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The objective of this thesis work is to develop and study the Di�erential Evolution
algorithm for multi-objective optimization with constraints. Di�erential Evolution is an
evolutionary algorithm that has gained in popularity because of its simplicity and good
observed performance. Multi-objective evolutionary algorithms have become popular
since they are able to produce a set of compromise solutions during the search process
to approximate the Pareto-optimal front.

The starting point for this thesis was an idea how Di�erential Evolution, with simple
changes, could be extended for optimization with multiple constraints and objectives.
This approach is implemented, experimentally studied, and further developed in the
work. Development and study concentrates on the multi-objective optimization aspect.

The main outcomes of the work are versions of a method called Generalized Di�erential
Evolution. The versions aim to improve the performance of the method in multi-objective
optimization. A diversity preservation technique that is e�ective and e�cient compared
to previous diversity preservation techniques is developed. The thesis also studies the
in�uence of control parameters of Di�erential Evolution in multi-objective optimization.
Proposals for initial control parameter value selection are given. Overall, the work con-
tributes to the diversity preservation of solutions in multi-objective optimization.
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Symbols and Abbreviations

≺ Pareto-dominance relation

� Weak Pareto-dominance relation

≺c Constraint-dominance relation

�c Weak constraint-dominance relation

ℵ Cardinality of a non-dominated set

∆ Spread

ηc Distribution index for real variable crossover operation in NSGA-II

ηm Distribution index for real variable polynomial mutation in NSGA-II

c Change of the population standard deviation between successive
generations due to the crossover and mutation operations

C(A,B) Set coverage metric between two non-dominated sets A and B

CD Crowding distance

CR Crossover control parameter of DE

D Number of decision variables

D̄ Maximum spread, normalized version

di Distance measure for measuring the distance of a particular solution i
to its neighbor solutions

ER Error ratio

F Mutation control parameter of DE

fm mth objective function

G Generation number

GD Generational distance

gk kth constraint function

Gmax Maximum number of generations

HV (A,B) Hypervolume between two non-dominated sets A and B

Iε(A,B) ε-indicator between two non-dominated sets A and B

IGD Inverted generational distance

K Number of constraints

M Number of objectives

NP Population size

pc Crossover probability of real variable in NSGA-II

pm Mutation probability of real variable in NSGA-II

S Spacing



u Trial vector

x Old decision vector

z∗ Ideal solution

z∗∗ Utopian solution

ACO Ant Colony Optimization

ADE Adaptive Di�erential Evolution

APDE Adaptive Pareto Di�erential Evolution

AS-MODE Adaptive Multi-Objective Di�erential Evolution with Stochastic
Coding Strategy

BNH Constrained bi-objective test problem by Binh and Korn

CEC Congress on Evolutionary Computation

CFDE Cluster-Forming Di�erential Evolution

CMA-ES Covariance Matrix Adaptation Evolutionary Strategy

DE Di�erential Evolution

DE/best/1/bin DE strategy based on mutation of the best individual of the
population

DEMO Di�erential Evolution for Multiobjective Optimization

DEMORS Di�erential Evolution for Multiobjective Optimization with Random
Sets

DE/rand/1/bin DE strategy based on mutation of a random individual of the
population

DTLZ Deb-Thiele-Laumanns-Zitzler test problem set

EA Evolutionary algorithm

ENNS Equal-average Nearest Neighbor Search

ε-CCDE ε-Constraint method with Cultured DE

ε-ODEMO Di�erential Evolution algorithm based on ε-dominance and an
orthogonal design method

EMO Evolutionary Multiobjective Optimization

ε-MOEA ε-dominance Multi-Objective Evolutionary Algorithm

ε-MyDE A DE algorithm by Santana-Quintero and Coello Coello

ES Evolutionary Strategy

GA Genetic Algorithm

GDE Generalized Di�erential Evolution

GDE1 First version of Generalized Di�erential Evolution

GDE2 Second version of Generalized Di�erential Evolution

GDE3 Third version of Generalized Di�erential Evolution



GP Genetic Programming

IBEA Indicator-Based Evolutionary Algorithm

MCDM Multiple Criteria Decision-Making

MODE Multi-Objective Di�erential Evolution

MODEA Multi-Objective Di�erential Evolution Algorithm

MODE/D Multiobjective Di�erential Evolution based on decomposition

MODE-LD+SS Multi-Objective Di�erential Evolution with Local Dominance and
Scalar Selection

MOEA Multi-objective evolutionary algorithm

MOEA/D Multiobjective evolutionary algorithm based on decomposition

MOGA Multiple Objective Genetic Algorithm

MOOP Multi-Objective Optimization Problem

NASA National Aeronautics and Space Administration

NFL No Free Lunch theorem by Wolpert and Macready

NIMBUS Non-di�erentiable Interactive Multi-objective BUndle-based
optimization System

NN Nearest neighbor

NPGA Niched-Pareto Genetic Algorithm

NSGA Non-Dominated Sorting Genetic Algorithm

NSDE Non-dominated Sorting DE

NSGA-II Elitist Non-Dominated Sorting Genetic Algorithm

OSY Constrained bi-objective test problem by Osyczka and Kundu

PAES Pareto-Archived Evolution Strategy

PDE Pareto(-frontier) Di�erential Evolution

PDEA Pareto Di�erential Evolution Approach

PESA Pareto Envelope-based Selection Algorithm

PSO Particle Swarm Optimization

SPEA Strength Pareto Evolutionary Algorithm

SPEA2 Improved version of Strength Pareto Evolutionary Algorithm

SPDE Self-adaptive Pareto Di�erential Evolution

SRN A constrained bi-objective test problem by Srinivas and Deb

TNK A constrained bi-objective test problem by Tanaka

VEDE Vector Evaluated Di�erential Evolution

VEGA Vector Evaluated Genetic Algorithm

WFG Walking Fish Group test problem toolkit

ZDT Zitzler-Deb-Thiele test problem set
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Chapter I

Introduction

�It is needless to say that most real-world optimization problems
are naturally posed as a multi-objective optimization problem.�

� Kalyanmoy Deb

Optimization, a task confronted in daily life, is a search for one or multiple feasible so-
lutions corresponding to the best possible values of one or multiple objectives of a prob-
lem [33, p. 1]. Feasible solutions satisfy possible constraints inherent in the problem.
Multi-objective optimization means optimization of more than one objective simultane-
ously. Many practical problems are multi-objective by nature, and multi-objective opti-
mization has, therefore, become an important research topic in the �eld of optimization.
Since multiple objectives usually con�ict with each other, the result for a multi-objective
optimization problem (MOOP) is usually not a single solution but a set of solutions.
These solutions represent the best compromises between the di�erent objectives.

Evolutionary algorithms (EAs) are population based stochastic optimization methods
that are inspired by Darwin's Theory of Evolution. EAs are able to deal with di�cult
objective functions which are, e.g., discontinuous, non-convex, multi-modal, non-linear,
and non-di�erentiable, and which pose di�culties to most traditional optimization meth-
ods. Since many practical problems include such di�cult objectives, EAs have become
popular during the last couple of decades. Developments in computer technology have
also facilitated the use of EAs.

A further reason for the increased popularity of EAs in multi-objective optimization is
that EAs are capable of providing multiple solution candidates during the search process,
which is a desirable quality with MOOPs. Two of the most well known multi-objective
EAs (MOEAs) are the elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) [35]
and the improved Strength Pareto Evolutionary Algorithm (SPEA2) [161], which are
both described in more detail in the next chapter. Research on MOEAs and multi-
objective optimization has been very active during the last two decades. The research
has concentrated on developing new MOEAs in order to �nd as good solution sets as
possible. Several other topics in the research �eld are also the subject of much work.
These include:

• How to de�ne and measure the quality of a result.

15



16 1. Introduction

• How to test performance (including test problem development).

• How to improve methods computationally.

• How to solve a problem when the number of objectives increases.

• How to adjust the control parameters of the methods.

• How to deal with computationally expensive objectives.

Di�erential Evolution (DE) is a relatively new EA and has been gaining in popularity in
recent years because of its simplicity and good observed performance. Several extensions
of DE for multi-objective optimization have already been proposed. Older approaches
just convert a MOOP to a single-objective problem and use DE to solve the single-
objective problem [5,16,143], whereas more recent and advanced approaches mainly use
the concept of Pareto-dominance [106].

The aim of this thesis is to develop and study DE for multi-objective optimization. The
topic seems promising since MOEAs have become important and DE appears a promising
EA for use in multi-objective optimization. The work focuses on diversity preservation
among solutions.

The starting point of the work was an idea how DE could easily be extended to handle
multiple constraints and objectives merely by modifying the selection rule. The idea
had been proposed in [90] but its properties had not been studied. The approach was,
therefore, implemented and tested by the author of this thesis. When the results of
this initial investigation were published in [81], the method was named Generalized DE
(GDE). The name GDE was chosen because the method can handle multiple objectives
and constraints, and the method is identical to basic DE in the case of an unconstrained
single-objective problem. These properties were retained during di�erent development
phases of the method. Already during preliminary studies, it was found that for good
performance the method needed di�erent control parameter values than usually used
with single-objective DE, and the diversity of the obtained solutions could have been
better [81]. Therefore, the work continued by studying the e�ect of control parameter
values and by developing the diversity preservation part of the method in the publications
included in the thesis. Di�erent GDE versions di�er mainly in their ability to maintain
the diversity of the solutions. The last GDE version, GDE3, has been noted to be e�ective
and e�cient for solving constrained multi-objective problems. It has also performed well
in comparison with several other MOEAs [136].

The thesis is divided into �ve chapters. Chapter 2 contains literature study and provides
background information about EAs, multi-objective optimization, MOEAs, and DE. DE
extensions for multi-objective optimization are also covered. Chapter 3 describes the
work presented in the publications of this thesis. Di�erent development phases of GDE
are described with experimental illustrations. General conclusions and discussion of the
thesis work are presented in Chapter 4. Chapter 5 contains corrections to errors observed
in the publications and additional information regarding the publications.
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Summary of the Publications

The author of this thesis has made the main contribution to all the articles included in
the thesis. The co-authors have been involved in a supervisory role in this thesis work.
In the following, the individual papers are brie�y summarized.

In Publication I, the �rst version of GDE was evaluated against several multi-objective
evolutionary algorithms using a set of common bi-objective test problems. Based on
the results, the performance of the �rst version of GDE was found very comparable
to the performance of other multi-objective evolutionary algorithms. However, it was
noticed that the control parameter values controlling mutation and crossover should be
drawn from a rather narrow range for some problems. Moreover, the diversity obtained
could have been better. The author of this thesis implemented the optimization method,
performed the tests, and wrote the article.

In Publication II, a control parameter value study for the �rst version of GDE was
performed empirically using a set of common bi-objective test problems and performance
metrics. A non-linear relationship between the main control parameter (CR and F )
values was observed according to a theorem in [148] for single-objective DE about the
relationships between the control parameter values and the evolution of the population
standard deviation. Based on this relation, a recommendation for control parameter
value selection was given. It was also noticed that good results were obtained mainly
with small control parameter values. The author of this thesis selected the test problems,
performed the tests, and wrote the article.

In Publication III, the second version of GDE was proposed. Unlike the �rst version,
the second version incorporated a diversity preservation technique. The performance of
the proposed method was evaluated experimentally, and an improvement in the extent
and distribution of solutions was observed. However, the second version was noted to be
rather sensitive to the selection of control parameter values. The author of this thesis
developed and implemented the method, performed the tests, and wrote the article.

In Publication IV, the third version of GDE was proposed. This version improved the
previous version by using non-dominated sorting and a better diversity preservation tech-
nique. The method was observed to be more robust to the selection of control parameter
values compared to the earlier GDE versions and provided at least comparable results
compared to NSGA-II. The author of this thesis developed and implemented the method,
performed the tests, and wrote the article.

In Publication V, the diversity preservation technique of the third version of GDE has
been described in detail. The diversity preservation technique is an improved version
compared to the one used in NSGA-II. It was noted that the diversity preservation
technique does not provide good diversity when the number of objectives is three instead
of two. One of the main contributions of the article was an explanation why the crowding
distance metric used in NSGA-II and GDE versions in Publication III and Publication IV
fails to approximate crowding of solutions when the number of objectives is more than
two. The author of this thesis developed and implemented the diversity preservation
method, performed the tests, made the observations, and wrote the article.

In Publication VI, a similar control parameter value study as in Publication II was
performed for the third version of GDE. The set of problems was supplemented with
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a set of non-separable problems. A similar observation as in Publication II about the
non-linear relationship between the control parameter values was made. Compared to
the results in Publication II, the third version of GDE was observed to be more robust
to the selection of control parameter values and provided better results based on the
performance metrics used. The author of this thesis selected the test problems, performed
the tests, and wrote the article.

In Publication VII, a diversity preservation technique for problems with more than two
objectives was proposed because the need for such a method was noticed in Publication V.
The technique is a further development of the technique used in Publication V. The
crowding distance metric is no longer used. Instead, a crowding estimation technique
based on distance to the nearest neighbors is implemented. The e�ciency of the method
is based on an e�cient nearest neighbors search algorithm and the use of a priority queue.
The proposed technique was observed to provide good diversity and to be relatively fast.
The author of this thesis developed and implemented the diversity preservation method,
performed the tests, and wrote the article.



Chapter II

Background and Related Studies

�The year 1975 was a particularly good one for genetic algorithms.�
� David E. Goldberg

This chapter provides background information for this thesis. First, evolutionary algo-
rithms are described, and then multi-objective optimization and constraint handling are
discussed. The chapter concludes with a description of Di�erential Evolution and its
modi�cations for multi-objective optimization and constraint handling.

2.1 Evolutionary Algorithms

Evolutionary algorithm (EA) [6] is a generic term for a set of population based and
stochastic optimization methods inspired by the theory of evolution by natural selection.
EAs consist of such mainstream methods as Evolution Strategies (ESs) [12], Genetic
Algorithms (GAs) [55], and Genetic Programming (GP) [8]. The �rst methods that
can be considered as EAs were proposed already in the 1950's [55, pp. 89�104] but
a more important date was the year 1975 when Holland published his Adaptation in
Natural and Arti�cial Systems book [61] and De Jong completed his thesis [32] about
the topic [55, p. 106]. During recent decades, EAs have become popular and important.
Prominent and relatively recent EAs are Ant Colony Optimization (ACO) [42], Particle
Swarm Optimization (PSO) [21], and Di�erential Evolution (DE) [119].

A common structure of EAs can be given. A general EA consists of the following steps:

1. Initialize a population
2. While a termination criterion is not met
3. Select members for reproduction
4. Reproduce new member candidates
5. Select members for the next generation

In the �rst step, the population is initialized. When there is no prior information, the
decision variable values of the population are usually selected from some priorly de�ned
value range according to uniform random distribution. If some prior knowledge exists

19



20 2. Background and Related Studies

about the location of the optimum, then initialization can be done, e.g., based on Gaus-
sian distribution centered at the presumed location of the optimum.

After the initialization, the population is evolved iteratively; each iteration is called a
generation. The usual termination criterion for the iterative process is some prede�ned
upper limit for the number of generations. The termination criterion may also be based
on the development of the population during previous generations or some knowledge
about the value of the optimum [44, pp. 23�24].

The �rst step in the iteration loop is the selection of members of the population (often
called parents) for reproduction. The selection is done based on the quality, �tness, of
each member. Thus, there must be a way to evaluate the �tness (or cost) value of a
particular decision variable value combination. Usually better members according to the
�tness value are preferred in the selection but some EAs (e.g., DE) select all the members
for reproduction.

The reproduction is often divided into recombination (often called crossover) and mu-
tation operations. Recombination combines two or more selected members/parents to
reproduce one or more children. The idea behind recombination is that combining par-
ents might produce a child that combines good features from the parents and is better
than any of the parents. This idea is often referred to as the building block hypothe-
sis [55, pp. 41�45]. Of course (like in nature) the recombination might produce a child
which is worse than the parents. Mutation means a slight alternation of a single mem-
ber and its purpose is to create variability in the population and to reduce the risk of
stagnation.

The �nal step in the iteration loop is to select members for the next generation from
the members of the previous generation and the reproduced members. As earlier, the
selection usually prefers better members. If the selection guarantees that the best member
found so far is selected for the next generation, then the selection is elitist and the
EA is an elitist optimization method. The degree to which the selection prefers better
members is known as the selection pressure, and although the selection should prefer
better members, the selection pressure should not be too high as it might lead to a lose
of diversity in the population and to premature convergence [33, p. 104]. Premature
convergence means that the population has converged to a sub-optimal solution and the
search no longer advances. Diversity is lost since population members are close to each
other in the decision variable space, i.e., the search space.

Balancing the exploitation e�ect of the selection and the exploration e�ect caused by
the reproduction is one of the key issues in an EA and determines how greedy, fast, or
reliable the EA is. Very greedy algorithms are typically fast for easy problems but lead
to premature convergence with more demanding problems. On the other hand, methods
that are successful with harder problems typically have a slower convergence rate.

Since EAs are stochastic methods with several simultaneously evolving solution candi-
dates, their mathematical analysis is di�cult. However, theoretical analysis has been
performed using the Markov chain theory and it has been proven that an EA ful�lling
two conditions will converge to a global optimum [6, p. 129]. Prerequisite conditions are:

1. The method is elitist.
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2. Any solution candidate in the search space can be created using reproduction op-
erations.

A method ful�lling these conditions will de�nitely converge to a global optimum if there
is an in�nite amount of time. It is questionable how much signi�cance this has in practice
because time is limited in the real world.

Due to the di�culty of theoretical analysis, comparisons between methods are usually
performed empirically. Since EAs are stochastic methods, the results of an EA are with
high probability di�erent for di�erent repetitions of the search. Therefore, experiments
used for performance evaluation usually have several repetitions.

Experimental evaluation is not without its own di�culties because the result of the
comparison depends on at least the following factors:

1. The problems used in the testing.

2. The control parameter values used for the optimization methods.

3. The evaluation criteria used to evaluate the quality of the obtained results.

With suitable selection of these factors, substantially di�erent results can be obtained for
the same set of optimization methods, as implied by the No Free Lunch (NFL) theorem.
The NFL theorem states that no single optimization method can be the best for all
problems, and all optimization methods are equally good with respect to the set of all
problems [144]. Therefore, experimental results should be examined in the context of the
target class of problems to be solved and cannot be generalized to the set of all problems.

Many classical optimization methods rely on assumptions about the mathematical prop-
erties of the �tness function, such as convexity, linearity, di�erentiability, continuity, and
modality. However, these assumptions do not hold for many practical problems. EAs
are free from most assumptions about the �tness function, thus the �tness function can
be considered as a �black box� without information about the properties of the �tness
function. This is probably the main reason why EAs have become popular during the
last decades.

2.2 Multi-Objective Optimization with Constraints

2.2.1 Basic Concepts

Multi-objective optimization means optimization of more than one objective or goal at
the same time. Many practical problems have multiple objectives and several factors
create constraints to problems. For example, mechanical design problems may have
several objectives such as obtained performance and manufacturing costs, and available
resources may be limited. Constraints can be divided into boundary constraints and
constraint functions. Boundary constraints are used when the value of a decision variable
is limited to some range. Constraint functions represent more complicated constraints,
which are expressed as functions on one side of an inequality equation.
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Mathematically, a constrained multi-objective optimization problem (MOOP) can be
presented in the form [108, p. 37]:

minimize {f1(x), f2(x), . . . , fM (x)}
subject to g1(x) ≤ 0

g2(x) ≤ 0
...

gK(x) ≤ 0
x ∈ RD.

(2.1)

Thus, there are M objective functions fm to be minimized, K constraint functions gk
limiting the search space, and D decision variables. Decision variables, which de�ne
values of objectives and constraints, form together a decision vector x. The goal of
multi-objective optimization is to �nd a decision vector x which minimizes the objectives
without violating any of the constraints. Maximization problems can be converted to
minimization problems by multiplying the objective function by -1 because maximization
of fm(x) is equivalent to minimization of −fm(x). All constraints can be converted into
the form gk(x) ≤ 0 in the following way: gk(x) ≥ 0⇔ −gk(x) ≤ 0, gk(x) = 0⇔ gk(x) ≤
0 ∧ −gk(x) ≤ 0. Boundary constraints can also be presented in the form of constraint

functions, e.g., x
(LO)
i ≤ xi ≤ x

(HI )
i ⇔ x

(LO)
i − xi ≤ 0 ∧ xi − x(HI )

i ≤ 0. Thereby the
formulation in Equation 2.1 is without loss of generality. However, because boundary
constraints are usually handled separately, the general de�nition is given in the form:

Minimize {f1(x), f2(x), . . . , fM (x)} ,
subject to g1(x) ≤ 0

g2(x) ≤ 0
...
gK(x) ≤ 0

x
(LO)
1 ≤ x1 ≤ x(HI )

1

x
(LO)
2 ≤ x2 ≤ x(HI )

2
...

x
(LO)
D ≤ xD ≤ x(HI )

D .

(2.2)

It should be noted that a problem does not necessarily contain all the constraints in the
above de�nition, i.e., some of the decision variables might be unbounded.

Usually, the objectives con�ict and it is not possible to �nd a single solution that would be
optimal for all the objectives. Therefore, the task becomes a search for a set of solutions
which represent the best possible compromises between di�erent objectives. For such
solutions it holds that none of the objectives can be improved without impairing at least
one other objective. This de�nition was given by Edgeworth in 1881 but nowadays it is
commonly known as the de�nition of Pareto-optimality after another nineteen century
scientist, Vilfredo Pareto, who developed the de�nition further [108, p. 11]. Finding
Pareto-optimal solutions for a MOOP is sometimes called Pareto-optimization [77]. If
there exist such decision vectors x1 and x2 that

∀m ∈ {1, 2, . . . ,M} : fm(x1) ≤ fm(x2) , (2.3)
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Figure 2.1: An example of Pareto-optimal front and solutions candidates for
a bi-objective MOOP with two decision variables. The feasible area is bounded
with a dashed line.

then x1 weakly (Pareto-)dominates x2 and this is expressed as x1 � x2. If

x1 � x2 ∧ ∃m ∈ {1, 2, . . . ,M} : fm(x1) < fm(x2) , (2.4)

then x1 (Pareto-)dominates x2 and this is expressed as x1 ≺ x2 [164]. No solution exists
which dominates a Pareto-optimal solution. Pareto-optimal solutions form a Pareto-
optimal set in the decision variable space and a Pareto-optimal front in the objective
space [26, pp. 11�12]. This is illustrated in Figure 2.1, which shows the decision variable
space and objective space for a MOOP with two decision variables and two objectives.
The region of the spaces which satis�es the constraints is bounded with a dashed line.
Points inside the region are feasible and points outside the region are infeasible.

In Figure 2.1, a point drawn in the decision variable space will correspond to the point
c in the objective space. This is one solution candidate for the MOOP. Figure 2.1 also
shows other solution candidates a, b, d−k in the objective space. Some of them are closer
to the Pareto-optimal front than others, and the Pareto-optimal front in this case consists
of two disconnected curves (i.e., the Pareto-optimal front is not necessarily continuous).
Part I of the Pareto-optimal front has a convex shape and part II is concave. Therefore,
the whole Pareto-optimal front is considered to be non-convex. Solution candidates
a− h do not dominate each other and none of solution candidates i− k dominate them.
Therefore, solution candidates a − h form a non-dominated set that is considered to be
an approximation of the Pareto-optimal front for the MOOP. Solution candidates i − k
in Figure 2.1 are dominated by at least one solution from the set of the non-dominated
solutions, and therefore solutions i− k are discarded as solutions for the MOOP.

Solution candidates can be sorted based on dominance using non-dominated sorting [33,
pp. 40�44]. When solution candidates a − k are sorted, non-dominated solutions a − h
form the �rst non-dominated class, non-dominated solutions of the remaining solutions,
i.e., solutions i − j form the second non-dominated class, and solution k forms alone
the third non-dominated class. The �rst class is considered the best and the third class
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is considered the worst, based on dominance. Solutions which belong to the same non-
dominated class do not dominate each other.

A classical approach for multi-objective optimization is to convert a MOOP into a single-
objective form by prede�ning weighting factors for di�erent objectives, expressing the
relative importance of each objective a priori. The weights then de�ne what kind of
compromise solution is sought by a decision-maker. The decision-maker is a person (or
group of persons) who does the ultimate selection of the �nal solution among the set of
non-dominated solutions that are equally good in the sense of Pareto-dominance [108, p.
14�15]. Other ways than weights also exist to express the preference of the decision-
maker a priori, e.g., ε-constraint and goal programming methods. Some of the most
common methods are discussed in Section 2.2.4.

The decision-maker may not want or not be able to provide the relative importance of
objectives beforehand. In such cases, the approach is to �nd a set of solution candidates
and let the decision-maker pick a solution which provides a suitable compromise between
the objectives. This can be viewed as a posteriori articulation of the preferences of the
decision-maker concerning the relative importance of each objective. Besides a priori
and a posteriori approaches, no-preference and interactive approaches also exist [108].
The no-preference approaches provide a solution without any preference information and
the interactive approaches involve the decision-maker interacting/guiding the solution
process.

Only the convergence aspect of multi-objective optimization has been considered in the
above discussion, i.e., the obtained solutions should be as close to the Pareto-optimal
front as possible. However, a posteriori methods provide several solution candidates and
besides convergence, good diversity is also desired [33, pp. 22�23]. Diversity is usually
considered in the objective space (not the decision variable space). Good diversity means
that the spread of extreme solutions is as high as possible and the relative distance
between solutions is as equal as possible. For example, there is good diversity among
non-dominated solutions a − d in Figure 2.1 since they are uniformly distributed and
cover well part I of the Pareto-optimal front. The distribution of solutions e − h is
less optimal since the solutions are not uniformly distributed although they cover the full
extent of the Pareto-optimal front part II. Although the goal of good diversity is common
in a posteriori multi-objective optimization, the goal has not been de�ned precisely and
obtained diversity has been a subjective measure. Only recently has a formal de�nition
for good diversity been proposed, in [79]. According to this de�nition, obtaining a good
diversity for n solutions forming a non-dominated set P is equal to the optimization
problem:

Maximize mini 6=j ‖xi − xj‖ ,
subject to xi,xj ∈ P, |P| = n .

(2.5)

Thus, the optimum for this problem is a set of n solutions for which the minimal distance
between any two solutions in the objective space is maximal. The natural distance metric
between two solutions is the Euclidean distance and di�erent objective values should be
normalized before distance calculations.
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2.2.2 Constraint Handling

Most practical problems contain constraints that must be treated in the optimization
process. In the following section, only very brief background information about constraint
handling is given, since constraint handling has not been under development in this work,
although it is a part of Generalized Di�erential Evolution. More comprehensive surveys
about constraint handling techniques used with EAs are given in [22,103].

Boundary Constraints

Decision variable values of a problem are usually constrained. Many optimization al-
gorithms are capable of creating solution candidates outside the original initialization
bounds of the decision variables. If a problem de�nition contains boundaries for decision
variable values, then some technique must be used for handling boundary constraint vi-
olations. It is possible just to reject the violating solution candidate and create a new
one, however, decision variable values can be corrected according to some rule to ensure
they are inside boundaries as described in [119, pp. 202�206]. Three boundary constraint
violation correction techniques are described here.

The �rst technique sets the value of the violating decision variable xi to the corresponding
boundary. This can be presented formally:

xi =

{
x
(LO)
i if xi < x

(LO)
i

x
(HI )
i if xi > x

(HI )
i

, (2.6)

where x
(LO)
i and x

(HI )
i are corresponding lower and upper bounds, respectively. This

rule is very simple to implement but reduces the diversity of the decision variables.

The second commonly used technique is to generate a new decision variable value between
the decision variable boundary values:

xi = x
(LO)
i + rand [0, 1] ·

(
x
(HI )
i − x(LO)

i

)
if xi < x

(LO)
i ∨ xi > x

(HI )
i , (2.7)

where rand [0, 1] denotes a random number generated from the uniform distribution [0, 1].

The third technique re�ects any violation back into the feasible solution area by the same
distance by which the boundary was violated.

xi =

{
2x

(LO)
i − xi if xi < x

(LO)
i

2x
(HI )
i − xi if xi > x

(HI )
i

. (2.8)

If the amount of violation is larger than the distance between the upper and lower limits,
then the corrected value is still outside the variable value range but the amount of
violation is less than originally. The rule above can be repeated as many times as needed
to make the variable value feasible.

The third technique does not need a random number generator as required by the second
technique and provides better diversity in the population than the �rst technique. For
this reason the technique has been used (if necessary) in all the experiments in this thesis.
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Constraint Functions

More complicated constraints are presented in the form of functions on one side of the
inequality and 0 on the other side 1. Also in this case, an infeasible solution could simply
be rejected and a new solution generated. However, the classical method to handle
constraint functions has been an approach based on the use of a penalty function [112].
The idea is to penalize an infeasible solution by increasing the value of the corresponding
objective function by the constraint violation. This can be presented formally as follows:

Fm(x) = fm(x) +

K∑

k=1

wk max(gk(x), 0) . (2.9)

Thus, the constraint function gk increases the value of Fm if gk(x) > 0. The value of Fm
is used instead of fm when di�erent solutions are compared. Each constraint function has
a penalty parameter/weight wk, which de�nes the importance of the corresponding con-
straint. The requirement for setting penalty parameter values is the biggest drawback of
the penalty function approach, since determination of suitable penalty parameter values
is not trivial and di�erent penalty parameter values lead to di�erent results. Therefore,
alternative approaches (e.g., dynamic and adaptive penalties) have been developed to
overcome the problem [22,112].

Parameter free approaches also exist and have been becoming popular lately since they do
not have the problem of choosing or adjusting appropriate parameter values. These tech-
niques are often based on the following simple principles when comparing two solutions
at a time [33, pp. 131�132]:

1. A feasible solution is better than an infeasible solution.

2. Among two feasible solutions, the better one has a better objective value.

3. Among two infeasible solutions, the better one violates the constraints less.

A couple of variations exist for the third principle. One popular approach is to add
the constraint violations and compare the sums, as used by Deb [33, p. 131]. Another
approach is to use the dominance-relation in the space of constraint violations [92]: If
the constraint violations of solution x dominate the constraint violations of solution y 2,
then x is considered to be better (see Figure 2.2).

In the �rst approach, where constraint violations are summed, constraints having a larger
magnitude will direct the search since their violations have more e�ect on the total con-
straint violation. This approach also permits worsening of individual constraint function
values because sums of the constraint violations are compared instead of individual con-
straint violations.

The second approach does not permit worsening of individual constraint function values
and is therefore more strict. It can lead to a situation where neither of the solutions can

1Boundary constraints can be handled as constraint functions, as noted in the previous section, but
this is not rational since boundary constraints can be handled more easily than constraint functions.

2We de�ne that x dominates y with respect to constraints i� ∀k : g′k(x) ≤ g′k(y) ∧ ∃k : g′k(x) <
g′k(y), g′k(z) = max (gk(z), 0)
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be judged to be better. This happens if both solutions are infeasible and the constraint
violations do not dominate each other. This kind of situation can be solved using addi-
tional rules (e.g., preferring the old solution if the new one is not better). This second
constraint handling approach has been noted to give very competitive results with a set
of benchmark problems having dozens of constraints [83,103].

The two parameter free methods described above are the simplest, but still e�ective
approaches to constraint handling.

2.2.3 Constraint-Domination Relation

In addition to objective values, the dominance relationship can be extended to take into
consideration constraint values. Constraint-domination ≺c is de�ned here such that x1

constraint-dominates x2, i.e., x1 ≺c x2 i� any of the following conditions is true [90]:

1. x1 and x2 are infeasible and x1 dominates x2 in respect to constraint violations.

2. x1 is feasible and x2 is not.

3. x1 and x2 are feasible and x1 dominates x2 in the objective function space.

This approach is a special case of a uni�ed formulation of goals and priorities proposed by
Fonseca and Fleming [49]. A slightly di�erent constraint-domination de�nition is given
in [33]. It di�ers in such a way that two infeasible solutions are compared based on the
sum of constraint violations instead of dominance in the constraint function violation
space.

The de�nition for weak constraint-domination �c is analogous when the dominance re-
lation is changed to weak dominance in the above de�nition. The weak constraint-
domination relation can be formally de�ned as:

x1 �c x2 iff








∃k ∈ {1, . . . ,K} : gk(x1) > 0
∧
∀k ∈ {1, . . . ,K} : g′k(x1) ≤ g′k(x2)

∨


∀k ∈ {1, . . . ,K} : gk(x1) ≤ 0
∧
∃k ∈ {1, . . . ,K} : gk(x2) > 0

∨


∀k ∈ {1, . . . ,K} : gk(x1) ≤ 0 ∧ gk(x2) ≤ 0
∧
∀m ∈ {1, . . . ,M} : fm(x1) ≤ fm(x2)

, (2.10)

where g′k(xi) = max (gk(xi), 0) represents a constraint violation of xi with respect to the
kth constraint. It is good to note that in the case of no constraints and a single objective,
x1 �c x2 i� f(x1) ≤ f(x2).

An example of constraint-domination is given in Figure 2.2, where the constraint violation
and objective spaces are shown for a set of solution candidates. Solution candidates a−c
violate neither of the constraints. Thus these solutions constraint-dominate infeasible
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Figure 2.2: Example of the constraint violation and objective space for a set of
solution candidates.

solution candidates d−f although solution candidates e and f are better in the objective
space. In the same way, e ≺c f because both are infeasible and comparison is done in
the constraint violation space, where e dominates f , and a ≺c c because both are feasible
and a dominates c in the objective space.

2.2.4 Classical Methods for Multi-Objective Optimization

Although this thesis concerns evolutionary multi-objective optimization and is not di-
rectly concerned with non-evolutionary methods, a brief overview of the most common
non-evolutionary multi-objective optimization methods is given below.

Multi-objective optimization is traditionally called Multiple Criteria Decision-Making
(MCDM) [108, p. xiii]. The general goal in MCDM is to help the decision-maker to �nd
a solution or several solutions for a MOOP.

In the following, the methods are listed according to [33, pp. 49�79]. A more compre-
hensive study can be found in [108].

Weighted Sum Method

The weighted sum method is the simplest and probably the most commonly used tra-
ditional multi-objective optimization method. The idea is to calculate a scalarized ob-
jective function that is a weighted sum of individual objective functions. More formally,
the scalarized objective value is calculated as:

F (x) =

M∑

m=1

wmfm(x) . (2.11)

Thus, there is a non-negative weight wm connected to each objective de�ning the relative
importance of the objective.
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The weighted sum approach is simple to implement and calculate even for a large number
of objectives. Furthermore, it guarantees that the optimum of the scalarized objective
function is a Pareto-optimal solution. However, if a MOOP is non-convex, not all the
Pareto-optimal solutions can be found using the weighted sum method.

ε-Constraint Method

In the ε-constraint method, one objective is optimized and rest of the objectives are
regarded as constraints. The modi�ed problem is in the form:

Minimize fµ(x)
subject to fm ≤ εm, m = 1, . . . ,M ∧m 6= µ .

(2.12)

User-de�ned constraint values εm limit the value of all but one objective. The ε-constraint
method can be used to identify all the Pareto-optimal solutions for any kind of problem
(also non-convex problems).

Weighted Metric Methods

Weighted metric methods are slightly more complicated versions of the weighted sum
method. Di�erent objectives are combined together into a single objective function which
has the form:

lp(x) =

(
M∑

m=1

wm |fm(x)− z∗m|p
)1/p

, (2.13)

where wm is a weight, p ∈ [1,∞), and z∗m is the mth element of an ideal solution 3.
When p = 1, the method is equivalent to the weighted sum method and, therefore, all
the Pareto-optimal solutions cannot be found for non-convex problems. When the value
of p is increased, a greater quantity of Pareto-optimal solutions can be found, but at
the same time, the weighted metric becomes non-di�erentiable and many optimization
methods are not applicable.

When p =∞, the objective function has the form:

l∞(x) = max
m=1,...,M

[wm |fm(x)− z∗m|] . (2.14)

This problem formulation has its own name � the weighted Tchebyche�. All the Pareto-
optimal solutions can be found with this formulation if a utopian objective vector z∗∗ 4

is used instead of z∗ [108, p. 155].

3The ideal solution z∗ is de�ned such that the mth element of z∗ is the optimum for fm, thus
z∗m = f∗m.

4If minimization of objectives is assumed, z∗∗m = z∗m − εm with εm > 0 for all m = 1, 2, . . . ,M , thus,
z∗∗ has slightly smaller objective values than z∗ has.
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Value Function Method

The value function method assumes that the decision-maker is able to express her/his
preference as a mathematical function U , which scalarizes multiple objectives into a single
value. This value function is then maximized:

Maximize U (f1(x), f2(x), . . . , fM (x)) . (2.15)

In a sense, the value function method is optimal if a decision-maker is able to de�ne the
value function. However, it is often impossible for a decision-maker to de�ne her/his
absolute preference beforehand. The value function must also ful�l certain properties so
that its optimum is Pareto-optimal [108, p. 115]. Therefore the value function method
is little used in practice and has more importance as a theoretical concept.

Goal Programming Methods

Goal programming methods try to satisfy goals set for objectives. For example, the
decision-maker could demand that objectives are equal, less-than-or-equal, or greater-
than-or-equal to certain target values. The decision-maker could also set value ranges
for objective values. The optimization method then tries to satisfy these goals as well as
possible.

Di�erent ways to express preference exist. One approach is lexicographic ordering. In
this approach the decision-maker gives a priority order for the goals. Goals with higher
priority will be satis�ed �rst and after that goals with lower priority. Lexicographic
ordering has a connection to constrained optimization approaches in which constraints
are satis�ed �rst and then objectives are optimized.

Interactive Methods

Interactive methods di�er from the above-mentioned methods since they involve the
decision-maker during the optimization process. A MOOP is initially solved and then the
opinion of the decision-maker about the preferences is requested before the optimization
process is continued. The interaction with the decision-maker is continued until a solution
satisfying the decision-maker has been found.

Several interactive approaches are described in [108]. One of these is the Non-di�erentiable
Interactive Multi-objective BUndle-based optimization System (NIMBUS), which also
has an online version available free for academic use [109�111].

Review of Classical Methods

Many of classical methods have the advantage that their working principle is well under-
stood and Pareto-optimality of found solutions can be guaranteed. The above-mentioned
classical methods (with exception of the interactive methods) �nd a single solution for
a given MOOP since the methods convert a MOOP to a single-objective form and solve
it. It should be noted that no general single-objective optimization method exists that
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would return the solution of any problem in �nite time. Therefore, �nding a Pareto-
optimal solution in �nite time for a MOOP cannot be guaranteed in general. As noted
above, some classical approaches cannot �nd certain solutions for a non-convex MOOP.
In addition, all the methods discussed above demand some problem knowledge, e.g., for
setting suitable weight or target values.

In a priori optimization, the assumption is that the decision-maker is able to express
her/his preference among di�erent objectives beforehand. As has been already noted in
Section 2.2.1, giving the absolute preference of objectives beforehand is often di�cult.
Finding solutions in some speci�c region of the Pareto-optimal front by adjusting method
parameters (i.e., weight, priority, or target) values might also be di�cult. Therefore,
without an absolute preference of the decision-maker, an a posteriori approach is argued
to be more preferable [33, p. 77].

The above-mentioned classical methods can be used to generated a set of di�erent com-
promise solutions for a given MOOP a posteriori. However, this would need several
simulation runs of an optimization method since one simulation run typically provides
only a single solution. For example, using the method with weighted Tchebyche�, dif-
ferent weights need to be used to obtain di�erent solutions and the optimization process
needs to be repeated in order to have di�erent compromise solutions. Moreover, �nd-
ing uniformly distributed solutions along the Pareto-optimal front is often di�cult since
uniformly distributed method parameter values do not guarantee uniformly distributed
solutions in the objective space.

