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Robotic grasping has been studied increasingly for a few decades. While progress has
been made in this field, robotic hands are still nowhere near the capability of human
hands. However, in the past few years, the increase in computational power and the
availability of commercial tactile sensors have made it easier to develop techniques that
exploit the feedback from the hand itself, the sense of touch. The focus of this thesis lies
in the use of this sense.

The work described in this thesis focuses on robotic grasping from two different view-
points: robotic systems and data-driven grasping. The robotic systems viewpoint de-
scribes a complete architecture for the act of grasping and, to a lesser extent, more
general manipulation. Two central claims that the architecture was designed for are
hardware independence and the use of sensors during grasping. These properties enables
the use of multiple different robotic platforms within the architecture.

Secondly, new data-driven methods are proposed that can be incorporated into the grasp-
ing process. The first of these methods is a novel way of learning grasp stability from the
tactile and haptic feedback of the hand instead of analytically solving the stability from
a set of known contacts between the hand and the object. By learning from the data
directly, there is no need to know the properties of the hand, such as kinematics, enabling
the method to be utilized with complex hands. The second novel method, probabilistic
grasping, combines the fields of tactile exploration and grasp planning. By employing
well-known statistical methods and pre-existing knowledge of an object, object proper-
ties, such as pose, can be inferred with related uncertainty. This uncertainty is utilized
by a grasp planning process which plans for stable grasps under the inferred uncertainty.

Keywords: robotic grasping, robot architectures, tactile sensing, grasp planning
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CSM Concrete State Machine
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k-NN k-Nearest Neighbor
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C Soft-margin parameter for support vector machine

K(xi, xj) Support vector machine kernel

I(x, y) Function of sensor taxels

mp,q Raw image moment

O Object attributes

G Grasp attributes

S Stability of a grasp

m(x) Gaussian process mean function

k(x, x′) Gaussian process covariance function
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Chapter I

Introduction

While early robots were built for industrial environments and repetive tasks, recent devel-
opments in robotics have allowed robots to move into homes and home-like environments
such as hospitals. This field of robotics has grown in the past decades into service robotics.
This transition was possible only as the sensor capabilities of robots increased, so that
collisions could be avoided with obstacles in dynamic environments, including people.
However, the current sensor capabilities of commercially available robots are still quite
rudimentary compared to, for example, humans. This fact, and the lack of integrated
sensor solutions, has limited the use of robots – most popular service robots today are
mainly mobile platforms, such as cleaning robots [1] or robots that can transport goods.

One of the most essential skills of humans, the ability to manipulate objects, is still
quite far in terms of everyday use in the robotics field. This thesis is a study into
robotic grasping, an integral part of the whole field of robotic manipulation. Grasping
is important in the sense that it allows the further study of objects; for example, when
an object is in the grasp, it is possible to determine the weight of the object or examine
the object from views that would not be possible to obtain otherwise. Grasping is also a
gateway to many other manipulation actions that require a certain type of a hold on the
object, for example tool use, pouring, writing and handing over objects. These actions
would not be possible without the preceding grasp.

The focus of this thesis lies in the use of the sense of touch to grasp objects. This focus
diverges from a popular direction of research into robotic grasping where mainly vision
is used to estimate poses of objects and the robot hand is guided using the information
gained only from vision. However, one can imagine the importance of the sense of touch
when grasping objects. In humans, the sense of touch in hands is one the most developed
senses, and with accompanying experience of the world, allows the grasping of objects
even without any visual information. If one were to lose the sense of touch and the
proprioceptive sensing, i.e. the ability to sense the joint positions of the fingers, it would
significantly degrade the achieved performance in manipulation and grasping and it would
also require constant visual attention to the objects and the hand [2]. It is clear that both
vision and sense of touch are desirable in a system focused on manipulation and grasping.

9



10 1. Introduction

Nevertheless, these abilities are complementary and function best at different stages when
considering the whole manipulation sequence. One example can be first locating an
object, moving to a position to grasp the object, grasping and transporting the object
and then placing the object somewhere else. In this type of a sequence, vision plays an
important role in localizing both the object and any obstacles, and relating the movement
of the arm and the hand with the whole environment. The role of proprioception and
the sense of touch is focused on the action of grasping and keeping the object in hand
during the object transportation.

In the scenario described above, the advantage of vision is that it is global and, thus,
able to provide a large quantity of data from the surrounding world from a distance.
This is ideal for object recognition and pose estimation. However, vision is hampered
by occlusions and, for example, translucent or transparent objects can be difficult to
detect by vision. On the other hand, using the sense of touch, contacts can be detected
quite accurately. Through the physical contact, the ambiguities and unknowns in the
environment, such as occlusions, can be solved effectively.

Still, there are some issues in robotics that must be solved before the sense of touch can
be used widely across different applications and platforms. This problem is the variance
in the design and hardware of robots, especially when considering the service robotics
field. This general problem is also present in robotic grasping. For example, the number
of fingers between robot hands can be different, the size of the hand can vary and the
sensors can differ. In this thesis, one of the goals was to minimize the effect of different
designs and capabilities that robot hands might have. The methods developed in the
thesis can be used in a wide variety of hands, although, a certain set of basic sensor
capabilities is required from the hand, most importantly hand proprioception and tactile
sensors.

1.1 Objectives

This thesis was started with the question: "How can sensor-based information be used to
help an agent cope in an uncertain world?". As the main body of the work was planned
to be completed under the GRASP project [3], which concentrated on robotic grasping,
this quickly focused the work on robotic hands and the sensors that are available in that
space, in addition to grasping itself.

The main objectives were influenced by the plan of the GRASP project, which called for
two separate goals:

• Create a system capable of producing manipulation actions on several platforms.

• Utilize low level data gained during grasping with the robotic hand.

The first item on the list calls for the development of a system capable of working with
multiple different robotic platforms with different types of embodiments, especially taking
into consideration the capabilities of the robotic hands. The objective, regarding the first
item, is to advance the existing architectures that have been developed with similar goals
in mind.
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The second item, on the other hand, requires the development of methods that can
transform the low level data coming from the hand to some meaningful information.
This process is called symbol anchoring [4]. The objective, in this case, focused quite
closely on the stability of the grasp; that is, how the stability can be determined from
proprioception and tactile sensing with all types of robotic hands. One can argue that
detecting or measuring the extent of the stability when grasping an object is the most
useful skill to have, especially if the object will be manipulated in some way after the
grasp.

1.2 Contribution and publications

The contributions1 made in this thesis can be roughly divided into three parts:

• The development of a manipulation architecture for robotic arms and hands.

• A method for estimating the stability of a grasp, through the use of learning algo-
rithms.

• A framework for grasping objects in uncertain environments.

Each part has its own published articles that have appeared in scientific conferences
and journals. In addition, initial work on the framework was published in a workshop
on manipulation under uncertainty. One of the articles is currently submitted to an
international conference.

The first contribution, discussed in chapter 3, is the development of an architecture that
is especially suitable for manipulation and grasping [5]. One of the most fundamental
goals set for this architecture was embodiment independence, i.e. the architecture should
be able to function with any robotic manipulation platform. This goal was achieved
by using a two-tier design, where the action is described using a platform independent
language which is then translated into executable code, which is specific to individual
platforms. The embodiment independendent action was demonstrated on different hard-
ware platforms, making the architecture unique in the demonstrated capability. The
architecture also relies heavily on interfaces to actuators and sensors that can be imple-
mented with reasonable effort for different platforms. This feature is also very useful in
terms of validating the action in simulation, where the interfaces to the actuators and
sensors differ from the real robot, but the produced action should be the same.

The second contribution, discussed in chapter 4, is a novel learning based approach that
can estimate the stability of a grasp only using the sense of touch [6, 7, 8]. In this
case, proprioception and tactile sensors were used as an input. Because the stability is
learned, there is no need to know, for example, the kinematics of the robot end effector,
contrary to the traditional grasp analysis methods. This feature enables the approach to
be used with any robotic hand – only the relevant sensor data needs to recorded. The
underlying methods in this work were well-known machine learning tools, mainly support
vector machine and adaptive boosting. However, the performance of these classifiers with

1The scientific articles have been written under the name Janne Laaksonen.
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different feature representations and different data is evaluated, which gives valuable
information on the applicability of the methods to grasping.

The third contribution [9, 10], discussed in chapter 5, is a novel approach to grasping
from the point of view of the sense of touch. Given that in many real world environments
the poses or other properties of objects remain uncertain even with vision, it is useful
not to dismiss this uncertainty. Based on this idea, a framework was developed that can
utilize the information from a series of grasps to refine the uncertain initial knowledge of
object properties. After each grasp, some uncertainty is still left. The framework enables
the use of the whole uncertainty in grasp planning, which is novel compared to most of
the state of the art methods developed for grasping under uncertainty. Each grasp in
the sequence is also planned according to the estimated uncertainty, and thus, the term
“Probabilistic Grasping” used in [9, 10], contrary to other grasp planning approaches that
do not take the uncertainty into account. The approch developed in the contribution is
suitable to be used with a variety of robotic hands, and with multiple different sensors
found in the hands. In the contribution itself, only proprioception of the hand is used.

Concerning the contributions that the author of this thesis made, in [5, 7, 9] the author
was the first author and the primary contributor and was responsible for most of the
writing, development and experiments. In the article [6], the author of this thesis was
responsible for the so-called one-shot recognition, one of the two methods presented
for grasp stability estimation. In addition, the author was also involved in the design
of experiments and developing the data collection procedure. Preliminary results were
published also in [11]. In the article [8], accepted to 2012 International Conference
on Biomedical Robotics and Biomechatronics, the author of this thesis was responsible
for the theoretical background and applying the learning method to the collected data.
The author of this thesis was also responsible for most of the writing, implementation
and experiments in the article [10] which is currently submitted to 2012 International
Conference on Intelligent Robots and Systems.

1.3 Outline of the thesis

The rest of the thesis is split into six chapters. Chapter 2 is an overview of robotic
grasping in general which largely excludes works that are closely related to the the central
contributions made in this thesis. The more closely related work will be discussed within
the chapters that describe the contributions in detail. These chapters are: chapter 3,
where robotic architectures and the contributions to robotic grasping architectures are
discussed, chapter 4 describing how the grasp stability can be learned through grasping,
and chapter 5, where the use of tactile and proprioceptive sensors is explored in the
context of probabilistic grasping. Chapter 6 discusses the contributions in general and
possible further research in the area of this thesis. Finally, chapter 7 is a summary of
the entire thesis.



Chapter II

Robotic grasping

There are two distinct lines present in robotic grasping. One line is present in current
industry, where the manipulator, i.e. the robotic arm, and the end effector, i.e. the robotic
hand, of the robot are designed so that an object, for example a product package, can
always be "grasped" when the object is present in some preset pose. Grasping in this
sense does not resemble human grasping – thus the quotation marks. Instead the end
effector can be of any shape and utilize, for example, suction cups. However, the end
effectors can be so specific that they may only grasp a single object from a predetermined
pose.

The second line, and more recent development, is the rise of more anthropomorphic end
effectors, for example [12, 13, 14], which resemble the human hand, but with various
numbers of fingers and degrees of freedoms (DOFs). Due to the complex mechanics
required for the full 27 DOFs, most robotic hands have fewer degrees of freedom than
the human hand, but these end effectors enable more general grasping. Just like the
human hand, the end effectors are able to grasp a large variety of objects. The range of
objects is, of course, dependent on the end effector design. These types of end effectors
enable grasping in more service oriented scenarios, for example, moving groceries from
a shopping bag to refrigerator, compared to the industrial end effectors. The downside
to the more general end effectors is that there are no guarantees that the object can be
grasped successfully each time. For this reason, many types of sensors are usually used
to reduce the uncertainty present in dynamic, unstructured environments.

This thesis focuses on the latter line and on the problems that unstructured environments
with general end effectors bring. The rest of this chapter reviews the problems and
solutions that have been proposed in the context of robotic grasping to give an overview
of commonly accepted techniques and methods applied to robotic grasping.

2.1 Grasp analysis and planning

Grasp analysis, at its core, is a geometrical study of hand-object interaction. The purpose
of this study is to find the stability of a grasp using accurate models of a robot hand and

13



14 2. Robotic grasping

an object. The stability of the grasp can be determined through contacts between the
hand and the object and can be analytically solved for these known contacts. However,
some assumptions and approximations about the contacts must be used to simplify the
contact modeling.

Different contact models have been developed and the sophistication of the models has
increased in the past few decades, as grasping is a complex action which relies on de-
formable bodies with varying surface properties, which is especially true in human grasp-
ing. One of the simplest models used in robotic grasping is the point contact model [15],
which assumes that all contacts are represented by a point and that objects are rigid,
i.e. non-deformable. In addition, Coulomb friction is assumed at the contact. The
Coulomb friction model can be represented as a cone [16], as shown in Figure 2.1, where
α = tan−1 µ. The product of µ, the friction, and fn, the normal force, dictates how
much tangential force in relation to the contact can be applied before the contact slips.
Instead of a point contact, a soft finger model can also be used [16]. The advantage of
the soft finger model is that it is able to model the resistance to torque that is exerted
on the contact, contrary to a pure point contact. The taxonomy of contacts, which was
first developed by Salisbury [17], includes more contact types in addition to the point
and soft finger contacts. More accurate, but more complex models, are the compliant
contact models [18, 19] that assume that the fingers of the hand, the object or both can
deform under contact.

