. The interview questions,
which included such topics as development method, test phases,
testing tools, testing methods and quality concepts, can be found
at http://wwwz2.it.lut.fi/project/ MASTO/.

We decided to start the interviews with designers in the first round
to test our prior observations on the test process and to see if the
results from our prior research project [15, 16 and 17] were
applicable. In this way, we could also elaborate on the execution
level details, further refining the questions for the latter interview
rounds.

The managers were interviewed in the second round. During the
interview we also collected survey data with additional structured
questions. The decision to survey managers was made because
they tend to have better understanding of the project- and
organization-level aspects such as standards, testing policies and
customer influence on the test process. As for the other estimates,
the manager-level personnel were considered to be in a better
position to assess such aspects as resource availability or
personnel competence.

The third group that was interviewed was the testers. During this
round, the focus was on testing activities and everyday testing.
During this round, the same group of OUs was used as during the
first round.

3.3 Data analysis

The grounded theory method contains three data analysis steps,
which include open coding, axial coding and selective coding.
During the first step, open coding, the observations from the
interviews were codified to represent different phenomena and
aspects that are related to the analyzed topic. The observations
were connected to groups called categories, which lead to
definitions of relationships and interconnection between
categories.

The categories were developed from “seed categories™ [5], which
in our study were collected from our prior studies, literature
review, and derived from the research question. For example,
“Software development method”, “Test resources”, “Process
problems” and “Role of the upper management” were a few of the
applied seed categories. In practice, the open coding phase meant
that the different observations were given the form of “category:
phenomenon”, such as “Test process: Applicability of agile
methods” or “Test resources: Division of available resources”, so
that their relations and concepts connected to the categories could
be further elaborated. During the coding, some of the prior
categories merged, new categories were developed, and some
categories altogether rejected by comparing different observations
to find patterns, similarities or regularities with each other. After
the open coding, our data set collected from 36 interviews resulted
to 166 codes in 12 different categories.

In the axial coding, the focus was on the causal conditions and
relations between the existing categories. In this phase, the
categories themselves were examined more closely to establish
any kinds of connections between them on the larger scale. At this
stage, the observations and codifications were becoming rigid,
allowing the focus to shift towards defining a connection between
larger concepts such as categories.

The objective for selective coding is the definition of the core
category [5, 29]. The core category may sometimes be one of the
existing categories, but it can also be an amalgam of categories
should none of the final categories be broad or influential enough.
In this study, the core category was identified to be such an
amalgam, consisting of the test strategy, the test organization, and
the customer. Also the existing, known problems of the test
process were considered important part of the study, as they
pointed out possible difficulties in the process of applying agile
methods and software testing. Basically, these observations meant
that instead of one influential aspect, the core category in this

study was identified to consist of several test process and software
development issues, listed in Figure 1.

| Testing expertise

Level of
standardization

Effect of the . "
customer | Test strategy ||Problemsmtestmg

Effect of agile
development on testing

Figure 1: Central aspects of agile development that affect
the testing work

| | Test organization

Overall, the core category is the “Effect of agile development on
testing”, with categories such as the effect of the customer, test
organization, test strategy and problems of the existing testing
process being the major components, which define the connection
between agile practices and the test process, and are explained
with a hypothesis derived from the observations.

4. RESULTS AND OBSERVATIONS

The hypotheses of the study were derived based on guidelines of
constant comparison, discussed in [20]. The observations were
compared to each other and joined, delimited and written up as
prominent regularities or patterns and used to establish main
categories for the study. Based these categories, and group of
observations, the hypotheses were derived.

To limit the number of hypotheses, and to find the most prominent
hypotheses from the data, we applied a simple development and
elimination system: first, we derived a total of ten propositions as
candidates from the observations. We then discarded or combined
these propositions together based on their observed relationships.
In the second round, we derived four new propositions, and
combined or used them to reject existing candidates. This way, we
were able to discuss or explain the observed patterns and
regularities from the data. Finally, we encapsulated propositions
as five hypotheses.

4.1 Categories

In this study, our focus was on the practical impact on testing
activities. The purpose of the categories is either to explain the
phenomena observed, or to differentiate the case organizations
based on testing or software process activities. Usually the
observation was made from the interview data, but for some

concepts, such as the customer role or the effect of agility on the
software process, the relationship was established in related
research and taken into our study to confirm the results. From the
data, we observed six major categories which could be used to
differentiate the organizations based on their agile practices and
test processes. A summary, along with a short description of the
developed categories, is also available in Table 3. Overall, the
following categories were created:

The category test organization explains how organization units
are structuring their testing and who is responsible of testing
activities. In this study, testing was organized diversely in
different companies. Even though we studied the organizations at
the level of organization units, differences between large and
small companies were visible. In small companies, the
responsibility for testing belonged to developers, and in few cases,
testing was partly assigned to customers. In medium-sized
companies, testing activities were clearly assigned. However,
from three medium-sized companies only one had dedicated
testers. In large companies, testing was mainly structured in a way
that testing had its own unit or team; only one organization unit
belonging to a large company did not have dedicated testers.

The category testing expertise describes which kind of knowledge
is important for a tester to possess in the organization unit.
Generally, domain knowledge was the most emphasized area of
expertise for testers to have in the studied OUs. In a few cases,
interviewees thought that testing without any knowledge of the
application area would have been very difficult, and therefore,
they did not use inexperienced testers from the domain in question
or outsourced testing. Technical knowledge was seen important,
as well, because testers should have a basic understanding of
techniques to successfully execute testing. In an organization unit
where Scrum was applied, technical knowledge was considered to
be more important than domain knowledge. A tester working in a
Scrum team considered that testing in an agile project is more
difficult than in a project which follows the iterative waterfall
model.

The category the level of standardization describes the types of
processes and practices followed in the OU. For OUs studied in
this research, it was typical that OUs followed practices they had
discovered within the organization. Official standards and
capability-maturity models, such as the ISO 9000 series and
CMMI, were rather guidelines or a basis for the OU’s own rules
and practices. Only one OU followed the 1SO 9001 standard
strictly in their development process. Again, differences between
OUs belonging to small organizations and OUs belonging to large

Table 3: Categories defining testing and agile development

Category

Definition

Test organization

The personnel roles and structure of the testing organization.

Testing expertise

The primary knowledge which is required for a tester to have.

Level of standardization

The types of formal processes and practices followed.

Effect of the customer

The role of a customer and how a customer is involved.

Test strategy

An approach and the primary methods of software testing.

Problems in testing

Issues and hindrances that the testing organization is facing.

organizations were visible. In small companies, guidelines and
practices were observed if the practices were in-house standards.
Generally, the in-house practices for development and testing in
medium-sized and large companies were based on official
standards and they were also followed. The OU that used Scrum
was an exception in that it could not use standardized processes
because they were not compatible with the fast development
cycle. The project manager of the OU said that they had to design
their own processes especially for testing in an agile environment.

The effect of the customer category describes the effect the
customer has on the OUs. In two OUs, the customer did not
participate in the development or testing of the product. However,
both of the OUs documented the feedback they received from
customers in order to improve their product. In other cases,
customers were engaged in the development or testing at least at
some level. Common approaches to customer participation were
that in testing customers performed acceptance testing and in
development they attended to requirements gathering and
definition. In one of the OUs, customer relationships were
considered to be very important since the OU turned the
responsibility for testing over to customers. In the studied OUs, it
seemed that internal customers were involved in the development
process more closely than external customers. Overall, close
customer participation was desired.

The category test strategy explains the approaches the OUs took
to software testing. A common approach in the studied OUs was
that testing focused on the main functionalities or on assuring that
the system operates as it should. Consequently, testing resources
were concentrated to test the most critical parts of the software.
Most of the OUs belonging to large organizations based their
testing on test plans and the test policy. An approach the OU
using Scrum took to testing was to test everything and with speed;
however, if optimizing was needed, risk based testing was
utilized. In addition, instead of performing exploratory testing,
which in some literature is considered to be an important part of
agile testing, they made test plans which they followed. OUs
belonging to small organizations did not have a plan for testing,
and the observation of a test strategy was up to the developers or a
project manager. Medium-sized companies had test plans and a
common test strategy described above. However, testing activities
were poorly monitored.

The last category includes the problems in testing in the OUs. The
OUs following the traditional plan-driven processes had rather
traditional issues in testing, as well. A common issue was the
absence of test resources, such as time and personnel. A problem
that occurred in the OUs that did not have dedicated testers was
that when testing was the additional task of a person, testing tasks
were bypassed if there was not enough time to successfully
perform both testing and the primary tasks. The OUs belonging to
small organizations had problems with the test strategy and test
plan. A common cause for these problems was that development
tasks were of higher priority than testing tasks. Hence, the
planning and execution of test activities were omitted. Issues that
the OUs belonging to larger organizations faced were diversified.
An agile OU had an issue with the absence of documentation, and
another OU using the plan-driven method had difficulties in
sharing knowledge by direct conversation. None of the
representatives of the OUs believed that they had 100 percent of
the needed test resources.

4.2 Hypotheses

We created the hypothesis based on the categories described
earlier and observations from the organization units. The
hypotheses were shaped to generalize or explain the observed
similarities or differences, following the chain of evidence from
study concepts to case observations and interviewee opinions. For
example, the hypotheses 1 and 2 were derived from observations
when comparing the different organizations, and the interviewee
opinions on how the agile practices affect — or would affect — their
testing work. Similarly, hypotheses 3 and 4 were summarized
from two larger categories of observations; problems of test
processes and customer participation. Fifth hypothesis was
conceived from interviewee comments regarding benefits from
applying agile practices. The observations, which were used as a
basis for these hypotheses, are also available in summarized form
in Table 4.

4.2.1 Hypothesis 1: Agile practices tend to allow more time for
testing activities, while the total time for the project remains the
same.

Agile practices reserve more time for testing and speed up the
project by dividing and delivering the developed product in
pieces. This approach enables the implementation of the most
critical parts of the software first, which allows testing to start
early and focus on the critical parts first. Testing can be executed
piece by piece during the development; hence the completion of
the entire software is not required in order to start testing.

"I believe we could then deliver the software in smaller shipments
and could get the most critical parts done much faster.” —Tester,
Case G

In plan-driven methods, testing tasks may be discarded or
downscaled if the implementation and specification phases require
extra time. Especially if there are no separate testers, the
developers are obviously needed primarily for building the
required features. In most cases, testing cannot extend the
deadline, and if testing is the last phase, there might not be enough
time to correct all defects found in the end of the project, as
extending deadlines may be a costly or entirely unfeasible option.

“Being involved already in the project planning stages is really
good. I have much deeper knowledge of what I'm testing when 1
get to testing it.” —Tester, Case C

”How an agile method affects testing is that it directs the testing
to be performed during the project, that testing isn’t just the last
matter of the project ” —Designer, Case B

When comparing agile methods to plan-driven methods, the extra
time for testing is explained by the early involvement of testing.
Testers have a better insight into the product, since they
participate in the project earlier. Early testing enables quick
feedback on the product to the developers. Furthermore, there
may be more time to correct certain types of defects, as they may
be found early in the development, not only at the end of the
project.

”It affects so that testing is performed for smaller pieces and
testing is done earlier. In our earlier process, testing started with
great speed after development work was finished and then the
defects were found too late. | think it is a good thing, since it
should make bugs visible earlier.” —Tester, Case F

4.2.2 Hypothesis 2: Applying agile practices smoothens the load
of test resources, but does not reduce the total amount required
during the entire project.

Delivering the product piece by piece enables the testing to start
early. This approach may even be a more effective solution for
executing tests, since the targets of the testing process are focused
on certain parts of the software. These parts are tested throughout
the project, and used later on as a basis for additional tests.
Testing is also done continuously during the project, which eases
the required effort and need for test resources when compared to
plan-driven methods. The need for test resources is not reduced

because test resources are needed during the course of the project.

”It changes it so that resources are needed continuously, not just
once or twice a year.” —Tester, Case F

”If the end product is in pieces, it in some sense reduces the
amount of work, since there is always a certain restricted part to
be tested. And on the other hand, testing a part at a time, possible
defects are better detected. ” —Tester, Case B

”It sort of levels the testing, because now testing takes place in
chunks. When the product is ready, suddenly there are two or
three weeks of time to test it and then testing is done 24/7. So, it

Table 4: Overview of the observations from Case OUs

Case Test Testing expertise Level of Effect of the customer Test strategy Problems in
ou organization standardization testing
A Developers Experienced No standardized Partly involved in New functions and No strategy or plans,
developers processes development, does changes, exploratory resources (time,
acceptance testing testing personnel)
B Project manager or Person specific, Official, 1SO 9001, Participate in testing, New and core Plan, strategy,
customer, domain knowledge not strictly followed relationship is important, functionalities, resources (time,
customer service close collaboration explorative, resources are personnel)
focused
C Dedicated testers Senior-level testers or Company-specific Internal customer, close Test everything or risk- Documentation,
working in a test consultants, practices that are collaboration in based, rely on test senior-level testers
Scrum team technical knowledge followed variedly development automation, resources are required, resources
over domain focused, follows test plan (time, personnel)
knowledge
D Field testing Users® know-how Company-specific Customer is not involved Core functionalities and Plan, process, costs,
processes, no process in development or testing critical targets, separate resources
for testing test projects
E Developers and Designers (testers) Company-specific Involved in testing and Core functionalities, Plan, surveillance is
designers technical and domain processes, based on specification of operation, coverage, plans | weak, resources (time,
knowledge 1SO 9001 requirements and surveillance, test personnel)
automation
F Internal customer Domain knowledge Company-specific Internal customer, arranges New and core Test automation, do
processes testing, close collaboration functionalities, not hire dedicated
explorative, resources are testers, resources
focused, test automation (time, personnel)
G Separate unit for Testers’ domain and Company-specific Internal customer, New and core Maintenance of test
testing technical knowledge processes and policy, involved in development, functionalities, operation, automation,
and experience based on 1SO 9000 — surveys testing test policy, plan and communication,
series, strictly surveillance, test inconsistent division
followed automation of resources
H Separate Domain knowledge Company-specific Does acceptance testing, Functioning, resources are Test coverage, plan,
workgroup for processes, based on possibility to define tests focused, test automation surveillance,
testing CMMI resources (time,
personnel)
] Customer service, Testers domain Own internal practices Feedback is important, no New functionalities, Strategy, development
project manager knowledge, and guidelines are other involvement in operation, coverage, of test automation,
experience of project followed, no process development work project manager directs resources (time,
manager for testing the testing, explorative. personnel)
J Separate unit for Testers’ domain and Official, 1ISO 9001, Accepts specifications, New functionalities, Strategy when testing
testing technical knowledge, strictly followed participates in acceptance operation, coverage, new, resources (time,
and testers should testing, surveys the follows standard, plan, personnel)
know organizational progress of testing surveillance
practices
K Separate unit for Domain knowledge Company-specific External customer accepts Operation, test policy, Resources (not
testing processes, based on test plan, internal customer plan, some explorative. enough test
CMMI, are strictly surveys development and environments), testing
followed testing changes
L Testing director Testing directors” CMMI, company- Internal customer, close Operation, coverage, Plan, strategy, no
experience, domain specific process for collaboration, is involved stress, plan of the testing professional tester,
knowledge of staff testing is obeyed in specification, surveys director, surveillance, test need for tacit
testing, does acceptance automation knowledge,
testing documentation
practices not followed

could level the load of test resources. ” —Tester, Case G

However, if the need for test resources is examined on a daily
basis, the need may vary.

”On the agile side, the need for test resources may vary in the
short term so that resources are needed in bursts. It may be for
example that some day several testers are needed, but on the next
day testers might not be needed at all. ” —Tester, Case C

Testing can be more efficient if testers can focus on one project at
a time. In case C, the OU achieved efficient testing by allowing
the testers to work only on one project at a time. A tester from the
organization unit C thought that they are more efficient because
they do not have to change between different projects.

“"What we have noticed is that, before, when we were using
traditional methods, a tester might have been spread across two
or three different projects, and it was quite difficult because you
spent so much time changing what you were working on that you
were a lot less efficient. Now testers are usually dedicated just to
one project. ” —Tester, Case C

4.2.3 Hypothesis 3: In order for the development and
subsequently testing to be effective, the stakeholders have to
understand and conform to the practices in agile methods.

In order to use agile methods, the vendor organization is required
to increase the amount of collaboration and communication with
the customer. Every stakeholder should understand the practices
applied in agile methods. An agile development process requires a
different approach to development from the customer point of
view, as well. Requirements and specifications are not strictly
defined at the beginning of a project; they are allowed to change
and develop gradually during the development process. Customer
participation is important throughout the project, since
requirements are clarified during the course of development. In
testing, the close collaboration shows in quick feedback and
maybe in more effective acceptance testing, since testing can be
performed gradually, as well. Another aspect is that old testing
methods may turn out to be insufficient when agile practices are
observed. This may lead to the OU being forced to think of the
testing practices and activities that should be utilized in agile
process.

”Maybe not a process, but we have certain practices of our own
especially for testing in agile methods, since the traditional testing
methods do not really fit the agile process.” —Project manager,
Case C

“We have customer projects which have strict contracts and
instructions, and because of these strict contracts we are forced to
conduct the implementation so that the customer defines the
specifications. If it doesn’t go well, lawyers will deal with it. So, in
this kind of situation we can’t use agile methods.” —Designer,
Case F

"We don’t really use agile methods, which is because of our
customer interface. It is difficult to find customers who want to be
involved in an iterative development model. Most of the customers
want a package solution with a package price.” —Designer, Case
H

"I believe it would require a new style of thinking from us and
from the customer so that we could understand it correctly.” —
Tester, Case L

With the increased collaboration and communication, the
feedback and opinion of the customer is received quickly.

Acceptance tests can be more efficient because when delivered in
pieces, testing a part of the software is faster than testing the
whole software at once. This kind of approach makes it possible
for the customer to test pieces of the product throughout the
project and give more precise feedback about each piece. The
participation of a customer also helps the developers to develop a
better vision of what the customer truly expects and wants from
the product being developed.

”In my opinion it works better then. Especially when making new
software, the customer gets the software piece by piece and if the
customer is not happy with some part of it, he can say so
immediately. ” —Tester, Case B

To make the development process effective, conformance to the
agile practices is essential.

"The first feature the customer wants should be implemented first,
but in our case it was done last because it was the most difficult
feature. My belief is that the most difficult features should be done
during the first sprints. ” —Tester, Case K

"Let’s say that in the inception phase the Scrum process usually
starts very sluggishly and the first sprints are the most difficult
ones, but it gets easier in later sprints. ” —Tester, Case C

4.2.4 Hypothesis 4: Internal customer supports the deployment
of agile methods.

In the principles of agile methods, the significance of customer
collaboration is emphasized. In the studied OUs, the collaboration
was considerably closer if the OU had an internal customer. For
an internal customer, it is easier to participate in the development
work continuously. It may be challenging to tie an external
customer to the project, since agile methods require close
collaboration throughout the project. In addition, they require
reliance between the external customer and vendor in order to use
agile methods without fear of serious disagreements.

"We have a lot of internal customers. And most of them
participate more than you would find in most other organizations,
actually. ” —Tester, Case C

"Then there are certain customers, with which we have attained a
good relationship, and we can use agile methods with them.” —
Designer, Case B

The internal customer and vendor should have a good relationship
and mutual reliance. This enables the development work to be
more flexible. A good relationship increases the overall
understanding of a customer about the developed product and
about the possible issues during the development process.
Communication with an internal customer should be more
convenient, since the people know each other already.

”Our operation is quite consistent, so a positive matter is that
usually the development team and representatives of the customer
know each other already. They don’t need to find a common
language, since it is already established. ” —Designer, Case L

4.2.5 Hypothesis 5: Applying agile methods allows faster
reaction times for change and feature management in testing.

In case |, the developer wanted to make changes to the product at
short intervals, but still maintain the product in a deliverable state.
In agile methods, the length of the development iteration can be
set to fit the organization and the change. As testing is part of the
iterations, and not just a phase at the latter stages of the project,
the application of agile practices allows testing to be more flexible
in case changes are needed.

”Some of the developers try to make smaller changes that can be
finished in certain period of time, so the product could stay longer
in one piece. Especially when the situation of a project is stable,
we like to keep the product deliverable at all times. ” —Designer,
Case |

Organization A applied practices that are typical for agile methods
in the projects where they updated the existing product, although
they formally followed the plan-driven approach in major
development projects. The OU collected customer requests and
analyzed them for implementation features.

Overall, it seems that agile methods do offer some advantages in
terms of correctness and appropriateness, since the progress can
be evaluated and the aim of the development corrected at certain
intervals. Design faults or origins for persisting errors can be
tracked and reacted on, translating into easier testability of the
software.

”"And when we have gone on to develop totally new things, it
hasn’t been easy. We would have needed a different development
model or something.” —Tester, Case J

”"When you start to develop some kind of software with agile
methods and you slip away from the right track, it is faster to find
and deal with the problem you are facing. ” —Designer, Case K

4.3 Supplemental observations

Generally, in the studied OUs, it seemed that testing tasks were
seen as less important than development tasks, and that several
text-book hindrances for the test process existed. In two of the
OUs, dedicated testers were not hired because management
considered that testing could be performed sufficiently by
developers during the development phases. Furthermore, in some
cases the organization had dedicated testers, but reserved too little
time to perform all of the necessary testing activities during a
project. However, Case C was an exception because the
organization developed its testing methods instead of downsizing
the test set if shortage of time caused problems. Testers constantly
looked for quicker ways to execute test sets rather than leave
cases out of the test plan.

5. DISCUSSION

The results of this study consist of five hypotheses derived from
the material of the study. Our objective was to explore how agile
methods affect the execution of software testing in practice.

We observed that agile methods have a tendency to require extra
time for software testing in a software project. This can be
achieved by delivering, and developing, the software in smaller
iterations, giving more time to execute testing tasks within each of
the iterations and by allowing an earlier start to the testing work.
As software testing can be started early and is completed
concurrently with the development work, it can focus on
performing the tests for the software piece by piece, as well, and
elaborate on the already existing parts of the final product instead
of being simply the last project phase before delivery.

The study by Itkonen et al. [12] supports the observation made of
the early involvement of testing in agile methods. In their paper,
Itkonen et al. used the CoC framework to describe how testing
activities are located in an agile process, and established that even
though there is only a limited amount of literature or studies in
relation of agile methods and testing, agility can emphasize
certain quality-building practices. However, the early involvement
of testing brings forth new issues, as Puleio [22] and Stolberg [28]

have noticed. Even though testing can start early and be executed
concurrently with development, there are difficulties in how
testing should be deployed in the iterations.

A second important observation was that agile methods have a
tendency to make demands for test resources more predictable.
While still retaining the same needs for test resources, this can be
considered advantageous especially in organizations where test
resources are limited and competitively distributed between
projects. In agile methods, testing becomes part of the project in
the early stages, so testers are also a part of the development team
for most of the process. As testing is carried out throughout the
project, this causes a continuous need for test resources.
Continuous and early participation in testing allows extra time for
the execution of tests, and sets a clear focus for the test effort to
concentrate on a certain subset of the software. This can be used
to prevent cases, where testing tasks become a burden for the
development team in the latter parts of the software project.

However, this has aroused some discussion over the role of testers
in agile processes. For example, Talby et al. [31] question the
need for testers if testing is carried out as a natural part, or an
extension, of developers” work. However, the result of this study
implies that dedicated testers are needed in agile projects, as there
still exist test phases where separate testers are beneficial. In
addition, these results are in line with another study by Shaye
[26], in which testers were paired with developers. This enhanced
the output by generating quick feedback for the developers.

Other results of the study were closely associated with customers
and collaboration between the customer and vendor organization.
Agile methods rely on the presence of the customer and
collaboration with the customer. The role of the customer is more
collaborative than in plan-driven methods. Hence the agile
process requires the customer to adapt to closer collaboration. It
has been established that increased communication between the
customer and vendor organization should make it easier for both
parties to understand the development project [4 and 24]. Through
close collaboration, customers can increase their understanding of
software development, while the presence of the customer may be
helpful for developers as well. In this case the customer can
specify unclear requirements or functions directly to the
developers, who then can design requested changes into latter
development iterations.

In this type of research project, there also exist several threats to
study validity [34]. For example, in codification of observations
the researcher bias can be troublesome, skewing results on data
analysis. Similarly, design issues on questionnaire could have
steered the collected data towards certain viewpoints. In our
study, the threats to validity were addressed by taking certain
measurements to ensure neutrality. For example, the questionnaire
was designed by group of four researchers, with feedback and
adjustment ideas collected from other software engineering
researchers. The interviews were conducted by the questionnaire
designers, to ensure that the interviewees understood the questions
correctly. Finally, the codification process was conducted by four
researchers, two of which did not participate on the design or
interview process, to ensure minimal interference of personal
opinions or individual preferences.

Another concern was the number of agile organizations. This
research was limited to studying a selected sample of 12
organization units. One limitation of the results was that in the

studied OUs, only one organization applied a fully agile
development process in its main development projects. However,
most of the other organizations applied some agile practices, or
used agile development as a secondary development method for
updates or feature development projects. One organization was in
the process of introducing agile development into their projects,
while two other organizations applied several agile practices.
Even though there were some cases where agile methods were not
used for varying reasons, such as end-product criticality, customer
requirements or business domain requirements, all organizations
had some experiences in agile practices. This can be seen as an
indication that purely agile methods are not applied as widely as
literature would suggest, but that many organization have adjusted
their processes to accept “best practices” from agile development
concepts.

6. CONCLUSIONS

In this paper, we presented our research on test processes in
software organizations. Our study observed software development
processes which apply agile methods or agile practices and
examined how these activities affect the test process when
compared to test processes based on the traditional plan-driven
approach.

Based on Sumrell’s [30] study, agile methods are usually applied
in the software process to find out what the customer truly expects
from the product, to speed up the entire development project and
to include testing activities into the project from the very
beginning to help predict the required testing time. Based on the
observations made in our study, it seems that the software
organizations which apply agile methods are in a position to
achieve the goals Sumrell has suggested. It seems that
organizations which apply agile methods are generally more
flexible in terms of changes and testing in the software process.
However, testing in parallel with development work is difficult to
execute and requires a reasonable amount of consideration from
the organization. It could be stated that to successfully incorporate
testing into agile methods, the development organization is forced
to think and revise their testing processes in detail.

