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Abstract

In this study, feature selection in classi�cation based problems is

highlighted. The role of feature selection methods is to select impor-

tant features by discarding redundant and irrelevant features in the

data set, we investigated this case by using fuzzy entropy measures.

We developed fuzzy entropy based feature selection method using Yu's

similarity and test this using similarity classi�er. As the similarity

classi�er we used Yu's similarity, we tested our similarity on the real

world data set which is dermatological data set. By performing feature

selection based on fuzzy entropy measures before classi�cation on our

data set the empirical results were very promising, the highest classi-

�cation accuracy of 98.83% was achieved when testing our similarity

measure to the data set. The achieved results were then compared with

some other results previously obtained using di�erent similarity classi-

�ers, the obtained results show better accuracy than the one achieved

before. The used methods helped to reduce the dimensionality of the

used data set, to speed up the computation time of a learning algorithm

and therefore have simpli�ed the classi�cation task.
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1 Introduction

Many real world problems are characterized by large dimensionality data

sets, most of them are burdened with uncertainty of di�erent kinds, the

analysis and the learning from them requires a preprocessing method in or-

der to discard uncertainties. In machine learning one of the crucial problem

when dealing with big data sets is the selection of the relevant features and

elimination of non important features. In addressing this problem di�erent

methods of data reduction have been used and managed to eliminate the

redundancy and non-important features present in the data sets. Among

them feature selection (FS) has been shown to be a powerful approach of

dealing with high dimensional data by selecting relevant features from data

set at the same time removing irrelevant and (or) redundant (highly corre-

lated with others) features that harm the quality of the results, and therefore

build a good learning model [18]. A good feature selection techniques should

be able to detect and model the noisy and misleading features from the do-

main problem and help to get a minimal feature subsets but still keep the

important information present in the original data [19].

Feature selection methods have been successfully used in many areas such as

machine learning, pattern recognition, systems control, and signal processing

[19]. Interesting applications are found in bioinformatics [17] especially in

medical diagnosis to reduce the size of features collected during the clinical

testings and experiments [2], physicians are confronted with massive data

sets which are ranged from simple blood pressure and heart rate to magnetic

resonance imaging and electronencephalogram waveforms, they have to deal

with them correctly in order to avoid the cost associated with misdiagnosis,

failure to diagnose or delayed diagnosis and therefore improve accuracy in

well treating and serving the patients.
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As far as medical data sets are concerned, in this study dermatological data

about erythemato-squamous diseases will be analyzed to test our model.

This data set was successively used in classi�cation by di�erent researchers:

in 1988 Güvernir developed a classi�cation algorithm VFI5( for Voting Fea-

ture Intervals ) and apply it to the di�erential diagnosis of erythemato-

squamous diseases, he built up a genetic algorithm which he combined with

the VFI5 algorithm to determine the weight of the features in the domain

of di�erential diagnosis of erythemato-squamous, the obtained weights facil-

itated the VFI5 algorithm in a sense that 99.2% classi�cation accuracy was

achieved [14]. Further research in 2005 by Übeyli and Güler showed a new

approach based on adaptive neuro-fuzzy inference system (ANFIS) for the

detection of erythemato-squamous diseases, the ANFIS model was assessed

in terms of training performance and classi�cation accuracies and showed to

perform well in detecting erythemato-squamous diseases, the model achieved

a total classi�cation accuracy of 95.5% which is concluded to be good in com-

parison to the one of 85.5% achieved with the stand-alone neural network

[9].

In [24] Pasi Luukka and Leppälampi presented a new approach based on

similarity classi�er with generalized mean and applied it medical data: the

presented method managed to detect erythemato-squamous diseases, a good

mean classi�cation accuracy of 97.02% was obtained. In recent published

study [26] fuzzy entropy measures were used in feature selection. This

method successfully managed to discard the non-important features in the

data sets, this has positively facilitated the classi�cation task which was done

by using the similarity based on Lukasiewicz structure where a mean accu-

racy of 98.28% was achieved. In this study wrapper feature selection method

based on fuzzy entropy measures is performed to get rid of unwanted fea-

tures present in the data set [27], the use of fuzzy entropy based-feature

selection will facilitate our classi�cation task to be performed faster and to
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increase the classi�cation accuracy. We will test the e�ciency of the similar-

ity classi�er constructed from Yu's norm [20] [25] on dermatological data set.

MatlabTM software will be used for the computation purpose. The structure

of this thesis is organized as follows: In Chapter 1 we give general introduc-

tion to the feature selection methods, its usefulness in many areas of research

especially in medicine. Mathematical background on fuzzy sets theory and

fuzzy data analysis methods is presented in Chapter 2. Feature selection

methods: �lter, wrapper and embedded methods are brie�y introduced in

Chapter 3. In Chapter 4 we will present the classi�cation and similarity

classi�er methods. Next comes Chapter 5 which comprises the data sets and

its properties, then the obtained results using Matlab software. Finally in

Chapter 6, a comparison of our results with some other previously obtained

is done, conclusion and suggestions for future work are also presented in this

part.
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2 Mathematical background

Various mathematical methods were successfully used for year to de�ne,

structure and to solve real life problems. Among them, great contribution

of statistical and optimization methods in di�erent areas such as medicine,

economics etc. In addressing solutions to some problems researchers con-

fronted various challenges whereby some problems presented various types

of uncertainties [16] which were coming from many sources, more uncer-

tainty in the problem the less precise was its understanding. The sources

of uncertainties can be such as: errors of measurement, de�ciency in history

and statistical data, insu�cient theory, subjectivity and preference of hu-

man judgements etc, among di�erent uncertainties we have randomness of

occurrence of events, imprecision vagueness and ambiguity. Di�erent types

of uncertainties can be categorized as stochastic and fuzziness, stochastic

uncertainty are related to the occurrence of event and the stochastic systems

related are solved by using probability theory, on the other hand fuzziness

uncertainty are originated from vagueness of human language and behavior,

impreciseness and ambiguous in the system of data whereby the information

could not be well described and de�ned due to its limited knowledge and

de�ciency. Lot� A. Zadeh [31] introduced the Fuzzy sets theory and fuzzy

logic which was speci�cally the mathematical representation of uncertainty

and vagueness and provide formalized tools for dealing with the imprecision

intrinsic to many problems which are perception based, he allowed uncer-

tainty to exist in the characteristic function, this made fuzzy sets theory to

be the extension of the classical set theory where instead of an element in the

universe to be a member or non-member he added the degree of membership.

Various useful applications and solutions have been provided by fuzzy sets

to many real life problems and its usefulness has been growing rapidly since

fuzzy sets theory was found to be a good bridge to characterize and quantify

the uncertainty within di�erent areas, some of the pertinent applications are
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found in approximate reasoning, fuzzy pattern recognition, fuzzy modeling,

expert system, fuzzy control and fuzzy arithmetic, etc. In his paper [31],

Zadeh addressed much on the set membership as key to decision making

when faced with uncertainty [29], therefore all the operations on fuzzy sets

are de�ned based on the membership function which is considered as the

gradual property for fuzzy set.