In the light of these issues, multi-objective evolutionary algorithms (MOEAs) in a pos-
teriori multi-objective optimization have gained popularity during last decades since
several MOEAs are able to produce a relatively well distributed set of non-dominated so-
lutions approximating the Pareto-optimal front in a single simulation run. Furthermore,
MOEAs do not commonly require any additional problem parameters and they are able
to provide good results (i.e., well distributed and converged set of solutions) for di�cult
MOOPs having non-convexity, non-linearity, discontinuity, and non-di�erentiability.

2.2.5 Multi-Objective Evolutionary Algorithms

Multi-objective evolutionary algorithms (MOEAs) are EAs designed to solve multi-
objective problems. Originally, EAs were used in connection with scalarization ap-
proaches, such as mentioned in Section 2.2.4, i.e., MOOPs were scalarized and then
solved using a single-objective EA. Later, a posteriori EA approaches started to emerge
and gain popularity since EA can easily provide several solution candidates, a feature that
is desirable in a posteriori multi-objective optimization. In general, MOEAs are consid-
ered as a posteriori methods, i.e., their goal is to �nd a limited number of well converged
and distributed solutions approximating the Pareto-optimal front [25, pp. 3�4].

Currently thousands of references about MOEAs exist in the academic literature, in-
cluding hundreds of doctoral theses [23]. Prominent doctoral theses about MOEAs were
completed by Fonseca in 1995 [46], Zitzler in 1999 [156], and Van Veldhuizen 1999 [141].
Several books about MOEAs are also available. The most notable books are written by
Deb [33] and Coello Coello et al. [25, 26]. In the following, the development history of
MOEAs is brie�y described.
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One of the �rst MOEAs was the Vector Evaluated GA (VEGA) by Scha�er in 1984 [131].
VEGA is not based on the Pareto-dominance concept but dividing the population to as
many subpopulations as there are objectives and doing the selection according to a single
objective in each subpopulation. In reproduction, individuals of di�erent subpopulations
are allowed to mate with each other. No diversity preservation technique is included.
VEGA produces solutions which are good according to a single objective but compromise
solutions are typically missing.

After VEGA, the next notable MOEAs were proposed in the 1990's. These methods are
based on the non-dominance concept in �tness evaluation and the use of some kind of
mechanism to preserve diversity of solutions in the objective space. Notable suggestions
were the Multiple Objective GA (MOGA) [47] by Fonseca and Fleming in 1993, the Non-
Dominated Sorting GA (NSGA) by Srinivas and Deb in 1994 [132], the Niched-Pareto
GA (NPGA) by Horn et al. in 1994 [62], and the Strength Pareto EA (SPEA) by Zitzler
and Thiele in 1998 [162, 163]. All the above mentioned MOEAs except SPEA have a
common property, namely that they are all non-elitist [33]. This means that they do not
necessarily maintain the best found solution candidate during the evolutionary process.
Non-elitist MOEAs are also sometimes referred to as �rst generation MOEAs.

Following the introduction of non-elitist MOEAs, elitist (second generation) MOEAs
started to emerge. These methods include the above-mentioned SPEA and its improved
version, SPEA2, proposed by Zitzler et al. in 2002 [161]. Other prominent elitist methods
are the elitist Non-Dominated Sorting GA (NSGA-II) by Deb et al. in 2000 [34,35] and
the Pareto-Archived Evolution Strategy (PAES) by Knowles and Corne in 2000 [78].
The last mentioned researchers have also been involved in developing two versions of the
Pareto Envelope-based Selection Algorithm (PESA) in 2000 and 2001 [28,30].

A few recent MOEAs are not based on concepts of non-dominance and diversity preser-
vation in the same way as the methods above. Remarkable methods are the ε-dominance
Multi-Objective Evolutionary Algorithm (ε-MOEA) proposed by Laumanns et al. in
2002 [98], the Indicator-Based Evolutionary Algorithm (IBEA) proposed by Zitzler and
Künzli in 2004 [159], and Multiobjective EA based on decomposition (MOEA/D) pro-
posed by Zhang and Li in 2006 [152].

In addition to proposing new techniques, further analysis on MOEAs has also been
undertaken. Similarly to EAs, convergence of MOEAs ful�lling the two same conditions
as EAs (cf. Section 2.1) has been proven [141, p. 2-22�2-25]. The elitism condition in the
case of MOEAs means that the population can move only towards the Pareto-optimal
front. Thus, the next population must be equal or better in the sense of Pareto-dominance
compared to the previous generation. Convergence conditions have been further discussed
in [127, 128]. In [98] it has been shown that convergence cannot been guaranteed with
several MOEAs, such as PAES, SPEA, and NSGA-II, designed to maintain diversity of
solutions since they can lose Pareto-optimal solutions during the search. Thus, their
categorization as elitist MOEAs is somewhat misleading.

In [53], it has been shown that with certain problems, a population based MOEA per-
forms signi�cantly better than several single individual-based algorithms, including the
ε-constraint method. This same conclusion had been derived empirically earlier in [67],
where it was also noted that when the number of objectives increases, the performance
of methods based on Pareto-dominance declines.
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In the following, NSGA-II, SPEA2, ε-MOEA, IBEA, and MOEA/D are discussed in
more detail. NSGA-II and SPEA2 have been selected for more detailed discussion since
they have been the most popular, state-of-art MOEAs for a long time. For this reason
they have been chosen for comparison in the attached publications of this thesis work.
ε-MOEA, IBEA, and MOEA/D have been selected for more detailed discussion because
they present a more recent state/generation of MOEAs.

Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II)

The elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) [34, 35] has been the
most used multi-objective optimization method in the MOEA literature. The working
principle of NSGA-II is as follows: At each generation, a GA is used to create a child
population which has an equal size compared to the parent population. After each
generation, the parent and child populations are combined together. If the population
size is NP , then the combined population has size 2NP . The combined population is
sorted using non-dominated sorting and the best NP individuals are selected based on
non-dominance rank. Thus, individuals from the best non-dominated class are selected
�rst, then from the second best non-dominated class, and so on, until the number of
selected individuals is NP . If the last non-dominated class of solutions to be selected
is too big to �t completely in the set of NP individuals, then this non-dominated set is
reduced based on a crowding estimation among the individuals of the class. The idea
is to remove the most crowded individuals until the remaining individuals �t into the
selected set of NP individuals.

Crowding estimation in NSGA-II is based on a distance metric called the crowding dis-
tance. The crowding distance for a member of a non-dominated set tries to approximate
the perimeter of a cuboid formed by using the nearest neighbors of the member. The
cuboid in the case of two objectives is illustrated in Figure 2.3. For a member of a
non-dominated set, the crowding distance is calculated by �nding the objective value
di�erence between the two nearest solutions on either side of the member along each of
the objectives (distances di1 and d

i
2 in Figure 2.3). Then the di�erences are normalized by

dividing them by the di�erence between the maximum and minimum values of the corre-
sponding objectives. Finally, these normalized distances are summed, giving a crowding
distance for the corresponding member. For those members which have a maximum or
minimum value for any objective, the crowding distance is assigned to have an in�nite
value, i.e., those members are considered as the least crowded. Finally, the members
of the non-dominated set are sorted according to the crowding distances and a desired
number of members having the smallest crowding distance values are removed. [33, p.
248]

The above described selection process of individuals for the next generation is illustrated
in Figure 2.4. It should be noted that pruning based on diversity is done only among
the members of the last non-dominated class of solutions that is selected for the next
generation.

In [33, pp. 245�246], it is claimed that with early generations there exist several di�erent
non-dominated sets/classes and the diversity preservation has little e�ect on the selec-
tion process. When the population starts to converge to the Pareto-optimal front, the
non-dominated sets become larger and eventually it is likely that the best non-dominated
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Figure 2.3: Example of the cuboid of a solution in the case of two objectives.
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Figure 2.4: Selection of individuals for the next generation in NSGA-II.
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set is larger than NP . Thus, only little diversity preservation is performed at the early
generations but more during the late generations. This kind of strategy provides a way
to balance between convergence and diversity, but unfortunately, it works only with two
objectives, because the crowding distance metric used in NSGA-II does not estimate
crowding well when the number of objectives is more than two as indicated later in this
thesis work (Publication V ). Even if there were a working diversity preservation tech-
nique, the balance between convergence and diversity changes when the number of objec-
tives increases. When the number of objectives increases, the number of non-dominated
individuals increases and diversity preservation becomes a dominating operation in the
survival selection. In the light of this behavior, it becomes evident that, NSGA-II in its
original form performs well only with problems having two objectives.

Improved Strength Pareto Evolutionary Algorithm (SPEA2)

The improved version of the Strength Pareto Evolutionary Algorithm (SPEA2) [161] is
another commonly used MOEA. The �tness assignment of SPEA2 is based on calculating
strength values for individuals. The strength value of an individual xmeasures how many
individuals x dominates. A raw �tness value for an individual y is calculated as a sum
of the strength values of those individuals that dominate y. This raw �tness value is
smaller for the better individuals.

Diversity preservation in SPEA2 is managed by calculating the distance of individuals
to the kth nearest neighbor in the objective space. This distance value is transformed
to a crowding measure; a small value means low crowding, and a large value means high
crowding. The crowding measure is scaled between [0, 1] and added to the �tness value
of each individual. Therefore, individuals are primarily ranked using the raw �tness
values and in the case of identical raw �tness values, the less crowded individual will be
preferred.

In addition to the population, SPEA2 uses an extra archive for solutions. This archive
has a �xed size and is mainly reserved for non-dominated solutions. However, if there
are not enough non-dominated individuals, the space in the archive is �lled based on the
�tness value of the individuals. If the number of non-dominated individuals is larger than
the archive size, then redundant individuals are removed based on the �tness values.

SPEA2 provides a well distributed set of solutions also when the number of objectives is
more than two. However, when the number of objectives increases, the search will slow
down because fewer solutions dominate each other.

ε-Dominance Multi-Objective Evolutionary Algorithm (ε-MOEA)

The ε-dominance Multi-Objective Evolutionary Algorithm (ε-MOEA) is based on the
idea that non-dominated solutions whose objective values are close to each other (de�ned
by ε) will ε-dominate each other [98]. A MOEA is used to �nd a set of solutions which
do not ε-dominate each other. Use of ε-dominance will automatically maintain diversity
since solutions cannot be too close to each other in the objective space.
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Indicator-Based Evolutionary Algorithm (IBEA)

The Indicator-Based Evolutionary Algorithm (IBEA) [159] is based on the idea that the
search is performed according to the preference of the decision-maker instead of �xing
a technique for �nding non-dominated solutions. Thus, IBEA searches for such a set of
solutions which best satis�es the decision-maker. The preference is presented in the form
of a binary indicator (which will be discussed further in Section 2.2.6). IBEA has been
tested using the hypervolume and ε-indicator [164].

Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D)

Multiobjective EA based on decomposition (MOEA/D) [152] decomposes a MOOP into
N di�erent scalar optimization problems using the weighted Tchebyche� approach and
solves these simultaneously using an EA. The EA is restricted to performing reproduction
using only vectors close to each other in the weight vector space. Neighboring solutions
are replaced with the new solution, if the new one has a better scalarized value.

MOEA/D represents a return to classical multi-objective optimization methods. How-
ever, MOEA/D is a recent method with good results and it might be usable also in
cases when the number of objectives is large and the search based on Pareto-dominance
stagnates.

2.2.6 Performance Evaluation in Multi-Objective Optimization

Since MOEAs are stochastic optimization methods, their performance is di�cult to ana-
lyze theoretically. Therefore, the performance of a MOEA is usually analyzed empirically.
This means performing repeated simulations with test problems and evaluating the per-
formance in comparison with some other MOEA. However, getting conclusive results in
this way is not trivial since the control parameter values used, the selected test problems,
and the performance metrics a�ect the results, as pointed out in Section 2.1. Therefore,
results based on experiments should be taken as indicative.

In the following, common test problems and performance metrics used with MOEAs are
brie�y discussed. A further important issue is how to visualize results for a MOOP.

Multi-Objective Test Problems

Common multi-objective test problems have been described in [25,33]. Many existing test
problems have two objectives and many of them also have some simplifying characteristics
(e.g., several of them are separable 5). Only recently have test problems appeared having
more than two objectives and more complicated characteristics.

Some test problem sets are brie�y described below. The �rst two test problem groups
have been used in this thesis work and problem descriptions can be found in Appendix I.
The last test problem group is more recent and has been mentioned here as supplementary
information.

5An objective function is separable if its decision variables do not interact and the objective function
can be presented as a sum of single-variable functions [123, p. 34]. The objective function can then be
solved by optimizing each decision variable individually. A multi-objective problem is separable if all
the objective functions are separable.
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Zitzler-Deb-Thiele (ZDT) test problems [158] are probably the most used test
problems in the MOEA literature. ZDT problems consist of six bi-objective prob-
lems, which have been designed to test the ability of a multi-objective optimization
method to handle di�erent types of di�culties with MOOPs. ZDT problems have
the bene�t that they are purely synthetic and their exact solutions are known.
They are also easy to implement and they test several basic properties of MOEAs.
However, they have several defects, which degrade their usability:

• The problems are bi-objective and not directly scalable.

• The �rst objective of the problems depends on a single decision variable and
the second objective depends on the rest of the decision variables. The second
objective is also a more complicated function. Therefore, the �rst objective is
easier to optimize than the second, and this feature might lead to premature
convergence along the �rst objective. (This issue is further discussed in the
next chapter)

• For Pareto-optimal solutions, the �rst decision variable x1 ∈ [0, 1] and the rest
of the decision variables have value 0, which is on the boundary of the deci-
sion variable value range. Thus, the boundary constraint violation correction
method used has a great impact on the convergence to the Pareto-optimal
front.

• For most of the problems, equally spaced values of the �rst decision variable
correspond to equally spaced solutions in the objective space.

• New Pareto-optimal solutions can be generated using a linear combination of
other Pareto-optimal solutions.

For the above-mentioned reasons, use of the original ZDT problems is becoming
more rare. Some modi�cations of the ZDT problems have been proposed, e.g.,
in [38].

Deb-Thiele-Laumanns-Zitzler (DTLZ) test problems [40] have become popular
in recent years. DTLZ problems are scalable to any number of objectives, although
tri-objective versions are mostly used.

As with the previous problem set, DTLZ problems are synthetic and their solutions
are known. De�nitions for nine di�erent DTLZ problems are given in [40]. Similar
to ZDT problems, DTLZ problems address a variety of di�erent problem charac-
teristics. However, DTLZ problems have some limitations, e.g., all the problems
are separable [65].

The Walking Fish Group (WFG) test problem toolkit [65,66] was proposed by
Huband et al. in 2005 to increase the di�culty and variability of the test prob-
lems. As well as providing tools for test problem generation, a set of nine dif-
ferent test problems was proposed. These address several defects (e.g., lack of
non-separability) mentioned above with ZDT and DTLZ problems.

Multi-Objective Performance Measurements

Measuring the quality of a result for a MOOP is signi�cantly more di�cult than for a
single-objective optimization problem. In the single-objective case, the di�erence between
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obtained solutions can unambiguously be measured (and compared to the global optimum
if known) and this measure can be used as a performance metric.

In the case of multi-objective optimization, no single, generally accepted, supreme per-
formance measure exists. In the case of a posteriori multi-objective optimization, the
goal is to �nd a set of non-dominated solutions which are as close to the Pareto-optimal
front as possible and which cover the Pareto-optimal front as well as possible [33, pp.
22�23]. These two aspects are considered somewhat con�icting, and it has been argued
that no single metric can measure the performance of an algorithm absolutely [33, p.
322].

The following aspects can be used to quantify the quality of a result for a MOOP:

1. Number of non-dominated solutions.

2. Closeness to the Pareto-optimal front.

3. Diversity, which includes:

(a) Distribution of solutions.

(b) Extent of solutions.

Measuring several di�erent aspects gives more information about the characteristics of a
solution set than a single metric value.

Several commonly used performance metrics can be found in [33, pp. 320�338] and [164].
In the following, several common performance metrics are brie�y covered. Most of them
have also been used in the publications included in this thesis. Metrics the for studies
were selected according to prevailing insight about their suitability to measure certain
characteristics.

Two commonly used convergence metrics are generational distance and error ratio [33, pp.
324�327], with the former being more often found. For both of these metrics, less is better
and the optimal value is zero.

Generational distance GD measures the average distance of solutions to the Pareto-
optimal front. Thus, from each solution, the shortest distance to the Pareto optimal
front is measured and then the mean of these distances is calculated. This measure
has been used in Publication I, Publication II, Publication III, and Publication VI.

Error ratio ER measures the fraction of solutions that are not Pareto-optimal. This
measure was used in Publication I and Publication III but not later since it was
found convergence can be measured better with generational distance.

The usability of these metrics is limited since the metrics can be used only when the
global Pareto-optimal front is known.

Diversity is also a key consideration. The diversity of the obtained set of solutions has
often been measured with spacing, spread, and maximum spread metrics [33, pp. 327�
331]. For spacing and spread, less is better and the optimal value is zero. For maximum
spread, the optimal value is one; if the full spread is not reached then the value is less.
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Spacing S measures the standard deviation of the distances from each solution to the
nearest solution in the obtained non-dominated set. This measure has been used
in all the publications included in this thesis.

Spread ∆ measures both uniformity of the obtained non-dominated set and the dis-
tance to the extreme values of the Pareto-optimal front. This measure was used in
Publication I and Publication III but not later since it was found that the spacing
metric measures distribution better.

Maximum spread, normalized version D̄ measures the distance between extreme
solutions in the obtained set relative to the distance between the extreme solutions
of the Pareto-optimal front. This measure has been used in Publication I, Publica-
tion III, and Publication VII to measure the maximal extent of an approximation
set.

As can be noted, some of the diversity metrics need knowledge about the Pareto-optimal
front and thus the usability of such metrics is limited. Spacing does not require knowledge
about the Pareto-optimal front and is usable in practice, although it has some weaknesses
as noted in [40].

An inverted version of generalized distance [24] also exists and it can be used for mea-
suring overall quality of the obtained set of solution, i.e., how well solutions cover the
actual Pareto-optimal front. Also for this metric, less is better and the optimal value is
zero.

Inverted generational distance IGD measures the average distance of the Pareto-
optimal front to the solutions. Thus, from each member of the Pareto-optimal
front (approximation), the shortest distance to the set of solutions is measured and
then the mean of these distances is calculated. This measure is a relatively recent
approach and has been used in [84,88].

The above mentioned performance metrics are called unary metrics. This means that the
performance measurement needs a single set of solutions. There exist also binary metrics,
which compare two sets of solutions. These do not need knowledge about the Pareto-
optimal front and some of them are compliant with Pareto-dominance. This means that
if one approximation set dominates another, it also has a better metric value [25, pp.
253]. It has been claimed that unary metrics are not Pareto-compliant and not capable
of indicating whether one set of solutions is better than another set of solutions [164].

Common binary metrics are the ε-indicator [164], the set coverage metric [156], and
the hypervolume [164] (also known as an S metric, Lebesgue measure, and V measure
in Publication I and Publication IV ). For all of these metrics, absolute optimal values
cannot be given, rather the two sets of solutions have to be compared with each other in
the two possible ways and then the metric values are compared.

ε-indicator Iε(A,B) between two non-dominated sets A and B measures how much
objective values of A must be changed in order to dominate B. If Iε(A,B) <
Iε(B,A), then A is better than B.
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Set coverage metric C(A,B) between two non-dominated sets A and B measures the
fraction of members of B that are dominated by members of A. If C(A,B) >
C(B,A), then A is better than B. This measure has been used in Publication I
and Publication IV.

Hypervolume HV (A,B) between two non-dominated sets of solutions A and B calcu-
lates the hypervolume of the objective space which is dominated by A but not B.
If HV (A,B) > HV (B,A), then A is better than B. This measure has been used in
Publication I and Publication IV. The unary version of the metric has been used
in Publication VII.

The hypervolume can be calculated also for a single set of non-dominated points. Then
hypervolume measures the space dominated by the set of points and limited to a refer-
ence point. It has been proven that for a MOOP, the set of solutions having maximal
hypervolume value is the set of all Pareto-optimal solutions [45].

As can be noted earlier, the binary metrics above provide only a single value after com-
paring two solution sets. Thus, convergence and diversity are presented with a single
value and it is di�cult to make conclusions about these two aspects separately. More-
over, it has been reported that the hypervolume (as well as any other total order metric)
is biased towards certain portions of the objective space [157]. Thus, maximizing the
hypervolume value does not always lead to a uniformly distributed set of solutions with
a �xed number of solutions. One drawback of binary metrics is that they are compu-
tationally expensive. The computational cost of hypervolume calculation in particular
has limited its usability in practice, for which reason, several studies (e.g., [13,51]) have
considered ways to accelerate the hypervolume calculation.

A further way to evaluate the performance of MOEAs is the use of attainment sur-
faces [48, 50]. An attainment surface for a set of obtained non-dominated solutions
marks the region of the objective space that is dominated by the solution set. It should
be noted that the attainment surface corresponds exactly to the surface used for hy-
pervolume calculation. The attainment surfaces can be used to visualize the results of
repeated simulation runs. The attainment surfaces show the boundary of the objective
space which has been attained with a certain fraction of repetitions. For example, a
50% attainment surface shows the border of the objective space which has been attained
during half of the repetitions. The attainment surface is more informative than a per-
formance metric value but the attainment surface can be reasonably visualized only in
the case of two or three objectives. In addition to analysis of a single method, di�er-
ent MOEAs can be compared using attainment surfaces. The comparison can be done
visually and/or by calculating performance metric values from the attainment surfaces.
Converting the results to numbers means once again losing some part of the information.

Visualization of Non-Dominated Solutions

Probably the best way to evaluate an obtained set of solutions is to visualize it in the
objective space. In this case the evaluation will be qualitative instead of quantitative.
Visualization of solutions has a more important role than merely evaluating the perfor-
mance of an algorithm; visualization is important for the decision-maker who picks the
�nal solution.
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In the simplest case, visualization means plotting obtained solutions into the objective
space (as done in Publication I, Publication III, Publication IV, and Publication V ).
Unfortunately, this approach is best suited only for cases with two objectives. Three
objectives already cause problems in visualization since illustration of three dimensional
objective space will be a projection to two dimensional space and, therefore, the relation
between the objective values of the solutions becomes more di�cult to observe. Beyond
three objectives, the solution space cannot be visualized directly except as a set of pro-
jection images. However, alternative ways to visualize a set of solutions exist and the
most common ways have been described in [108, pp. 239�249] and [33, pp. 316�320]. A
few common visualization techniques are brie�y described below:

Scatter-Plot Matrix Method plots all the pairs of objectives in di�erent subplots,
which are arranged into a matrix shape. In the matrix, the jth column of the ith
row corresponds to the subplot, where the jth objective value of each solution is
plotted with respect to the ith objective value.

Value Path Method presents solutions in a two-dimensional axis, where the horizontal
axis corresponds to an objective identity and the vertical axis corresponds to an
objective value. A single solution is presented with a cross-line, which shows values
of the objectives for the solution. The value path method can be used even with a
large number of objectives and solutions to get information about the value ranges
and the diversity of the solutions.

Bar Chart Method is similar to the value path method except that a bar is used
to illustrate an objective value of a solution. If there are N solutions with M
objectives, the corresponding bar chart will have N ×M bars. The usability of the
bar chart method is thus limited to only a very small number of objectives and
solutions.

Star Coordinate Method plots each solution with a circle, which is divided into M
equal size segments. The border of each segment between the center and circumfer-
ence of the circle represents a value range of a single objective. The objective values
of a solution are then presented with connected points in the segment borders. The
spider-web chart and the petal diagram are slightly di�erent variations of the star
coordinate method. Since a single solution is represented with a single plot, use of
the method with a large number of solutions is di�cult.

One recent and promising approach is to use a heatmap to visualize a solution set [120].
A heatmap is a two-dimensional array, where cells code a numerical value with their
color/shade. Thus, a heatmap is a color/gray-scale picture. When heatmap visualization
is used to show a result for a MOOP, one dimension of the heat-map represents individual
solutions and the other represents decision variable, objective and/or constraint values.
Thus, besides objective values, a heatmap can be used to visualize decision variable
values and constraint values at the same time. The ability to illustrate a large amount of
information (a whole set of solutions) in a quite easily interpreted form makes heatmaps
an attractive choice for visualization.
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2.3 Di�erential Evolution

The Di�erential Evolution (DE) algorithm [31,119] belongs to the family of EAs and the
concept was introduced by Storn and Price in 1995 [134, 135]. The name of the method
refers to the idea of using di�erences between individuals to mutate an individual.

Design principles in DE are simplicity, e�ciency, and the use of �oating-point encoding.
DE is characterized by self-adaptivity, linear scalability (i.e., the computational cost of
the algorithm increases linearly with the number of decision variables) and ability to
perform a rotationally invariant search. Although DE uses real-coding of variables in its
genetic operations, DE can be used to solve problems with di�erent types of variables by
just a simple conversion to the actual variable types prior to evaluation of an objective
or constraints [95,119].

DE has been gaining in popularity in recent years because of its good performance ob-
served in numerical optimization of practical problems. It has also performed well with
a number of test problems [117, 125, 126]. The 2006 IEEE Congress on Evolutionary
Computation (CEC 2006) was the �rst major conference to arrange a special session
dedicated solely to DE, and three years later, the DE special session was the largest at
the conference.

Several variations of the idea exist and these are referred to in the literature as DE
strategies [119, 135]. The following section describes the most used DE strategy in the
literature, DE/rand/1/bin.

2.3.1 Basic Di�erential Evolution, DE/rand/1/bin

Basic DE is meant for unconstrained single-objective optimization and therefore notations
in this section are for single-objective optimization. As in a typical EA, the idea in
DE is to start with a randomly generated initial population, which is then improved
using selection, mutation, and crossover operations. Several ways exist to determine a
termination criterion for an EA, as mentioned in Section 2.1, but usually a prede�ned
upper limit Gmax for the number of generations to be computed is used. This termination
condition is used also with DE in this thesis work.

Initialization of the Population

Values for the initial population in DE are typically drawn from a uniform distribution.
Formally this can be presented as [118]:

PG = {x1,G,x2,G, . . . ,xNP,G} , xi,G = (x1,i,G, x2,i,G, . . . , xD,i,G)

xj,i,0 = x
(lo)
j + rand j [0, 1] ·

(
x
(hi)
j − x(lo)j

)

i = 1, 2, . . . , NP, NP ≥ 4, j = 1, 2, . . . , D .

(2.16)

In this representation, PG denotes a population after G generations (0 is an initial gen-
eration), xi,G denotes a decision vector (or individual) of the population, and rand j [0, 1]

denotes a uniformly distributed random variable in the value range [0, 1]. Terms x
(lo)
j

and x
(hi)
j denote lower and upper parameter bounds in the initialization, respectively.
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The size of the population is denoted by NP and the dimension of decision vectors is
denoted by D.

It should be noted that the values of initialization bounds (x(lo), x(hi)) can be di�erent
from the values of boundary constraints (x(LO), x(HI )) in the problem de�nition (cf.
Section 2.2). For example, some decision variables might be unbounded in the problem
de�nition, but some lower and upper bounds are still needed to initialize these variables.
It should be noted that DE is able to advance the search out of the initialization bounds
of the decision variables if this is not restricted.

Other ways of initialization also exist, e.g., if some knowledge exists about the position of
the optimum, part of the initial population may be initialized around a possible position
of the optimum using normal distribution.

Mutation and Crossover

DE goes through each decision vector xi,G of the population and creates a corresponding
trial vector ui,G as follows [118]:

r1, r2, r3 ∈ {1, 2, . . . , NP} ,
(randomly selected,
except mutually di�erent and di�rent from i)

jrand = round (rand i[0, 1) ·D)
for(j = 1; j ≤ D; j = j + 1)
{

if(rand j [0, 1) < CR ∨ j == jrand)
uj,i,G = xj,r3,G + F · (xj,r1,G − xj,r2,G)

else
uj,i,G = xj,i,G

} .

(2.17)

Indices r1, r2, and r3 are mutually di�erent and drawn from the set of the popula-
tion indices. Function round() rounds to the nearest integer. Functions rand i[0, 1) and
rand j [0, 1) return a random number drawn from the uniform distribution between 0 and
1 for each i and j. Both CR and F are user de�ned control parameters for the DE al-
gorithm and they remain �xed during the whole execution of the algorithm. Parameter
CR, controlling the crossover operation, represents the probability that an element for
the trial vector is chosen from a linear combination of three randomly chosen vectors and
not from the old decision vector xi,G. The condition j == jrand ensures that at least
one element of the trial vector is di�erent compared to the elements of the old vector.
Parameter F is a scaling factor for mutation and its value is typically (0, 1+] (i.e., larger
than 0 and the upper limit is in practice around 1 although there is no hard upper limit).
E�ectively, CR controls the rotational invariance of the search 6, and smaller values (e.g.,
0.1) are more suitable with separable problems while larger values (e.g., 0.9) are for non-
separable problems [118]. Control parameter F controls the speed and robustness of the
search, i.e., a lower value for F increases the convergence rate but also the risk of getting

6The search is rotationally invariant if it is independent from the rotation of the coordinate axis of
the search space. Rotationally invariant search is preferable if the problem is not separable, as is the
case with most practical problems [97,129].



44 2. Background and Related Studies

stuck into a local optimum [118]. Parameters CR and NP have a similar e�ect on the
convergence rate as F [83, 118].

The di�erence between two randomly chosen vectors, xr1,G−xr2,G, de�nes the magnitude
and direction of the mutation. When the di�erence is added to a third randomly chosen
vector xr3,G, this change corresponds to mutation of this third vector. The basic idea of
DE is that the mutation is self-adaptive to the objective function space and to the current
population. It is worth noting that the Covariance Matrix Adaptation Evolutionary
Strategy (CMA-ES) [59] is also self-adaptive and able to perform a rotationally invariant
search but with the computational burden of covariance matrix calculations that scale
unfavorably with the dimensionality of the problem. At the beginning of the optimization
process with DE, the magnitude of mutation is large because vectors in the population
are far away from each other in the search space. When the evolution proceeds and the
population converges, the magnitude of mutations gets smaller. Thus, the self-adaptive
mutation of DE allows a global or local search, whichever is the more appropriate.

Selection

After each mutation and crossover operation the trial vector ui,G is compared to the old
decision vector xi,G. If the trial vector has an equal 7 or lower objective value, then it
replaces the old vector. This can be presented as follows [118]:

xi,G+1 =

{
ui,G if f(ui,G) ≤ f(xi,G)
xi,G otherwise

. (2.18)

The average objective value of the population will never deteriorate, because the trial
vector replaces the old vector only if it has equal or lower objective value. Therefore, DE
is an elitist search method.

Overall Algorithm

The overall presentation of basic DE (sometimes also referred as �classic DE�) is pre-
sented in Figure 2.5 [118]. This DE strategy is identi�ed in the DE literature with the
notation DE/rand/1/bin. In this notation, 'rand' indicates how the vector for mutation
is selected. The number of vector di�erences used in the mutation is indicated next, and
'bin' indicates the way the old vector and the trial vector are recombined. A number of
other DE strategy variants also exists [25,118,119,135].

An empirical comparison study between several DE strategies with a set of single-
objective problems was conducted in [107]. It was concluded that a DE/best/1/bin strat-
egy generally performed best for the problem set but based on the result, DE/rand/1/bin
also performed well. Limitations of the study in [107] were also noted by referring to the
No Free Lunch (NFL) theorem [144]. In general, the performance di�erence between the
two strategies is that DE/best/1/bin is greedier and faster but DE/rand/1/bin is more
reliable and therefore performs better with harder problems [119, pp. 154�156].

7Preferring the trial vector in the case of equal objective values has importance if the objective
landscape contains a plateau; preferring the old vector would cause the search to stagnate on the plateau.
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Input :D,Gmax, NP ≥ 4, F ∈ (0, 1+], CR ∈ [0, 1], and initial bounds: x(lo),x(hi)

Initialize :

{
∀i ≤ NP ∧ ∀j ≤ D : xj,i,0 = x

(lo)
j + rand j [0, 1] ·

(
x
(hi)
j − x(lo)j

)
,

i = {1, 2, . . . , NP} , j = {1, 2, . . . , D} , G = 0, rand j [0, 1] ∈ [0, 1]





While G < Gmax

∀i ≤ NP





Mutate and recombine:
r1, r2, r3 ∈ {1, 2, . . . , NP} , randomly selected,

except mutually di�erent and di�erent from i
jrand ∈ {1, 2, . . . , D} , randomly selected for each i

∀j ≤ D,uj,i,G =





xj,r3,G + F · (xj,r1,G − xj,r2,G)
if rand j [0, 1) < CR ∨ j == jrand

xj,i,G otherwise
Select :

xi,G+1 =

{
ui,G iff (ui,G) ≤ f (xi,G)
xi,G otherwise

G = G+ 1

Figure 2.5: Basic DE algorithm

The stagnation possibility of the DE/rand/1/bin strategy has been discussed in [97]. It
is possible that the search stagnates or premature convergence occurs before reaching the
global optimum. These two cases can be distinguished by observing the diversity of the
population (diversity is lost in the case of premature convergence). The probability of
stagnation or premature convergence can be reduced by increasing the size of the popula-
tion and/or F . The search can be also repeated several times to increase con�dence. The
strategy can be simply modi�ed to ful�ll the convergence properties given in Section 2.1:
Adding random values from a non-�nite probability (e.g., Gaussian) distribution to deci-
sion variable values when the trial vector is created is su�cient to guarantee convergence
to the global optimum.

2.3.2 Di�erential Evolution for Multiple Objectives

Several extensions of DE for multi-objective optimization have been proposed. Early
proposals converted a MOOP into a single-objective form (e.g., [5, 16, 143]). Later pro-
posals are mainly based on Pareto-dominance. In the following, these later proposals are
�rst listed in chronological order and then described brie�y.

The �rst method extending DE for multi-objective optimization using the Pareto ap-
proach was the Pareto-based DE approach [17]. Pareto Di�erential Evolution [11] was
also mentioned around the same time, unfortunately without an explicit description of the
method. After these two methods, the Pareto(-frontier) Di�erential Evolution (PDE) al-
gorithm [2,3] and the �rst version of Generalized Di�erential Evolution (GDE1) [90] were
introduced. Then, Self-adaptive PDE (SPDE) [1], the Pareto DE Approach (PDEA) [102],
Adaptive Pareto DE (APDE) [150,151], Multi-Objective DE (MODE) [145], Vector Eval-
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uated DE (VEDE) [115], the second version of GDE (GDE2) in Publication III, and
Non-dominated Sorting DE (NSDE) [68] were proposed. Later, DE for Multiobjective
Optimization (DEMO) [124], the third version of GDE (GDE3) in Publication IV, and
ε-MyDE [130] were introduced. Some of the most recent proposals are DE for Multiob-
jective Optimization with Random Sets (DEMORS) [60], Multiobjective DE based De-
composition (MODE/D) [99], ε-Constraint method with Cultured DE (ε-CCDE) [9], the
DE algorithm based on ε-dominance and an orthogonal design method (ε-ODEMO) [15],
Cluster-Forming Di�erential Evolution (CFDE) [74], Multi-objective Di�erential Evolu-
tion with local dominance and scalar selection (MODE-LD+SS) [113], Adaptive Multi-
objective Di�erential Evolution with Stochastic Coding Strategy (AS-MODE) [154], and
Multi-Objective Di�erential Evolution Algorithm (MODEA) [4].

In addition to new algorithm proposals, other relevant studies also exist. One of these is
about incorporating directional information in the selection of vectors for the mutation
step of DE [69]. Comparison between GA and DE in multi-objective optimization has
been done in [140] and it has been concluded that DE explores the decision variable
space more e�ciently than GA. A comparison between four di�erent multi-objective DE
variants is presented in [155]. The variants di�er in balancing between convergence and
diversity. Based on experimental results it is found that the balancing technique that is
used, e.g., in DEMO and the third version of GDE is better than the one used, e.g., in
PDEA. This same observation has been noted also in [139].

In the following, the aforementioned multi-objective DE approaches are described brie�y.
A more detailed review of most of the approaches is available in [25, pp. 596 � 604]
and [106]. Versions of GDE are described in more detail in the next chapter.

Pareto-based DE Approach

A Pareto-based DE approach was proposed by Chang et al. in 1999 for multi-objective
tuning of automatic train operation [17]. The approach collects non-dominated points
found during the DE optimization process into an archive. The diversity of the population
is maintained by using �tness sharing. Fitness sharing means that the �tness value of
crowded solutions in the objective space will be degraded to avoid over-crowding [33, pp.
149�160]. When trial vectors are compared against old vectors, the comparison is done
using shared �tness values. The old vector is selected only if it is better with respect to
all the objectives than the trial vector; otherwise the trial vector is selected.

Pareto(-frontier) Differential Evolution (PDE) algorithm

The Pareto(-frontier) Di�erential Evolution (PDE) algorithm was proposed by Abbass
et al. in 2001 [2,3]. It modi�es basic DE in several ways, namely, the initial population is
initialized using a Gaussian distribution N(0.5, 0.15), the mutation factor F is generated
from the Gaussian distribution N(0, 1), and only non-dominated solutions are used for
reproduction. The trial vector is selected for the next generation if it dominates the old
vector; otherwise the old vector is selected. If the number of non-dominated solutions
increases above an allowed maximum, the most crowded members are removed based on
the distance to their nearest neighbors.
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Self-adaptive PDE (SPDE)

Self-adaptive PDE (SPDE) was proposed by Abbass in 2002 [1]. SPDE is an extension
of PDE to include automatic adaptation of control parameters during the optimization
process. Crossover and mutation rate values are coded into individuals in the same way
as decision variable values, i.e., rate values are additional elements in decision vectors
containing decision variable values. Control parameter values also evolve similarly to
decision variable values. Since F of basic DE is replaced with a random number as in
PDE, the mutation rate controls one extra mutation.

Pareto DE Approach (PDEA)

The Pareto DE Approach (PDEA) was proposed by Madavan in 2002 [102]. PDEA is
otherwise the same as NSGA-II except that children are generated using DE instead of
GA.

Adaptive Pareto DE (APDE)

Adaptive Pareto DE (APDE) was proposed by Zaharie in 2003 [150, 151]. APDE is
the same as PDEA or NSGA-II except the evolutionary search engine is replaced with
Adaptive Di�erential Evolution (ADE), which was proposed also by Zaharie [149]. ADE
has a parameter adaptation guided by a theoretical rule about the evolution of population
variance.

Multi-Objective DE (MODE)

Multi-Objective DE (MODE) was proposed by Xue et al. in 2003 [145]. MODE is
another approach combining DE and NSGA-II. In MODE, basic DE is modi�ed and
an extra crowding parameter is introduced to prevent similar individuals entering the
next generation. Convergence analysis of MODE and a theoretical convergence proof are
given in [146,147]. The analysis makes an assumption that DE is able to reach any point
in the search space during the search process. In general, this assumption is not valid if
any of the most common DE strategies (e.g., DE/rand/1/bin) are used.

Vector Evaluated DE (VEDE)

Vector Evaluated DE (VEDE) was proposed by Parsopoulos et al. in 2004 [115]. VEDE
is basically the same as Vector Evaluated GA (VEGA) except that GA is replaced with
DE. Thus, the population is divided into M subpopulations and each subpopulation
optimizes only one objective out of M objectives. As with VEGA, VEDE does not have
any diversity preservation technique.

Non-dominated Sorting DE (NSDE)

Non-dominated Sorting DE (NSDE) was proposed by Iorio and Li in 2004 [68]. NSDE is
the same as PDEA except that a di�erent DE strategy (DE/current-to-rand/1) is used
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in NSDE. A better performance of NSDE over NSGA-II with rotated MOOPs 8 has been
reported in [68].

DE for Multiobjective Optimization (DEMO)

DE for Multiobjective Optimization (DEMO) was proposed by Robi£ and Filipi£ in
2005 [124]. DEMO works in the same way as PDEA except that if a dominance relation
exists between the trial and old vector, then the dominated vector is directly rejected.
This lowers the number of stored solutions at the end of a generation. Therefore, the
number of solutions to be sorted and reduced is smaller than with PDEA. DEMOmodi�es
the basic DE algorithm also in such a way that selected vectors are directly included into
the current population when the trial and old vectors are compared 9.