Our objective was to define how agile methods affect the test
process of software projects. Based on our observations, it seems
that there are some benefits, such as the early involvement of
testing, which may arrange more time for the execution of testing,
and simultaneously makes the need for test resources more
predictable. On the other hand, agile methods expose the software
process to such hindrances as the lack of test documentation,
which can lead to problems when transferring testing tasks to an
outside organization or using testers who have limited experience
in the product environment.

The definition of how agile methods affect the test process is
valuable in developing the software organization, as it enables the
test process to address issues in advance. This information may
become crucial when defining a new test strategy or steering the
organizational software process towards agile development
methods. In our future work, our objective is to develop these
observations and offer guidelines on how agile development
methods should be addressed in a test organization and within its
organizational test strategy.

7. ACKNOWLEDGMENTS
This study was supported by the ESPA-project
(http://www.soberit.hut.fi/espa), funded by the Finnish Funding

Agency for Technology and Innovation, and by the companies
mentioned on the project web site
(http://www2.it.lut.fi/project/ MASTO/).

8. REFERENCES

[1] Ambler, S. 2008. Agile Software Development at Scale.
Balancing Agility and Formalism in Software Engineering,
5082, 1-12, Springer, Berlin. http://dx.doi.org/10.1007/978-
3-540-85279-7_1

[2] Beck, K. 2000. Extreme Programming Explained: Embrace
Change, Addison-Wesley.

[3] Bertolino, A. 2007. Software Testing Research:
Achievements, Challenges, Dreams. Future of Software
Engineering, 2007 FOSE '07, 85-103.

[4] Boehm, B. and Turner, R. 2004. Balancing Agility and
Discipline: A Guide for the Perplexed, Addison Wesley,
Boston.

[5] Eisenhardt, K.M., "Building theories from case study
research”, Academy of Management Review, vol. 14, pp.
532-550, 1989.

[6] EU, "SME Definition," European Commission, 2003.

[7] Fitzgerald, B., Russo, N. and Stolterman, E. 2002.
Information Systems Development — Methods in Action,
McGraw-Hill, London.

[8] Glas, M. and Ziemer, S., “Challenges for agile development
of large systems in the aviation industry”, Proc. 24" ACM
SIGPLAN conference companion on Object-oriented
programming systems, languages and applications, Orlando,
Florida, USA, pages 901-908, 2009, http://doi.acm.org
/10.1145/1639950.1640054

[9] Glaser, B.G. “Constuctivist Grounded Theory?”, Forum:
Qualitative Social Research (FQS), Vol 3(3), 2002.

[10] Glaser, B. and Strauss, A.L., The Discovery of Grounded
Theory: Strategies for Qualitative Research. Chicago:
Aldine, 1967.

[11] Highsmith, J. and Cockburn, A. 2001. Agile Software
Development: the Business of Innovation. Computer, 34(9),
120-127. http://doi.ieeecomputersociety.org
/10.1109/2.947100

[12] Itkonen, J., Rautiainen, K. and Lassenius, C. 2005. Towards
Understanding Quality Assurance in Agile Software
Development. Proceedings of the International Conference
on Agility (ICAM 2005), 201-207.

[13] ISO/IEC, ISO/IEC 15504-1, Information Technology -
Process Assessment - Part 1: Concepts and VVocabulary,
2002.

[14] ISO/IEC, ISO/IEC 29119-2, Software Testing Standard —
Activity Descriptions for Test Process Diagram, 2008.

[15] Karhu, K., Repo, T., Taipale, O. and Smolander, K.,
“Empirical observations on software testing automation”,
Proc. 2" IEEE Int. Conf. on Software Testing Verification
and Validation, Denver, USA, 2009.

[16] Kasurinen, J., Taipale, O. and Smolander, K., “Analysis of
Problems in Testing Practices”, Proc. 16th Asia-Pacific
Conference on Software Engineering, 1.-3.12., Penang,
Malaysia, 2009.

[17] Kasurinen, J., Taipale, O. and Smolander, K., “Software Test
Automation in Practice: Empirical Observations™, accepted
to Advances in Software Engineering, Special Issue on
Software Test Automation, in press, 2010.

[18] Klein, H.K. and Myers, M.D., "A set of principles for
conducting and evaluating interpretive field studies in
information systems”, MIS Quarterly, vol. 23, pp. 67-94,
1999.

[19] Krasteva, L. and Ilieva, S., “Adopting an agile methodology:
why it did not work”, Proc. 2008 International Workshop on
Scrutinizing agile practices or shoot-out at the agile corral,
Leipzig, Germany, pages 33-36, 2008. http://doi.acm.org
/10.1145/1370143.1370150

[20] Locke, K., 2001. Grounded Theory in Management
Research, SAGE Publications Ltd.

[21] Pare’, G. and Elam, J.J., “Using case study research to build
theories of IT Implementation”, IFIP TC8 WG International
Conference on Information Systems and Qualitative
Research, Philadelphia, USA, 1997.

[22] Puleio, M. 2006. How Not to Do Agile Testing. Proceedings
of AGILE 2006 Conference (AGILE06).

[23] Robson, C., Real World Research, Second Edition.
Blackwell Publishing, 2002.

[24] Schwaber, K. and Beedle, M. 2002. Agile Software
Development with Scrum, Prentice-Hall, Upper Saddle River,
NJ.

[25] Seaman, C.B. , "Qualitative methods in empirical studies of
software engineering”, IEEE Transactions on Software
Engineering, vol. 25, pp. 557-572, 1999.

[26] Shaye, S. 2008. Transitioning a Team to Agile Test Methods.
Agile 2008 Conference (AGILE ’08), 470-477.

[27] Sommerville, 1. 1995. Software Engineering, 5th edition,
Addison Wesley.

[28] Stolberg, S. 2009. Enabling Agile Testing Ghrough
Continuous Integration. Agile Conference 2009 (AGILE ’09),
369-374.

[29] Strauss, A. and Corbin, J. 1990. Basics of Qualitative
Research: Grounded Theory Procedures and Techniques,
SAGE Publications, Newbury Park, CA.

[30] Sumrell, M. 2007. From Waterfall to Agile - How does a QA
Team Transition? in AGILE 2007, 291-295.

[31] Talby, D., Keren, A., Hazzan, O., and Dubinsky, Y. 2006.
Agile Software Testing in a Large-Scale Project. Software,
|EEE 23, no. 4, 30-37.

[32] Thagard, P. and Shelley, C., 1997. “Abductive reasoning:
Logic, visual thinking and coherence”, Logic and Scientific
methods, pages 413-427, Dordrecht: Kluwer.

[33] TMMi Foundation, Test Maturity Model integration (TMMi)
reference model, Version 2.0, 2009.

[34] Onwuegbuzie A. and Leech N.L., “Validity and Qualitative
Research: An Oxymoron?”, Quality and Quantity, Vol 41(2),
pages 233-249, 2007. DOI: 10.1007/s11135-006-9000-3

Publication IV

Test Case Selection and Prioritization: Risk-based
or Design-based?

Kasurinen, J., Taipale, O. and Smolander, K. (2010), Proceedings of the 2010 ACM-
IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM), 16.-17.9.2010, Bolzano-Bozen, Italy. doi: 10.1145/1852786.1852800.

© 2011 Association for Computing Machinery, Inc. Reprinted by permission.

Test Case Selection and Prioritization: Risk-Based or
Design-Based?

Jussi Kasurinen, Ossi Taipale and Kari Smolander
Lappeenranta University of Technology
FI-53851 Lappeenranta, Finland
+358 400 213 864

jussi.kasurinen | ossi.taipale | kari.smolander @Iut.fi

ABSTRACT

The objective of this qudlitative study was to observe and
empiricaly study how software organizations decide on which test
cases to select for their software projects. As the software test
processes are limited in resources such as time or money, a
selection process usually exists for tested features. In this study we
conducted a survey on 31 software-producing organizations, and
interviewed 36 software professonals from 12 focus organizations
to gain a better insight into testing practices. Our findings indicated
that the basic approaches to test case selection are usually oriented
towards two possible objectives. One is the risk-based selection,
where the aim is to focus testing on those parts that are too
expensive to fix after launch. The other is design-based selection,
where the focus is on ensuring that the software is capable of
completing the core operations it was designed to do. These
results can then be used to develop testing organizations and to
identify better practices for test case selection.

Categoriesand Subject Descriptors

D.2.9 [Software Engineering]: Management - Software quality
assurance (SQA) D.2.8 [Software Engineering]: Metrics -
Process metrics

General Terms
Management, Design, Human Factors.

Keywords
Software testing, Test case selection, Empirical study, Grounded
theory.

1. INTRODUCTION

In the software industry, launching a new product in time makes a
big difference in expected revenue [9]. However, before its launch,
the software has to be tested, which itself is a costly process that
can yield over half of total development costs [18]. In addition,

regardless of the investment in testing, it cannot cover everything
as the size and complexity for achieving full-coverage testing
increase almost exponentially when the size of the tested software
product increases [36]. Therefore, in most software projects, the
matter of selecting which test cases should be included in the test
plan exist [26]. In reality, the number of test cases which can be
used in test process depends on testing resources like personnel
and schedule [32], while trying to maximize the testing output to
enhance product quality.

Testing practices seem to suffer from several hindrances, like using
shortcuts, reducing test time, poor planning and poor testability
[7]. The attitude towards testing, culminating in the “Let go —
deliver now and correct later” mentdity, causes additional
expenses that could be avoided with some reasonable investments
[33]. In literature, test case selection is considered an important
aspect of the test process, actualy being one of the central aspects
in building and defining test strategy [13, 34]. As limited test
resources are usual in practice [32], there has to be some method
of deciding what test cases are executed.

In this paper, we studied different approaches on how real-world
software producing organizations select their approach to test case
selection. Our approach was to apply the grounded theory research
method [8, 31], observe the practices of different polar types of
companies, identify how companies select their test cases, and
explain why they apply this type of approach.

This study continues our studies on software testing practice. Our
prior studies have covered such topics as process problems and
enhancement strategies [17], testing resources and test automation
[15] and outsourcing [16].

The paper is organized as follows: In Section 2 we introduce
related research concepts and in Section 3 the approach that was
applied in this study. In Section 4 we present our results and their
implications are discussed in Section 5. Finally, the paper is closed
with conclusionsin Section 6.

2. RELATED RESEARCH

The selection of test cases based on costs or related risk is not a
novel concept. For example, Huang and Boehm [9] discuss cost
evauation methods for testing. By ranking the test cases based on
their value, i.e. the amount of money lost if the test fails, a 20%
investment in testing is sufficient to achieve 80% of the software
value. Similar results of testing cost-effectiveness have also been
reported by Yoo and Harman [38]. Petschenik [25] even argues
that testing can be organized effectively even with as low as 15%

of the perceived resource needs, if the resources are focused on
critical aspects.

Redmill [26] discusses this concept even further. As complete
testing is not possible, it directs the testing process towards
selective testing. As for the test case selection approach, there are
different methods, which vary in applicability or results, but in
general the testers seem to agree on applying risk-based selection
[1, 26]. However, the criterion on which the selection is based on
is usually incomplete or undefined. This often leads to a solution
where risk analysis is based on individual experience and can be
biased. For example, for developers the priorities for technical
risks may be well-adjusted. However, risks associated to other
stakeholders, concepts like legal costs and compensations, loss of
reputation for the company or maintainability by third party
associates, are probably beyond the scope of a single software
developer [26]. A study by Do and Rothermel [4] suggests that
ultimately the selection and testing cut-off point is a tradeoff
between the costs of applying additional testing versus the costs of
missing errors. Therefore it is plausible in rea life to cut testing
short to keep the deadline, as the loss caused by product delay
supersedes the losses caused by releasing error-prone software [9].
Only in such extreme cases as an incomplete implementation of
core features or crippling quality issues delaying the deadline can
be considered a feasible option [27].

One proposal to help the test processis to provide better testability
for product components [17, 20, 21, 35]. The rationale for this
action would be that supporting testability would speed up the
process of creating test plans and allow easier test case generation.
By having clearer objectives for testing and an easier way to ensure
test coverage, the effectiveness of testing work could be increased
without severe expenses [38]. However, this approach is not as
straightforward and easily implementable an improvement as it
would seem. In these types of projects, the test strategy becomes
crucial, as the enablers for testability have to be implemented into
the source code simultaneously with the actual development
process. In other words, the developers have to plan the
development ahead to make sure that every needed case can be
tested [21]. Within software projects, this would require rigid plan-
driven development or continuous testability analyss for
verification purposes, which would obviousy generate other
expenses [21, 35]. In contrast, in some cases like in software
product line development, the testability requirements and
possibility for conformance testing are emphasized [20].

Software development methods are geared towards producing
quality in software products [7]. For example, international
standards like 1SO 25010 [12] define quality as an amalgam of
eight attributes like reliability, operability or security. In addition to
these definitions, real-life measurements like the mean time
between failures [9] or number of errors found in testing versus
errors found after release [25] may also be used as indicators for
software development quality.

Organizational testing practices may also vary because of other
aspects, such as the development method, resources and customer
obligations [14, 17, 32]. Even if the purpose of testing is to verify
functionality and to increase product qudity [7], practica
applications do vary, as different approaches to software
development allow different types of tests in different phases. For
example, developing software with agile development methods

differs from the traditional plan-driven approach to the degree that
they can be seen as exclusonary to each other [2]. On the other
hand, several techniques like pair programming [10], code reviews
[22], think-aloud testing [23, 30] or explorative testing [4] have
been developed to enhance product quality and ultimately make the
testing process easier. Even the task of generating test cases from
which the selection is made varies; for example, black box testing
and white box testing define two approaches to case generation
based on knowledge regarding the structure of the object being
tested [34]. However, these types of approaches focus on the
generation process itself, not actualy on defining how the test
cases are selected, and in case of resource shortages, on the
decision of which cases to include and exclude.

Overall, there seems to be an abundance of information and studies
regarding test case selection in regression testing [e.g. 3, 4, 28],
with several different models for cost/benefit-calculations and
usability assessment methods. However, there seems to be lack of
studies in software development, where regresson and
conformance testing models are not applicable.

3. RESEARCH METHODS

Software testing is a complex phenomenon, which has several
related concepts and different approaches even with seemingly
similar organizations [17]. Acknowledging this, we decided to
pursue empirical qualitative analysis by applying the grounded
theory method [8, 31]. Grounded theory was considered suitable
for discovering the basis of testing activities, as it observes and
describes redl-life phenomena within their social and organizational
context. According to Seaman [29], a grounded approach enables
the identification of new theories and concepts, making it a valid
choice for software engineering research, and consequently,
appropriate to our research.

Our approach was in accordance with the grounded theory
research method introduced by Glaser and Strauss [8] and later
extended by Strauss and Corbin [31]. On the process of building a
theory from case study research, we followed guidelines as
described by Eisenhardt [5]. The interpretation of field study
results was completed in accordance with principles derived from
[19] and [24].

3.1 Defining measur ements

The ISO/IEC 15504-1 standard [11] specifies an organizational
unit (OU) as a part of an organization that deploys one process or
has a coherent process context, and operates within a set of
business goals and policies. An OU typically consists one part of a
larger organization like one development team or regional unit, but
small organizations may entirely exist as one OU. In other
specifications which are based on 1SO15504 [1], like TMMi2 [34],
the relation between an organizational unit and rest of the
organization is elaborated to alow overlying structures, like the
upper management in the company, some steering activities, like
policy control over the OU. However, the organizational unit
remains a separate actor that operates by an internal process, being
responsible for completing the task it has been assigned to, while
complying with the policies set by upper organizations. The reason
for using an OU as an assessment unit is that this way, the
company size is normalized, making direct comparison between
different types of companies possible.

Table 1. Interview rounds and themes

Round type Number of | Interviewee Description Themes
interviews role
1) Semi-structured 12 focus OU | Designer or | The interviewee was responsible for or | Design and development methods, Testing strategy
interviews Programmer had influence on software design. and methods, Agle methods, Standards,
Outsourcing, Perveiced quality
2) Structured with | 31 OUs, | Project- or | Theinterviewee was responsiblefor the | Test processes and tools, Customer participation,
Semi-structured including 12 | Testing sofware project or testing phase of the | Quality and Customer, Software Quality, Testing
focus OUs manager software product. methods and -resources
3) Semi-structured 12 focus OU | Tester or | The interviewee was a dedicated tester | Testing methods, Testing strategy and resources,
interviews Programmer or was responsible for testing the | Agile methods, Standards, Outsourcing, Test
software product. automation and services, Test tools, Perceived
quality, Customer in testing

In this study, the population consisted of OUs from small,
nationally operating companies to large internationally operating
corporations, covering different types of software organizations
from hardware producers to software houses and to contract
testing and consulting services.

3.2 Data collection

The initid population and population criteria were decided based
on prior research made by our research group [15-17, 32]. We
carried out three interview rounds in our study (Table 1). The
sample of the first and third interview round consisted of our focus
group of 12 OUs collected from our research partners, and later
supplemented by researchers to achieve a heterogeneous, polar
type sample [5]. The second round of interviews was conducted as
a survey with 31 OUs, including the focus group from the first
round. Overall, the interviews were done during the winter of
2008-2009.

The 12 OUs in the focus group were professional software
producers of a high technical level, with software development as
their main activity. The selection of the focus group was based on
the polar type selection [5] to cover different types of
organizations. The focus group included different business domains
and different sizes of companies. The organizations varied (Table
2) from software service consultants to software product

developers, extending even to large hardware manufacturers,
developing software for their own hardware products. The smallest
OU in the focus group was a software developer with
approximately twenty full-time employees; the largest was part of
an internationally operating software producer employing over
10000 people.

The objective of this approach was to gain a broader understanding
of the practice of and to identify general factors that affect test
case selection and case prioritization. To achieve this, our research
team developed two questionnaires and a survey that included
questions on themes such as development methods, test processes,
test phases, test tools, test automation and quality characteristics.
The complete questionnaires and the survey form are available at
http:/iwww2.it.lut.fi/project/MASTO/. A reference list of the
different themes in different data collection rounds is also available
inTable 1.

The interviews contained semi-structured questions, and the whole
sessions were tape-recorded for qualitative analysis and to further
elaborate on different concepts during the latter rounds. Typically,
an interview lasted for approximately one hour and they were
aranged as face-to-face interviews with one organization
participant and one or two researchers.

The decision to interview designers during the first round was

Table 2- Description of the Interviewed OUs

ou Business Company size?/ Operation
Case A MES" producer and e ectronics manufacturer Small / National
CaseB Logistics software devel oper Large/ National
CaeC ICT consultant Small / National
CaseD Internet service developer and consultant Small / National
CaseE Naval software system devel oper Medium/ International
Case F Safety and logistics system devel oper Medium/ National
CaeG Financial software devel oper Large/ National
Case H ICT developer and consultant Large/ International
Casel Financial software devel oper Large/ International
CaseJ SME? business and agriculture |CT service provider Small / National
CaseK MES" producer and logistics service systems provider Medium/ International
CaseL Modeling software devel oper Large/ International
19 survey-only | Varies; from software consultancies to software product developers Varies
cases and hardware manufacturers.

IManufacturing Execution System >SME definition [6]

based on our aim to gain a better understanding of the operational
level of software development. We wanted to see whether our
hypotheses from our prior studies [15-17, 32] and literature review
were valid. The interviewees in the first round were selected from
a group of developers or programmers, who had the possibility to
decide on or affect the structure of the software product. In one
first-round interview, the organization interviewed was allowed to
send two interviewees, as they considered that the desired role was
a combination of two positions in their organization. In another
first-round interview, we alowed the organization to supplement
their answers, as the interviewee considered that the answers
lacked some relevant details.

For the second round and the survey, the population was expanded
by inserting additional OUs to enable statistical comparison of
results. Selecting the sample was demanding because comparability
was not specified by a company or an organization but by an OU
with comparable processes. With the help of authorities (the
network of the Technology and Innovation Agency of Finland) we
collected a population of 85 companies. Only one OU from each
company was accepted to the population to avoid bias of over-
weighting large companies. From this list, the additional OUs
accepted to the survey sample were selected according to the
population criteria used in the first interview round.

We expanded the sample size in the second round to 31 OUs,
including the OUs of the first round. The purpose of combining
the interviews and the survey was to collect data more efficiently,
simultaneously gaining a generalized perspective with survey-sized
data, and obtaining detailed information about test management for
the grounded analysis

During the second round of data collection, our decision was to
interview and simultaneously conduct a survey where the
population consisted of project or test managers. The objective
was to collect quantitative data about the software and testing
process and further to collect qualitative material about various
testing topics, such as test case selection and agile methods in the
software process. We selected managers for this round as they
tend to have more experience about software projects; they have a
better understanding of the overall software or testing process and
the influence of upper management policiesin the OU.

In the third round, the same sample organizations were interviewed
as in the first round. The interviewees of the third round were
testers, or in the case where the OU did not have separate testers,
programmers whose tasks included module testing were
interviewed. The interviews in these rounds focused on such topics
as problems in testing (such as complexity of the systems,
verification, and testability), the use of software components,
testing resources, test automation, outsourcing, and customer
influence in the test process.

The interview rounds, interviewee roles in the organization and
study structure are summarized in Table 1, and the participating
organizational units are summarized in Table 2.

3.3 Data Analysis

The grounded theory method contains three data analysis steps:
open coding, where categories and their related codes are
extracted from the data; axia coding, where connections between
the categories and codes are identified; and selective coding, where
the core category is identified and described [31].

The objective of the open coding was to classify the data into
categories and identify leads in the data. The process started with
“seed categories’ [5] that contained essential stakeholders and
known phenomena based on the literature. Seaman [29] notes that
the initial set of codes (seed categories) comes from the goals of
the study, the research questions, and predefined variables of
interest. In our case, the seed categories were derived and further
developed based on our prior studies on software testing, and from
the literature. These seed categories were aso used to define
themes for the questions in the questionnaire, including topics such
as development process, test processes, testing tools, automation
or role of the customer. A complete list of the seed categories and
general themes of the study isin Table 1.

In open coding, the classified observations are also organized into
larger categories. New categories appear and are merged because
of new information that surfaces during the coding. For example,
our initial concept of having quality as a separate category was
revised and quality was included within other categories such as
criticality or outsourcing as an attribute with an “effect on quality”.
Another notable difference from the seed categories was that the
management and policies were not as restrictive as originally
thought, so they were incorporated into such themes as project
management and test planning. Additionally, concepts like process
difficulties or improvement proposals were given their own
categories. At the end of the open coding, the number of codes
was in total 166 codes, grouped into 12 categories.

The objective of the axial coding was to further develop separate
categories by looking for causal conditions or any kinds of
connections between the categories. In this phase, the categories
and their related observations were becoming rigid, allowing the
analysis to focus on developing the relationships between larger
concepts. In this phase, the categories formed groups in the sense
that similar observations were connected to each other. For
example, codes such as “Process problem: outsourcing”,
“Outsourcing: Effect to quality” and “Development process:
support for outsourced activities’ formed a chain of evidence for
observing how the outsourced resources in development fitted in
to the overal process. By following this type of leads in the data,
the categories were coded and given relationships with each other.

The third phase of grounded analysis, selective coding, was used to
identify the core category [31] and relate it systematicaly to the
other categories. As based on [31], the core category is sometimes
one of the existing categories, and at other times no single
category is broad or influentia enough to cover the central
phenomenon. In this study, the examination of the core category
resulted in the category “applied test case selection approach”,
with a set of software testing concepts listing issues related to the
core category or explaining the rationale for observed activities.
The core category was formed by abstracting the categories and
defining a common denominator, because none of the categories
was considered influential enough to explain the entire phenomena.
For example, we observed the primary case selection method in all
of our organizations, but were unable to define one cause for the
approach the organizations applied. Our initial approximation that
the case selection method was closely connected to the
development method and the role of the customer was partialy
correct, but we also identified several other aspects like amount of
resources or test case developers, which aso seemed relevant.
Overal, we adjusted the core category to include al these

concepts, which also became the categories presented in this paper.
Additionally, by identifying the core category and affecting factors,
we were able to define and name two approaches for selecting the
approach for test case selection.

4, RESULTSAND OBSERVATIONS

In the following section we present and discuss the observations
from our study. First of al, we were able to identify severa
concepts which would affect the case selection method, and
introduce them in the first part. Secondly, we elaborated the
observation made from the categories into hypotheses, which
summarize and explain how organizations in this study selected
test cases. Findly, in the third part we introduce our two
stereotypes of selection methods.

4.1 Developed categories

The categories were developed based on their observed effect on
actual test case selection and their ability to interpret why the
organization had decided to use this approach. These categories
were al related to the core category, identified during selective
coding, and had a definite impact on how the organization
approached test case sdlection or explained the differences
between organizations. For example, the category applied
selection method was taken directly from the observation data as it
discussed the studied phenomenon of case selection, while
software type and development approach were used to establish
the objectives and operating methods of the software development
organization. The category selection problem was aso taken
directly from observations as it discussed the difficulties in
applying the used approach. The categories of test designers,
testing resources, customer influence and explorative testing were
included as they were observed to follow a pattern based on case
selection method or otherwise clearly divided the respondents. The
complete list and short summary of the developed categories are
available in Table 3.

The category of applied selection method describes the primary
way the organization selects what features or use cases are tested
during development. Selection seems to be based on one of two
major approaches. the risk-based “Which causes the largest
expenses if it is broken?” and definition-based “Which are the main
functionalities the software is supposed to do?’. In some
organizations, there are aso some secondary concerns like
conformance testing to ensure that the system complies with some
interface or with a set of established requirements, or “changes
first”, where the most recent changes have priority over other test
Cases.

The category software type defines the type of software the
organization is building as their main product. In this study, the
development outcomes were classified into three categories:
software service, software product and software module for
hardware. In software service, the software is used as a network-
based application or front-end for network service, including
Internet services. In software product, the application is stand-
alone software installed on a platform such as a PC or mobile
phone. The last category, software module for hardware refers to
embedded software for dedicated devices.