2.1 Crisp set versus Fuzzy set

Let A be a crisp set de�ned over a UniverseX, the classical set theory is built

on the fundamental concept such that element is either a member A or not,

this concept can be clari�ed using the characteristic function (membership

function) µA(x) taking only two values 1 to indicate if an element x ∈ X is

a member of A and 0 otherwise:

µA(x) =

 1 for x ∈ A

0 for x /∈ A
(1)

In fuzzy set theory this property is generalized by accepting even partial

membership of a set, this make the fuzzy set theory to be an extension of

the classical (crisp) set theory.

Example 1 consider the universe X = {a, b, c, d, e, f, j} and its subsets

A = {b, d, e}. Only three elements of six in X are members of A. We

have:µA(b) = µA(d) = µA(e) = 1 µA(a) = µA(c) = µA(f) = 0

Example 2 In a basketball team the coach wants to select the tall players:

players with 2.09m are obviously quali�ed, in order for the coach to select

some other players he needs to base on their degree of tallness, player whose

height is 1.8m is not as tall as well as the one with 2.03m , as the height
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increases the membership grade increases, this example is presented in Figure

1.

Figure 1: Crisp set, Fuzzy set.

De�nition 1 (Fuzzy set) If we allow our valuation set {0, 1} to be the real

interval [0, 1] then A is called a Fuzzy set [16], [5] [12].

The membership function of fuzzy set is denoted by:µA; that is µA : X →

[0, 1].

µA(x) is the degree to which x ∈ A, the closer the value of the degree of

membership µA(x) is to 1, the more x belongs to A.

Notice that A is completely determined by the set of ordered pairs: A =

(x, µA(x)), x ∈ X.

Example 3 Suppose that we want to classify 5 people: John, Petter, Mary,

Bob and Bill who drink beer using the property " being drunkard". Let A be

fuzzy set that describes them,

A = {(John, 1)(Peter, 0.2)(Mary, 0.1)(Bob, 0.8)(Bill, 0.9)}. Obviously, John

is more drunkard than everyone because his degree of drunkenness is high i.e

his degree of membership is 1, whereas Mary is less drunkard with member-

ship degree 0.1.
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Zadeh proposed a more convenient way of notation for a fuzzy set A.

De�nition 2 When X is a �nite set x1, ..., xn, a fuzzy set on X is noted as

A = µA(x1)/x1, ..., µA(xn)/xn =
n∑
i=1

µA(xi)/xi. (2)

When X is not �nite, we write

A =

∫
x
µA(x)/x (3)

Example 4 X = N: positive integers.

Let A = {0.1/7 + 0.5/8 + 0.5/9 + 1.0/10 + 0.8/11 + 0.5/12 + 0.1/13}.

A is a fuzzy set of integers approximately equal to 10.

Example 5 X = R : real numbers.

Let µA(x) =
1

1+[ 1
5
(x−10)]2

2.2 Basic properties of fuzzy sets

In the following we will de�ne some basic properties of fuzzy sets theory [31],

[4]

De�nition 3 (Identity of two fuzzy sets ) Two fuzzy sets A and B are

identical, denote A = B i� ∀x ∈ X : µA(x) = µB(x).

De�nition 4 (Inclusion) A fuzzy set A is a subset of B, denotes A ⊆ B

i� ∀x ∈ X : µA(x) ≤ µB(x)

De�nition 5 (Convexity) A fuzzy setA is convex if the membership func-

tion of µA is quasi-convex, i.e ∀x, y ∈ X and λ ∈ [0, 1] the condition

µA(λx+ (1− λ)y) ≥ min(µA(x), µA(y)) is satis�ed.
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De�nition 6 (Support) Let A be a fuzzy subset of X, the support of A

denoted supp(A) is the crisp subset of X whose elements all have none zero

membership grades in A.

That is, supp(A) = {x ∈ X : µA(x) > 0}.

De�nition 7 (Core) We de�ne the core of a fuzzy set as the crisp subset

of X such that µA(x) = 1,

that is, core(A) = {x ∈ X : µA(x) = 1}.

De�nition 8 (Width) The width of a fuzzy set A is w(A) = sup[supp(A)]−

inf [supp(A)]

De�nition 9 (Height) The height of a fuzzy set A is the number hgt(A) =

supx∈X{µA(x)}

De�nition 10 (Normality) A fuzzy set A of a classical (crisp) set X is

said to be normal if there exists an x ∈ X such that µA(x) = 1 or simply

hgt(A) = 1, otherwise A is subnormal.

Points x ∈ X with µA(x) = 1
2 are called cross-over points. The empty sets ∅

and the Universe X are incorporated by ∀x ∈ X:µ∅(x) = 0,µX(x) = 1.

Notice that if a fuzzy set is not normal means hgt(A) < 1 and core(A) = ∅, it

can be normalized for example by stretching mapping. One such a stretching

mapping is

x 7−→ A(x)

hgt(A)
(4)
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The height, the core and support of a fuzzy set are shown in following Figure

2.

Figure 2: Height, support and core of a fuzzy set A.

Example 6 To illustrate the previous de�nitions consider:

a fuzzy set A such that A(x) = x−4
5 , x ∈ [4, 8]and 0 elsewhere . what is the

core, support and height?

1. core(A) = {x ∈ X : µA(x) = 1}, core(A) = ∅.

2. supp(A) = {x ∈ X : µA(x) > 0}, supp(A) = (4, 8).

3. hgt(A) = supx∈X{µA(x)}, hgt(A) = 4
5 .

Since our fuzzy set is not normalized we can normalize it by

4. A(x)
hgt(A) =

x−4
4
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2.3 Union, intersection and complement

De�nition 11 Given three fuzzy sets A and B on the universe X.

For a given element x of the universe X, the following function-theoretic

operations for the set-theoretic operations of union, intersection, and com-

plement are de�ned for A,B on X:

1. µA∪B(x) = max(µA(x), µB(x)): Union.

2. µA∩B(x) = min(µA(x), µB(x)): Intersection.

3. µA(x) = 1− µA(x): Complement.

These operations are known as the standard fuzzy operations.

Let us illustrate these operations numerically by an examples:

Example 7 : Given the universe set X = {1, 2, 3, 4, 5}, let A and B be two

discrete fuzzy sets,

A = 1
2 + 0.5

3 + 0.3
4 + 0.2

5 and B = 0.5
2 + 0.7

3 + 0.2
4 + 0.4

5

Using the previous de�nitions we can calculate:

1. Complement: A = 1
1 + 0

2 + 0.5
3 + 0.7

4 + 0.8
5 .

B = 1
1 + 0.5

2 + 0.3
3 + 0.8

4 + 0.6
5 .

2. Union: A ∪B = 1
2 + 0.7

3 + 0.3
4 + 0.4

5 .

3. Intersection: A ∩B = 0.5
2 + 0.5

3 + 0.2
4 + 0.2

5 .

4. Di�erence: A|B = A ∩B = 0.5
2 + 0.3

3 + 0.3
4 + 0.2

3 .