ε-MyDE

ε-MyDE was proposed by Santana-Quintero and Coello Coello in 2005 [130]. This ap-
proach uses di�erent archives for non-dominated solutions and the actual population.
Use of ε-dominance helps to maintain diversity among found non-dominated solutions.
The approach also has several smaller design details, e.g., the selection of solutions for
mutation has been modi�ed and the basic DE algorithm has been changed to include an
additional mutation. The selection between the trial and old vectors selects the domi-
nating vector if one exists; otherwise a random choice is made.

DE for Multiobjective Optimization with Random Sets (DEMORS)

DE for Multiobjective Optimization with Random Sets (DEMORS) was proposed by
Hernández-Diaz et al. in 2006 [60]. DEMORS is based on ε-MyDE and rough sets
theory. It has a two-phase approach combining a global search using DE with a Pareto-
adaptive ε-dominance and a local search using rough sets. The approach uses di�erent
archives for non-dominated and dominated solutions besides the actual population.

Multiobjective DE Based on Decomposition (MODE/D)

Multiobjective DE based on decomposition (MODE/D) was proposed by Li and Zhang
in 2006 [99]. MODE/D is the same as MOEA/D mentioned in Section 2.2.5 except that
the EA is replaced with DE.

MODE/D di�ers from the other DE approaches listed above since it does not perform
Pareto-optimization but multiple single-objective optimization with scalarized objectives.
Improvements to MODE/D have been proposed in [101].

8In a rotated MOOP the decision variable space has been rotated around the origin with a rotation
matrix M that is linear and orthogonal. A rotated MOOP can be obtained from a MOOP by evaluating
objectives using M ×x as an argument instead of x. The rotation matrix M can have di�erent rotation
angles to di�erent directions and these angles can be obtained randomly as long as M remains constant
during the search.

9Instant update of the population was originally considered by the developers of DE but use of
the temporary population was adopted mainly because of parallelization issues [119, p. VIII]. Instant
replacement might also lead to premature convergence.
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ε-Constraint Method with Cultured DE (ε-CCDE)

ε-Constraint method with Cultured DE (ε-CCDE) was proposed by Becerra and Coello
Coello in 2006 [9]. Similarly to MODE/D, also ε-CCDE applies single-objective opti-
mization to solve multi-objective problems. In ε-CCDE the classical ε-constraint method
is hybridized with a cultural algorithm called Cultured Di�erential Evolution.

Results are promising but the method was only tested with bi-objective test problems
due to implementation di�culties with a higher number of objectives.

DE Algorithm Based on ε-Dominance and an Orthogonal Design Method
(ε-ODEMO)

A DE algorithm based on ε-dominance and an orthogonal design method (ε-ODEMO)
was proposed by Cai et al. in 2007 [15]. ε-ODEMO uses the orthogonal design method to
generate an initial population and then the ε-dominance concept to maintain an archive of
non-dominated solutions. The use of ε-dominance maintains the distribution of solutions
without a separate diversity preservation technique.

Cluster-Forming Differential Evolution (CFDE)

Cluster-Forming Di�erential Evolution (CFDE) was proposed by Justesen and Ursem
in 2009 [74]. CFDE is based on de�ning a desired number of �nal solutions and using
the same number of subpopulations during the search to form distinctive clusters. The
approach is based on DEMO but the secondary �tness measure based on diversity is
changed with two alternating �tness measures. Reduction of the population after each
generation is performed in individual subpopulations.

Multi-Objective Differential Evolution with Local Dominance and Scalar
Selection (MODE-LD+SS)

Multi-objective Di�erential Evolution with local dominance and scalar selection (MODE-
LD+SS) was proposed by Montaño, Coello Coello, and Mezura-Montes in 2010 [113].
MODE-LD+SS incorporates a concept of local dominance in order to improve conver-
gence and a scalar selection mechanism for a combined parent and child population in
order to �nd non-dominated solutions covering the Pareto-optimal front.

Adaptive Multi-Objective Differential Evolution with Stochastic Coding
Strategy (AS-MODE)

Adaptive Multi-objective Di�erential Evolution with Stochastic Coding Strategy (AS-
MODE) was proposed by Zhong and Zhang in 2011 [154]. A stochastic coding strategy
means that each individual is presented as a stochastic region that is sampled in order
to �nd better solutions. The control parameters are adjusted using probability-based
adaption instead of �xed parameter values. The members of a new population are selected
using non-dominated sorting and crowding distance.
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Multi-Objective Differential Evolution Algorithm (MODEA)

Multi-Objective Di�erential Evolution Algorithm (MODEA) was proposed by Ali, Siarry,
and Pant in 2012 [4]. It uses an Opposition-Based Learning for generating an initial
population, a modi�ed mutation (called as randomized localization), and a selection
operator that can been seen as a compromise between the selection mechanism of PDEA
and DEMO/GDE3. The members of the next generation are selected in the same way
as in NSGA-II.

2.3.3 Di�erential Evolution and Constraints

Besides solving problems with multiple objectives, DE has also been modi�ed for handling
problems with constraints [18, 96, 100, 133, 142]. Many of these approaches are based on
applying penalty functions, which has the problem of selecting penalty parameters as
noted earlier. To overcome this problem, the following set of selection rules have recently
been used extensively [105]:

1. Between two feasible solutions, the one with a better �tness value is selected.

2. If one solution is feasible and the other one is infeasible, the feasible solution is
selected.

3. Between two infeasible solutions, the one with less constraint violation is selected.

The amount of constraint violation in the third rule has been measured either with
the Pareto-dominance relation between constraint violations [92, 93] or as the sum of
constraint violations [104]. The �rst approach is used in all the versions of Generalized
Di�erential Evolution described in the next chapter.



Chapter III

Generalized Di�erential Evolution

�Everything should be made as simple as possible, but no simpler.�
� Albert Einstein

This chapter contains a summary of the work done by the author within the scope of this
thesis. The algorithms and the related studies presented in the attached publications of
this thesis work, as well as several other articles by the author, are discussed below.

The main outcome of the thesis work is study and further development of the method
called Generalized Di�erential Evolution (GDE). GDE is an extension of DE for opti-
mization with several objectives and constraints. Unlike several other DE approaches for
constrained and/or multi-objective optimization, GDE requires no extra control param-
eters compared to the original DE.

A primary goal of GDE has been to keep changes to DE as simple as possible and to
avoid unnecessary complexity. The key idea and justi�cation for the name is that the
extension falls back to basic DE in the case of an unconstrained single-objective problem.
This property distinguishes GDE from the multi-objective DE approaches described in
Section 2.3.2. Thus, GDE is a single- and multi-objective optimizer, and relatively simple
compared to the other approaches.

GDE uses the DE/rand/1/bin strategy described in Section 2.3.1. This strategy was
chosen for GDE because of its simplicity and good observed performance. The strategy
is also the most commonly used DE strategy in the literature [25, p. 594]. Di�erent DE
strategies were not compared since the main focus was the multi-objective part of the
method, and not the search method used to create trial solutions.

Several GDE development versions were developed and they di�er in the way multi-
objective optimization is performed � more precisely, how the diversity of solutions is
maintained during the search. In the case of multiple objectives, all the GDE versions
perform a posteriori optimization as other modern MOEAs.

GDE can be implemented in such a way that the number of function evaluations is re-
duced since the constraint-domination relation (cf. Section 2.2.3) is used in the selection.
Even comparison between single constraint values can reveal that the trial vector does
not constraint-dominate the old vector, and therefore the old vector is preserved. This
reduces the number of constraint function evaluations needed compared to evaluation of

51
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all the constraints, an approach used with most constraint handling approaches. This
reduction of constraint evaluation is helpful in the case of many and/or computationally
expensive constraint functions.

Di�erent development versions of GDE are described in the following section. Their
performance is demonstrated with common bi- and tri-objective test problems mentioned
in Section 2.2.6 and de�ned in Appendix I. The results are shown in Figures 3.1�3.12
and Tables 3.1�3.2.

Problems ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 were selected from the set of ZDT
problems. These problems are solved using 250 generations and a population size of 100
1. Problems DTLZ1, DTLZ2, DTLZ4, DTLZ5, and DTLZ7 were selected from the set
of DTLZ problems. These problems are solved using 250 generations and a population
size of 200. It is justi�ed to use a larger population size than with the ZDT problems
to approximate the Pareto-optimal front since the objective space is three dimensional
instead of two. The control parameter values CR = 0.2 and F = 0.2 are used with the
problems with the exception that values CR = 0.0 and F = 0.5 are used with ZDT4 2.
These values were selected based on experiments and observations with these problems
during this thesis work. Small CR values are used for the problems since the problems are
separable (cf. Section 2.3.1). Another reason for small CR values is that the objectives
of the ZDT problems, especially ZDT4, exhibit di�erent degree of di�culty. This means
that solving di�erent individual objectives needs di�erent computational e�ort. Using a
large CR value would lead to a premature convergence along the �rst objective far before
the second objective converges, as noted in [81], Publication II, and Publication VI.

In all the experiments described in this chapter, possible boundary constraint violations
have been handled by re�ecting violating decision variable values back from the violated
boundary using the technique described in Section 2.2.2.

Since the DE/rand/1/bin strategy has been used in the GDE versions, in theory, con-
vergence to the Pareto-optimal front cannot be guaranteed since not all the points in
the search space are necessarily attainable (cf. Sections 2.1 and 2.2.5). However, em-
pirically GDE has been noted to converge well, and the latest version, GDE3, has been
seen to provide good approximations of the Pareto-optimal fronts, as can be noted from
the results in the following sections and related publications (e.g., [84]). Theoretical
convergence issues of GDE will be discussed further in Chapter 4.

3.1 First Version, GDE1

The �rst version, GDE1, was proposed by Lampinen [90] as a further development of the
constraint handling approach based on dominance relation [92], and the name Generalized
Di�erential Evolution appeared for the �rst time in [81]. GDE1 extends the basic DE
algorithm for constrained multi-objective optimization by simply modifying the selection

1The number of generations and the population size come from [158], where ZDT problems were used
to compare several MOEAs. Afterwards, these values have been used almost as a standard with the
ZDT problems

2ZDT4 has multiple equally spaced local Pareto-optimal fronts and F = 0.5 advances moving from
one local front to another (Publication II and Publication VI ).
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operation of DE. In GDE1, the selection operation is based on constraint-domination
de�ned in Section 2.2.3 and can be de�ned as:

xi,G+1 =

{
ui,G if ui,G �c xi,G
xi,G otherwise

. (3.1)

The weak constraint-domination relation is used to maintain congruity with the selection
operation of DE. Thus, in the case of equality, the trial vector is preferred. One should
note that the selection is fully elitist in the sense of Pareto-dominance, i.e., the best
solutions cannot be lost during the search.

As mentioned earlier, one bene�t of using the dominance relation in the selection is that
it can be implemented in such a way that the number of function evaluations is reduced
because all the constraints and objectives do not always need to be evaluated. Inspecting
constraint violations (even one constraint) is often enough to determine which vector to
select for the next generation [92,119]. Depending on the problem, the reduction can be
truly remarkable as noted in [83, 91]. In practice, it is wise to evaluate computationally
expensive functions last, since the later a function is in the evaluation order, the fewer
times it gets evaluated. The order of the functions also has an e�ect on the search
process since the search is directed at the beginning according to the �rst constraints
and objectives. For example, evaluation of the �rst constraints can already determine
the comparison between the target and trial vectors and the rest of the constraints and
objectives then have no e�ect on the comparison.

GDE1 does not have any kind of diversity preservation, which is rare for modern MOEAs.
Nevertheless, GDE1 has been able to provide good results with some problems in Publi-
cation I and [82]. It has, however, been found to be rather sensitive to the selection of
the control parameter values, as noted in Publication II.

The �nal populations for the ZDT and DTLZ problems are shown in Figures 3.1 and
3.2 with the Pareto-optimal fronts. The members of the �nal population are shown in
the �gures in addition to the non-dominated members to give a better idea about the
behavior of the search method. The di�culty in �nding the concave Pareto-optimal
front of ZDT2 is observable in Figure 3.1. Furthermore, only the edges of the Pareto-
optimal front of DTLZ4 are found in Figure 3.2. DTLZ4 is similar to DTLZ2 except that
preservation of the diversity of solutions is more di�cult in the case of DTLZ4.

3.2 Second Version, GDE2

The second version, GDE2, introduced a diversity preservation operation to GDE in
Publication III. Again, only the selection operation of basic DE was modi�ed. The
selection is done based on crowding in the objective space when the trial and old vector
are feasible and incomparable based on Pareto-dominance 3. More formally, the selection

3Solutions x1 and x2 are incomparable if neither x1 weakly dominates x2 nor x2 weakly dominates
x1 [164]
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Figure 3.1: Results for the ZDT problems using GDE1.
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Figure 3.2: Results for the DTLZ problems using GDE1.
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operation is now:

xi,G+1 =





ui,G if





ui,G �c xi,G
∨



∀j ∈ {1, . . . ,K} : gj(ui,G) ≤ 0
∧
xi,G ⊀ ui,G
∧
dui,G

≥ dxi,G

xi,G otherwise

, (3.2)

where di is a distance measure for measuring the distance of a particular solution i to its
neighbor solutions. Implementation was done using the crowding distance of NSGA-II.
However, as noted in Publication III, any other distance measure could be used instead
of the crowding distance. The use of another distance measure is advisable if the number
of objectives is more than two, since the crowding distance no longer estimates true
crowding in such cases, as noted in Publication V.

The selection operation is illustrated as a �owchart in Figure 3.3. Since, the Pareto-
dominance relation in not the only criterion in the selection, loss of Pareto-optimal solu-
tions is possible during the search.

As non-dominated sorting is not used, crowding is measured among the whole population.
This improves the extent and distribution of the obtained set of solutions but slows down
the convergence of the overall population because it favors isolated solutions far from the
Pareto-optimal front until all the solutions are converged near the Pareto-optimal front.
GDE2, similar to GDE1, has been noted to be rather sensitive to the selection of the
control parameters values.

The �nal populations for the ZDT and DTLZ problems are shown in Figures 3.4 and 3.5.
The better diversity obtained for ZDT2 and DTLZ4 compared to GDE1 can be observed
by comparing Figures 3.1 and 3.2 to Figures 3.4 and 3.5. A slower convergence compared
to GDE1 can be observed with ZDT3 and DTLZ1.

3.3 Third Version, GDE3

The third version is GDE3 (Publication IV and Publication V ). In addition to the selec-
tion operation, another part of basic DE has also been modi�ed: Now, both vectors are
saved, when comparing feasible and incomparable solutions (the selection operation is
illustrated as a �owchart in Figure 3.6). Therefore, at the end of a generation, the size of
the population may be larger than it originally was. If this is the case, the population is
then decreased back to the original size based on a similar selection approach as used in
NSGA-II and shown in Figure 2.4. Population members are sorted based on goals for a
posteriori optimization given in Section 2.2.1. The worst population members according
to non-dominance and crowding are removed to decrease the size of the population to
the original size. Non-dominance is the primary sorting criterion and crowding is the sec-
ondary sorting criterion as in NSGA-II. From a non-empty set of solutions, it is always
possible to �nd the last non-dominated set and from this set it is possible to �nd the
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Figure 3.3: Operation for selection between the old vector xi,G and trial vector
ui,G in GDE2.
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Figure 3.4: Results for the ZDT problems using GDE2.
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Figure 3.5: Results for the DTLZ problems using GDE2.
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most crowded solution (if two solutions have the same crowding measure, one could be
selected randomly for removal). Therefore, pruning of solutions can be aways performed.

Non-dominated sorting is modi�ed to also take constraints into consideration. The selec-
tion based on the crowding distance is improved over the original method of NSGA-II to
provide a better distributed set of vectors. This improvement is described in the following
section and Publication V.

The whole GDE3 is presented in Figure 3.7. Parts that are new compared to previous
GDE versions are framed in Figure 3.7. Without these parts, the algorithm is identical
to GDE1. GDE3 can be seen as a combination of GDE2 and PDEA. GDE3 is similar
to DEMO [124] except DEMO does not contain constraint handling nor fall back to
basic DE in the case of a single objective because DEMO modi�es the basic DE (cf.
Section 2.3.2) and does not consider weak dominance in the selection. Moreover, GDE3
has an improved diversity maintenance compared to DEMO.

When M = 1 and K = 0, there are no constraints to be evaluated and the selection is
simply

xi,G+1 =

{
ui,G if f(ui,G) ≤ f(xi,G)
xi,G otherwise

, (3.3)

which is the same as for the basic DE algorithm. The population size does not increase
because this requires that ui,G and xi,G do not dominate each other even weakly, which
cannot be true in the case of a single objective. Since the population size does not
increase, there is no need to remove elements. Therefore, GDE3 is identical to basic DE
in this case.

In NSGA-II and PDEA, the size of the population after a generation is 2NP , which
is then decreased to NP . In GDE3 and DEMO, the size of the population after a
generation is between NP and 2NP because the size of the population is increased only
if the trial vector and the old vector are feasible and incomparable. This will reduce the
computational cost of the whole algorithm. DEMO and GDE3 emphasize convergence
over diversity more than NSGA-II and PDEA, as noted in [155].

Decreasing the size of the population at the end of a generation is the most complex
operation in the algorithm. The reduction is done by using non-dominated sorting
and pruning based on crowding. The run-time complexity of non-dominated sorting

is O
(
NP logM−1NP

)
[70]. Pruning of population members based on crowding is also

a complex operation. In this case the operation is performed using the crowding dis-
tance and can be performed in time O (MNP logNP ) (Publication V ). Therefore overall

run-time complexity of GDE3 is O
(
GmaxNP logM−1NP

)
.

Compared to the earlier GDE versions, GDE3 improves the ability to handle MOOPs
by giving a better distributed set of solutions and being less sensitive to the selection of
control parameter values. GDE3 has been compared to NSGA-II and has been found to
be at least comparable based on experimental results (Publication IV ). As with GDE2
(and several MOEAs), loss of Pareto-optimal solutions is possible during the search.
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Input :D,Gmax, NP ≥ 4, F ∈ (0, 1+], CR ∈ [0, 1], and initial bounds: x(lo),x(hi)

Initialize :

{
∀i ≤ NP ∧ ∀j ≤ D : xj,i,0 = x

(lo)
j + rand j [0, 1] ·

(
x
(hi)
j − x(lo)j

)

i = {1, 2, . . . , NP} , j = {1, 2, . . . , D} , G = 0, n = 0, rand j [0, 1] ∈ [0, 1],





While G < Gmax

∀i ≤ NP





Mutate and recombine:
r1, r2, r3 ∈ {1, 2, . . . , NP} , randomly selected,

except mutually di�erent and di�erent from i
jrand ∈ {1, 2, . . . , D} , randomly selected for each i

∀j ≤ D,uj,i,G =





xj,r3,G + F · (xj,r1,G − xj,r2,G)
if rand j [0, 1) < CR ∨ j == jrand

xj,i,G otherwise
Select :

xi,G+1 =

{
ui,G if ui,G �c xi,G
xi,G otherwise

Set :

n = n+ 1
xNP+n,G+1 = ui,G

if





∀j : gj(ui,G) ≤ 0
∧
xi,G+1 == xi,G
∧
xi,G ⊀ ui,G





While n > 0

Select x ∈ P = {x1,G+1,x2,G+1, . . . ,xNP+n,G+1} :



x belongs to the last non-dominated set of P
∧
x is the most crowded in the last non-dominated set

Remove x from P
n = n− 1

G = G+ 1

Figure 3.7: The GDE3 algorithm
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3.3.1 Diversity Preservation for Bi-Objective Problems

The diversity preservation technique used in GDE3 is an improved version of the approach
used in NSGA-II. In NSGA-II, the crowding distance values are calculated once for all
the members of a non-dominated set. Members having the smallest crowding distance
values are removed without taking into account how removal of a member will a�ect
the crowding distance value of its neighbors. The outcome is that the diversity of the
remaining members after removal is non-optimal.

The diversity preservation operation in GDE3 removes the most crowded members from a
non-dominated set one by one and updates the crowding distance value of the remaining
members after each removal (Publication V ). A straightforward approach would have
time complexity class O

(
MNP 2

)
. A more sophisticated algorithm having the same time

complexity class as NSGA-II, O (MNP logNP ), has been proposed in Publication V. This
approach was implemented when GDE3 was originally introduced but published later in
Publication V because detailed description of the diversity preservation technique was
too extensive for Publication IV.

The �nal populations for the ZDT and DTLZ problems are shown in Figures 3.8 and 3.9.
The distribution obtained for the ZDT problems is good, i.e., points are uniformly dis-
tributed. The distribution of points for the DTLZ problems is still far from uniform
(except for DTLZ5, which has a curve shaped Pareto-optimal front).

Publication V shows that the crowding distance does not estimate crowding properly
when the number of objectives is more than two. This is a signi�cant observation since
NSGA-II is the most popular MOEA and crowding distance has been used in many
studies, some of which are mentioned in Publication V. The crowding distance has also
been used in cases with more than two objectives, e.g, in [4, 116]. It should be noted
that several multi-objective DE approaches mentioned in Section 2.3.2 use the crowding
distance and therefore do not provide good diversity when the number of objectives is
more than two.

3.3.2 Diversity Preservation for Many-Objective Problems

As noted in the previous section, the diversity preservation technique in GDE3 does
not generally provide good diversity when the number of objectives is more than two.
Therefore, a new e�cient diversity preservation technique was needed for many-objective
problems. The term many-objective is used in the EMO literature when the number
of objectives is more than two or three (no consensus exists regarding the number of
objectives required for a problem to be deemed many-objective). In this work, many-
objective refers to a situation when the number of objectives is three or more.

A pruning method intended to be both e�ective and relatively fast was proposed in
Publication VII. The basic idea of the method is to eliminate the most crowded members
of a non-dominated set one by one, and update the crowding information of the remaining
members after each removal. One can notice that the main idea in the approach in
Publication VII is similar to the approach in Publication V but the diversity metric
calculation has been modi�ed as an improvement.
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Figure 3.8: Results for the ZDT problems using GDE3.
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Figure 3.9: Results for the DTLZ problems using GDE3.
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Figure 3.10: Three examples of a solution (circle) between the two nearest
neighbors (dots) demonstrating the vicinity distance.

The crowding estimation is based on the nearest neighbors of solution candidates in the
objective space and an e�cient search method to �nd the k nearest neighbors (k-NNs).
Two crowding estimation techniques were proposed: one that always uses two nearest
neighbors for the crowding estimation (2-NN) and one that uses as many neighbors as
there are objectives (M -NN). Distances are measured in a normalized objective space
using the Euclidean distance measure.

In the �rst crowding estimation approach, the solution candidates are sorted using dis-
tance to the nearest neighbor as a primary sorting key and distance to the second nearest
neighbor as the secondary sorting key. The solution candidate that has the smallest dis-
tance to the neighbors is considered the most crowded.

In the second crowding estimation approach, distances to M nearest neighbors are mul-
tiplied and the solution candidate having the smallest product is considered the most
crowded one. The product of distances, called here vicinity distance, is formally:

dv =

M∏

i=1

LNNi
p , (3.4)

where LNNi
p is distance to ith nearest neighbor according to the Lp distance metric 4.

The vicinity distance is a very simple measure but it already contains information about
vicinity and location. This is illustrated in Figure 3.10 with two nearest neighbors in three
di�erent cases. In all the cases, a solution (circle) is located on a line between two nearest
neighbors (�lled dots). In the �rst case a) the solution is closer to the right neighbor than
the left neighbor and the vicinity distance will be dv = x (L− x) = xL− x2. When the
solution moves between the two nearest neighbors, its vicinity distance value will change
along a paraboloid curve and have the maximum value dv = L2/4 when the solution is in
the middle of the two nearest neighbors as shown in the b). If the solution remains in the
middle of the two nearest neighbors but the distance to the nearest neighbors doubles
as in case c) compared to b), then the vicinity distance will increase to value dv = L2.
Therefore, the value of the vicinity distance is dependent on both vicinity and location.
It will be large for a solution having a large distance to all neighboring solutions.

An e�cient exact k-NN search technique used is the equal-average nearest neighbor search
(ENNS) algorithm [58, 121]. ENNS projects data to a projection axis and uses the
inequality between the projected values and the corresponding Euclidean distance to
reduce the number of actual distance calculations. The speed of the proposed method is
further increased by using a priority queue to store elements. Details of the algorithm

4The Lp metric calculates the distance between two vectors x and y with the formula Lp(x,y) =(∑M
i=1 |xi − yi|p

)1/p
.
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can be found in Publication VII, and a scalability study in [79]. The algorithm has
been observed to provide good diversity and be relatively fast. When the number of
objectives increases, the method gets slower but still appears to be faster than the other
e�ective distance-based approaches used in MOEAs [70]. As mentioned in [79], several
potential ways to speed up the new pruning method exist. For example, the exact
nearest neighbor search itself could be enhanced. Currently, one projection axis is used
in the ENNS method. It would be possible to select several projection axes to di�erent
directions and project data to them. This would increase the number of pre-calculations
but presumably decrease the number of search steps in �nding the nearest neighbors in
ENNS. Besides projection values, variances of vectors could also be calculated to obtain
a smaller searching area for the nearest neighbors [7]. Other improvements to ENNS
have been proposed in [10,114].

A clustering method similar to the pruning method in Publication VII, has been pro-
posed in [52]. The two methods were developed independently and the major di�erence
between them is that the method in [52] uses an approximate nearest neighbor search
whereas the pruning method in Publication VII performs an exact nearest neighbor
search. The �ndings in [52] show that use of an approximate nearest neighbor search
does not signi�cantly reduce the obtained clustering result but gives notable speedup.

The diversity preservation technique used in GDE3 can be directly replaced with the
diversity preservation technique intended for a large number of objectives presented in
Publication VII. It has been noted in Publication VII that both 2-NN andM -NN crowd-
ing estimation techniques can be used in many-objective optimization and they provide
similar results but the 2-NN distance measure is faster to calculate when M increases.
The �nal populations for the ZDT and DTLZ problems solved using GDE3 with the 2-
NN crowding estimation technique are shown in Figures 3.11 and 3.12. The distribution
can be observed to be good for all the problems.

The numerical results in Publication V and Publication VII are directly comparable
since the same control parameter values and computers have been used to produce the
results. By looking at the spacing metric values with the ZDT problems in both pa-
pers, comparable performance can be noticed with the proposed methods (�Proposed� in
Publication V ; �GDE3, 2-NN� and �GDE3, M -NN� in Publication VII ) 5. When spac-
ing metric values with the DTLZ problems are compared, a clear improvement can be
observed, as expected based on Figures 3.9 and 3.12.

GDE3 with the 2-NN crowding estimation technique was one of the participants in a
multi-objective optimization competition arranged at the 2007 IEEE Congress on Evo-
lutionary Computation (CEC 2007). The task was to solve a set of multi-objective
problems having from two to �ve objectives de�ned in [63] and based on the results re-
ported in [84] GDE3 with the 2-NN crowding estimation technique received a winning
entry nomination in the competition.

5Method names �Original� in Publication V and �GDE3, CD� in Publication VII refer to the same
method.
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Figure 3.11: Results for the ZDT problems using GDE3 with the 2-NN crowding
estimation technique.



3.3 Third Version, GDE3 69

0
0.1

0.2
0.3

0.4

0
0.1

0.2
0.3

0.4

0

0.2

0.4

f
1

DTLZ1, GDE3, 2NN

f
2

f 3

0

0.5

1

0

0.5

1

0

0.5

1

f
1

DTLZ2, GDE3, 2NN

f
2

f 3

0

0.5

1

0

0.5

1

0

0.5

1

f
1

DTLZ4, GDE3, 2NN

f
2

f 3

0 0.2 0.4 0.6 0 0.2 0.4 0.6

0.2

0.4

0.6

0.8

1

f
2

DTLZ5, GDE3, 2NN

f
1

f 3

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

3

4

5

f
1

DTLZ7, GDE3, 2NN

f
2

f 3

Figure 3.12: Results for the DTLZ problems using GDE3 with the 2-NN crowd-
ing estimation technique.
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3.4 Numerical Comparison of the GDE Versions

Tests with di�erent GDE development versions and test problems were repeated 100
times. The results are given in Tables 3.1 and 3.2. Unique non-dominated solutions
are extracted from the �nal generation and the cardinality (ℵ) of this set presented.
Closeness to the Pareto-optimal front is measured with the generational distance (GD).
The diversity of the obtained solution is measured using the spacing (S) metric. Overall
quality of the obtained non-dominated set is illustrated with the inverted generational
distance (IGD).

Tables 3.1 and 3.2 show that performance has improved during GDE development ver-
sions. In particular, the obtained cardinality, diversity, and overall performance have
improved.

3.5 Study of Control Parameter Values for GDE

The e�ect of control parameters CR and F has been studied with GDE1 and GDE3 in
Publication II and Publication VI, respectively. It has not been clear how the control pa-
rameter values a�ect the results when there is no diversity preservation (Publication II )
and when diversity preservation is used (Publication VI ). Di�erent control parameter val-
ues have been tested using bi-objective test problems and performance metrics described
in [33, pp. 326�328, 338�360]. The problem set in Publication VI has been appended
with a set of non-separable problems de�ned in [38]. The experiments were restricted to
the two objective problems due to space limitation in the articles.

According to the diversity and cardinality measures in Publication II and Publication VI,
GDE3 generally provides a better distribution with a larger number of non-dominated
solutions than GDE1. The better diversity is also well visible when Figures 3.1 and 3.8
are compared. In Publication VI, it has been noted that GDE3 is able to produce a
good Pareto front approximation with a larger number of non-dominated solutions with
a wider range of di�erent control parameter value combinations. The results of GDE3
(especially the number of non-dominated solutions) are also less sensitive to variation of
the control parameter values compared to GDE1, i.e., GDE3 appears to be more robust
in terms of the control parameter value selection.

A preliminary parameter study with GDE2 has also been performed but the results have
not been published. In the preliminary study, GDE2 was found to be sensitive to the
control parameter values similarly to GDE1.

Di�erent mutation factor F values were tried up to 3.0 6 but the results suggest that a
larger F value than usually used in single-objective optimization does not give any extra
bene�t in multi-objective optimization. As noted in Publication II, if the complexity
of objectives di�ers greatly (i.e., the objectives demand considerably di�erent computa-
tional e�ort if solved individually), it is better to use a smaller CR value to prevent the
population from converging to a single point on the Pareto-optimal front.

6F values larger than 2.0 have not been used in single-objective optimization [94]. A larger value
was chosen for the experiments since the e�ect of F in multi-objective optimization was unclear. In
preliminary F values up to 5.0 were also tried but noted as unnecessarily large.
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Table 3.1: Mean and standard deviation values of cardinality (ℵ), generational
distance (GD), spacing (S), and inverted generational distance (IGD) from 100
independent runs with the GDE versions and the ZDT test problems.

Problem Method ℵ GD S IGD

GDE1 9.8707e+01±
9.9234e− 01

7.9401e−05±
8.9500e− 06

1.1611e−02±
2.0445e− 03

3.6562e−05±
6.9741e− 06

GDE2 9.9827e+01±
3.8060e− 01

8.2341e−05±
1.0647e− 05

6.7852e−03±
6.5228e− 04

1.6252e−05±
5.4849e− 07

ZDT1 GDE3 1.0000e+02±
0.0000e+ 00

2.0780e−05±
5.5679e− 06

6.3803e−03±
5.0843e− 04

1.7026e−05±
6.7607e− 07

GDE3, 2NN 1.0000e+02±
0.0000e+ 00

1.8424e−05±
7.6065e− 06

2.8465e−03±
2.7662e− 04

1.4088e−05±
1.5334e− 07

GDE3, MNN 1.0000e+02±
0.0000e+ 00

1.7886e−05±
5.8128e− 06

2.7015e−03±
2.6961e− 04

1.4016e−05±
1.2230e− 07

GDE1 1.7969e+01±
4.3753e+ 00

1.8470e−04±
2.5585e− 05

7.7930e−02±
2.8647e− 02

2.5535e−04±
8.8487e− 05

GDE2 9.8887e+01±
8.6454e− 01

1.2907e−04±
1.4953e− 05

7.0592e−03±
6.4203e− 04

1.7612e−05±
7.5518e− 07

ZDT2 GDE3 1.0000e+02±
0.0000e+ 00

3.7610e−05±
2.2664e− 05

7.4705e−03±
1.1947e− 02

1.7718e−05±
1.2176e− 06

GDE3, 2NN 1.0000e+02±
0.0000e+ 00

3.3107e−05±
2.1824e− 05

4.5017e−03±
1.5798e− 02

1.4469e−05±
1.0701e− 06

GDE3, MNN 1.0000e+02±
0.0000e+ 00

3.2125e−05±
2.1209e− 05

4.1592e−03±
1.4134e− 02

1.4272e−05±
9.4162e− 07

GDE1 7.7350e+01±
4.6458e+ 00

7.5621e−05±
2.4994e− 05

1.5244e−02±
3.9025e− 03

6.0599e−05±
1.6036e− 05

GDE2 4.3102e+01±
3.5450e+ 00

1.4858e−04±
8.1965e− 05

1.6692e−02±
3.2548e− 03

4.2632e−05±
6.6759e− 06

ZDT3 GDE3 1.0000e+02±
0.0000e+ 00

1.7702e−05±
4.0392e− 06

4.2699e−03±
3.8531e− 04

1.1928e−05±
3.6297e− 07

GDE3, 2NN 1.0000e+02±
0.0000e+ 00

1.6210e−05±
3.5637e− 06

2.2963e−03±
2.9270e− 04

1.0393e−05±
1.4318e− 07

GDE3, MNN 1.0000e+02±
0.0000e+ 00

1.6612e−05±
4.1601e− 06

2.1646e−03±
2.2485e− 04

1.0343e−05±
1.1664e− 07

GDE1 7.8798e+01±
7.3290e+ 00

3.7243e−04±
1.7616e− 04

1.3469e−02±
2.6249e− 03

4.0105e−05±
7.8157e− 06

GDE2 8.4081e+01±
7.1965e+ 00

3.6964e−04±
1.6712e− 04

9.6220e−03±
1.5388e− 03

2.3989e−05±
3.3808e− 06

ZDT4 GDE3 1.0000e+02±
0.0000e+ 00

3.9580e−06±
3.0481e− 06

6.1654e−03±
6.0282e− 04

2.7287e−05±
6.5904e− 05

GDE3, 2NN 1.0000e+02±
0.0000e+ 00

5.1378e−06±
4.0741e− 06

3.3962e−03±
1.5001e− 03

2.6092e−05±
6.9919e− 05

GDE3, MNN 1.0000e+02±
0.0000e+ 00

4.2760e−06±
3.6195e− 06

3.0126e−03±
8.6901e− 04

2.6295e−05±
8.5056e− 05

GDE1 3.5390e+01±
9.6775e+ 00

1.4157e−02±
2.1238e− 03

3.3855e−02±
1.5365e− 02

3.5261e−04±
3.5452e− 05

GDE2 6.2889e+01±
4.2448e+ 00

1.0651e−02±
9.0784e− 04

1.1567e−02±
1.4900e− 03

3.1265e−04±
2.2723e− 05

ZDT6 GDE3 1.0000e+02±
0.0000e+ 00

1.4555e−03±
1.4046e− 04

5.9064e−03±
5.1987e− 04

6.6336e−05±
7.0549e− 05

GDE3, 2NN 1.0000e+02±
0.0000e+ 00

1.4894e−03±
1.7214e− 04

3.9464e−03±
3.7292e− 04

5.7084e−05±
6.3232e− 06

GDE3, MNN 1.0000e+02±
0.0000e+ 00

1.5390e−03±
6.0437e− 04

3.7544e−03±
3.7457e− 04

5.6755e−05±
5.6651e− 06
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Table 3.2: Mean and standard deviation values of cardinality (ℵ), generational
distance (GD), spacing (S), and inverted generational distance (IGD) from 100
independent runs with the GDE versions and the DTLZ test problems.

Problem Method ℵ GD S IGD

GDE1 2.7414e+01±
5.5310e+ 00

9.5081e−01±
2.4820e− 01

1.4143e−01±
3.8488e− 02

9.9790e−04±
3.1580e− 04

GDE2 1.3240e+01±
3.3639e+ 00

2.5983e+01±
6.5663e+ 00

2.0326e−01±
7.2324e− 02

1.0725e−02±
4.2351e− 03

DTLZ1 GDE3 2.0000e+02±
0.0000e+ 00

6.0050e−03±
1.0818e− 02

2.9482e−02±
1.6161e− 03

8.5743e−05±
1.2220e− 04

GDE3, 2NN 2.0000e+02±
0.0000e+ 00

6.2010e−03±
1.0177e− 02

1.4671e−02±
8.8322e− 04

8.7355e−05±
1.2045e− 04

GDE3, MNN 2.0000e+02±
0.0000e+ 00

4.4849e−03±
9.2179e− 03

1.5581e−02±
8.3106e− 04

6.6809e−05±
1.0856e− 04

GDE1 2.0000e+02±
0.0000e+ 00

4.9471e−05±
2.0035e− 06

4.3724e−02±
2.6125e− 03

5.3107e−05±
2.0176e− 06

GDE2 2.0000e+02±
0.0000e+ 00

5.5430e−05±
1.9509e− 06

3.4031e−02±
1.7304e− 03

4.8581e−05±
1.4472e− 06

DTLZ2 GDE3 2.0000e+02±
0.0000e+ 00

5.5634e−05±
1.8877e− 06

3.5472e−02±
1.9498e− 03

4.9266e−05±
1.5254e− 06

GDE3, 2NN 2.0000e+02±
0.0000e+ 00

5.7255e−05±
2.4149e− 06

1.9975e−02±
1.1090e− 03

3.9907e−05±
4.3232e− 07

GDE3, MNN 2.0000e+02±
0.0000e+ 00

5.8156e−05±
2.7023e− 06

2.0868e−02±
1.0968e− 03

3.9451e−05±
2.8485e− 07

GDE1 6.2755e+00±
1.9519e+ 00

5.0198e−04±
1.0986e− 04

3.5275e−01±
1.7676e− 01

5.1008e−04±
1.4430e− 04

GDE2 2.0000e+02±
0.0000e+ 00

5.6168e−05±
2.0555e− 06

3.4457e−02±
1.9792e− 03

4.8845e−05±
1.3942e− 06

DTLZ4 GDE3 2.0000e+02±
0.0000e+ 00

5.6301e−05±
2.0287e− 06

3.5208e−02±
1.9135e− 03

5.0081e−05±
7.1383e− 06

GDE3, 2NN 2.0000e+02±
0.0000e+ 00

5.9618e−05±
2.1462e− 06

1.8732e−02±
2.0320e− 03

3.9958e−05±
4.4046e− 07

GDE3, MNN 2.0000e+02±
0.0000e+ 00

5.9713e−05±
2.2476e− 06

1.9779e−02±
1.4856e− 03

3.9543e−05±
3.1801e− 07

GDE1 2.0000e+02±
0.0000e+ 00

7.7555e−07±
5.3369e− 08

8.0103e−03±
7.6584e− 04

1.7771e−05±
1.7985e− 06

GDE2 2.0000e+02±
0.0000e+ 00

7.7721e−07±
5.2233e− 08

4.9175e−03±
3.3362e− 04

9.0884e−06±
2.5734e− 07

DTLZ5 GDE3 2.0000e+02±
0.0000e+ 00

7.8519e−07±
6.5487e− 08

6.4111e−03±
3.8961e− 04

1.0805e−05±
4.3664e− 07

GDE3, 2NN 2.0000e+02±
0.0000e+ 00

7.7613e−07±
5.1540e− 08

3.1877e−03±
2.0126e− 04

7.7837e−06±
6.6070e− 08

GDE3, MNN 2.0000e+02±
0.0000e+ 00

7.9339e−07±
6.0149e− 08

3.0482e−03±
2.0087e− 04

7.7370e−06±
5.8958e− 08

GDE1 1.9690e+02±
1.8599e+ 00

2.9472e−04±
1.1981e− 04

3.9305e−02±
6.0968e− 03

3.3187e−04±
5.6861e− 05

GDE2 1.1076e+02±
4.5928e+ 00

3.6347e−03±
1.0600e− 03

4.7638e−02±
6.1964e− 03

1.9114e−04±
1.7906e− 05

DTLZ7 GDE3 2.0000e+02±
0.0000e+ 00

1.2080e−03±
3.8379e− 04

3.0603e−02±
3.3204e− 03

1.2521e−04±
1.0607e− 05

GDE3, 2NN 2.0000e+02±
0.0000e+ 00

8.5639e−04±
1.6450e− 04

1.2088e−02±
1.3598e− 03

8.8440e−05±
1.0817e− 06

GDE3, MNN 2.0000e+02±
0.0000e+ 00

8.9192e−04±
1.0657e− 04

1.2710e−02±
9.9847e− 04

8.9277e−05±
1.0234e− 06
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Figure 3.13: Curves c = 1.0 and c = 1.5 for NP = 100 in the CR − F control
parameter space.