Figure 2.1: Friction cone. Adapted from [16].

Apart from the contact models, the stability of the grasp is analyzed from the perspective
of form and force closure. Both of these closures build on the concept of contacts and
both describe a set of conditions for the contacts that must be fulfilled. These closure
properties are used also outside of robotics; the first study on these properties was pub-
lished in the 1800s by Reuleaux [20]. For example, form closure is useful in designing
static fixtures. Verbally, form closure constrains the object so that the object is fully
immobilized by the structure of the hand configuration which requires no force to be
exerted by the hand to the object. Force closure, on the other hand, requires force to
be applied by the hand and does not guarantee the full immobilization of the object
if an external force affects the object in the grasp. Due to this property, force closure
grasps also require friction between the contacts. Examples of both grasps are shown
in Figure 2.2. Note that in the case of force closure, the normal forces, fn, and friction
generate the friction cones, shown in Figure 2.1, which resist the external forces. More
recent work on form and force closures can be found, for example, in [21], where it is
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proved that force closure does not always imply a stable grasp; [22], showing how many
point contacts are needed for form closures of generic 2D and 3D objects. The first study
of force and form closure in the context of robotic grasping was introduced in [17], and
more surveys and book chapters on the general framework used in this context (contacts
and closures) can be found in [23, 24, 25].

(a) (b)

Figure 2.2: (a): Planar form closure grasp using three fingers; (b): Planar force
closure grasp using two fingers.

While the above describes the analysis of grasping, no insight was given on how to
find stable grasps. The area of grasp planning (or grasp synthesis [24]) has been under
intensifying focus for the past few decades. Grasp planning has diverged into two different
directions with different assumptions. The first is "traditional" grasp planning, where
the object is considered fully known. For example, an accurate 3D-model of the object is
available, thus enabling the use of the grasp analysis methods in simulation. To compare
different grasps, especially when force closure properties are fulfilled, a criterion is needed
to rank the grasps. This criterion is known as the grasp quality measure, and the first
grasp quality measures were developed in [26, 27]. These methods estimate the quality
through the contacts by estimating how the grasp and the resulting contacts can resist
external forces and torques.

The computational load in this case falls to object and pose recognition and grasp plan-
ning. The object recognition task can be solved with (stereo) vision or other sensors, such
as laser scanners [28], that can directly return point clouds of the object and surrounding
scene. If such point clouds cannot be constructed, for example, in case a monocular vi-
sion system is used, the object can also be recognized by only its appearance from visual
data. Otherwise, as the object is known, the point cloud can be matched to either a
single object [29] or to a set of objects [30, 28] with pose estimation.

Grasp planning can be one of the most time consuming tasks in this context, as selecting a
force closure grasp from all of the possible grasps in the 6 DOF space is time consuming.
To tackle this problem, a variety of techniques have been developed which add some
heuristics, for example from human beings, that are based on the object shape. Still,
due to the large number of grasps that have to be evaluated, grasping simulators, such
as GraspIt! [31], OpenGRASP [32] and OpenRAVE [33], have been in development for
the past ten years.

One common technique in grasp planning is to approximate the object model with simpler
shapes, such as boxes [34], superquadrics [35] or other primitives [36]. The object can
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then be grasped based on the simpler shapes instead of the potentially complex shape of
the original. Other approaches can, for example, analyze the 3D shape of the object [37]
or apply heuristics observed in humans [38] to find good grasps. The grasp analysis and
planning is usually done off-line and the results are saved on a database, and a suitable
grasp can then be fetched from the database, with reachability and other affordances
taken into consideration. Grasp acquisition [24] is then performed according to the chosen
grasp. Usually, the actual grasping is open-loop, which requires robust and accurate
object pose estimation methods.

The second direction for grasp planning targets unknown or novel objects that the robot
has not seen before. In most cases, this assumption implies that, instead of analyzing the
grasp per se, an approach vector and/or grasping point is computed, for example, from
an image with possible depth information given. Discarding the use of the grasp planning
and analysis methods presented previously means that systems must be either trained
beforehand or that the system has some intrinsic heuristics on how to grasp objects to
account for the uncertainty that rises from the unknown objects. For example, one can
detect good points to grasp based on the image and depth data of the object [39, 40, 41].
Based on a similar idea, an autonomous system that can learn good approach directions
from visual data was developed in [42].

In this case, feedback from the hand sensors (haptic, tactile, proprioceptive) or vision
can also be used to limit the effect of the uncertainty. Thus, the initial approach vector
can be thought of as the starting point for further refinement of the grasp using the sense
of touch. Research in this area is presented in section 2.2.

There are few approaches that combine both the known and unknown object model
approaches by generalizing from the known objects to the unknown objects. One such
approach [43] assumes that an unknown object can be represented by a deformable known
object, although, in this case, the problem of grasp synthesis on the deformed object is
still open. Another approach [44] uses a precomputed database of good grasps on known
objects and tries to find the object that best matches with a given unknown object. The
approach can work also with incomplete geometric models [45].

It is also important to note the study of underactuated hands. In the case of underac-
tuated hands, the hand might have many degrees of freedom, but some or most of the
DOFs are either passive or coupled together, in contrast to a fully actuated hand where
each DOF can be individually controlled. Recently, progress has been made using simu-
lations that allow changing of parameters of the hand [46]. In the study, the parameters
included the tendon routing of the hand and the stiffness of the joints. Simulation allows
the hand to grasp a set of objects and selection of the parameters based on the results
of the grasp attempts. The parameters can then be used on a hand that is actually
built. Underactuated hands [46, 47] sidestep the grasp planning problem by moving the
problem on to the design of the hand that tries to maximize the stability across objects.
This property makes underactuated hands more suitable for the latter of the two de-
scribed directions of grasping. One can also forego the design of the hand completely
and choose a fully compliant hand, such as the universal gripper [48], which works by
jamming granular matter. However, in general, underactuated hands lose dexterity, i.e.
in-hand manipulation capability, compared to fully actuated hands.

The grasp planning methods described above determine only the robot hand pose in



2.2 Sensor-based grasping and manipulation control 17

relation to the target object. To be able to complete the grasp, the hand must first be
moved to the selected pose. This is the field of motion planning. Depending on the type
of the robot and the indicated pose of the hand, the robot might even need to move
before attempting the grasp, which is usually referred to as path planning. However, due
to the topic of the thesis, a short introduction is given only for arm motion planning.

In many approaches, when planning a motion for a robot arm, accurate simulation of the
robot environment (consisting of the target object, other objects and obstacles) and the
robot itself is required. While the kinematics and dynamics of most industrial robot arms
and hands are known, the environment requires more effort to be accurately realized in
a simulator. One straightforward method is to use a point cloud, obtained with stereo
vision or laser scanners. The point cloud can then be triangularized into a mesh [49, 50],
which can be represented in a simulator. However, with only one view of the whole scene,
the point clouds do not represent the whole environment. Some additional techniques
which attempt to model the uncertainty of the environment in these cases [51] have been
presented, and a method has been developed to estimate the symmetry found in objects
to generate the missing backsides of objects [52]. A common approach is also to model
the principal environment of the robot [53, 54], such as a kitchen. Any unknown or known
objects in the environment are then easier to separate from the known environment.

Once the environment, including any obstacles, is modeled, then a suitable path or mo-
tion for the robot arm and hand can be computed. While many algorithms exist for
path planning, rapidly-exploring random tree (RRT) algorithms [55] and probabilistic
roadmap (PRM) algorithms [56] are often used due to their applicability to motion and
path planning problems where the space of possible motions is large. As the names
suggest, both techniques rely on probability to find a solution to the motion planning
problem. Furthermore, RRT algorithms explore the whole search space due to the space
filling property of the search. Compared to other search algorithms without this prop-
erty, RRT guarantees that a solution can be found, if a solution exists. RRTs can also
incorporate dynamical states, such as velocity, in the search space. Many improvements
have been made to these algorithms in the recent years, for example [57], which eliminates
parameter tuning from rapidly-exploring dense trees (RDT), a generalization of RRT,
T-RRT [58], which incorporates automatic parameter tuning and works in continuous
spaces, and GradienT-RRT [59], which improves the T-RRT further.

2.2 Sensor-based grasping and manipulation control

Section 2.1 discussed the use of sensors in the process of grasp planning. However,
the different sensor modalities can also be used during the grasp acquisition itself or in
other manipulation tasks. This type of sensor use is especially useful when the objects
that are being manipulated are either completely unknown or only partially known, for
example when the mass distribution of the object is unknown. The sensors allow the
use of feedback from the manipulation action and correction of the action based on the
received feedback. However, an on-line response is required to gain benefit from the
sensor feedback.

The development in this area is fairly recent, although research has been conducted
already in the 1990s [60, 61]. This has been due to a lack of suitable sensors and comput-
ing power. The increase in computing power, especially general-purpose computation on
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graphics hardware (GPGPU) [62], has made it possible to use computationally expensive
methods for tracking objects and hands during manipulation or grasping in real time.

Research on tactile sensors has also been on the rise in the past decade, which has resulted
in the availability of commercial tactile sensors suitable for robotics [63, 64, 65] in the
past five to ten years. Although the goal of a tactile sensor is to sense or measure the
force affecting the sensor area, many different types of techniques are utilized in practice.
These techniques can be categorized into different paradigms: resistive, capacitative,
piezoelectric and optical. These are commonly used but also other types of techniques
can be found. Resistive sensors usually employ some type of conductive material that can
be compressed. The sensor itself then measures the resistance, which decreases with more
compression. An example of these types of sensors are the Weiss tactile sensors [64, 66].
Capacitative tactile sensors measure the change of capacitance between two surfaces that
change their relative position under force. For example, the RoboSkin EU project has
developed these types of sensors [67]. Piezoelectric sensors are based on the piezoelectric
effect; in other words, pressure applied to a piezoelectric material creates an electrical
field. Examples of these sensors can also be found within the RoboSkin project [68].
Finally, the optical tactile sensors use some type of vision to determine the deformation
of some surface to measure the force affecting that surface. One example of an optical
tactile sensor can be found in [69]. For a more complete review of the tactile sensing
technologies, see [70].

The use of multimodal sensors in robotic manipulation and grasping has been studied,
for example, in [71, 72]. These doctoral theses explore sensor fusion for robot control
in manipulation tasks, fusing proprioception, force and vision sensing. Numerous works
also exists somewhere in between, combining a few modalities or just using one sensor
modality.

For tracking objects during manipulation using vision, particle filter based methods [73,
74] have shown to be useful, as they can track the object on-line as well as off-line,
enabling further refinement of the grasp. On the other hand, there are also methods that
can track the end effector itself [75, 76]. A more advanced method, using particle swarm
optimization (PSO) instead of a particle filter, is able to track both the human hand
and a parametrizable model on-line [77]. Ideally, this approach can also be extended to
robotic hands, as robotic hands are currently built to be rigid compared to human hand
models. Thus, the model used for representing the end effector is easier to build.

The methods described in the previous paragraph are principally based on vision. Meth-
ods that utilize mainly the sense of touch will be discussed later, in the context of the
contributions of this thesis in chapters 4 and 5, but there are methods that combine the
sense of touch with vision. For example, [78] extends the work presented in contribu-
tion [6] to include vision in the estimation of the stability of a grasp.



Chapter III

Action Abstraction

The purpose of this chapter is to describe an architecture that can abstract an action to
achieve the actual goal of the action itself. Why is this abstraction needed? To elaborate
the problem, some examples of grippers and more complex end effectors are shown in
Figure 3.1. From the images, one can see the problem that exists within the robotics
community – non-standard hardware and equipment. For example, the capabilities of
the end effectors are different due to the number of fingers, and the same applies to the
manipulators; some have seven or more DOF while some have only six DOFs or even
less. The different hardware lead to different actions, even if the task is the same.

(a) (b)

(c) (d)

Figure 3.1: (a) Gripper of the Willow Garage PR2 robot (image by Timothy
Vollmer); (b) WRT-102 gripper used in the experiments; (c) ARMAR-IIIb end
effector; (d) Schunk Dextrous Hand.
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Moreover, even if the structure of the robot, i.e. the physical construct, is the same, the
robot may have different sensors embedded into it. For example, the robot might have a
wrist mounted force sensor, and the tactile sensors embedded in the end effector can be
obtained from multiple manufacturers. Therefore, especially in a research environment,
a single robot could be a unique piece of equipment not found anywhere else.

These problems present a dilemma for manipulation and grasping. On the one hand, there
is a need to access and use the sensors of the robot to be able to operate in uncertain
and unstructured environments, but on the other hand, the sensor configurations might
be different between robots that try to accomplish a specific action. To tackle this
problem, abstraction is needed to separate the robot platform, also referred to as robot
embodiment, from the action itself. This can be called knowledge transfer, as the robot
can be interchangeable but the action itself is not. One can also consider a human as
a robot in this scenario; thus, it should be possible to learn an action by creating a
description of a manipulation or grasping action and then transfer the action to any
robot embodiment.

3.1 Robot architectures

A number of robot architectures have been presented previously, for both manipulation
and for more general use. According to the topic of the thesis, the focus is on the
manipulation architectures. The concept of primitive skills is central in many of the
works. Similarly, the use of discrete states to divide a manipulation action into parts or
subactions is seen in many architectures.