B|A = B ∩A = 0
2 + 0.5

3 + 0.2
4 + 0.4

3 .
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The standard fuzzy sets operations are the same as those for classical sets

when the range of membership values is restricted to the unit interval. How-

ever, these operations are not the only ones which can be applied to fuzzy

sets. These standards operation can be generalized to a broad class of func-

tions whose members can be considered as their fuzzy generalization [29]:

these functions are quanti�ed as fuzzy intersection and fuzzy union and are

referred in the literature as t-norms and t-conorms (or s-norms).

2.4 t-norm and t-conorm

The triangular norms (t-norm) and triangular conorms (t-conorms), which

generalize the form of intersection and union, are next well described and

later will be used to construct our similarity measure:

For any x, y, z and u ∈ [0, 1]

De�nition 12 (t-norm) A two-place function T : [0, 1] × [0, 1] → [0, 1] is

called t-norm if the following conditions are satis�ed:

1. T (x, 1) = x: one identity;

2. x ≤ z, y ≤ u⇒ T (x, y) ≤ T (z, u): monotonicity;

3. T (x, y) = T (y, x): commutativity;

4. T (T (x, y), z) = T (x, T (y, z)): associativity.

De�nition 13 A t-norm is called Archimedean if and only if T is continuous

and ∀x ∈ [0, 1] : T (x, x) < x.

Example 8 Find out whether the algebraic product T (x, y) = xy is a t-

norm.
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We have to verify if the t-norm conditions are veri�ed by using the given

rule:

for any x, y, zand d ∈ [0, 1]

1. T (x, 1) = x1 = x: identity;

2. ifx < zand y ≥ d then T (x, y) = xy ≥ zd

and T (x, y) ≥ T (z, d): monotonicity;

3. T (x, y) = xy = yx = T (y, x): commutativity;

4. T (x, T (y, z)) = xT (y, z) = x(yz) = (xy)z = T ((xy)z) = T (T (x, y), z):

associativity.

De�nition 14 (t-conorm) A two-place function Sn : [0, 1]× [0, 1]→ [0, 1]

is called t-conorm if the above conditions are satis�ed:

1. Sn(x, 0) = x: zero identity;

2. y ≤ z, y ≤ u⇒ Sn(x, y) ≤ Sn(z, u): monotonicity;

3. Sn(x, y) ≤ Sn(y, x): commutativity;

4. Sn(Sn(x, y), z) = Sn(x, Sn(y, z)): associativity.

Example 9 :

Prove whether the given expression Sn(x, y) = x + y − xy is a t-conorm, it

means we have to verify whether the conditions of t-conorm are satis�ed:

1. Sn(x, 0) = x+ 0− x0 = x: zero identity;

2. y ≤ z, y ≤ u⇒ Sn(x, y) ≤ Sn(z, u): monotonicity;

3. Sn(x, y) = x+ y − xy = y + x− yx = Sn(y, x): commutativity;
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4. Sn(Sn(x, y), z) = x+ y+ z− xy− xz− yz+ xyz = x+ (y+ z− yz)−

x(y + z − yz) = Sn(x, Sn(y, z)): associativity.

Notice that t-norms are functions which are called fuzzy intersections and

unions are the common shorthand term for triangular norms, t-norm and t-

conorm only di�er on their boundary conditions. Some additional properties

of t-norm and t-conorm are presented in the following de�nitions [20].

De�nition 15 (Continuity) T and Sn are continuous functions:

A t-norm T : [0, 1] × [0, 1] ⇒ [0, 1] is continuous if for all convergent se-

quences (xn)n ∈ N(Yn)n ∈ N ∈ [0, 1]n we have T (limx→∞ xn limx→∞ yn) =

limx→∞ T (xn, yn)

De�nition 16 A continuous t-norm that satis�es this condition:

T (x, x) < x (for t-norm) or Sn(x, x) > x for t-conorm ∀x ∈ [0, 1] is called

an Archimedean t-norm (respectively t-norm or t-conorm).

De�nition 17 A t-norm (t-conorm) is strict [1] if it is continuous on [0, 1]2

and strictly increasing in each place on [0, 1]2 so that T (x1, y) < T (x2, y),

whenever x1 < x2, y > 0, T (x, y1) < T (x, y2), whenever x > 0, y1 < y2.

De�nition 18 (Duality of t-norms ) A function

Sn : [0, 1] × [0, 1] → [0, 1] is dual t-conorm of t-norm such that for all

x, y ∈ [0, 1] both the following equivalent equalities hold

1. Sn(x, y) = 1− T (1− x, 1− y)

2. T (x, y) = 1− Sn(1− x, 1− y),

where (1− x) and (1− y) are respectively complements of x and y.
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The duality of t-norms is of a great importance since it combines t-norms

together and helps to transform t-norm to t-conorm and vice-versa, also

duality helps to change the order in a way that if two t-norms are ordered

as T1 ≤ T2 then the corresponding t-conorms are ordered as S1 ≥ S2.

Triangular norms have been of great use and investigation i.e starting from

pioneering work of Schweizer/Sklar (1961, 1983) and Ling (1965). We will

focus our attention mainly on the properties of t-norms with the idea in mind

that the similar results for t-conorm can be obtained by the duality relations

[18].

Example 10 :

Einstein sum is a t-conorm function, its bivariate form is given by

Sn(x1, x2) =
x1+x2
1+x1x2

by using the dual form of the t-conorm we get the cor-

responding t-norm which is

T (x1, x2) =
x1x2

2−x1−x2+x1x2

Next we present a list of the main well know and most frequently used t-

norms [12], [20]:

Tmin(x, y) = min(x, y) : Minimum; (5)

Tprod(x, y) = xy : Algebraic product; (6)

Tbprod(x, y) = max(0, x+ y − 1) : Bounded product; (7)
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TDs(x, y) =


x : when y = 0

y : when x = 0

1 : otherwise

: Drastic Sum; (8)

THα (x, y) =
xy

α+ (1− α)x+ y − xy
, α ≥ 0 : Hamacher's t-norm ; (9)

TFβ (x, y) = logβ(1 +
(βx − 1)(βy − 1)

β − 1
), β > 0, β 6= 1 : Frank's t-norm; (10)

T Yγ (x, y) = 1−min((1− x)γ + (1− y)γ)
1
γ , 1, γ > 0 : Yager's t-norm; (11)

TDok (x, y) = 1− 1

1 + ((1−xx )k + (1−yy )k)
1
k

, k > 0 : Dombi's t-norm ; (12)

TWθ (x, y) = max(0,
x+ y − 1 + θxy

1 + θ
), θ > −1 : Weber's t-norm ; (13)

T 1
SS(x, y) = max(0, (xp + yp − 1)

1
p ), p > 0 : Schweizer − Sklar's t-norm;

(14)

T Y uλ (x, y) = max(0, (1 + λ)(x+ y − 1)− λxy), λ > −1 : Yu's t-norm (15)

By using the duality we can easily establish the Yu's t-conorm, which is

SY uλ (x, y) = min(1, x+ y + λxy), λ > −1 (16)
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2.5 Fuzzy relation

As the fuzzy set is the extension of crisp set the concept and properties of

crisp relations are also generalized to fuzzy sets relations [29].