An inverse relationship between the CR and F values was observed from the results in
Publication II and Publication VI, i.e., a larger F value can be used with a small CR
value than with a large CR value, and this relationship is non-linear. An explanation for
this was found from theoretical analysis of the single-objective DE algorithm. A formula
for the relationship between the control parameters of DE and the evolution/development
of the population variance/standard deviation has been presented in [148].

The change of the population standard deviation between successive generations due to
the crossover and mutation operations is denoted with c and its value is calculated as:

c =

√
2F 2CR− 2CR/NP + CR2/NP + 1 . (3.5)

When c < 1, the crossover and mutation operations decrease the population standard
deviation. When c = 1, the standard deviation does not change, and when c > 1, the
standard deviation increases. Since the selection operation of an EA usually decreases
the population standard deviation, c > 1 is recommended in order to prevent premature
convergence. On the other hand, if c is too large, the search process proceeds reliably, but
too slowly. In Publication II and Publication VI it has been observed that c = 1.5 is a
suitable but not strict upper limit. This limit has been noticed also with single-objective
problems [94]. When the size of the population is relatively large (e.g., NP > 50), the
value of c depends mainly on the values of CR and F . Curves c = 1.0 and c = 1.5 for
NP = 100 are shown in Figure 3.13.

Since experiments in Publication II and Publication VI are limited to bi-objective test
problems, similar experiments are repeated here with the DTLZ test problems varying
the number of objectives (M) from two to �ve and the population size according to
formula NP = (M − 1) ∗ 100. Results are shown in Figures 3.14�3.18 as surfaces in the
control parameter space. A similar non-linear relation between the CR and F values can
also be noticed here with most of the problems. One should note that the formula in 3.5
does not take into account the e�ect of the problem characteristics on the performance
metric values. Thus, performance metric curves cannot be expected to follow formula 3.5
exactly.
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Figure 3.14: Mean values of the number of non-dominated solutions (ℵ) in the
�nal population, generational distance (GD), and spacing (S) for DTLZ1 with 2�5
objectives shown as surfaces in the control parameter space.
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Figure 3.15: Mean values of the number of non-dominated solutions (ℵ) in the
�nal population, generational distance (GD), and spacing (S) for DTLZ2 with 2�5
objectives shown as surfaces in the control parameter space.
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Figure 3.16: Mean values of the number of non-dominated solutions (ℵ) in the
�nal population, generational distance (GD), and spacing (S) for DTLZ4 with 2�5
objectives shown as surfaces in the control parameter space.
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Figure 3.17: Mean values of the number of non-dominated solutions (ℵ) in the
�nal population, generational distance (GD), and spacing (S) for DTLZ5 with 2�5
objectives shown as surfaces in the control parameter space.
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Figure 3.18: Mean values of the number of non-dominated solutions (ℵ) in the
�nal population, generational distance (GD), and spacing (S) for DTLZ7 with 2�5
objectives shown as surfaces in the control parameter space.
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Observations in Publication II and Publication VI and Figures 3.14�3.18 suggest that
the theory for the population standard deviation between successive generations in Equa-
tion 3.5 is applicable also in the case of multi-objective DE and provides a way to select
good control parameter value combinations. This is natural, since single-objective op-
timization can be seen as a special case of multi-objective optimization, and a large c
means a slow but reliable search, while a small c means the opposite. Based on the
results in Publication II and Publication VI it is advisable to select values for CR and
F satisfying the condition 1.0 < c < 1.5+ (i.e., the upper limit is not strict). Values of
CR and F can be �xed according to problem characteristics (as advised in Section 2.3.1)
and to satisfy the condition above.

The observed results were good with small CR and F values that also mean a low c value
(close to 1.0). One reason for the good performance with small control parameter values is
that the test problems had con�icting objectives, which reduced overall selection pressure
and prevented premature convergence. Another reason is that most of the problems had
relatively easy objective functions to solve, leading to a faster convergence with a small
F , while a bigger F might be needed for more di�cult functions with several local optima
and/or if NP is small.

3.6 Constrained Optimization with GDE

Above, the performance of GDE versions has been described only with unconstrained
problems. However, the GDE versions include in their de�nition also a constraint han-
dling approach which is the same in all the versions. This constraint handling approach
was �rst introduced and evaluated for single-objective optimization with DE in [91] and
later extended into multi-objective optimization with GDE.

In [82], a small set of mechanical design problems including several constraints was solved
using GDE1. Good estimations of the Pareto-optimal front were obtained. The extent
of the approximation sets was measured and found to be comparable to the results
with NSGA-II. GDE1 was also used to solve a given set of constrained single-objective
optimization problems in the CEC 2006 Special Session on Constrained Real-Parameter
Optimization [83]. GDE1 was able to solve almost all the problems in a given maximum
number of solution candidate evaluations. A better solution than previously known was
found for some problems. It was also demonstrated that GDE needs a lower number of
function evaluations than required if all the constraints are to be evaluated (as the case
of several other constraint handling techniques).

In Publication IV, the ability of GDE versions to handle several constraints and di�erent
types of decision variables is demonstrated using a bi-objective spring design problem [36,
75]. GDE versions use real-coded variables, which are converted into corresponding
actual variable types before evaluation of the objective and constraint functions. In
the spring design problem, the problem is to design a helical compression spring which
has a minimum volume and minimal stress. The objective functions are non-linear and
the problem has three decision variables: the number of spring coils x1 (integer), the
wire diameter x2 (discrete having 42 non-equispaced values), and the mean coil diameter
x3 (real). In addition to the boundary constraints, the problem has eight inequality
constraints most of which are non-linear. A formal description of the problem is given
in Appendix I.
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Figure 3.19: Heatmap of the spring design problem solved with GDE3. Columns
1�3 correspond to decision variables, columns 4�5 correspond to objectives, and
columns 6�13 correspond to constraint functions. Rows correspond to individuals.

Non-dominated points extracted from the �nal population of the di�erent GDE versions
and NSGA-II are shown in Figure 2 of Publication IV. The size of the population and
the number of generations were both 100. The number of function evaluations needed
for the GDE versions are reported in Table 2 of Publication IV. It can be observed that
the constraint handling approach used in the GDE versions reduce the actual number
of function evaluations. It can also be noted that GDE2 and GDE3 evaluate objectives
equally many times but GDE1 evaluates the �rst objective more often than the second
objective. The reason for this is that possible incomparability between feasible target
and trial vectors needs to be inspected in GDE2 and GDE3.

The spring design problem solved with GDE3 is shown as a heatmap (cf. Section 2.2.6) in
Figure 3.19. The value ranges of decision variables, objectives, and constraint functions
have been normalized to ease observation.

The performance of GDE3 is compared with NSGA-II in Figures 3.20�3.23 using a set
of common bi-objective test problems given in [33, pp. 362�367] and formally de�ned in
Appendix I.

The �rst problem is known as BNH and it has two decision variables and constraints.
Results for this problem are shown in Figure 3.20. The population size and number of
generations were 100 and 150, respectively. The control parameter values were CR = 0.4
and F = 0.3 for GDE3 7, and pc = 0.9, pm = 1/D, ηc = 10, and ηm = 20 for NSGA-II 8.

7The control parameter values for GDE3 were selected experimentally by trying out a few parameter
value combinations and choosing the most promising, which were kept the same for all the constrained
test problems.

8The control parameter values, the size of the population, and the number of generations of NSGA-II
for the problems were obtained with the program code from [76].
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Figure 3.20: Solutions for BNH using GDE3 and NSGA-II.

The second problem, OSY, has six decision variables and constraints. Results for this
problem are shown in Figure 3.21. The population size and number of generations were
200 and 250, respectively. The control parameter values for GDE3 were CR = 0.4 and
F = 0.3, and for NSGA-II pc = 0.9, pm = 1/D, ηc = 5, and ηm = 5.

The third problem, SRN, has two decision variables and constraints. Results for this
problem are shown in Figure 3.22. Both the population size and number of generations
was 100. The control parameter values for GDE3 were CR = 0.4 and F = 0.3, and for
NSGA-II pc = 0.9, pm = 1/D, ηc = 5, and ηm = 5.

The last problem, TNK, also has two decision variables and constraints. Results for this
problem are shown in Figure 3.23. The population size and number of generations were
200 and 300, respectively. The control parameter values for GDE3 were CR = 0.4 and
F = 0.3, and for NSGA-II pc = 0.9, pm = 1/D, ηc = 5, and ηm = 5.

From the results, similar performance between the methods can be observed. GDE3
in general provides better diversity but NSGA-II provides a better result in the case of
OSY.

The GDE versions have been successfully applied also for more challenging constrained
multi-objective optimization problems such as scaling �lter design [89], multi-objective
scheduling for NASA's deep space network array and space science missions [72, 73],
balanced surface acoustic wave and microwave �lters design [56,138], Yagi-Uda antenna
design [57], a software project scheduling problem [20], and a molecular sequence align-
ment problem [80]. The last problem is non-linear with thousands of integer decision
variables. Such large problems have rarely been successfully solved with an EA. GDE3
has been developed further [19, 122] and implemented into publicly available object-
oriented framework for multi-objective optimization [43]. GDE3 has also been used for
comparison purposes in several studies, e.g., in [38,153,154].
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Figure 3.21: Solutions for OSY using GDE3 and NSGA-II.
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Figure 3.22: Solutions for SRN using GDE3 and NSGA-II.
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Figure 3.23: Solutions for TNK using GDE3 and NSGA-II.



Chapter IV

Conclusions and Discussion

�Essentially, all models are wrong, but some are useful.�
� George E. P. Box

This chapter summarizes the main conclusions from this thesis work. Di�erent versions
of GDE and their properties are brie�y reviewed. The chapter also contains discussion of
the prospects and limitations of GDE, and MOEAs in general. Potential future directions
are considered.

The thesis contains the work done by the author on the development of Generalized
Di�erential Evolution (GDE) since the initial idea in [90]. GDE is a real-coded general
purpose EA extended from the basic DE algorithm [134] to handle multiple objectives
and constraints. Each GDE version falls back to the basic DE algorithm in the case
of an unconstrained single-objective problem. GDE does not contain any extra control
parameter compared to basic DE. DE was chosen as a basic search �engine� because it
is an e�ective and widely applicable evolutionary algorithm characterized by simplic-
ity, linear scalability, and ability to perform a rotationally invariant search [119]. The
DE/rand/1/bin strategy has been used in all the GDE versions as a search method,
therefore results apply mainly to this strategy. Di�erent strategies have di�erent search
properties that would presumably a�ect convergence properties when used in GDE.

The �rst version, GDE1, was originally proposed by Lampinen [90] and then studied
by the author of this thesis work. GDE1 extends DE for constrained multi-objective
optimization by modifying the selection rule of basic DE. The key idea in the selection
rule is that the trial vector is selected to replace the old vector in the next generation
if the trial vector weakly constraint-dominates the old vector. There is neither explicit
non-dominated sorting during the optimization process, nor an extra repository for non-
dominated vectors, nor any speci�c mechanism for preserving diversity. Nevertheless,
GDE1 has been observed to perform well, as can be noted from the results in Publication I.
However, the diversity of the obtained solutions could have been better, and GDE1 has
been found rather sensitive to the selection of the control parameter values (e.g., the
empirical results in Publication II ).

The second version, GDE2 (Publication III ), was proposed to improve the diversity of
solutions. GDE2 makes a selection between the old and trial vector based on crowding
in the objective function space when the vectors are feasible and do not dominate each

83
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other in the objective function space. This improves the extent and distribution of an
obtained set of solutions but slows down the convergence of the population because it
favors isolated solutions far from the Pareto-optimal front until all the solutions have con-
verged near the Pareto-optimal front. Thus, the additional requirement of good diversity
increases the di�culty of the search and slows down the convergence. This GDE version,
too, has been observed to be rather sensitive to the selection of the control parameter
values (Publication III ).

The third and latest enumerated version is GDE3 (Publication IV and Publication V ).
In addition to the selection operation change, a further modi�cation to basic DE is
population reduction at the end of each generation, if the size of the population has grown
during the generation. For GDE3, in the case of feasible and incomparable solutions,
both the old and the trial vectors are saved for the population of the next generation.
At the end of each generation, the size of the population is reduced using non-dominated
sorting and pruning based on crowding estimation. GDE3 provides better distribution of
solutions than the earlier GDE versions and is also more robust in terms of the selection
of the control parameter values, as concluded in Publication IV and Publication VI.

The diversity preservation technique of GDE3 is an improved version of the technique
in NSGA-II based on the crowding distance. The technique has been noticed to provide
good diversity in the case of two objectives but the diversity deteriorates with a larger
number of objectives because the crowding distance metric does not estimate crowding
well when the number of objectives is more than two (Publication V ). This observation
is noteworthy because NSGA-II is the most used MOEA, several multi-objective DE
variants apply crowding distance, and the crowding distance metric has subsequently
been used in several studies with more than two objectives.

In the light of the defect in the crowding distance metric, GDE3 has been further de-
veloped with the diversity preservation technique designed for many-objective problems
(Publication VII ). This technique provides good diversity also in cases with more than
two objectives. Furthermore, it is fast, especially when solving problems having only
a few objectives (cf. Figure 3.12 and results in Publication VII ). The time needed by
the pruning technique increases when the number of objectives and number of non-
dominated solutions to be pruned increases, but it is substantially less compared to
similar approaches in other MOEAs [70].

The in�uence of the control parameters has been studied and discussed in Publication II
and Publication VI with respect to GDE1 and GDE3. Multi-objective optimization is
fundamentally di�erent from single-objective optimization since the population is not
expected to converge to a single point. The study �nds that GDE3 is more robust with
respect to control parameter values and provides a better diversity than GDE1.

The non-linear relationship between CR and F was observed following the theory of basic
single-objective DE [148] concerning the relationship between the control parameters and
the development of the population standard deviation. Based on this observation, it is
advisable to select values for CR and F satisfying the condition 1.0 < c < 1.5+, where c
denotes the change of the population standard deviation between successive generations
due to the variation (crossover and mutation) operations. When c < 1, the standard
deviation decreases, and when c > 1, the standard deviation increases. If the di�culty
of the objectives di�er, it is better to use a small CR value to prevent convergence of one
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objective before the other of others.

The various GDE versions have been used in a number of problems having di�erent
numbers of objectives and constraints [54, 56, 57, 72, 80, 82, 89, 138]. The experimental
results in Chapter 3 demonstrate how the performance of the method has improved
throughout the development steps. Results in Table 2 of Publication IV and in [83, 91]
demonstrate how the constraint handling technique used in GDE reduces the number of
function evaluations needed. GDE3 with the improved diversity preservation has been
able to solve successfully (i.e., �nd a good set of non-dominated solutions) some di�cult
problems involving up to �ve objectives [84] and performs well compared to several other
MOEAs [136].

The main contribution of this thesis work is the study of GDE1 and the development of
the later GDE versions. This includes programming all the versions and performing the
tests. The thesis work has contributed new information about:

• Diversity preservation in multi-objective optimization.

• The in�uence of control parameters in a multi-objective DE.

• Usability of DE for constrained multi-objective optimization.

GDE itself is an a posteriori method, i.e., a set of non-dominated points is �rst gen-
erated and after that the decision-maker picks a suitable compromise solution. GDE
can be converted to a priori and interactive optimization without great di�culty. In
a priori optimization the original problem is converted to a single-objective form that
can be solved with GDE since it then operates exactly as the original DE algorithm.
In the interactive form, the search process could be interrupted occasionally (e.g., after
a selected number of generations or based on the development of the solutions) for the
decision-maker to conduct re�nement of objectives and constraints. The search could
then be continued with the old and/or reinitialized population and the re�ned problem
de�nition. Re�nement of the objectives and constraints does not need to mean merely
adding or removing them; re�nement could be extended to modi�cation of the objective
and constraint functions. It might be necessary to update the objective and constraint
functions since they are often models of reality and therefore contain inaccuracy. This
inaccuracy should be kept in mind during numerical optimization because the global opti-
mum for a model might be di�erent than for the actual optimization problem. Therefore,
searching for a better solution for a model is not worthwhile beyond a certain precision.

Currently, GDE is a potential general purpose optimizer for global optimization with
constraints and objectives. The di�erent GDE versions have their own target domains.
For example, GDE1 is suitable for single-objective optimization and if diversity of solu-
tions is not of primary importance. The original version of GDE3 is suitable when the
number of objectives is two and GDE3 with the diversity preservation technique pro-
posed in Publication VII is suitable with a higher number of objectives. GDE2 can be
useful if the nature of possible discontinuities in the Pareto-optimal front needs to be
investigated. For example, ZDT3 has disconnected Pareto-optimal fronts but based on
a set of non-dominated points it is not certain if the actual front has discontinuity or
some parts are just not covered. Observation of the whole �nal set of solutions (not just
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non-dominated solutions) indicates that the Pareto-optimal front is truly disconnected
(cf. ZDT3 in Figure 3.4).

The convergence property of GDE has been brie�y discussed at the beginning of Chap-
ter 3. As was stated, GDE with the DE/rand/1/bin strategy cannot be proven theoret-
ically to always converge. However, if the DE strategy is modi�ed slightly, as discussed
in Section 2.3.1, GDE1 can be proven to converge since both necessary conditions men-
tioned in Section 2.2.5 are then ful�lled. This does not hold with the other GDE versions
since diversity maintenance is a part of selection and deterioration of solutions is possible,
as noticed in [98]. If the selection is changed to consider only Pareto-dominance (and
not diversity) after some number of generations (e.g., when a certain number of non-
dominated solutions has been obtained), also the later GDE versions with the modi�ed
DE strategy would then converge in theory.

Some limitations in GDE exist. When the number of objectives increases, the speed of
the search will slow down. The reason for this phenomenon is that GDE (as many other
MOEAs) applies the Pareto-dominance relation in its selection. When the number of
objectives increases, the proportion of non-dominated members in the population will
also increase rapidly and the selection based on Pareto-dominance is not able to sort the
members. This has been illustrated in [33, p. 417] and [85].

In the case of diversity preservation, diversity will become the ruling selection criterion
between solutions when the number of objectives increases, and the emphasis on extreme
solutions may even advance the search away from the Pareto-optimal front, as noted
in [85,116]. Thus, diversity preservation will slow down convergence further. It is impor-
tant to note that the cause of these di�culties lies in the de�nition of Pareto-optimality.
A new term (e.g., hyper-, super-, or ultra-objective) would be needed for cases when the
number of objectives is so large that selection based on Pareto-dominance is not able to
sort the members of a population.

A large number of objectives also causes other problems, i.e., visualization of the obtained
optimization result becomes more di�cult when the number of objectives is more than
three. With the increase in the number of objectives, the number of points to be used
should increase exponentially in order to cover the Pareto-optimal front with the same
density. This demand will increase the computational expense, and it is also questionable,
whether the decision-maker will be able to cope with the huge number of alternative
solutions generated. These issues of visualization, choice, and computational expense are
probably the reasons why most MOEA research has focused on problems with only two
or three objectives [25, p. 305].

Current research is attempting to solve the di�culties arising with a large number of
objectives (e.g., [85]). However, it appears that a large number of objectives causes so
many di�culties that it might be better to use a posteriori MOEAs only for optimization
problems with a couple of objectives. If a problem contains too large a number of
objectives to be solved using a posteriori MOEA, then some a priori technique (cf.
Section 2.2.4) could be used instead. It might also be possible to decrease the number
of objectives (e.g., using techniques in [14, 37]) and solve the resulting problem using a
posteriori MOEA.

Finally, it can be concluded that GDE3 with the diversity preservation technique for
many-objective problems is a good choice for global optimization with di�erent types
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of decision variables, constraints, and a few (i.e., 1�5) objectives. This version has
performed very well when compared with other modern MOEAs [136].

Since the results with the GDE versions are mainly based on a limited number of exper-
iments, the full applicability range in terms of the number of constraints and objectives
is not precisely known and therefore exact limits cannot be given.

Future Directions

Many real world problems have computationally expensive objective and constraint func-
tions. These have been problematic for EAs since EAs generally require a large number
of function evaluations. One resolution might be parallelization of the algorithm. GDE,
like EAs in general, can be easily parallelized [119, pp. 267�276, 401�404]. Another
approach for computationally expensive functions is to use approximations of functions,
meta-models [71], during most of the search and evaluate the actual functions only when
really required. These modi�cations to GDE are probably useful when GDE is applied
to practical problems.

Further investigation of the e�ect of control parameters is necessary in order to increase
the usability of GDE. The e�ect of control parameters on the compromise between speed
and robustness would need further research. There already exists some research on an
automatic control parameter adaptation for DE, e.g., in [1,64,149]. This is an interesting
and important research topic. Automatic control parameter adaption is needed in order
to increase the usability of DE and GDE.

The NFL theorem has been con�rmed to hold also in multi-objective optimization [29].
However, it might be a case that practical problems form a subset of all the possible
problems. Then, it would be possible to study the properties of this subset and �nd an
optimization algorithm which is best suited for this subset.

As noted in Publication VII and [79], the diversity preservation technique presented for
many-objective problems could be improved further. This issue as well as the concept of
optimal diversity form potential subjects for future study.
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Chapter V

Errata and Additional Information to Publications

�Errare humanum est perseverare diabolicum.�
� Lucius A. Seneca (Seneca the Younger)

Publication I

In Section 2 (p. 3), the reference after the term �Pareto-optimization� should be [77].

In Section 3 (pp. 4�5), the text should read �decision variable vector� instead of �objective
vector�.

The normalized version of maximal spread has been utilized and symbol D̄ should be
used instead of D.

The reference 13 should be in the form: �Kenneth V. Price, New Ideas in Optimization,
chapter An Introduction to Di�erential Evolution, pp. 79�108, McGraw-Hill, London,
1999.�

In the results, the non-dominated solutions are presented for all the methods (not just
GDE).

Publication II

In Figures 1�10, the label of the vertical axis should contain GD instead of CD for
generational distance.

Symbol c in Section 4 denotes the change of the population �standard deviation�, not
�variance�.

The number of generations were kept �xed for individual test problems, i.e., not the
same value was used for all the problems but suitable values were experimentally found
for each test problem.

89
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Publication III

In Section 2 (p. 753), the reference after the term �Pareto-optimization� should be [77].

The normalized version of maximal spread has been utilized and symbol D̄ should be
used instead of D.

The results of SPEA were taken from [160]. The results of NSGA-II were generated using
a program code available in [76]. The control parameter values of NSGA-II for the ZDT
problems were obtained with the program code.

Publication IV

At the end of Section 2 (p. 444), in the second condition of constraint-domination,
the text should read �constraint function violation space� instead of �constraint function
space�.

The population reduction term in Equation (3) (p. 445) should read as in Chapter 3,
Figure 3.7:





While n > 0

Select ~x ∈ P = {~x1,G+1, ~x2,G+1, . . . , ~xNP+n,G+1} :



~x belongs to the last non-dominated set of P
∧
~x is the most crowded in the last non-dominated set

Remove ~x from P
n = n− 1

The term �constrained-non-domination� in the �rst footnote means a situation in which
two solutions do not dominate each other in the space of the constraint violations.

Omni-Optimizer [41] was selected for comparison in the case of single-objective opti-
mization since Omni-Optimizer is a multipurpose optimizer in the same way as GDE3.
Omni-Optimizer was novel at the time, and the reported results were promising.

Publication V

A heap is a tree structure in which the root node has a smaller value than the nodes of
the subtrees. Creation of the heap as well as insertion and removal operations of nodes
can be done with a relatively low computational cost [27, pp. 140�152].

At the end of Section V, instead of �random values for CDs were used instead of calculated
values� it would have been more accurate to write �random values were used instead of
calculated CD values�. Thus, the method was otherwise the same but randomly generated
values were used instead of calculated CD values to test if the pruning result using CD
values di�ers from a random pruning.
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Publication VI

Symbol c denotes the change of the population �standard deviation�, not �variance�.

After the sentence �In practice it has been observed that c < 1.5 is suitable upper
limitation for most of the cases� should be reference [94] instead of [119].

The large average GD values for the SCH1 test problem in Table 2 can be explained by
looking at the middle of the sub-�gure of Figure 1 in Publication II and Publication VI.
Generational distance values are large when F is close to 0 or greater than 1 and therefore
also the average values over the control parameter value combinations are large.

Publication VII

Equation (1) provides �a lower bound� for the Euclidean distance between two vectors,
not �an upper bound� as written after the equation.

At the end of Section 2 (p. 557), the complexity analysis is erroneous: the time com-
plexity O (MN logN) for �nding all M nearest neighbors holds only with a �xed di-
mensional space. The actual time complexity class of the nearest neighbor method in
Publication VII cannot be given since it is problem-dependent. It is, however, between
O (MN logN) and O

(
MN2

)
. Therefore, the complexity class estimate at the end of

page 557 might not hold, although empirical evidence would seem to support it.

The normalized version of maximal spread has been utilized and symbol D̄ should be
used instead of D.

A term �nadir� should be removed from Section 3 (p. 558).

At the end of Section 3 (p. 561), there should be a term �log-linear� instead of �logarith-
mic�.

For any remaining errors, cf. the quotation at the beginning of this chapter.
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APPENDIX I

Test Problems

Detailed descriptions of the test problems used in Chapter 3 are given below. All the
problems are scalable in respect of the number of decision variables D, however the same
values as in the original problem descriptions are used.

Zitzler-Deb-Thiele (ZDT) Test Problems

Zitzler-Deb-Thiele (ZDT) test problems have been described in [158] and [156, pp. 57�59].
The problems used in this thesis are ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 [33, pp. 356�
360]. They are designed to test the ability of a multi-objective optimization method to
handle convexity (ZDT1), non-convexity (ZDT2), discontinuity (ZDT3), multi-modality
(ZDT4), and non-uniformity (ZDT6) of the Pareto-optimal front. These problems are
formally described below [33, pp. 356�360]:

ZDT1

Minimize f1(x) = x1,

Minimize f2(x) = g
(

1−
√
f1/g

)
,

subject to g = 1 + 9
D−1

∑D
i=2 xi,

xi ∈ [0, 1], D = 30 .

(I.1)

ZDT2

Minimize f1(x) = x1,
Minimize f2(x) = g

(
1− (f1/g)2

)
,

subject to g = 1 + 9
D−1

∑D
i=2 xi,

xi ∈ [0, 1], D = 30 .

(I.2)
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ZDT3

Minimize f1(x) = x1,

Minimize f2(x) = g
(

1−
√
f1/g − (f1/g) sin(10πf1)

)
,

subject to g = 1 + 9
D−1

∑D
i=2 xi,

xi ∈ [0, 1], D = 30 .

(I.3)

ZDT4

Minimize f1(x) = x1,

Minimize f2(x) = g
(

1−
√
f1/g

)
,

subject to g = 1 + 10(D − 1) +
∑D
i=2

(
xi

2 − 10 cos(4πxi)
)
,

x1 ∈ [0, 1], xi ∈ [−5, 5], D = 10 .

(I.4)

ZDT6

Minimize f1(x) = 1− exp(−4x1) sin6(6πx1),
Minimize f2(x) = g

(
1− (f1/g)2

)
,

subject to g = 1 + 9
((∑D

i=2 xi

)
/9
)0.25

,

xi ∈ [0, 1], D = 10 .

(I.5)

The Pareto-optimal fronts for the problems can be seen in Chapter 3, Figure 3.11. Prob-
lems ZDT4 and ZDT6 are also illustrated in Figure 1 of Publication I. ZDT4 has many
local Pareto-optimal fronts. Solutions shown for ZDT6 are uniformly distributed in the
decision variable space. One can notice that the density of solutions across the Pareto-
optimal front is non-uniform.

Deb-Thiele-Laumanns-Zitzler (DTLZ) Test Problems

Deb-Thiele-Laumanns-Zitzler (DTLZ) test problems have been described in [39,40]. The
problem set consists of nine di�erent problems, which are scalable with respect to the
number of objectives but the original de�nition for the problems is for three objectives [39,
40]. From the total set of problems, the following �ve problems have been used in this
thesis: DTLZ1, DTLZ2, DTLZ4, DTLZ5, and DTLZ7. They di�er in the shape of the
Pareto-optimal front and diversity preservation. Formal de�nitions of the problems in a
tri-objective form are given below:

DTLZ1

Minimize f1(x) = 0.5x1x2(1 + g),
Minimize f2(x) = 0.5x1(1− x2)(1 + g),
Minimize f3(x) = 0.5(1− x1)(1 + g),

subject to g = 100
(

5 +
∑D
i=3(xi − 0.5)2 − cos (20π(xi − 0.5))

)
,

xi ∈ [0, 1], D = 7 .

(I.6)
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DTLZ2

Minimize f1(x) = (1 + g) cos(x1π/2) cos(x2π/2),
Minimize f2(x) = (1 + g) cos(x1π/2) sin(x2π/2),
Minimize f3(x) = (1 + g) sin(x1π/2),

subject to g =
∑D
i=3(xi − 0.5)2,

xi ∈ [0, 1], D = 12 .

(I.7)

DTLZ4

Minimize f1(x) = (1 + g) cos(x1
απ/2) cos(x2

απ/2),
Minimize f2(x) = (1 + g) cos(x1

απ/2) sin(x2
απ/2),

Minimize f3(x) = (1 + g) sin(x1
απ/2),

subject to g =
∑D
i=3(xi − 0.5)2,

α = 100,
xi ∈ [0, 1], D = 12 .

(I.8)

DTLZ5

Minimize f1(x) = (1 + g) cos(x1π/2) cos(θ),
Minimize f2(x) = (1 + g) cos(x1π/2) sin(θ),
Minimize f3(x) = (1 + g) sin(x1π/2),

subject to g =
∑D
i=3(xi − 0.5)2,

θ = π(1+2gx2)
4(1+g) ,

xi ∈ [0, 1], D = 12 .

(I.9)

DTLZ7

Minimize f1(x) = x1,
Minimize f2(x) = x2,

Minimize f3(x) = (1 + g)
(

3−∑2
i=1

[
xi

1+g (1 + sin(3πxi))
])
,

subject to g = 1 + 9/20
∑D
i=3 xi,

xi ∈ [0, 1], D = 22 .

(I.10)

Pareto-optimal fronts for these problems can be seen in Chapter 3, Figure 3.12.

Constrained Multi-Objective Test Problems

Constrained bi-objective test problems used in Section 3.6 have been taken from [33, pp.
362�367, 453�455].
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Spring Design Problem

In the spring design problem, the problem is to design a helical compression spring which
has a minimum volume and minimal stress. Objective functions are non-linear and the
problem has three decision variables: the number of spring coils x1 (integer), the wire
diameter x2 (discrete having 42 non-equispaced values), and the mean coil diameter
x3 (real). In addition to the boundary constraints, the problem has eight inequality
constraint functions, most of which are non-linear. A formal description of the problem
is [36,75]:

Minimize f1(x) = 0.25π2x2
2x3(x1 + 2),

Minimize f2(x) = 8KPmaxx3

πx2
3 ,

subject to g1(x) = lmax − Pmax

k − 1.05(x1 + 2)x2 ≥ 0,
g2(x) = x2 − dmin ≥ 0,
g3(x) = Dmax − (x2 + x3) ≥ 0,
g4(x) = C − 3 ≥ 0,
g5(x) = δpm − δp ≥ 0,
g6(x) = Pmax−P

k − δw ≥ 0,
g7(x) = S − 8KPmaxx3

πx2
3 ≥ 0,

g8(x) = Vmax − 0.25π2x2
2x3(x1 + 2) ≥ 0,

x1 is integer, x3 is continuous, x2 ∈ {0.009, 0.0095, 0.0104, 0.0118,
0.0128, 0.0132, 0.014, 0.015, 0.0162, 0.0173, 0.018, 0.020,
0.023, 0.025, 0.028, 0.032, 0.035, 0.041, 0.047, 0.054, 0.063,
0.072, 0.080, 0.092, 0.105, 0.120, 0.135, 0.148, 0.162, 0.177,
0.192, 0.207, 0.225, 0.244, 0.263, 0.283, 0.307, 0.331, 0.362,
0.394, 0.4375, 0.5} .

(I.11)

The parameters used are as follows:

K = 4C−1
4C−4 + 0.615x2

x3
, P = 300 lb, Dmax = 3 in, k = Gx2

4

8x1x3
3 ,

Pmax = 1000 lb, δw = 1.25 in, δp = P
k , lmax = 14 in,

S = 189000 psi, δpm = 6 in, dmin = 0.2 in, C = D/d,
G = 11500000, Vmax = 30 in3 .

(I.12)

Pareto-optimal front approximations for the spring design problem are shown in Figure
2 of Publication IV.

BNH

Minimize f1(x) = 4x1
2 + 4x2

2,
Minimize f2(x) = (x1 − 5)2 + (x2 − 5)2,
subject to g1(x) = (x1 − 5)2 + x2

2 ≤ 25,
g2(x) = (x1 − 8)2 + (x2 + 3)2 ≥ 7.7,
x1 ∈ [0, 5], x2 ∈ [0, 3] .

(I.13)

Pareto-optimal front approximations for BNH are shown in Chapter 3, Figure 3.20.
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OSY

Minimize f1(x) = −
[
25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2 + (x4 − 4)2 + (x5 − 1)2

]
,

Minimize f2(x) = x1
2 + x2

2 + x3
2 + x4

2 + x5
2 + x6

2,
subject to g1(x) = x1 + x2 − 2 ≥ 0,

g2(x) = 6− x1 − x2 ≥ 0,
g3(x) = 2− x2 + x1 ≥ 0,
g4(x) = 2− x1 + 3x2 ≥ 0,
g5(x) = 4− (x3 − 3)2 − x4 ≥ 0,
g6(x) = (x5 − 3)2 + x6 − 4 ≥ 0,
x1, x2, x6 ∈ [0, 10], x3, x5 ∈ [1, 5], x4 ∈ [0, 6] .

(I.14)

Pareto-optimal front approximations for BNH are shown in Chapter 3, Figure 3.21.

SRN

Minimize f1(x) = 2 + (x1 − 2)2 + (x2 − 1)2,
Minimize f2(x) = 9x1 − (x2 − 1)2,
subject to g1(x) = x1

2 + x2
2 ≤ 225,

g2(x) = x1 − 3x2 + 10 ≤ 0,
x1, x2 ∈ [−20, 20] .

(I.15)

Pareto-optimal front approximations for BNH are shown in Chapter 3, Figure 3.22.

TNK

Minimize f1(x) = x1,
Minimize f2(x) = x2,

subject to g1(x) = x1
2 + x2

2 − 1− 0.1 cos
(

16 arctan x1

x2

)
≥ 0,

g2(x) = (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5,
x1, x2 ∈ [0, π] .

(I.16)

Pareto-optimal front approximations for BNH are shown in Chapter 3, Figure 3.23.
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APPENDIX II

Program Codes for Performance Metrics

Matlab program codes of the performance metrics used in the publications are presented
here. The program code for calculating unary hypervolume values in Publication VII,
has been obtained from [137].

Generational Distance

Generational distance measures the average distance of solutions to the Pareto-optimal
front [33, pp. 326�327]. Thus, from each solution, the shortest distance to the Pareto
optimal front is measured and then the mean of these distances is calculated. This metric
has been used in Publication II, Publication III, and Publication VI with the Euclidean
distance (p = 2).

function [GD,V] = gen_dist(P, Q, p)

% Generational distance: [GD,V] = gen_dist(P, Q, p)

%

% Generational distance for a set of solutions measures the average

% distance from the Pareto-optimal front.

%

% P = Set of solutions representing the global Pareto-optimal front.

% Q = Set of solutions obtained.

% p = Parameter for defining L_p distance metric (p = 2 is

% Euclidean).

%

% GD = Generational distance.

% V = Variance of distances.

%

% More information about the metric:

%
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% K. Deb, Multi-Objective Optimization using Evolutionary

% Algorithms, 2001, pp. 326 - 327.

% (c) Saku Kukkonen

card = size(Q,1);

D = zeros(1,card);

for i=1:card,

temp = repmat(Q(i,:),size(P,1),1);

temp = sum(abs(temp - P).^p,2).^(1/p);

ind = find(min(temp) == temp);

D(i) = temp(ind(1));

end;

GD = sum(D.^p)^(1/p)/card;

V = var(D);

Error Ratio

Error ratio measures the fraction of solutions that are not Pareto-optimal [33, pp. 324�
325]. This metric has been used in Publication IIIwith δ = 0.01, which was an experi-
mentally determined value.

function ER = error_ratio(P, Q, delta)

% Error ratio: ER = error_ratio(P, Q, delta)

%

% Error ratio measures the fraction of solutions that are not

% Pareto-optimal.

%

% P = Set of solutions representing the global Pareto-optimal front.

% Q = Set of solutions obtained.

% delta = Allowed error between obtained and Pareto-optimal solutions.

%

% ER = Error ratio.

%

% More information about the metric:

%

% K. Deb, Multi-Objective Optimization using Evolutionary

% Algorithms, 2001, pp. 324 - 325.

% (c) Saku Kukkonen
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card = size(Q,1);

count = 0;

for i=1:card,

temp = repmat(Q(i,:),size(P,1),1);

temp = sqrt(sum((temp - P).^2,2));

temp = find(temp <= delta);

if (length(temp) == 0)

count = count + 1;

end;

end;

ER = count/card;

Spacing

Spacing measures the standard deviation of the distances from each solution to the
nearest solution in the obtained non-dominated set [33, pp. 327�328]. This metric has
been used in Publication II, Publication III, Publication IV, Publication V, Publication VI,
and Publication VII.

function S = spacing(Q)

% Spacing: S = spacing(Q)

%

% Spacing measures the standard deviation of the distances from each

% solution to the nearest solution in the obtained non-dominated

% set.

%

% Q = Set of solutions obtained.

%

% S = Spacing.

%

% More information about the metric:

%

% K. Deb, Multi-Objective Optimization using Evolutionary

% Algorithms, 2001, pp. 327 - 328.

% (c) Saku Kukkonen

card = size(Q,1);
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% For a set of one solution, spacing is not defined.

if (card == 1),

S = nan;

else

D = zeros(1,card);

% Normalization of objective values

mi = repmat(min(Q),card,1);

ma = repmat(max(Q),card,1);

warning off MATLAB:divideByZero

Q = (Q - mi) ./ (ma - mi);

warning on MATLAB:divideByZero

Q(isnan(Q)) = 0;

for i=1:card,

temp = repmat(Q(i,:),card-1,1);

temp = sum(abs(temp - Q([1:i-1 i+1:end],:)),2);

ind = find(min(temp) == temp);

D(i) = temp(ind(1));

end;

S = sqrt(sum((D - mean(D)).^2)/card);

end;

Spread

Spread measures both the uniformity of the obtained non-dominated set and the distance
to extreme values of the Pareto-optimal front [33, pp. 328�330]. This metric has been
used in Publication IIIwith the Euclidean distance (p = 2).

function Delta = spread(P, Q, p)

% Spread: Delta = spread(P, Q, p)

%

% Spread measures both uniformity of the obtained non-dominated set

% and distance to extreme values of the Pareto-optimal front.