Milighetti et al. [79] presented an architecture which uses primitive skills. The primitive
skills combine into skills, which in turn form a complete task. Each primitive skill is
selected by heuristic selection out of many possible primitive skills, based on the sensor
signals. A neural network is used to detect the change between the skills. Each primitive
skill is based on a separate controller. While the basic idea of hierarchical decomposition
is similar to the architecture presented in this paper, in the approach of Milighetti et al.
there is no possibility to adapt the primitive skills themselves.

Haidacher et al. [80] have introduced an architecture for the DLR Hand II. The archi-
tecture is based on different levels of complexity, which handle different aspects of the
control. Again, the concept of hierarchical decomposition is central, but the architecture
is limited to a single hand and the adaptiveness of the architecture has to be implemented
at the highest level, as the lower levels are statically defined.

Han et al. [81] present a control architecture for multi-fingered manipulation. As pre-
viously, the architecture is based on different levels that handle control from planning
to actual joint control. The problem with the architecture is the lack of adaptation, as
the architecture shows that only predetermined architectural components, such as low
level controllers, are available to use. In addition, the architecture does not consider the
robotic arm, only the hand.

Hybrid discrete-continuous control architectures for manipulation, such as [82] and [83],
separate the control phases according to the state of the manipulator. This is achieved
by using discrete events to classify the manipulation configuration and using continuous
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states to control the dynamic behavior in different configurations. This type of archi-
tecture is suitable for both low-level control [83] and for a complete control architecture
[82]. Petersson et al. [82] demonstrate a control architecture for a mobile manipulator
based on behaviors. The actual manipulator behavior is modelled as a sequence of con-
figurable primitive actions, which can be freely defined. These primitives can be chained
together using a hybrid automaton to form an action. Although the architecture has
some elements desired from a service robotics architecture, such as hardware indepen-
dence, it lacks the sensor-based approach required to cope in uncertain environments.
For example, there is no mention of failure detection using the available sensors.

Another mobile manipulator architecture by Chang and Fu [84], is also based on hybrid
discrete-continuous control architecture. However, the architecture is more limited than
in [82], only consisting of a pre-determined set of states, which control the manipulator.
These states can be configured for different manipulation tasks. Aramaki et al. [85] have
also used automata to control a humanoid robot at a low level.

For a non-mobile manipulator, Prats et al. [86], presented a comprehensive system for
controlling manipulation. The system also uses automata to control the progress of
actions, by separating the primitive actions into the states of the automata. One of the
defining features of the architecture is that each state of the automata can be a primitive
action or an automaton. This feature can be used to create complex actions. However,
the problem of hardware independence is not discussed.

One can also consider communication architectures, such as ROS (Robot Operating
System) [87] or YARP (Yet Another Robot Platform) [88], but these only provide a
communication framework for the robot platforms and can encompass more than just
manipulation. Although these architectures provide a unified way to relay information
between communication nodes, the architectures themselves are low level and require
additional work to build working systems.

Most of the described manipulation architectures have one common element, the use of
automata in determining the current state of the control. This approach is also used in
the proposed approach which is described in the following sections. Note that most of the
architectures do not discuss hardware independency or how it would affect the described
architectures, which was one of the central goals of the abstraction architecture that will
be presented next.

3.2 Abstraction architecture

The design of the proposed abstraction architecture is based on the principle of sensor use
in uncertain environments with multiple robot embodiments in manipulation scenarios.
To abstract the action from the robot embodiment, the architecture is divided according
to Figure 3.2. The figure shows how the abstract information is separated from the
embodiment specific information which facilitates the use of multiple embodiments for
abstract actions and still allows the use of embodiment specific sensors within the action.
The two components residing at the edges in the architecture are divided into abstract
and concrete actions to denote the effect of the embodiment. On the abstract side,
everything is abstracted, and thus, the embodiment has no effect there. The concrete
action, on the other hand, is native to the embodiment and the cannot be executed in
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any other embodiment or platform. The middle component is responsible of handling
the change from the abstracted action to the concrete action. This component will be
referred to in the next sections as the translator.

Figure 3.2: Levels of the abstraction architecture.

Before going into the details of the proposed approach, the terminology used in the
following sections is explained. The term abstraction architecture describes the entire
proposed approach. This should not be confused with the control architecture, which
is a part of the abstraction architecture related to the actual execution of the actions.
Figure 3.3 shows a general hierarchical decomposition of planning and control. The
hierarchy consists of three levels: task, action and primitive. The task is the highest
level of abstraction, representing a semantically meaningful task such as emptying a
shopping bag. The task comprises of a sequence of actions, which represent subtasks,
such as moving an object from one location to another. Actions consist of primitives,
or primitive actions, which are the lowest level of control in the proposed architecture.
A more accurate definition for a primitive action used in the proposed architecture is
that each primitive action is implemented using a single low-level controller, which is
responsible for the actual control of robot hardware.

Figure 3.3: Planning and control levels.

The abstraction architecture presented in this thesis will focus only on the action and
primitive levels shown in Figure 3.3, that is, the actual on-line part of control instead of
task planning, which might be performed off-line. The architecture itself has elements
of both behavioral and executive levels discussed in [89]. It should be noted that the
behavioral control is not considered in the Brooksian sense [90]; instead, the behavioral
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level considers primitive actions which can be executed with traditional control theory.
It is possible to adapt to different tasks and different hardware at the two lower levels
using a set of attributes that are implemented in the actions and in the primitive actions
of the abstraction architecture.

3.2.1 Describing an action

As was characterized in section 3.1, many have utilized state machines or automata to
describe and control the actions of a robot. This approach is also adopted in this thesis
in the form of a finite-state machine (FSM), also known as a finite-state automaton or a
deterministic finite automaton which is described, for example, in [91]. This basic struc-
ture is used for both the abstract action and the concrete action and the corresponding
state machines are called the abstract state machine (ASM) and concrete state machine
(CSM). Note that ASM can also refer to the theory of abstract state machines, a gener-
alization of FSM. However, here it is only used to denote the finite-state machine of the
abstract action.

As the whole abstraction architecture focuses on grasping, a set of related attributes was
chosen for the ASM:

• success: The success end state of the state machine.

• failure: The failure end state of the state machine.

• move: Moving the manipulator without an object.

• transport: Moving the manipulator with an object.

• grasp: Grasp the object.

• release: Release the object.

These attributes define the primitives for each state and consequently the type of con-
trollers for the CSM. For example, in a move state, a controller for the end effector may
not be needed. While the attribute list itself is short, the attributes are able to represent
the core functionality required for actions that require grasping, such as pick-and-place
actions. In addition, each state can carry multiple properties. These properties further
specify the semantic meaning of each state and, thus, give more information for the trans-
lation into CSM. Each transition has also a set of properties defining when the transition
will trigger. These properties are listed in Table 3.1 and Table 3.2 with their respective
descriptions.

Utilizing the properties found in Table 3.1, each state can be adapted to some degree. For
example, it is easy to define multiple different grasp types using the hand_shape property,
such as cylindrical grasp or pinch grasp, or define a movement type for the manipulator.
The advantage of this adaptability is that the structure of the state machine itself can
remain unchanged through multiple actions, even if, for example, the object or the hand
changes between executions of the action.
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Table 3.1: State properties.

State Description
movement Describes the desired type of movement
hand_shape Describes the desired hand shape

path Describes a path for the end effector

Table 3.2: Transition properties.

Transition Description
success Controllers have reached a target value

grasp_stable Grasp is stable
grasp_lost Grasp is lost, i.e. the grasp is unstable

finger_contact Contact is detected in a finger
finger_contact_lost Contact is not detected in a finger

timeout Preset time has passed in a state
collision Collision is detected

hardware_failure Hardware failure is detected

Figure 3.4 gives a simple example of both ASM and CSM. The two state machines
corresponds to each other. The ASM describes a simple two state FSM, the first state
being a move state which then transitions to a grasp state, given that the move is
successful. The figure also shows how the abstract states are translated into actual
controllers that are used in the concrete action. This type of structure found in the
concrete action is called hybrid discrete-continuous control architecture, as was discussed
in section 3.1. Each state can comprise one or more controllers that are run continuously
until the transition condition or conditions are triggered.

While the graphical representation is useful to visualize the FSM, in the abstraction
architecture, the abstract action is represented in eXtensible Markup Language (XML).
XML was chosen for this task because it is a standard and many tools have been already
developed to parse and generate XML. In addition, XML is human readable, as can
be seen from Figure 3.5. This example XML description contains all of the required
elements for an abstract action, but is shortened by removing some common transitions,
for example, transitions to failure due to hardware failure or time limits. One of the key
definitions, in addition to the states and transitions, is the object definition. The object
definition can include several types of information, such as the pose, weight and even
a known geometrical model if one exists. The ASM can also include information about
the environment, for example, possible obstacles in the vicinity of the object, but this
information was not used in the experiments.

3.2.2 Translating from abstract state machine to concrete state machine

The translation process is what combines the abstract state machine and the embodiment
specific state machine. The translation takes the abstract state machine as an input, and
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Figure 3.4: A simple example of the abstract and concrete state machines.

translates the abstract state machine into a concrete state machine. The translation
process is depicted in Figure 3.6.

As can be seen from Figure 3.6, the translation component needs the specified inputs. The
inputs define the target configuration of the translation process, i.e. the target platform.
Furthermore, any platform specific transitions and primitive controllers have to be made
available to the translation component at this stage to enable full use of the hardware
platform. The translator itself is a software component that has logic based on the state
and transition attributes and properties. Furthermore, the object definition can be used
during the translation, for example, to estimate the required grasping force based on the
object weight. The structure of the implemented translator is described in section 3.3.

The benefit of this arrangement is that the only hardware dependent blocks shown in the
figure are the primitive controllers and transitions that are platform specific. A set of
universal primitive controllers and transitions can be utilized in addition to the hardware
specific components. Also the critical requirement of real-time operation for sensor-based
control is fulfilled, as the concrete state machine can be run in the platform’s native
environment without any additional overheads from maintaining hardware independence.

3.3 Implementation of the abstraction architecture

The abstraction architecture is built on the control architecture which is responsible for
the execution of actions. The control architecture is depicted in Figure 3.7. One of the
main features of the control architecture design is the inclusion of two communication
interfaces; on-line and off-line. These interfaces serve different purposes and are used
during different phases of the action execution. The off-line communication interface
handles the communication of the abstract action to the high-level controller which in-
cludes the translation component. The result of the translation, the concrete action or
the concrete state machine, is then used internally by the high-level control to execute
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<statemachine>
<objec t>

<pose>−1 0 0 0 .2 0 0 1 0 .7 0 1 0 0 .20 0 0 0 1</pose>
<weight>0.5</weight>
<shape>c u p . m d l</shape>
<c l a s s> c y l i n d e r</ c l a s s>

</ ob j ec t>

<s ta t e name="approach" type="move">
<movement>f r e e</movement>
<hand_shape>o p e n</hand_shape>
<path>

<pose>−1 0 0 0 .2 0 0 1 0 .65 0 1 0 0 .25 0 0 0 1</pose>
</path>

</ s ta t e>
<s ta t e name="preshape_hand" type="move">

<movement> g u a r d e d</movement>
<hand_shape> p i n c h _ g r a s p _ p r e s h a p e</hand_shape>

</ s ta t e>
<s ta t e name="grasp_object " type="grasp ">

<movement> g u a r d e d</movement>
<hand_shape> p i n c h _ g r a s p</hand_shape>

</ s ta t e>
<s ta t e name=" l i f t_ob j e c t " type=" transpor t ">

<movement>f r e e</movement>
<hand_shape> p i n c h _ g r a s p</hand_shape>
<path>

<pose>−1 0 0 0 .2 0 0 1 0 .7 0 1 0 0 .25 0 0 0 1</pose>
<pose>0 0 1 0 .7 1 0 0 0 .1 0 1 0 0 .25 0 0 0 1</pose>
<pose>1 0 0 0 .2 0 0 −1 −0.7 0 1 0 0 .35 0 0 0 1</pose>

</path>
</ s ta t e>
<s ta t e name="put_object " type=" transpor t ">

<movement> g u a r d e d</movement>
<hand_shape> p i n c h _ g r a s p</hand_shape>
<path>

<pose>1 0 0 0 .2 0 0 −1 −0.8 0 1 0 0 .35 0 0 0 1</pose>
</path>

</ s ta t e>
<s ta t e name=" re l ea s e_ob j e c t " type=" r e l e a s e ">

<movement> g u a r d e d</movement>
<hand_shape>o p e n</hand_shape>

</ s ta t e>
<s ta t e name="move_from_object" type="move">

<movement> g u a r d e d</movement>
<hand_shape>o p e n</hand_shape>
<path>

<pose>1 0 0 0 .2 0 0 −1 −0.60 0 1 0 0 .35 0 0 0 1</pose>
</path>

</ s ta t e>
<s ta t e name=" success_end" type=" succe s s ">
</ s ta t e>
<s ta t e name=" fa i l_end " type=" f a i l u r e ">
</ s ta t e>
<t r an s i t i o n o r i g i n="approach" de s t i na t i on="preshape_hand">

<succe s s />
</ t r a n s i t i o n>
<t r an s i t i o n o r i g i n="preshape_hand" de s t i na t i on=" grasp_object ">

<succe s s />
</ t r a n s i t i o n>
<t r an s i t i o n o r i g i n=" grasp_object " de s t i na t i on=" l i f t_ob j e c t ">

<succe s s />
<grasp_stable />

</ t r a n s i t i o n>
<t r an s i t i o n o r i g i n=" l i f t_ob j e c t " de s t i na t i on=" fa i l_end ">

<grasp_lost />
</ t r a n s i t i o n>
<t r an s i t i o n o r i g i n=" l i f t_ob j e c t " de s t i na t i on="put_object ">

<succe s s />
<grasp_stable />

</ t r a n s i t i o n>
<t r an s i t i o n o r i g i n="put_object " de s t i na t i on=" fa i l_end ">

<grasp_lost />
</ t r a n s i t i o n>
<t r an s i t i o n o r i g i n="put_object " de s t i na t i on=" re l ea s e_ob j e c t ">

<succe s s />
<grasp_stable />

</ t r a n s i t i o n>
<t r an s i t i o n o r i g i n=" re l ea s e_ob j e c t " de s t i na t i on="move_from_object">

<succe s s />
</ t r a n s i t i o n>
<t r an s i t i o n o r i g i n="move_from_object" de s t i na t i on=" success_end">

<succe s s />
</ t r a n s i t i o n>

</ statemachine>

Figure 3.5: An abstract state machine.
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Figure 3.6: Translation process.

the action accordingly. The on-line interface, on the other hand, is used during the ex-
ecution to transfer sensor data from all of the sensors that are available to a particular
platform. The interface is also used to transmit control data to the actuators of the
platform. Note, that all of the components that need sensor data, primitive controllers
and the transitions, can access all of the sensor data.