De�nition 19 (Fuzzy relation) Let X and Y be non-empty sets, a fuzzy

relation R is a mapping from the cartesian space X×Y to the interval [0, 1],

where the 'strength' of the relation is expressed by the membership function

µR(x, y) of the relation for ordered pairs (x, y) respectively from the two sets.

When X = Y our fuzzy relation R is called a binary fuzzy relation.

De�nition 20 (Fuzzy Cartesian product) Let A be a fuzzy set for the

universe X and B, a fuzzy sets from the universe Y . The Cartesian product

between A and B results in a fuzzy relation R: A×B = R ⊂ X×Y , where the

fuzzy relation has membership µR(x, y) = µA×B(x, y) = min(µA(x), µB(y))

De�nition 21 (Similarity relation) A fuzzy relation T on X is called

similarity relation on X the following axioms hold:

1. Re�exivity: ∀x1 ∈ X : µT (x1, x1) = 1: Every object is completely

similar to itself;

2. Symmetry: ∀x1, x2 ∈ X : µT (x1, x2) = µT (x2, x1): the degree in which

x1 is similar to x2 coincides with the degree in which x2 is similar to

x1;

3. ∀x1, x2, x3 ∈ X : µT (x1, x3) ≥ maxx2(min(µT (x1, x2), µT (x2, x3))). If

x1 is similar to x2 and x2 is similar to x3 then x1 is similar to x3

A fuzzy binary relation which is is re�exive, symmetric and transitive is

known as a fuzzy equivalence relation or similarity relation [21]. The idea
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behind fuzzy equivalence relation is to compare elements according to their

grade of equivalence and classify them. We can use this knowledge in our

classi�cation task to construct classes of objects which are similar or equiv-

alent. Since the theoretical operations of fuzzy set are the base for fuzzy

logical operation, we will use fuzzy logic equivalence to establish the law

which will help us to compare similar objects in our classi�cation task. In

the book [22] Lowen de�ned di�erent ways classical logic connectives can be

extended to fuzzy logic, he showed how the notion of t-norms, t-conorms and

negation can be combined to derive the equivalent relation of the form:

E(µa(x), µb(x)) = T (Sn(µa(x), µb(x), Sn(µb(x), µa(x))) (17)

∀µa(x), µb(x) ∈ [0, 1], where Sn denotes fuzzy union and T denotes fuzzy

intersection, a and b are fuzzy sets, a and b are respectively the complements

of a and b. This equation (17) will be used later to construct our similarity

measure.
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3 Feature Selection Methods

Feature is any aspect quality or characteristics of any object, usually in big

data sets not all the features are important to describe the target concept

that is why feature selection method is needed to select a subset of the origi-

nal feature present in a given data set that provides most useful information.

The feature selection task can be formulated as follows: given a feature set

Y = (y1, y2, ..., yn) �nd a subset Z = (y1, y2, ..., yk) of Y with k < n, which

optimizes an objective function W(Y).

The process of feature selection is very important because it reduces the di-

mensionality of the data and enables learning algorithms to operate faster

(reduction of the computation time) and more e�ciently and, therefore, in-

creases the accuracy of the resulting model. Feature selection is performed

using feature selection algorithm which in general comprises the following

components [32]: search strategy: feature space is searched and a subset

select from the candidates: i.e sequential feature selection. The forwards

feature selection begins with an empty sets of features (zero features), eval-

uates all features subsets and select the ones with best performance criteria.

The backwards feature selection starts with all features and repeatedly re-

moves features this way improving best the performance criteria. In general,

machine learning provides the technical basis of data mining for feature sub-

set selection, which can be grouped as [18]: �lters, wrappers, and embedded

techniques.

3.1 Filter Methods

In �lter techniques, we evaluate the relevant of features based on some dis-

criminating criterion that looks at the general characteristics of the data with

the idea of producing the most promising subset before learning commences.
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It is a preprocessing step where undesirable features that have little chance

to be useful in the analysis of data are �ltered out through checking data

consistency and elimination of features whose information is represented by

others or considered as irrelevant. These methods do not use the learn-

ing algorithm or large data set. The results of such method are usually a

ranked list of features where at the top of the list are relevant features and

at the bottom of the list are not so relevant or totally irrelevant features.

Filter methods provide the cheapest approach to the evaluation of feature

relevance, moreover �lter methods performed before help wrapper and/or

embedded methods to be more feasible.

3.2 Wrapper methods

Wrapper techniques incorporate the learner (classi�er ) in the process of

selecting the most relevant subset features, and may improve the overall

machine learning algorithm performance. Wrapper methods use the learning

machine to measure the quality of subsets of features without incorporating

knowledge about speci�c structure of classi�cation function and can therefore

be combined with any learning machine. In wrapper methods we search

for an optimal feature subset trough testing the performance of candidates

subsets using the learning algorithm. However this process is proved to be

slower than the �lter methods because the induction algorithm is repeatedly

called. Wrapper methods are known to be more accurate than �lters due

to the fact that they are oriented to the speci�c interaction between an

induction algorithm and its training data but it is more computationally

expensive, and do not scale up well high dimension data set.
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3.3 Embedded methods

Embedded methods di�er from others feature selection method in the way

feature selection and the learning interact. Filter methods do not incorporate

learning while wrapper methods use a learning machine to measure the qual-

ity of subsets of features without incorporating knowledge about the speci�c

of structure of the classi�cation or regression function, and can therefore be

combined with any learning machine. In contrast to the above two methods,

embedded methods do not separates the learning from the feature selection

part, the structure of the class under consideration plays a crucial role.

Notice that every family of feature selection methods (�lter, wrapper and

embedded) has its own advantages and drawbacks. In general, �lter methods

are fast since they do not incorporate learning. Most wrapper methods

a search for optimal features, the learning algorithm is called repeatedly

and this make the wrapper methods to be slower than the �lter methods,

the embedded methods are faster than the wrapper methods. Embedded

methods tend to have higher capacity than �lter methods and are therefore

more likely to over�t.
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We expect �lter methods to perform better if only small amounts of training

data samples are available or in case of very high dimensional data. With

high dimensional data, embedded methods will eventually outperform �lter

methods. The above three methods where introduced in [13] summarized in

Figure 3.

Figure 3: Filter, wrapper and embedded methods.
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3.4 Fuzzy feature selection methods

Fuzzy set and fuzzy logic theory provide a way of measuring and reducing

uncertainties in data sets through di�erent methods [5], fuzziness measures

and fuzzy entropy measures are below de�ned and discussed.

3.4.1 Fuzziness measure

Fuzziness measure is de�ned as follows:

De�nition 22 Given a universe set X and a nonempty family C of a subsets

of X, a fuzzy measure on (X, C) is a function g : C → [0, 1] that satis�es the

following requirements:

(R1). g(∅) = 0 and g(X) = 1, (boundary requirements);

(R2). ∀A,B ∈ C, if A ⊆ B, then g(A) ≤ g(B), (monotonicity);

(R3). For any decreasing sequence A1 ⊂ A2 ⊂ · · · ∈ C if
⋃∞
i=1 ∈ C, then

limi→∞ g(Ai) = g(
⋃∞
i=1)

(continuity from below);

(R4). For any decreasing sequence A1 ⊃ A2 ⊃ · · · ∈ C if
⋂∞
i=1 ∈ C, then

limi→∞ g(Ai) = g(
⋂∞
i=1)

(continuity from above).