The category test designers defines the personnel responsible for
defining and designing test cases or authorized to decide on what
area the testing effort is focused on. In severa organizations, the
test cases are designed by the programmers themselves or by
designated software structure designers. The management level,
made up of test managers or project managers, was responsible for
designing test cases in five organizations, and the clients were
alowed to define test cases in three organizations. Overdll, the
responsihility for test designing varied between organizations.

The category of development approach defines the approach the
organization applies to software production. This category is
defined based on a linear dimension defined by Boehm [2], where
the polar points represent fully plan-driven and fully agile
development, with overlap in the middle, combining techniques
from both sides. For example, several organizations adopt only
some activities from agile methods and apply them in the
traditionally plan-driven environment, or apply the agile approach
to smaller support projects, applying plan-driven methods to the
main product development projects.

The category of testing resources is an indicator of how much
resources the test organization has when compared to their
optimal, i.e. perfect situation. In this category, we apply a scale
with three possibilities, Low (33% or less), Moderate (34-66%)
and High (67% or more). For example, if an organization currently
has two dedicated testers and thinks that they could use three, it
would mean a resource availability of 67 %, trandating to “High”
on the scale. It should be noted that in this scale, the score less
than “High” does not necessary mean that the test process is
inefficient; the scale is merely an indicator of the amount of
resources allocated to testing tasks. The ratings, presented in the
Table 4, are based on the answers given by the organization during
the second round survey.

The category of customer influence defines the part customers
have in the development process. The most common ways of
influencing a project was by directly participating in some testing

Table 3. Categories defined in the empirical analysis

Category Description
Applied selection approach The method the organization is currently using to select which test cases are included in the test plan.
Software type The type of software the OU is developing.
Test designers The personnel responsible for designing and selecting the test cases.
Devel opment approach The method the organization is currently using to devel op software.

Testing resources

An approximation on how large an amount of testing resources the organization currently has accessto, in
comparison to the optimal, ie. perfect amount of resources.

Customer influence

The type and method of customers to influence the organization’ s software test process.

Selection problem

The most common process hindrance the test case selection method causes to the organization.

Explorative testing

Does the organization apply non-predefined test cases in their test plan?

phase, by approving the test results or approving the test plan
made by the developer organization.

The category of selection problem defines the process hindrances
caused by the test case selection approach. In risk-based selection,
the common hindrances were that the test cases either did not
cover al of the important cases or that the designed cases were
discarded from the final test plan. With the design-based approach,
the problems were usually at the management level, being caused
by such concepts as restrictive test policies or managing test
process to meet al required and forma activities, like
communications, paperwork, schedules, test environments, weekly
reviews, project steering group meetings and such; In layman's
terms, the increased amount of red tape.

Finally, the category of explorative testing indicates whether or not
the organization applies explorative testing methods. For this
category, al testing methods which apply non-predefined test
types, like interface or usability-testing, were considered
explorative. In this category, the organizations were strongly
divided into two opposing groups; some organizations considered
explorative testing as an important phase where usability and user

interface issues were addressed, whereas some organizations
considered testing without test cases and documentation as a waste
of test resources.

4.2 Hypotheses and Observations

Our study developed hypotheses based on the observations
regarding test case selection. The hypotheses were shaped
according to the categorized observations listed in Table 4, by
developing concepts that explained the observations and followed
the rational chain of evidence in the collected data. For example,
the first hypothesis was generalized from the observation that all
organizations that applied a design-based approach also favored
plan-driven product development, and that their customers tended
to have influence on the design-phase of the product. Following
this lead, we focused on these observations and tried to define
exactly how the risk-based approaches differed in the design-phase
and would this observation be generalizable enough for creating a
hypothesis. A similar approach was used with hypotheses two and
three. The last hypothesis, number four, came from the genera
observation that for some reason, several organizations considered
explorative testing to be wasteful or a futile waste of resources,

Table 4. Observations on test case selection method

Case Applied Software Test Development | Testing Customer Test case Explorative
selection type designers approach resources | influence selection testing
method problem
A Risk-based Software Programmers | Plan-driven Low Approves Important test cases | Yes, programmers
with changes | module for supported by product are discarded doit.
first hardware agile
B Risk-based Software Designers Agile Moderate Participates | Agile products seem | No, only defined
product intesting to be difficult to | casesaretested.
test.
C Risk-based Software Programmers | Agile Moderate Participates | Some test cases are | Yes, programmers
with changes | product with clients intesting not implemented. doit.
first
D Risk-based Software Programmers | Plan-driven Low Approves Some test cases are | Yes
service supported by testing plan not implemented
agile
E Risk-based Software Programmers | Agile supported | High Approves Important test cases | Yes, some phases
module for by plan-driven product are discarded apply.
hardware
F Risk-based Software Designers Plan-driven Moderate Approves Some test cases are | Yes
with module for product not implemented
conformance hardware
G Design-based Software Test manager | Plan-driven High Approves Validating No, only defined
with service with testers testing plan functionalities is | casesaretested.
conformance difficult.
H Design-based Software Designers Plan-driven High Approves Amount of policies | No, not enough
service with clients testing plan affect test | time.
effectiveness.
| Design-based Software Test manager | Plan-driven High Approves Too large reliance | No
service with testers design on test manager
experience
J Risk-based, Software Project Plan-driven High Participates | Important test cases | Yes
changes first product manager supported by intesting are discarded
agile
K Design-based Software Project Plan-driven Moderate Participates | Some test cases are | Yes, in some
module for | manager, supported by intest design | not implemented projects.
hardware clients agile
L Design-based Software Project Plan-driven High Approves Test management in | Yes, several
product manager with product large projects phases apply.
designers

whereas some thought that it was one of the most important
aspects in testing. As this behavior was not as systematic with our
observations as some other aspects of test case selection, it was
included as a separate observation, and subsequently a separate
hypothesis, on test case design and case selection.

Hypothesis 1: Risk-based selection is applied when the software
design is not fixed at the design phase. Risk-based selection was
used in al those organizations that applied primarily agile
development methods in their software process. Furthermore, all
organizations that applied traditiona plan-driven software
development methods also applied the design-based test case
selection approach. With the risk-based approach, the selection
was clearly based on communication between case selectors and
stakeholders:

“Basically our case sdection method is quite reactive [to
feedback].” -Case E, Tester

“1 might use risk-based techniques based on the advice from
developers.” — Case B, Designer

In the design-based approach, software process management gets
much more involved:

“ Test manager decides based on the requirements on what will be
tested.” —Case G, Tester

“ Designers with the project manager decide on the test cases.” —
CaselL, Designer

In general, it also seemed that in the organizations that applied the
risk-based approach, customers had a big influence on the latter
parts of the software process, either by approving the final product
or by directly participating in the latter test phases.

“...s0 far we have been able to go by trusting [final] testing
phases to the customer.” — Case C, Designer

“For larger projects we give our product to a larger client for test
run and see how it works.” — Case A, Tester

In organizations applying the design-based approach, the customer
input in test design was more indirect, including approaches like
offering supplemental test cases or reviewing case selections.

“ ...customers can come to give us their test case designs so we
can accommodate to their requirements.” —Case K, Designer

“ Customer usually gives input on test design if the test plan has
shortcomings or is overly vague.” — Case H, Tester

Hypothesis 2: The design-based approach is favored in
organizations with ample resources and but it requires more
management. The most definite difference between organizations
that chose the design-based approach was that most of them
reported a high amount of testing resources. On average,
companies with the design-based approach had 73% of required
resources, while in the risk-based group, the average was 49%.

Another indicator of the differences between the two groups was
the types of problems the testing process experienced in their case
selection. In the risk-based selection, the most common process
difficulty was related to the test cases. Either they did not cover all
the critical cases, or they discarded critical cases from the final test
plan.

“The problem is in defining what should be tested.” —Case A,
Designer

“The document quality fluctuates between projects... sometimes
the critical test cases should be defined more clearly.” — Case C,
Designer

“What we truly miss is the ability to test all modules
consistently.” — Case D, Designer

In the design-based approach, the most common problems were
related to managing the testing process, satisfying testing criteria
set by test policies or keeping up with the requirements.

“It is up to test managers and their insight to define a satisfying
test case design.” — Case |, Designer

“We are already at the full capacity with test cases, we should
start discarding some of them...” — Case K, Tester

“[Policy makers] really cannot put testing into a realistic
schedule.” —Case H, Tester

An interesting observation was that in the design-based approach,
the test cases were mostly designed by a separate test process
management or test managers, whereas in the risk-based approach
the design was done by software developers: programmers or
software designers.

Hypothesis 3: The use of test automation is not affected by the
case design or case selection approach. The effect of test case
selection approaches on feasibility or applicability of test
automation was also examined, but the results did not yield any
relevant information or distinct pattern. Aside from prior
observations on test automation [15], the decision of applying test
automation did not seem to be connected to test case selection,
meaning that the decision to implement automation is based on
other test process factors. For example, Case B from the risk-
based group was an active user of test automation services:

“All our projects have test automation at one time or another.” —
Case B, Designer

In the design-based approach, Cases G and K had a significant
number of automated test cases in their software development
process:

“..for some ten years most of our conformance test cases have
been automated.” — Case G, Tester

“Well, we have test cases which are automatically tested during
the nighttime for every daily build.” —Case K, Tester

In fact, al of the organizations had some forms of automation,
were introducing automation to their test process or could see
some viable way of applying test automation.

“ Regression tests which are build on our own macro-language,
and some unit tests.” — Case G, Designer

“[new testing tool] is going to allow automation.” —
Manager
“We are implementing one for interface testing” — Case |, Tester

Case A,

Hypothesis 4: Explorative testing may be seen by policy makers as
an unproductive task because of its ad hoc nature. The explorative
testing methods in this study included all test methods and

practices where testers did non-predefined test activities as a part
of the standard test process. In organizations where the risk-based
approach was applied, explorative testing was commonly applied,
whereas in the design-based approach the amount of exploration
was noticeably smaller.

“[programmers] are allowed to do tests as they please” —Case A,
Designer

“Yes we do that, however the benefit of that work varies greatly
between individuals.” —Case E, Tester

“Those ‘dumb tests really bring up issues that escaped
developers' designs.” —Case F, Tester

However, by comparing the organizations based on their
originating company sizes, it becomes evident that large-sized
companies used less explorative test methods. One reason for this
could be that explorative testing is difficult to document; in other
words the explorative test process would cause additional
requirements for management and policies.

“We have so much other things to do...no time for that
[explorative testing]” — Case H, Tester

“1t would be interesting but no, we do not do that kind of thing.”
—Casel, Tester

“Well maybe if there were some unusual circumstances but | think
no; even in that case we would probably first make plans.” — Case
G, Tester

4.3 Observed approaches

Based on the observations above, we are able to conclude that the
software case selection approaches tend to resemble two basic
approaches; risk-based and design-based selection. Typically in the
risk-based approach, test design tasks are planned and completed
by software developers, whereas in the design-based approach,
management and separate test managers are responsible for the
case generation. It seemed that the organizations applying risk-
based approaches were also more likely to apply agile methods in
their software processes. However, aso some design-based
organizations applied agile methods if it was deemed necessary.
This behavior could be explained with customer participation. As
the risk-based approach also favors customer participation in the
latter parts of the process, it alows a customer to request last-
minute changes. As agile development does not create a strong,
“iron-bound” [2] design for the software product, but rather
general guidelines for development objectives, it would also seem
reasonable to assume that test cases are selected based on

foreseeable risks and not based on the design documentation which
may lack details. These two approaches are summarized in Table
5.

The selection of the risk-based approach was aso favored when
the testing resources were limited. If testing is organized with
limited resources, the prioritization of test cases takes place,
favoring the risk-based approach. In this situation, the obvious
choice is to alocate resources to address the most costly errors.
There are studies showing that by prioritizing test cases, the test
process can be organized effectively with as low as 15% of the
desired resources [25]. The costs caused by product defects offer
an easy and straightforward measurement method to determine
which cases should be tested and which discarded as an acceptable
expense.

Besides serving as the method of test case prioritization, the risk-
based approach was also more likely to supplement test cases with
exploratory testing practices, a phenomenon that may be related to
the test policy issues of the design-based approach. Where the
design-based approach was applied, the organizations emphasized
management and policies. The actual type of software product
seemed to have little to no impact on selection approach.

5. DISCUSSION

As software testing usually only has alimited amount of resources
[18], there always has to be some form of selection process on
which parts of the software should be tested and which can be left
as they are. Petschenik [25] discusses this phenomenon by
implying that the testing process can be organized effectively with
merely 15% of the required resources; Huang and Boehm [9]
indicated that a 20% investment can cover 80% of the testing
process if the test case design and test focus is selected correctly.
In practice, we observed the same phenomena, as several
organizations reported a resource availability of 60-70%,
indicating that they do prioritization with their test cases.

Our study examined how test cases were designed and selected for
test plans in 12 professional software organizations. The results
indicate that test case selection seems to generdize into two
approaches, risk-based and design-based. In the risk-based
approach, test cases are selected on the basis that most costly
errors are eliminated from the software. In many cases it is the
economicaly preferable strategy to keep deadlines rather than to
extend testing phases [9,27]. In these cases, testing resources are
more likely geared towards minimizing the costs caused by errors
found after the release.

Table 5. Two stereotypical approaches for test case selection

Category Risk-based selection Design-based selection
Test designers Developers: programmers and testers Managers: test and project managers
Development approach Leans towards agile methods Leans towards plan-driven methods
Testing resour ces Limited Sufficient
Explorative testing Applied commonly Applied rarely

Effect of policiesin
decisions on testing.

Small; most decisions done in project level.

Large; most decisions are based on company policies or
customer requirements.

Customer influence In the testing process

In the design process

Limitations of the model Test case coverage may become limited.

Test process may become |aborous to manage

Design concept

product is faulty?”

“What should be tested to ensure smallest losses if the | “What should be tested to ensure that the product does

what it isintended to do?’

The other selection method is the design-based approach. In this
approach, the organization decides the test cases based on the
design documentation of the product, ensuring that the software is
capable of performing the tasks it is supposed to do. The design-
based approach seems to be favored in organizations that have
sufficient or ample testing resources. These organizations may also
have stricter customer-based or policy-defined activities in their
software process, like following a strict formal process, or
requiring customers to approve all decisions and expenses related
to the project. The most common process hindrances in the design-
based approach seem to be policy restrictions and management
issues like rigid processes, top-heavy management and
communicating between all relevant stakeholders. As for selection
between the two approaches, a crude definition can be drawn
based on process stability. If the development process is
predictable and process outcomes are detailed, then the design-
based approach is mostly feasible. If the process more likely
responds to changes during the development, then the risk-based
approach is preferred.

Obvioudly, alimitation of this study is the number of organizations.
Our study interviewed 36 software professionals from 12 different
organizations, which were selected to represent different types and
sizes of software organizations. For this type of study,
Onwuegbuzie and Leech [37] discuss the several threats associated
to the validity. In their opinion, interna validity and external
credibility should be maintaned by providing enough
documentation, explaining the applied research method and
providing proof of the chain of evidence that led to the study
results. In this project, the interna validity was maintained with
these viewpoints in mind. For example, we applied severa
researchers in designing the questionnaires, and later the same
researchers collected, and subsequently analyzed the data. In
addition, we conducted a survey in 31 organizations to collect
quantitative data to compare and cross-reference our qualitative
observations with quantitative data.

The objective of this quditative study was not to establish
statistical relevance, but to observe and explain the strategies of
how real-life organizations decide which test cases to select. Our
analysis reveded two selection approaches with severa
characterizing attributes explaining the differences. However, they
also shared some attributes like software types, so in practice they
more likely complement each other and the division is not as
straightforward as it may seem based on the results.

6. CONCLUSIONS

In the observed organizations, test cases were selected using two
main approaches: the risk-based and the design-based approach.
Generally, in organizations where testing resources were limited
and the product design was alowed to adapt or change during the
process, the risk-based approach became increasingly favored.
When the project was alowed more testing resources and the
software design was made in a plan-driven fashion, the objective
for the test process shifted towards test case coverage, and
subsequently, towards the design-based approach in test case
selection. In these cases, the case selection was based on product
design and the verification of features, not in damage prevention
and minimizing the possible risks. However, in practice the shift
between approaches was not as clear-cut as it may seem; additional
concepts like policies, customers and development methods can
also affect the selection.

We observed and presented results on how software test cases are
selected and how test plans are constructed with different amounts
of resources in different types of software organizations. We
believe that software organizations can achieve better productivity
by defining the test process and by focusing on the critical aspects
for test process. By designing the test cases to more closely to fit
the needs of the organization and product characteristics, test
process issues can be better addressed and more attention can be
given to the aspects that need enhancement. Therefore, these
results can be used to develop testing practices and generaly to
promote the importance of designing test plans to fit the process
organization.

7. ACKNOWLEDGMENTS

This study was supported by the ESPA project
(http://www.soberit.hut.fi/espal), funded by the Finnish Funding
Agency for Technology and Innovation, and by the companies
mentioned at the project web site.

8. REFERENCES

[1] Bertolino, A., “The (Im)maturity Level of Software Testing”,
ACM SIGSOFT Software Engineering Notes, Vol. 29(5),
2004, pp. 1-4, DOI: 10.1145/1022494.1022540

[2] Boehm, B., “Get Ready for the Agile Methods, with Care”,
Compuiter, Vol. 35(1), 2002, pp. 64-69, DOI:
10.1109/2.976920

[3] Chen, Y. Probert, R.L. and Sims, D.P., “Specification-based
Regression Test Selection with Risk Analysis’, Proc. 2002
conference of the Centre for Advanced Studies on
Collaborative research, 30.9.-03.10., Toronto, Ontario,
Canada, 2002.

[4] Do, H. and Rothermel, G., “An Empirica Study of
Regression Testing Techniques Incorporating Context and
Lifetime Factors and Improved Cost-Benefit Models’, Proc.
14th ACM SIGSOFT international symposium on
Foundations of software engineering, 5-11.11., Portland,
Oregon, USA, 2006, pp. 141-151. DOI:
10.1145/1181775.1181793

[5] Eisenhardt, K.M., "Building theories from case study
research”, Academy of Management Review, Vol. 14, pp.
532-550, 1989.

[6] EU, "SME Definition," European Commission, 2003.

[7] Gill, N.S., “Factors Affecting Effective Software Quality
Management Rivisited”, ACM SIGSOFT Software
Engineering Notes, VVol. 30(2), 2005, pp. 1-4. DOI:
10.1145/1050849.1050862

[8] Glaser, B. and Strauss, A.L., The Discovery of Grounded
Theory: Strategies for Qualitative Research. Chicago: Aldine,
1967.

[9] Huang, L. and Boehm, B., “How Much Software Quality
Investment Is Enough: A Vaue-Based Approach”, IEEE
Software, Vol. 23(5), 2006, pp. 88-95, DOI:
10.1109/MS.2006.127

[20] Hulkko, H. and Abrahamsson, P., “A Multiple Case Study on
the Impact of Pair Programming on Product Quality”, Proc.
27th international conference on Software engineering, 15.-

21.5., St. Louis, MO, USA, 2005, pp. 495-504, DOI:
10.1145/1062455.1062545

[11] ISO/EC, ISO/IEC 15504-1, Information Technology -
Process Assessment - Part 1: Concepts and Vocabulary,
2002.

[12] ISO/NEC, ISO/IEC 25010-2, Software Engineering —
Software product Quality Requirements and Evaluation
(SQuaRE) Quality Model, 2008.

[13] ISO/IEC, ISO/IEC 29119-2, Software Testing Standard —
Activity Descriptions for Test Process Diagram, 2008.

[14] Kaner, C., Falk, J. and Nguyen, H.Q., Testing Computer
Software, 2nd edition, John Wiley & Sons, Inc., New York,
USA, 1999.

[15] Karhu, K., Repo, T., Taipae, O. and Smolander, K.,
“Empirical Observation on Software Test Automation”, Proc.
2nd International Conference on Software Testing,
Verification and Validation (ICST), 1-4.4., Denver, Colorado,
USA, 2009.

[16] Karhu, K., Taipale, O. and Smolander, K., “Outsourcing and
Knowledge Management in Software Testing”, Proc. 11th
International Conference on Evaluation and Assessment in
Software Engineering (EASE), 2-3.04., Staffordshire,
England, 2007.

[17] Kasurinen, J., Taipale, O. and Smolander, K., “Analysis of
Problemsin Testing Practices’, proc. 16th Asia-Pacific
Software Engineering Conference (APSEC), 1-3.12., Penang,
Malaysia, 2009.

[18] Kit, E., “Software Tegting in the Real World: Improving the
Process’, Addison-Wesley, Reading, MA, USA, 1995.

[19] Klein, H.K. and Myers, M.D., "A set of principles for
conducting and evaluating interpretive field studiesin
information systems’, MIS Quarterly, Vol. 23, pp. 67-94,
1999.

[20] Kolb, R. and Muthig, D., “Making Testing Product Lines
More Efficient by Improving the Testability of Product Line
Architectures’, Proc. ISSTA 2006 workshop on Role of
software architecture for testing and analysis, 17-20.7.,
Portland, Maine, USA, 2006, pp. 22-27, DOI:
10.1145/1147249.1147252

[21] Mao, C., Lu, Y. and Zhang, J., “Regression Testing for
Component-based Software via Built-in Test Design”, Proc.
2007 ACM Symposium on Applied Computing, 11-15.3,,
Seoul, South Korea, pp. 1416-1421. DOI:
10.1145/1244002.1244307

[22] Meyer, B., “Design and code reviews in the age of the
Internet”, Communications of the ACM, Vol. 51(9), 2008,
pp. 66-71.

[23] Nergaard, M. and Hornba, K., “What Do Usability
Evaluators Do in Practice? An Explorative Study of Think-
Aloud Testing”, Proc. 6th Conference on Designing
Interactive Systems, 26-28.6., University Park, PA, USA,
2006, pp. 209-218, DOI: 10.1145/1142405.1142439

[24] Pare’, G. and Elam, J.J., “Using case study research to build
theories of IT Implementation”, IFIP TC8 WG International

Conference on Information Systems and Qualitative Research,
Philadelphia, USA, 1997.

[25] Petschenik, N.H., “Practical Prioritiesin System Testing”,
|EEE Software, Vol. 2(5), 1985, pp. 18-23, DOI:
10.1109/M S.1985.231755

[26] Redmill, F., “Exploring risk-based testing and its
implications’, Software Testing, Verification and Reliability,
Vol. 14(1), 2004, pp. 3-15, DOI: 10.1002/stvr.288

[27] Rosas-Vega, R. and Vokurka, R.J., “New product
introduction delays in the computer industry”, Industrial
Management & Data Systems, Vol. 100 (4), 2000, pp. 157-
163.

[28] Rothermel, G., Elbaum, S., Malishevsky, A.G., Kallakuri, P.
and Qiu, X., “On Test Suite Composition and Cost-Effective
Regression Testing”, ACM Transactions on Software
Engineering and Methodology, Vol. 13(3), 2004, pp. 277-
331. DOI: 10.1145/1027092.1027093

[29] Seaman, C.B., "Qualitative methods in empirical studies of
software engineering”, | EEE Transactions on Software
Engineering, Vol. 25, pp. 557-572, 1999.

[30] Shi, Q., “A Field Study of the Relationship and
Communication between Chinese Evaluators and Usersin
Thinking Aloud Usability Tests’, Proc.5th Nordic conference
on Human-computer interaction: building bridges, 20-22.10.,
Lund, Sweden, 2008, pp. 344-352, DOI:
10.1145/1463160.1463198

[31] Strauss, A. and Corhin, J., Basics of Qualitative Research:
Grounded Theory Procedures and Techniques. Newbury
Park, CA: SAGE Publications, 1990.

[32] Taipae, O., and Smolander, K., “Improving Software Testing
by Observing Practice’, Proc. 5th ACM-IEEE International
Symposium on Empirical Software Engineering (ISESE), 21-
22.9., Rio de Janeiro, Brazil, 2006, pp. 262-271.

[33] Tassey, G., “The Economic impacts of inadequate
infrastructure for software testing”, U.S. National Ingtitute of
Standards and Technology report, RTI Project Number
7007.011, 2002.

[34] TMMi Foundation, Test Maturity Model integration (TMMi)
reference model, Version 2.0, 2009.

[35] Voas, J., Payne, J., Mills, R. and McManus, J., “ Software
Testability, An Experiment in Measuring Simulation
Reusability”, ACM SIGSOFT Software Engineering Notes,
Vol. 20, Issue SI, 1995, pp. 247-255. DOI:
10.1145/223427.211854

[36] Whittager, J.A., “What is Software Testing? And Why Is |t
So Hard?', | EEE Software, Vol. 17(1), 2000, pp.70-79,
DOI: 0.1109/52.819971

[37] Onwuegbuzie, A.J. and Leech, N.L., “Validity and
Qualitative Research: An Oxymoron?’, Quality and Quantity,
Vol. 41(2), April 2007, pp. 233-249. DOI: 10.1007/s11135-
006-9000-3

[38] Yoo, S. and Harman, M., “Pareto Efficient Multi-Objective
Test Case Selection”, Proc. 2007 international symposium on
Software testing and analysis, 9-12.7., London, England, pp.
140-150. DOI: 10.1145/1273463.1273483

Publication V

How Test Organizations Adopt New Testing
Practices and Methods?

Kasurinen, J., Taipale, O. and Smolander, K. (2011), Proceedings of the Testing:
Academic & Industrial Conference: Practice and Research Techniques 2011 (TAIC
PART) co-located with 4th IEEE International Conference on Software Testing,
Verification and Validation (ICST), 25.3.2011, Berlin, Germany, doi:
10.1109/ICSTW.2011.63

© 2011 IEEE. Reprinted, with permission.

How Test Organizations Adopt New Testing Practices and Methods?