%

% P = Set of solutions representing the global Pareto-optimal front.

% Q = Set of solutions obtained.

% p = Parameter for defining L_p distance metric (p = 2 is

% Euclidean).
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%

% Delta = Spread.

%

% More information about the metric:

%

% K. Deb, Multi-Objective Optimization using Evolutionary

% Algorithms, 2001, pp. 328 - 330.

% (c) Saku Kukkonen

[card,M] = size(Q);

d_e = 0;

[foo, I1] = min(Q,[],1);

[foo, I2] = min(P,[],1);

for i=1:M,

d_e = d_e + sum(abs(Q(I1(i),:) - P(I2(i),:)).^p)^(1/p);

end;

temp = sum(abs(diff(sortrows(Q,1))).^p,2).^(1/p);

d_avg = mean(temp);

d_std = std(temp);

temp = sum(abs(temp - d_avg));

Delta = (d_e + temp) / (d_e + (card-1)*d_avg);

Maximum Spread, normalized version

The normalized version of maximum spread measures the distance between the extreme
solutions in the obtained set in relation to the distance between extreme solutions at the
Pareto-optimal front [33, pp. 330�331]. This metric has been used in Publication III,
and Publication VII with the Euclidean distance (p = 2).

function D = max_spread(P, Q, p)

% Maximum spread: D = max_spread(P, Q, p)

%

% Normalized maximum spread measures the distance between extreme

% solutions in the obtained set in relation to the distance

% between extreme solution in the Pareto-optimal front.

%

% P = Set of solutions representing the global Pareto-optimal front.

% Q = Set of solutions obtained.

% p = Parameter for defining L_p distance metric (p = 2 is

% Euclidean).
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%

% D = Normalized maximum spread.

%

% More information about the metric:

%

% K. Deb, Multi-Objective Optimization using Evolutionary

% Algorithms, 2001, pp. 330 - 331.

% (c) Saku Kukkonen

[card,M] = size(Q);

% For a set of one solution, maximum spread is zero.

if (card==1)

D = 0;

else

D = (1/M*sum(((max(Q) - min(Q))./(max(P) - min(P))).^p))^(1/p);

end;

Set Coverage Metric

Set coverage metric, C(A,B), between two non-dominated sets 'A' and 'B' measures the
fraction of members of 'B' that are dominated by members of 'A'. This metric has been
used in Publication IV.

function C = c_metric(A,B)

% Set coverage metric: C = c_metric(A,B)

%

% Set coverage metric between two non-dominated sets A and B

% measures the fraction of members of B that are dominated by

% members of A. Minimization of objectives is assumed.

%

% C = Set coverage metric.

%

% More information about the metric:

%

% K. Deb, Multi-Objective Optimization using Evolutionary

% Algorithms, 2001, pp. 325 - 326.

% (c) Saku Kukkonen

nA = size(A,1);

nB = size(B,1);
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% Every row of A is replicated nB times

A = A(reshape(repmat(1:nA,nB,1),1,nA*nB),:);

% B is replicated nA times

B = repmat(B,nA,1);

% When A and B are compared, each element of A is compared with each

% element of B

% |---- sum of elements B, which are dominated by A ---------------|

% |---- dominated elements in B -----------------------------|

% |---- dominated element for each element of A ----|

% |---- a in A dominates b in B? ----|

C = sum(max(reshape(min((A <= B),[],2) & max((A < B),[],2),nB,nA),[],2))/nB;

Binary Hypervolume Indicator

Hypervolume, HV (A,B), between two non-dominated sets of solutions A and B cal-
culates the hypervolume of the objective space which is dominated by A but not B.
This metric has been used in Publication IV with numsamp = 50000, which was an
experimentally determined value.

function V = v_metric(A,B,numsamp)

% Binary hypervolume indicator: V = v_metric(A,B,numsamp)

%

% Hypervolume between two non-dominated sets of solutions 'A'

% and 'B' calculates the hypervolume of the objective space which

% is dominated by 'A' but not 'B'.

%

% numsamp = number of samples in Monte Carlo sampling.

%

% H = Hypervolume.

%

% More information about the metric:

%

% K. Deb, Multi-Objective Optimization using Evolutionary

% Algorithms, 2001, pp. 332 - 333.

%

% Jonathan Fieldsend, Richard M. Everson, Sameer Singh, Using

% Unconstrained Elite Archives for Multiobjective Optimization, IEEE

% Transactions on Evolutionary Computation, 7(3), June 2003, pp. 305

% - 323.
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%

% E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. Grunert

% de Fonseca, Performance Assessment of Multiobjective Optimizers: An

% Analysis and Review, IEEE Transactions on Evolutionary

% Computation, 7 (2), April 2003, pp. 117 - 132.

% (c) Saku Kukkonen

if (nargin < 3),

numsamp = 50000;

end;

[nA, m] = size(A);

nB = size(B,1);

% Low and high coordinates of the hypercube which encloses A and B

low = min([A;B]);

high = max([A;B]);

% Random samples in hypercube

R = repmat(low,numsamp,1) + rand(numsamp,m).*repmat(high-low,numsamp,1);

% Every row of A is replicated numsamp times

A = A(reshape(repmat(1:nA,numsamp,1),1,nA*numsamp),:);

% R is replicated nA times

R = repmat(R,nA,1);

% When A and R are compared, each element of A is compared with each

% element of R

% ind defines indices of elements in R, which are dominated by A

ind = find(max(reshape(min((A <= R),[],2) & ...

max((A < R),[],2),numsamp,nA),[],2));

% dA defines number of elements in R which are dominated by A

dA = length(ind);

if (dA == 0),

V = 0;
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else

% Each element of B is compared with each element of R which is

% dominated by A

B = B(reshape(repmat(1:nB,dA,1),1,nB*dA),:);

R = repmat(R(ind,:),nB,1);

% dB defines number of elements in R which are dominated by A and B

dB = sum(max(reshape(min((B <= R),[],2) & max((B < R),[],2),dA,nB),[],2));

V = (dA - dB)/numsamp;

end;
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Abstract. In this paper an Evolutionary Algorithm, Differential Evolution, and its exten-
sion for constrained multi-objective (Pareto-)optimization, Generalized Differential Evo-
lution, are described. Performance of Generalized Differential Evolution is tested with
a set of five benchmark multi-objective test problems. Suitable control parameter values
for these test problems are surveyed and the results are compared numerically with other
multi-objective evolutionary algorithms including the Strength Pareto Evolutionary Al-
gorithm and the Non-dominated Sorting Genetic Algorithm. Several metrics commonly
used in the literature are applied to measure convergence to the Pareto-optimal front and
diversity of the obtained solution. The results are suggesting that the performance of
Generalized Differential Evolution is well comparable to the performance of the compared
multi-objective evolutionary algorithms.
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1 INTRODUCTION

Many situations in engineering and economics deal with optimization. One may want
to optimize, e.g., manufacturing processes, shape of products, and number of different
products to be manufactured. Typical goals are minimizing costs, maximizing profits, and
improving performance. Several natural aspects limits feasible solutions, e.g., resources
may cause limitations and/or the number of products cannot be a negative number.

Optimization is an intensively studied problem field in mathematics. However, func-
tions to be optimized in traditional mathematics are relatively simple, e.g., continuous,
convex, unimodal, differentiable, etc., yet functions to be optimized in practice are often
far more complicated, e.g., discontinuous, non-convex, multi-modal, non-differentiable,
etc. In these cases different stochastic optimization methods have shown their effective-
ness.

Most optimization research deals with single-objective optimization problems. The
basic nature of many optimization problems is, however, multi-objective and these prob-
lems are usually first converted to single-objective problems. Single-objective problems
are commonly considered easier to solve but conversion from multi-objective problem
to single-objective problem requires some a priori knowledge which is not necessarily
available or which is hard to determine, e.g., the relative importance of each individ-
ual sub-objective. For this reason interest exists in solving multi-objective problems in
multi-objective form.

Several extensions of Differential Evolution (DE) for multi-objective optimization have
already been proposed. Most of these methods use a non-dominated sorting for repro-
duction in each generation and some distance metric to prevent crowding. Chang et.al.
introduce an extension of DE for solving multi-objective optimization problems [1]. This
method uses selection of non-dominated solutions for further generations and uses a dis-
tance metric to maintain diversity. Abbass et.al. propose several extensions of DE which
modifies the original algorithm in several ways, e.g., the use of only non-dominated solu-
tions for reproduction in each generation and a distance metric to prevent crowding [2–4].
Madavan describes an extension which uses the non-dominated sorting and a ranking se-
lection procedure [5]. Babu and Jehan apply DE for multiple objectives using a penalty
function and a weighted sum approaches [6]. Graves et.al. and Xue use the non-dominated
sorting for reproduction and a distance measure to prevent crowding [7, 8].

This paper continues with the following parts: In Section 2 the concept of multi-
objective optimization with constraints is handled briefly. Section 3 describes Differential
Evolution algorithm and Section 4 describes its extension for constrained multi-objective
optimization. Section 5 describes an empirical evaluation of the extension and finally
conclusions are given in Section 6.
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2 MULTI-OBJECTIVE OPTIMIZATION WITH CONSTRAINTS

Many practical problems have multiple objectives. For example, designing a wing of an
aircraft may have objectives such as maximizing strength, minimizing weight, minimizing
manufacturing costs, maximizing lifting force, minimizing drag, etc. Multiple objectives
are almost always more or less conflicting.

Several aspects cause constraints to problems. In the previous example of the wing,
the thickness of the metal parts used must be a positive number, shape limitations exist,
some parts are available only in some predefined standard sizes, etc. Constraints can be
divided into box or boundary constraints and constraint functions. Boundary constraints
are used when the value of some optimized variable is limited to some range and constraint
functions are representing more complicated constraints which are expressed as functions.

Multi-objective problems are often converted to single-objective problems by predefin-
ing weighting factors for different objectives, expressing the relative importance of each
objective. However, this is impossible in many cases because a decision maker does not
necessarily know beforehand how he/she wants to weight different objectives. Thus, a
more convenient way is to keep multiple objectives of multi-objective problems and try
to solve them in this form even though this may be harder to do in practice. Optimizing
several objectives simultaneously without articulating the relative importance for each
objective a priori, is often called as Pareto-optimization [9]. An obtained solution is
Pareto-optimal if none of the objectives cannot be improved without impairing at least
one other objective [10, p. 11–12]. If the obtained solution can be improved in such
way that at least one objective improves and other objectives do not decline, then the
new solution dominates the original solution. A set of Pareto-optimal solutions form a
Pareto-optimal front. Approximation of the Pareto-optimal front is called as a set of
non-dominated solutions because the solutions of this set are not dominating each others
in the space of objective functions. From the set of the non-dominated solutions the deci-
sion maker may select one which has suitable values for different objectives. This can be
viewed as a posteriori articulation of decision-makers preferences concerning the relative
importance of each objective.

A mathematically constrained multi-objective optimization problem can be presented
in the form [10, p. 37]

minimize {f1(~x), f2(~x), . . . , fK(~x)}
subject to ~x ∈ S = {~x ∈ RD| ~g(~x) = (g1(~x), g2(~x), . . . , gM(~x))T ≤ ~0}.

(1)

Thus, there are K functions to be optimized and M constraint functions.
Maximization problems can be converted to minimization problems by multiplying

the objective function by -1 because max fk(~x) ⇔ min −fk(~x). All constraints can be
converted to the form gj(~x) ≤ 0 in the following way: gj(~x) ≥ 0 ⇔ −gj(~x) ≤ 0, gj(~x) =
0 ⇔ gj(~x) ≤ 0 ∧ −gj(~x) ≤ 0. Boundary constraints can be presented also in the form of
constraint functions, e.g., a ≤ xi ≤ b ⇔ a − xi ≤ 0 ∧ xi − b ≤ 0. Thereby the formulation
in Eq. 1 is without loss of generality.
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The major part of earlier mathematical research has concentrated on optimization prob-
lems where the functions are linear, differentiable, convex, or otherwise mathematically
well behaving. However, in practical problems objective functions are often nonlinear,
non-differentiable, discontinuous, multi-modal, etc. and no presumptions can be made
about their behavior. Variables may also be integers or discrete instead of being contin-
uous. Most traditional optimization methods cannot handle such complexity or do not
perform in these cases in which the assumptions they are based on do not hold. For
such problems stochastic optimization methods such as Simulated Annealing (SA) and
Evolution Algorithms (EAs) have been demonstrated to be effective because they do not
rely assumptions concerning the objective and constraint functions.

3 DIFFERENTIAL EVOLUTION

The Differential Evolution (DE) algorithm [11, 12] [13, pp. 79–108] belongs to the
family of Evolution Algorithms and was introduced by Storn and Price in 1995 [14].
Design principles in DE were simplicity, efficiency, and use of floating-point encoding
instead of binary numbers, which is usual way of coding in Genetic Algorithms (GA).

Like in a typical EA, the idea in DE is to have some random initial population which
is then improved using selection, mutation, and crossover operations. Several ways exist
to determine a stopping criteria for EAs but usually a predefined upper limit Gmax for
the number of generations to be computed provides appropriate stopping condition.

3.1 Initialization of population

Values for the initial population in DE are typically drawn from uniform distribution.
Formally this can be presented as [13, p. 81]:

PG = {~x1,G, ~x2,G, . . . , ~xNP,G} , ~xi,G = xj,i,G

xj,i,G=0 = x
(lo)
j + rand j[0, 1] ·

(
x

(hi)
j − x

(lo)
j

)

i = 1, 2, . . . , NP, NP ≥ 4, j = 1, 2, . . . , D

(2)

In this representation PG denotes a population after G generations (0 is an initial gen-
eration), ~xi,G denotes an object variable vector (or individual) of the population, and
rand j[0, 1] denotes an uniformly distributed random variable in the range [0, 1]. Terms

x
(lo)
j and x

(hi)
j denote lower and upper parameter bounds, respectively. The size of the

population is denoted by NP and the dimension of objective vectors is denoted by D.
Other ways of initialization also exist, e.g., if some knowledge exist about the position

of the optimum, part of the initial population may be initialized around the possible
position of the optimum using normal distribution.
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3.2 Mutation and crossover

DE goes through each objective vector ~xi,G of the population and creates a correspond-
ing trial vector ~ui,G as follows [13, p. 82]:

r1, r2, r3 ∈ {1, 2, . . . , NP} ,
(randomly selected, except: r1 6= r2 6= r3 6= i)
jrand = int (rand i[0, 1) · D) + 1
for(j = 1; j ≤ D; j = j + 1)
{

if(rand j[0, 1) < CR ∨ j = jrand)
uj,i,G = xj,r3,G + F · (xj,r1,G − xj,r2,G)

else
uj,i,G = xj,i,G

}

(3)

Indices r1, r2, and r3 are mutually different and drawn from the set of the population
indices. Both CR and F are user defined control parameters for the DE algorithm and
they remain fixed during the whole execution of the algorithm. Parameter CR, controlling
the crossover operation, represents the probability that an element for the trial vector is
chosen from a linear combination of three randomly chosen vectors instead of from the
old objective vector ~xi,G. Parameter F is a scaling factor for mutation and its value is
typically (0, 1+]. The condition “j = jrand” is to make sure that at least one element is
different compared to elements of the old population member.

The difference between two randomly chosen vectors (~xr1,G − ~xr2,G) defines magnitude
and direction of mutation. When the difference is added to a third randomly chosen
vector ~xr3,G, this corresponds mutation of this third vector. The basic idea of DE is that
mutation is self-adaptive to the objective function space and to the current population.
At the beginning of generations a magnitude of mutation is large because vectors in the
population are far away in the search space. When evolution proceeds and population
converges, the magnitude of mutation gets smaller. The self-adaptive mutation of DE
permits to perform global search.

3.3 Selection

After each mutation and crossover operation the trial vector ~ui,G is compared to the
old objective vector ~xi,G. If the trial vector has equal or lower cost value, then it replaces
the old vector. This can be presented as follows [13, p. 82]:

~xi,G+1 =

{
~ui,G if f(~ui,G) ≤ f(~xi,G)
~xi,G otherwise

(4)

The average cost value of the population will never increase, because the trial vector
replaces the old vector only if it has equal or lower cost value.
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Overall presentation of the whole DE/rand/1/bin algorithm is presented in Eq. 5 [13, p.
83]. Several variations of the basic DE algorithm exist and this is a reason for complicated
notation. In the notation DE/x/y/z x indicates how the mutated vector is selected (it
could be selected also to be best among the current population), y indicates number of
vector differences used in the mutation, and z indicates the way the old vector and the
trial vector are recombined (an alternative exponential recombination procedure is also
mentioned in the literature [13, p. 98]).

Input :D, Gmax, NP ≥ 4, F ∈ (0, 1+), CR ∈ [0, 1], and initial bounds: ~x(lo), ~x(hi)

Initialize :

{
∀i ≤ NP ∧ ∀j ≤ D : xj,i,G=0 = x

(lo)
j + rand j[0, 1] ·

(
x

(hi)
j − x

(lo)
j

)

i = {1, 2, . . . , NP} , j = {1, 2, . . . , D} , G = 0, rand j[0, 1] ∈ [0, 1]





While G < Gmax

∀i ≤ NP





Mutate and recombine:
r1, r2, r3 ∈ {1, 2, . . . , NP} , randomly selected,

except: r1 6= r2 6= r3 6= i
jrand ∈ {1, 2, . . . , D} , randomly selected for each i

∀j ≤ D, uj,i,G =





xj,r3,G + F · (xj,r1,G − xj,r2,G)
if rand j[0, 1) < CR ∨ j = jrand

xj,i,G otherwise
Select :

~xi,G+1 =

{
~ui,G iff (~ui,G) ≤ f (~xi,G)
~xi,G otherwise

G = G + 1

(5)

4 GENERALIZED DIFFERENTIAL EVOLUTION

Several extensions of DE for multi-objective optimization exists as well for constrained
optimization [1–8,15–18]. The approach presented in this paper combines these by mod-
ifying the selection operation of the basic DE algorithm [19–22]. Compared to other DE
extensions for multi-objective optimization, this approach makes DE suitable for con-
strained multi-objective optimization with minimum changes to the original algorithm.
The modified selection operation for M constraint and K objective functions is presented
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formally in Eq. 6 [21].

~xi,G+1 =





~ui,G if









∃j ∈ {1, . . . , M} : gj(~ui,G) > 0
∧
∀j ∈ {1, . . . , M} : g′

j(~ui,G) ≤ g′
j(~xi,G)

∨



∀j ∈ {1, . . . , M} : gj(~ui,G) ≤ 0
∧
∃j ∈ {1, . . . , M} : gj(~xi,G) > 0

∨



∀j ∈ {1, . . . , M} : gj(~ui,G) ≤ 0 ∧ gj(~xi,G) ≤ 0
∧
∀k ∈ {1, . . . , K} : fk(~ui,G) ≤ fk(~xi,G)

~xi,G otherwise

where g′
j(~xi,G) = max (gj(~xi,G), 0) and g′

j(~ui,G) = max (gj(~ui,G), 0)
are representing the constraint violations

(6)

The selection rule given in Eq. 6 selects the trial vector ~ui,G to replace the old vector ~xi,G

in three cases:

1. Both the trial vector ~ui,G and the old vector ~xi,G violate at least one constraint but
the trial vector does not violate any of the constraints more than the old vector.

2. The old vector ~xi,G violates at least one constraint whereas the trial vector ~ui,G is
feasible.

3. Both vectors are feasible and the trial vector ~ui,G has less or equal cost value for
each objective than the old vector ~xi,G.

Otherwise the old vector ~xi,G is preserved.
The basic idea in the selection rule is that the trial vector ~ui,G is required to dominate

the compared old population member ~xi,G in constraint violation space or in objective
function space, or at least provide an equally good solution as ~xi,G. The principle is
effectively rather similar to the method described in [23, pp. 131–132] even though the
formulation is different. In this other method selection is based on the value of a penalized
objective function F (~x) [24]:

F (~x) =

{
f(~x) if ~x is feasible
fmax +

∑M
j=1 max (gj(~x), 0) otherwise

(7)

Here, fmax denotes the objective function value of the worst feasible solution in the pop-
ulation. The selection rules given in Eq. 6 and based on Eq. 7 perform in the same way
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when two feasible solutions are compared or when a feasible solution is compared to an
infeasible solution. In the case of two infeasible solutions, the selection rule in Eq. 6
compares solutions based on dominance of the constraint violations whereas the selection
method based on Eq. 7 compares solutions based on a sum of the constraint violations.
The selection method based on Eq. 7 needs search of the objective function value of the
worst feasible solution in the population, calculation of all constraint function values in
the case of infeasible solution, and it also permits worsening of individual constraint func-
tion values because sums of the constraint violations are compared instead of individual
constraint violations. The selection method based on Eq. 7 may also need normalization
of different constraints in the case of different order of magnitude whereas this is not
needed in the selection rule in Eq. 6.

The selection rule in Eq. 6 can be implemented in such a way that the number of
function evaluations is reduced because not always all the constraints and objectives need
to be evaluated, e.g., inspecting constraint violations (even one constraint) is often enough
to determine which vector to select for the next generation [21, 22].

One should note that the selection rule in Eq. 6 handles any number M of constraints
and any number K of objectives, including cases M = 0 (unconstrained problem) and K =
0 (constraint satisfaction problem). When M = 0 and K = 1, the selection rule is identical
to the selection rule of the basic DE algorithm. Because the described selection method
extends DE for constrained multi-objective optimization and the basic DE algorithm is a
special case, the method with the selection rule described is named Generalized Differential
Evolution (GDE).

After the selected number of generations the final population presents a solution for the
optimization problem. The non-dominated solutions can be separated from the final pop-
ulation if desired. There is no sorting of non-dominated solutions during the optimization
process or explicit mechanism for maintaining diversity of solutions.

5 EXPERIMENTS

GDE was implemented in C and tested with a set of five multi-objective benchmark
problems described in [25] and [26, pp. 57–59]. These problems are known as ZDT1,
ZDT2, ZDT3, ZDT4, and ZDT6 [23, pp. 356–360]. They are designed to test the ability
of a multi-objective optimization method to handle convexity (ZDT1), non-convexity
(ZDT2), discontinuity (ZDT3), multi-modality (ZDT4), and non-uniformity (ZDT6) of
the Pareto-optimal front. Preliminary tests with these problems and problems including
constraint functions are reported in [27, 28].
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ZDT1 :





Minimize
f1(~x) = x1

f2(~x) = g ×
(
1 −

√
f1/g

)

g = 1 + 9
n−1

∑n
i=2 xi

subject to
xi ∈ [0, 1], n = 30

(8)

ZDT2 :





Minimize
f1(~x) = x1

f2(~x) = g × (1 − (f1/g)2)
g = 1 + 9

n−1

∑n
i=2 xi

subject to
xi ∈ [0, 1], n = 30

(9)

ZDT3 :





Minimize
f1(~x) = x1

f2(~x) = g ×
(
1 −

√
f1/g − (f1/g) sin(10πf1)

)

g = 1 + 9
n−1

∑n
i=2 xi

subject to
xi ∈ [0, 1], n = 30

(10)

ZDT4 :





Minimize
f1(~x) = x1

f2(~x) = g ×
(
1 −

√
f1/g

)

g = 1 + 10(n − 1) +
∑n

i=2 (xi
2 − 10 cos(4πxi))

subject to
x1 ∈ [0, 1], xi ∈ [−5, 5], n = 10

(11)

ZDT6 :





Minimize
f1(~x) = 1 − exp(−4x1) sin6(6πx1)
f2(~x) = g × (1 − (f1/g)2)

g = 1 + 9 ((
∑n

i=2 xi) /9)0.25

subject to
xi ∈ [0, 1], n = 10

(12)

To illustrate two of these problems, a partial search region with the global Pareto-
optimal front for ZDT4 and a Pareto-optimal front for ZDT6 are presented in Figure 1.
Solution for ZDT6 contains points which are uniformly distributed in the decision variable
space. One can notice that the density of solutions across the Pareto-optimal front is non-
uniform.
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Figure 1: a) The partial search region near the global Pareto-optimal front for ZDT4 b) global Pareto-
optimal front for ZDT6.

Boundary constraint violations were handled here according to the following rule:

uj,i,G =





x
(lo)
j if uj,i,G < x

(lo)
j

x
(hi)
j if uj,i,G > x

(hi)
j

uj,i,G otherwise

(13)

5.1 Experimental results and discussions

In all the test problems the size of the population was 100, the number of generations
was 250, and the control parameter values were CR = 0.10, F = 0.10. In preliminary tests
different control parameter values in the range CR ∈ [0, 1] and F ∈ [0, 5] with a resolution
of 0.05 were tested and a suitable crossover rate and mutation factor was visually thereby
approximately determined. The results for GDE solving the multi-objective benchmark
problems are shown in Figures 2–4, where results obtained with the Strength Pareto
Evolutionary Algorithm (SPEA) [29] and the Non-dominated Sorting Genetic Algorithm
(NSGA) [23, pp. 209–218] are also shown with known global Pareto-optimal fronts. SPEA
and NSGA were selected for comparison because of their good performance in previous
comparison tests with the other multi-objective optimization methods [25] and since both
are well known within the multi-objective optimization community. The results for SPEA,
NSGA, and GDE given in Figures 2–4 are after one run, and solutions shown for GDE
contain the non-dominated members of the final population.

The tests for GDE were repeated 30 times with different seeds of the random num-
ber generator and these results were compared with the corresponding results of SPEA,
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Figure 2: Global Pareto-optimal front and solutions obtained with SPEA, NSGA, and GDE for a) ZDT1
b) ZDT2.
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Figure 3: Global Pareto-optimal front and solutions obtained with SPEA, NSGA, and GDE for a) ZDT3
b) ZDT4.
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Figure 4: Global Pareto-optimal front and solutions obtained with SPEA, NSGA, and GDE for ZDT6.

NSGA, the Fonseca and Fleming’s multi-objective GA (FFGA) [23, pp. 200–209], the
Niched-Pareto Genetic Algorithm (NPGA) [23, pp. 218–223], and the Vector Evaluated
Genetic Algorithm (VEGA) [23, pp. 179–188]. The results for these MOEAs were ob-
tained from the Internet [30]. From the methods in comparison, GDE and SPEA are
elitist MOEAs and the rest methods are non-elitist MOEAs.

Closeness to the Pareto-optimal front was measured with an error ratio (ER) and a
generational distance (GD) [23, pp. 324–327]. Diversity of the obtained solution was
measured using spacing (S), spread (∆), and maximum spread (D) metrics [23, pp. 328–
331]. Smaller values for the error ratio, generational distance, spacing, and spread are
preferable. The optimal value for the maximum spread is 1. Results of the MOEAs were
compared against each other using a set coverage C metric [26] and a V measure [31,
32]. The C(A, B) metric measures the fraction of members of B that are dominated by
members of A. The V(A, B) measures the fraction of the volume of the minimal hypercube
containing both fronts that is dominated by members of A but is not dominated by
members of B. Greater values for the C and the V metrics are desirable.

Average execution times and average numbers of needed function evaluations of GDE
for the benchmark problems are reported in Table 1. Tables 2–6 contain the performance
measurements for different MOEAs solving the benchmark problems. Solutions of GDE
contained the non-dominated members of the final population.

In the most of the test cases GDE has more non-dominated solution members than
the other MOEAs in this comparison. The results show that GDE converged closer to
the true Pareto-optimal front than the other MOEAs but the diversity metrics show that
obtained solution is not optimally diverse. Even though GDE has members in the final
solution close to the true Pareto-optimal fronts, the end points of the Pareto-optimal
fronts are not exactly reached and the distribution of solutions could be better. It was
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Number of function evaluations
Execution time f1 f2

ZDT1 1.019 (0.01) s 25100 (0.0) 23474.2 (32.4)
ZDT2 1.019 (0.01) s 25100 (0.0) 23558.9 (69.0)
ZDT3 1.041 (0.01) s 25100 (0.0) 23490.0 (38.7)
ZDT4 0.547 (0.01) s 25100 (0.0) 22732.3 (41.2)
ZDT6 0.570 (0.01) s 25100 (0.0) 22184.2 (93.1)

Table 1: Average execution time and average number of needed function evaluations (standard deviations
in parenthesis) of GDE for the multi-objective benchmark test problems. All the tests were run on a Sun
Sparc Ultra2.

ℵ ER GD S ∆ D
FFGA 25.8(5.8) 1.000(0.000) 0.280(0.047) 0.043(0.013) 0.831(0.060) 2.178(0.306)
NPGA 21.7(4.6) 1.000(0.000) 0.230(0.025) 0.049(0.014) 0.818(0.039) 1.439(0.194)
VEGA 22.3(4.7) 1.000(0.000) 0.175(0.020) 0.057(0.020) 0.805(0.044) 1.236(0.193)
SPEA 72.4(8.5) 0.143(0.109) 0.005(0.001) 0.013(0.002) 0.573(0.037) 1.006(0.014)
NSGA 43.4(6.0) 1.000(0.000) 0.037(0.004) 0.024(0.005) 0.689(0.053) 1.079(0.038)
GDE 99.9(0.4) 0.000(0.000) 0.000(0.000) 0.012(0.002) 0.761(0.044) 0.947(0.023)

C(row, column)
FFGA 0.437(0.251) 0.035(0.076) 0.000(0.000) 0.000(0.000) 0.000(0.000)

0.535(0.221) NPGA 0.050(0.093) 0.000(0.000) 0.000(0.000) 0.000(0.000)
0.914(0.101) 0.900(0.143) VEGA 0.000(0.000) 0.000(0.000) 0.000(0.000)
1.000(0.000) 1.000(0.000) 1.000(0.000) SPEA 1.000(0.000) 0.000(0.000)
1.000(0.000) 1.000(0.000) 1.000(0.000) 0.000(0.000) NSGA 0.000(0.000)
0.839(0.066) 0.860(0.057) 0.838(0.080) 0.936(0.036) 0.920(0.038) GDE

V(row, column)
FFGA 0.033(0.027) 0.002(0.003) 0.000(0.000) 0.000(0.000) 0.001(0.001)

0.037(0.030) NPGA 0.004(0.009) 0.000(0.000) 0.000(0.000) 0.001(0.001)
0.123(0.049) 0.180(0.068) VEGA 0.000(0.000) 0.000(0.000) 0.001(0.002)
0.331(0.051) 0.460(0.046) 0.388(0.044) SPEA 0.187(0.018) 0.000(0.001)
0.279(0.050) 0.395(0.048) 0.303(0.040) 0.000(0.000) NSGA 0.001(0.001)
0.337(0.050) 0.469(0.046) 0.401(0.047) 0.049(0.006) 0.216(0.015) GDE

Table 2: Means of the solution cardinality (ℵ), error ratio (ER), generational distance (GD), spacing (S),
spread (∆), maximum spread (D), C, and V of MOEAs for ZDT1. Standard deviations are in parenthesis.
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ℵ ER GD S ∆ D
FFGA 15.2(4.8) 1.000(0.000) 0.522(0.069) 0.080(0.040) 0.884(0.044) 1.711(0.552)
NPGA 9.8(2.4) 1.000(0.000) 0.333(0.043) 0.109(0.046) 0.916(0.053) 0.828(0.103)
VEGA 2.9(1.3) 1.000(0.000) 0.450(0.111) 0.244(0.231) 0.920(0.096) 0.369(0.212)
SPEA 43.5(9.1) 0.872(0.196) 0.011(0.003) 0.026(0.007) 0.645(0.048) 0.944(0.021)
NSGA 19.9(3.3) 1.000(0.000) 0.074(0.007) 0.061(0.027) 0.807(0.071) 0.826(0.036)
GDE 45.2(11.0) 0.000(0.000) 0.000(0.000) 0.029(0.010) 0.836(0.076) 0.956(0.040)

C(row, column)
FFGA 0.016(0.049) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000)

0.963(0.128) NPGA 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000)
1.000(0.000) 0.860(0.168) VEGA 0.000(0.000) 0.000(0.000) 0.000(0.000)
1.000(0.000) 1.000(0.000) 1.000(0.000) SPEA 1.000(0.000) 0.000(0.000)
1.000(0.000) 1.000(0.000) 1.000(0.000) 0.000(0.000) NSGA 0.000(0.000)
1.000(0.000) 1.000(0.000) 1.000(0.000) 0.964(0.048) 1.000(0.000) GDE

V(row, column)
FFGA 0.002(0.007) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000)

0.228(0.134) NPGA 0.005(0.018) 0.000(0.000) 0.000(0.000) 0.000(0.000)
0.365(0.189) 0.389(0.159) VEGA 0.000(0.000) 0.000(0.000) 0.000(0.000)
0.427(0.118) 0.552(0.048) 0.563(0.026) SPEA 0.287(0.025) 0.001(0.001)
0.393(0.123) 0.512(0.057) 0.497(0.045) 0.000(0.000) NSGA 0.000(0.000)
0.435(0.114) 0.562(0.050) 0.574(0.025) 0.086(0.022) 0.328(0.023) GDE

Table 3: Means of the solution cardinality (ℵ), error ratio (ER), generational distance (GD), spacing (S),
spread (∆), maximum spread (D), C, and V of MOEAs for ZDT2. Standard deviations are in parenthesis.

ℵ ER GD S ∆ D
FFGA 28.0(6.0) 0.989(0.024) 0.268(0.037) 0.044(0.019) 0.849(0.043) 1.405(0.193)
NPGA 28.1(4.5) 0.953(0.076) 0.194(0.029) 0.044(0.015) 0.840(0.044) 1.229(0.081)
VEGA 23.1(5.0) 0.981(0.032) 0.166(0.029) 0.058(0.025) 0.838(0.052) 0.990(0.100)
SPEA 69.7(9.7) 0.034(0.017) 0.002(0.001) 0.013(0.011) 0.784(0.045) 0.931(0.019)
NSGA 46.1(6.8) 0.530(0.064) 0.029(0.006) 0.022(0.012) 0.813(0.041) 0.977(0.038)
GDE 78.1(4.6) 0.000(0.000) 0.000(0.000) 0.016(0.003) 1.085(0.064) 0.901(0.018)

C(row, column)
FFGA 0.160(0.195) 0.018(0.030) 0.000(0.000) 0.000(0.000) 0.000(0.000)

0.813(0.153) NPGA 0.025(0.035) 0.000(0.000) 0.000(0.000) 0.000(0.000)
0.933(0.079) 0.896(0.075) VEGA 0.000(0.000) 0.000(0.000) 0.000(0.000)
1.000(0.000) 1.000(0.000) 1.000(0.000) SPEA 0.992(0.023) 0.000(0.002)
1.000(0.000) 1.000(0.000) 1.000(0.000) 0.001(0.006) NSGA 0.000(0.000)
0.856(0.063) 0.835(0.076) 0.824(0.092) 0.795(0.069) 0.928(0.053) GDE

V(row, column)
FFGA 0.015(0.026) 0.000(0.001) 0.000(0.000) 0.000(0.000) 0.001(0.001)

0.072(0.036) NPGA 0.001(0.001) 0.000(0.000) 0.000(0.000) 0.001(0.002)
0.223(0.060) 0.198(0.048) VEGA 0.000(0.000) 0.000(0.000) 0.001(0.001)
0.399(0.051) 0.416(0.036) 0.324(0.031) SPEA 0.144(0.017) 0.001(0.001)
0.347(0.051) 0.357(0.034) 0.245(0.034) 0.000(0.001) NSGA 0.000(0.001)
0.402(0.052) 0.421(0.036) 0.334(0.031) 0.036(0.008) 0.166(0.014) GDE

Table 4: Means of the solution cardinality (ℵ), error ratio (ER), generational distance (GD), spacing (S),
spread (∆), maximum spread (D), C, and V of MOEAs for ZDT3. Standard deviations are in parenthesis.
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ℵ ER GD S ∆ D
FFGA 8.7(3.4) 1.000(0.000) 19.699(3.403) 0.203(0.154) 0.912(0.062) 30.917(10.658)
NPGA 4.7(1.8) 1.000(0.000) 9.266(2.834) 0.232(0.168) 0.926(0.062) 6.755(3.890)
VEGA 2.2(1.1) 1.000(0.000) 8.301(2.574) 0.346(0.342) 0.964(0.049) 1.053(1.203)
SPEA 84.8(50.5) 1.000(0.000) 0.570(0.322) 0.029(0.049) 0.950(0.041) 1.861(0.388)
NSGA 7.6(2.7) 1.000(0.000) 1.983(0.784) 0.216(0.102) 0.924(0.038) 1.492(0.558)
GDE 39.3(21.2) 0.316(0.416) 0.016(0.025) 0.054(0.036) 0.865(0.113) 0.902(0.105)

C(row, column)
FFGA 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000)

1.000(0.000) NPGA 0.067(0.221) 0.000(0.000) 0.000(0.000) 0.000(0.000)
1.000(0.000) 0.885(0.250) VEGA 0.054(0.212) 0.000(0.000) 0.000(0.000)
1.000(0.000) 1.000(0.000) 0.933(0.254) SPEA 0.574(0.484) 0.000(0.000)
1.000(0.000) 1.000(0.000) 1.000(0.000) 0.404(0.477) NSGA 0.000(0.000)
1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) 1.000(0.000) GDE

V(row, column)
FFGA 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000)

0.386(0.117) NPGA 0.024(0.109) 0.000(0.000) 0.000(0.000) 0.000(0.000)
0.498(0.122) 0.519(0.314) VEGA 0.022(0.095) 0.000(0.000) 0.000(0.000)
0.489(0.119) 0.621(0.210) 0.747(0.227) SPEA 0.280(0.261) 0.000(0.000)
0.511(0.111) 0.654(0.200) 0.774(0.164) 0.186(0.255) NSGA 0.000(0.000)
0.532(0.109) 0.724(0.174) 0.900(0.095) 0.684(0.069) 0.737(0.071) GDE

Table 5: Means of the solution cardinality (ℵ), error ratio (ER), generational distance (GD), spacing (S),
spread (∆), maximum spread (D), C, and V of MOEAs for ZDT4. Standard deviations are in parenthesis.

ℵ ER GD S ∆ D
FFGA 11.8(3.2) 1.000(0.000) 1.541(0.245) 0.098(0.055) 0.939(0.030) 2.010(0.703)
NPGA 5.9(2.3) 1.000(0.000) 1.473(0.352) 0.191(0.132) 0.945(0.030) 0.881(0.292)
VEGA 3.0(1.3) 1.000(0.000) 2.016(0.477) 0.207(0.196) 0.948(0.052) 0.987(0.906)
SPEA 12.0(5.1) 0.944(0.216) 0.151(0.057) 0.136(0.095) 0.956(0.168) 0.847(0.087)
NSGA 6.7(2.3) 1.000(0.000) 0.724(0.159) 0.154(0.095) 0.951(0.039) 0.747(0.076)
GDE 99.8(1.0) 0.067(0.254) 0.013(0.050) 0.013(0.003) 0.906(0.064) 0.979(0.064)

C(row, column)
FFGA 0.000(0.000) 0.027(0.101) 0.000(0.000) 0.000(0.000) 0.000(0.000)

0.993(0.027) NPGA 0.198(0.256) 0.000(0.000) 0.000(0.000) 0.000(0.000)
0.930(0.117) 0.747(0.312) VEGA 0.000(0.000) 0.000(0.000) 0.000(0.000)
0.982(0.081) 0.982(0.072) 0.933(0.254) SPEA 0.988(0.047) 0.067(0.254)
1.000(0.000) 1.000(0.000) 1.000(0.000) 0.000(0.000) NSGA 0.042(0.168)
0.762(0.161) 0.506(0.244) 0.472(0.347) 0.732(0.302) 0.726(0.191) GDE

V(row, column)
FFGA 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.001)

0.445(0.180) NPGA 0.029(0.148) 0.000(0.000) 0.000(0.000) 0.000(0.001)
0.523(0.168) 0.340(0.246) VEGA 0.000(0.000) 0.000(0.000) 0.000(0.000)
0.660(0.116) 0.735(0.074) 0.694(0.180) SPEA 0.700(0.038) 0.046(0.177)
0.598(0.146) 0.651(0.126) 0.602(0.253) 0.000(0.000) NSGA 0.007(0.031)
0.671(0.115) 0.753(0.065) 0.710(0.171) 0.444(0.152) 0.699(0.183) GDE

Table 6: Means of the solution cardinality (ℵ), error ratio (ER), generational distance (GD), spacing (S),
spread (∆), maximum spread (D), C, and V of MOEAs for ZDT6. Standard deviations are in parenthesis.
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also noticed that suitable values for the crossover rate and the mutation factor should
be drawn from a rather narrow range for some problems, e.g., problem ZDT4, while the
underlying reason for this remains open.