The boundary requirement (R1) states that since the ∅ does not contain any

element, it cannot contain the element of our interest, on the other hand

since the universal set contain all elements under consideration therefore it

must contain our elements of interest as well. Requirement (R2) explains

that the membership degree of an element in a subset A ⊆ B is smaller than
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the degree of membership of an element in B. R3 and R4 are considered

in case of in�nity universal set.

In many cases we are interested in having suitable measures of impreciseness

and vagueness since the uncertainty of data can have di�erent sources [4],

this takes us to fuzzy measures. Fuzzy measures give us a good knowledge on

of how far a given fuzzy set is from a well de�ned classical (crisp) reference

sets.

3.4.2 Fuzzy entropy measures

Fuzzy entropy represents the fuzziness of a fuzzy set, fuzziness of a fuzzy set

is represented through degree of ambiguity, hence the entropy is obtained

from fuzzy membership itself.

De�nition 23 (Entropy) Entropy is a measure of the amount of uncer-

tainty in the outcome of a random experiment, or equivalently, a measure of

the information obtained when the outcome is observed [7].

This will play an important role in this research because of its importance

in partitioning the input feature space into decision regions and selecting

relevant features with good separability for the classi�cation task [7]. Various

de�nitions of fuzzy entropy have been proposed, basically, a well-de�ned

fuzzy entropy measure must satisfy the following four axioms [7], [4]:

1. E(A) = 0 i� A ∈ 2X , where A is a non empty sets and 2X indicates

the power set of A,

2. E(A) = 1 i� µA(xi) = 1∀ i ,

3. E(A) ≤ E(B) if µA(x) ≤ µB(x) when µB(x) ≤ 0.5 and µA(x) ≥

µB(x) when µB(x) ≥ 0.5
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4. E(A) = E(Ac)

In the following we will de�ne some of well known fuzzy entropy measures

[4]. De Luca and Termini suggested that the corresponding to Shannon

probabilistic entropy, the measure of fuzzy entropy should be:

H1(A) = −
n∑
j=1

(µA(xj) logµA(xj) + (1− µA(xj)) log(1− µA(xj))) (18)

where µA(xj) are values in [0, 1].

This fuzzy entropy measure is considered to be a fuzziness measure [4], and

it evaluate global deviations from the type of ordinary sets, i.e. any crisp set

Ao leads to H(Ao) = 0. Note that the fuzzy set A with µA(x) = 0.5 plays

the role of maximum element of the ordering de�ned by H.

Newer fuzzy entropy measures were introduced by Parkash [4] and are de�ned

as follows:

H2(A;w) =

n∑
j=1

wj(sin
πµA(xj)

2
+ sin

π(1− µA(xj))
2

− 1) (19)

H3(A;w) =

n∑
j=1

wj(cos
πµA(xj)

2
+ cos

π(1− µA(xj))
2

− 1) (20)

These fuzzy entropy measures(18), (19), (20) will be used in feature selection

process to evaluate the relevance of di�erent features in the feature set, this

is done by discarding those features with highest fuzzy entropy value in

our training set: if the entropy value is high we assume that the feature

is not contributing much for the deviation between classes, then it will be

removed in our feature set. This process will be repeated for all features in

the training set. The classi�cation of the data set becomes relevant after

removing irrelevant and redundant features in the data set.
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3.5 Feature selection based on entropy measures and Yu's

similarity

The notion about the feature selection based on entropy measure and similar-

ity measure was originally introduced in [26] and is extended in this study to

cover the similarity based on Yu's norm which is applied to dermatology data

set, the main idea is �rst to create ideal vectors Vi = (vi(f1), ..., vi(fN )), i =

1, ..., N that represent the class i as well as possible. This can be user de�ned

or calculated from some samples set Xi of the vectors X = (x(f1), ..., x(fD))

which are known to belong to class Ci. Here we use the generalized mean to

create these class ideal vectors.

We then calculate the similarities (S(x, V i)) between the samples x and all

the ideal vectors Vi. The role of similarity measure is to evaluate the degree

of the resemblance or likeness of matched objects, for this purpose we have

chosen the similarity measure developed from Yu's norms (15), (16) and it

will help to compare similar objects in the classi�cation task. This similarity

measure was constructed by replacing Yu's norms (15), (16) in the relation

(17) and is below de�ned:

S(x, v) = max(0, (1+λ)(Sn(x, v)+Sn(x, v)−1)−λSn(x, v)Sn(x, v)), (21)

where λ > 1 is a weight parameter,

Sn(x, v) = min(1, x+ v + λxv) (22)

and negation is written as x = 1− x for x, v ∈ [0, 1]d.

In calculating the similarity for our samples vectors and ideal vectors we get

j similarities where j is the number of features. We then collected those

similarities into one similarity matrix. At this step comes the idea of us-

ing the entropy measures to evaluate the relevance of the features, we used

the equation (18) with µA(xj) being similarity values, we remarked that the
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higher similarity values are, the lower the entropy values are. If the simi-

larity values are close to 0.5 we conclude that we get high entropy values,

this underlying idea will help us to identify the features with high entropy

values. By summing the entropy values for all the samples in learning set

for the feature we get t entropy values for t features, Since hight entropy

value corresponds to high uncertainty, we will remove all features with hight

entropy values in samples because based on the assumption that they are

not contributing much for the deviation between classes, this procedure can

be repeated to remove all those non important features. The above method

is illustrated in the Figure 4.

Figure 4: Feature selection based on entropy measures and Yu's similarity.
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The feature selection based on similarity and fuzzy entropy measure is demon-

strated in the following pseudo-code algorithm (1).

Algorithm 1 Pseudo code for feature selection.
Require: idealvec[1, . . . , l], Datalearn[1, . . . ,m]

for j = 1 to m do

for i = 1 to t do

for k = 1 to l do

Sn1[i][j][k] = Sn(1−Datalearn[i][j], idealvec[j][i][k])

Sn2[i][j][k] = Sn(Datalearn[i][j], 1− idealvec[j][i][k])

sim[i][j][k] = max[0, (1−λ)(Sn1[i][j][k] +Sn2[i][j][k]− 1)−λSn1[i][j][k]Sn2[i][j][k])]

end for

end for

end for

Sort similarity values sim[i][j][k] according to feature set U

for i = 1 to t do

H[i] = −
∑
x∈U µi[x]lnµi(x) + (1− µi(x))ln(1− µi(x))

end for

J = argmaxiH[i]

Remove J :th feature from the data.