Figure 3.7: Control architecture design.

The second main feature of the control architecture is the separation of the primitive
controllers from the high-level controller which separates the execution of the action
from the logic of the concrete state machine. The high-level controller acts as a mediator
between the components and is responsible for syncronizing the execution of all the
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primitive controllers and the transitions.

In the beginning of the development of the abstraction architecture, it was decided that
the architecture would be built on C++ and a Linux operating system due to the preva-
lence of both in the GRASP project. Thus, the environment of the abstract architecture
is based on these assumptions. Further along in the development, OpenRAVE [92] was
adopted in the GRASP project as the simulaton engine which lead to the integration of
the abstraction architecture to the OpenRAVE as one of the controller plugins. Although
the extra overheads caused some problems, such as maintaining compatibility with new
versions, abstraction architecture is able to use the interfaces defined in OpenRAVE, such
as the sensor interfaces. In addition, the abstraction architecture can be controlled from
Python scripts or Matlab using the standard OpenRAVE plugin interfaces. Next, a de-
tailed description for all of the components and their purpose in the control architecture
is given. The most important components have attached Unified Modeling Language
(UML) class diagrams to demonstrate the implementation.

High-level controller

The high-level controller is the most complex component in the system as, it includes
the translation component and the state machine. This component takes the abstract
state machine as input and utilizes the integrated translation component to generate an
executable concrete state machine, consisting of the primitive controllers and transitions.
After the concrete state machine is generated, the high-level controller initiates the state
machine. When an end state is reached – either success or failure – the high-level con-
troller can report back the states that were traversed during the execution of the CSM.
The high-level controller was implemented on top of the OpenRAVE controller plugin
structure.

Primitive controller

The framework for the primitive controllers is simple, consisting mainly of a method to
return control output from the primitive controller based on the sensor data and methods
for setting and getting attributes of the primitive controller. Additionally, a success
method is defined that enables transitions to query the primitive controllers if their
target has been reached successfully. The framework leaves much room to implement
any type of control scheme that is desired. The attributes can be used to simply define a
target for a controller, for example, a pose for a controller working in the Cartesian space,
but the attributes can be used to enable more general use of the primitive controller; for
example, a variable number of joints can be controlled using just one primitive controller.
The control output is returned to the high-level controller in a structure containing the
control output, the priority of the control output for arbitration, the type of the control
output, for example, Cartesian manipulator control, and a control mask describing which
DOF’s of the robot manipulator are controlled by the primitive controller. Each state of
the concrete state machine can run multiple primitive controllers. However, in a normal
situation, one primitive controller is used for the manipulator and one for the end effector.
The UML class diagram for both the primitive controller and the control data structure
is shown in Figure 3.8.
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Figure 3.8: Primitive controller and control data design.

Transition

As the name suggests, transitions represent each transition found in the abstract state
machine. When the transitions are translated into the concrete state machine, each
transition can comprise many transition conditions defined in the abstract state machine.
The framework for these transition conditions is very similar to the primitive controllers;
instead of control output, each transition condition must return whether the condition
is true or not. A transition can only be made when all of the conditions in it are true.
The implementations for both the transitions and transition conditions are shown in
Figure 3.9.

Figure 3.9: Transition and transition condition UML class diagrams.

Control Arbitrator

The control arbitrator can be used in cases where multiple control outputs from the
primitive controllers is expected; for example, one controller gives output only if a colli-
sion is detected. The control arbitrator can use the data in the control output to decide
how to control the DOFs available to the platform. Again, in a normal situation, the
arbitrator can be implemented to just pass the output from the primitive controllers to
the actuators.
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Translator

The translator is embedded within the high-level controller so that it has access to both
the abstract state machine through the off-line communication interface, and the con-
crete state machine. Currently, the translator is implemented for grasping and moving
objects in a pick-and-place scenario. While the translator component itself is platform
independent, the translator utilizes the abstract factory design pattern to query platfrom
dependent primitive controllers and transition conditions. Each platform is represented
by an abstract factory, and the factory contains the logic that finds corresponding prim-
itive controllers and transition conditions with the abstract state machine states and
transitions. This arrangement enables each platform to be fully exploited and at the
same time offers a fall back for platform deficiencies; for example, if a cylindrical hand
shape is desired for the grasp in the abstract state machine, a 1 DOF gripper can fall back
to just a default grasp. Although the abstract factories are used for individual primitive
controllers and transition conditions, the structure of the concrete state machine that is
output to the high-level controller is always defined by the translator component itself.
This ensures that a minimal amount of work has to be done to implement each new
platform, as only a limited set of states and transitions were defined in section 3.2.1,
even if the space of possible abstract state machines is large. The translator component
with the abstract state machine component is given in Figure 3.10. The abstract state
machine in the figure is a representation of the XML abstract state machine and includes
all of the information from the XML file.

Figure 3.10: Translator and abstract state machine UML class diagrams.

State machine

This component represents the concrete state machine. The state machine has access to
all of the code, i.e. the primitive controllers and transitions, that is needed to run the
whole state machine from the start to the end states. The state machine component
handles all of the logic of a finite state machine.

Sensors

Sensors are used by the primitive controllers for control and by the transition conditions to
check whether the condition has been fulfilled. The sensors are based on the OpenRAVE
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definition of sensors, although some modifications were made to maximize the usefulness
of the sensor interfaces to both the primitive controllers and transition conditions by
placing a type variable for each sensor. This allows the controllers and conditions to
check for a certain type of sensor within all sensors made available. For example, the
implementation of a time sensor, i.e. a clock, can be different between platforms: consider,
for example, a real-time clock versus a clock in simulation. As long as the type and the
data are similar between the platforms, the controllers and transitions can be adapted
to different platforms.

Actuators

The path to the actual actuators that control the robot is defined through the on-line
interface, specifically, the actuator interface. The interface currently consists only of
the end effector or the hand of the robot and the arm of the robot. Both of these
can be separately defined, allowing a number of combinations with different hands and
arms. Simulated actuators were made available to the OpenRAVE by the OpenGRASP
project [32] to simulate the dynamic behavior of the real actuators. These actuators were
integrated into the control architecture through the actuator interface. The actuator
interface is given in Figure 3.11

Figure 3.11: Actuator UML class diagrams.

3.4 Experiments

The abstraction architecture was demonstrated on two platforms which differ in their
kinematics, control, and sensory capabilities. The first platform is a Melfa RV-3SB robot
arm with a Weiss WRT-102 parallel jaw gripper [64]. The WRT-102 is built from the
Schunck PG70 gripper. The WRT-102 enables the sense of touch by adding two tactile
sensors to the gripper’s two fingers. The arm has 6 DOFs and the gripper has 1 DOF
which controls the width of the grip. The grasping force is controlled by the feedback
from the tactile sensors. Also the stability of the grasp is determined from the tactile
sensor feedback.

The second platform consists of a Mitsubishi PA-10 arm with 7 DOF mounted on an
Active Media PowerBot mobile robot. The manipulator is is equipped with a three-
fingered Barrett hand and a JR3 force/torque and acceleration sensor mounted on the
wrist. The Barrett hand has been improved by adding to the fingertips arrays of tactile
sensors. Each finger of the hand has a built-in strain sensor. The JR3 is a 12 DOF sensor
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that measures force, torque and acceleration in each direction of the space. The finger-
force sensors are used to stop closing the fingers when the object is touched. Javier Felip
(one of the co-authors of [5]) developed the platform specific controllers and transitions
for this platform.

3.4.1 Demonstration of platform independence

One of the key challenges that the abstraction architecture addresses is how to combine
the need to have sensor based information which is highly coupled to the embodiment
and abstraction of the action. To show that that abstraction architecture is able to cope
with this problem, sensor-based grasping of objects is demonstrated on the two platforms
described above. Using the same abstract instructions, i.e. , the abstract state machine,
the same action was executed on the two platforms, and the embodiment specific sensors
were utilized to grasp the object.

Figure 3.13, shows snapshots of an action being executed on both platforms. The abstract
action contains seven primitive actions: approach, preshape, grasp, lift and move, move
down, release and move away. The two objects used in the demonstrations are normal
household items: a detergent bottle and a salt container. Both objects have the same
mass, 0.5 kg, and are shown in Figure 3.12. In addition to the objects shown, the
sensor-based grasping has been demonstrated in the systems with several other similar
household objects. As shown in Figure 3.13, using the same abstract state machine
for both platforms shows that the abstraction can be effectively employed across robot
embodiments.

Figure 3.12: Grasped objects, a salt container and a detergent bottle.

In the context of the demonstration, the same controllers could be used for both arms,
but the abilities of the hands are too different in terms of kinematics and sensors. As
a results of this, both hands had their own controllers. Also the transitions for grasp
stability or instability are customized for each of the platforms in order to use the different
sensors on the platforms.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.13: Action execution on both platforms: (a) Approach; (b) Grasp; (c)
Move; (d) Release; (e) Approach; (f) Grasp; (g) Move; (h) Release.
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3.4.2 Detecting failures

Failure detection is an important factor in the proposed architecture. Failure detection
can be used to detect surprise and to learn. As the control architecture is focused towards
sensor-based control, all available sensors can be used for failure detection. Failure is also
explicitly included in the abstract state machine as one of the end states, and the sequence
of states that lead to the failure can be recorded to learn from the failure event.

To demonstrate failure detection, the same abstract state machine was used as before
with the demonstration platforms. However, the object mass was artificially increased,
but this was not reflected on the abstract state machine. Sensor use is critical in detecting
failures which can be seen in Figure 3.14, showing the result of the failure detection on
the first platform. The figure depicts the total force affecting the tactile sensors and
the state changes of the state machine as vertical lines. As can be seen from the figure,
the state machine was executed normally until the lift and move primitive failed, and
the state machine moved into failure state, halting the execution of the state machine.
Note that the transition condition used here is a simple evaluation of the total force
that affects the tactile sensors. The failure mode was demonstrated on the platform
consisting of RV-3SB and WRT-102. However, both platforms have the capability of
failure detection, using their platform specific sensors.

Figure 3.14: Measured force during a failed action.

3.5 Summary

This chapter presented an approach, an abstraction architecture, for handling embod-
iment independent knowledge and transferring that knowledge to a more embodiment
specific representation which can be used to control a single robotic platform. The ap-
proach specifically addresses embodiment independence, the use of sensors as an integral
part of control, and the modelling of actions as automata of adaptive primitive actions.
The embodiment independent knowledge is modelled as a state machine which is then
translated to suit each embodiment and its external and internal sensors. The archi-
tecture design follows some of the previously published architectures, such as [82], quite
closely, but extends them to allow fully abstracted actions. The hardware independence
was demonstrated on two different platforms, which consisted of different robotic arms
and hands.
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The architecture itself consisted of three main components: the abstract state machine,
translator and concrete state machine. The abstract state machine was described in XML.
A number of different attributes and properties could be used to adapt each individual
state to different objects and different hardware platforms. The translation component
handled the change from the abstract state machine to the concrete state machine. The
translator was implemented to include its own internal logic which queried each platform
for individual states, instead of the whole state machines. This reduced the amount of
work required to implement the abstraction architecture on different platforms.

The concrete state machine represented the abstract state machine, but in a form that
could be executed on a specific hardware platform. The concrete state machine was
formed from a set of controllers, controlling an arm and a hand and a set of transitions
governing the state changes. Each controller and transition can access all of the sensors
found in the hardware platform, enabling the use of complex controllers.

While the experiments were basic, they showed that the abstraction architecture is able
to work on different platforms despite a large gap in the capabilities of those platforms.
In addition, the experiment on failure detection demonstrated how the sensor capability
of the platform can be utilized to detect surprises.