Jussi Kasurinen, Ossi Taipale and Kari Smolander
Software Engineering Laboratory
Department of Information Technology
Lappeenranta University of Technology
Lappeenranta, Finland
jussi.kasurinen | ossi.taipale | kari.smolander@lut.fi

Abstract— Software testing process is an activity, in which the
software is verified to comply with the requirements and
validated to operate as intended. As software development
adopts new development methods, this means also that the test
processes need to be changed. In this qualitative study, we
observe ten software organizations to understand how
organizations develop their test processes and how they adopt
new test methods. Based on our observations, organizations do
only sporadic test process development, and are conservative
when adopting new ideas or testing methods. Organizations
need to have a clear concept of what to develop and how to
implement the needed changes before they commit to process
development.

Keywords-test process improvement; adoption of test
methods; qualitative study; test process standard

L INTRODUCTION

Software testing is an activity, in which the software
product is verified to comply with the system requirements
and validated to operate as intended [1]. In spite of this quite
clear definition, testing cannot exist as a static process,
which is separated from other activities of software
development. There are several considerations on how
testing should be done. For example, there exist different
techniques like usability testing or test automation, which
both require different testing tools and enable the test process
to find different kinds of errors. Also several other factors
such as customer participation, quality requirements or upper
management affect the testing work [2, 3].

In this study, we observe ten software development
organizations and their test organizations, representing
different types of organizations that do software testing. Our
purpose is to understand how these organizations manage
and develop their test processes and adopt new ideas to their
existing testing methods. Our focus will be on two aspects:
on the ability to adopt new testing methods to the existing
test process and on the ability to develop the test process
itself to a desired direction. As a part of the latter aspect, we
also conducted a feasibility study on the proposed test
process model presented in the ISO/IEC 29119 software
testing standard working draft [4]. Overall, the main research
questions were “How organizations adopt new ideas to their

test processes?” and “How feasible does the standard test
process model ISO/IEC 29119 seem in practice?”

This paper continues our studies of software testing
organizations [5,6]. The study elaborates on the previous
studies by observing the test process itself, separated from
the practical effects of different testing-related aspects such
as testing tools and automation, test case selection method or
development process, studied in the prior publications.

The rest of the paper is constructed as follows: Section 2
discusses the related research topics and introduces the
standard process model used in the study. Section 3
introduces the applied research approach and Section 4
shows the findings of the study, which are then discussed
and analyzed further in Section 5. Finally, in Section 6 the
paper is wrapped up with conclusions.

II. RELATED RESEARCH

Testing strategy has been defined as a concept in several
industry standards or certification models [for example 4, 7].
In the draft of the upcoming software testing process
standard ISO/IEC 29119 [4] the test process is composed of
several layers. The top layer in this model is the
organizational test process level (Figure 1), which defines
the testing policy and the testing strategy of the entire
organization. The second layer is the test management
process level, which defines the test activities in projects. On
this level, test plans are defined and maintained based on the
given organization level policies and strategies. The last
level is the test processes level, which defines the actual
testing work. This reference model is not by any means the
first or only attempt to build a model for test processes. For
example, the TMMi [7] framework defines a maturity-based
assessment model for software testing. However, as TMMi is
a maturity model, it is geared towards identification of
process problems and improvement objectives, whereas ISO
29119 is aimed to provide an abstract model for good testing
practices.

The software process improvement (SPI) literature
includes studies about the effect of different factors in
process improvement. For example, a study by Abrahamsson
[2] discusses the requirements for successful process
improvements. The most important factor according to this
study is the commitment to change at all organizational

Company level

Organizational test process
Defines and maintains Test policy and Test strategy,
Makes updates based on received feedback

General administration,
Test policy, Test strategy

Feedback on documents,
change requests

Project level (One company may have several instances)

Project management
Defines and maintains Test plan based on policy and strategy,
Compiles Test completion report after testing is done.

Test plan,
Every day management

Feedback on cases,
change requests

‘ Fundamental level; actual testing activities, reports on completed cases

Figure 1. ISO/IEC 29119 Standard test process model in a nutshell.

levels. If some of the levels disagree with the process
improvement, SPI tends to fail.

In studies applying certain process models in
organizations, Hardgrave and Armstrong [8] observed that
their case organization had trouble reflecting their existing
processes to given models. The organization estimated the
time needed for process improvements to 10 months, when
in fact the entire process development took four years.
Hardgrave and Armstrong also concluded that organizations
tend to lose the initial drive for process improvement
because in many cases the internal need to develop is not the
driver for improvement - instead improvement is seen as a
means to reach out for certain external rewards, like
certifications.

Dyba [3] conducted a study on SPI activities in different
types of organizations. Dyba concluded that the company
size does not hinder or restrict the process improvement
activities. Small organizations are at least as effective as
large ones in implementing process improvement, as they
tend to be less formal in organizational hierarchy and to use
explorative methods more willingly. Another observation
was also that organizations have a tendency to define their
own best practice methods, as in what is working, while
failure in process improvement is considered unacceptable
possibility. As process improvement projects often fail,
companies tend to support status quo if corrective actions are
not absolutely necessary.

III. RESEARCH METHOD

As a qualitative study, the selection of the study
organizations was crucial to ensure that they minimized a
possible result bias caused by too homogeneous study
population. Our decision was to observe a heterogeneous
group of organizations, with minimal bias caused by the
application area or used software development methods.
Based on these preferences, we selected ten organizations
from our industrial collaborators and contacts to represent
different types of organization sizes [9] and operating
domains. Organizations included sizes from small to large,
international and national businesses, from professional
testing experts to service developers and organizations
testing embedded software platforms. In addition, all our
organizations were selected on the criteria that they tested
software professionally and as a part of their main business
activity. The list of the participating organizations is in
Table 1.

We used organizational unit (OU) as our unit of analysis
[10]. An organizational unit has at least one internal process,
or activity which it conducts independently, receiving only
guidelines and overview from the corporate level
management above it. In large organizations, a unit like a
department or a local office may constitute one OU, but in
micro and small-sized companies, an OU may include the
entire company. This way the size difference of case

TABLE 1. DESCRIPTION OF THE OBSERVED OUS.

ou Business domain, product type Company size’ / Operation
Case A ICT developer and consultant, service producer Small / National
Case B Safety and logistics systems developer, software products Medium / National
Case C Financial and logistics software developer, software products Mediuny/ National
Case D MES' producer and logistics system provider, embedded software for hardware products Medium / International
Case E MES' producer and electronics manufacturer, embedded software for hardware products Small / National
Case F Maritime software systems developer, software products Medium / International
Case G ICT consultant specialicing in testing, test consulting services Medium / National
Case H Modeling software developer, software products Large / International
Casel ICT developer and consultant, software production consulting Large / International
CaseJ ICT consultant specialicing in testing, test consulting services Small / National

'Manufacturing Execution System

organizations was normalized.

A. Grounded Theory Approach

Our study was an interpretative qualitative study, with
main data collection method being interviews with case
organization representatives. In data analysis, our team
applied the grounded theory approach [11-13]. The original
grounded theory method was defined by Glaser and Strauss
[11], and was later elaborated into two similar, but different
approaches. The Glaserian [13] approach is fundamentally
founded on non-intrusive observation and emergence, while
the Strauss-Corbin [12] relies on systematic codification and
categorization process for observations. Because of a
relatively large number of organizations for the qualitative
study and practical difficulties on arranging a non-intrusive
observation possibilities, we decided on applying the
Strauss-Corbin approach.

The Strauss-Corbin-based grounded theory includes
three steps for data analysis. The first step is called open
coding, in which the collected data is codified to conceptual
codes and grouped into higher level categories. The
categories are created during the coding or some of them
may be derived from, for example, seed categories [14],
interview themes or research questions. Overall, during
open coding the categories are separated, joined, created and
deleted to understand and explain the data from the
viewpoint of the research questions.

The next step is called axial coding. It can be started
after the categories and observations have become
somewhat stable. In this phase, the connections between
different categories are explored and a conceptual mapping
is done to establish connections between them.

The last step is the selective coding, in which the core
category is established. The core category is the central
phenomenon or activity, which is related to most if not all
observed activities. The core category can be one of the
existing categories, or an abstract class combining the other
categories. After the core category is identified, the
categorized findings are refined to form hypotheses, which
summarize the observed activities, and further elaborated to
a grounded theory model. In this study, we decided the core
category to be Management of Test Process Development.

B. Data Collection

The data for the grounded analysis was collected by
approximately one hour long interviews with a semi-
structured list of questions. For each interview, the
participating organization selected one representative whom
they considered most suitable for the interview. Our
preference, and the most usual interviewee, was a project
management level interviewee, like a test manager or
project leader. When an interview was agreed on, the
interviewee was given a compiled interview material, which
contained short description of the ISO/IEC 29119 test
process model, the list of terminology applied in the
standard, a brief descriptions of the other interview topics,
and a questionnaire form, which contained all the formal,
structured questions of the interview.

The interviews were conducted by the researchers to
ensure that the interviewees understood the questions
similarly, and tape-recorded for later transcription and
analysis. In two organizations, two people were interviewed,
as the organization considered this to be their best option.
Also in one case, the interview was cancelled because of
personal reasons, but in this case we accepted written
responses submitted via email instead.

The interview themes were designed by three researches
from our research group, and tested for feedback with
colleagues who had previous experience on conducting
software engineering studies. Before the actual data
collection interviews, the questions were also tested with an
test interview on a pilot company that otherwise did not
participate on the study. Final versions of the questionnaire
and introductory material for the interviews are available at
the address http://www2.it.lut.fi/project/MASTO/.

IV. RESULTS

The results are divided into two parts; in the first part we
present the categories that we observed to influence the test
process development and introduce the results from the
feasibility assessment of the ISO/IEC 29119 model [4]. In
the second part, we present and discuss the rationale behind
the generalized model of how test organizations adopt new
practices.

A. Categories and Observations

We derived the seed categories to the analysis from the
results and observations of our previous studies [7, 8]. Our
objective in the analysis was to find answer for the following
questions: “How organizations adopt new ideas to their test
processes?” and “How feasible does the standard test process
model ISO/IEC 29119 seem in practice?” By analyzing the
data, we formulated five categories that explained the test
process improvement process and feasibility of the standard
model. We also made several observations that allowed us to
further elaborate the collected data to five major
observations, and generated a model that provided an
explanation of how the organizations developed their test
process and adopt new test practices. These observations and
their respective categories are listed in Table 2, and the
model is presented in Figure 2.

The first category is the test documentation, which
depicts how the existing testing process is documented in the
current organization. The category test documentation also
contains information on how much detail and which kind of
information concerning the testing work currently exists in
the organization.

The second category is the test process development.
This category is used to describe how often, and with what
kind of activities the organization develops its test processes.

The third category is the adoption of new methods. This
category explains how the organization adopts new test
methods, on which they have no existing knowledge or
experience. The category covers the concept of learning
about a new test method without hands-on experience, and
the willingness of allocating resources to test it in practice.

TABLE IL.

OBSERVATIONS IN TEST PROCESS DEVELOPMENT.

Test process Adoption of new | Usage of experience Applicability of the
Test documentation development methods and feedback standard model
Case | Quality system defines software | Constantly developed Evaluation, not Sometimes, used to Seems usable; not taking into
A process, guidelines for testing and maintained, part of | necessarily tried outin | develop test suite. account the customer -
exist. quality system. practice. weakness.
Case | Quality system defines software | Documents, process Would try, but not Sometimes, little actual | Seems usable.
B process, guidelines for testing updated if needed. actively looking new effect.
exist. methods.
Case |Informal, unwritten policies. Trial and error, stick Would try, but not Always, learning from | Not usable; too much
C Guidelines agreed within group. | with what seems to be | actively looking new errors promoted. documentation. Seems
working, discussed if methods. straightforward to implement,
needed. good amount of abstraction.
Case | Test documentation exists, lacks | Documents, process Would try, sometimes | Always, previous Usable; more details in high
D details. updated if needed. actively tries new knowledge used in level than needed.
methods. continuance projects.
Case |Informal, unwritten policies. Guidelines updated if Without any previous Rarely, comparing Seems usable, could use a list
E Guidelines agreed within group. | needed, no written knowledge, no. between projects is of how important different
documentation. considered unfeasible. | modules are.

Case |Quality system defines software | Process updated May be piloted, and Almost always, little Seems usable; too much details
F process, guidelines for testing regularly, discussions, | then decided if taken actual effect. in high levels, good reference
exist. sometimes changes are | into use. for names and terms.

reverted.
Case | Test documentation exists, is Documents, process Would try, central part | Always. Usable, not many novel
G tailored to suit projects. tailored per project from | of business. concepts.

generic model.
Case | Test documentation exists, lacks | Documents, process Without any previous Always, some actual Seems usable, more details in
H details. updated if needed. knowledge, no. effect. high level than needed.
Case | Test documentation exists, is Process evaluated after | Evaluation, not Always, some actual Seems usable; needs more
I tailored to suit projects. every project. necessarily tried out in | effect, scalability; too much

practice. documentation.

Case | Test documentation exists, is Updates if needed, May be piloted, depends | Always, learning from | Seems usable, needs more
J tailored to suit projects. systematic overview on source credibility. errors promoted. scalability.

once every few years.

The fourth category, use of experience and feedback,
describes how the organizations use their previous
experiences in test process development. This category is
based on the concept on ISO/IEC 29119 [6] standard process
model, in which every test process level creates feedback for
upper level management.

The fifth category is the applicability of the standard
model. In this category, the summary of the feedback about
their opinions on the ISO/IEC 29119 standard process model
is presented.

Based on the categorized data and observations made
from the interview data, following five observations were
made:

1) All organizations had defined roles for test plan
development.

In every case organization, the test plan was designed by
one dedicated person, holding the role accountable for the
task. Usually this person was either test manager or tester
with most suitable experience. However, the maturity of the
plan varied; in cases C and E the test plan was merely an
agreement over focus areas and priorities, while Case G
made detailed, tailored documentation for testers to follow.

2) Test documentation seems to be feasible to implement
as defined in the standard model.

In all case organizations, the test documentation defined
in the ISO/IEC 29119 standard, test policy, test plan, test
strategy and test completion reports, were considered
feasible. In theory, all organizations agreed that they would

be able to define these documents based on their current
organization. In fact, in several cases the documents already
existed. However, the practical implementation varied, in
some organizations they were a part of quality system, and in
some, unofficially agreed guidelines on testing work. For
application of test completion reports, the problem was
usually in the use of the completion reports in review and
follow-up phases. Even if the documents existed, there were
reported cases where the feedback in the test completion
report was not really used, or that projects did not always
bother to collect feedback and keep post mortem meetings.

“All projects should have post mortems, but all projects
don't have post mortems. So that's again, the written, process
description versus real life.” —Case F

3) Project level application of the test process is usually
more in line with the standard model than management.

This observation was based on the feedback from the
ISO/IEC 29119 standard model and on the comments made
in the interviews. In several organizations, the existing
project level activities were very similar to the standard
model, but the high-level management was considered
unnecessarily detailed or too complex. In three case
organizations, cases D, F and H, this was most obvious and
in fact addressed as a concern over the standard model.

“I would say, that it suits for us quite well. Of course we
don't have the upper level so much detailed, it is just... the
common understanding about [how management works]” —
Case D

4) Using feedback to systematically develop the test
process is usually the part missing.

In most organizations, the common way to develop the
test process was to implement changes “if needed”. This was
the mindset in six case organizations. This combined with
the observation that test completion reports were used in
several of those cases (C, H and J) would indicate that the
feedback from the test completion reports was not
systematically used.

“We have a meeting after the project where we also
consider how the testing has been successful, how it has been
done. And we try to learn from these meetings. Sometimes we
get new good ideas from those, but not always.” —Case H

In some organizations (cases A, F and I) the test process
development was continuous, but even in those, the feedback
from project-level to organizational level was usually
missing. In Case A, the feedback was limited to develop the
test tools, but did not affect the entire test process. In Case F,
the feedback was used but the actual changes were minimal,
and in Case I the test completion reports were sometimes
skipped.

“[Do these reports affect how testing is done in later
projects?]” “To be honest, I don't think so.” —Case F

5) Organizations do not generally apply new ideas or
try testing methods unless they have strong positive
incentives for doing so.

The organizations were asked to evaluate, what would
they do, if someone in the organization found out about new
testing practice that would seem to offer improvements, but
on which they had no previous experience or knowledge.
Based on the responses, only two organizations (D and G)
said that they would probably try it in an actual development
project. Two other organizations considered that they would
try it in a smaller pilot project (cases F and J). Two
considered testing the method but also told that they are not
looking for new methods or improvements (cases B and C).

“Were not bleeding edge people to try new, brand new
testing practices. If we hear from many sources that it would
be nice and interesting, then we might take a look.” —Case C

Two organizations (A and I) said that they would
evaluate the method on how it would theoretically fit to the
organization, but not necessarily try it out. Last two
organizations (E and H) considered that they would not be
interested in a method without any first-hand knowledge or
experience.

“Without prior knowledge, no.” ... Because we don't
have time to test too many new techniques, so we have to be

Process Development Effort

if inconveniences
justify expenses

Management of Test
Process Development

Status quo,
if inconveniences are acceptable

Development to

quite sure in the beginning that it's worth testing, or the
time.” — Case H

B. How are new practices adopted?

Based on these observations and findings it seems
plausible that organizations develop their process only when
a clear need arises and do not tend to spontaneously try out
new testing practices. If existing process works acceptably,
the feedback from completed projects is ignored. From the
viewpoint of the ISO/IEC 29119 standard model, the biggest
differences seem to be in organizational management. The
testing work in project-level is usually at least somewhat
similar to the standard, but on the organizational level, the
continuous development and feedback processes are usually
missing. Many of the observations in process development
and adoption of new testing practices seem to be related to
the management decisions, whether in allowing resources to
try out new concepts or willingness to implement changes. It
also has large influence on what are the objectives of process
development [2, 3]. Therefore the category Management of
test process development can be considered the core category
in this study, as it explains all the categories and has a
relation to all observations.

If the observations are to be generalized to a grounded
theory, it would seem that development happens only when
the existing process obviously has a need to develop, and
required resources for development are justified by the
possible savings later. The existing test process becomes
inconvenient in the long run to sustain, because it needs to
react to changes in the development and business domain.
But developing the test process requires a modest effort, and
it also exposes the organization to a possibility of a failed
attempt of process development. This effort is not always
considered as a productive work, and it generates costs no
matter the outcome. The need to develop has to overcome
both the acceptable losses from inconveniences in existing
process and the justification for the expenses caused by the
development effort. This concept is illustrated in Figure 2.

This is what could be expected based on the concern
presented by Dyba [5] regarding the status quo mindset. In
process development, this could be generalized so that
organizations lean towards minimal changes approach, as too
radical departures from existing process model are seen not
worth the effort. In practice the organizations require a way
to compare existing process against possible solutions to
understand the next feasible process improvement step. Even
completely new concepts have a chance to be adopted, if
they resemble or are comparable to the existing process.

Inconveniences | Existing Test Process

reduce inconveniences

Figure 2. Adopting new practices in test organization.

V. DISCUSSION

The focus of this study was in observing how different
test organizations do test process development, and in
assessing how feasible the ISO/IEC 29119 [4] standard
process model would be in practice. The results indicate that
the organizations do mainly sporadic process development,
even if the organization continuously collects project
feedback and that the new methods are rarely tried out. Also,
the proposed standard model itself is feasible, but the
practical application suffers from a number of limitations.
The main problem was that the standard model has an
extensive number of details, but it offers only vague
guidelines for actual implementation. Secondly,
organizations considered the standard-defined model rather
“top-heavy”. Particularly the continuous development of the
process differed from the industry practices. In many
organizations the test completion reports were done, but
process changes were only done in “if needed”-basis. Only
one of the organizations was definite on trying out new
ideas, while all the other organizations had varying doubts.
This corresponds to the literature review results, making it
evident that organizations aim to preserve the status quo.

In a grounded theory study, the objective is to understand
the phenomena which are under observation, and identify a
core category which can be explained with all the related
categories. Based on these findings, the core category may
be extended to a series of observations called hypotheses,
and developed to a model — a grounded theory — that can
explain the phenomena. In grounded theory studies, the
grounded theory generalizes on the basis on what is
established in the study. Outside the study, it should be
regarded more likely as a general guideline [14].

As for the other limitations and threats to the validity,
Onwuegbuzie and Leech [15] have made an extensive
framework of different types of threats to validity in
qualitative studies. In our work, the issues were addressed by
applying several methods; the questionnaire was designed by
three researchers to avoid personal bias, feedback on the
questions was collected from colleagues to maintain
neutrality and from a test interview, the data was collected
by researchers so that interviewees understood the questions
and finally, in the data analysis, additional researchers who
did not participate on the design of the interviews were used
to get fresh perspectives on the studied concepts.

VI. CONLUSIONS

In this paper we have presented the results of our study
regarding the test process development process and adoption
of new testing methods. The results indicate that the
organizations do test process improvement mainly
sporadically, even in the organizations where the
management receives feedback from completed projects. In
several organizations the adoption process for new testing
techniques is in practice limited to small changes and
improvements, as organizations tend to maintain the status
quo, unless the process is clearly in need of larger changes.

Besides process development, we also conducted a
feasibility test on the ISO/IEC 29119 standard model [4].

Based on the results, it seems that the model itself is feasible,
although it contains some concern which should be
addressed. Many organizations thought that the fundamentals
of the model are sound, but the overall model is “top-heavy”
and unnecessarily detailed.

An implication to future research from this study is that
organizations need guidelines or a reference model of the
standard. By designing such a framework, organizations
developing their test processes could have a more realistic
view on their existing test process, and have support on
deciding objectives in their next test process improvement.

ACKNOWLEDGMENTS

This study was supported by the ESPA-project
(http://www.soberit.hut.fi/espa), funded by the Finnish
Funding Agency for Technology and Innovation and by the
companies mentioned in the project web site.

REFERENCES

[1] Kit E. (1995). Software Testing in the Real World: Improving the
Process. Reading, MA: Addison-Wesley.

[2] P. Abrahamsson, “Commitment development in software process
improvement: critical misconceptions”, Proceedings of the 23rd
International Conference on Software Engineering, Toronto, Canada,
pages 71-80, 2001.

[3] T. Dyba, “Factors of software process improvement success in small
and large organizations: an empirical study in the scandinavian
context”, Proceedings of the 9th European software engineering
conference held jointly with 11th ACM SIGSOFT international
symposium on Foundations of software engineering, pages 148-157,
Helsinki, Finland, 2003. doi: 10.1145/940071.940092

[4] ISO/IEC JTCI1/SC7, ISO/IEC WD-29119, Software and Systems
Engineering —— Software Testing, 2010.

[5] J. Kasurinen, O. Taipale and K. Smolander, “Test Case Selection and
Prioritization: Risk-Based or Design-Based?”, Proceedings of the 4th
Symposium on Empirical Software Engineering and Measurement
(ESEM), 16.-17.9.2010, Bolzano, Italy, 2010.

[6] V. Kettunen, J. Kasurinen, O. Taipale and K. Smolander, A Study on
Agility and Testing Processes in Software Organizations,
International Symposium on Software Testing and Analysis (ISSTA
2010), 12.7.-16.7.2010, Trento, Italy, 2010. DOI:
10.1145/1831708.1831737

[7] TMMi Foundation, “Test Maturity Model Intergration (TMMi)”,
Version 2.0, 2010.

[8] B.C. Hardgrave and D.J. Armstrong, “Software process improvement:
it's a journey, not a destination”, Communications of the ACM, Vol.
48(11), pages 93-96, 2005. doi: 10.1145/1096000.1096028

[9] EU, “SME Definition”, European Comission, 2003.

[10] ISO/IEC, ISO/IEC 15504, Information Technology - Process
Assessment, 2002.

[11] B. Glaser and A.L. Strauss, The Discovery of Grounded Theory:
Strategies for Qualitative Research. Chicago: Aldine, 1967.

[12] A. Strauss A. and J. Corbin, Basics of Qualitative Research:
Grounded Theory Procedures and Techniques. SAGE Publications,
Newbury Park, CA, USA, 1990.

[13] B.G. Glaser, “Constuctivist Grounded Theory?”, Forum: Qualitative
Social Research (FQS), Vol 3(3), 2002.

[14] C.B. Seaman, "Qualitative methods in empirical studies of software
engineering", IEEE Transactions on Software Engineering, vol. 25,
pp. 557-572, 1999.

[15] AJ. Onwuegbuzie and N.L. Leech, “Validity and Qualitative

Research: An Oxymoron?”, Quality and Quantity, Vol 41(2), pages
233-249,2007. DOI: 10.1007/s11135-006-9000-3.

Publication VI

Exploring Perceived Quality in Software
Organizations

Kasurinen, J., Taipale, O., Vanhanen, J. and Smolander, K. (2011), Proceedings of the
Fifth IEEE International Conference on Research Challenges in Information Science
(RCIS), May 19-21 2011, Guadeloupe - French West Indies, France, doi:
10.1109/RCIS.2011.6006823

© 2011 IEEE. Reprinted, with permission.

Exploring Perceived Quality in Software Organizations

Jussi Kasurinen', Ossi Taipale', Jari Vanhanen® and Kari Smolander’

'Software Engineering Laboratory
Lappeenranta University of Technology
Lappeenranta, Finland
jussi.kasurinen | ossi.taipale | kari.smolander@lut.fi

Abstract— Software projects have four main objectives;
produce required functionalities, with acceptable quality, in
budget and in schedule. Usually these objectives are
implemented by setting requirements for the software projects,
and working towards achieving these requirements as well as
possible. So how is the intended quality handled in this process
of pursuing project goals? The objective of this study is to
explore how organizations understand software quality and
identify factors which seem to affect the quality outcome of the
development process. The study applies two research
approaches; a survey with 31 organizations and in-depth
interviews with 36 software professional from 12 organizations
for identifying concepts that affect quality. The study confirms
that the quality in software organization is a complex,
interconnected entity, and the definitions of desired and
perceived quality fluctuate between different process
stakeholders. Overall, in many cases the software
organizations have identified the desired quality, but are not
communicating it properly.

Keywords- software quality, quality characteristics, quality
goals, mixed method study

L. INTRODUCTION

Software quality is a composition of different attributes,
with the importance of these attributes varying between
different types of software products. For example, the
desired or important quality characteristics between a game
on a mobile phone and control software of an airplane surely
have a big difference. How do organizations actually
perceive what the quality they require from their products is
and what aspects in the development and testing affect the
perceived quality outcome?