The algorithm presents m samples, t features, l classes. In the algorithm

datalearn stands for the learning set matrix, a typical learning algorithm re-

quires two sets of examples [32]: training sets to produce the learned concept

description and test sets to evaluate classi�cation accuracy. The algorithm

computes similarity values which are then sorted in one large matrix ofml×t

from which the fuzzy entropy values for each feature summing through ml

values can be calculated for each feature. We then �nd feature with big fuzzy

entropy value and remove them in our data set. After feature removal we

use the classi�er (21) to classify the remaining data.

We illustrate the feature selection based on similarity and fuzzy entropy

measure in the following example:
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Example 11 (Feature selection with Lukasiewicz measure) Consider

the following data in Table 1.

Table 1: Feature selection example.

object V1 V2 V3

O1 1
2

3
10

2
7

O2 1
2

5
10

6
7

O3 1 6
10

1
7

O4 1 10
10

7
7

We know that objects O1 and O2 belong to class A and objects O3 and O4

belong to class B, use the (26) and (18) measures to remove variables with

highest uncertainty. The mean vector for class A and B are µA = [0.5, 4
10 ,

4
7 ],

µB = [1, 8
10 ,

4
7 ], to compute the similarity measure between objects and mean

vectors we use the equation (26).

S(O1, µA) = [1, 9
10 ,

5
7 ], S(O2, µA) = [1, 9

10 ,
5
7 ], S(O3, µB) = [1, 8

10 ,
4
7 ], S(O4, µB) =

[1, 8
10 ,

4
7 ].

This similarity values are next presented in matrix form
1 9

10
5
7

1 9
10

5
7

1 8
10

4
7

1 8
10

4
7

 (23)

Next we calculate fuzzy entropy for our variables V 1,V 2,V 3, and remove

variables with highest uncertainty, we use the equation (18 ) to compute the

entropy values, we get h(V 1) = 0,h(V 2) = 1, 65,h(V 3) = 2.37.

We decide to remove variable V 3 because of its highest entropy values.

Example 12 The same example is again down presented using our simi-

larity measure (21): To compute the similarity measure between objects and
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mean vectors we use the similarity based on Yu's norm (21) when the pa-

rameter λ = 1. These similarity values are presented in Table 2

Table 2: Similarities in feature selection example.

similarity V1 V2 V3

S(O1, µA) 1 1 0.8367

S(O2, µA) 1 1 0.7959

S(O3, µA) 0.5 0.96 0.6327

S(O4, µA) 0.5 0.4 0.5714

S(O1, µB) 0.5 0.56 0.8367

S(O2, µB) 0.5 0.8 0.7959

S(O3, µB) 1 0.92 0.6327

S(O4, µB) 1 0.8 0.5714

Next we calculate fuzzy entropy values for our variables V 1,V 2,V 3, and re-

move the variable with highest uncertainty. For calculating entropy we use

the equation (20, and we get h(V 1) = 1.66, h(V 2) = 1.50, h(V 3) = 2.55.

Next we decide to remove variable V 3 because of its highest entropy values.
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4 Similarity classi�er

The problem of classi�cation is basically one of partitioning the feature space

into regions, one region for each category i.e establish boundaries in feature

space. Ideally, one would like to arrange this partitioning so that none of

the decisions is ever wrong. When this cannot be done one would like to

minimize the probability of error [26]. Simply, the classi�cation task can be

understood in this way: assigning objects to classes (groups) on the basis

of measurements made on the object. Usually, the problem of classi�ca-

tion starts with a vaguer general knowledge about the situation together

with a number of designed samples particular representatives of the patterns

we want to classify, then our problem will consist in exploiting the given

information to design the classi�er. Classi�ers are divided into categories

according to their learning methods: supervised learning and unsupervised

learning. In classi�cation, learning means that the algorithm usually learns

through samples of how the classi�cation should be done and then it can

classify data sets with similar problems. In supervised learning the set of

classes is speci�ed in advance and the goal is to decide whether candidate

objects belong to those classes. In unsupervised learning the goal is to decide

which object should be grouped together, no classes are speci�ed in advance.

This classi�cation process is again clari�ed as follows: given the data to be

classi�ed, k samples, we �rst calculate ideal vectors, secondly we compute

the similarity between the samples and ideal vectors, lastly we classify the

samples based on the highest similarity value.

In classi�cation we have chosen to use a similarity measure developed from

Yu's norm (21)

We would like to classify a set X of objects to N di�erent classes C1, ..., CN

by their features. Let D be the number of di�erent kinds of features f1, ...fD.
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We assume that the values for the magnitude of each feature is normalized

so that it can be presented between [0, 1], this implies that the object we

want to classify are vector belong to [0, 1]D.

In the �rst step we determine the ideal vector Vi = (vi(f1), ..., vi(fD)),

i = 1, ..., N that represent the class i as well as possible,this vector can

be user de�ned or calculated from some samples set Xi of the vectors X =

(x(f1), ..., x(fD)) which are known to belong to class Ci. We can actually

use the generalized mean to calculate Vi which is.

vi(r) = (
1

]Xi

∑
x∈Xi

x(fr)
m)

1
m ∀r = 1, ..., D (24)

where the power value m is �xed for all i and D, and ]Xi is the number of

samples class i.

In the second step, we have to make a decision to which class an arbitrary

chosen x ∈ X belongs, this can be done by comparing it to the ideal vector

by means similarity measure (21). Brie�y, the method compares the ideal

vector to every sample in the test set using the similarity measure. We decide

that x ∈ Ci if

S〈x,vi〉 = max
i=1,...,N

S〈x,vi〉 . (25)

In this way, the sample is classi�ed to a class with highest similarity value.

Next we demonstrate the above steps with an example:
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Example 13 :

Given data that presents six samples each having four measured values (fea-

tures) (f1, ..., f4) in Table 3 and we know which class they belong, we get

a new sample: x = [69, 31, 51, 20] without the knowledge to which class it

belongs. Compute using Similarity based on Lukasiewicz structure:

S(x, v) =
1

t

∑
(1− |x(fr)− v(fr)|), for[x, v] ∈ [0, 1] (26)

, to which class the given sample belongs?

Table 3: Similarity classi�er problem.

F1 F2 F3 F4 Classes

64 32 45 15 1

69 31 49 15 1

74 28 61 19 2

79 38 64 20 2

Solution:

All values are positive. The maximum values for Features are: [79, 38, 64, 20]

Calculate the mean vectors: v1, v2 for classes: v1 = [64+69
2 , 32+31

2 , 45+49
2 , 15+15

2 ] =

[66.3, 31.5, 46.5, 15]

v2 = [74+79
2 , 28+38

2 , 61+64
2 , 19+20

2 ] = [76.5, 33, 62.5, 19.5].

Next we compute the total similarity values between samples and mean vec-

tors that are representing the classes:

S(x, v1) =
1
4(1−|

69−66.5
79 |+1−|31−31.538 |+1−|51−46.564 |+1−|20−1520 |) = 0.9087

S(x, v2) =
1
4(1−|

69−76.5
79 |+1−|31−3338 |+1−|51−62.564 |+1−|20−19.520 |) = 0.9119

By looking at our similarity values we conclude that our sample belongs to

the second class which correspond to the highest similarity value of 0.9119.
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5 Data set and Results from data set

5.1 Dermatological data set

The data set used in this study are freely available from UCI machine learning

data repository [27] and came from Gazi University and Bilkent University:

it was donated by N. Ilker and H.A. Guvenir. The fundamental properties

of the data set is shown in Table 4.