Usually large values (such as 0.9) are suggested as initial settings for the crossover rate
CR and the mutation factor F in the case of single-objective problems. In the case of
multiple objectives, it was observed that using a large crossover rate often leads to faster
convergence along one objective compared to another. This causes the solution to converge
to one point of the Pareto-optimal front, which is not desired. When CR ≈ 0.05 . . . 0.5,
the obtained final population typically remains diverse as desired. Thus, searching the
decision variable space along the directions of the coordinate axis performs better than
a rotationally invariant search. Use of small values for CR was also reported in [2, 3, 5].
However, the current recommendations are based on limited experimentation and the
problem of selecting the control parameter values is remaining mostly open.

Increasing the size of the population seemed to provide better approximation of the
Pareto-optimal front without needing to compute more generations. However, the value
NP = 100 was used here for comparison with the results of other MOEAs.

6 CONCLUSIONS AND FUTURE RESEARCH

In this paper the Differential Evolution algorithm and its extension for constrained
multi-objective optimization are described. The method described extends the basic DE
algorithm for constrained multi-objective optimization with minor changes to the original
algorithm of DE and for this reason the method is named Generalized DE (GDE). It is
effective and does not introduce any extra control parameters.

GDE is tested with five benchmark multi-objective test problems. The numerical re-
sults show that the method is able to provide a solution for all the test problems and
performs well compared to other MOEAs in comparison, providing a relatively good
approximation of the Pareto-optimal front. However, despite the distribution of the so-
lution points along the approximated Pareto-optimal front was well comparable to the
other MOEAs, it is still far from ideal. When the method is used for multi-objective
optimization problems, our preliminary recommendations for the control parameter val-
ues are CR ∈ [0.05, 0.5] and F ∈ [0.05, 1+) for initial settings. The recommendation for
CR differ clearly from those given in literature for solving single-objective problems, e.g.,
CR = 0.9 [12, p. 129].

More intensive research of the effect of parameters on the optimization process, ex-
tensive comparison of GDE with latest multi-objective evolutionary algorithms and test
problems, and applying GDE for practical multi-objective problems remains to be stud-
ied. Also, distribution of solutions and extent of the obtained non-dominated front could
be improved because now GDE does not contain any mechanism for maintaining these.
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Abstract. In this paper an extension of Generalized Differential Evo-
lution for constrained multi-objective (Pareto-)optimization is proposed.
The proposed extension adds a mechanism for maintaining extent and
distribution of the obtained non-dominated solutions approximating a
Pareto front. The proposed extension is tested with a set of five bench-
mark multi-objective test problems and results are numerically compared
to known global Pareto fronts and to results obtained with the elitist
Non-Dominated Sorting Genetic Algorithm and Generalized Differential
Evolution. Results show that the extension improves extent and distri-
bution of solutions of Generalized Differential Evolution.

Keywords: multi-objective optimization, Pareto-optimization, constraint
handling, evolutionary algorithms, differential evolution

1 Introduction

Many situations in engineering and economics deal with optimization. One may
want to optimize, e.g., manufacturing processes, shape of products, and number
of different products to be manufactured. Typical goals are minimizing costs,
maximizing profits, and improving performance. Several natural aspects limit
feasible solutions, e.g., resources may cause limitations and/or the number of
products cannot be a negative number.

Optimization is an intensively studied problem field in mathematics. How-
ever, functions to be optimized in traditional mathematics are relatively simple
(continuous, convex, unimodal, differentiable, etc.), yet functions to be opti-
mized in practice are often far more complicated (discontinuous, non-convex,
multi-modal, non-differentiable, etc.). In such cases various stochastic optimiza-
tion methods have shown their effectiveness.

Most optimization research deals with single-objective optimization prob-
lems. The basic nature of many optimization problems is, however, multi-object-
ive and these problems are usually first converted to single-objective problems.
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Single-objective problems are commonly considered easier to solve but conver-
sion from a multi-objective problem to a single-objective problem requires some
a priori knowledge which is not necessarily available or which is hard to de-
termine, e.g., the relative importance of each individual sub-objective. For this
reason interest exists in solving multi-objective problems in multi-objective form.

Several extensions of Differential Evolution (DE) for multi-objective opti-
mization have already been proposed [1–5]. Most of these methods use a non-
dominated sorting for reproduction in each generation and some distance metric
to prevent crowding.

This paper continues with the following parts: In Section 2 the concept of
multi-objective optimization with constraints is handled briefly. Section 3 de-
scribes Differential Evolution algorithm and Section 4 describes proposed ex-
tension for constrained multi-objective optimization. Section 5 describes exper-
iments and finally conclusions are given in Section 6.

2 Multi-objective Optimization with Constraints

Many practical problems have multiple objectives. For example, designing a wing
of an aircraft may have objectives such as maximizing strength, minimizing
weight, minimizing manufacturing costs, maximizing lifting force, minimizing
drag, etc. Multiple objectives are almost always more or less conflicting.

Several aspects cause constraints to problems. In the previous example of the
wing, the thickness of the metal parts used must be a positive number, shape
limitations exist, some parts are available only in some predefined standard sizes,
etc. Constraints can be divided into box or boundary constraints and constraint
functions. Boundary constraints are used when the value of some optimized
variable is limited to some range and constraint functions are representing more
complicated constraints which are expressed as functions.

Multi-objective problems are often converted to single-objective problems
by predefining weighting factors for different objectives, expressing the relative
importance of each objective. However, this is impossible in many cases because
a decision-maker does not necessarily know beforehand how different objectives
should be weighted. Thus, a more convenient way is to keep multiple objectives
of multi-objective problems and try to solve them in this form even though this
may be harder to do in practice. Optimizing several objectives simultaneously
without articulating the relative importance of each objective a priori, is often
called Pareto-optimization [6]. An obtained solution is Pareto-optimal if none of
the objectives can be improved without impairing at least one other objective [7,
p. 11–12]. If the obtained solution can be improved in such way that at least one
objective improves and other objectives do not decline, then the new solution
dominates the original solution. A set of Pareto-optimal solutions form a Pareto
front. An approximation of the Pareto front is called a set of non-dominated
solutions because the solutions in this set are not dominating each other in
the space of objective functions. From the set of non-dominated solutions the
decision-maker may select one which has suitable values for different objectives.
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This can be viewed as a posteriori articulation of the decision-makers preferences
concerning the relative importance of each objective.

A mathematically constrained multi-objective optimization problem can be
presented in the form [7, p. 37]

minimize {f1(x), f2(x), . . . , fK(x)}
subject to x ∈ S = {x ∈ RD|g(x) = (g1(x), g2(x), . . . , gM (x))

T ≤ 0} (1)

Thus, there are K functions to be optimized and M constraint functions.
The major part of earlier mathematical research has concentrated on opti-

mization problems where the functions are linear, differentiable, convex, or oth-
erwise mathematically well behaving. However, in practical problems objective
functions are often nonlinear, non-differentiable, discontinuous, multi-modal, etc.
and no presumptions can be made about their behavior. Variables may also be
integers or discrete instead of being continuous. Most traditional optimization
methods cannot handle such complexity or do not perform well in these cases
in which the assumptions they are based on do not hold. For such problems
stochastic optimization methods such as Simulated Annealing (SA) and Evolu-
tion Algorithms (EAs) have been demonstrated to be effective because they do
not rely on any assumptions concerning the objective and constraint functions.

3 Differential Evolution

The Differential Evolution (DE) algorithm [8, 9] [10, pp. 79–108] belongs to
the family of Evolution Algorithms and was introduced by Storn and Price in
1995 [11]. Design principles in DE were simplicity, efficiency, and use of floating-
point encoding instead of binary numbers.

Like in a typical EA, the idea in DE is to have some random initial popula-
tion which is then improved using selection, mutation, and crossover operations.
Several ways exist to determine a stopping criterion for EAs but usually a prede-
fined upper limit Gmax for the number of generations to be computed provides
an appropriate stopping condition.

A trial vector ui,G created by mutation and crossover operations is compared
to an old objective vector xi,G. Here i is an index of the vector in the population
and G is a generation index. If the trial vector has equal or lower objective
value, then it replaces the old vector. This selection operation can be presented
as follows [10, p. 82]:

xi,G+1 =

{
ui,G if f(ui,G) ≤ f(xi,G)
xi,G otherwise

(2)

The average objective value of the population will never increase, because the
trial vector replaces the old vector only if it has equal or lower objective value.

4 An Extension of Generalized Differential Evolution

Generalized Differential Evolution (GDE) [12–17] extends the selection operation
of the basic DE algorithm for constrained multi-objective optimization. GDE
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has been demonstrated to have good convergence properties but distribution of
solutions and extent of the obtained non-dominated front need to be improved.
GDE does not contain any mechanism for maintaining these. As an attempt to
improve GDE from this point of view, a modified selection operation for GDE is
proposed in this paper. The proposed selection operation for M constraint and
K objective functions is presented formally in (3).

xi,G+1 =





ui,G if









∃j ∈ {1, . . . , M} : gj(ui,G) > 0
∧
∀j ∈ {1, . . . , M} : g′

j(ui,G) ≤ g′
j(xi,G)

∨



∀j ∈ {1, . . . , M} : gj(ui,G) ≤ 0
∧
∃j ∈ {1, . . . , M} : gj(xi,G) > 0

∨



∀j ∈ {1, . . . , M} : gj(ui,G) ≤ 0 ∧ gj(xi,G) ≤ 0 ,
∧



∀k ∈ {1, . . . , K} : fk(ui,G) ≤ fk(xi,G)
∨



¬ [∀k ∈ {1, . . . , K} : fk(ui,G) ≥ fk(xi,G) ∧
∃k ∈ {1, . . . , K} : fk(ui,G) > fk(xi,G)]

∧
dui,G

≥ dxi,G

xi,G otherwise

(3)

where g′
j(xi,G) = max (gj(xi,G), 0) and g′

j(ui,G) = max (gj(ui,G), 0) are repre-
senting the constraint violations, and di is a distance measure for measuring the
distance from a particular solution i to its neighbor solutions.

The selection rule given in (3) selects the trial vector ui,G to replace the old
vector xi,G in the following cases:

1. Both the trial vector and the old vector violate at least one constraint but
the trial vector does not violate any of the constraints more than the old
vector does.

2. The old vector violates at least one constraint whereas the trial vector is
feasible.

3. Both vectors are feasible and
– the trial vector dominates the old vector or has equal value for all ob-

jectives, or
– the old vector does not dominate the trial vector and the old vector

resides in a more crowded region of the objective space.

Otherwise the old vector xi,G is preserved.
The basic idea in the selection rule is that the trial vector is required to

dominate the compared old population member in constraint violation space or
in objective function space, or at least provide an equally good solution as the
old population member. If both vectors are feasible and they do not dominate
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each other, then the one residing in a less crowded region of the objective space
is chosen to the population of the next generation. The principle of constraint
handling is effectively rather similar to the method described in [18] even though
the formulation is different. The main difference is in the case of two infeasible
solutions. In this case the selection rule given in (3) compares solutions based on
dominance of the constraint violations whereas the selection method described
in [18] compares solutions based on a sum of the constraint violations which
needs evaluation of all constraint functions and normalization of their values.

The whole selection rule given in (3) is effectively almost same as a con-
strained tournament method in [19, pp. 301–308]. In the selection rule given
in (3) the trial vector is preferred over the old vector also in the cases when the
trial vector is equally good as the old vector, i.e., constraint violations are equal
or objective function values are equal.

The selection rule given in (3) can be implemented in such a way that the
number of function evaluations is reduced because not always all the constraints
and objectives need to be evaluated, e.g., inspecting constraint violations (even
one constraint) is often enough to determine which vector to select for the next
generation [13, 14]. However, in the case of feasible solutions all the objectives
need to be evaluated which was not always necessary in earlier GDE. This will
increase the total number of function evaluations as well as execution time. Also
calculation of the distance measure, di, will increase execution time. In principle,
any measure of distance from a solution to its neighbor solutions can be applied.
A crowding distance [19, pp. 248–249] was applied here as the distance measure,
di, because it does not need any extra parameters.

After the selected number of generations the final population presents a so-
lution for the optimization problem. The non-dominated solutions can be sepa-
rated from the final population if desired. There is no sorting of non-dominated
solutions during the optimization process.

Later on in this paper the proposed method with the selection rule given in (3)
is called Generalized Differential Evolution 2 (GDE2). The selection rule given
in (3) handles any number M of constraints and any number K of objectives.
When M = 0 and K = 1, the selection rule is identical to the selection rule of
the basic DE algorithm.

Usually large values (such as 0.9) are suggested as initial settings for the
crossover rate CR and mutation factor F in the case of single-objective prob-
lems. In the case of multiple objectives, it was observed that using a large
crossover rate often leads to faster convergence along one objective compared
to another [15–17]. This causes the solution to converge to a single point of
the Pareto front, which is not desired. Based on this observation, our initial
recommendations for the control parameter values used for multi-objective op-
timization problems are CR ∈ [0.05, 0.5] and F ∈ [0.05, 1+) for initial settings.
In line with these observations, use of small values for CR was also reported
by other researchers in [2, 3]. However, the current recommendations are based
on limited experimentation, and the problem of selecting the control parameter
values is remaining mostly open.
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5 Experiments

GDE and GDE2 were implemented in C and tested with a set of five bi-objective
benchmark problems described in [20] and [21, pp. 57–59]. These problems are
known as ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 [19, pp. 356–360]. They are
designed to test the ability of a multi-objective optimization method to handle
convexity (ZDT1), non-convexity (ZDT2), discontinuity (ZDT3), multi-modality
(ZDT4), and non-uniformity (ZDT6) of the Pareto front.

5.1 Experimental Results and Discussions

In all the test problems the size of the population was 100, the number of gen-
erations was 250, and the control parameter values for GDE and GDE2 were
CR = 0.05 and F = 0.1. In preliminary tests control parameter values 0.05, 0.1,
0.2, 0.3, and 0.4 were tested and suitable crossover rate and mutation factor
were thereby approximately determined. It was noticed that suitable values for
the crossover rate and mutation factor should be drawn from a rather narrow
range for some problems, e.g., problem ZDT4, while the underlying reason for
this remains open.

The results of a single run of GDE and GDE2 for solving the multi-objective
benchmark problems are shown in Fig. 1, where known global Pareto fronts and
the results obtained with the Strength Pareto Evolutionary Algorithm (SPEA)
[22] and the elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) [23]
are also shown for comparison and visual assessment.

Tests for NSGA-II, GDE, and GDE2 were repeated 100 times with different
random number generator seeds and the results were compared with different
metrics. NSGA-II was selected for comparison because of its good performance
in previous comparison tests [23] and since it is well known within the multi-
objective optimization community.

Closeness to the Pareto front was measured with an error ratio (ER) and a
generational distance (GD) [19, pp. 324–327]. Diversity of the obtained solution
was measured using spacing (S), spread (∆), and maximum spread (D) met-
rics [19, pp. 328–331]. Smaller values for the error ratio, generational distance,
spacing, and spread are preferable. The optimal value for the maximum spread
is 1.

Average numbers of needed function evaluations for GDE and average exe-
cution times for the methods are reported in Table 1. For NSGA-II and GDE2
2 × 25100 function evaluations were needed on each run. All the tests were run
on a Sun Sparc Ultra2. Table 2 contains the performance measurements solving
the benchmark problems. Solutions contained the non-dominated members of
the final population.

The results show that GDE2 improved extent and diversity of solutions over
GDE without impairing the convergence property of GDE and increasing ex-
ecution time only by little. NSGA-II was slightly better than GDE2 in most
of the problems according to the metrics but NSGA-II needed more execution
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Fig. 1. Global Pareto front and solutions obtained with SPEA, NSGA-II, GDE, and
GDE2 for a) ZDT1 b) ZDT2 c) ZDT3 d) ZDT4 e) ZDT6.
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Table 1. Average execution times of NSGA-II, GDE, and GDE2 solving multi-
objective benchmark test problems. Average number of needed function evaluations
(f1 and f2) of GDE are also shown. Standard deviations are in parenthesis.

NSGA-II GDE GDE2
Execution time Execution time f1 f2 Execution time

ZDT1 4.0040(0.3661) s 1.0166(0.0071) s 25100(0.0) 24079.2(29.3) 1.0875(0.0091) s
ZDT2 4.0315(0.2389) s 1.0230(0.0163) s 25100(0.0) 24080.2(27.9) 1.0820(0.0067) s
ZDT3 3.9735(0.3963) s 1.0477(0.0085) s 25100(0.0) 24078.3(32.8) 1.1169(0.0081) s
ZDT4 3.9341(0.4769) s 0.5537(0.0085) s 25100(0.0) 23280.5(37.1) 0.6329(0.0151) s
ZDT6 4.0762(2.6311) s 0.5782(0.0097) s 25100(0.0) 22885.3(68.0) 0.6554(0.0106) s

Table 2. Means of the solution cardinality (ℵ), error ratio (ER), generational distance
(GD), spacing (S), spread (∆), and maximum spread (D) of NSGA-II, GDE, and
GDE2 for the multi-objective benchmark test problems. Standard deviations are in
parenthesis.

ZDT1 ℵ ER GD S ∆ D

NSGA-II 91.7(2.7) 0.000(0.000) 0.000(0.000) 0.008(0.001) 0.418(0.036) 1.000(0.000)
GDE 98.9(1.3) 0.000(0.000) 0.000(0.000) 0.012(0.003) 0.764(0.045) 0.949(0.028)
GDE2 83.6(4.7) 0.000(0.000) 0.000(0.000) 0.011(0.001) 0.518(0.048) 1.000(0.000)

ZDT2 ℵ ER GD S ∆ D

NSGA-II 74.7(37.1) 0.000(0.000) 0.000(0.000) 0.008(0.001) 0.535(0.236) 0.800(0.402)
GDE 78.1(9.8) 0.000(0.001) 0.000(0.000) 0.018(0.005) 0.864(0.067) 0.978(0.024)
GDE2 87.9(4.4) 0.020(0.141) 0.000(0.000) 0.010(0.001) 0.470(0.052) 1.000(0.001)

ZDT3 ℵ ER GD S ∆ D

NSGA-II 92.9(2.3) 0.000(0.000) 0.000(0.000) 0.006(0.001) 0.573(0.036) 0.971(0.083)
GDE 69.1(4.8) 0.003(0.007) 0.000(0.000) 0.018(0.008) 1.044(0.068) 0.968(0.020)
GDE2 40.3(3.8) 0.007(0.014) 0.000(0.000) 0.020(0.005) 0.712(0.063) 1.000(0.001)

ZDT4 ℵ ER GD S ∆ D

NSGA-II 95.5(16.8) 0.031(0.113) 0.001(0.001) 0.007(0.001) 0.389(0.113) 0.971(0.172)
GDE 66.7(25.4) 0.235(0.357) 0.003(0.007) 0.026(0.015) 0.775(0.123) 0.968(0.052)
GDE2 55.2(21.1) 0.318(0.384) 0.004(0.006) 0.019(0.010) 0.532(0.067) 1.006(0.025)

ZDT6 ℵ ER GD S ∆ D

NSGA-II 89.5(2.9) 1.000(0.000) 0.008(0.001) 0.008(0.001) 0.513(0.031) 0.965(0.006)
GDE 99.8(2.1) 0.010(0.100) 0.002(0.021) 0.017(0.005) 1.018(0.079) 0.988(0.050)
GDE2 97.2(2.3) 0.000(0.000) 0.000(0.000) 0.008(0.001) 0.388(0.046) 1.000(0.001)

time than GDE and GDE2, probably because of additional operations, e.g., the
non-dominated sorting. GDE2 outperforms NSGA-II in the problem ZDT6.

6 Conclusions and Future Research

In this paper an extension of Generalized Differential Evolution algorithm is
proposed. The extension, GDE2, adds to GDE a mechanism for improving ex-
tent and diversity of the obtained Pareto front approximation without impairing
convergence speed of GDE and increasing execution time only little. GDE2 is
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demonstrated to be effective, and does not introduce any extra control parame-
ters to be preset by the user.

GDE and GDE2 were tested with a set of five benchmark multi-objective test
problems. The numerical results show that GDE2 is able to provide a solution for
all the test problems and performs comparably to NSGA-II and GDE providing
a relatively good approximation of the Pareto front. However, the proposed
method was found rather sensitive to control parameter values.

The effect of parameters on the optimization process, extensive comparison
of GDE2 with latest multi-objective evolutionary algorithms and test problems,
and applying GDE2 for practical multi-objective problems remains among the
topics to be studied.
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Abstract-
A developed version of Generalized Differential Evo-

lution, GDE3, is proposed. GDE3 is an extension of Dif-
ferential Evolution (DE) for global optimization with an
arbitrary number of objectives and constraints. In the
case of a problem with a single objective and without
constraints GDE3 falls back to the original DE. GDE3
improves earlier GDE versions in the case of multi-
objective problems by giving a better distributed solu-
tion. Performance of GDE3 is demonstrated with a set
of test problems and the results are compared with other
methods.

1 Introduction

During the last 15 years, Evolutionary Algorithms (EAs)
have gained popularity in solving difficult multi-objective
optimization problems (MOOPs) since EAs are capable
of dealing with objective functions, which are not mathe-
matically well behaving, e.g., discontinuous, non-convex,
multi-modal, and non-differentiable. Multi-objective EAs
(MOEAs) are also capable of providing multiple solution
candidates in a single run, which is desirable with MOOPs.

Differential Evolution (DE) is a relatively new EA and
it has been gaining popularity during previous years. Sev-
eral extensions of DE for multi-objective optimization have
already been proposed. Some basic approaches just con-
vert MOOPs to single-objective forms and use DE to solve
these [3,5,36].

The first method extending DE for multi-objective op-
timization using the Pareto approach was Pareto-based
DE approach [6]. Pareto Differential Evolution [4] was
also mentioned about the same time, unfortunately with-
out an explicit description of the method. After these,
the Pareto(-frontier) Differential Evolution (PDE) algo-
rithm [2] and a first version of Generalized Differential Evo-
lution (GDE) [22] were introduced. Later on, Self-adaptive
PDE (SPDE) [1], the Pareto DE Approach (PDEA) [26],
Adaptive Pareto DE (APDE) [37], Multi-Objective DE
(MODE) [13], and Vector Evaluated DE (VEDE) [29] have
been proposed. The latest proposals are a second ver-
sion of GDE [21] and DE for Multiobjective Optimization
(DEMO) [32]. Research demonstrating the performance of
PDEA over the elitist Non-Dominated Sorting Genetic Al-
gorithm (NSGA-II) [9] with rotated MOOPs has also been
reported [17].

Besides solving problems with multiple objectives, DE
has also been modified for handling problems with con-
straints [7, 23, 25, 27, 33, 35]. Most of these are based on
applying penalty functions.

Earlier GDE versions had already the ability to handle

any number of objectives and constraints. The latest ver-
sion, GDE3, introduced in this paper is an attempt to im-
prove earlier versions in the case of multiple objectives.

2 Multi-Objective Optimization with Con-
straints

Many practical problems have multiple objectives and sev-
eral aspects cause multiple constraints to problems. For ex-
ample, mechanical design problems have several objectives
such as obtained performance and manufacturing costs, and
available resources may cause limitations. Constraints can
be divided into boundary constraints and constraint func-
tions. Boundary constraints are used when the value of a
decision variable is limited to some range, and constraint
functions represent more complicated constraints, which are
expressed as functions.
A mathematically constrained MOOP can be presented

in the form:
minimize {ff (x), f2(X), . . *, fM (X)}
subject to (gl(x), 92(X),* * * ,9K(X)< (1)

Thus, there are M functions to be optimized and K con-
straint functions. Maximization problems can be easily
transformed to minimization problems and different con-
straints can be converted to form gj (X) < 0, Thereby the
formulation in Eq. 1 is without loss of generality.

Typically, MOOPs are often converted to single-
objective optimization problems by predefining weighting
factors for different objectives, expressing the relative im-
portance of each objective. Optimizing several objec-
tives simultaneously without articulating the relative im-
portance of each objective a priori, is often called Pareto-
optimization. An obtained solution is Pareto-optimal if
none of the objectives can be improved without impairing at
least one other objective [28, p. 11]. If the obtained solution
can be improved in such a way that at least one objective im-
proves and the other objectives do not decline, then the new
solution dominates the original solution. The objective of
Pareto-optimization is to find a set of solutions that are not
dominated by any other solution.
A set of Pareto-optimal solutions form a Pareto front,

and an approximation of the Pareto front is called a set of
non-dominated solutions. From the set of non-dominated
solutions the decision-maker may pick a solution, which
provides a suitable compromise between the objectives.
This can be viewed as a posteriori articulation of the
decision-makers preferences concerning the relative impor-
tance of each objective.

Later on in this paper, the obtained non-dominated set is
referred to as a solution, and a member of a non-dominated
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set or a population is referred to as a vector to distinguish
these.

Weak dominance relation -< between two vectors is de-
fined such that xl weakly dominates X2, i.e., xl < x2 iffVi:
fi (xl1) < fi (X2). Dominance relation < between two vec-
tors is defined such that xl dominates X2, i.e., X1 - X2 iff
xl q x2 A 3i: f,(x7) < fi(2). The dominancerelation-
ship can be extended to take into consideration constraint
values besides objective values. A constraint-domination

q is defined here so that xl constraint-dominates x2, i.e.,
x1,< x2 iff any of the following conditions is true [22]:

* xl is feasible and x2 is not.

* xl and x2 are infeasible and xl dominates x2 in con-
straint function space.

* xl and 72 are feasible and xl dominates £2 in objec-
tive function space.

The definition for weak constraint-domination < is analo-
gous. This constraint-domination definition differs from the
approach presented in [8, pp. 301-302] in the case of two
infeasible vectors and was developed independently.

3 Differential Evolution

The DE algorithm [31, 34] was introduced by Storn and
Price in 1995. Design principles in DE were simplicity, ef-
ficiency, and the use of floating-point encoding instead of
binary numbers. Like a typical EA, DE has some random
initial population, which is then improved using selection,
mutation, and crossover operations. Several methods ex-
ist to determine a stopping criterion for EAs but usually
a predefined upper limit for the number of generations or
function evaluations to be computed provides an appropri-
ate stopping condition.

In each generation DE goes through each decision vec-
tor xi,G of the population and creates a corresponding trial
vector IU,G. Here, i is an index of the vector in the pop-
ulation and G is a generation index. Creation of the trial
vector is done as follows in the most common DE version,
DE/rand/l/bin [30]:

rl, r2, r3 E {1, 2,... , NP}, (randomly selected,
except mutually different and different from i)

jrand = floor (randi [0, 1) * D) + 1
for(j = 1;j < D;j = j + 1)
{

if(randj[O, 1) < CRV j = irand)
Uj,i,G = Xj,r3,G + F * (Xj,r,G - Xj,r2,G)

else
Uj,i,G = Xj,i,G

}
(2)

The scaled difference between two randomly chosen vec-
tors, F. (r CG - 7r2,G), defines magnitude and direction
of the mutation. When the difference is added to a third ran-
domly chosen vector r3 ,G, this corresponds to the mutation
of the third vector.

Both CR and F are user defined control parameters for
the DE algorithm and they remain fixed during the whole

execution of the algorithm. Parameter CR, controlling the
crossover operation, represents the probability that an ele-
ment for the trial vector is chosen from a linear combination
of three randomly chosen vectors instead of from the old
vector Xi,G. The condition "j = irand" is to make sure that
at least one element is different compared to elements of the
old vector. Parameter F is a scaling factor for mutation and
its value is typically (0,1+]. In practice, CR controls the
rotational invariance of the search, and its small value (e.g.
0.1) is practicable with separable problems while larger val-
ues (e.g. 0.9) are for non-separable problems. Control pa-
rameter F controls the speed and robustness of the search,
i.e., a lower value for F increases the convergence rate but
also the risk of stacking into a local optimum.

The basic idea ofDE is that the mutation is self-adaptive
to the objective function surface and to the current popu-
lation in the same way as in Covariance Matrix Adapta-
tion Evolutionary Strategies (CMA-ES) [16] but without the
computational burden of covariance matrix calculations that
are scaling unfavorably with the dimensionality of the prob-
lem. At the beginning of generations the magnitude of the
mutation is large because vectors in the population are far
away in the search space. When evolution proceeds and the
population converges, the magnitude of the mutation gets
smaller. The self-adaptability ofDE permits a global search
A trial vector Ui,G created by mutation and crossover op-

erations is compared to an old vector 7',G. If the trial vector
has an equal or better objective value, then it replaces the
old vector in the next generation. Therefore, the average
objective value of the population will never worsen making
DE an elitist method.

4 Generalized Differential Evolution

The first version of a Generalized Differential Evolution
(GDE) extended DE for constrained multi-objective opti-
mization and was obtained by modifying the selection rule
of the basic DE [22]. The basic idea in the selection rule
was that the trial vector was selected to replace the old vec-
tor in the next generation if it weakly constraint-dominated
the old vector. There was no sorting of non-dominated vec-
tors during the optimization process or any mechanism for
maintaining the distribution and extent of the solution. Also,
there was no extra repository for non-dominated vectors.
Still, GDE was able to provide a surprisingly good solu-
tion but was too sensitive for the selection of the control
parameters [20].

Later on GDE was modified to make a decision based on
the crowdedness when the trial and old vector were feasi-
ble and non-dominating each other in the objective function
space [21]. This improved the extent and distribution of
the solution but slowed down the convergence of the overall
population because it favored isolated vectors far from the
Pareto front before all the vectors were converged near the
Pareto front. This version, GDE2, was still too sensitive for
the selection of the control parameters.

The third version of GDE proposed in this paper extend-
ing the DE/rand/l/bin method to problems with M objec-
tives and K constraint functions formally presented in Eq. 3.
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Input :D, Gmax NP > 4, F E (0,1+], CR E [0, 1], and initial bounds: (lo), x(hi)

Initialize|{ Vi < NP A Vj < D: Xj,i,G=o = Xj1i) + randj [0, 1]* (xihi) - X(lo))
i ={1,2,...,NP},j={1,2,...D},G=0,m=0,randj[0,1) E [0,1),

While G < Gmax

Vi < NP

Mutate and recombine:
r1, r2, r3 e {1, 2,. ... ,NP}, randomly selected,

except mutually different and different from i
.rand E {1, 2 ... , D}, randomly selected for each i

Xj,r3,G + Fe (Xj,ri,G - Xj,r2,G)
Vj < D, Uj,i,G = if randj [O, 1) < CRVj = jrand

X,i,G otherwise
Select:

{ Ui,G U',G -c Xi,G

1.Xi,G Otherwise

G=G+1

Notation CD means Crowding Distance [9], which approxi-
mates the crowdedness of a vector in its non-dominated set.
Also, some other distance measure for crowdedness could
be used. The parts that are new compared to previous GDE
versions are framed in Eq. 3. Without these parts, the algo-
rithm is identical to the first GDE version. Later on in this
paper the proposed method given in Eq. 3 is called the Gen-
eralized Differential Evolution 3 (GDE3). It handles any
number ofM objectives and any number of K constraints,
including the cases where M = 0 (constraint satisfaction
problem) andK = 0 (unconstrained problem), and the orig-
inal DE is a special case of GDE3. GDE3 can been seen as

a combination of earlier GDE versions and PDEA [26]. A
similar approach was also proposed in DEMO [32] without
constraint handling, and DEMO does not fall back to the
original DE in the case of single objective as GDE3 does.

Selection in GDE3 is based on the following rules:

* In the case of infeasible vectors, the trial vector is se-

lected if it weakly dominates the old vector in con-

straint violation space, otherwise the old vector is se-

lected.
* In the case of the feasible and infeasible vectors, the

feasible vector is selected.
* If both vectors are feasible, then the trial is selected

if it weakly dominates the old vector in the objec-
tive function space. If the old vector dominates the
trial vector, then the old vector is selected. If neither
vector dominates each other in the objective function
space, then both vectors are selected for the next gen-
eration.

After a generation, the size of the population may have
been increased. If this is the case it is then decreased back to
the original size based on a similar selection approach used
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Set:

r Vj : gj(Ui,G) < 0
m=m+1 . A

if AXiG+1 == Xi G
XNP+m,G+l = Ui,G j A

Xi,G A Ui,G

(3)

While m > 0

Select x E {X1,G+1, X2,G+1,... XNP+m,G+1}
{ Vi i 7AC Xi,G+l

V(',G+l: Xi,G+1 7Ac X) CD (x) < CD ('i,G+l)
Remove xi
m = m - 1
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in NSGA-I1. Vectors are sorted based on non-dominance
and crowdedness. The worst population members according
to these measurements are removed to decrease the size of
the population to the original size. Non-dominated sorting
is modified to take into consideration also constraints, and
selection based on Crowding Distance is improved over the
original method of NSGA-II to provide a better distributed
set of vectors [19].

When M = 1 and K = 0, there are no constraints to be
evaluated and the selection is simply

fit,G if f(i,G) .:: f VYG)Xi,G+1 = X~XG otherwise (4)

which is same as for the original DE. The population is not
increased because this requires that U',G and xi,G do not
weakly dominate each other, which cannot be true in the
case of a single objective. Since the population is not in-
creased, there is no need to remove elements. Therefore,
GDE3 is identical to the original DE in this case. This
makes it possible to change DE/rand/l/bin strategy to any
other DE strategy such as presented in [14,37] or, generally,
to any method where a child vector is compared against a
parent vector and a better one is preserved.

In NSGA-II and PDEA, the size of the population af-
ter a generation is 2NP, which is then decreased to size
NP. In GDE3 and DEMO, the size of the population af-
ter a generation is between NP and 2NP because the size
of the population is increased only if the trial and the old
vector are feasible and do not dominate each other.' De-
creasing the size of the population at the end of a gen-
eration is the most complex operation in the algorithm.
This needs non-dominated sorting, which in GDE3 uses
the concept of constraint-domination defined in 2. Non-
dominated sorting can be implemented to run in time
O (N logM-l N) [18]. Also, niching is done for non-

dominated members of the population, which is a complex
operation if clustering techniques are applied. Instead of
clustering, niching is performed using an approximate dis-
tance measure, Crowding Distance, which can be calcu-
lated in time 0 (MN log N) [18]. Overall running time for
GDE3 in Eq. 3 isO (GmaXN logM-l N) for large N.

GDE3 can be implemented in such a way that the num-
ber of function evaluations is reduced because not always
all the constraints and objectives need to be evaluated, e.g.,
inspecting constraint violations (even one constraint) is of-
ten enough to determine, which vector to select for the next
generation [23,311. However, in the case of feasible vectors
all the objectives need to be evaluated.

5 Experiments
GDE3 was evaluated with a set of test problems available
from the literature [8, 10, 11]. The idea was to select known
representative problems from different problem type cate-
gories. In repeated tests, a standard two-sample t-test was

1GDE3 could be modifi ed to preserve the old and the trial vector in
the case of constrained-non-domination, but this would increase number
of function evaluations needed and slow down convergence.

used to evaluate the significance of the obtained numerical
results. Suitable control parameter values of GDE3 for each
problem were found based on problem characteristics and
by trying out a couple of different control parameter values.

5.1 Singe-Objective Optimization

The performance of GDE3 in the case of single-objective
optimization is illustrated with two classical multi-modal
test problems, Rastrigin's and Schwefel's functions with 20
variables. Since both problems are separable, a low value
for CR was used. The control parameter value F was set as
low as possible while still obtaining a global optimum. The
control parameters were CR = 0.0, F = 0.5 for Rastrigin's
function and CR = 0.2, F = 0.4 for Schwefel's function.

The test functions, initialization ranges, used population
sizes, desired target values, and a number of needed func-
tion evaluations as shown in Table 1. A minimum, mean,
and maximum number of function evaluations after 100 in-
dependent runs are reported. The number of needed func-
tion evaluations were significantly smaller than with the
Omni-Optimizer reportedin [12].

5.2 Bi-Objective Test Problem

Improved selection based on the Crowding Distance is
demonstrated with a simple bi-objective optimization prob-
lem, which is defined as [8, p. 176]:

Minimize fi (7) = xi
Minimize f2() = 1+X2
subjectto x1 E [0.1, 1],X2 E [0,5]

(5)

This problem is relatively easy to solve for MOEAs, and
GDE3 finds a solution converged to the Pareto front in about
20 generations. The problem was solved with GDE3 and
NSGA-II having a population size of 100 and 500 genera-
tions. Control parameters for GDE3 were CR = 0.2 and
F = 0.2, and for NSGA-II Pc = 0.9, Pm = 1/D, c = 20,
and 71m = 20 [9]. A large number of generations were
used to make sure that the obtained solution converged to
the Pareto front and only the diversity of the solution was
measured. Results after one run are shown in Figure 1. A
better distribution obtained for the solution for GDE3 than
NSGA-II can be observed with a careful view.

The problem was solved 100 times and diversity was
measured using spacing (S) [8, pp. 327-328], which mea-
sures the standard deviation of the distances from each vec-
tor to the nearest vector in the obtained non-dominated set.
A small value for S is better, and S = 0 for ideal dis-
tribution. Mean and standard deviations for spacing are
0.0030±0.0003 and 0.0074±0.0007for GDE3 and NSGA-
II, respectively. GDE3 has more than double the lower spac-
ing value than NSGA-II has, i.e., GDE3 obtains a better dis-
tributed solution than NSGA-II in the case of this problem.

5.3 Bi-Objective Mechanical Design Problem

A bi-objective spring design problem [8, pp. 453-455] was
selected to demonstrate the GDE3's ability to handle several
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Function f (x) D Range N f* Min Mean Max
Rastrigin D- xi2 + 10 (1 - cos(27rxi)) 20 [-10, 10] 20 0.01 8029 9085 10184

(19260) (24660) (29120)
Schwefel 418.982887D-i=1Xisin( x/i) 20 [-500,500] 50 0.01 14996 16540 18479

(54950) (69650) (103350)

Table 1: Single-objective optimization problems, initialization ranges, population size, desired target value, and the needed
number of function evaluations for GDE3. Results reported in [12] for the Omni-Optimizer are in parenthesis.

Min-Ex

Q GDE3
8 NSGA-I1
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'% -tb"
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0.8 l

,X 1052I
Spring Design

1.5F
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C,,Cncn
12
CD

1

V0 5 10 15
Volume (in3)

20 25 30

Figure 1: A simple bi-objective optimization problem Figure 2: The spring design problem solved with GDE,
solved with GDE3 and NSGA-JI. GDE2, GDE3 and NSGA-IJ.

constraints and different types of decision variables. GDE3
uses real-coded variables as genotypes, which are converted
to corresponding phenotypes before evaluation of the objec-
tive and constraint functions [31].

The problem is to design a helical compression spring,
which has a minimum volume and minimal stress. Objec-
tive functions are nonlinear and the problem has three vari-
ables: the number of spring coils xi (integer), the wire di-
ameter X2 (discrete having 42 non-equispaced values), and
the mean coil diameter X3 (real). Besides the boundary con-

straints, the problem has eight inequality constraint func-
tions from which most are nonlinear.