36 3. Action Abstraction



Chapter IV

Learning Grasp Stability

Grasp stability, in an analytical sense, is well defined, as explored in section 2.1, and
can be readily computed in simulation where enough data of the grasp is available,
i.e. all contacts between the robotic hand and the object. Additionally, using a force
closure metric for grasp stability, one can compute a grasp that sufficiently resists outside
forces, such as gravity, thus allowing the robot to manipulate objects, for example by
lifting them. However, the assumption that all necessary information is available, is not
generally true when using real hardware. The tactile sensor data is imperfect, both in
the sense of detecting contacts and in the sense of determining the actual contact forces
and normals. In some cases, the proprioceptive information, i.e. joint configuration,
is also difficult to determine accurately, thus, causing uncertainty in ascertaining the
kinematic configuration of the hand which affects the assumed contact locations. All of
these phenomena pave the difficult road for computing the grasp stability analytically
with real hands and real objects.

This chapter focuses on methods for supervised learning of the grasp stability instead of
analytically solving it. Compared to the analytical methods, supervised learning requires
data and the labels for the data, which need to be collected beforehand. This can be
seen as one of the disadvantages compared to the analytical methods. Nevertheless the
training data can be any pertinent data that can be collected from a robotic hand. The
work presented in this chapter relies on input from tactile sensors and the hand finger
configuration. It is also important to notice that the raw sensor data can be used in the
learning; for example, there is no need to know the kinematics of the hand which would
be required to compute the true locations of the contacts when analytically solving the
grasp stability. This feature is an advantage, as it allows the grasp stability to be learned
for many different robotic hands within the same framework with minimal changes.

The work described in this chapter is based on classifiers – a well known field in machine
learning – which enable the use of supervised learning. Although the classifiers used in
this work are well known, the objective is to study which classifiers and which feature
representations work best in the specific problem of determining grasp stability. In
addition, the effect of object knowledge on the grasp stability determination is studied.

37
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4.1 Utilizing haptic data in manipulation

Haptic and tactile data has been used for many purposes in the past few years, which has
only been possible through the development of affordable and usable tactile sensors. This
highlights the fact that the sense of touch can be and is used for applications that either
cannot be accomplished using other sensor modalities, such as vision, or that complement
information from other sensors. While the haptic data received during grasping can be
used for computationally solving the grasp stability, the focus for the methods presented
here is on the use of haptic data to estimate different object properties.

Research on the use of tactile and other sensors in the grasping context has increased
in the past few years. Felip and Morales [93] have developed a blind grasp primitive, in
which no vision is used. It aims to find a suitable grasp for an unknown object after a
few initial grasp attempts. However, only finger force sensors were used in the study.
In [94], also vision was used to detect good starting points for the grasp primitive.

Apart from using tactile information as a feedback for low level control [95], tactile sensors
can be used to detect or identify object properties. Jiméneza et al. [96] use the tactile
sensor feedback to determine what kind of a surface the object has and then determine
a suitable grasp for the object. Petrovskaya et al. [97], on the other hand, use tactile
information to reduce the uncertainty of the object pose upon initial contact with the
object. In their work, a particle filter is used to estimate the object’s pose, but the
tactile sensor used to detect contact with the object is a probe, not a gripper, which
makes it easier to extract information about contact normals, for example. This work
was extended in [98, 99] to include novel statistical methods to infer the object pose.

Object identification has been studied by Schneider et al. [100] and Schöpfer et al. [101].
Schneider et al. show that it is possible to identify an object using tactile sensors on a
parallel jaw gripper. The approach is similar to object recognition from images and the
object must be grasped several times before accurate recognition is achieved. Schöpfer
et al. use a tactile sensor pad fixed to a probe instead of a gripper or a hand. They also
study different temporal features which can be used to recognize objects. Similar object
recognition systems have been presented in [102] where the object state is recognized, for
example, whether a bottle is full of liquid or empty. In [103], an approach similar to [100]
is employed and the method is demonstrated on an antropomorphic hand instead of a
simple gripper. Object recognition during manipulation and grasping has been studied
earlier, as well. In [104], a set of measurements is approximated by a superquadric and
the parameters of the superquadric are compared to a database of existing superquadrics
to recognize the object. Geometric representation of the objects is also used in [105], but
a neural network is trained to recognize objects based on features computed from the
geometric representation.

The approach described in this thesis was published in [11, 7, 6]. A similar approach
was proposed in [106]. Also in, [107] support vector regression was used to predict the
grasp stability of superquadric objects. Rodriguez et al. [108] have proposed a similar
learning approach to detect the presence of an object or objects, in this case marker
pens, given a simple hand. The time series approach for learning grasp stability has been
published separately in [109] and is not a part of this thesis. This approach has also been
extended to include vision [78]. The time series approach utilizes the hidden Markov
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model (HMM) to determine the end state of the grasp. While more information can be
used from a single grasp, the method cannot make a decision during grasping. Instead,
a grasp must be fully completed before classifying the grasp as stable or unstable.

4.2 Supervised learning of instantaneous grasp stability

The learning of the grasp stability is based on data. Compared to the analytical approach,
a set of advantages and disadvantages can be found. Perhaps the most important of these
advantages is that the data from the end effector can be directly used in the learning.
However, on the other hand, data is required for all different end effectors. Consequently
each end effector requires a set of observations, i.e. grasp attempts from one or more
object, that can be used to train the system to learn the grasp stability for the set of
objects used in the training. The notation of observations follows the one presented in [6]:

• D = [oi], i = 1, . . . , N denotes a data set with N observation sequences.

• oi = [xit], t = 1, . . . , T is an observation sequence with T samples.

• xit = [f it jit], each sample consists of f , the features extracted from tactile sensors
and j, the joint configuration.

• In addition, L = [l1, . . . , lN ], denotes the labels (stable, unstable) corresponding to
the N observations.

Looking at the notation, a set of features x and the corresponding labels from L are
available to be used for training. Moreover, the labels are binary: the observed grasp
was either stable or unstable. The stability labels should correspond to the final sample
xiT . This type of formulation is suitable for the classifier algorithms. One type of these
classifiers is called linear classifiers [110], which can take the form of

y(x) = f(wTx + w0) (4.1)

which is called a generalized linear model [111]. When y(x) = constant, the model forms
a decision surface. The decision surface divides the space of possible features into two in
the case of binary labels. Each of these partitions in the feature space corresponds to a
certain label or class. An example of a decision surface in 2D is shown in Figure 4.1(a)
with a variety of features labeled into two classes. The problem of choosing this decision
surface is what the classification algorithms try to solve with different underlying theories.
Figure 4.1(b) shows the classical XOR problem that cannot be solved with a single linear
classifier. In this thesis, due to the problems that the linear classifiers face, a set of
non-linear classifiers are presented and consequently applied to the problem of learning
grasp stability.

The experiments, presented in section 4.5, were conducted using four separate classifiers
to study the differences of the results that the classifiers produce and to find out which
of the classifiers is the most suitable for learning grasp stability. The classifiers presented
here are the support vector machine (SVM), adaptive boosting (AdaBoost), the Gaussian
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(a) (b)

Figure 4.1: (a): An example of a decision surface in 2D; (b): XOR problem.

mixture model (GMM) classifier and k-nearest neighbor classifier (k-NN). Each of these
classifiers have a different approach to the problem of classification, and thus can provide
different insights into learning grasp stability. These classifiers can be divided into two
groups [112], discriminative models, including SVM, AdaBoost and k-NN, and generative
models, including GMM.

While both models aim to learn the mapping g : X 7→ Y , where X are the features and
Y the labels, generative models aim to model the inputs and the outputs. Thus, one
can generate new input samples from the generative model. Discriminative models, on
the other hand, model only the output, i.e. what the output Y is given an input X. In
a statistical sense, generative models model the posterior probability P (Y |X) through
P (X|Y )P (Y ) which can be obtained from Bayes’ theorem. Discriminative models model
the P (Y |X) directly. [110]

Support Vector Machine

The support vector machine (SVM) [113, 114] is a maximum margin classifier, i.e. the
classifier fits the decision surface so that a maximum margin between the classes is
achieved. The support vector machine is named after the fact that only a part of the
training data or vectors is used to generate this maximum margin decision surface, such
vectors are known as support vectors. Figure 4.2 shows an example of SVM decision
surfaces.

Another feature of the SVM is the ability to use non-linear classifiers instead of the
original linear hyper-plane classifier. Non-linearity is achieved by applying the kernel
trick [110] which allows the use of non-linear kernels. In this thesis, only the radial basis
function (RBF) is used as the kernel for SVM:

K(xi, xj) = e−γ‖xi−xj‖2 , for γ > 0 . (4.2)

In addition to the parameter γ, constant C, which is the penalty applied to incorrectly
classified training samples, i.e. the soft margin, [113], needs to be set. The parameters
can be found by empirically searching the parameter space to find optimal values. An
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extension to the basic two-class SVM, probabilistic outputs for SVM by Platt [115], is
also used to analyze the results given by the SVM. The implementation of the SVM is
by Chang and Lin [116].

(a) (b)

Figure 4.2: (a): SVM decision surface; (b): XOR problem solved by SVM.

Adaptive Boosting

AdaBoost or adaptive boosting is a meta-algorithm for learning which was developed by
Freund and Schapire [117]. AdaBoost uses multiple weak classifiers, such as linear hyper-
plane classifiers, to classify the given training data. AdaBoost has a good generalization
ability, but it is not effective when outliers are present in the training data, although
more recent algorithms attempt to remedy these problems [118]. AdaBoost has been
successfully applied to, for example, face detection [119]. In Figure 4.3, the AdaBoost
decision surface for both the linear and XOR problem is shown.

The AdaBoost algorithm that is used in this thesis is based on a decision tree classifier
with a variable branching factor. With a branching factor of 1, the tree classifier repre-
sents a linear hyperplane classifier. The branching factor was evaluated empirically, which
showed that increasing the branching factor was not beneficial. The implementation is
by Vezhnevets [120].

k-Nearest Neighbor

The k-nearest neighbor [121] classifier is a simple algorithm to implement. This classifier
requires no training phase; instead, during the classification phase, the test samples are
compared to all given training samples. The test sample is classified as the class with
the most neighboring, i.e. the closest, training samples. The k denotes the number
neighboring training samples that are used in the classification phase. However, the
classification time complexity grows with the number of training samples. In Figure 4.4,
the 1-NN decision surface for the linear and XOR problem is shown, although, in the
experiments 3-NN is used. The k-nearest neighbor also has a proven [121] error rate
that is no worse than two times the Bayes error rate, i.e. the optimal error given the
distribution of data, when the amount of data approaches infinity.
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(a) (b)

Figure 4.3: (a): AdaBoost decision surface; (b): XOR problem solved by Ad-
aBoost, white denotes ’x’ and light color (cyan) denotes ’o’.

(a) (b)

Figure 4.4: (a): 1-NN decision surface; (b): XOR problem solved by 1-NN.

Gaussian Mixture Model

As the naive Bayes classifier assumes that the data is distributed according to some
modelable distribution, such as the Gaussian distribution, it is not optimal in cases where
this assumption is not true. For example, when multi-modal distributions are present in
the training data, Gaussian distribution would fail to represent the data adequately. The
haptic data is distributed according to an unknown distribution, and thus it is reasonable
to use a Gaussian mixture model (GMM) statistical classifier. In Figure 4.5, the GMM
decision surface for the linear and XOR problem is shown.

While GMM methods assume a Gaussian distribution, they use multiple Gaussian dis-
tributions to model the data, which enables the methods to model multi-modal and
more complex data. The implementation used in the experiments is by Paalanen and
Kämäräinen [122].
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(a) (b)

Figure 4.5: (a): GMM decision surface; (b): XOR problem solved by GMM.

4.3 Learning continuous grasp stability

In [6], the temporal information collected during a grasp is used in conjunction with
a hidden Markov model (HMM) to decide whether the grasp is stable or not. For the
method to be able to decide, the grasp must be completed. The approach proposed in
this section is to extend the instantaneous method presented in section 4.2 by applying
the learned stability model on-line to each sample x1, . . . , xT that is obtained during a
grasp. This extension allows quicker decision making on the grasp stability in the case
of a stable grasp.

As the method described in section 4.2 does not remember any of the previous time
instances and does not consider the whole grasp sequence from t = 1, . . . , t = T , the
classification result over time may oscillate. One pathological example is shown in Fig-
ure 4.6. Through the use of filtering and thresholding, the oscillations can be effectively
removed, as seen in the figure. One additional problem that exists is the lack of training
data from the beginning of the grasp if one strictly follows section 4.2. However, if the
whole grasp sequences have been recorded, i.e. from t = 1, the grasp configuration at the
beginning of the grasp sequences can be used to train the classifiers. The data can be
safely labeled as unstable, as the hand has not achieved contact with the object at that
time instance. Using this procedure ensures that grasps that are not in contact with the
object are classified as unstable, enabling the classifier to be run continuously from the
beginning of the grasp until the end of the grasp.

Two different filter types are employed: a mean filter and an exponential filter. The
results of the experiments with the filters are shown in section 4.5.4. The input for the
filters is the result from the classifier, either 0 or 1, denoting either an unstable or stable
grasp, respectively. The mean filter can be defined as a sliding window with the window
size w. The mean of the data in the window is then calculated, and this result is the
output of the filter. The exponential filter is described by

y(t) = (1− α) · y(t− 1) + α · x(t) . (4.3)
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(a) (b)

Figure 4.6: (a): Each time instance of a stable grasp classified with a SVM clas-
sifier; (b): The classification result filtered with an exponential filter and thresh-
olded.

Equation 4.3 consists of y(t) and y(t− 1), filter output at time instances t and t− 1, of
x(t), the binary stability at time t and of α which is a weighting factor. Examples of
both filters are shown in Figure 4.7, which depicts the same sequence as in Figure 4.6.