The main objectives of software engineering include
reduction of costs and improvement of the quality of
products [1]. To reach the quality objectives in the product,
an organization needs to identify their own quality i.e. those
quality characteristics which are important for them. After
identifying their preferred quality, the next action would be
to find the factors in development and testing, which affect
these quality characteristics, and ensure they work as
intended.

A model that in this sense attempts to specify the
different characteristics of quality is the revised software
product quality model, as introduced in the forthcoming
ISO/IEC 25010 standard [2]. According to the standard,
software quality expresses the degree to which the software
product satisfies the stated and implied needs when used

*Software Business and Engineering Institute
Aalto University
Espoo, Finland
jari.vanhanen@hut.fi

under specified conditions. In the model, quality consists of
eight characteristics, which are functional suitability,
reliability, performance efficiency, operability, security,
compatibility, maintainability, and transferability. These
characteristics are further divided into 38 subcharacteristics,
such as accuracy or fault tolerance, which aim to define the
quality in measurable terms. In addition, in software business
the quality is related both to the development and testing. In
the ISO/IEC 29119 standard [3], software test process is
defined to comprise of layers, such as organizational test
level and test management level. In our study, these
standards describe the research subject, software product
quality and software testing in organizations.

Testing has a big influence on quality in software
business. Testing is also one of the biggest expenses in
software development [4]. In one estimate [5], software
producers in United States lose annually 21.2 billion dollars
because of inadequate end-product quality. Because of the
economical importance of software quality, it is important to
understand how organizations understand software quality
and how organizations decide on quality requirements. The
identification of how organizations perceive quality, i.e.
which quality characteristics they consider important, and
how the quality requirements are catered, helps them to
concentrate on essential parts when improving process
outcomes from the viewpoint of quality assurance.

However, this task is not easy, as the development and
test processes include many concepts which all have
possibility to affect the quality in practice. There are several
viewpoints by different process stakeholders, with a different
perception on what are the important quality characteristics.
In this study we explore these concepts and viewpoints in
different types of software organizations to understand how
software development and testing affect the perceived quality
of end-product and which process activities have a major
impact on the perceived software quality outcome.

The paper is structured as follows. First, we introduce
comparable studies and related research in Section 2.
Secondly, the research process with the quantitative survey
method and the qualitative grounded theory method are
described in Section 3. The results of the study are presented
in Section 4. Finally, discussion and conclusions are given in
Sections 5 and 6.

II. RELATED RESEARCH

Software quality is defined in the software product
quality standard ISO/IEC 25010 as a combination of

different quality characteristics such as security, operability
and reliability. However, it is evident that there are also
several different approaches on studying quality and quality
concepts in the software engineering. So how can something
that has so abstract definition as quality be measured or
defined for research?

For example, Garvin [6] has discussed the definitions of
quality and made extensive definition work for establishing
what the quality actually is and how it affects product
concepts such as profitability or market situation. Garvin
defines five different definitions for quality; transcendent,
product-based, user-based, manufacturing-based and value-
based definition. Even though they define the same
phenomena, product quality, they vary greatly. For example,
transcendent quality is “innate excellence”, which is an
absolute and uncompromising standard for high achievement
that cannot be precisely defined, but surely is identified if
present. On the other hand, user-based quality is the more
common “‘satisfies user needs” definition, whereas the
manufacturing-based definition promotes conformance to the
product requirements. Garvin also discusses the different
definitions by mentioning that it also explains why different
people seem to have different opinion on what is quality;
they tend to apply the definition they are most familiar with.

The different aspects and definitions of quality also mean
that the measurement of software quality has some
considerations. A paper by Jergensen [7] introduces three
assumptions for establishing measurement for software
quality: there are no universal quality measurements but
meaningful measures for particular environments, secondly,
widely accepted quality measurements require maturity in
research, and thirdly, quality indicators predict, or indirectly
measure quality. In short, Jergensen establishes that there are
no universal measurements, but the approaches using quality
indicators — characteristics and attributes — can be used to
approximate or predict software quality. Given the
perspective of our study, this is in line with our approach of
observing and studying the perceived quality and quality-
affecting aspects of software process.

Based on the Jorgensen [7] discussion concerning quality
indicators and discussion regarding definition of quality by
Garvin [6], it seems that applying the classification used in
ISO/IEC 25010 would be feasible measurement method. For
the survey and qualitative study we also decided to apply
literature review to identify different software process
activities which would be interesting from the viewpoint of
quality. These activities would be called seed categories [8]
for the study and form the basis for the survey questionnaire.

For the compilation seed categories [8] in testing, we
applied our earlier research results and observations [9] in
test processes. Based on our prior research and for example,
study by Hansen et al. [10], it is evident that the business
orientation affects the testing organization: product oriented
organizations should adopt a formal planned testing process
and service oriented organizations should adopt a flexible

testing process. If the business orientation has an influence
on a testing organization, does it have a similar influence on
perceived end-product quality? To study this, the construct
product/service orientation, was accepted to the seed
categories. In addition, Lin et al. [11] also state that quality
problems are not only a function of the product or service
itself, but also of the development processes. Therefore,
constructs describing the development and testing processes
and overall process environment were included in this study.

A paper by Boehm and Turner [12] discusses how the
applicability of agile [13] or plan-driven methods depends on
the nature of the project and the development environment.
Boehm and Turner have developed a polar chart that
distinguishes between agile methods and plan-driven
methods. Abrahamsson et al. [14] writes that agile thinking
emerged because software intensive systems were delivered
late, over budget, and they did not meet the quality
requirements. Therefore the influence of the software
development method on perceived quality characteristics
was included to the topics of interest.

According to Kit [4], the size and the criticality of the
systems among other things emphasize software testing.
Also Boehm and Turner [12] select criticality as one of
factors affecting the choice of the software development
method. Therefore criticality was accepted to our seed
categories to see whether it has also an effect on the
perceived end-product quality, or preferred quality
characteristics.

Guimaraes et al. [15] discusses customer participation in
software projects. Customer participation seems to improve
specifications of the system and thereby it assists project
towards satisfactory outcome. Customer participation and
trust between customer and supplier were accepted to the
categories to explore their influence on perceived quality.

Based on the literature and our previous studies [9,16,17]
we understand that there is a multitude of feasible
approaches on studying quality and the concepts that could
explain the quality in software processes. Therefore
identifying the process activities, which have strong impact
on quality outcome, would be complicated. Different
organizations, even projects within one organization, may
weigh quality characteristics differently and the product
quality seems to be related to several, if not all, software
engineering concepts in some level.

III. RESEARCH METHOD

Based on literature research, the assessment of quality
factors and collecting comparable data on perceived quality
in varying organizations was known to be difficult. We
decided to approach the problem by applying methods to
obtain both statistical and observational data from the
organizations, from several viewpoints of software
development.

Table 1: Description of the OUs participating in the study

ou Business Company size” / Operation Participation
Case A Modeling software developer Large / International Survey, Interviews
Case B MES" producer and logistics service systems provider Medium / International Survey, Interviews
Case C ICT consultant Small / National Survey, Interviews
Case D Maritime software system developer Medium / International Survey, Interviews
Case E Internet service developer and consultant Small / National Survey, Interviews
Case F Safety and logistics system developer Medium / National Survey, Interviews
Case G Financial software developer Large / National Survey, Interviews
Case H ICT developer and consultant Large / International Survey, Interviews
Case I Financial software developer Large / International Survey, Interviews
Case J SME?" business and agriculture ICT service provider Small / National Survey, Interviews
Case K Logistics software developer Large / National Survey, Interviews
Case L MES? producer and electronics manufacturer Small / National Survey, Interviews
Other 19 Case | Varies:) from software service con;ultams to organizations Varies Survey
OUs developing software components for their own hardware products.

We decided to apply two different approaches to validate
our own data and further enable us to confirm our findings.
To achieve this, we designed a theme-based interview and a
survey to collect data on quality concepts; the survey
collected data on several organizations to gain a perspective
on the industry field as a whole, while the interviews
collected considerations of the individual organizations. In
the survey, we collected data from 31 software organizations,
and in the interviews, we interviewed 36 software
professionals from 12 different organizations, in topics such
as the test process, test methods and quality in testing. The
contacted organizations are summarized in Table 1 and the
data collection rounds in Table 2. The themes of the
interviews and the questionnaire forms are available at
http://www2.it.lut.fi /project/MASTO/.

Combining quantitative and qualitative analyses is a form
of methodological pluralism. Methodological pluralism
means that the applied study approach does not apply one
“correct” method of science, but many possible methods that
complement each other [18]. The results of the phases were
compared to each other to enable additional validation of the
soundness of the data and the analysis. In addition, the
population of the study was observed in organizational unit
(OU) level. The standard ISO/IEC 15504 [19] specifies an
organizational unit as a part of an organization that is the

“Manufacturing Execution System “as defined in [20]

subject of an assessment. An organizational unit deploys one
or more processes that have a coherent process context and
operates within a coherent set of business goals. An
organizational unit is typically a part of a larger organization
or company, although in small businesses, the organizational
unit may include the entire company. This way the
comparison between large, multinational company and
small, local, operator became feasible for the purposes of this
study.

A. Data Collection

For the interviews we had selected 12 OUs, which
represented different software domains, company sizes [20]
and operating scales. These 12 organizations were collected
from our industrial partners, and supplemented with
additional organizations by researchers to represent different
types of software business. The selection criteria were that
the OU produced software products or services, or offered
software-production related services as its main source of
income, in a professional and commercial manner. We also
accepted only one OU per each company to avoid bias of
over-weighting large companies or causing bias from certain
types of business practices

All the interviewed case organizations also participated
in the survey, for which 19 additional organizations were

Table 2: Organization of data collection rounds

Collection 1) Semi-structured interview 2) Structured survey with Semi- 3) Semi-structured interview
phase structured interview

Number of | 12 focus OU interviews 31 OUgs, including 12 focus OUs 12 focus OU interviews

participants

Participamt Designer or Programmer Project- or Testing manager Tester or Programmer

roles

Description The interviewee was responsible for or | The interviewee was responsible for | The interviewee was dedicated tester or

of had influence in software design. sofware project or testing phase for | was responsible for testing the software

participants software product. product.

Focus themes | Design- and Production methods, | Test processes and tools, Customer | Testing methods, Testing strategy and —
Testing strategy and -methods, Agile | participation, Quality and Customer, | resources, Agile methods, Standards,
methods, Standards, Outsourcing, | Software Quality, Testing methods and | Outsourcing, Test automation and —
Perveiced quality -resources services, Test tools, Perceived quality,

Customer in testing

selected to enhance the statistical relevance. The selection of
supplemental OUs was based on probability sampling,
randomly picking organizations out of our contacts. The final
selection was confirmed with a phone call to check that the
OU really belonged to the specified population. Out of the
contacted 30 additional OUs, 11 were rejected because they
did not fit the population criteria despite of the source
information.

The data collection sessions for the survey and interviews
lasted approximately an hour and they were recorded for
further analysis. The interviewees were selected based on the
recommendations from the OU, an emphasis being on the
responsibilities and job description of the employee.
Additionally, we required that the interviewees should be
working in the same project team, or contribute to the same
software product, in addition of working in the same OU. In
two out of the 36 qualitative interviews, the interviewed
organization opted to select two persons for interview, as
they considered that they did not have a sufficiently
experienced or otherwise suitable individual worker at their
disposal. The interviewees were also allowed access to the
interview questions before the actual interview. We also did
not forbid discussion between prior interviewees nor did we
encourage it. Additionally, in one occasion in the first phase
we allowed the OU to supplement their first round answers
as the interviewee had thought that the given answers lacked
relevant details. The data collection was done by three
researchers during winter of 2008 to summer 2009.

Structurally, the interviews were implemented with a list
of semi-structured questions regarding software testing,
quality concepts and software process-themed questions. The
interviews included such themes as development methods,
agile practices, test resources, test automation and perceived
quality. The themes were also related to the set of seed
categories [8], which contained essential stakeholders and
leads from the literature review [21]. Our aim was to further
develop these seed categories based on the observations
made in organizations to include the practical aspects that
effect software quality.

The first round of interviews included software
designers. Our intention was to test whether our prior studies
and the observation made on software processes (for
example [16, 17]) were still valid. Another objective was to
see if our seed categories for this study were selected so that
they would yield relevant results.

In the second round interviews the project and test
managers were targeted with both qualitative and
quantitative instruments. The twelve OUs participating in the
first and third round of the qualitative analysis also
participated on the survey, which was supplemented with
qualitative themes. During the second round, our objective
was to collect data on the organization as a whole, as our
interpretation was that the managers were in a better position
to estimate organizational concepts such as policy effects,
overall process, and quality concerns, in contrast to the
desired situation.

The third interview round focused on software testers.
During this interview round, the focus was on the software
testing phases, testing tools and quality aspects in the testing

work, further discussing some of the second round topics.
Based on the answers we were able to analyze the practical
testing work and the effect of quality aspects to the actual
testing work.

B. Data analysis on survey

In the quantitative part of the study, the survey method
described by Fink and Kosecoff [22] was used as the
research method. For the selected approach, methods of data
analysis were partially derived from livari [23], while the
design of the survey instrument was done by the principles
derived from Dyba [24]. We used Cronbach alpha [25] for
measuring the reliabilities of the constructs consisting of
multiple items, and studied the correlations between software
quality and other relevant constructs by using Kendall’s
tau_b correlation [26].

Related surveys can be categorized into two types:
Kitchenham et al. [27] divide comparable survey studies into
exploratory studies, from which only weak conclusions can
be drawn, and confirmatory studies, from which strong
conclusions can be drawn. This survey belongs to the
category of exploratory, observational, and cross-sectional
studies.

C. Data analysis on interviews

In the qualitative study we decided to apply the grounded
theory method [28, 29, 30]. The grounded theory was first
conceived by Barney Glaser and Anselm Strauss [29], but
later the original method has diversified into two distinct
approaches, introduced in later publications by Glaser [31],
and by Strauss and Corbin [30]. The Glaserian grounded
theory focuses on observing activities within the
environment and relies on emergence that cannot be made
fully systematic, whereas Strauss-Corbin is more geared
towards systematic examination and classification of aspects
observed from the environment. The number of participating
organizations, the limited ability to non-intrusively observe
the developers while working, and the large amount of data
generated by the organizations meant that for classifying and
analyzing the data, the Strauss-Corbin approach was
considered more feasible to implement in this study.

The grounded theory method has three phases for data
analysis [30]. These methods are open coding, where the
interview observations are codified and categorized. In this
phase, the seed categories are extended with new categories
which emerge from the data. It is also possible to merge or
completely remove the categories that are irrelevant to the
observed phenomena. During the open coding, 166 codes in
12 categories were derived from the 36 interview recordings.

The second phase is called axial coding, in which the
relations between different categories and codes within
categories are explored. In this phase, the focus is on the
inter-category relationships, although some necessary
adjustments like divisions or merges may be done to the
categories.

The last and third phase of grounded analysis is the
selective coding. In selective coding, the objective is to
define the core category [28, 30], which explains the
observed phenomena and relates to all of the other defined

categories. However, in some cases the core category can
also be a composition of categories in case one category does
not sufficiently explain all the observed effects. In addition,
the results may yield useful observations, which explain the
observed phenomena, even extending to a model to define
the observed activities. In this study, the core category can be
characterized as such “umbrella category”, which we named
as The Effect of Different Software Concepts on Quality. We
further described the category with five observations that
explore the different software process activities and their
effect on end-product quality in development process.
Finally, based on the study results, we summarize the
findings as a grounded theory on feasible approach on
enhancing end-product quality.

IV. RESULTS

In this chapter, we present the results from both parts of
the study. First we begin with the survey results and then
discuss the grounded theory analysis.

A. Results of the quantitative analysis

The questionnaire was divided based on the major
themes of the overall study; general information of the
organizational unit, processes and tools, customer
participation, and software quality. We were able to
calculate several different constructs, which were then
tested for feasibility and reliability with Cronbach alpha
(results in Table 3) and Kendall’s tau_b (results later in
Table 4) tests. Complete survey instrument is also available
at http://www2.it.Iut.fi /project/MASTO/. In the following,
we present the constructs, which were confirmed to affect
the perceived quality outcome.

1) Building quality in software process

The interviewees were asked to give their in-sight of two
claims, quality is built in development and quality is build in
testing, to estimate which is the source of the quality in their
products. This item also included an assessment of the
ISO/IEC 29119 test levels in existing organizational
processes. The standard was estimated by the maturity
levels — the appropriateness of the process compared to the
process needs — of different test process levels comparable
with the definitions of the standard. These levels,
organizational test policy, organizational test strategy,
project test management level, and test execution, measured
the sophistication of the current test process in the OU.
Based on maturity estimates, the construct Existing process
conformance with the testing standard model was calculated
to describe the existing level of the structures similar or
comparable with the ISO/IEC 29119 standard process [3]
levels. The used scale was a 5-point scale [21] where 1
denoted “fully disagree” (this level is very bad in our
organization) and 5 denoted “fully agree” “this level is very
good in our organization). The results based on answers are
presented in Figure 1.

According to the results, interviewees emphasized that
the quality is built in development (4.3) rather than in
testing (2.9). Also for the standard, the results are mostly

Qualityis built in development

Quality is builtin testing

Level of test policy

Level of test strategy

Level of test management

Level aftest execution

Figure 1. Origin of quality and the realization of
the software testing standard ISO/IEC 29119

ambiguous in all test process layers, but slightly favor the
lower level activities like management and test execution
level.
2) Customer participation

The second survey topic was connected to customer
participation. This construct, Customer participation,
described how customers participated in development and
testing processes. For customer participation, the constructs
were calculated by summing up the answers of the items and
dividing the sum by the number of items. From this group,
Customer participation in the general control, i.e. in the
process steering and in decision making in development,
reached acceptable Cronbach alpha value only with two
items. These items were our most important customer
reviews project management schedules and progress reports
made available by us, and our most important customer
provides domain training to us. The Cronbach alpha values
for these constructs, amongst the other constructs, are listed
in Table 3.

Table 3. The reliabilities of different constructs
(acceptance level of >0.7)

Variable Cronbach alpha
Existing process conformance with the testing .894
standard model
Customer participation during the specification .855
phase of the development.

Customer participation during the design phase of 172
the development.

Customer participation during the testing phase of 742
the development.

Customer participation in the general control. 702

Trust between customer and supplier. .699

Elaboration of the quality attributes. 818

Additionally, the construct Trust between customer and
supplier described the confidence that the behaviour of
another organization will conform to one’s expectations as a
benevolent action. For measuring this construct, the
questions were derived from Benton and Maloni [32]. When
calculating the Cronbach alpha for the construct Trust, an

Functional suitability

Reliability

Performance

Operability

Security

Compatibility

Maintainability

Transferability

00 10 20 30 40 5,0

Figure 2. Assessment of fulfilling the different quality
characteristics in the end-product

acceptable level was reached with items our most important
customer is concerned about our welfare and best interests
and our most important customer considers how their
decisions and actions affect us.

3) Quality characteristics and perceived quality

For the third interview topic, interviewees were asked to
evaluate the competence level of each ISO/IEC 25010-
quality characteristic in their software by a S5-point scale
where 1 denoted “this characteristic in our software is taken
into account very badly” and 5 denoted “this characteristic
in our software is taken into account very well”.
Interviewees were also advised to leave the attribute
unanswered (“this characteristic is irrelevant to our
product”) if the attribute was not valid for the OU, i.e. if the
attribute was irrelevant for the organization. If an
organization gave some attribute a high score, it meant that
the organization thought that this particular quality
characteristic was handled well in the product design and
development. The resulting average indicated the perceived
level of quality of the organization’s product: if organization
gave high points to quality characteristics, it was understood
that the organization considered their end-product of high
quality, if low scores, the organization considered that their
product was low quality, or at least not as good as it should
be. These results were also used as a construct perceived
overall quality by the organization. The mean values for all
surveyed quality characteristics are included in Figure 2.

Quality characteristics functional suitability, reliability,
security, and compatibility reached the highest scores,
meaning that they were the most well-attended quality
characteristics. Even if the results did not vary much
(between 3.3 and 4.2), it was indicative that some of the
characteristics were generally less attended than others.
However, overall all of the attributes were considered at
least somewhat important; only in 9 cases (3.6% out of 248
characteristic assessments) the organization considered the
assessed characteristic “irrelevant” to their product.

We have identified the MIQCs 7

We have prioritized the MIQCs 3,3
We have documented the MIQCs] 3,2
We have communicated the MIQCs 3,4
We measure the MIQCs] 29

MIQC = most important
quality characteristic 0 1 2 3 4 5

Figure 3. Elaboration of the quality characteristics

In addition of perceiving quality characteristics, the
interviewees were asked to evaluate how their organizations
elaborated and communicated their quality characteristics.
The interviewees were asked to give their in-sight of five
claims, we have (1) identified, (2) prioritized, (3)
documented, (4) communicated, (5) we measure the most
important quality characteristics. The construct,
Elaboration of the quality characteristics, was calculated as
the mean of the answers to the claims. Almost all
organizations had at least identified their most important
quality characteristics (3.7), while measurement and
collection of the metrics was not as common (2,9). The
results, how organizations elaborate their quality
characteristics, are given in Figure 3.

4) Factors for achieving quality characteristics

The effect of different survey constructs was further
explored to see how they would correlate with the perceived
overall quality of end-product. To achieve this, the Kendall’s
tau_b correlations were calculated between constructs, which
were first tested with Cronbach alpha. As based on the
Kendall’s tau_b-analysis, the constructs Existing process
conformance with the testing standard model, Elaboration of
the quality attributes, and Trust between customer and
supplier seemed to positively correlate with the construct
perceived overall quality by the organization at the 0.01
level. In addition, the influence of some constructs, such as
Customer participation during the design phase of the
development, and Customer participation in the general
control were almost significant.

Several other constructs were calculated from the data,
such as Software development method and Criticality of the
OU'’s end products, but they did not reach significant
correlations and therefore were discarded. The correlations
of constructs which had a significant correlation are
presented in Table 4, which also includes some insignificant
constructs as an example.

Based on these results, the most important factors for
achieving better end-product quality and pursuing quality
characteristics in software products are closely related to the
development process maturity and elaboration of quality
goals. Those organizations that had identified and
communicated their most important quality characteristics
or were confident with their development and test processes
were also confident with the levels of their quality
characteristics. The organization which thought that the

appropriateness and sophistication of their development
process was high or said that the identification of the
important quality attributes was in a high level, also
considered that their products implemented the quality
characteristics well. Also aspects such as customer
participation in certain parts of the development and trust
between stakeholders were also observed to be beneficial.

Table 4. Correlations between different surveyed
constructs and the perceived overall quality

Construct Kendall’s tau_b
Software development method -.195
158
Criticality of the OU’s end products 171
.226
Existing process conformance with the testing | .505 **
standard model .000
Customer participation during the specification | .120
phase of the development. 377
Customer participation during the design phase | .231
of the development. .092
Customer participation during the testing phase | .141
of the development. 287
Customer participation in the general control. 261
.057
Trust. 436 **
.002
Elaboration of the quality characteristics. 437 **
.001

Kendall’s correlation (N=31)
** Correlation is significant at the 0.01 level (2-tailed).

B. Results from the grounded analysis

The grounded theory analysis data was collected from 36
interviews held at 12 software producing organizations. We
interviewed software designers, project or test managers and
testers in three phases. This data was then codified and
analyzed, which led to the definition of several categories
and factors that were observed to have an effect on the
perceived quality and quality output of the product
development process, or based on the literature were
considered important. In the following sections, we
introduce these categories and observations.

The core category, “The Effect of Different Software
Concepts on Quality”, is defined as a composition of seven
other categories. These categories were collected from the
topics that interviewees mentioned regularly when

discussing about the quality aspects and perceived quality in
their software process. For example, standardization and the
role of the customer in the process were mentioned
regularly. In some occasions a category was included to test
the possible lead-ins from the survey and literature reviews.
For example, the effect, or more precisely the lack of effect,
for concepts such as the product/service-orientation or
criticality was studied more closely in the qualitative study.
A summary of the categories is shown in Table 5.

The category “Desired Quality Characteristics in
design” explains the ISO/IEC 25010 quality definitions that
were considered to be the most important characteristics
from the viewpoint of software designers. These quality
aspects were most likely those that were used in software
process, especially in specification, design and other early
development phases. For comparison, the second category
“Desired Quality Characteristics in testing” explained the
quality characteristics that were considered to be the most
important from the viewpoint of testers, and subsequently
also those, the testing work focused on.

The category of “Level and Effect of Criticality” is a
two-fold category. First is the level indicator of criticality of
the product the interviewed OU is developing. The
criticality level scales from 1-5. In this scale, 5 is the highest
level meaning “may cause loss of human life”, 4 is “may
cause bodily harm or great economical losses”, 3
“significant economical losses”, 2 “small economical
losses” and 1 “no effect or user irritation”. The scale is
similar to other criticality measurements, discussed for
example in [32]. The latter part of the category is
assessment on how the test process would change if the
criticality level of their product increased.

The category of “Effect of Customer” defines the effect
the customer has on the end-product quality. This category
defines the most influential action or generally the
possibilities of the customer to affect the quality, in actions
such as “extend deadline” or “allow larger budget”. It
should be noted that in this category, the most potent effect
may also be harmful for the end-product quality, like
limiting access to the final working environment or
requesting unfeasible changes.

The category of “Applied standards” lists the standards
the organizations are using in either development or test

Table 5: Categories from qualitative analysis

Category

Description

Desired Quality Characteristics in design

The quality characteristics that the software designers consider important.

Desired Quality Characteristics in testing

The quality characteristics that the software testers consider important.

Level and Effect of Criticality
work.

The level of end-product criticality and the effect of how increased criticality would affect testing

Effect of Customer
to take place.

The effect of customer to the end-product quality, and short description on what constitutes this effect

Applied Standards
of the organization.

The standards that are officially followed and enforced in either software development or test process

Effect of Outsourcing

The effect of outsourcing development process activities has to end-product quality, and short
description of what constitutes this.