Results for the different GDE versions and NSGA-II af-
ter a single run are shown in Figure 2. The size of the popu-
lation and the number of generations were 100 for the meth-
ods. Control parameter values for GDEs were CR = 0.9
and F = 0.5. The control parameters for NSGA-II were

Pc - 1.0, Pm = 1/D,77c = 10, and m = 500 used in [8,
pp. 450]. The number of needed function evaluations for
the GDEs are reported in Table 2. NSGA-IJ needed 10000
function evaluations for each objective and constraint func-
tion.

In preliminary tests GDE3 was found to be more stable
than earlier GDE versions for the selection of the control
parameters. In these tests, GDE and GDE2 also performed
poorer compared to GDE3 and therefore they were excluded
from further comparison in this paper.

5.4 Constrained Bi-Objective Test Problems

Constrained bi-objective test problems CTP1 and
CTP2 [10] having D = 6, xi E [0,1], and function
g (x) = 1 + Zi-2 xi2 controlling difficulty to converge to
the Pareto front were used. These problems were solved
100 times. The size of the population was 100 and the
number of generations was 50. Control parameters for
GDE3 were CR = 0.9 and F - 0.1, and for NSGA-II
Pc = 0. 9, Pm = 1/D, ?IC = 20, and ?lm = 20 used in [10].

Results were compared using spacing and binary met-
rics set coverage C metric [8, pp. 325-326] and a V mea-

sure [15,24]. The C(A, B) metric measures the fraction of
members of B that are dominated by members of A. The
V(A, B) measures the fraction of the volume of the mini-
mal hypercube containing both fronts that is dominated by
the members of A but is not dominated by the members of
B. Greater values for C and the V metrics are desirable.

The results shown in Table 3. With CTP1, spacing (S)
shows strongly and V metric slightly that GDE3 performs
better but C metric shows strongly opposite implying that
NSGA-II has converged closer to the Pareto front. With
CTP2, there is no significant difference between obtained
S values and the binary metrics show contradicting results.
Contradicting results for binary metrics are due to the fact
that the C metric emphasizes convergence over diversity
whereas the V metric considers both issues.

447

1U -

9

8

7-

6

5

4

3

2

1-L
0

+ GDE
E 0 GDE2

w~~~~~~~~GDE3
t z~~~~~~~NSGA-11

.+P

Q-C+ 6aao~ 0
.++~~ ~ ~ ~~~ .

%~,
I *

0RlI~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



448

91 92 93 94 95 96 97 98 fi f2
GDE 10100 8990 8901 8778 8115 8115 5704 5529 5515 2920
GDE2 10100 8504 8419 8008 7741 7741 6348 5874 5846 5846
GDE3 10100 8961 8879 8548 8319 8317 4885 4587 4566 4566

Table 2: Number of needed constraint (gj) and objective (ft) function evaluations needed by GDE, GDE2, and GDE3 for
the spring design problem.

S(G) S(N) C(G, N) C(N G) V(G, N) V(N, G)
CTP1 0.0048+ 0.0075 ± 0.1303 ± 0.2023± 0.0034± 0.0027 ±

0.0039 0.0026 0.0415 0.0904 0.0015 0.0016
CTP2 0.0092± 0.0113 ± 0.2655 ± 0.3588± 0.0031± 0.0022 ±

0.0073 0.0085 0.0742 0.0685 0.0011 0.0006
DTLZ1 0.0179± 0.0274 ± 0.3842± 0.0021 ± 0.0046± 0.0012 ±

0.0007 0.0171 0.1449 0.0100 0.0033 0.0011
DTLZ4 0.0214± 0.0238 ± 0.0948± 0.0123 ± 0.0085± 0.0059 ±

0.0010 0.0009 0.0240 0.0066 0.0007 0.0008

Table 3: Spacing (S), C, and V metrics for the CTP and DTLZ problems (G = GDE3 and N = NSGA-II).

5.5 Tri-Objective Test Problems

Finally, GDE3 was used to solve problems with more than
two objectives. Tri-objective test problems DTLZ1 and
DTLZ4 [11] were selected for this purpose. The size of
the population was 500 and the number of generations was
150 for DTLZ1 and 50 for DTLZ4. Control parameters for
GDE3 were CR = 0.2 and F = 0.2, and for NSGA-II
Pc = 1.0, Pm = 1/D, ic = 15, and rn = 20 used in [11].
Results after a single run are shown in Figures 3-5. Tests
were repeated 100 times and the same metrics were mea-
sured as for the CTP problems earlier.2 Obtained values are
reported in Table 3. GDE3 outperforms NSGA-II with these
problems according to metrics.

DTLZI, GDE3 DTLZ1, GDE3
0.5

0.5-7 ~~~ ~ ~ ~ ~ ~~~0

2 0.4 0.4 0. 0.40 02 04
0

0 0 2 ~~ ~~~~~~0 0 2

Figure 3: Two projections of the result for the DTLZ1 prob-
lem solved with GDE3.

6 Conclusions and Future Research

The third evolution version of Generalized Differential Evo-
lution, GDE3, is proposed. GDE3 is designed for any num-
ber of objectives and constraints without introducing any
extra control parameters to the original DE. In the case

DTLZ1, NSGA-II DTLZ1, NSGA-II

0.5- ~~~~~~~~~~~~~~0.'5

034

0.4-~~~~~~~~~~~~~~~~.

*2 0.4 0.4
u

0 02 040 02 04

Figure 4: Two projections of the result for the DTLZ1 prob-
lem solved with NSGA-II.

DTLZ4

0

1 1
fi

Figure 5: The DTLZ4 problem solved with GDE3 and
NSGA-II.

2Even thought spacing might not give reliable result when the number
of objectives is greater that two [11].
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of unconstrained single-objective optimization problems,
GDE3 is exactly the same as the original DE.

GDE3 modifies earlier GDE versions using a growing
population and non-dominated sorting with pruning of non-
dominated solutions to decrease the population size at the
end of each generation. This improves obtained diversity
and makes the method more stable for the selection of con-
trol parameter values. The constraint handling method used
in GDEs reduces the number of needed function evalua-
tions.

GDE3 was tested with a set of different types of test
problems and results show an improved diversity of the so-
lution over the NSGA-II method as well as demonstrating
a reduction in the number of needed function evaluations.
In some test problems, GDE3 found also a better converged
solution. However, results are based on limited tests with a
limited number of test problems and they are mainly indica-
tive.
A more extensive comparison ofGDE3 with other multi-

objective DE methods, latest multi-objective evolutionary
algorithms and test problems, parallelization of the algo-
rithm, and applying GDE3 for practical constrained multi-
objective problems remains as future work.
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Improved Pruning of Non-Dominated Solutions Based on Crowding
Distance for Bi-Objective Optimization Problems

Saku Kukkonen and Kalyanmoy Deb, Senior Member, IEEE

Abstract— In this paper an algorithm for pruning a set of
non-dominated solutions is proposed. The algorithm is based
on the crowding distance calculation used in the elitist non-
dominated sorting genetic algorithm (NSGA-II). The time
complexity class of the new algorithm is estimated and in most
cases it is the same as for the original pruning algorithm.
Numerical results also support this estimate.

For used bi-objective test problems, the proposed pruning
algorithm is demonstrated to provide better distribution com-
pared to the original pruning algorithm of NSGA-II. However,
with tri-objective test problems there is no improvement and
this study reveals that crowding distance does not estimate
crowdedness well in this case and presumably also in cases
of more objectives.

I. INTRODUCTION

Pruning a set of non-dominated solutions is a common task
for multi-objective evolutionary algorithms (MOEAs) such as
the strength Pareto evolutionary algorithm (SPEA2) [1] and
the elitist non-dominated sorting genetic algorithm (NSGA-
II) [2]. An idea is to prune a non-dominated set to have
desired number of solutions in such a way that remaining
solutions would have as good diversity as possible, i.e., the
spread of extreme solutions is as high as possible and the
relative distance between solutions is as equal as possible.
Probably the best way to obtain a good distribution would
be to use some clustering algorithm as in SPEA2. However,
this is computationally expensive since clustering algorithms
take usually time O

(
MN2

)
to prune a set of size N

with M objectives [3]. In NSGA-II the pruning of non-
dominated solutions is done in time O (MN log N) based
on crowding distance (CD). However, this method often
gives non-optimal distribution as it is demonstrated later in
this paper. Therefore, an improved pruning based on CD is
proposed here.

Besides NSGA-II, CD has been used as a distribution
maintenance method in many other MOEAs [4]–[13]. There
also exist studies where the original CD has been slightly
modified to use, e.g., different kind of normalization tech-
niques for objective values [14], polar coordinates in the
objective space [15], problem specific measures [16], and
a different distance metric for crowdedness calculation [17].

This paper continues with the following parts: In Section II
the original pruning algorithm of NSGA-II is described and
its drawback in some cases is demonstrated. Section III
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describes the proposed pruning algorithm and its time com-
plexity is analyzed in Section IV. The proposed method
is tested in Section V and observations are discussed in
Section VI. Finally, conclusions are given in Section VII.

II. PRUNING OF NON-DOMINATED SOLUTIONS IN

NSGA-II

At the end of one generation of NSGA-II, the size of
the population is twice bigger than the original size. This
bigger population is pruned based on the non-dominated
sorting [18, pp. 33–44], [3] and CD. CD for a member of
a non-dominated set tries to approximate the perimeter of a
cuboid formed by using the nearest neighbors of the member.
The cuboid of a non-dominated set member i in the case
of two objectives is illustrated in Figure 1 (objectives are
minimized in this paper). For a member of non-dominated
set, CD is calculated by finding distance between two nearest
solutions on either side of the member along each of the
objectives. These distances are normalized dividing them
by the difference between maximum and minimum values
of corresponding objectives, and then these normalized dis-
tances are summed up giving a CD for the corresponding
member. For those members of the non-dominated, which
have maximum or minimum value for any objective, CD is
assigned to have an infinite value. Finally, the members of
the non-dominated set are sorted in monotonically decreasing
order according to CDs and a desired number of members
having the largest CD values are selected.

i
1d

1f

id2

f2

i

Fig. 1. An example of the cuboid of a solution i in the case of two
objectives.

For selecting n members out of N based on CD, members
are first sorted according to objective values taking time
O (N log N) for each of M objective. Then CDs are cal-
culated taking time O (MN). Finally, members are sorted
according to the CD values taking time O (N log N). The
overall computation time of the algorithm is dominated by
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the first sorting of members according to the objective values
for each objective taking time O (MN log N).

Although the idea of this algorithm is reasonable, it does
not provide good result in all cases. In Figure 2 a non-
dominated set of 11 members and the six selected members
according to CDs calculated for the members are presented
in the case of two objectives. As it can be seen, leaving out
the rest five members having the smallest CDs leaves a gap
in the resulting set and it is clear that this set of solutions is
not optimal in the sense of distribution. There are also other
cases where pruning based on CD does not provide good
distribution [17].
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Fig. 2. A set of 11 non-dominated members from which six are selected
based on the pruning method used in NSGA-II.

III. PROPOSED ALGORITHM

The proposed algorithm first calculates CDs for the mem-
bers of a non-dominated set. Instead of selecting n members
having the largest CD values, N − n members having the
smallest CD values are removed one by one, updating the
CD values for the remaining members of the set after
each removal. The efficient implementation of this algorithm
needs an implementation of a priority queue such as a
heap [19, pp. 140–152]. The proposed algorithm is:

PRUNING OF NON-DOMINATED SET

input: a non-dominated set F ,
the size n of a desired pruned set

output: elements of a heap H

1 calculate CD for each member of the set F
2 create a data structure D containing information

about neighbors on either side of the members of F
along each objectives

3 create an ascending heap H from the members of F
using CDs as ordering keys

4 while |H| > n
5 remove an element with a minimum CD value

from H and update H
6 update D to have correct neighbor information

for the neighbors of the removed element
7 for all the neighbors of the removed element

8 calculate a new CD
9 replace old CD value in H with the new one

and update H

The output of this algorithm is demonstrated for the same
non-dominated set as with the original pruning algorithm.
Figure 3 shows the output, which is better distributed than
in Figure 2. The proposed method would, presumably, also
improve the performance of other methods based on CD,
e.g., those mentioned in Section I.
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Fig. 3. A set of 11 non-dominated members from which six are selected
based on the proposed pruning algorithm.

IV. COMPLEXITY ANALYSIS OF THE ALGORITHM

The first operation in line 1 can be done in time
O (MN log N) as in the original algorithm. Creating data
structure D containing the neighborhood information along
each of the objectives in line 2 can be done in time O (MN).
The creation of a heap takes time O (N). The while-loop in
lines 4–9 is executed at most N times, on an average N/2
times. Removing a minimum element from the heap and
updating the heap to have correct structure in line 5 takes
time O (log N). Updating D in line 6 takes time O (M)
since the removed element has at most 2M neighbors along
the objectives. Calculating new CD for a neighbor element
with the help of D in line 8 takes time O (M) since there
are at most 2M objective values to be taken for calculations.
Updating CD value to the heap and updating the heap to have
correct structure in line 9 takes time O (log N). Therefore,
the computation time for the whole for-loop in lines 7–9 is
bounded by O (M log N) or O

(
M2

)
, whichever is greater.

The while-loop in lines 4–9 is bounded by O (MN log N)
or O

(
M2N

)
, whichever is greater. These are also overall

complexities for the whole algorithm. In many cases, where
M < log N , the former complexity dominates. This leads to
complexity class O (MN log N) for the algorithm. Anyway,
for large N the proposed algorithm is faster than the typical
clustering methods except in some rare cases when M > N .

V. EXPERIMENTS

The original and proposed pruning algorithms were
implemented in the Generalized Differential Evolution 3
(GDE3) [12], which was then used to solve test problems.
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GDE3 is an extension of Differential Evolution (DE) [20] for
constrained multi-objective optimization. Roughly speaking,
the evolutionary part of the algorithm is DE and the multi-
objective part is from NSGA-II [2]. This kind of combination
has been shown to give benefit over NSGA-II with rotated
problems [21]. Further, GDE3 has some other improvements
over NSGA-II, and an interested reader is advised to look
reference [12].

In repetition tests, the diversity of obtained result was
measured using the spacing (S) metric [18, pp. 327–328]
and variance of CDs. The spacing metric measures the
standard deviation of distances (according to Manhattan, i.e.,
L1 distance metric) from each vector to nearest vector in the
obtained non-dominated set. A smaller value of S is better
and for an ideal distribution S = 0. Also, the CPU time
needed for pruning and for the entire process was registered.
The hardware used was a PC with 2.6 GHz Pentium 4 CPU
& 512 MB RAM, and the operating system was Linux.

A. Bi-Objective Problems

The pruning algorithms were used to solve the bi-objective
test problems ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6 [18,
pp. 356–360], using population size 100 and 1000 gener-
ations. Sets of solutions to these problems are shown in
Figures 4–8, where the solutions generated by using the
proposed pruning method have been sifted by −0.05 units
along both objectives to alleviate observation. As it can
be seen, the solutions obtained with the proposed pruning
method have better distribution.
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Fig. 4. A result for ZDT1 using the original and proposed pruning methods
(the solutions obtained by the proposed method are deliberately moved
towards the origin for clarity).

Solving the bi-objective optimization problems was re-
peated 100 times. The numerical results, i.e., mean and
standard deviation values are reported in Table I. The spacing
metric suggests that the results obtained with the proposed
pruning method are almost three times better compared to
those with the original method in terms of diversity, while
the total required CPU time has increased less than 10%.
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Fig. 5. A result for ZDT2 using the original and proposed pruning methods
(the solutions obtained by the proposed method are deliberately moved
towards the origin for clarity).
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Fig. 6. A result for ZDT3 using the original and proposed pruning methods
(the solutions obtained by the proposed method are deliberately moved
towards the origin for clarity).
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Fig. 7. A result for ZDT4 using the original and proposed pruning methods
(the solutions obtained by the proposed method are deliberately moved
towards the origin for clarity).
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Fig. 8. A result for ZDT6 using the original and proposed pruning methods
(the solutions obtained by the proposed method are deliberately moved
towards the origin for clarity).

Table I also contains corresponding results for SPEA21.
Interestingly, it can be noticed that according to measures,
the diversity obtained with SPEA2 is between the original
and proposed pruning methods.

The time complexity of the pruning methods was verified
experimentally using the ZDT1 problem. The measured
pruning times for various population sizes are shown in
Figure 9. It can be observed that the proposed pruning
method takes about twice the time of the original method
and the complexity classes of these methods are the same,
whereas the pruning time in SPEA2 is much more and
increases drastically when the population size increases.
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Fig. 9. Mean pruning times (standard deviations as error bars) measured
from 100 runs for solving ZDT1 problem with different population sizes.

B. Tri-Objective Problems

The proposed pruning method was also tested with a
set of tri-objective test problems, DTLZ1, DTLZ2, DTLZ4,
DTLZ5, and DTLZ7 [22], using population size 300 and
1000 generations. The numerical results from 100 repetition

1SPEA2 implementation was taken from the PISA web site:
http://www.tik.ee.ethz.ch/pisa/

runs are shown in Table II. From these results it was noticed
that there was no significant improvement in the values
of spacing although the results with the proposed pruning
method were better (except for DTLZ7) in term of variance
of CDs. SPEA2 provided the best distribution according to
the spacing measure but worst according to the variance of
CDs. Moreover, there was no significant difference between
the original and proposed methods when results were evalu-
ated visually, whereas SPEA2 provided much better results
(Figures 10–15). The only exception was DTLZ5, where the
Pareto-front is curved in the objective space; in this case the
proposed pruning method outperformed the original method
and SPEA2. Bad observed performance of the proposed
pruning method was unexpected and led to closer analysis
of CD in the case of three objectives.
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Fig. 10. A set of solutions for DTLZ1 using the original pruning method.
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Fig. 11. A set of solutions for DTLZ1 using the proposed pruning method.

In Figures 16 and 17 sets of non-dominated solutions to
be pruned are shown for the DTLZ1 and DTLZ2 problems.
Both Figures also show three randomly selected solutions
with their neighbors along each objective. It can be noticed
that these neighbors do not necessarily locate near by corre-
sponding solutions and therefore the calculated CDs do not
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TABLE I

MEAN AND STANDARD DEVIATION VALUES OF SPACING, VARIANCE OF CDS, AND CPU TIMES FOR ZDT TEST PROBLEMS MEASURED FROM 100

INDEPENDENT RUNS

Problem Method Spacing σ2(CD) Total time (s) Pruning time (s)
Original 6.4240e − 03 ±

5.5946e − 04
1.2755e − 04 ±
2.5046e − 05

1.4877e + 00±
1.3246e − 02

1.0530e − 01±
3.1669e − 02

ZDT1 Proposed 2.5348e − 03±
2.6001e − 04

2.1163e − 05±
3.6732e − 06

1.5940e + 00 ±
1.5699e − 02

1.8720e − 01 ±
4.1368e − 02

SPEA2 3.2063e − 03 ±
2.9122e − 04

4.2059e − 05 ±
8.0237e − 06

1.1756e + 01 ±
7.0249e − 02

7.6469e + 00 ±
1.9474e − 01

Original 6.3904e − 03 ±
5.4882e − 04

1.3523e − 04 ±
2.8336e − 05

1.4718e + 00±
6.8048e − 03

1.0521e − 01±
3.1254e − 02

ZDT2 Proposed 2.5981e − 03±
2.8669e − 04

2.1138e − 05±
3.7108e − 06

1.5747e + 00 ±
6.6290e − 03

1.8227e − 01 ±
3.5693e − 02

SPEA2 3.4023e − 03 ±
3.6818e − 04

4.9467e − 05 ±
1.0613e − 05

1.2291e + 01 ±
9.7998e − 02

8.1818e + 00 ±
2.2531e − 01

Original 4.3573e − 03 ±
4.1398e − 04

2.0291e − 03 ±
5.1891e − 05

1.3838e + 00±
5.4643e − 03

8.5400e − 02±
2.9074e − 02

ZDT3 Proposed 1.5039e − 03±
1.8103e − 04

2.0169e − 03±
2.0486e − 05

1.4421e + 00 ±
6.7112e − 03

1.2820e − 01 ±
3.1667e − 02

SPEA2 3.0892e − 03 ±
3.4177e − 04

2.0962e − 03 ±
3.0930e − 05

1.1500e + 01 ±
7.2117e − 02

7.3613e + 00 ±
2.2574e − 01

Original 6.0789e − 03 ±
5.5549e − 04

1.0398e − 04 ±
2.1932e − 05

9.5180e − 01±
5.7525e − 03

8.6200e − 02±
2.6772e − 02

ZDT4 Proposed 2.1344e − 03±
3.1260e − 04

1.4066e − 05±
3.6445e − 06

9.8360e − 01 ±
6.8931e − 03

1.2440e − 01 ±
2.6980e − 02

SPEA2 2.8862e − 03 ±
2.9266e − 04

3.2085e − 05 ±
6.8718e − 06

1.0639e + 01 ±
9.3916e − 02

6.3440e + 00 ±
2.8208e − 01

Original 6.6047e − 03 ±
6.5536e − 04

1.3420e − 04 ±
2.8494e − 05

1.2147e + 00±
5.7753e − 03

9.6869e − 02±
3.4866e − 02

ZDT6 Proposed 2.6662e − 03±
2.6590e − 04

2.2287e − 05±
3.5135e − 06

1.3088e + 00 ±
6.7090e − 03

1.7740e − 01 ±
4.2035e − 02

SPEA2 3.1010e − 03 ±
3.0937e − 04

3.8489e − 05 ±
8.6676e − 06

1.1662e + 01 ±
5.7654e − 02

7.5451e + 00 ±
2.0404e − 01

properly estimate the crowdedness of solutions. Presumably,
the same observation is extendable for cases with more
than three objectives. CD gives relatively good estimation
about crowdedness in the bi-objectives cases because the
non-dominance property (which implies a monotonic relation
between solutions in the objective space) causes solutions to
come close together along both the objectives. With three or
more objectives this does not need to hold at all, even though
it holds with DTLZ5 where the non-dominating solutions
form a curve instead of a surface.

For comparison, the original pruning method was also
implemented in such a way that random values for CDs were
used instead of calculated values. For each non-dominated set
member having maximum or minimum value for any objec-
tive, CD was assigned an infinite value. The numerical results
for DTLZ problems using this random pruning approach are
also shown in Table II. According to the results, the random
pruning performs notably worse than the pruning method
based on the calculated CD values. Therefore CD contains

some knowledge about crowdedness although the estimation
is far from perfect based on Figures 16 and 17.

The proposed method did not improve diversity in the
DTLZ7 problem according to the variance of CDs, and in
the ZDT3 problem the improvement according to CD was
modest. The probable reason for this is the fact that the
Pareto-front for these problems is discontinuous in contrast
to the other problems. Visually observed, the diversity was
also improved for ZDT3.

VI. DISCUSSION

According to observations, the diversity handling method
of NSGA-II should be modified if a good diversity is
desired for problems having more than two objectives. Worse
obtained diversity with CD than with a diversity maintenance
technique based on clustering, has already been observed
earlier in the case of optimization problems with three
objectives [22] but the reason for the bad performance has not
been studied or demonstrated earlier according to authors’
knowledge. These observations mean that also other methods
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TABLE II

MEAN AND STANDARD DEVIATION VALUES OF SPACING, VARIANCE OF CDS, AND CPU TIMES FOR DTLZ TEST PROBLEMS MEASURED FROM 100

INDEPENDENT RUNS

Problem Method Spacing σ2(CD) Total time (s) Pruning time (s)
Random 3.0980e − 02 ±

3.7708e − 03
2.8078e − 04 ±
1.3032e − 04

1.4591e + 01 ±
1.5585e − 01

6.4080e − 01 ±
8.4539e − 02

DTLZ1 Original 2.3927e − 02 ±
1.1410e − 03

2.5804e − 05 ±
2.8357e − 06

1.3648e + 01±
1.1168e − 01

6.2460e − 01±
6.3444e − 02

Proposed 2.3549e − 02 ±
1.0009e − 03

9.7780e − 06±
9.0294e − 07

1.4872e + 01 ±
9.3362e − 02

1.3115e + 00 ±
8.0634e − 02

SPEA2 1.1661e − 02±
1.1200e − 02

3.7368e − 04 ±
8.7105e − 04

1.2211e + 02 ±
1.2640e − 01

7.6797e + 01 ±
1.7521e − 01

Random 3.8560e − 02 ±
3.5166e − 03

2.1920e − 04 ±
8.9905e − 05

1.4465e + 01 ±
1.3946e − 01

6.7530e − 01 ±
7.5324e − 02

DTLZ2 Original 2.8914e − 02 ±
1.3827e − 03

2.1855e − 05 ±
1.9725e − 06

1.3536e + 01±
3.3132e − 02

6.4540e − 01±
7.4947e − 02

Proposed 2.8014e − 02 ±
1.5111e − 03

1.0638e − 05±
8.4747e − 07

1.4831e + 01 ±
4.8988e − 02

1.3456e + 00 ±
1.4674e − 01

SPEA2 1.2919e − 02±
6.9397e − 04

8.1446e − 05 ±
1.0243e − 05

1.3095e + 02 ±
7.7438e − 02

8.7535e + 01 ±
1.5309e − 01

Random 4.6069e − 02 ±
1.0088e − 02

1.7806e − 03 ±
4.7662e − 04

1.3135e + 01±
4.1494e − 01

6.3520e − 01±
7.2995e − 02

DTLZ4 Original 2.8452e − 02 ±
1.2664e − 03

2.2104e − 05 ±
2.0978e − 06

1.3813e + 01 ±
5.8934e − 02

6.4060e − 01 ±
6.9614e − 02

Proposed 2.7879e − 02 ±
1.3367e − 03

1.0864e − 05±
7.9148e − 07

1.5101e + 01 ±
6.2203e − 02

1.3591e + 00 ±
1.2607e − 01

SPEA2 1.3022e − 02±
7.2771e − 04

9.2581e − 05 ±
1.1494e − 05

1.3124e + 02 ±
1.0552e − 01

8.7665e + 01 ±
1.7151e − 01

Random 7.1387e − 03 ±
2.6948e − 03

5.1590e − 04 ±
2.9150e − 04

1.3403e + 01 ±
1.3308e − 01

6.2730e − 01 ±
7.1941e − 02

DTLZ5 Original 3.5364e − 03 ±
1.9787e − 04

3.8692e − 05 ±
4.6751e − 06

1.2149e + 01±
8.9120e − 02

5.7600e − 01±
6.6999e − 02

Proposed 1.6077e − 03±
1.5687e − 04

5.8746e − 06±
9.1744e − 07

1.3575e + 01 ±
7.2202e − 02

1.1437e + 00 ±
7.8130e − 02

SPEA2 2.3039e − 03 ±
1.1166e − 04

2.4633e − 05 ±
2.5317e − 06

1.2363e + 02 ±
8.3786e − 02

7.7715e + 01 ±
1.2489e − 01

Random 4.1365e − 02 ±
1.8823e − 02

4.6935e − 03 ±
1.3886e − 03

1.3011e + 01 ±
1.3106e − 01

6.3580e − 01 ±
7.4633e − 02

DTLZ7 Original 2.3658e − 02 ±
2.6283e − 03

1.5495e − 03±
2.1474e − 04

1.2066e + 01±
2.2497e − 02

5.5920e − 01±
6.4834e − 02

Proposed 2.3932e − 02 ±
2.3022e − 03

1.5639e − 03 ±
1.9189e − 04

1.3029e + 01 ±
4.1459e − 02

1.0860e + 00 ±
8.3545e − 02

SPEA2 1.5140e − 02±
8.2394e − 04

1.9248e − 03 ±
1.0965e − 04

1.3342e + 02 ±
6.7649e − 02

8.8697e + 01 ±
1.0649e − 01

(e.g., those mentioned in Section I) applying CD or its modi-
fication and using neighbors along each objectives to estimate
crowdedness, do not provide good distribution when the
number of objectives is larger than two. Use of conventional
clustering techniques lead to high time complexity such as
in SPEA2.

This leads to conclusion that a new pruning method
should be developed, particularly for many (> 2) objective
problems. One way to do this would be to use an efficient

nearest neighbor method to compute a distance metric with a
few (probably two) nearest solutions (in the Euclidean sense)
of every member of a non-dominated set in the normalized
objective space. Thereafter, solutions having a larger distance
metric can be preferred to maintain diversity in the non-
dominated set. The extreme solutions can be preserved in
the same manner as in the pruning algorithms based on
CD, and the pruning technique should take care of updating
crowdedness values for remaining members of the non-
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Fig. 12. A set of solutions for DTLZ1 using SPEA2.
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Fig. 13. A set of solutions for DTLZ2 using the original pruning method.

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

f
1

DTLZ2, Proposed pruning

f
2

f 3

Fig. 14. A set of solutions for DTLZ2 using the proposed pruning method.
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Fig. 15. A set of solutions for DTLZ2 using SPEA2.
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Fig. 16. A set of solutions to be pruned for DTLZ1 and three solutions
with their neighbors according to individual objectives.
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Fig. 17. A set of solutions to be pruned for DTLZ2 and three solutions
with their neighbors according to individual objectives.
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dominated set after each extraction of the most crowded
member. Other ideas are also possible, but this paper has
indicated the need for such studies, particularly for large
number of objectives.

Better pruning method is not only likely to provide a
better distribution, but may also help in a faster convergence
because better distribution helps to observe the characteristics
of the objective function space better.

VII. CONCLUSIONS

In this paper an algorithm improving pruning of non-
dominated set of solutions is proposed. The algorithm is
based on crowding distance and it is demonstrated to provide
better distribution for the pruned set in bi-objective cases than
the original algorithm used in NSGA-II.

Time complexity for the new algorithm is estimated and
it is bounded by O (MN log N) or O

(
M2N

)
, whichever is

greater. In practice N is often much larger than M leading
to the same complexity class O (MN log N) as the original
pruning algorithm.

The original and proposed pruning methods were imple-
mented and their time complexity classes were observed
to be the same. The methods were compared using test
problems and diversity metrics. According to the results, the
improvement for the obtained diversity is considerable in bi-
objective cases. However, there is no improvement in most
tri-objective cases because the crowding distance metric does
not estimate crowdedness properly in these cases.

The development of an efficient pruning method for prob-
lems with more than two objectives will be a subject of future
research.

ACKNOWLEDGMENTS

Authors wish to thank Dr. M. Laumanns and Mr. S. Bleuler
for their help with SPEA2. First author gratefully acknowl-
edges support from the East Finland Graduate School in
Computer Science and Engineering (ECSE), Technological
Foundation of Finland, Finnish Cultural Foundation, and
Centre for International Mobility (CIMO). This work was
done during the visit of first author to KanGAL under the
Indo-Finnish exchange student programme. First author also
wishes to thank KanGAL researchers for their help and
fruitful discussions.

REFERENCES

[1] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
strength pareto evolutionary algorithm for multiobjective optimiza-
tion,” in Proceedings of the Third Conference on Evolutionary and
Deterministic Methods for Design, Optimization and Control with
Applications to Industrial and Societal Problems (EUROGEN 2001),
Athens, Greece, Sept 2002, pp. 95–100.

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, April 2002.

[3] M. T. Jensen, “Reducing the run-time complexity of multiobjective
EAs: The NSGA-II and other algorithms,” IEEE Transactions on
Evolutionary Computation, vol. 7, no. 5, pp. 503–515, Oct 2003.

[4] N. K. Madavan, “Multiobjective optimization using a Pareto Differ-
ential Evolution approach,” in Proceedings of the 2002 Congress on
Evolutionary Computation (CEC 2002), Honolulu, Hawaii, May 2002,
pp. 1145–1150.

[5] S. Kukkonen and J. Lampinen, “An extension of Generalized Differ-
ential Evolution for multi-objective optimization with constraints,” in
Proceedings of the 8th International Conference on Parallel Problem
Solving from Nature (PPSN VIII), Birmingham, England, Sept 2004,
pp. 752–761.

[6] K. Maneeratana, K. Boonlong, and N. Chaiyaratana, “Multi-objective
optimisation by co-operative co-evolution,” in Proceedings of the 8th
International Conference on Parallel Problem Solving from Nature
(PPSN VIII), Birmingham, England, Sept 2004, pp. 772–781.

[7] X. Zou, M. Liu, L. Kang, and J. He, “A high performance multi-
objective evolutionary algorithm based on the principles of thermo-
dynamics,” in Proceedings of the 8th International Conference on
Parallel Problem Solving from Nature (PPSN VIII), Birmingham,
England, Sept 2004, pp. 922–931.

[8] M. R. Sierra and C. A. Coello Coello, “Improving pso-based multi-
objective optimization using crowding, mutation and e-dominance,”
in Proceedings of the 3rd International Conference on Evolution-
ary Multi-Criterion Optimization (EMO 2005), Guanajuato, Mexico,
March 2005, pp. 505–519.
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An Empirical Study of Control Parameters for The Third Version
of Generalized Differential Evolution (GDE3)

Saku Kukkonen and Jouni Lampinen

Abstract— In this paper the influence of control parameters
to the search process of previously introduced Generalized Dif-
ferential Evolution 3 (GDE3) is empirically studied. GDE3 is an
extension of Differential Evolution (DE) for constrained multi-
objective optimization. Besides the number of generations and
the size of the population, GDE3 has two control parameters,
CR and F , which have to be set before applying the method for
solving a problem. The effect of these two control parameters is
studied with a set of bi-objective test problems and performance
metrics.

The objectives of this study are to investigate the sensitivity
of the control parameters according to different performance
metrics, to understand better the effect and tuning of the control
parameters on the search process, and to compare results with
the corresponding results of the first version of GDE.

A similar non-linear relationship between the control param-
eters and performance metrics was observed as in earlier studies
with the first version of GDE. According to the relationship a
larger F value can be used with a small CR value than with a
large CR value.

I. INTRODUCTION

Many practical problems have multiple objectives and
several aspects cause constraints to problems. Generalized
Differential Evolution (GDE) [1]–[3] is an extension of
Differential Evolution (DE) [4], [5] for constrained multi-
objective (Pareto-)optimization. DE is a relatively new real-
coded Evolutionary Algorithm (EA), which has been demon-
strated to be efficient for solving many real-world problems.

In the earlier study [6], the effect of control parameters
has been studied using the first version of GDE and a set
of bi-objective test problems. The first version of GDE [1]
has no explicit non-dominated sorting or diversity mainte-
nance mechanism. This paper continues the earlier study
by repeating the same tests for the latest version of GDE,
known as GDE3 [3], which includes non-dominated sorting
and diversity maintenance. Results are presented the same
way as earlier and a comparison of results between the two
GDE versions is also included.

This paper continues with the following parts: Section II
describes the Differential Evolution algorithm and Section III
describes its extension, Generalized Differential Evolution.
Section IV describes experiments and finally conclusions are
given in Section V.

II. DIFFERENTIAL EVOLUTION

The DE algorithm [4], [5] was introduced by Storn and
Price in 1995. The design principles of DE are simplicity,

The authors are with the Department of Information Technology,
Lappeenranta University of Technology, P.O. Box 20, FIN-53851 Lappeen-
ranta, Finland; email: saku.kukkonen@lut.fi.

efficiency, and the use of floating-point encoding instead of
binary numbers. As a typical EA, DE has a random initial
population that is then improved using selection, mutation,
and crossover operations. Several ways exist to determine
a stopping criterion for EAs but usually a predefined upper
limit Gmax for the number of generations to be computed
provides an appropriate stopping condition. Other control
parameters for DE are the crossover control parameter CR,
the mutation factor F , and the population size NP .

In each generation G, DE goes through each D dimen-
sional decision vector �xi,G of the population and creates the
corresponding trial vector �ui,G as follows [7]:

r1, r2, r3 ∈ {1, 2, . . . , NP} , (randomly selected,
except mutually different and different from i)

jrand = floor (rand i[0, 1) · D) + 1
for(j = 1; j ≤ D; j = j + 1)
{

if(rand j [0, 1) < CR ∨ j = jrand)
uj,i,G = xj,r3,G + F · (xj,r1,G − xj,r2,G)

else
uj,i,G = xj,i,G

}
This is the most common DE version, DE/rand/1/bin. Both
CR and F remain fixed during the entire execution of the al-
gorithm. Parameter CR ∈ [0, 1], which controls the crossover
operation, represents the probability that an element for the
trial vector is chosen from a linear combination of three
randomly chosen vectors and not from the old vector �xi,G.
The condition “j = jrand” is to make sure that at least
one element is different compared to the elements of the
old vector. The parameter F is a scaling factor for mutation
and its value is typically (0, 1+]. In practice, CR controls
the rotational invariance of the search, and its small value
(e.g., 0.1) is practicable with separable problems while larger
values (e.g., 0.9) are for non-separable problems. The control
parameter F controls the speed and robustness of the search,
i.e., a lower value for F increases the convergence rate but
also the risk of getting stuck into a local optimum. Parameters
CR and NP have the same kind of effect on the convergence
rate as F has.

After the mutation and crossover operations, the trial
vector �ui,G is compared to the old vector �xi,G. If the trial
vector has an equal or better objective value, then it replaces
the old vector in the next generation. DE is an elitist method
since the best population member is always preserved and
the average objective value of the population will never get
worse.
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III. GENERALIZED DIFFERENTIAL EVOLUTION

The first version of a Generalized Differential Evolution
(GDE) extended DE for constrained multi-objective opti-
mization, and it modified only the selection rule of the basic
DE [1]. The basic idea in the selection rule of GDE is that
the trial vector is selected to replace the old vector in the next
generation if it weakly constraint-dominates the old vector.
This means that the trial vector is required to dominate1

compared old population member in the constraint violation
space or in the objective function space, or at least provide
an equally good solution as the old population member.
There was no sorting of non-dominated solutions during the
optimization process or any mechanism for maintaining the
distribution and extent of solutions. Also, there was no extra
repository for non-dominated solutions.

The second version, GDE2, made a decision based on the
crowdedness when the trial and old vector were feasible
and non-dominating each other in the objective function
space [2]. This improved the extent and distribution of the
obtained set of solutions but slowed down the convergence
of the overall population because it favored isolated solu-
tions far from the Pareto-front until all the solutions were
converged near the Pareto-front.

The third and latest version is GDE3 [3]. Besides the se-
lection, another part of the basic DE has also been modified.
Now, in the case of feasible and non-dominating solutions,
both vectors are saved for the population of next generation.
Before starting the next generation, the size of the population
is reduced using non-dominated sorting and pruning based
on diversity preservation.

In the earlier study [3], GDE3 was noted to obtain better
distribution compared to earlier GDE versions. However,
the performance was not thoroughly tested with commonly
adopted metrics for MOEAs by applying different control
parameter combinations.

IV. EXPERIMENTS

GDE3 was tested with the same set of bi-objective bench-
mark problems as in [6]. These problems are known as
SCH1, SCH2, FON, KUR, POL, ZDT1, ZDT2, ZDT3,
ZDT4, and ZDT6 [8, pp. 338–360] and they all have two
objectives to be minimized. The first two problems have
one decision variable whereas the rest of the problems have
multiple variables. A more detailed characterization of the
problems can be found in [6] and [8, pp. 338–360]. Since al-
most all the aforementioned problems with multiple variables
are variable-wise separable, new non-separable modifications
of ZDT problems were also added to the test set. These
problems are described in [9] and are called as L3-ZDT1,
L3-ZDT2, L3-ZDT3, L3-ZDT4, and L3-ZDT6.

In order to bound the number of results to fit into one
paper, many-objective problems (i.e., problems with more

1A solution (vector) x weakly dominates solution y in the function space
F , if x has at least as good value for all the functions of F as y has. If
x weakly dominates y and x has better value for at least one function of
F than y has, then x dominates y. If x and y do not dominate each other,
they belong to the same non-dominating set.

than two objectives) were not included to test set. Also, the
diversity maintenance technique of GDE3 has been observed
to perform badly for many-objective problems, and improv-
ing diversity maintenance is currently under research [10].

A population size of 100 was used in all tests. The number
of generations for each problem was kept the same as in [6],
and it was 30 for SCH1, 5 for SCH2, 150 for KUR, 30
for POL, and 250 for the FON, ZDT & L3-ZDT problems.
From the final population unique non-dominated solutions
were extracted to form an approximation of the Pareto-front.