Introducing the filters requires setting more parameters in addition to the parameters for
SVM. These include w for the mean filter window width, and α for the exponential filter.
In addition, both require the threshold thr for the binary decision of stability. After
the threshold has been crossed, the grasp is deemed stable. Again, the values for these
were found empirically by varying the parameters and choosing the parameter pairs that
produced the best classification results.

(a) (b)

Figure 4.7: (a): Filter output of a mean filter; (b): Filter output of an expo-
nential filter.
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4.4 Features for learning grasp stability

To learn grasp stability, the training data is collected from a series of grasps, noted by
the observation sequences oi. Then, from each observation sequence the last sample xiT is
used for the training. Additionally, in the continuous stability learning, the first sample
xiT can be used as training data, as well. Time instant T captures the instant on which
the decision of a stable or unstable grasp must be based, for example to lift the object.
Both unstable and stable grasps must be included in the training data so that sufficient
data is available to discern the stable grasps from the unstable grasps.

The actual features are the readings from the tactile sensors, f and the joint configuration
j. An example of the tactile sensor output is given in Figure 4.8, which shows the output
from the six tactile sensors of the ARMAR-IIIb end effector. The images consists of
taxels, each of which can measure the pressure that affects the taxel. The end effectors
used in the experiments will be described in detail in section 4.5, but the hardware ranged
from two tactile sensors and one DOF to six tactile sensors and 8 DOFs. Tactile sensor
sizes, i.e. the number of taxels, were also different. This range of hardware shows that
the presented methods are general and suitable for many types of end effectors.

Figure 4.8: Tactile images from ARMAR-IIIb.

Utilizing the raw data, i.e. the tactile images and the joint configuration, is possible with
some classifiers, but it is useful also to study different feature representations that can
be built from the raw data. The process of building feature representation essentially
transforms the raw data into information. The focus is to compute the feature repre-
sentations from the tactile data that can be very high dimensional ( > 500 dimensions).
Fortunately, the tactile images can be considered as normal images; thus, many feature
representations suitable for photographic images are usable in the context of tactile sen-
sors, as well. This fact influenced the choice of some feature representations, such as
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image moments or local binary patterns. Next, all of the feature representations that
were part of the experiments, are presented.

Principal Component Analysis

Principal component analysis (PCA) is a commonly used linear technique for dimension-
ality reduction. The PCA is computed from the covariance of each tactile sensor matrix.
The covariance is then used to solve the eigenvectors and eigenvalues:

C = cov(H1
T , . . . ,H

N
T ) , (4.4)

V −1CV = D . (4.5)

V represents the eigenvectors and D the corresponding eigenvalues. H denotes the tactile
measurements that are a part of the sample vectors xiT . To reduce the dimensionality of
the data, it is common to choose a subset of all of the eigenvectors. In this case, only
60 eigenvectors with the largest eigenvalues were chosen. The 60 eigenvectors explained
approximately 90% of all of the data.

Image Moments

Raw image moments are defined as

mp,q =
∑
x

∑
y

xpyqI(x, y) . (4.6)

The moments are computed up to the order of two, that is (p+ q) = o, o = {0, 1, 2}, the
function I(x, y) represents the individual taxels of the tactile sensor. These are related
to the total pressure, the mean of the contact area, and the shape of the contact area,
indicated by the variance in x- and y-axes. The moments are computed for all tactile
sensors individually. Note that each tactile sensor can be represented by the set of six
numbers, {m0,0,m0,1,m1,0,m1,1,m2,0,m0,2}, regardless of the actual dimensions of the
sensor itself.

Raw image moments are used in the experiments as more complex image moments did
not produce better results. This observation might be due to the fact that, for example,
rotation invariant moments are not useful for grasp stability learning, as each grasp
uniquely maps to the stability of the grasp.

Histogram

A histogram representation on the tactile data represents binning of the force that affects
each cell of the tactile matrix. This operation also removes all spatial information. Thus,
the histogram only considers the distribution of the affecting force. In the experiments,
10 bins were used for each tactile sensor.
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Spatial Partitioning

Spatial partitioning partitions the area of the sensor matrix and sums up the affecting
force in every cell of the sensor matrix in each of these partitions. In essence, this sub-
samples the tactile image of each sensor matrix, but instead of averaging the taxels, a sum
is computed to account for the total force. Partitioning can be thought of as opposite to
the histogram operation, as partitioning retains the spatial information but loses some
information on the force distribution. In the experiments, a 2x2 grid is used to partition
the tactile image on each sensor.

Local Binary Pattern

Local binary patterns (LBPs) [123] are used commonly for texture classification, but also
for face recognition. As its name suggests, local binary pattern codes local changes in a
binary code. The local changes are found by thresholding the pixel neighbourhood by the
value of the center pixel and checking which pixels are above the threshold. These binary
codes are then added to a histogram, which is the final feature representing the original
data. Images from all sensors are coalesced into one image and the LBP is applied to
this image in the experiments.

Row and Column Sums

Row and column sums are another form of spatial feature representation, where the
colums and rows are summed up independent of each other. Thus, the resulting dimen-
sionality of the feature representation is the sum of the tactile sensor dimensions i + j
for each sensor:

sumcj =
∑
i

I(i, j) , (4.7)

sumri
=
∑
j

I(i, j) , (4.8)

where sumcj
denotes the individual sensor columns, sumri

denotes the sensor rows and
I(i, j) the force reading from individual taxel.

4.5 Experiments

The grasp stability experiments are divided into three subsections, which are constructed
along the main topics discussed in sections 4.2, 4.3 and 4.4:

• Experiments on the effect of classifier and feature representation on the classifica-
tion performance, i.e. the performance experiments.

• Experiments on increasing knowledge of an object when learning the grasp stability
of that object, i.e. the knowledge experiments.
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• Experiments on learning continouous grasp stability using the ARMAR-IIIb hand,
i.e. the continuous grasp stability experiments.

The performance experiments will measure the effect of the classifier and the feature rep-
resentation on multiple sets of data. These experiments give insight on the performance
of each feature representation and classifiers described in sections 4.2 and 4.4, and gives
an idea of which classifiers and feature representations to use in the future. The work
presented in these experiments was published in [7]. The next experiments, the knowl-
edge experiments, use the findings of the previous experiments and take a look at how
much the performance of the classifiers can be improved when more specific knowledge of
an object is given. These experiments were published in [6]. The knowledge experiments
can therefore be used to evaluate how much information is required for certain classifica-
tion performance. Finally, the continuous grasp stability experiments are based on the
theory presented in section 4.3 and can be used to evaluate how the grasp stability can
be evaluated temporally, i.e. across time, instead of just at the end of the grasp. The
experiments can also be used to compare the classification performance to the single-shot
classification.

4.5.1 Hardware description

In the following experiments, a set of simulated and real hardware is used to show that
the grasp stability learning is usable on different types of end effectors that have access
to the proprioceptive sense, i.e. the joint configuration sensors and the tactile sensors.
Figure 4.9 shows all the end effectors used in the grasp stability experiments. For the
performance experiments, two end effectors, the WRT-102 and the Schunk Dextrous
Hand, were used, as well as a simulated model of the SDH:

• Simulated Schunk Dextrous Hand, three fingers each with 12x6 tactile elements
attached to the distal phalanges.

• Schunk Dextrous Hand, three fingers each with 13x6 tactile elements attached to
the distal phalanges .

• Parallel Jaw Gripper, WRT-102, two fingers each with 14x6 tactile elements (Weiss
tactile sensors).

Although the SDH is equipped with six tactile sensors, in the performance experiments
only the three sensors attached to the distal phalanges were used. The additional sensors
attached to the proximal phalanges were utilized in the knowledge experiments. The SDH
and its simulated model were the only end effectors used in the knowledge experiments.

In experiments on learning the continuous grasp stability, the ARMAR-IIIb’s right hand
is used (shown in Figure 4.9(d)). The hand is equipped with joint encoders and pressure
sensors. The hand has 1 DOF in the palm, and 2 DOFs in each the thumb, the index
finger and the middle finger, which are pneumatically actuated. The hand contains six
tactile sensors from Weiss Robotics [124]. One tactile sensor is mounted on the distal
phalanges of the thumb, the index finger and the middle finger. Three tactile sensors are
mounted in the palm, in the area between the thumb and the index and middle fingers.
The tactile sensors have a resolution of 4× 7 taxel (phalanges) and 4× 6 taxel (palm).
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(a) (b)

(c) (d)

Figure 4.9: Images of the end effectors used in the experiments: (a) SDH; (b)
Simulated SDH; (c) WRT-102; (d) Right hand of ARMAR-IIIb.

4.5.2 Performance experiments

The parameters used to obtain the feature representations are shown in Table 4.1. The
table shows the selected parameters for each individual feature extraction method, if
such are required. The raw feature denotes that the tactile readings from the sensors
were used as is. Note that in the experiments the feature vector also includes the raw
joint configuration measured from the end effector. All of the features were normalized
to zero mean and unit standard deviation.

Table 4.2 shows the four classifiers and their parameters that were used in the exper-
iments. The parameters were chosen empirically, i.e. different parameter values were
tested and the values that gave the best classification performance were selected. The
bias was towards the simplest values; for example, with AdaBoost, similar classification
performance was achieved with higher branching factors. However, it is noteworthy that
during the empirical evaluation, not all possible feature representations and classifier
combinations were tested with all available data sets to determine the best possible pa-
rameters. Instead, a few data sets, both from simulated hands and real hands, and some
feature representations were used for this task.

The following data sets have been chosen from the simulated data. They were generated
by Jimmy Jørgensen (one of the co-authors in [6]) using a simulated SDH hand model
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Table 4.1: Table of parameters for features.

Features Parameter Parameter
Raw - -
PCA - -

Histogram No. bins: 10 -
LBP Uniform LBP Samples: 8,1

Moments - -
Partitioning Grid: 2x2 -
R&C sums - -

Table 4.2: Table of parameters for classifiers.

Classifier Parameter Parameter
SVM C: 0.4 γ: 0.03
GMM max. clusters: 19 max. error: 0.016
KNN k: 3 -

AdaBoost Branch factor: 1 Iterations: 200

in the simulation environment RobWorks, which is described in [125]:

• D1, a cylinder, grasps sampled from the side

• D2, a bottle, grasps sampled from the side

• D3, a bottle, grasps sampled from the top

• D4, a cylinder, grasps sampled from a sphere

• D5, a bottle, grasps sampled from a sphere

The data sets D1,2,3 represent cases where we know the pose of the object with some
accuracy, and can plan for a grasp. The data sets D4,5 are simulating situations where
the position of the object is known to some extent, but the orientation is highly uncertain.
Thus, the grasps are sampled from a sphere around the object. This type of scenario
might be possible when only visual data is used to estimate, for example, the center of
the mass of an unknown object. The objects corresponding to each data set are shown
in Figure 4.10. In the simulated data, the grasp quality measure, i.e. the grasp stability,
is based on [126], but instead of one convex hull W , two convex hulls Wf and Wτ are
used to separate the wrench space with respect to forces and torques, and additional
constraints are placed on Wf , so that

α(m · g) ∈Wf , α = 1.1 . (4.9)

This allows the grasp to remain stable even if some additional forces are introduced in
addition to gravity. Data sets generated with real hands are the following:
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.10: Objects used in the data sets: (a) D1; (b) D2,D3; (c) D4; (d) D5;
(e) D6; (f) D7,D8; (g) D9; (h) D10, D11.

• D6, a cylinder, grasps sampled from the side, SDH

• D7, a bottle, grasps sampled from the side, SDH

• D8, a bottle, grasps sampled from the top, SDH

• D9, a box, grasps sampled from the side, WRT-102

• D10, a shampoo bottle, grasps sampled from the side, WRT-102

• D11, a shampoo bottle, grasps sampled from the top, WRT-102

The data sets D6, · · · , D8 were collected by Yasemin Bekiroglu (the first author of [6])
and data sets D9, · · · , D11 were collected by the author of this thesis. Data sets D6,··· ,11
represent cases where an estimate of the object’s pose is known, for example, from a
vision system. This estimate is commonly noisy, and thus, some noise was added to
the hand pose. The objects in data sets D6,7,8,9 are rigid and the objects in data sets
D10 and D11 are non-rigid, i.e. the objects are deformable. The grasp stability in these
datasets was determined by grasping the object. Again, the objects corresponding to data
sets D6, . . . , D11 are shown in Figure 4.10. In data sets D6,··· ,8 the object was rotated
[−120◦,+120◦] around the approach direction and in data sets D9,··· ,11, the object was
lifted and rotated +90◦ around the X and Y axes and the Z axis was the direction of
the lift. If the object moved independently of the hand during the lift or rotations, the
grasp was unstable. Otherwise, it was stable.

The performance of the classifiers was evaluated using ten-fold cross validation. The
data set sample sizes for each of the given data sets are shown in Table 4.3 with the
maximum classification rate summarized from Tables 4.4 and 4.5 with the corresponding
classifier and feature representation. The sample size shown in the table is balanced, so
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Table 4.3: Data set sample sizes and classification rates.