Product/Service-orientation

The distribution of business in interviewed organization divided between product and service-oriented
activities. Assessed by the managers.

process. Even though many organizations applied parts of
the standards, or followed the process efficiency unofficially
by measures derived from standards, in this category only
the fully applied, systematically used, standards and
competence certificates are listed.

The category of “Effect of Outsourcing” defines the
effect outsourcing has on the perceived quality of an end-
product, including effects like allowing more focus on core
products or critical aspects. This category defines the most
influential way the outsourcing affects the process outcome
quality.

The category of “Product/Service-orientation’
represents the ratio between product-oriented activities and
service-oriented activities in an OU. This approximation is
directly taken from the survey interviews with managers.

1) Observations from the data

The observations were developed based on the
categories. These observations either define software
development concepts that affected the perceived quality in
a software process, affected quality in a product or were
considered an important item for composing more complex
constructs of software quality. All these observations are
based on the findings made during the analysis. The
summary of the findings which were the basis for the
observations, are available in Table 6.

’

Observation 1: The importance of quality attributes vary
between different process stakeholders in an organization.

The first finding confirmed, as suggested by the literature
[6], that the conceptions of quality vary even within one
project organization. The software designers and testers
were asked to rank the ISO/IEC 25010 quality attributes in
the order of importance. Although the testers and designers
were working on a same organization, the most important
attribute was the same only in four case organizations (A, D,
K and L) out of twelve. All the same attributes, although not
necessarily in the same order, were mentioned by two
organizations, cases L and D.

It seems that the designers were slightly focused towards
usability aspects such as operability or functional suitability,
while testers were focused towards technical attributes like
security or reliability, meaning that each participant had a
different view on what quality should be.

Observation 2: The effect of product/service-orientation
or criticality on the importance of quality attributes is low.

The product-oriented organizations and service-oriented
organizations seem to have similar priorities in quality
attributes. For example, Case E, which is a fully service-
oriented software producer, promotes the same attributes as
Case F, which is mostly product-oriented. Similarly Case G,
which has a large emphasis on the service-orientation, has

Table 6: Observations from the case organizations

IDQC" in design IDQC" in testing ILevel and Effect |Effect of |Applied [Effect of Outsourcing [Product/ Service
of Criticality Customer standards orientation
ICase A [Functional suitability, [Functional Suitability, [2: Security, [Enhances the quality [[SO9000-seires, o meaningful effect. 100% product
[Reliability [Security [Reliability get more [by participating [STQB-certificates
jattention closely. [for testers
I(Case B [Functional suitability, [Perfomance efficiency, [3: Performance Enhances the quality |[CMMi - 100% product
IPerformance efficiency [Operability lefficiency, Functional |by allowing larger
suitability get more |expenses.
jattention
(Case C Maintainability, Reliability, Operability (4: Central aspects get [Enhances the quality [ISO9000-series, [May weaken the quality by [80% product, 20%
IFunctional suitability, ore attention. by providing feedbackll[SO12207 lcausing instability in the [service
[Reliability rocess.
ICase D [Functional suitability, [Functional suitability, |4: Security gets more [Enhances the quality |Officially none May enhance quality. 55% product, 45%
[Operability [Reliability, Operability _fattention by providing feedback] service
(Case E [Operability, Security |- 1: Central aspects get [Enhances the quality [Officially none May weaken the quality by|100% service
more attention by allowing larger lcausing instability in the
lexpenses. rocess.
ICase F [Operability, Functional [Reliability, [5: Central aspects get [Enhances the quality [[SO9000-series, [May weaken the quality by [83% product, 17%
suitability (Compatibility, Security [more attention by participating [domain-based lcausing instability in the [service
lclosely. [certifications. rocess.
ICase G [Reliability, IFunctional suitability, [3: Security, Enhances the quality [I[SO9000-series 3 40% product, 60%
IPerformance efficiency,|Operability, [Functional suitability |by providing feedback|SPICE, ISTQB- service
ISecurity IPerformance efficiency, |get more attention lcertificates for
Reliabilit [testers
ICase H [Security, Reliability IMaintainability, [2: Functional [Enhances the quality [CMMi, ISTQB- o meaningful effect. 50% product, 50%
(Operability, suitability gets more |by providing feedbackcertificates for service
IPerformance efficiency, fattention testers
Reliability
(Case I [Functional suitability, [Security, Compatibility, 4: Functional Enhances the quality [CMMi Enhances the quality by [63% product, 37%
[Performance efficiency,[Functional Suitability, [suitability, Reliability [by participating llowing focus on critical [service
IReliability Reliability et more attention closely. laspects.
ICase J [Performance efficiency,|Functional Suitability, [2: Reliability, Enhances the quality [Officially none INo meaningful effect. 100% product
reliability, Operability [Reliability, Performance [Functional suitability [by providing feedback|
[Efficiency et more attention
I(Case K [Functional suitability, [Functional suitability, [3: Central aspects get [Enhances the quality |Officially none Enhances the quality by ~ {100% product
[Reliability, Reliability, Security Imore attention. by allowing larger llowing focus on critical
IPerformance efficiency lexpenses. laspects.
ICase L [Functional suitability, [Functional suitability ~ [3: Central aspects get[Weakens the quality |Officially none May weaken the quality by|75% product, 25 %
[Operability Imore attention. by requiring late lcausing instability in the [service
changes. rocess.

"Desired Quality Characteristics

the same two most important attributes in both design and
testing as Case J, which is fully product-oriented. The
interviews reflected this consideration to some degree. The
type of software may change between projects, but the
development and testing process is done in a similar fashion
in every project.

“[The project type is irrelevant] as we make things the
same way in any case if we want to keep any quality.” —
Tester, Case F

“Quality is built in design with test cases [in all
projects].” —Tester, Case G

The criticality of the software product seems to have
only a small effect on the test process activities. When asked
to reflect on how the development priorities of a software
project change in the case of a higher criticality, the main
features were considered to gain more attention in five
organizations. In the other seven organizations, certain
quality aspects, such as functional suitability, reliability or
security, gained more attention. Overall, the criticality was
not considered to cause major process changes in any
organizations.

“Security... and reliability, they still are number one; in
this business they always are.” —Designer, Case G

“Yes, in some cases the security would be concerned” —
Tester, Case D

A clear indicator of the effect of criticality was observed
when comparing the cases E, F and K. Case K was a
completely product-oriented organization with an average
criticality, Case E was a completely service-oriented
organization with a low criticality and F a high-criticality
product-oriented OU. The differences between software
products in these organizations can be considered quite
large, but yet the effect of criticality was considered similar;
the process becomes more rigid but the approach stays the
same.

“I think, within our business space, it [testing process]
would stay the same” — Designer, Case K

“Activities should always aim to progress work towards
objectives [regardless of what we are doing].” —Designer,
Case E

“[Security] is something that is always taken into
account... but maybe we should focus more on that.” —
Designer, Case F

Observation 3: The standards in software testing do not
affect the quality characteristics, as they are not widely used
in practice even though organizations in general are
positive towards standardization.

Testing standards and certifications in the case
organizations were rarely applied. The most commonly
applied standards were CMMi and ISO9000 models, which
both focus on general process quality measurements. In five
organizations no standards were followed officially,
although some method of measuring process efficiency
existed in all organizations.

“ISO9000... well officially we do not have any
certificates for it, but that is the one we based our own on.”
— Manager, Case G

“CMM;i reviews... as far as I know they, however, have
been internal.” — Manager, Case H

As for testing-related standards, the application was even
more sporadic. Only in three cases, G, H and L, some form
of official testing certification was applied.

“We have one tester who has done it [ISTOB]... he
trains the other testers. That seems to work for now.” —
Tester, Case A

“We have this ISTOB. All our testers as far as I know
have done it.” — Tester, Case H

“We have testers participating in the ISTOB training.” —
Tester, Case G

Even though many organizations did allow, or were
generally positive towards participating on certification
training, the number of testers who had actually acquired a
formal certification varied. The level of currently applied
test-related standards and certificates seems to indicate that
organizations could have use for a new testing standard.
This was indicated by feedback given by the interviewees
when discussing the purposes of the upcoming 1SO29119
standard and the standards currently applied:

“It would help us to have some way to organize testing in
a smart way. A prepared model would be ideal.” — Tester,
Case L

Observation 4: The general impact of a customer to the
perceived end-product quality is positive, but a customer is
required to either provide resources or commit to the
project.

The customer in a software project was generally
considered to have a positive impact on end-product quality.

“The feedback from the client is important to have.” —
Designer, Case H

“It is easier to do [good quality] if the customer is
involved.” — Manager, Case F

“The customer brings their own set of quality
requirements... it [quality] becomes everyone’s objective.”
— Manager, Case G

However, to actually have an impact on the quality, the
customer was required either to provide a substantial
financial contribution to the project, to give relevant
feedback or to commit otherwise to the project, offering
insight and contributions to the project along its progress.

“If they want high quality [they increase the project
budget] ” — Designer, Case K

“Giving feedback is the key [to quality].” — Manager,
Case J

“Participation to the specification is the first, the second
is acceptance testing to see if everything is done as agreed
and the third is communication, meaning comments and
such...” -Manager, Case A

“The customer has to be active especially in testing and
specification phases.” — Manager, Case [

On the other hand, one organization also noted that in
some occasions the customer may hinder the quality, for
example by requiring late or unfeasible changes to the
product without providing enough support to allow such
operations.

“If a customer wants something really stupid and pays
for it, then we have to do it.” — Designers, Case L

“In one case, the customer did not allow us to use their
systems, so we could not do the final tests.” — Designers,
Case L

Observation 5: Outsourcing may cause quality issues
smaller organizations.

It seems that the OUs from small companies are cautious
to apply outsourced resources in their projects. In our study,
the small-company originating cases L, C and E all were
uncertain or concerned regarding the quality of outsourced
resources. They considered outsourced resources and third-
party-based software modules hazardous, or at least
challenging to implement in their own projects:

“There always seem to be some problems with modules
brought from outside.” — Designer, Case L

“If you start from scratch when outsourcing, it fails
unless a lot of energy is used to assure it.” —Manager, Case
E

As a contrast, OUs from large companies — cases K, H, I
and L — considered outsourcing to be a feasible option.
Generally their opinions seemed more positive, even to the
extent of considering it to enhance quality by allowing
focusing on central aspects of the software.

“In outsourcing, we can require that in our product, we
allow only this and that amount of errors... by partnering,
we can easily assure quality in those aspects.” —Manager,
Case K

“They go through the same test process so I don'’t see
any problems with them.” —Designer, Case H

“It does not affect. Bought code is reviewed and
integrated similarly as our own.” — Designer, Case L

It would seem that the OUs from larger companies do
gain benefits from belonging to a larger organization, at
least in applying outsourced resources. The rationale for this
observation may be that large companies have more power
or influence; small companies may be unable to pay similar
amounts as larger companies, to get exactly what they want,
so they experience more problems. Another viable
explanation could be that large organizations may have
more experience of outsourcing or at least have more
resources to organize and administrate the outsourcing
activities.

With outsourcing, the effects of open source software
modules in professional software products were also
discussed by case organizations D, F, H and I. Case F
considered open source resources to be useful, as they
allowed the development to create secondary features out of
existing components. In their organization, the application
of open source resources to non-critical parts of the product
was considered to improve overall quality.

“The best open source modules follow standards more
closely than some commercial products” —Tester, Case F

Cases D and H expressed similar considerations; Case D
had implemented some secondary features with open source
resources, while Case H was yet to apply open source but
was willing to try should something applicable be found.
Case I applied some open source along with other
outsourced modules, but was unsure if especially the
“opensourceness” had any effect on quality.

V. DISCUSSION

One common theme seems to be the confidence in
testing process. Both the survey results and qualitative
analysis established that there are some indicators which
affect the perceived software quality, such as
appropriateness of the testing process in relation to the
product, to communication of most important quality
characteristics or to customer participation to the
development process. Along with the appropriateness of test
process, the overall level of standardization seems to have
positive effect on quality. However, especially in testing, the
existing test processes rarely seem to apply standards to a
large degree. Even if the overall attitudes towards test
standardization and test certification programs are positive,
the application of standards in several studied organizations
was still at a too low level to actually have a visible
influence on the process.

As for other studied process concepts, the software
development method, the product/service-orientation of the
organization nor the criticality affected the perceived quality
to a large degree; it seems that the product quality can be
sufficient with any development method, and that the main
criteria for quality characteristics comes from the product
domain, not from the criticality of the product. Surely the
highly critical software goes through more rigorous testing
than that with low criticality, but the importance of quality
characteristics is not related to criticality. For example, in
the case organizations in finance domain, the most
important quality characteristics were reliability, security
and functional suitability, regardless whether the application
itself was used to service individual users or a large
network. The criticality level varied between levels of 2
(small economical losses) and 4 (great economical losses),
but the quality goals and importance of quality
characteristics, stayed the same. Similarly, a software
development method, whether it applied agile practices or
traditional design-based approach, nor the product/service-
orientation, affected the importance of quality
characteristics.

One interesting observation was that designers and
testers rarely had similar considerations on the “most
important quality characteristics”. This phenomenon surely
has an effect on pursuing quality in the software products, as
the elaboration of desired quality did correlate with the
improvement of quality. Overall, it seems that the desired
quality characteristics are usually not identified nor

communicated strongly enough throughout the
organizations, as the identified quality characteristics were
usually based on personal preferences, similarly as
discussed by Garvin [6].

In our study we have established that there are factors
which affect the perceived end-product quality. The
participation of the customer, defining and communicating
the quality objectives, and creating a feasible software
process, which has addresses the needs of desired quality,
were established to have positive correlation with the
perceived quality. Summarizing these findings to one
grounded theory, it would seem that creation of
appropriate, systematic test and development processes,
promoting active participation from customers, and
identifying and communicating the desired quality
characteristics through the organization offer a good
starting point for pursuing better quality in end-products.

Applying two different approaches allowed this study to
observe the quality from different viewpoints, and overall
do comparisons between different sources of data. In this
sense, the threats to validity for the results of this study are
low, but there are some concerns for the study validity.

First of all, in survey the sample size of 31 organizations
may seem somewhat limited. However, similarly as in [23],
the sample size is small but sufficient if analyzed correctly.
In our study, the threat of overfitting the data - over-
representing certain sub-groups of participants - was
addressed by selecting the organizations to represent
different software domains and types of organizations, and
triangulating the data with different approaches. Also in
terms of the number of organizations, a paper by Sackett
[34] discusses the conceptualization of signal-to-noise-ratio
in statistical research. Their approach to define confidence
as based in practicality of observations: confidence =
(signal / noise) * square root of sample size. In practice, this
indicates that the confidence for the result being non-
random weakens if the amount of noise increases while
signal decreases. In the Sackett model, the attributes are
abstracted, meaning that the noise can be considered to be
uncertainty on any source of data. The concept is that the
confidence in the survey data increases the validity of the
study. Our study addressed this problem by organizing face-
to-face interviews with clients and applied researchers as the
interviewers to ensure that the interviewees understood the
questions and terminology correctly. Therefore in Sackett
terms it can be argued that our signal was very good and
noise low, so the overall confidence should be good.

As for the validity of the qualitative parts of this study,
there are some threats that should be addressed [35]. For
example, Golafshani [36] discusses the validity and
reliability of qualitative research, and makes some notions
on the topic. First of all, the reliability and validity in a
qualitative study are not the same, traditionally
mathematically proved concepts, as in a quantitative study,
but rather a conceptualization of trustworthiness, rigor and
quality of the study. To increase the validity in qualitative

study, the research must eliminate bias and remain truthful
to the observed phenomena. Similarly, a grounded theory is
not a theory in mathematical sense, establishing a universal
truth or causality, but rather a generalization of
observations, offering guidelines and considerations for best
practices when taken outside of the study scope [30].

The concept of research validity has been taken even
further by Onwuegbuzie and Leech [37], who create model
for threats of validity in qualitative studies. They summarize
that in qualitative research the threats to internal validity and
external credibility are context sensitive; in quantitative
studies the objective is to minimize the amount and effect of
invalid data, but in qualitative studies, the threats have to be
individually assessed based on truth value, applicability,
generalizability and such. As these measurements are
interpretative, the validity should be addressed by providing
enough documentation on the research process, analysis
methods and reasoning for the presented results.

As mentioned in the study by Jergensen [7], in
measuring and comparing quality, there are no universal
measurements. There is only a possibility to produce
relevant results within the context. Obviously our study has
the same limitations, but for our research objectives in
observing perceived quality in software development, our
intention was to observe and identify software engineering
aspects which should be used to define general guidelines
on how the quality should be addressed or improved. In this
objective, we managed to identify the effect of several
components, such as the role of the customers, product
criticality, process appropriateness or development method.

VI. CONCLUSIONS

In this paper we have presented our multi-method study
on observing perceived quality in software organizations.
Our results indicate that there are several concepts which
affect the perceived software quality, such as customer,
outsourcing or communication between stakeholders. On the
other hand, it also seems that several process concepts such
as criticality, product/service-orientation, development
method or open source approach do not have any major
effect on the perceived end-product quality. It is obvious
that high-criticality products do have fewer faults than those
on the low end of the scale, but the desired quality
characteristics do not change significantly between the
criticality levels. Another important finding was that even
within one organization the importance of quality attributes
seems to have variation between different stakeholders and
viewpoints of the software process.

In the majority of the organizations, the testers and
designers considered quite differently of what are the “most
important” or “most desired” quality attributes of the
product. It seems that the desired objectives, and desired
quality, must be communicated clearly to reach every
stakeholder in the organization as the desired quality and
quality requirements are not obvious, “common sense”
aspect. Overall, it seems that generally feasible approach in

pursuing better end-product quality would be to create
systematic test and development processes, promote active
participation of customers and identify and communicate the
desired quality characteristics through the organization.

As for future work, it is evident that concepts which in
this study were observed to have correlation with perceived
quality are also closely related to software process
improvement. It would be beneficial to study how these
observations could be integrated into a process improvement
project, and empirically validate the study-established
factors, which had observable effect on the perceived end-
product quality.

ACKNOWLEDGMENT

This study was supported by the ESPA-project
(http://www.soberit.hut.fi/espa), funded by the Finnish
Funding Agency for Technology and Innovation, and by the
companies mentioned in the project pages.

REFERENCES

[1] Osterweil L. J. (1997). "Software processes are software too,
revisited: an invited talk on the most influential paper of ICSE 9," in
International Conference on Software Engineering, Proceedings of
the 19th international conference on software engineering, Boston,
pp. 540-548.

[2] ISO/IEC (2008). ISO/IEC 25010, Softaware Engineering — Software
product Quality Requirements and Evaluation (SQuaRE) Quality
Model.

[3] ISO/IEC (2009). ISO/IEC 29119, Software Testing Standard.

[4] Kit E. (1995). Software Testing in the Real World: Improving the
Process. Reading, MA: Addison-Wesley.

[5] Tassey G. (2002). The Economic Impacts of Inadequate Infrastructure
for Software Testing. U.S. National Institute of Standards and
Technology report, RTI Project Number 7007.011.

[6] Garvin D.A. (1984). “What Does “Product Quality” Really Mean?”,
Sloan Management Review, Issue 4, pages 25-43.

[7] Jergensen M. (1999). “Software quality measurement”, Advances in
Engineering Software, Vol 30(2), pages 907-912.

[8] Miles M.B. and Huberman A.M. (1994). Qualitative Data Analysis.
Thousand Oaks, CA: SAGE Publications.

[9] Taipale O. and Smolander K. (2006). “Improving Software Testing
by Observing Practice”, Proceedings of the 5th ACM-IEEE
International Symposium on Empirical Software Engineering
(ISESE), 21-22 September 2006, Rio de Janeiro, Brazil, IEEE, pp.
262-271.

[10] Hansen M. T., Nohria N. and Tierney T. (1999). "What's Your
Strategy for Managing Knowledge?," Harvard Business Review, vol.
77, pp. 106-116.

[11] Lin J.,, Brombacher A.C., Wong Y.S. and Chai K.H. (2004)
"Analyzing Quality Information Flows in Cross-company Distributed
Product Development Processes," in Engineering Management
Conference, Singapore, pp. 973-977.

[12] Boehm B. and Turner, R. (2003), "Using Risk to Balance Agile and
Plan-Driven Methods," Computer, vol. June, pp. 57-66.

[13] Fowler M. & Highsmith, J. (2001), The Agile Manifesto.
[14] Abrahamsson P., Salo O., Ronkainen J. & Warsta J. (2002), Agile

Software Development Methods: Review and Analysis. VTIT
Publications 478.

[15] Guimaraes T., McKeen J. D. & Wetherbe J. C. (1994) The
Relationship Between User Participation and User Satisfaction: An

[16]

[17]

(18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]
[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Investigation of Four Contingency Factors. MIS Quarterly/December
1994, 26.

Karhu K., Repo T., Taipale O. and Smolander K. (2009). “Empirical
observations on software testing automation”, IEEE Int. Conf. on
Software Testing Verification and Validation, Denver, USA.
Kasurinen, J., Taipale, O. and Smolander, K. (2009). “Analysis of
Problems in Testing Practices”, Proc. 16" Asia-Pacific Conference on
Software Engineering, 1.-3.12., Penang, Malaysia.

Hirschheim R. A. (1985), 'Information systems epistemology: an
historical perspective', in R. H. E Mumford, G Fitzgerald, T Wood-
Harper (ed.), Research Methods in Information Systems, North-
Holland, Amsterdam.

ISO/IEC (2002). ISO/IEC 15504-1, Information Technology -
Process Assessment - Part 1: Concepts and Vocabulary, 2002.

EU (2003), "SME Definition," European Commission.

Seaman C.B. (1999). "Qualitative methods in empirical studies of
software engineering", IEEE Transactions on Software Engineering,
vol. 25, pp. 557-572.

Fink A. and Kosecoff, J. (1985). How to conduct surveys A Step-by-
Step Guide. Newbury Park, CA: SAGE Publications, Inc..

Tivari J. (1996). "Why Are CASE Tools Not Used," Communications
of the ACM, vol. 39, pp. 94-103.

Dyba T. (2000). "An Instrument for Measuring the Key Factors of
Success in Software Process Improvement," Empirical Software
Engineering, vol. 5, pp. 357-390.

Cronbach L. J. (1951), "Coefficient Alpha and the Internal Structure
of Tests," Psychometrika, vol. 16, pp. 279-334.

SPSS (2010). SPSS 17.0. Chicago: SPSS Inc. http://www.spss.com.
Referenced 29.3.2010.

Kitchenham B. A., S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. E. Emam, and J. Rosenberg (2002). "Preliminary
Guidelines for Empirical Research in Software Engineering," IEEE
Transactions on Software Engineering, vol. 28, pp. 721-733.

Paré¢ G. and Elam J.J. (1997). Using Case Study Research to Build
Theories of IT Implementation. The IFIP TC8 WG International
Conference on Information Systems and Qualitative Research,
Philadelphia, USA. Chapman & Hall.

Glaser B. and Strauss A.L. (1967). The Discovery of Grounded
Theory: Strategies for Qualitative Research. Chicago: Aldine.

Strauss A. and Corbin J. (1990). Basics of Qualitative Research:
Grounded Theory Procedures and Techniques. SAGE Publications,
Newbury Park, CA, USA.

Glaser B.G. (2002), “Constuctivist Grounded Theory?”, Forum:
Qualitative Social Research (FQS), Vol 3(3).

Benton W. C. & Maloni M. (2004) The influence of power driven
buyer/seller relationships on supply chain satisfaction. Journal of
Operations Management, 22.

Bhansali, P.V. (2005). “Software safety: current status and future
direction”, ACM SIGSOFT Software Engineering Notes, Vol 30(1).
Sackett D.L. (2001). "Why randomized controlled trials fail but
needn't: 2. Failure to employ physiological statistics, or the only
formula a clinician-trialist is ever likely to need (or understand!)".
CMAIJ 165 (9): 1226-37, October.

Robson C. (2002). Real World Research, Second Edition. Blackwell
Publishing,

Golafshani N. (2003). “Understanding Reliability and Validity in
Qualitative Research”, The Qualitative Report, Vol 8(4), pages 596-
607.

Onwuegbuzie A.J. and Leech N.L. (2007). “Validity and Qualitative
Research: An Oxymoron?”, Quality and Quantity, Vol 41(2), pages
233-249. DOI: 10.1007/s11135-006-9000-3.

Publication VII

A Self-Assessment Framework for Finding
Improvement Objectives with ISO/IEC 29119 Test
Standard

Kasurinen, J., Runeson, P.,, Riungu, L. and Smolander, K. (2011), Proceedings of the
18th European System & Software Process Improvement and Innovation (EuroSPI)
Conference, Roskilde, Denmark, 27.-29.6.2011, doi: 10.1007/978-3-642-22206-1_3.

© 2011 With kind permission from Springer Science+Business Media.

A Self-Assessment Framework for Finding
Improvement Objectives with ISO/IEC 29119 Test
Standard

. . 2 . 1 . 1
Jussi Kasurinen'!, Per Runeson”, Leah Riungu’ and Kari Smolander

! Software Engineering Laboratory, Lappeenranta University of Technology, P.O. Box 20,
FI-53851 Lappeenranta, Finland
{jussi.kasurinen, leah.riungu, kari.smolander} @lut.fi_
2 Software Engineering Research Group, Lund University, P.O. Box 118, SE-22100 Lund,
Sweden
per.runeson(@cs.lth.se

Abstract. One of the latest additions in defining the test process is the
upcoming ISO/IEC 29119 standard, which aims to define a universally
applicable generic test process model. However, currently the standard does not
offer any support for the adoption process of the model. In this paper, we
present our framework, which aims to combine a maturity level-based approach
with the standard process. Our objective was to create an easy-to-use
framework for organizations to assess how closely their existing test process
follows the standard, and give feedback on improvement objectives. Our results
indicate that combining maturity levels with the standard is a viable approach to
assess the implementation of the standard in practice.

Keywords: ISO/IEC 29119, self-assessment framework, test process maturity.