Table 4: Dermatological data set and its main properties.

Data set Nb. classes Nb. features Nb. cases

Dermatology 6 34 366

The department of dermatology is concerned with the diagnostic of erythemato-

squamous diseases which are grouped as follow: soriasis, seboreic dermati-

tis, lichen planus, pityriasis rosea, cronic dermatitis, and pityriasis rubra

pilaris, they all present common clinical features of erythma and scaling

with slight variation. Although biopsy is required for the diagnostic of

erythemato-squamous diseases it was remarked that these diseases share

many histopathological features, a disease may show at the beginning stage

the feature of another and may have the characteristic feature at the fol-

lowing stage, this make the problem of erythemato-squamous diseases more

seriously and a real concern of the department of dermatology.
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The following Table 5 shows di�erent attributes and class distribution of

data dermatology data set:

Table 5: Class distribution of dermatology data set.

Class Attributes clinical Histopathological

Psoriasi (111) Att. 1: erythema Att. 12: melanin incontinence

Seboreic dermatitis(60) Att.2: scaling Att. 13: eosinophils in in�ltrate

Lichen planus (71) Att. 3: de�nite borders Att. 14: PNL in�ltrate

Pityriasis rosea(48) Att. 4: itching Att. 15:�brosis of the papillary dermis

Cronic dermatitis(48) Att.5:koebner phenomenon Att. 16:exocytosis

Pityarisis rubra pilaris (20) Att. 6: polygonal papules Att.17:acanthosis

Att.7:follicular papules Att. 18: hyperkeratosis

Att.8:oral mucosal involvement Att. 19: parakeratosis

Att.9:knee and elbow involvement Att. 20: clubbing of the rete ridges

Att.10:scalp involvement Att. 21: elongation of the rete ridges

Att.11:family history Att.22: thinning of the suprapapillary epidermis

Att.34:age Att. 23: pongiform pustule

Att. 24: munro microabscess

Att. 25: focal hypergranulosis

Att. 26: disappearance of the granular layer

Att. 27: vascularization and damage of basal layer

Att. 28: spongiosis

Att. 29: saw-tooth appearance of retes

Att. 30: follicular horn plug

Att. 31: perifollicular parakeratosis

Att. 32: in�ammatory mononuclear in�ltrate

Att. 33: band-like in�ltrate
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5.2 Results

In this part, we present the obtained result from our data set analysis.

The given data set was divided into two parts: one part was used for training

and another for testing and this procedure was repeated randomly 30 times,

we computed mean classi�cation accuracies and variances. Also parameter

ranges where studied. For the ideal vector computations in the general-

ized mean, range m ∈ (0, 1] was shown to provide highest accuracy and for

parameter p in similarity measure range p ∈ [5, 20] seemed to provide the

highest results. In the following Table 6 we present how the choice of dif-

ferent p values a�ects the classi�cation accuracy values. There the �rst row

shows di�erent p values, the second row shows the classi�cation accuracies

percentages obtained by using De Luca and Termini fuzzy entropy measure

as the feature selection method. In the third row the classi�cation accuracy

percentages obtained by using Parkash fuzzy entropy measure are shown.

Table 6: Feature removal using De Luca and Termini, and Parkash measure

w.r.t parameter p value.

Parameters 0.1 0.2 0.3 0.4 0.5

Accuracies%(Luca) 98.61 98.83 98.61 98.61 98.39

Accuracies%(Parkash) 98.83 98.72 98.61 98.50 98.39

Both the two feature selection methods De Luca and Termini and Parkash en-

tropy measures applied to the similarity matrix contributed much to achieve

high classi�cation accuracy, value 98.83% was obtained. With 99% con�-

dence interval the mean classi�cation accuracy is 98, 83±0.2 (with Student's

t-distribution µ ± t1−α
2
Sµ/
√
n). In the following Figure 5, we can see how

parameter values from the classi�er (generalized mean m and p value from

similarity measure) e�ected the mean classi�cation accuracy and variance.

In the �rst case De Luca and Termini's fuzzy entropy measure was used as

feature selection method before actual classi�cation and its performance is
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seen in Figure 6a and 6b. Parkash fuzzy entropy measure was used in the

second case as feature selection method and again after that classi�cation

results were done with similarity classi�er, its performance is seen in Figures

6c and 6d.
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Figure 5: Mean classi�cation results and Variances plotted with respect to

parameter p and mean values using entropy measures on Dermatology set.
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The results with the highest mean accuracies together with the correct num-

ber of the removed features are are presented in the following Table 7:

Table 7: Classi�cation result.

Methods Mean accuracy(%) Variance Dim Removed features

sim+Luca 98.83 0.0442 33 17

Sim+Parka 98.83 0.0237 33 1

As it can be seen in the Table 7 the use of De Luca's fuzzy entropy mea-

sure with 33 features in the data set the highest mean accuracy was ob-

tained. With Parkash's fuzzy entropy measure highest mean accuracy was

also achieved after removing one feature in the data set. In Figure 6 one

can see how reducing the number of features from the data set e�ected the

classi�cation accuracies for both fuzzy entropy measures. After removing

more than 10 features classi�cation accuracies started to deteriorate quite

rapidly. In the Figure 6 results are also studied w.r.t. parameter p value in

feature selection process to see how it e�ects the results.
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Figure 6: Classi�cation accuracies w.r.t. reduced features for data sets (Der-

matology).
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In the Table 8 we present and compare our results with some others pre-

viously obtained using the di�erent similarity classi�ers with the feature

selection method applied to the same data set.

Table 8: Obtained accuracies with di�erent classi�ers.

Classi�ers Mean accuracy%

Sim-using Lukasiewicz 96.04

Sim-using Yu's norm 97.19

FS + Sim-using Lukasiewicz 98.28

FS+Sim-Yu's measure 98.83

In the Table 8 we present the results for similarity classi�er using generalized

Lukasiewicz similarity which was taken from [26], similarity classi�er using

Yu's norm taken from [25], in the �rst two case no feature selection method

was done, in the second case we show the results when feature selection

method is combined with generalized Lukasiewics similarity [26]. As we

can see from the results, the proposed method produced the highest mean

classi�cation accuracies and also clearly enhanced the mean accuracy with

this data set. Results shown in this study are shortly cited in author's paper

[6]
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6 Conclusion and future work

In this study, the fuzzy entropy and similarity based feature selection was

performed, the used entropy measures (18), (19), (20) managed to discard

redundant and irrelevant features in our data set. We reduced the computa-

tion time and this has positively impacted our similarity classi�er see (4) to

achieve highest classi�cation accuracy of 98.83% when testing our similarity

measure to real world data set. The results in Table 8 show that the used

method managed to achieve the highest accuracy when comparing it with

some other results previously obtained, we assure that this is the best accu-

racy ever obtained with the same data set. we remarked the used method

help to reduce the dimensionality of large data sets but also to speed up the

computation time of a learning algorithm and therefore simplify our classi-

�cation task. Notice that over 98% mean accuracy was achieved with the

methods after removing 10 features from the data set, which is about 30%

reduction of features from this data set.