Data set Sample size Max. classification rate Class.+Feat.
D1 6400 77.0% SVM+PCA
D2 4906 61.4% SVM+R&C
D3 4446 62.7% SVM+Moments
D4 5302 80.4% SVM+Part.
D5 8990 70.5% SVM+Moments
D6 140 92.1% SVM+Moments
D7 100 92.1% AdaBoost+Part.
D8 50 84.6% KNN+Raw
D9 148 74.6% AdaBoost+R&C
D10 148 59.0% AdaBoost+Hist.
D11 100 64.0% AdaBoost+Moments

that each data set has an equal amount of stable and unstable grasp samples. All other
features were normalized to zero-mean and unit variance, except the raw features which
were normalized to the range [0, 1]. The normalization parameters were obtained from
the training set and applied to both training and test sets.

Result matrices with the described data sets are given in Table 4.4 and Table 4.5. The
tables show the classification rate of each data set with the indicated feature and classifier
combination. Each row shows the best classifier in bold font and the worst in italic font.
The best and worst classifiers were determined on a 95% confidence interval using the
Agresti-Coull interval, which approximates the binomial confidence interval. Multiple
classifiers are deemed best if there is no statistically significant difference between them
in the classification performance. Some results for GMM are omitted because of the
training sample size requirements; thus, the results for datasets D6,...,11 are not shown.
Also the dimensionality of the raw data was too much for the GMM to accurately model
the distribution of the data.

The results in Tables 4.4 and 4.5 show that there is a distinctive performance difference
between the data sets. The simulated data sets, D1 and D4 frquently perform better
than the other simulated data sets. This performance gap is caused, at least partially, by
the hand configuration, which allows the object to touch other areas of the hand where
there are no simulated sensors. This eliminates some of the important information about
the object to be used in determining the grasp stability. Thus, it is important to set
up the grasp sequence in a way that allows the sensorized part of the hand to grasp the
object.

This procedure is evident in the data set gathered from the real hands, especially sets
D6,7,8, where the classification performance is above 75% in some cases. However, the
objects in the data sets were rigid, which is not the case in sets D10,11. These sets show
mostly poor performance, indicating that possibly more samples should be used to learn
the grasp stability. Additionally, the possible configurations of the gripper, used in the
data sets D10,11, are not as informative as the SDH, which can envelope the object,
compared to the WRT-102 gripper which can only grasp the objects in a planar fashion.

The best overall classifier is AdaBoost, which performs the best out of the four classifiers,
while SVM is a close second. The worst classifier is GMM, partially due to the extensive
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Table 4.4: Classification rates for data sets D1, · · · , D11.

Data, Feature SVM GMM KNN AdaBoost
D1 75.5% - 73.3% 76.7%
D2 59.1% - 56.6% 58.1%
D3 60.3% - 60.7% 62.1%
D4 69.7% - 63.1% 79.3%
D5, Raw 65.7% - 58.2% 68.9%
D6 82.6% - 90.7% 91.4%
D7 22.0% - 84.0% 91.0%
D8 49.3% - 84.6% 80.4%
D9 54.0% - 71.3% 71.1%
D10 49.3% - 48.6% 46.4%
D11 50.0% - 54.0% 56.0%
Mean 66.3% - 62.6% 69.6%
D1 77.0% 74.1% 72.5% 74.5%
D2 59.7% 56.5% 56.1% 57.0%
D3 61.3% 60.4% 59.7% 60.4%
D4 74.0% 68.7% 67.5% 77.6%
D5, PCA 67.6% 64.5% 60.4% 67.7%
D6 85.7% - 58.6% 90.0%
D7 77.0% - 55.0% 69.0%
D8 50.0% - 47.9% 78.6%
D9 73.2% - 65.5% 71.7%
D10 50.0% - 54.0% 54.0%
D11 46.0% - 55.0% 49.0%
Mean 68.5% 65.4% 63.3% 68.1%
D1 76.5% 71.1% 72.5% 75.9%
D2 61.1% 52.7% 57.4% 58.6%
D3 62.7% 54.0% 60.1% 62.3%
D4 80.0% 61.2% 72.3% 79.7%
D5, Moments 70.5% 51.8% 63.6% 68.9%
D6 92.1% - 93.6% 90.7%
D7 91.0% - 86.0% 92.0%
D8 27.1% - 67.1% 77.9%
D9 64.6% - 69.5% 72.7%
D10 44.0% - 50.5% 44.7%
D11 48.0% - 51.0% 64.0%
Mean 70.6% 58.0% 65.6% 69.7%
D1 73.1% 64.9% 65.6% 73.9%
D2 56.0% 55.0% 52.2% 56.4%
D3 62.0% 49.9% 57.6% 62.1%
D4 79.0% 71.9% 69.8% 79.4%
D5, Histogram 67.9% 66.8% 62.1% 68.5%
D6 90.0% - 81.4% 90.0%
D7 84.0% - 76.0% 82.0%
D8 66.1% - 73.6% 72.5%
D9 63.0% - 53.8% 57.3%
D10 57.6% - 49.2% 59.0%
D11 38.0% - 62.0% 57.0%
Mean 68.1% 62.9% 62.0% 68.7%
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Table 4.5: Classification rates for data sets D1, · · · , D11.

Data, Feature SVM GMM KNN AdaBoost
D1 76.1% 65.6% 71.8% 75.8%
D2 57.3% 55.0% 56.2% 57.3%
D3 62.6% 53.2% 59.0% 60.8%
D4 80.4% 65.7% 73.0% 79.7%
D5,Partitions 69.0% 60.9% 64.7% 68.9%
D6 91.3% - 91.4% 92.1%
D7 91.0% - 89.0% 89.0%
D8 36.8% - 81.8% 67.5%
D9 63.0% - 60.6% 64.4%
D10 40.8% - 45.5% 48.8%
D11 56.0% - 48.0% 64.0%
Mean 69.6% 60.6% 65.5% 69.2%
D1 75.0% 64.4% 68.6% 74.9%
D2 54.8% 52.0% 51.4% 56.4%
D3 60.9% 58.0% 58.1% 61.3%
D4 75.2% 66.4% 64.0% 79.7%
D5, LBP 66.4% 58.7% 57.8% 68.4%
D6 84.3% - 79.3% 85.0%
D7 26.0% - 68.0% 74.0%
D8 47.1% - 68.2% 60.0%
D9 61.1% - 69.2% 73.4%
D10 50.2% - 45.8% 48.3%
D11 50.0% - 49.0% 51.0%
Mean 66.8% 60.1% 60.3% 68.7%
D1 76.8% 63.8% 72.1% 76.5%
D2 61.4% 58.6% 57.8% 58.3%
D3 62.7% 61.5% 61.5% 60.7%
D4 77.3% 58.9% 70.2% 79.6%
D5, R&C Sums 68.7% 63.4% 62.6% 68.8%
D6 92.1% - 92.1% 91.4%
D7 90.0% - 87.0% 91.0%
D8 30.7% - 72.1% 68.2%
D9 63.5% - 67.5% 74.6%
D10 55.1% - 50.3% 43.8%
D11 54.0% - 52.0% 64.0%
Mean 69.8% 61.6% 65.1% 69.5%
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Figure 4.11: Classification rates on individual features.

amount of data needed to train GMM successfully with some of the chosen features. The
small amount of data available in data sets D6,...,11 makes it difficult to determine the
best classifier within the 0.95 confidence interval, but looking at the results, AdaBoost
has the highest mean in these cases. SVM has some anomalies, which are suspected to
be caused by the parameter and feature combinations, and could be fixed by adjusting
the parameters of SVM.

To study the effect of the features on the classification rate, tests with a 3-nearest neighbor
classifier were conducted on each dimension of all of the feature representations described
in section 4.4 and also on the raw tactile data. The classification rates are shown in
Figure 4.11 for the data set D1.

Classification rates of 0.5 or less in Figure 4.11 are a sign that the feature used is not
particularily useful in learning, as it has no correlation with the grasp stability. The
figure shows that there are quite many useful features in the set of features that were
tested. One interesting observation can be found within the raw data, as these features
have multiple spikes which are among the best features for classifying the grasp stability.
Especially the taxels corresponding to the thumb, i.e. the single finger opposing the
two other fingers, have the highest classification results among all of the features. This
indicates that individual cells of the tactile sensors, especially in the thumb, could be
used to determine the grasp stability to some extent. Also image moments, the histogram
and row and column sums seem to have a number of advantageous features to be used
for classification. The experiment was also performed on the real data set D6, for which
the results were similar.

4.5.3 Knowledge experiments

As was discovered in section 4.5.2, the AdaBoost algorithm performed the best, which
is the reason behind utilizing it in the knowledge experiments. Nonetheless, the SVM
classifier could be expected to perform similarly. The same parameters are applied as in
section 4.5.2. An SVM classifier is employed here to show how to utilize the probabilistic
outputs. Parameters from section 4.5.2 are used in these experiments, as well.

The knowledge experiments are based on the information hierarchy from [6] shown in
Figure 4.12 using the AdaBoost classifier. The information hierarchy is based on levels of
increasing knowledge. The first level, also denoted as the root node, is the most general
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case, representing a set of objects grasped with a general grasp strategy, namely a spher-
ical grasp strategy. The second level contains specific object shape classes, for example,
cylindrical objects grasped with a general grasp strategy. The third level comprises of
these specific object shape classes grasped with a specific grasp strategy, for example, top
grasps. The most specific level is, of course, a single object grasped with a specific grasp
strategy. Due to the amount of data required to sample grasps at levels 1-3, this data
was generated using simulation. Data on specific objects with a specific grasp strategy,
on the other hand, was collected using a real SDH.

Figure 4.12: Information hierarchy. Adapted from [6].

All experiments here are reported as ten-fold cross validation averages, except where
otherwise noted. In each case, the data sets used for training and testing the classifiers
are balanced, i.e. the data sets contain an equal number of unstable and stable grasps.
Image moments are used as the feature representation in all experiments. The joint data
in addition to the tactile data is also included in the features, unless otherwise noted.

The real objects used in the demonstration are shown in Figure 4.13. The objects in the
figure are denoted in the experiments as follows (from left to right): cylinder, deformable
cylinder, cone, orange bottle, shampoo, pitcher, white bottle, blue bottle and box. Each
object was sampled for 100 stable grasps and 100 unstable grasps using side grasps.
The simulated objects are shown in Figure 4.14. Each object was scaled to three sizes:
0.75, 1.00, 1.25 times the normal size. The objects are referred to (from left to right)
as hamburger sauce, bottle, cylinder, box and sphere. Each object is grasped with a
specific grasp strategy, referred to as top, side or sph (spherical) in the experiments. The
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spherical grasp is used to denote a grasp made from a sphere centered on the object, and
the approach vector of the grasp points at the object center. Each combination of grasp
and object contains 3000 stable and 3000 unstable grasps. This is further divided into
1000 stable and 1000 unstable grasps per object scale. The root node consists of of only
the primitive shapes, i.e. cylinder, box and sphere, with a total of 18000 samples.

Figure 4.13: Real objects.

Figure 4.14: Simulated objects.

To study the performance of the grasp stability classification further, a support vector
machine classifier is used with image moments to examine the separability of the grasp
stability at each level by means of log-likelihood histograms. The effect of the joint
configuration data on the classification is also studied by including or excluding it from
the feature vector for the classifier when using real data. The training time for the
classifiers is less than five minutes, for the reported amount of samples. The AdaBoost
training time increases linearly with the amount of samples while the SVM training time
increases quadratically. The classification of a single sample takes less than 10 ms with
both of the presented classifiers. The SVM classification time increases linearly with the
amount of samples used for training.

Real data

The experiments begin by showing results using real data, collected by the first author
of [6], Yasemin Bekiroglu. Sampling grasps with a real hand is a slow process and thus the
sample size is limited. To study the effect of the amount of samples used for training, a
series of tests were run with variable sample sizes. In each case, the same object was used
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both for training and testing. The results of these tests are shown in Table 4.6, which
shows the classification rates for training data sets of difference sizes. The test shows
that for a specific grasp on the cylindrical object, 100 samples are already enough to
reach classification performance levels achieved with higher amount of samples, and the
differences in classification performance above 100 samples are not statistically significant.
However, this is the case only when the stable and unstable grasps are distinctive, i.e. a
high rate of correctly classified grasps is achieved. In the case of the white bottle data
set, where the classification rate is lower, the results show that more than 200 samples
could be useful in increasing the classification performance.

Table 4.6: AdaBoost classification rates (as percentages) on data sets with vari-
able amount of samples.

Samples 50 100 150 200
Def. cylinder 74.6% 85.0% 84.8% 89.0%
W. Bottle 64.6% 68.0% 68.5% 75.5%

Classification results as percentages for single object classifiers (known object case) are
presented in columns 2 and 3 of Table 4.7. Classification rates are shown both with
joint configuration data and without it. The main focus in this experiment is to study
the prediction of the grasp stability on known objects that the system has previously
learnt. The average classification rate for known objects is 82.5% including joint data,
and 81.4% excluding it from the measurements. Thus, the inclusion of joint data seems
to have a beneficial effect on the recognition rate. Moreover, the result indicates that at
least with known objects, the proposed approach seems to have an adequate recognition
rate for practical usefulness.

Table 4.7: AdaBoost classification rates (as percentages) on known and unknown
objects with and without joint data.