1 Introduction

In an ideal world, every time a new software system is produced, the test phase
verifies every possible use case and scenario that can be done with the new system.
However, the reality is that in the most cases, this is simply not possible, as
comprehensive testing for a complex programs would take too long or consume too
many resources [1]. In fact, even with realistic test resources, the test process usually
ends up being the most expensive item in the software development project [2], taking
as much as half of the development budget. Testing also has a large role in
determining whether the end-product is commercially successful or not [3].

Because the test process is important for successful software development, it also
means that the test process should be appropriate for the software organization and
follow good practices. To help organizations to achieve this objective, the
International Organization for Standardization (ISO) is developing a new standard
focusing solely on software test process, called ISO/IEC 29119 Software Testing [4].

In this study, the current draft of the standard is examined from the viewpoint of its
applicability in organizations. Our objective is to extend the standard with maturity

levels, and to define a practical framework for organizations to self-assess their
existing test process against the standard. The framework also aims to create a simple
process assessment tool, which produces practical objectives on improving the test
process and adopting practices as defined in the ISO/IEC 29119 standard.

The method to develop such a framework was to combine the processes defined in
the standard test process model with an existing testing-related maturity model. In this
study, the levels from Test Improvement Model (TIM) [5] were applied. This
maturity model was selected based on the conceptual similarities between the key
areas in the maturity model and the test processes defined in the ISO/IEC 29119
standard. The resulting framework was also assessed for its feasibility with a pilot
study, in which the framework was used to evaluate four real-life case organizations’
existing test processes. In three of these organizations, the profile was also assessed
for accuracy and usability by the organization itself to gain feedback and
enhancement proposals for further development.

The rest of the paper is constructed as follows: In Section 2, the existing test
process maturity models and other related research is presented. In Section 3, the
developed self-assessment framework, combining ISO/IEC 29119 processes and TIM
levels is introduced. In Section 4, the pilot study with the framework and evaluation
of the produced development objectives is discussed. Section 5 discusses the
framework and pilot study, while Section 6 brings the paper to a conclusion.

2 Related research

The ISO/IEC 29119 test standard [4] is by no means the first model for defining test
processes. The Test Maturity Model integrated (TMMi) [6] defines a maturity model
for assessing test processes by applying principles of Capability maturity model
integrated (CMMi) [7] framework on a software testing context. Unlike the ISO/IEC
29119 standard, TMM i is structured as an assessment model, where TMMi practices
are adopted in several maturity phases. The TMMi-model focuses on iterative
improvement processes, where the process maturity level increases as the process
improves. However, the application of the TMMi model in real-life organizations
suffers from some practical limitations [8,9]. For example, the concept of moving all
processes to one level before advancing to next is unrealistic to implement [9], and
the level requirements are criticized for being counter-intuitive [8].

Another model, which introduces maturity levels to test processes, is the Test
Improvement Model (TIM) [5]. TIM is based on CMM, a predecessor of CMMi [7],
and it focuses on developing the test process improvement objectives from the
existing state of the test process in the assessed organization. TIM also addresses the
limitation of requiring all of the processes to reach one level before moving to the
next; the test process is divided to key areas, such as planning and tracking or
testware, which are all assessed individually. The key areas are assessed based on the
existing practices, in levels which are baseline, cost-effectiveness, risk-lowering and
optimizing, in the order of maturity. The model promotes a concept of balanced
development, but does not enforce a strict parallel improvement of the key areas.

There are also previous attempts to develop a light-weight assessment framework
for software testing. One such example is the model, which is especially geared
towards small- to medium-sized [10] businesses, the Minimal Test Practice
Framework (MTPF), designed by Karlstrom et al. [11]. This model elaborates on the
concepts presented in the TMMi and TIM, simplifying the assessment process and
enabling the framework to be applied in the smaller organizations, which may not
have a need for extensive, large models. The MTPF model simplifies the test process
into five categories and defines a three-step process for each category to mature
towards the better testing practices, especially to align with the growth of the
company. The model aims to simplify the process improvement process, offering
concrete improvement objectives for small test organizations.

3 Self-assessment framework

The draft for ISO/IEC 29119 standard model [4] aims to specify a generic test process
model, which promotes the best practices of the discipline. However, the standard
presents a process model, giving no input on how to assess the goals of process
improvement or how to achieve conformance with the standard in a real-life
organization. The objective of this study is to present a concept-level framework, with
the intended purpose of enabling the evaluation of the existing test process against the
practices defined in the standard.

3.1 The ISO/IEC 29119 test process model

The current draft of the ISO/IEC 29119 [4] standard model is structured as several
layers which have different processes. The topmost layer is the organization level, in
which the organization-wide test policies and test strategy are defined. Below the
organizational level is the project-level management, which defines the activities and
responsibilities of the management in the individual projects. At this level, the
organization-defined documents are used in definition of a test plan, and as a basis for
deciding the test completion criteria. The project-level management also oversees the
lowest level of the model, the test execution level, and reports test completion reports
and feedback to the organizational management. At the test execution level the actual
testing tasks are completed and reported to the management. The test execution level
is further divided to two process types, static and dynamic. Static processes are the
testing activities, which are carried out throughout the project, whereas dynamic
processes are changing during the project advancement. In the model, these processes,
which contain all of the activities, roles and responsibilities, are defined as follows:

e Organizational test process (OTP) develops and manages organizational test
specifications, such as test policy and test strategy. It also is responsible for
monitoring and controlling lower layers of the process.

o Test management processes (TMP) are the project-level management activities in
the test process. TMP defines the test planning, test monitoring and control and test
completion, and is also responsible for maintaining the test plans.

o Test planning process (TPP) is the process which is responsible for developing the
test plan. Depending on the project phase, this may be project test plan, or test plan
for a specific phase.

o Test monitoring and control process (TMCP) ensures that the testing is performed
in line with the test plan and organizational test documents. It also is responsible
for identifying updates necessary for the test plan.

o Test completion process (TCP) is the process which includes activities, which are
done when testing is completed. It also ensures that the useful test assets are made
available for later use.

e Static test processes (STP) describes how static testing activities, such as test
preparation, test result review or test follow-up are done. These activities are the
“general” activities, which are done to all test cases in all test phases of the project.

e Dynamic test processes (DTP) describe how dynamic test activities such as test
implementation, test execution, test environment set-up and test incident reporting
are done in the organization. These activities are the “practical” activities, which
vary between different types of testing.

Some of the processes (like STP or TCP) also create output, which is used as an input

in another process (like TMP or OTP). Some of the processes (for example TMP) are

also the owners of the other processes, such as TPP or TCP. The relationships

between different processes and model layers are illustrated in Figure 1.

Organizational level

Organization level
/ management, OTP \

Project level Overview on project,
test strategy and test policies

Test completion
reports, feedback

Project level management, TMP

TPP TMCP TCP

Overview on testing
activities, test plan

Test execution level Incident reports,

test tat
STP DTP roports S

Fig. 1. ISO/IEC 29119 Test process model in a nutshell.

3.2 Maturity levels for framework

The Test Improvement Model (TIM) [5] is a maturity model based on SEI’s
Capability Maturity Model (CMM) [see 7], focusing on test process improvement.
The model applies key areas (KA), which are similar to CMM’s key process areas
(KPA), assessing important process factors in five levels of maturity. Unlike some
improvement models such as TMMi [6], TIM encourages process improvements even
in a single key area, as they are assessed separately and are rather independent. Even
though it is possible to focus just on one or two process areas, TIM encourages
balanced improvement. In a TIM model, level requirements are detailed for all key

areas, which are organization, planning and tracking, test cases, testware and

reviews. Even though the actual definitions for each level in different key areas vary,

they can be generally defined as follows:

o Level 0, Initial: This represents the level of activity where the baseline is not
measured or is non-measurable, meaning that the assessed activity does not exist in
the organization, is not measurable, or it has not been measured.

e Level 1, Baseline: The organization has documented, generally agreed methods of
doing testing, and it does basic testing functions, having dedicated people and
resources for doing the testing tasks.

o Level 2, Cost-effectiveness: The organization has systematic efforts to become
cost-effective and increase efficiency of product problem detection.

e Level 3, Risk-lowering: The organization is prepared to act on undesired effects.
The organization applies measurements and is capable of early involvement and
preventative actions to lower the risks of the project.

e Level 4, Optimizing: The organization is able to do Quality Assurance and the
testing is fully integrated to the development project. Testing activities are
continuously maintained and improved based on quality policies, needs and
metrics.

In the TIM model, the key areas are assessed separately from each other, so that the

organization has a better understanding on what test process areas mostly need

improvements. Furthermore, the key areas of TIM maturity model are similar to

ISO/IEC 29119 processes; the organization is conceptually close to organizational

management process (OTP), planning and tracking to test management process

(TMP) and TMCP, test cases to test plan process (TPP), testware to STP and DTP,

and reviews to TCP. In this sense, TIM-based maturity levels seem feasible for the

purposes of the framework.

4 Pilot study

In this section we introduce the pilot study, which was used to assess the feasibility of
the conceptual framework. This section is divided into three parts; in first part, the
data collection method and the case organizations are introduced, and the framework
is used to develop profiles for each of the organizations. In part two, the case profiles
are examined to derive process improvement objectives, and in part three, these
objectives are discussed and assessed based on their feasibility and feedback provided
by some of the profiled organizations.

4.1 Data collection and analysis

The framework was tested with four different case organizations, on which sufficient
data existed to enable the analysis of test process activities. These case organizations
were selected from our population of organization units [12], on which empirical data
was collected for our previous studies [for example 13, 14] in test process

improvement. These organization units represent different sizes [10] and types of

professional software development:

e MobileSoft is a large, internationally operating software company, producing
embedded software for mobile platforms.

e SoftPortals is a small-sized nationally operating company, producing service
solutions for customer organizations.

e DesignSoft is a large, internationally operating software company, producing a
software product used for computer-assisted design.

e GridSystems is a medium-sized internationally operating company, producing
embedded software for electrical networks and heavy industry.

The interview data was collected in four interview rounds between fall 2008 and

spring 2010. In four interviews, the representatives from each case organization were

interviewed for several testing-related themes. In all organizations, the interviewees

were selected from the same organization unit [12], meaning that the interviewees

were working on the same development projects. A summary of these interview

rounds is listed in Table 1, and the original questionnaires, with the info package for

the interviewees, can be accessed at http.//www2.it.lut.fi/ project/MASTO/.

Table 1. Data collection rounds.

Round: Type of | Interviewee role in the | Interview themes

interview organization

Ist round: Semi- Software designer or Design and development methods, Testing

structured interview

people responsible for
software design and
architecture.

strategy and -methods, Agile methods, Standards,
Outsourcing, Perceived quality

2nd round:
Structured survey,
additional semi-
structured questions

Manager, test manager or
project leader responsible
for development project or
test process of a product.

Test processes and tools, Customer participation,
Quality and Customer, Software Quality, Testing
methods and -resources

3rd round: Semi-
structured interview

Tester or people
responsible for doing
testing in the development
project.

Testing methods, Testing strategy and —
resources, Agile methods, Standards,
Outsourcing, Test automation and —services, Test
tools, Perceived quality Customer in testing

4th round: Semi-
structured interview

Manager, test manager or
project leader responsible
for development project or

Test policies, Test strategies, Test plans, Testing
work, Software architecture, Delivery models,
New software development concepts

test process of a product.

The amount of data collected from the case organizations allowed the research to
focus on observing how the different standard processes are implemented in these
organizations. Based on the empirical data it appeared that all the standard-defined
test processes seemed to at least exist, so technically the assessment was feasible. The
observations, made on each standard-defined process, are summarized in Table 2.

For the pilot study with the framework, the ISO/IEC 29119 processes were
combined with the TIM-maturity scale. The used scale was based on the general
definitions of TIM levels, and only few changes were done to the general definitions.
For example, the level 1 requirement for the documented test process was eased to
accept also verbally agreed testing practices if they were done in a systematic manner.
In addition, as the standard steers the test process activities towards continuous
development and measurement, the level 4 was used to denote a self-optimizing
process, which is in conformance with the standard. Overall, the levels for assessing
the organizations were applied with the following rules:

o Level 0, Initial: The organization does not have defined methods for this activity.

e Level 1, Baseline: The organization does have documented or at least generally
agreed guidelines for these process activities, the process is systematically done.

o Level 2, Cost-effectiveness: The organization tries to systematically promote cost-
effectiveness or increase the efficiency of the process activities.

e Level 3, Risk-lowering: The organization has metrics or other methods to enable
organization to do risk-lowering and preventative actions in process activities.

e Level 4, Optimizing: The organization has activities that aim to optimize the
process; activities are done in a manner that is conceptually similar to the standard.

The resulting profiles of case organizations are presented in Figure 2. Based on the

observations made in organizations, a draft for practical descriptions indicating the

maturity levels of different test processes was also compiled. This draft and an

example of full case profile can be accessed at http.//www2.it.lut.fi/project/MASTOY/.

Table 2: Process activity observations from case organizations

Process | MobileSoft GridSystems SoftPortals DesignSoft

oTP -Applies quality model, |-Test process defined as a |-Test process defined as a [-Policy and Strategy exist,
test strategy and policy “guideline”, vague “guideline”, part of high abstract level.
exist. documentation on the quality system. -Organization applies
-Organizational topic. quality model.
management tends to
underestimate testing.

TMP -Management decides -Management sets focus [-Management defined, but |-Management lays test
what test activities are of test cases. passive. plan, weekly meetings.
done. -Test management can -Roles and responsibilities [-Test management can
-Management defined, but |influence on release in project level clear. influence on release
passive. schedules. schedules.

TPP -Test plans are tailored to |-Test plan based on found |-Plan is used as an -Test plan follows abstract
projects; checklists for issues in previous overview for test design, design sometimes
required tests. projects. objectives, little content |updated.

-Plan is kept updated, new updates during the project.
cases added based on
found issues.

TMCP |-Checklists to ensure test |-Daily SCRUM meetings. |-Customer-required -Problems with follow-up
coverage -Case status evaluation at |functionalities are on found issues.

-Error database to the organizational level. |inspected closely. -Weekly meetings and

overview case completion. |-Test focus slipping. -Use case status, unit test |code reviews.

-No separate metrics. coverage used as metrics. |-Use case status and used
hours as metrics.

TCP -Test process is evaluated |-Test completion reports |-Test completion reports |-Test process is evaluated
after every project. used in new plans. are done, but little effect |after projects, some effect
-Continuous development. |-Effort to increase usage [to testing practices. on future testing.

Or error reports.

STP -The amount of available |-Amount of test resources |-The amount of available |-Test resources,
test tools restricts testing. |sufficient for tasks. resources sometimes environments, are
-Effort to increase amount |-New test cases created [restricts testing work. documented.
of testers, tools. according to focus areas -Amount of test resources

defined by management. sufficient for tasks.

DTP -ISEB-certified testers, -Tests follow test plan -Some test cases are -Test plan and exploratory
tools selected based on closely. designed but not testing, results reported.
recommendations. -Large amounts of implemented. -Sufficient tools, effort to
-No technical limitations |automation -Test cases are strictly automate.
caused by testing tools. -Effort to increase amount |followed and reported -Effort to introduce ISEB-
-Tests follow test plan of test resources like forward. certification.
closely. personnel.

4.2 Developed organizational profiles

The observations made from organizations made it possible to assess the maturity
levels of each standard-defined process separately. This resulted in four profiles, each
defining one case (illustrated in Figure 2). Based on these profiles, it was possible to
generate two results, the general maturity level of the test process in case organization
and the performance level of the processes in the organization. The general maturity
level would indicate the average test process maturity and how closely the
organization resembled the ISO/IEC 29119 test process model. The performance
levels for different processes could be used to prioritize process development to focus,
and correct, problems in the individual test activities.

In MobileSoft, the general results indicated that the test processes were generally
in a good order. The most obvious difficulties in the organization were the
organizational management, which commonly underestimated the test process
resource needs. The test completion reports were sometimes not used and some testers
complained that there were periodical resource shortages on testing tools like test
platforms.

In DesignSoft, the profile also indicated rather mature test process, having only a
few issues that should be attended. Based on the observations, in DesignSoft the
biggest issue was in follow-up actions if problems were observed during testing. The
problem was that discovered issues did not seem to affect the test plan, and follow-up
on resolving newfound issues was left to the tester who originally found the problem.

In SoftPortals the test process is less mature than in the other case organizations.
The profile suggests that the test management in projects should be improved to
enhance the overall testing. In this organization, the management takes a rather
passive role on the test process, leaving much of the test planning and control to the
developers and testers. In addition, some interviewees complained that the projects
usually did not have enough test resources, like dedicated testers or time.

In GridSystems, the test process was divided between extremely well-organized
activities in the project level, and the organizational activities which needed
improvement. The testing infrastructure employed heavily into test automation,

MobileSoft SoftPortals
R large/international s small/national
3 3
2 2
1 I I I : I i I I A I
0 0
TMP TPP TMCP TCP STP TMP TPP TMCP TCP STP DTP
DesignSoft GridSystems
large/international R medium/international
q
3 3
2 2
[0
T™P TPP TMCP TCP STP oTpP T™MP TPP TMCP TCP DTP

Fig.2. Assessment results for case organizations using experimental levels

having daily builds and Scrum-meetings. This enabled the organization to address test
process issues within the same day the problems were observed. For these activities,
the organization was considered to fully implement the concepts of the testing
standard. However, a large issue was the organizational level management, as the
OTP was only a distant decision maker, which provided only some vague guidelines.

4.3 Assessing framework results

The application of TIM maturity levels to the ISO/IEC 29119 standard was successful
in a sense that the models are similar; the key factors from TIM and the test processes
from ISO/IEC 29119 seem to map consistently to each other. We observed the case
organizations using this framework and created an organizational profile based on the
observed activities.

In the cases GridSystems and DesignSoft, the framework indicated clear process
improvement objectives. In GridSystems, it seemed rather clear that the organization-
level management needed to start paying attention to the test process activities. In
DesignSoft, the framework indicated the need for developing test completion reports
and follow-up activities on found issues during testing. In MobileSoft and SoftPortals
the results based on the framework were more open to interpretation, but they did
indicate some considerations for development objectives.

According to the profile, the case SoftPortals was the least mature organization in
this study. However, based on the interviews, the organization itself does not consider
their test process to be faulty or in need of major changes. Their test process seems to
aim at cost-effectiveness and efficient application of the existing resources. In this
sense, the framework indicates that the management should take a more active role in
the process, and that test completion reports are not used efficiently. Should the
organization start pursuing the risk-lowering strategy or optimizing test process, they
are in need of a larger process improvement process.

In MobileSoft, the framework highlights some objectives for a better risk-lowering
strategy. In this case organization, the test process in general is mature, and of the
case organizations it is the best candidate to achieve the conformance with the
ISO/IEC 29119 standard. The organization could capitalize the test completion
reports and experience gained from completed projects more efficiently and the
organizational management could be more active in the test process. The organization
also follows an internal quality management system, which undergoes an assessment
every few years. By making some improvements, it could be expected that they would
reach the conformance with relatively minor changes to their test process.

In theory the framework seems plausible, but obviously the analysis based on pre-
existing data offers only indications. To evaluate the feasibility of the framework
further, three of the profiled case organizations were interviewed to assess the
framework results. In the fourth case, GridSystems, the organization had changed so
much that this further assessment was not possible. The overall attitude towards the
framework and profiling results was positive, although further development needs
were identified. Some of the feedback results are summarized in Table 4, where the
sign “+ +” denotes that the organization was very positive towards the aspect of the
framework, while “— — denotes very negative feedback.

Table 4: Profiling feedback from the case organizations

the profile

more detailed.

accurate enough,
although with some
differences.

MobileSoft DesignSoft SoftPortals
Suitability of | +: The applied approach | +; Practical approach +; Levels are too
the is generally feasible. on quick and easy universal, but model
framework assessment of the level of | itself seems to cover

different testing tasks. everything needed.
Suitability of | — — In large +; Usable, although —; Levels in general are
the organization, the levels some processes do not OK but the definitions
assessment overlap, unnecessary need to be better than shoqld be less
levels processes for some cost-effective. ambiguous.
organizations.

Accuracy of —; The profile should be +; The profile was +++; The profile

represents the
organization quite well.

Accuracy of
the results

+; This type of feedback
is always good for
bringing out new ideas.

=+; Results seemed
usable.

++; Results same or
similar to the internal
discussions.

party, internal review is
not accurate.

level employees; can be
used internally.

Framework The assessment unit type | More definite The assessment needs

development and size should be clearly | descriptions for each practical examples and

proposals defined. framework level to more measurements.
reduce the overlap.

Best profiler An outsider from a third At least two manager- A quality manager with a

handpicked group of
people, usable internally.

Based on the feedback, the framework is considered to be feasible with some
criticism. In cases MobileSoft and SoftPortals the criticism focused on the ambiguity
of the level definitions. The levels should have detailed metrics, or at least offer
examples on what types of activities denote certain levels. MobileSoft also criticized
the number of processes; in a software organization which is a part of a larger
business unit, some of the activities were considered trivial. DesignSoft voiced a
concern over the model levels; lowering risks may not always be a better objective
than cost-effectiveness. As for the self-assessment, DesignSoft and SoftPortals
considered the framework to be usable as a self-assessment tool, while MobileSoft
voiced a concern over the accuracy of the self-assessment in general.

5 Discussion

Creation of a framework which combines maturity levels from one model and
processes of an international standard is obviously open for criticism and discussion
over its validity. It can be argued that the general requirements for any relevant
construct should include at least that it is acceptable to the software development
community and that it is based on agreed software engineering principles and
practices [15]. The objective of the framework was to compare the existing test
process against the ISO/IEC 29119 standard model. Based on the results of using the
framework it was also possible to derive process improvement objectives, which
would direct the organization towards practices defined in the standard. For this

ability, an existing maturity model was fitted to the standard-defined processes. Both
of the applied models, ISO/IEC 29119 and TIM, are well-known software engineering
models, so theoretically the foundation for our framework should be sound.

The validity issues for developing frameworks have been addressed in several
similar studies [8,11,15]. For example, Jung [8] developed a test process maturity
model based on internal need, and validated the results via a case study and a survey.
Similarly, with the MTPF-framework developed by Karlstrom et al. [11], the initial
model was designed based on observations in real-life organizations, and further
elaborated and validated with surveys and an empirical case study. If we compare
these approaches to our framework, it is plausible to argue that the current results
should be sufficient for a proof of concept: the results indicate that the framework
could be developed into a usable tool, but obviously the framework needs further
validation. The next obvious step is to address the observed difficulties and
enhancement proposals. In general, more detailed qualitative studies and additional
data are needed.

6 Conclusions

In this paper we presented a self-assessment framework that combines the ISO/IEC
29119 test process standard [4] with maturity levels from Test Improvement Model
(TIM) [5]. The objective was to create a concept-level self-assessment tool to find
development objectives for test process improvement and achieving conformance
with the upcoming standard. The current limitation of the standard is that it does not
offer support for adopting the standard in real-life software organizations, so the
framework was defined to enable a maturity level-type self-assessment.

The self-assessment framework was developed and tested with pre-existing data
from four organizations, and the results were confirmed with additional interviews
with the profiled organizations. The results indicate that the framework could be
developed to a useful self-assessment tool for organizations to compare their existing
test processes against the standard and find process areas that could be improved.
However, areas that require further development in the proof-of-concept version of
the framework were also pointed out, and several concrete development proposals
from case organizations were collected.

Overall, the results indicate that the framework proposed in this paper could
become a feasible tool for defining process improvement objectives which promote
the practices defined in the upcoming ISO/IEC 29119 standard. However, the current
framework obviously needs further development and studies for validity. One
possibility for the next logical step would be to conduct a qualitative study by
applying the self-assessment framework in real-life organizations, and studying the
applicability or relevance of the results the framework produces, when compared with
other existing process development methods.

Acknowledgements

This study was partially supported by the ESPA-project
(http://www.soberit.hut.fi/espa), funded by the Finnish Funding Agency for
Technology and Innovation and by the companies mentioned in the project web site.

References

1. Myers, G.J.: The Art of Software Testing, 2nd edition, John Wiley & Sons, Inc., New
Jersey, USA, (2004).

2. Kit, E.: Software Testing in the Real World: Improving the Process, Addison-Wesley,
Reading, MA, USA, (1995).

3. Huang, L. and Boehm, B.: How Much Software Quality Investment Is Enough: A Value-
Based Approach, IEEE Software, Vol. 23(5), pp. 88-95, doi: 10.1109/MS.2006.127, (2006).

4. ISO/IEC: ISO/IEC WD 29119-2, Software and Systems Engineering - Software Testing -
Part 2: Test Process (2010).

5. Ericson, T., Subotic, A., Ursing. S.: TIM - A Test Improvement Model, Software Testing,
Verification & Reliability (STVR), vol. 7 (4), pp. 229-246, John Wiley & Sons, Inc., (1997).

6. Test Maturity Model integration (TMMi), Version 3.1, TMMi Foundation, Ireland (2010).

7. CMMi Product Team: “CMMI for Development, Version 1.3”, Software Engineering
Institute, Carnegie Mellon University, (2010), URL: http://www.sei.cmu.edu/cmmi/.

8. Jung, E.: A Test Process Improvement Model for Embedded Software Developments, Proc.
Of the 9th Internatinal Conference on Quality Software, 24.-25.8.2009, Jeju, South Korea,
(2009).

9. Oh, H., Choi, B., Han, H., Wong, W.E.: Optimizing Test Process Action Plans by Blending
Testing Maturity Model and Design of Experiments, Proc. of the 8th International
Conference on Quality Software, pp. 57-66, doi: 10.1109/QSIC.2008.19 12.-13.8.2008,
Oxford, UK, (2008).

10. EU: SME Definition, FEuropean Commission, (2003), Available at:
http://ec.europa.eu/enterprise/policies/sme/facts-figures-analysis/sme-
definition/index en.htm.

11. Karlstrom, D., Runeson, P., Nordén, S. : A minimal test practice framework for emerging
software organizations, Software Testing, Verification and Reliability (STVR), Vol. 15(3),
pp. 145-166, doi: 10.1002/stvr.317, John Wiley & Sons Inc., (2005).