Different control parameter value combinations in the
range CR ∈ [0, 1] and F ∈ [0, 3] with a resolution of 0.05
were tested for all the test problems. Tests were repeated
100 times with each control parameter combination and
the results were evaluated using convergence and diversity
metrics. Closeness to the Pareto-front was measured with a
generational distance (GD) [8, pp. 326–327], which measures
the average distance of the solutions from the Pareto-front.
Diversity of the obtained set of solutions was measured using
a spacing (S) metric [8, pp. 327–328], which measures the
standard deviation of the distances from each solution to the
nearest solution in the obtained non-dominated set. Smaller
values for both metrics are preferable, and the optimal values
are zero. The number of unique non-dominated solutions (ℵ)
in the final population was also registered.

Results for the different problems are shown in Figs 1–
15 as surfaces in the control parameter space. Similarly as
for GDE in [6], the results for all the problems show that
with a small F value the final population has the greatest
amount of unique non-dominated solutions, and also the
values for performance metrics GD and S are the best. For
the multidimensional (i.e., D > 1) test problems, values
for the performance metrics are best with low CR values,
whereas for the one-dimensional test problems, CR does
not seem to have a notable impact on the result. Results
with SCH1 show clearly how a large F value slows down
convergence speed.

The value range for F in the tests is larger than the
value usually used for single-objective optimization. The
results confirm the earlier observation in [6] that a larger
F value does not give any extra benefit in the case of multi-
objective optimization, and therefore its value can be chosen
from the same value range as in the case of single-objective
optimization.

From the results of the multidimensional test problems,
one can observe a non-linear relationship between CR and
F values, i.e., a larger F value can be used with a small
CR value than with a large CR value, and this relationship
is non-linear. This same phenomena was observed earlier
also with GDE [6]. An explanation for this was found from
a theory for the single-objective DE algorithm. A formula
for the relationship between the control parameters of DE
and the evolution/development of the population variance
has been conducted in [11]. The change of the population
variance between successive generations due to the crossover
and mutation operations is denoted with c and its value is
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Fig. 2. Mean values of the number of unique non-dominated solutions (ℵ) in the final population, generational distance (GD), and spacing (S) for SCH2
shown as surfaces in the control parameter space.
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Fig. 3. Mean values of the number of unique non-dominated solutions (ℵ) in the final population, generational distance (GD), and spacing (S) for FON
shown as surfaces in the control parameter space.
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shown as surfaces in the control parameter space.
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Fig. 5. Mean values of the number of unique non-dominated solutions (ℵ) in the final population, generational distance (GD), and spacing (S) for POL
shown as surfaces in the control parameter space.
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Fig. 6. Mean values of the number of unique non-dominated solutions (ℵ) in the the final population, generational distance (GD), and spacing (S) for
ZDT1 shown as surfaces in the control parameter space.
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Fig. 7. Mean values of the number of unique non-dominated solutions (ℵ) in the final population, generational distance (GD), and spacing (S) for ZDT2
shown as surfaces in the control parameter space.
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Fig. 8. Mean values of the number of unique non-dominated solutions (ℵ) in the final population, generational distance (GD), and spacing (S) for ZDT3
shown as surfaces in the control parameter space.
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Fig. 9. Mean values of the number of unique non-dominated solutions (ℵ) in the final population, generational distance (GD), and spacing (S) for ZDT4
shown as surfaces in the control parameter space.
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Fig. 10. Mean values of the number of unique non-dominated solutions (ℵ) in the final population, generational distance (GD), and spacing (S) for ZDT6
shown as surfaces in the control parameter space.

0

0.5

1

00.511.522.53

20

40

60

80

100

CR
F

L
3
−ZDT1, Cardinality

ℵ

0

0.5

1

00.511.522.53

0.005

0.01

0.015

0.02

0.025

0.03

CR
F

L
3
−ZDT1, Generational Distance

G
D

0

0.5

1

00.511.522.53

0.02

0.04

0.06

0.08

0.1

0.12

CR
F

L
3
−ZDT1, Spacing

S

Fig. 11. Mean values of the number of unique non-dominated solutions (ℵ) in the final population, generational distance (GD), and spacing (S) for
L3-ZDT1 shown as surfaces in the control parameter space.
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Fig. 12. Mean values of the number of unique non-dominated solutions (ℵ) in the final population, generational distance (GD), and spacing (S) for
L3-ZDT2 shown as surfaces in the control parameter space.
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Fig. 13. Mean values of the number of unique non-dominated solutions (ℵ) in the final population, generational distance (GD), and spacing (S) for
L3-ZDT3 shown as surfaces in the control parameter space.
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Fig. 14. Mean values of the number of unique non-dominated solutions (ℵ) in the final population, generational distance (GD), and spacing (S) for
L3-ZDT4 shown as surfaces in the control parameter space.
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Fig. 15. Mean values of the number of unique non-dominated solutions (ℵ) in the final population, generational distance (GD), and spacing (S) for
L3-ZDT6 shown as surfaces in the control parameter space.

calculated as c =
√

2F 2CR − 2CR/NP + CR2/NP + 1.
When c < 1, the crossover and mutation operations de-
crease the population variance. When c = 1, the variance
do not change, and when c > 1, the variance increases.
Since a selection operation of an EA usually decreases the
population variance, c > 1 is recommended to prevent too
high convergence rate with a poor search coverage, which
typically results in a premature convergence. On the other
hand, if c is too large, the search process proceeds reliably,
but too slowly. In practice it has been observed that c < 1.5
is suitable upper limitation for most of the cases [5].

When the size of the population is relatively large (e.g.,
NP > 50), the value of c depends mainly on the values of

CR and F . Curves c = 1.0 and c = 1.5 for NP = 100 are
shown in Fig. 16. These curves are also shown with the GD
and S surfaces in Figs 3–15, where it can be observed that the
curves define quite well the area of good control parameter
combinations according to the performance metrics. Some
variation exists probably due to the different characteristics
of the problems. Also, correspondence between the curve
c = 1.5 and NP surfaces can be observed clearly. Especially,
the NP surface for FON in Fig. 3 matches well with the
curve c = 1.5 with large CR values. This is a coincidence
because location of the NP surface “edge” depends on
selected number of generations. This connection between c
and NP was not observed so well earlier with GDE in [6].
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These observations propose that the theory for the popu-
lation variance between successive generations is applicable
also in the case of multi-objective DE and provides a way
to select good control parameter combinations. In order to
show the correspondence between favorable c values and the
performance metric values numerically, a correlation between
performance metrics and absolute deflection of c from a value
1.25 was calculated. The hypothesis is that the performance
declines when the corresponding c value differs from the
mean of the given range 1.0 < c < 1.5. This is illustrated
in Fig. 17, where the c values and the corresponding GD
values for ZDT1 are shown. This figure also justifies the
recommended c range. The correlation coefficient values
with corresponding significance levels for the test problems
are presented in Table I. For FON and most of the ZDT
& L3-ZDT problems a clear negative correlation between c
and NP , and positive correlation between c and the other
metrics can be observed. With the other problems there is
less correlation. One should note that the recorded metric
values depend on the number of generations used, and for
some problems the number might not have been the best
possible for observing the effect of the control variables.

Fig. 17. Relation between the development of the population variance (c)
and generational distance (GD) for ZDT1.

In general, the results are good with small CR and F
values, which also means a low c value (close to one).
One reason for the good performance with small control
parameter values is that the test problems have conflict-
ing objectives, which reduce overall selection pressure and
prevent the premature convergence. Another reasons is that
most of the problems have relatively easy objective func-

TABLE I

CORRELATION COEFFICIENTS (r) AND SIGNIFICANCE LEVELS (p)

BETWEEN THE PERFORMANCE METRICS AND ABSOLUTE DEFLECTION

OF c FROM A VALUE 1.25 FOR THE USED TEST PROBLEMS

|c− 1.25| ℵ GD S
Problem r p r p r p
SCH1 -0.5797 0.00 -0.0333 0.00 0.1589 0.00
SCH2 -0.2796 0.00 -0.0269 0.00 0.0829 0.00
FON -0.8272 0.00 0.8432 0.00 0.5807 0.00
KUR -0.5483 0.00 -0.0368 0.00 0.4963 0.00
POL -0.1781 0.00 -0.0034 0.22 0.0831 0.00

ZDT1 -0.6762 0.00 0.8757 0.00 0.6578 0.00
ZDT2 -0.5738 0.00 0.8583 0.00 0.6637 0.00
ZDT3 -0.6360 0.00 0.8635 0.00 0.5453 0.00
ZDT4 -0.2968 0.00 0.6044 0.00 0.2494 0.00
ZDT6 -0.5508 0.00 0.8733 0.00 0.6111 0.00

L3-ZDT1 -0.8690 0.00 0.8634 0.00 0.7693 0.00
L3-ZDT2 -0.8598 0.00 0.8702 0.00 0.7707 0.00
L3-ZDT3 -0.8648 0.00 0.8569 0.00 0.6782 0.00
L3-ZDT4 -0.5529 0.00 0.5564 0.00 0.6873 0.00
L3-ZDT6 -0.7542 0.00 0.8227 0.00 0.7181 0.00

tions to solve, leading to faster convergence with a small
F , while a bigger F might be needed for harder func-
tions with several local optima and/or if NP is smaller.
With the L3-ZDT problems, larger control parameter values
have been observed to provide a wider spread (see a web
site www.it.lut.fi/ip/evo for additional results) and
good results according to the hypervolume performance
metric [9].

The results for most of the ZDT problems show more
variation in the value of ℵ. A large amount of non-dominated
solutions is found for ZDT1 and ZDT3 with several different
control parameter combinations. Problems ZDT2 and ZDT6
have concave Pareto-fronts, and from the results it can be
seen that with some control parameter values the cardinality
of the obtained non-dominated set is lower. The probable
reason for this is that sometimes the resulting set for these
problems has converged to a single solution point even
though there is a diversity preservation mechanism in use.
This is due to the fact that in the ZDT problems, the first
objective depends on one decision variable while the second
objective depends on the rest of the decision variables. This
easily leads to a situation where the first objective gets
optimized faster than the second one, and the population
might lose its variability along this decision variable, leading
to the convergence of the front to a single point. A small
CR value is preferable, because then the search proceeds
along the variable axes and convergence to a single point of
the Pareto-optimal front does not occur so easily. Especially
with ZDT4, a small CR value is preferable as it can be seen
from the ℵ surface in Fig. 9. From the GD and S surfaces
of ZDT4, a better performance or “valleys” can be observed
when F is 0.5, 1.0, and 2.0. An explanation for this is that
ZDT4 has multiple local fronts with equal spacing. With the
aforementioned F values and three decision vectors having
solutions on local fronts, mutation of DE creates a vector,
which again has a solution on a local front (except if vectors
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in the difference term correspond adjoining local fronts and
F = 0.5). This causes the search to proceed faster.

When the performance metric surfaces between GDE
in [6] and GDE3 were compared, GD and S surfaces were
found quite similar except that GDE3 provided a better dis-
tribution than GDE according to S. The biggest differences
were observed with the ℵ surfaces. GDE3 is able to produce
Pareto-front approximation with a larger amount of points
than GDE, when control parameter values were varied, and
therefore GDE3 seems to be less sensitive to the selection
of control parameter values compared to GDE. To illustrate
the difference of results between GDE and GDE3 with the
same setups, the mean values of performance metrics over
the control parameter ranges are shown in Table II. GDE3
provides better overall results compared to GDE according
to the mean value of the metrics in all the cases except one:
with KUR the obtained front is on an average slightly closer
to the Pareto-front with GDE than with GDE3.

TABLE II

AVERAGES OF PERFORMANCE METRIC VALUES OVER THE CONTROL

PARAMETER RANGES CR ∈ [0, 1] AND F ∈ [0, 3] FOR GDE AND GDE3

ℵ GD S
GDE GDE3 GDE GDE3 GDE GDE3

SCH1 27.6092 38.6723 47505 41974 0.0872 0.0767
SCH2 41.1027 92.4175 0.0044 0.0012 0.0276 0.0090
FON 17.7244 60.2501 0.1269 0.0851 0.1203 0.0697
KUR 29.6221 95.0428 0.0515 0.0517 0.0525 0.0074
POL 25.7151 97.7713 0.1217 0.0358 0.0331 0.0057

ZDT1 32.5491 54.2051 0.2447 0.1627 0.0521 0.0284
ZDT2 9.8706 39.0638 0.5764 0.3764 0.2195 0.1095
ZDT3 32.0746 53.8696 0.1998 0.1466 0.0407 0.0225
ZDT4 7.2944 23.0973 15.8174 13.3424 0.2284 0.2028
ZDT6 8.5628 35.6411 1.2279 0.6626 0.2003 0.0915

Based on the results, the same control parameter ranges
CR ∈ [0, 1] and F ∈ (0, 1+] are usable for both single- and
multi-objective optimization, and it is safer to use smaller
values for CR. Overall, it is wise to select values for control
parameters CR and F satisfying the condition 1.0 < c < 1.5.

V. CONCLUSIONS

Different control parameter values for Generalized Dif-
ferential Evolution 3 (GDE3) were tested using bi-objective
test problems and metrics measuring the convergence and
diversity of the solutions. Results with GDE3 were compared
to the first version of GDE, and it can be concluded that
GDE3 is more robust in terms of selection of control vari-
ables, and provides in general better results as inferred from
the used metrics. Based on the empirical results, suitable
control parameter ranges for multi-objective optimization are
the same as for single-objective optimization, i.e., CR ∈ [0, 1]
and F ∈ (0, 1+]. The results also propose that a larger
F value than usually used in the case of single-objective
optimization, does not give any extra benefit in the case of
multi-objective optimization. It also seems that in some cases
it is better to use a smaller CR value to prevent the solution
from converging to a single point of the Pareto-front.

Also in the case of multi-objective optimization, the
non-linear relationship between CR and F was observed
according to the theory of the basic single-objective DE,
about the relationship between the control parameters and
the development of the population variance c. It is advisable
to select values for CR and F satisfying the condition
1.0 < c < 1.5.

In the future, a further investigation of the theory about
the development of the population variance and suitability
for multi-objective problems is necessary. Also, extending
studies for problems with more than two objectives remains
to be studied. Special cases, as multi-objective problems
without conflicting objectives and single-objective problems
transformed into multi-objective forms, might be interesting
to investigate.
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Abstract. Diversity maintenance of solutions is an essential part in
multi-objective optimization. Existing techniques are suboptimal either
in the sense of obtained distribution or execution time. This paper pro-
poses an effective and relatively fast method for pruning a set of non-
dominated solutions. The proposed method is based on a crowding esti-
mation technique using nearest neighbors of solutions in Euclidean sense,
and a technique for finding these nearest neighbors quickly. The method
is experimentally evaluated, and results indicate a good trade-off between
the obtained distribution and execution time. Distribution is good also in
many-objective problems, when number of objectives is more than two.

1 Introduction

Pruning a set of non-dominated solutions is a common and essential part of
multi-objective evolutionary algorithms (MOEAs) such as the strength Pareto
evolutionary algorithm (SPEA2) [1] and the elitist non-dominated sorting ge-
netic algorithm (NSGA-II) [2]. An idea is to prune a non-dominated set to have
a desired number of solutions in such a way that the remaining solutions have
as good diversity as possible, meaning that the spread of extreme solutions is
as high as possible, and the relative distance between solutions is as equal as
possible. The best way to obtain a good distribution would be using some clus-
tering algorithm. However, this is computationally expensive, since clustering
algorithms usually take time O

(
MN2

)
to prune a set of size N with M ob-

jectives [3]. The complexity makes clustering techniques inapplicable to large
population sizes, especially as pruning is usually done after each generation.
The pruning technique of SPEA2 is based on finding the kth nearest neighbor of
solutions, and has complexity of clustering because of a naive implementation.

In NSGA-II, the pruning of non-dominated solutions takes time O (MN log N)
based on the crowding distance. The pruning method of NSGA-II provides good

T.P. Runarsson et al. (Eds.): PPSN IX, LNCS 4193, pp. 553–562, 2006.
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diversity in the case of two objectives, but when the number of objectives is
more than two, the obtained diversity declines drastically [4]. The reason for
the bad performance is the fact that the crowding distance fails to approximate
the crowding of the solutions when the number of the objectives is more than
two [5].

Pruning of non-dominated solutions can be seen as a multi-objective optimiza-
tion problem in itself: the method should provide as good diversity as possible
and be as fast as possible. It has been considered that these objectives are con-
flicting. However, this paper proposes a new algorithm with two different crowd-
ing estimation techniques for pruning non-dominated solutions in such a way
that the obtained diversity is good also in the case of more than two objectives,
and the consumed time is considerably less than in clustering.

2 Proposed Pruning Method

The basic idea of the proposed pruning method is to eliminate the most crowded
members of a non-dominated set one by one, and update the crowding informa-
tion of the remaining members after each removal. This idea is trivial but it
contains two problems: how to efficiently determine the crowding of members
and how to efficiently update the crowding information of remaining members
after removal. Straightforward approaches for these computations are in time
complexity class O(MN2), which makes them inapplicable to large population
sizes. Therefore two approaches for crowding estimation based on the nearest
neighbors of solution candidates are introduced, and then a technique for find-
ing these nearest neighbors quickly is introduced.

2.1 Crowding Estimation Based on Nearest Neighbors

2-NN. Probably the simplest crowding estimation technique is to measure the
distance between a solution and its nearest neighbor solution, and use this dis-
tance to estimate crowding. The solution having the smallest distance is con-
sidered as the most crowded. When the Euclidean (L2) distance metric is used
for distance calculations, there will always be two solutions having the same
smallest distance to the nearest neighbor due to the symmetry property of the
metric. Instead of selecting randomly one of the two solutions, the solutions can
be ordered according to the distance to the second nearest neighbor. The solu-
tion having smaller distance to second nearest neighbor is more crowded. If the
distance to the nearest and second nearest neighbors is marked with LNN1

2 and
LNN2

2 , respectively, then a distance vector d2−NN = [LNN1
2 , LNN2

2 ] is attached to
each solution. In the case of real-coded variables and continuous objective func-
tions, this provides a crowding measure, which usually establishes unambiguous
ordering of solutions having the same smallest distance to the nearest neighbor.

M-NN. A bit more developed idea is to use the k nearest neighbors for crowding
estimation in such a way that distances to the k nearest neighbors are multiplied
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together, and the solution having the smallest product is considered the most
crowded. The product of distances, which is here called the vicinity distance, is
a simple measure, but it already manages to contain information about vicinity
and location. The idea is extended in such a way that the number of nearest
neighbors for crowding estimation calculations is kept the same as the number
of objectives, i.e., k = M . More formally vicinity distance is defined dM−NN =∏M

i=1 LNNi
2 , where LNNi

2 is distance to the ith nearest neighbor according to L2

distance metric.

2.2 Efficient k Nearest Neighbor Search

Finding the k nearest neighbors (k-NN) is a widely used operation in vector
quantization (VQ), and many efficient algorithms have been proposed during
the last three decades. The exact k-NN search technique used here is known as
the equal-average nearest neighbor search (ENNS) algorithm [6, 7], and it uses
the following theorem for the Euclidean (L2) distance measure to reduce the
amount of distance calculations:

∣∣∣∣∣
1

M

M∑

i=1

xi − 1

M

M∑

i=1

yi

∣∣∣∣∣ ≤ L2(x, y)√
M

⇔
(

M∑

i=1

xi −
M∑

i=1

yi

)2

≤ ML2(x, y)2 . (1)

Thus, if the sums of elements of given vectors x and y are known, an upper bound
for the Euclidean distance between them can be calculated. It is more convenient
to use the squared Euclidean distance, since the actual distance values are not
needed for finding neighbors, and calculating the square root is an expensive
operation computationally. The geometrical interpretation of (1) is that vectors
x and y are projected to a central axis of a hypercube (a projection vector
starting from origin and going through point (1, 1, . . . , 1)) and then the difference
of projection values is at most equal to the Euclidean distance between vectors
divided by the square root of the number of elements in the vectors. It has been
proved that (1) holds also for any other projection vector p than the central axis
of a hypercube, and (1) transforms into form [8]:

(px − py)
2 ≤ L2(x, y)2 , where px =

p · x

|p| and py =
p · y
|p| . (2)

It is useful to select the projection axis to represent the direction in which the
vectors have the largest variance, and such axis can be obtained using, e.g.,
principal component analysis (PCA) [8]. However, data analysis is not necessarily
needed in the case of a set of non-dominated solutions, since there already exists
information on how the vectors/solutions are distributed. When all the objectives
are to be minimized (or maximized), there exists such kind of monotonicity
between objective values that when values of M −1 objectives increase, then the
objective value of the remaining objective decreases. Thus, there is a negative
correlation between objective values, and the projection axis can be chosen to
go through points (0, 0, . . . , 0, 1) and (1, 1, . . . , 1, 0) if the objective values have
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been normalized to the value range [0, 1]. The projection axis chosen in this way
in the case of two and three objectives has been illustrated in Fig. 1 for sets of
non-dominated solution points. Projections of the points are also illustrated.
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Fig. 1. Selected projection axis in the case of two and three objectives when k-NN
search based on (2) is used

The ENNS technique can be used to find the nearest neighbors for solutions in
such a way that first the projected values of the vectors are calculated, and these
values are sorted. Then, for each solution vector, the distance to the solution
having the nearest projected value is set as the best minimum distance found so
far. The distances to other neighbor solutions according to the projected value
are also calculated, and the minimum distance value is updated accordingly, as
long as there exist neighbors for which (2) holds. This technique can be extended
easily for finding the k nearest neighbors using k-th smallest distance instead of
the minimum distance to reject distant solutions with (2) [8].

Besides ENNS, a technique called partial distortion search (PDS) algorithm [9]
is used to speed up the execution further. It interrupts the distance calculation
if a partial sum of elements exceeds a known minimum distance value. This
technique adds one extra comparison but decreases the number of mathematical
calculations speeding up the execution.

2.3 The Proposed Algorithm

The proposed pruning algorithm is based on the crowding estimation and k-NN
search techniques presented above, and minimization of all objectives is assumed.
For efficient maintenance of crowding information of remaining solutions after
removal of the most crowded solution, a priority queue such as a heap [10, pp.
140–152] is used. The proposed algorithm is:

Pruning of non-dominated set
input: a non-dominated set F (objectives are minimized),

the size n of a desired pruned set
output: elements of a heap H
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1 find minimum (fmin
i ) and maximum (fmax

i ) values of each objective i of
the members of F and normalize members according to the formula
fi = (fi − fmin

i )/(fmax
i − fmin

i )
2 for each member of F , change Mth objective fM to value 1 − fM and

calculate a sum of objective values, m
3 for each member of F , find nearest neighbors (cf. Sect. 2.2) and

calculate distance measure d (cf. Sect. 2.1) for crowding estimation
4 for members of F having a minimum or maximum objective value,

assign d = ∞
5 create an ascending heap H from the members of F
6 while |H| > n
7 remove an element (root node) with a minimum d value from H and

update H
8 for the neighbors of the removed element
9 calculate a new d value
10 replace old d value in H with the new one and update H

The first operation of the algorithm in line 1 is the normalization of objec-
tive values of the obtained non-dominated set. Different objectives might have
very different value ranges, and using unnormalized values would distort the ob-
tained distribution. The time complexity of the normalization is O(MN). The
normalization can lead to an infinite value if minimum and maximum values
for some objective are same. Then this objective can be discarded from calcu-
lations. The second line of the algorithm re-maps the M -th objective value fM

to value 1 − fM so that the original form (1) of ENNS can be used directly.
The complexity of the operations in line 2 is O(MN). Finding the M nearest
neighbors (in the case of M -NN crowding measure) for all the members of given
set in line 3 is known as the all-M -nearest-neighbor problem, and it can be done
in time O (MN log N) [11]. Line 4 takes time O(M) and makes sure that mem-
bers having extreme objective values are removed last. Creating a heap in line
5 takes time O (N log N). The while-loop in lines 6–10 is executed at most N
times (on average N/2 times). Removing a minimum element from the heap and
updating the heap to have correct structure in line 7 takes time O (log N). If
the M -NN crowding measure is used, each member of a non-dominated set has
on average M neighbors, whose crowding values are affected if the member is
removed (these neighbors can be found easily if neighborhood information is also
stored when the nearest neighbors have been searched in line 3). Therefore, the
for-loop in lines 8–10 is executed M times on average. The calculation of a new
crowding value in line 9 means finding the M nearest neighbors. This can be
done in time O(M log N) for a static set of vectors. Now, the set of vectors is
changing (reducing) and the actual time complexity depends on how the vectors
are distributed. Finally, replacing the crowding value to the heap, and updating
the heap to have the correct structure in line 10 takes time O (log N).

This analysis leads to a complexity class estimate O(M2N log N) for the whole
pruning algorithm. However, when the k-NN method presented earlier in this
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section is used in lines 3 and 9, the actual time complexity depends on how
members of the non-dominated set are distributed on the selected projection
axis. As the pruning method is used extensively, the most interesting thing is to
know the expected complexity in practice. This, as well as the performance of
the method according to the obtained diversity, is evaluated experimentally in
the following.

3 Experiments

The proposed pruning method with the two introduced crowding estimation
techniques was implemented in the Generalized Differential Evolution 3 (GDE3)
[12], which was then used to solve test problems. Also, pruning based on the
crowding distance as in NSGA-II was implemented in GDE3. GDE3 is an ex-
tension of Differential Evolution (DE) [13] for constrained multi-objective opti-
mization. Roughly speaking, the evolutionary part of the algorithm is DE and
the multi-objective part is from NSGA-II [2]. This combination has been shown
to give benefit over NSGA-II with rotated problems [14]. Furthermore, GDE3
has other improvements over NSGA-II, and an interested reader is advised to
see references [12, 5].

NSGA-II and SPEA2 were used for comparison1, and the diversity of the
obtained results was measured using spacing, maximum spread, and hypervol-
ume [15, pp. 327–333]. The spacing (S) measures the standard deviation of
distances from each vector to the nearest vector in the obtained non-dominated
set. A smaller value for S is better, and for an ideal distribution S = 0. The max-
imum spread (D) measures the length of the diagonal of a minimal hyperbox,
which encloses the obtained non-dominated set, and a larger value tells about
a larger spread between extreme solutions. The hypervolume (HV ) calculates
the volume of the objective space between the solutions and a reference (nadir)
point, and a larger value is better. The hypervolume measures both diversity
and convergence, but reflects more of convergence in its value.

Due to space limitations, only a small part of results are shown. The complete
set of results (including figures and more test problems) can be found in [16],
where also the code for the proposed pruning method is provided.

3.1 Bi-objective Problems

Bi-objective test problems, ZDT1, ZDT3, and ZDT6 [15, pp. 356–360] were solved
using population size 100 and 1000 generations. Tests were repeated 100 times
and mean & standard deviation values are reported in Table 1. According to the
spacing value, the proposed pruning method provides the best diversity, and the
M -NN crowding estimation technique is slightly better. Differences in the max-
imal spread and hypervolume values are minimal compared to the differences in
the spacing values. The proposed pruning method takes about two times longer to

1 Code for NSGA-II was obtained from the web site www.iitk.ac.in/kangal and for
SPEA2 from the web site www.tik.ee.ethz.ch/pisa.
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Table 1. Mean and standard deviation values of spacing (S), maximum spread (D),
hypervolume (HV ), and CPU times for ZDT test problems measured from 100 in-
dependent runs. GDE3 is implemented with pruning methods based on the crowding
distance (CD) and described crowding estimation techniques (2-NN & M -NN).

Problem Method S D HV Total time (s) Pruning time
(s)

ZDT1 NSGA-
II

6.9175e − 03 ±
5.6118e − 04

1.4146e + 00 ±
2.2506e − 03

3.6604e + 00 ±
2.3269e − 04

2.4076e + 00 ±
1.0456e − 02

1.5600e − 01 ±
3.8006e − 02

GDE3,
CD

6.4240e − 03 ±
5.5946e − 04

1.4113e + 00 ±
1.4634e − 03

3.6610e + 00 ±
1.2739e − 03

1.4877e + 00 ±
1.3246e − 02

1.0530e − 01 ±
3.1669e − 02

GDE3,
2-NN

2.8501e − 03 ±
2.8597e − 04

1.4114e + 00 ±
1.5524e − 03

3.6615e + 00 ±
1.7195e − 03

1.3560e + 00 ±
6.5134e − 03

2.3340e − 01 ±
3.6048e − 02

GDE3,
M-NN

2.6305e − 03 ±
2.8921e − 04

1.4115e + 00 ±
1.5376e − 03

3.6616e + 00 ±
1.1364e − 03

1.3570e + 00 ±
7.4536e − 03

2.3260e − 01 ±
4.1013e − 02

SPEA2 3.2063e − 03 ±
2.9122e − 04

1.4142e + 00 ±
7.2339e − 05

3.6619e + 00 ±
3.6100e − 05

1.1756e + 01 ±
7.0249e − 02

7.6469e + 00 ±
1.9474e − 01

ZDT3 NSGA-
II

4.9342e − 03 ±
4.5888e − 04

1.9676e + 00 ±
1.0790e − 03

4.8146e + 00 ±
1.3933e − 04

2.3584e + 00 ±
9.3980e − 03

1.5770e − 01 ±
3.7196e − 02

GDE3,
CD

4.3573e − 03 ±
4.1398e − 04

1.9639e + 00 ±
1.7943e − 03

4.8151e + 00 ±
1.0630e − 04

1.3838e + 00 ±
5.4643e − 03

8.5400e − 02 ±
2.9074e − 02

GDE3,
2-NN

1.7614e − 03 ±
1.9583e − 04

1.9600e + 00 ±
3.6983e − 02

4.8117e + 00 ±
3.6699e − 02

1.2235e + 00 ±
5.9246e − 03

1.6420e − 01 ±
4.5797e − 02

GDE3,
M-NN

1.6415e − 03 ±
1.6563e − 04

1.9639e + 00 ±
1.5796e − 03

4.8154e + 00 ±
2.5151e − 05

1.2194e + 00 ±
5.4717e − 03

1.6510e − 01 ±
4.3797e − 02

SPEA2 3.0892e − 03 ±
3.4177e − 04

1.9673e + 00 ±
1.0494e − 04

2.8151e + 00 ±
6.1957e − 05

1.1500e + 01 ±
7.2117e − 02

7.3613e + 00 ±
2.2574e − 01

ZDT6 NSGA-
II

8.3199e − 03 ±
6.6005e − 04

1.0463e + 00 ±
1.2942e − 04

2.9204e + 00 ±
2.8917e − 04

1.3882e + 00 ±
8.2118e − 03

1.4790e − 01 ±
3.3584e − 02

GDE3,
CD

6.6047e − 03 ±
6.5536e − 04

1.1648e + 00 ±
2.5260e − 02

3.0209e + 00 ±
1.3448e − 01

1.2147e + 00 ±
5.7753e − 03

9.6869e − 02 ±
3.4866e − 02

GDE3,
2-NN

2.7362e − 03 ±
3.0119e − 04

1.1656e + 00 ±
2.0350e − 02

3.0265e + 00 ±
1.0448e − 01

1.2347e + 00 ±
5.7656e − 03

2.3490e − 01 ±
3.5971e − 02

GDE3,
M-NN

2.6386e − 03 ±
2.8531e − 04

1.1632e + 00 ±
3.1709e − 02

3.0114e + 00 ±
1.8180e − 01

1.2309e + 00 ±
6.2109e − 03

2.3240e − 01 ±
3.6985e − 02

SPEA2 3.1010e − 03 ±
3.0937e − 04

1.1685e + 00 ±
3.6318e − 05

3.0412e + 00 ±
1.5286e − 04

1.1662e + 01 ±
5.7654e − 02

7.5451e + 00 ±
2.0404e − 01

execute than the pruning method based on the crowding distance. However, the
time needed for pruning is less than 20% from total CPU time needed2.

3.2 Tri-objective Problems

The proposed pruning method was also tested on a set of tri-objective test
problems, DTLZ1, DTLZ4, and DTLZ7 [4], using population size 300 and 1000
generations. Results after one run are shown in [16], and numerical results for
the problems from 100 repetition runs are shown in Table 2. The improvement
over the pruning method based on the crowding distance is clearly visible in [16],
and, visually, the proposed pruning method provides similar results compared to
SPEA2. Also the spacing metric in Table 2 indicates the same, this time the 2-
NN crowding estimation technique being slightly better in most cases compared
to M -NN. As in the case of bi-objective problems, the maximal spread and
hypervolume values have only small differences. The proposed pruning method
is now at worst about eight times slower than the pruning method based on the
crowding distance. The pruning time is intelligibly less for the 2-NN than for
the M -NN crowding estimation technique, and it is also less for DTLZ7, which
does not have continuous Pareto-front.

2 The total CPU time for the proposed pruning method is smaller compared to
GDE3 with the crowding distance because of overall speedups in the program code.
GDE3 uses a naive O(MN2) non-dominated sorting implementation instead of faster
O(N logM−1 N) implementation [3].
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Table 2. Mean and standard deviation values of spacing (S), maximum spread (D),
hypervolume (HV ), and CPU times for DTLZ test problems measured from 100 in-
dependent runs. GDE3 is implemented with pruning methods based on the crowding
distance (CD) and described crowding estimation techniques (2-NN & M -NN).

Problem Method S D HV Total time (s) Pruning time
(s)

DTLZ1 NSGA-
II

2.7301e − 02 ±
3.6882e − 03

8.0296e − 01 ±
4.8071e − 02

9.6937e − 01 ±
2.0890e − 03

9.3375e + 00 ±
6.6284e − 02

6.3347e − 01 ±
1.2919e − 01

GDE3,
CD

2.3927e − 02 ±
1.1410e − 03

9.0238e − 01 ±
1.7048e − 01

9.6748e − 01 ±
3.4917e − 02

1.3648e + 01 ±
1.1168e − 01

6.2460e − 01 ±
6.3444e − 02

GDE3,
2-NN

1.0591e − 02 ±
7.4208e − 04

8.8532e − 01 ±
1.2251e − 01

9.7272e − 01 ±
2.3476e − 02

1.6237e + 01 ±
1.0560e − 01

3.5605e + 00 ±
8.7404e − 02

GDE3,
M-NN

1.1260e − 02 ±
6.8360e − 04

9.1129e − 01 ±
1.9040e − 01

9.6780e − 01 ±
3.6437e − 02

1.7627e + 01 ±
1.6803e − 01

5.1749e + 00 ±
1.0265e − 01

SPEA2 8.7750e − 03 ±
2.0557e − 03

8.6981e − 01 ±
2.1762e − 02

9.7622e − 01 ±
3.9209e − 05

1.2211e + 02 ±
1.2821e − 01

7.6808e + 01 ±
1.7632e − 01

DTLZ4 NSGA-
II

3.1285e − 02 ±
1.5006e − 03

1.7385e + 00 ±
1.0485e − 02

7.3842e + 00 ±
1.5108e − 02

1.5752e + 01 ±
8.6729e − 02

7.7610e − 01 ±
6.4790e − 02

GDE3,
CD

2.8450e − 02 ±
1.2669e − 03

1.7321e + 00 ±
1.0347e − 06

7.4252e + 00 ±
2.9245e − 03

1.3813e + 01 ±
5.8934e − 02

6.4060e − 01 ±
6.9614e − 02

GDE3,
2-NN

1.4207e − 02 ±
1.6561e − 03

1.7289e + 00 ±
3.1785e − 02

7.4330e + 00 ±
1.0168e − 01

1.6918e + 01 ±
4.9857e + 00

4.1224e + 00 ±
4.9245e + 00

GDE3,
M-NN

1.5221e − 02 ±
1.1413e − 03

1.7321e + 00 ±
1.6773e − 07

7.4437e + 00 ±
2.2990e − 04

1.8109e + 01 ±
1.1213e − 01

5.1986e + 00 ±
1.7774e − 01

SPEA2 1.2543e − 02 ±
2.4636e − 03

1.7465e + 00 ±
7.0831e − 02

7.3918e + 00 ±
1.9807e − 01

1.3105e + 02 ±
1.0151e + 00

8.7409e + 01 ±
1.2951e + 00

DTLZ7 NSGA-
II

2.3073e − 02 ±
1.6451e − 03

3.5925e + 00 ±
4.8045e − 02

1.3493e + 01 ±
2.4877e − 02

1.4823e + 01 ±
1.4667e − 01

7.7070e − 01 ±
1.0215e − 01

GDE3,
CD

2.3658e − 02 ±
2.6283e − 03

3.6179e + 00 ±
7.8436e − 03

1.3545e + 01 ±
1.9480e − 02

1.2066e + 01 ±
2.2497e − 02

5.5920e − 01 ±
6.4834e − 02

GDE3,
2-NN

9.1687e − 03 ±
1.1766e − 03

3.6153e + 00 ±
3.0744e − 03

1.3586e + 01 ±
5.3207e − 03

1.2809e + 01 ±
2.9450e − 01

2.2352e + 00 ±
1.0391e − 01

GDE3,
M-NN

9.7859e − 03 ±
8.8586e − 04

3.6155e + 00 ±
2.6746e − 03

1.3588e + 01 ±
3.7791e − 03

1.3540e + 01 ±
3.3633e − 02

3.0734e + 00 ±
6.1664e − 02

SPEA2 1.5140e − 02 ±
8.2394e − 04

3.6067e + 00 ±
7.1954e − 03

1.3577e + 01 ±
1.1132e − 02

1.3342e + 02 ±
6.7649e − 02

8.8697e + 01 ±
1.0649e − 01

3.3 Measured Pruning Time Complexity

The time complexity of the proposed pruning method was verified experimentally
in the case of two and three objectives using ZDT1 and DTLZ1. The measured
pruning times for various population sizes are shown in Fig. 2.

In the bi-objective case (ZDT1), the proposed pruning method takes about
twice the time of the pruning method based on the crowding distance, and com-
plexity classes of the methods are same. Intelligibly, there is no notable difference
between the observed pruning times with the 2-NN and M -NN crowding esti-
mation techniques.

In the tri-objective case (DTLZ1), the execution time of the proposed pruning
method with the M -NN crowding estimation technique is at worst ten times more
than the time with the pruning method based on the crowding distance, and the
pruning time with the 2-NN crowding estimation technique is less than with
the M -NN crowding estimation technique. It seems that the proposed pruning
method scales well with the population size.

The difference between the measured pruning times in bi- and tri-objective
cases is larger than the estimated complexity class O(M2N log N) predicts. The
reason for this is probably the fact that the search of the nearest neighbors in
the case of two objectives is relatively easy because of the monotonic relation
between solutions in the objective space. On the other hand, the difference be-
tween the 2-NN and M -NN crowding estimation techniques in the tri-objective
case is relatively small, although the difference should be in proportion to M2.
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Fig. 2. Average and standard error of pruning times measured from 100 runs of solving
ZDT1 and DTLZ1 by GDE3 with pruning methods based on the crowding distance
(CD) and described crowding estimation techniques (2-NN & M -NN)

A probable reason for this is that there are constant calculations, which decrease
the proportional difference of measured times.

Estimation of the actual complexity class would require more problems with
different Pareto-fronts and a larger number of objectives. However, the measured
pruning times appear logarithmic and considerably smaller than that of the
pruning method in SPEA2 [5].

4 Conclusions

A pruning method with two different crowding estimation techniques for pruning
a set of non-dominated solutions has been proposed. The method is based on
crowding estimation using nearest neighbors of solutions and a fast technique
for finding the nearest neighbors.

According to the experimental results, the proposed pruning method pro-
vides a better distribution than the pruning method based on the crowding
distance. Especially in the case of tri-objective problems, the obtained diversity
is significantly better. The obtained distribution is observed to be similar to the
distribution obtained with SPEA2. The execution time needed for the proposed
pruning method is more than for the pruning method based on the crowding
distance but significantly less than for the pruning method in SPEA2.

Based on the results, the proposed method provides near optimal distribution,
which does not need improvement. The execution time might be still reduced
even thought it is currently reasonable. Evaluating the performance in the case
of more than three objectives, remain as future work.
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