For future work we acknowledge that these are not the only fuzzy entropy

measures that exist and usage of these with di�erent similarity measures is

a subject which needs to be thoroughly addressed in the future. Creation of

ideal vectors in the feature selection process is one future area of investiga-

tion. Also beside these, creation of pool of similarities and proper selection

via optimization is also one research area.



REFERENCES 40

References

[1] Alsina Claudi, Berthold Schweizer, Claudi Frank J Maurice, (2006) As-

sociative Function: Triangural norms and copulas. World scienti�c pub-

lishing Co, Pte.ltd ISBN 98-256-671-6.

[2] Andrews Chrysostomou Kyriacos (2008) The Role of Classi�ers in Fea-

ture selection Selection: Number vs Nature, School of Information Sys-

tems. Computing and Mathematics, Brunel University.

[3] A. Pethalakshmi, K. Thangavel, (2006) Feature Selection for Medical

Database Using Rough System. AIML Journal. ISBN:978-960-474-41-3

[4] Bandemer Hans and Näther Wolfgang, (1992) Fuzzy data analysis.

Kluwer Academic.

[5] Bo Yuan, Klir George J., (1995) Fuzzy Sets and Fuzzy Logic: Theory

and Applications. Prentice Hall. Publishers, Dordrecht.

[6] Cesar Iyakaremye, Pasi Luukka, David Koloseni(2012) Feature selection

using Yu's similarity measure and fuzzy entropy measures, Accepted for

publication to IEEE International Conference on Fuzzy Systems, 2012.

[7] Chih-Ming Chen, Hahn-Ming Lee, Jyh-Ming Chen, Yu-Lu Jou, (2001)

An E�cient Fuzzy Classi�er with Feature Selection Based on Fuzzy En-

tropy. IEEE Transactions on Systems, Man, and Cybernetics � Part b:

cybernetics, 1083-4419(01)04860-9.

[8] David G.Stork, Duda O. Rishard E.Hart (1973) Pattern classi�cation

and scene analysis. John Wiley, Sons.

[9] Derya Elif, Übeyli, Güler, I. (2005) Automatic detection of erythemato-

squamous diseases using adaptive neuro-fuzzy inference systems. Com-

puters in Biology and Medicine, 35, 5, pp. 147-165.



REFERENCES 41

[10] Didier Dubois and Henri, (1980) Prade Fuzzy Sets and Systems: Theory

and Applications. Academic Press.

[11] Fan Ya-Ju, Wanpracha Art Chaovalitwongse, (2008) Optimizing feature

selection to improve medical diagnosis. Springer Science and Business

Media, vol. 174, no1, pp. 169-183.

[12] Gottwald Siegfried (1993) Fuzzy sets and fuzzy logic. Arti�cial intelli-

gence, ISNB 3-528-05311-9.

[13] Guyon Isabelle (2007) Introduction to feature selection. Available from

http://videolectures.net (accessed on 20 October 2011).

[14] H. Altay Güvenir, G. Demiroz, Nilsel Ílter (1988) Learning di�erential

diagnosis of erythemato-squamous diseases using voting feature inter-

vals. Arti�cial Intelligennce in Medicine 13 (1998) 147�165.

[15] Huiqing Liu, Jinyan Li, Limsoon Wong, (2002) A Comparative Study

on Feature Selection and Classi�cation Methods Using Gene Expression

Pro�les and Proteomic Patterns. Genome Informatics journal 13: 51-60.

[16] Ikou Kaku, Jiafu Tang, JianMing Zhu, Yong Yin, (2010) Data mining:

concepts, methods and applications in managements and engineering de-

sign. ISBN 978-1-84996-337-4 DOI 10.1007/978-1-84996-338-1, Springer

London Dordrecht, Heidelberg, New York.

[17] Inaki Inza, Pedro Larranaga, Yvan Saeys, (2007) Review of feature

selection techniques in bioinformatics. Vol.23 no.19, pages 2507�2517

doi:10.1093/bioinformatics/btm344.

[18] Isabelle Guyon, Gunn Steve, Masoud Nikravesh, Lot� A. Zadeh, (2006)

Feature Extraction: Foundations and Applications. Springer-Verlag,

Berlin Heidelberg.



REFERENCES 42

[19] Jensen Richard, Qiang Sheng, (2008) Computational intelligence and

feature selection: Rough and Fuzzy Approaches. ISBN:978-0-470-22975-

0. IEEE Press Series on Computational Intelligence.

[20] Kalle Saastamoinen (2008) Many valued algebraic structure as measures

of comparison. PhD thesis, Lappenranta University of Technology.

[21] Luukka Pasi, (2008) Similarity classi�er using similarity based on mod-

i�ed probabilistic equivalence realations. Elservier journal, Knowledge-

Based System 22(2009) 57-62.

[22] Lowen R., (1996) Fuzzy set theory, Basic concepts, Techniques and Bib-

liography. Kluwer Academc Publishers.

[23] Luukka Pasi, (2005) Similarity measure based classi�cation. PhD thesis,

Lappenranta University of Technology.

[24] Luukka Pasi, Tapio Leppälampi (2006) Similarity classi�er with gen-

eralized mean appied to medical data. Elservier Journal, Computers in

Biology and Medicine pp.1026-1040.

[25] Luukka Pasi, (2007) Similarity classi�ers using similarity measure de-

rived from Yu's norm in classi�cation of medical data. Computers in

Biology and Medicine pp. 1133-1140.

[26] Luukka Pasi, (2010) Feature selection using fuzzy entropy mea-

sures with similarity classi�er. Expert Systems with Applications.

doi:10.1016,j.eswa.2010.09.133

[27] Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J., (2007).

UCI Repository of machine learning databases. Irvine, CA: Univer-

sity of California, Department of Information and Computer Sci-

ence.http://www.ics.uci.edu/Emlearn/MLRepository.html



REFERENCES 43

[28] Paavo Kukkurainen and Pasi Luukka, (2006) New Classi�er Based on

Fuzzy Level Set Subgrouping. Lecture Notes in Computer Science, Vol-

ume 4253,2006, 383-389.

[29] Timothy J.Ross, (2010) Fuzzy logic with engineering applications.3rd

edition, ISBN 978-0-470-74376-8. Library of Congress Cataloging-in-

Publication Data

[30] Hanss Michael, (2005) Applied Fuzzy Arithmetic: An Introduction with

Engineering Applications. ISBN 3-540-24201-5. Springer Berlin, Heidel-

berg New York.

[31] L.Zadeh,(1965). Fuzzy Sets, Information and Control. pp. 338-353. De-

partment of Electrical engineering and electronics research laboratory,

University of California, Berkeley, California.

[32] Hall A. Mark, (1991) Correlation-based feature selection for Machine

Learning .PhD thesis, Department of Computer Science, The university

of Waikato, Hamilton, NewZealand.