12. ISO/IEC: ISO/IEC 15504-1, Information Technology - Process Assessment - Part 1:
Concepts and Vocabulary (2002).

13. Kasurinen, J., Taipale, O., Smolander, K. : Software Test Automation in Practice: Empirical
Observations, Advances in Software Engineering, Special Issue on Software Test
Automation, Hindawi Publishing Co. DOI: 10.1155/2010/620836, (2010).

14. Kasurinen, J., Taipale, O., Smolander, K. : Test Case Selection and Prioritization: Risk-
based or Design-based?, Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), 16.-17.9.2010, Bolzano-Bozen,
Italy, doi: 10.1145/1852786.1852800, (2010).

15. Burnstein, 1., Suwanassart, T., Carlson, R.: Developing a testing maturity model for
software test process evaluation and improvement, International Test Conference 1996
(ITC'96), doi: /10.1109/TEST.1996.557106, (1996).

Appendix II: Survey instrument

MASTO Survey and themed questions, round 2; test or project managers
1. Interview

Date

Place

Interviewer

Interview started

2. Respondents

Name Occupation Responsible for development/testing/both
3. Company

Name

Organizational unit (OU)

Industry sector

4. Personnel, methods, and automation

Number of employees in the whole company? (text field)
Number of SW developers and testers in the OU? (text field)
Percentage of automation in testing? (text field)

Percentage of agile (reactive, iterative) vs plan driven methods in projects? (text field)
Percentage of existing testers vs resource need? (text field)

5. Please, estimate the distribution of the turnover in your OU.
Percentage of the turnover 0-20,21-40, 41-60,61-80,81-100%

e Product: Customized product (based on a product kernel)

e Product: Uniform product kernel in all deliveries

e Product: Product family composed of distinct components

e Product: Standardized online service product (e.g. product/service prov.)

e Service: Training and consulting

e Service: Subcontracting

e Service: System integration

e Service: Installation service

e Service: Self service (e.g. service/service provider)

¢ Other, specify

6. Please, estimate how the following claims describe your software development.
Scale: 1=fully disagree, 3=neutral, 5=fully agree

o We like to transfer knowledge more by face-to-face conversation than by documents
as the primary method of knowledge transfer.

e Progress of the software is more important than thorough documentation.
eBusiness people and developers work daily together in the projects.

¢ Our process is able to cope with late changes in requirements, design, and technical
platform.

e We prefer more individuals, collaboration, and interaction than processes and tools.
7. Faults in your products can cause (please, select all suitable points)

Irritation and dissatisfaction

Disturbance in the normal operation of the organization or a person

Remarkable economical losses

Interruption in the normal operation of the organization or a person

Loss of human life

Other, specify (text field)

8. Please, estimate following claims concerning your software testing.
When the claim is not applicable leave the scale empty.
Scale: 1=fully disagree, 3=neutral, 5=fully agree

Our software correctly implements a specific function. We are building the product
right (human examination).

Our software is built traceable to customer requirements. We are building the right
product.

Our formal inspections are ok (document to be inspected).

We go through checklists (req., func., tech., code).

We keep code reviews.

Our unit testing (modules or procedures) is excellent.

Our integration testing (multiple components together) is excellent.
Our usability testing (adapt software to users' work styles) is excellent.

Our function testing (detect discrepancies between a program's functional
specification and its actual behavior) is excellent.

Our system testing (system does not meet requirements specification) is excellent.
Our acceptance testing (users run the system in production) is excellent.

We keep our testing schedules.

Last testing phases are kept regardless of the project deadline.

We allocate enough testing time.

9. Please, estimate following claims.

Scale: 1=fully disagree, 3=neutral, 5=fully agree

Quality is built in development.

Quality is built in testing.

Our test policy is excellent (principles, approach, and high-level objectives).

Our test strategy is excellent (a reusable set of guidelines for all projects).

Our test management is excellent (strategizing, planning, monitoring, control, and
reporting of testing).

Our test execution is excellent (testing within a particular level of testing (e.g. unit,
integration, system or acceptance) and/or type of testing (e.g. performance testing,
security testing, functional testing).

10. Do you follow a systematic method or process in the software testing (e.g. TPI,
or standard, or your own specified process)?

No

To a certain extent; which one (text field)

Yes, which one (text field)

11. The available testing tools, if any

Tool name Description/Experiences/Recommendations Inhouse/Vendor
(text field)

12. "Please, estimate your most important customer's participation during
specification phase of the development.”

Scale: 1=fully disagree, 3=neutral, 5=fully agree

Our most important customer is a member of the project team and responsible for the
definition of the system.

Our most important customer takes part in the project management schedules and
progress reports for the development of the system.

Our most important customer develops and evaluates the budget for the system.

13. "Please, estimate your most important customer's participation during design
phase of the development. "

Scale: 1=fully disagree, 3=neutral, 5=fully agree

Our most important customer is a member of the project team for user interface
design.

We develop a prototype for our most important customer.

Our most important customer defines system controls and security procedures.
Our most important customer defines and reviews technical designs.

14. "Please, estimate your most important customer's participation during testing
phase."

Scale: 1=fully disagree, 3=neutral, 5=fully agree

Our most important customer develops test specifications.

Our most important customer evaluates test data specifications developed by us.

Our most important customer reviews results of system test done by us.

Our most important customer conducts the system tests.

15. Please, estimate your most important customer's participation in general control.
Scale: 1=fully disagree, 3=neutral, 5=fully agree

Needed new features are paid by our most important customer.

Our most important customer reviews project management schedules and progress
reports made available by us.

Our most important customer provides domain training to us.

Our most important customer's employees are evaluated by their own management
in our collaboration projects.

16. Please, estimate the following claims.

Scale: 1=fully disagree, 3=neutral, 5=fully agree

Our most important customer has experience on the area of business.
Our most important customer has power on the area of business.
Our most important customer has strict contractual agreements.
Our most important customer has requests and suggestions.

Our most important customer co-operates and communicates excellently with us.

17. Please, estimate the following claims.

Scale: 1=fully disagree, 3=neutral, 5=fully agree

Our most important customer is concerned about our welfare and best interests.
Our most important customer considers how their decisions and actions affect us.
We trust our most important customer.

Our most important customer trusts us.

18. Do you have a quality system certificate or a capability-maturity classification
(e.g. CMM, SPICE, ISO-9001)?

No
Yes; Which one (text field)

19. Please, estimate following claims concerning quality attributes of your
software.

When the quality attribute is not applicable leave the scale empty.
Scale: 1=fully disagree, 3=neutral, 5=fully agree

The functional stability is excellent. Our software is suitable for functions it is
developed for (appropriateness).

The reliability is excellent. The availability, fault tolerance, and recoverability of our
software are excellent.

The performance efficiency is excellent. Our software consumes a reasonable amount
of resources and time.

The operability is excellent. Our software is useful and usable according to the users
(ease of use).

The security is excellent. The security issues (malicious access, use, modification,
destruction, or disclosure) have been taken into account.

The compatibility is excellent. Our software is compatible with relevant software or
components.

The maintainability is excellent (modifications and changes after delivery).

The transferability is excellent: Our software can be transferred and installed to
another platforms.

20 Please, estimate following claims related to your software.
Scale 1= Fully disagree, 3=neutral, 5= fully agree

We have identified the most important quality attributes

We have prioritized the most important quality attributes

We have documented the most important quality attributes

We have communicated the most important quality attributes within our OU using
some other way than documentation.

We follow regularly through measurement the achievement of the most important
quality attributes.

21. How many percent of the development effort is spent on testing? (text field)
22. Please, estimate following claims concerning problems.

Scale: 1=fully disagree, 3=neutral, 5=fully agree

Complicated testing tools cause test configuration errors.

Commercial testing tools do not offer enough hardware support.

It is difficult to automate testing because of low reuse and high price.

Insufficient communication slows the bug-fixing and causes misunderstanding
between testers and developers.

Feature development in the late phases of the product development shortens testing
schedule.

Testing personnel do not have expertise in certain testing applications.

Existing testing environments restrict testing.

23. Please, estimate following claims concerning enhancement proposals?
Scale: 1=fully disagree, 3=neutral, 5=fully agree

Fault database hepls in observing testing process.

Test report automation decreases testers' work load.

New features are not allowed after a set deadline to help test planning.
Test results should be open for all process groups.

Products should be designed to promote testability.

Testing strategy helps in avoiding unnecessary testing.

We should have dedicated testers.

Development of testing environment makes testing more efficient.

24. Name and explain the three most significant factors how customer affects
software quality in projects (in descending order). (text field)

25. Name and explain the three most efficient tools or methods of test automation
(in descending order). (text field)

26. Name and explain most important advantages and disadvantages of outsourcing
in development and testing. (text field)

Future research and reporting

Please send us the summary report of the research (yes/no)
Contact information

Name Occupation Contact information (e-mail)

(text field)

Comments

(text field)

Interview ended (text field)

Appendix III: Theme-based questions for the
interviews

MASTO-project themed questions, round 1; Designers

Topic 1: Design- and development methods

1.1 Which types of development methods for software do you use? Do you
apply agile methods? How?/Why not?

1.2 Which is the criticality level for your products? Does it fluctuate? If yes,
does it affect the development method for the product?

Topic 2: Testing strategy and -resources

2.1 How does your work relate to testing?

2.2 How do you decide, which test cases are selected? How, in your
experience, is this strategy working?

2.3 What part of the testing process you would like to develop? Why?
2.4 Does the product criticality affect the testing strategy? How?*

2.5 Does the testing process have sufficient resources? If not, why? What
would you do to address this issue?

Topic 3: Agile methods

Asked only if agile methods are applied

3.1 What kind of experiences do you have on the applicability/operability of
agile methods?

3.2 Does the application of agile methods affect the component quality or
reusability? How?

3.3 Does the agile methods affect the need for testing process resources? How
about timetables? How?

4 Asked if the criticality fluctuates

Topic 4: Standards

4.1 Do you follow any standards in your software process? If yes, what?
Which kind of experiences do you have on effects of software standards to the
process or product?

e ISO/IEC 29119

4.2 Do you monitor the effectiveness or quality of your testing process? If yes,
how? If no, why do you think that it is not followed?

e Which monitoring methods?

e How about on outsourced modules?

Topic 5A: Outsourcing

5.1 Which kind of knowledge is needed to test your product efficiently? How
can this knowledge be obtained?

5.2 Do you obtain testing services or program components from outside
suppliers? What services/components?/Why not?

Topic 5B: Outsourcing, continued

Asked only if company has outsourced components or services

5.3 Does your production method support outsourced testing services? Why?
How about with critical software?

5.4 Does your production method support outsourced/ 3 party components?
Why?

5.5 Does the outsourcing affect the testing strategy? Why?

Topic 6: Testing automation, -services and tools

6.1 Do you use automation in testing? If yes, to which operations it is used? If
not, why?

6.2 What sort of experiences do you have on testing automation and in
applying automation to testing process?

6.3 Have you found or used testing services or —products from the Internet? If
yes, then what kind? What services would you like to find or use from the
Internet? Why?

6.4 Are there any testing services or -tools that you would like to have besides

those already in use? Why?

Topic 7: Quality and supplier-customer relationships

7.1 How do you define quality, in terms of what quality aspects are important
to you? How does this reflect to the development and testing processes? ISO
25010:

¢ Functionality

¢ Reliability

e Efficiency

o Usability

e Security

e Compatibility

¢ Maintainability

e Transferrability

7.2 Does the product criticality affect the quality definition? How? Why?

7.3 Does the outsourcing/3rd party components affect the quality? How?
Why?

7.4 How does the customer participation affect the quality?

e ... with large size difference between customer and supplier?
e ... with trust between customer and supplier?
e ... with customer satisfaction?

Topic 8: Meta and other

8.1 To which research area would you focus on in testing?

-Testing policy

-Testing strategy

-Test management

-Test activity

8.2 Is there anything relevant that you feel that wasn’t asked or said?

MASTO -project themed questions 3; Testers

Topic 1: Testing methods

1.1 What testing methods or —phases do you apply? (unit, integration,
usability, alpha/beta etc.)

1.2 Does the product purpose or criticality affect the testing? Do the testing
methods fluctuate between projects? If yes, then how? If no, then should it?

Why? (Explain criticality)

Topic 2: Testing strategy and -resources

2.1 How does your work relate to testing?

2.2 How do you decide, which test cases are selected? How, in your
experience, is this strategy working?

2.3: Test documentation

- Inhow fine details your test cases/plans are documented?

- What kind of documentation is the most practical or important to you as a
tester?

- Do you do explorative testing?

2.4 Are the testing requirements able to affect the product timetable? How?
/Why do you think that it is not?

2.5 Does the testing process have sufficient resources? If not, why? What
would you do to address this issue?

2.6 Would like to develop some particular part of the testing process?
How/Why?

Topic 3: Testing and Agile methods

3.1 Are agile methods used in your company?Does it affect the testing
strategy? How about timetables?

3.2 Does the application of agile methods affect the quality of product or
components? How about resource need?

Topic 4: Standards

4.1 Do you follow any standards in your software process? If yes, what?
Which kind of experiences do you have on effects of software standards to the
process or product?

4.2 Do you monitor the effectiveness or quality of your testing process? Which
monitoring methods do you use? If no, why do you think that it is not
followed?

e How about on outsourced modules?

Topic 5A: Outsourcing

5.1 Which kind of knowledge is needed to test your product efficiently? How
can this knowledge be obtained?

5.2 Do you obtain testing services or program components from outside
suppliers? What services/components?/Why not?

Topic 5B: Outsourcing, continued

Asked only if company has outsourced components or services

5.3 Does your production method support outsourced testing services? Why?
How about with critical software?

5.4 Does the outsourcing affect the testing strategy? Why? How about quality?

Topic 6: Testing automation

6.1 Do you use automation in testing? If yes, to which operations it is used? If
not, why?

6.2 What sort of experiences do you have on testing automation and in

applying automation to testing process?

6.3. How large is the portion of manually done software testing? How does it
reflect to the product quality?

Topic 7: Testing tools

7.1 Do you use software tools especially made for testing? If yes, then what
kind?
e Your opinion regarding these tools.

7.2 Are your tools vendor- or in-house-products? Why do you think this is
this way?

e Your opinion regarding quality and efficiency of vendor tools.

¢ Your opinion regarding quality and efficiency of in-house tools.

7.3 Have you found or used testing services or —products from the Internet? If
yes, then what kind? What services would you like to find or use from the

Internet? Why?

7.4 Are there any testing services or -tools that you would like to have besides
those already in use? Why?

Topic 8: Quality

8.1 Do you know which the quality definitions for the product under testing
are? What are they? How does this reflect to the testing process? If not, how
would you define them? ISO 25010:

¢ Functionality

e Reliability

e Efficiency

o Usability

e Security

¢ Compatibility

e Maintainability

e Transferrability

8.2 Does the product criticality affect the quality definition? How? Why?

Topic 9: Customer in the project

9.1 How does the customer participation affect the testing process? Can the
customer affect the test planning or used test case selection?

e ... with large size difference between customer and supplier?

e ... with trust between customer and supplier?

Topic 10: Meta and other

10.1 To which research area would you focus on in testing?
-Testing policy

-Testing strategy

-Test management

-Test activity

10.2 Is there anything relevant that you feel that wasn’t asked or said?

MASTO -project themed questions 4; Test managers

Topic 1: Test Policy

1.1 Does your organisation have a test policy or something resembling it? If yes,
what does it define? Does it work? Why?

1.2 If no, does your organisation apply same or similar test process in all projects?
Would you think that such a document could be defined in your organisation?
Why/Why not?

Topic 2: Test Strategy

2.1 Does your organisation have a defined test strategy or something resembling it?
2.1.1 If yes, what does it define? In your opinion, is it useful?

2.1.2 If yes, is it updated or assessed for change requirements systematically

or "if needed”?

2.1.3 If no, does your test process apply same or similar phases in all

software projects? Would you think that test strategy, as described earlier,

could be defined based on your test process? Why/Why not?

2.2 Name three most effective testing practices (e.g. explorative testing, code
reviews, glass-box testing etc). Why are they effective? Have you defined them in
writing? If yes, what details do they include? If no, why?

2.2.1 Would your organisation try out new testing practice from

“best practices”-type instruction manual without prior knowledge regarding

this new practice? Why/Why not?

Topic 3: Test Plan

3.1 Do you define test plans for each software project at the design phase?

3.1 If yes, how detailed are they? Do they change during the project?

3.2 If no, would you think that such a plan could be defined in design, or
generally before testing is started?

3.2 Who in your organisation defines the test plan (or decides on what is tested)?
In your opinion, how much do policies or management affect these decisions? How
about resources?

3.3 Do you think that testers should follow definite plans for all test cases? How
much details should this plan have?

3.4 Does your organisation do testing-wrap ups such as test completion reports or
project post mortems? Do these reports affect how testing is done in the later
projects?

Topic 4: Testing

4.1 How does your business orientation (service orientation or product orientation)
affect the test process?

Sommerville (1995) classifies software producers into two broad classes according
to their software products: producers of generic products and producers of
customized products. In a broader sense, business orientation may also mean the
basic offer addressed by an organisation to its customers e.g. for an independent
software testing provider the basic offer refers to the testing services offered to
customers or development services in the case of a software development service
provider.

4.1.1 Where do your software and testing requirements originate from?

4.1.2 At which organisational test process level (policy, strategy or plan) are

the requirements considered?

4.2 How do the customers/end users affect your test process? Which organisational
test process level (policy, strategy or plan) is most affected?

4.3 What are the current unmet customer/end user needs? In your opinion, why do
you think they have not been met? How do you plan to fulfil them? Does your test
process pay attention to this?

4.4 How do you measure and optimize the testing progress within your
organisation? Is it effective? If yes, how? If not, do you have any improvement
propositions?

4.5 Does the described ISO/IEC 29119 software testing standard meet your needs?
What is missing?

Topic 5: Software architecture and delivery models

5.1 Please, describe your software architecture or software delivery model (e.g.
distributed, client-server, SaaS, cloud computing, service oriented, data base
centric, component based, structured etc.) In your opinion, how does it affect
testing?

5.1.1 Does it cause any problems to your testing process?

5.1.2 If yes, please, give improvement propositions.

5.2 Has your software architecture or your software delivery model changed during
the last years? If yes, how and why? If not, why? Do you have any plans to change
it? How does this affect or has affected your testing work?

5.3 Do you think that your test process may be affected by new architectures or new
software delivery models e.g. SaaS (Software as a Service), cloud computing or
open source technology? If yes, how? If no, why not?

5.3.1 Are you searching for any new testing tools or methods? What benefits

do they offer?

5.3.2 Does your work make use of systems that require huge amounts of

computing power and virtual data storage? If yes, how do you handle it

now? Would you consider resources presented by cloud computing to meet
these needs? If yes, what kind of tools you are using?

5.3.3 Please describe how open source technology has affected testing work
in your organisation.

Asked if the organisation has used or is considering new software delivery
models:

5.4 Have you considered using cloud or SaaS as a delivery model for any of your
applications? Have you dealt with service level agreements (SLAs) or pricing
models in cloud based testing? Please comment, how they affect your work?

5.5 How is the test data handled? Where does it come from? Who owns it?

5.6 How does your organisation plan on handling/harmonizing test processes across
multiple players? How would this affect your overall test process?

Topic 6: Crowdsourcing: New way of sourcing

6.1 According to our earlier survey, the lack of testing resources was in average
25%. What is the situation now and how do you try to solve the lack of resources if
needed?

6.2 Does your organisation use (or plans to use) crowdsourcing as a way to
complement its internal testing team? If yes, how does this affect your test process?
If no, why not?

6.3 If you are interested in crowdsourcing, please explain the most important
advantages and disadvantages of crowdsourcing in testing.

Topic 7: Other aspects

7. Is there something you would like to add to your answers or something regarding
testing that you think should be mentioned?

MASTO -project themed questions regarding the self-assessment framework
results (See Publication VII):

-Overall, what is your opinion regarding the assessment framework? Is something
missing, are all of the important testing-related aspects considered in the assessment?

-In your opinion, are the defined maturity levels and their descriptions
usable/understandable? If no, why?

-Do you think the profile represents your organisation? If no, why? What should be
different?

-Do you think the development suggestions are useful for your organisation? If yes, in
your opinion, are the changes possible to implement? If no, why do you think that is?

-In your opinion, would you consider this type of self-assessment feasible approach?
If yes, who do you think would be the best assessor for your organisation? If no, why?
(Assessor can also be a group of people)

400.

401.

402.

403.

404.

405.

406.

407.

408.

409.

410.

411.

412.

413.

414.

415.

416.

417.

418.

419.

420.

ACTA UNIVERSITATIS LAPPEENRANTAENSIS

RUNGI, MAIT. Management of interdependency in project portfolio management. 2010. Diss.
PITKANEN, HEIKKI. First principles modeling of metallic alloys and alloy surfaces. 2010. Diss.

VAHTERISTO, KARI. Kinetic modeling of mechanisms of industrially important organic reactions in
gas and liquid phase. 2010. Diss.

LAAKKONEN, TOMMIL. Distributed control architecture of power electronics building-block-based
frequency converters. 2010. Diss.

PELTONIEMI, PASI. Phase voltage control and filtering in a converter-fed single-phase customer-
end system of the LVDC distribution network. 2010. Diss.

TANSKANEN, ANNA. Analysis of electricity distribution network operation business models and
capitalization of control room functions with DMS. 2010. Diss.

PIIRAINEN, KALLE A. IDEAS for strategic technology management: Design of an electronically
mediated scenario process. 2010. Diss.

JOKINEN, MARKKU. Centralized motion control of a linear tooth belt drive: Analysis of the
performance and limitations. 2010. Diss.

KAMARI, VESA. Kumppanuusohjelman strateginen johtaminen — Monitapaustutkimus
puolustushallinnossa. 2010. Diss.

KARJALAINEN, AHTI. Online ultrasound measurements of membrane compaction. 2010. Diss.

LOHTANDER, MIKA. On the development of object functions and restrictions for shapes made with
a turret punch press. 2010. Diss.

SIHVO, VILLE. Insulated system in an integrated motor compressor. 2010. Diss.

SADOVNIKOV, ALBERT. Computational evaluation of print unevenness according to human vision.
2010. Diss.

SJOGREN, HELENA. Osingonjakopaatékset pienissé osakeyhtidissa. Empiirinen tutkimus
osakeyhtidlain varojenjakosaanndsten toteutumisesta. 2010. Diss.

KAUPPI, TOMI. Eye fundus image analysis for automatic detection of diabetic retinopathy. 2010.
Diss.

ZAKHVALINSKII, VASILII. Magnetic and transport properties of LaMnO3.s, La;.xCa,MnO3,
La;.CaMn,,Fe,O; and La;,SrMn;,Fe,O3 2010. Diss.

HATAKKA, HENRY. Effect of hydrodynamics on modelling, monitoring and control of crystallization.
2010. Diss.

SAMPO, JOUNI. On convergence of transforms based on parabolic scaling. 2010. Diss.

TURKU. IRINA. Adsorptive removal of harmful organic compounds from aqueous solutions. 2010.
Diss.

TOURUNEN, ANTTI. A study of combustion phenomena in circulating fluidized beds by developing
and applying experimental and modeling methods for laboratory-scale reactors. 2010. Diss.

CHIPOFYA, VICTOR. Training system for conceptual design and evaluation for wastewater
treatment. 2010. Diss.

421.

422,

423.

424,

425.

426.

427.

428.

429.

430.

431.

432.

433.

434

435.

436.

437.

438.

439.

440.

441.

442.

KORTELAINEN, SAMULI. Analysis of the sources of sustained competitive advantage: System
dynamic approach. 2011. Diss.

KALJUNEN, LEENA. Johtamisopit kuntaorganisaatiossa — diskursiivinen tutkimus sosiaali- ja
terveystoimesta 1980-luvulta 2000-luvulle. 2011. Diss.

PEKKARINEN, SATU. Innovations of ageing and societal transition. Dynamics of change of the
socio-technical regime of ageing. 2011. Diss.

JUNTTILA, VIRPI. Automated, adapted methods for forest inventory. 2011. Diss.

VIRTA, MAARIT. Knowledge sharing between generations in an organization — Retention of the old
or building the new 2011. Diss.

KUITTINEN, HANNA. Analysis on firm innovation boundaries. 2011. Diss.

AHONEN, TERO. Monitoring of centrifugal pump operation by a frequency
converter. 2011. Diss.

MARKELQV, DENIS. Dynamical and structural properties of dendrimer macromolecules. 2011. Diss.

HAMALAINEN, SANNA. The effect of institutional settings on accounting conservatism — empirical
evidence from the Nordic countries and the transitional economies of Europe. 2011. Diss.

ALAOUTINEN, SATU. Enabling constructive alignment in programming instruction. 2011. Diss.

AMAN, RAFAEL. Methods and models for accelerating dynamic simulation of fluid power circuits.
2011. Diss.

IMMONEN, MIKA. Public-private partnerships: managing organizational change for acquiring value
creative capabilities. 2011. Diss.

EDELMANN, JAN. Experiences in using a structured method in finding and defining new
innovations: the strategic options approach. 2011. Diss.

KAH, PAUL. Usability of laser - arc hybrid welding processes in industrial applications. 2011. Diss.

OLANDER, HEIDI. Formal and informal mechanisms for knowledge protection and sharing. 2011.
Diss.

MINAV, TATIANA. Electric drive based control and electric energy regeneration in a hydraulic
system. 2011. Diss.

REPO, EVELIINA. EDTA- and DTPA-functionalized silica gel and chitosan adsorbents for the
removal of heavy metals from aqueous solutions. 2011. Diss.

PODMETINA, DARIA. Innovation and internationalization in Russian companies: challenges and
opportunities of open innovation and cooperation. 2011. Diss.

SAVITSKAYA, IRINA. Environmental influences on the adoption of open innovation: analysis of
structural, institutional and cultural impacts. 2011. Diss.

BALANDIN, SERGEY, KOUCHERYAVY, YEVGENI, JAPPINEN, PEKKA, eds. Selected Papers
from FRUCT 8 .2011.

LAHTI, MATTI. Atomic level phenomena on transition metal surfaces. 2011. Diss.

PAKARINEN, JOUNI. Recovery and refining of manganese as by-product from hydrometallurgical
processes. 2011. Diss.