Known obj. Unknown obj.
w/j wo/j w/j wo/j

Cylinder 88.9% 90.3% 80.4% 81.9%
Def. cylinder 91.0% 89.0% 76.0% 76.5%
Cone 79.5% 81.0% 73.0% 68.0%
O. Bottle 77.0% 78.5% 72.5% 72.0%
Shampoo 82.5% 76.0% 70.0% 71.5%
Pitcher 84.5% 78.0% 71.0% 66.0%
W. Bottle 76.0% 73.5% 75.0% 76.0%
B. Bottle 74.0% 75.0% 68.5% 69.0%
Box 89.0% 91.0% 78.0% 73.0%

It is also interesting to study how well the trained system can cope with unknown objects,
i.e. objects that have not been used to train the system. The results are shown as
percentages of correct classification in columns 4 and 5 of the Table 4.7, adjacent to the
results with known objects. The results are for a system that has been trained on all
of the objects except the object for which the classification rate is shown. The average
recognition rate is 73.8% with joint data and 72.7% without it. The results show that
while the classification rate is lower than with known objects, it is still possible to predict
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the grasp stability on unknown objects to some extent. However, this holds true only
when similar grasps are applied on unknown objects as were applied to the objects that
the system was trained on. In comparison, including grasps from all objects, including
the one being tested, for a single classifier yields a result of 78.6% correct classification
across all the objects in the real object set.

Two objects of a primitive shape are included in the real data, a box and a cylinder.
Table 4.8 shows classification percentages when the classifier is trained only on one of
the primitive objects. The classifier is then applied to classify the grasp stability of
grasps made on real-world objects of different shapes. Cross validation was not needed
in this case, because the training and test sets were, naturally, separate. The average
classification rate with the cylinder model is 68.0% and with the box model 66.4%. These
results no longer seem adequate for a real system, which again suggests that the variety
in the training data is essential.

Table 4.8: Classifier performance (as percentages) when training with a primitive
object.

Trained Cylinder Box
object
Def. cylinder 76.0% 73.5%
Cone 66.0% 69.5%
O. Bottle 64.5% 61.0%
Shampoo 66.5% 64.0%
Pitcher 71.0% 62.0%
W. Bottle 73.5% 69.5%
B. Bottle 58.5% 65.0%

Simulated data

In contrast to the real data, in simulation, a large number of grasps can be sampled
from different objects and using different grasp strategies. The data sets used here were
generated by Jimmy Jørgensen, one of the co-authors of [6]. The following classification
results were achieved using the simulated data sets described earlier in this section.
In Table 4.9, classification percentages are reported for each node in the information
hierarchy. The root node (Level 1) was randomly subsampled to 12000 samples due to
computational constraints and has classification rate of 75.3%. The average classification
for Level 2 (known object, unknown approach vector) is 76.5% and for Level 3 (known
object, known grasp) 77.5%. The results are similar to the real object experiments, where
increasing the variety of objects, i.e. information, increases the classification performance.
However, the results from simulated data sets are poorer, and the increase in performance
is not as strong as it was with the real object data sets.

While the primitive shapes used in Table 4.9 are simple and can be used to train the
classifier. Then, the classifier can be used to classify grasps sampled from more natu-
ral, complex objects. The results are shown as percentages of correct classifications in
Table 4.10. Each row corresponds to a tested natural object (hamburger sauce, bottle),
while each column corresponds to a combination of a training object and grasp strategy.
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Table 4.9: AdaBoost classification rates (as percentages) according to the infor-
mation hierarchy on simulated data.

Level Node Classification rate
Level 1 Root 75.3%

Level 2
Prim. cylinder sph. 73.5%
Prim. box sph. 79.2%
Prim. sphere sph. 77.0%

Level 3

Prim. cylinder side 80.7%
Prim. cylinder top 67.6%
Prim. box side 83.5%
Prim. sphere side 78.5%

A comparison of results when training the classifier with the natural object and corre-
sponding grasping strategy are shown in italic font. The figures in the table show that
having data from the correct object has a positive effect on the classification rates. This
is again an argument for the variety of training data.

Table 4.10: AdaBoost training with a primitive shape and classifying grasps
sampled from a natural object with simulated data.

Prim. cylinder Prim. cylinder Prim. cylinder Prim. box
sph. side top sph.

Hamb. sauce 71.5% 74.0% 62.9% 76.8%
78.7% 83.5% 72.4% 78.7%

Bottle 68.6% 77.4% 56.2% 72.6%
74.7% 82.0% 65.2% 74.7%

Prim. box Prim. sphere Prim. sphere All classes
side sph. side sph.

Hamb. sauce 73.6% 61.4% 62.7% 73.4 %
82.0% 78.7% 83.5% 78.7%

Bottle 76.9% 59.4% 66.9% 69.7%
82.0% 74.7% 82.0% 74.7%

Using the SVM and its ability to output estimates of the prediction certainty, gives the
possibility to examine the performance of the classifier on different data sets in more detail
compared to AdaBoost, which supports only the hard decision surface. This comparison
can be seen in Fig. 4.15. In the figure, log-likelihood ratios, log 1−P (S)

P (S) , calculated from
the probabilities for stable and unstable samples are shown in histogram form – red for
unstable and light blue for stable. The classification errors are shown in filled color, with
the filled area indicating the error probability. Fig. 4.15a-c are from simulated data and
Fig. 4.15d is from the real cylinder grasped with the SDH hand. It is evident from the
figure that increasing information makes the distributions for stable and unstable grasps
more separate, which was also indicated by the earlier results. Moreover, the figure
also supports the finding that it seems to be easier to classify the real data than the
simulated data. Finally, the figure supports the use of probabilistic approaches for grasp
classification, as the ability to measure the uncertainty in classification is important
because it can, for example, allow tuning the classification system to give fewer false
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Figure 4.15: Likelihood ratios for comparison of separability: (a) Root node,
all objects, random grasp vector; (b) Cylinder, random grasp vector; (c) Cylinder
side grasp; (d) Real cylinder side grasps.

positives.

4.5.4 Continuous grasp stability experiments

For the continuous grasp stability experiments, the end effector of the ARMAR-IIIb
was employed. The data for the experiments was collected by Markus Przybylski from
the Humanoids and Intelligence Systems Lab of the Karlsruhe Institute of Technology
located in Karlsruhe, Germany. Markus Przybylski is also one of the co-authors of [8].
Compared to the data sets used in previous experiments, the collection procedure was
less rigid. All grasp samples were collected from a set of objects in a basket, which is
shown in Figure 4.16). Two different data sets were collected, D1 and D2. D1 contained
71 stable grasps and 94 unstable grasps. D2 comprised 82 stable grasps and 76 unstable
grasps. The two separate sets were collected, partly to study the generalization capability
of the SVM classifier between data sets and partly to see whether the sensor hysteresis
affects the classification results.

The grasp procedure was somewhat less structured than in previous experiments due to
the amount of objects and the relatively small number of grasps. However, the main
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Figure 4.16: The basket with our test objects.

form of grasps were top grasps with varying approach directions. Also the roll angle was
varied in relation to the approach direction. Some examples of the grasps are shown in
Figure 4.17.

The continuous grasp stability experiments are divided into two parts. The first part
consists of synthetic tests, which presents the reliability and accuracy of the classification
of the grasp stability and comparisons between the different filter types described in
section 4.3. The second part is composed of validation tests. In these tests, the SVM is
trained with all of the data from the data set D1 which is used to classify the grasps in
D2.

In the synthetic tests, both data sets D1 and D2 were used. For most experiments,
a confusion matrix is presented, showing how the classifier performs in terms of true
positives (stable, predicted stable), false positives (unstable, p. stab.), true negatives
(unstable, p. unstab.) and false negatives (stable, p. unstab.).

Synthetic tests

In Table 4.11, the SVM was trained with data from a corresponding data set; only the last
sample from each observation sequence was classified. The reported results are averages
from ten-fold cross validation. The results show that the performance across data sets
is similar. These results can be compared with results reported in [6, 106], showing that
the ARMAR-IIIb hardware is able to reach performance similar to the Schunk Dexrous
Hand (SDH) or the Barrett hand in this task.

Contrary to results in Table 4.11, in Tables 4.12, 4.13 and 4.14 the whole observation
sequence was classified using the methodology presented in section 4.3. In Table 4.12, the
mean filter was used with a window width of 25 and with a threshold of 0.61, Table 4.13
shows result with an exponential filter with α = 0.056 and threshold of 0.61. The param-
eter values are based on empirical tests on performance while varying the parameters.
Results in Table 4.14 were obtained without using a filter.
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Figure 4.17: Example grasps. The left column shows the grasps and the right
column shows the result after lifting the object.
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Table 4.11: Confusion matrix for classification rates of grasps when classifying
only the last sample, for data sets D1 and D2.

D1 P. Stab. P. Unstab. D2 P. Stab. P. Unstab.
Stable 0.79 0.21 Stable 0.72 0.28

Unstable 0.28 0.72 Unstable 0.26 0.74

Table 4.12: Confusion matrices for classification rates of grasps using the mean
filter (w = 25, thr = 0.61).

D1 P. Stab. P. Unstab. D2 P. Stab. P. Unstab.
Stable 0.77 0.23 Stable 0.74 0.26

Unstable 0.24 0.76 Unstable 0.16 0.84

Overall, when using a filter with the classification, the overall classification rate is similar
to the last sample classification, but the classification rate of the unstable grasps is better.
This can be explained through the use of the filter which filters out the effect of the last
sample, thus leading into a better classification result. In the case where no filters are
used, in Table 4.14, the stable grasps are predicted well, but this translates also to falsely
predicting that unstable grasps are stable. On average, the filter based classification is
better in predicting the stable and unstable grasps.

One interesting possibility that comes with the method described in section 4.3 is that
the grasp sequence can be stopped when the classifier decides that a stable grasp has
been achieved. Table 4.15 presents the results with different filter types. For example, if
a whole grasp sequence is 1000 time steps long, the classification using a mean filter can
stop the grasp at time step 686 on average, if the grasp is a stable grasp. Without a filter,
the average time decreases as expected, but with at a cost of overall correct classification
rate.

Validation tests

To mimic a real world usage scenario, data set D1 was used to train the SVM classifier.
Then, using the trained classifier, data set D2 was classified. Each observation sequence
in the data set was classified with mean and exponential filters and without filtering.
The results are show in Table 4.16. Compared to results in Table 4.11, the number of
false positives rises. This effect might be due to tactile sensor hysteresis, i.e. the output

Table 4.13: Confusion matrices for classification rates of grasps using the expo-
nential filter (α = 0.056, thr = 0.61).

D1 P. Stab. P. Unstab. D2 P. Stab. P. Unstab.
Stable 0.79 0.21 Stable 0.73 0.27

Unstable 0.23 0.77 Unstable 0.16 0.84
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Table 4.14: Confusion matrices for classification rates of grasps without a filter.

D1 P. Stab. P. Unstab. D2 P. Stab. P. Unstab.
Stable 0.90 0.10 Stable 0.87 0.13

Unstable 0.46 0.54 Unstable 0.21 0.79

Table 4.15: Average percentage of time steps to reach decision on stable grasp
compared to full grasp observation sequence.

D1 Mean filt. Exp. filt. No filt.
Time 68.6% 66.9% 59.6%

from the sensors changes between the collection of data sets, which in turn means that
data set D1 does not represent the data in D2 and leads to worse results.

4.6 Summary

The focus of this chapter was to present a new methodology for estimating grasp stability.
The basis of the methodology is in machine learning, specifically in classification, contrary
to the analytical methods that are used widely in the grasping research. The proposed
approach has some drawbacks, such as the need for training data, but definitive benefits,
as well. A considerable set of data was collected for the experiments using multiple end
effectors to estimate the performance and the suitability of the proposed approach in
general.

The performance experiments investigated how different machine learning methods and
feature representations affect the ability to learn and assess the grasp stability from haptic
data. Both simulated and real-world data were used in the performance experiments.
The experiments indicated that both AdaBoost and SVM were valid choices for the task
of learning grasp stability. Furthermore, the experiments indicated that image moments
and row and column sums can be useful as a feature representation for the classifiers. The
classification performance varied significantly between different data sets. The results of

Table 4.16: Confusion matrices for validation tests.

Mean filt. P. Stable P. Unstable
Stable 0.77 0.23

Unstable 0.39 0.61
Exp. filt. P. Stable P. Unstable
Stable 0.76 0.24

Unstable 0.38 0.62
No filter P. Stable P. Unstable
Stable 0.90 0.10

Unstable 0.46 0.54
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the experiments showed that the grasp stability of deformable objects is more difficult to
learn than rigid objects. The data also shows that if the grasped object has contacts with
the hand outside of the tactile matrices, the grasp stability cannot be learned effectively.

Using the results of the performance experiments, the effect of object knowledge was
studied in the knowledge experiments. These experiments focused on a single end effector
which was also implemented in simulation. These experiments showed that while it is
possible to classify the grasp stability without knowing the object or the pose of the
object beforehand, the performance of the classification will increase if more is known
about the object before the actual grasp is performed. The second observation was that
the variety of objects used to learn the grasp stability matters, i.e. it is better to learn
the grasp stability of multiple objects and then apply this knowledge to new, unseen,
objects.

In the continuous learning experiments, the same approach was taken as in previous
experiments. However, the SVM based grasp stability classifier was extended with the
use of filters which enabled the grasp stability classification to take place throughout the
grasp instead of just the end. Additionally, the data for the experiments was collected
using the end effector of the ARMAR-IIIb. The experiments showed that similar results
were obtained with the ARMAR-IIIb as previously reported on other types of hardware,
such as the Schunk Dextrous Hand or Barrett hand. The experiments showed that by
using the extended grasp stability classification, the decision can be made earlier in the
grasp process.



Chapter V

Probabilistic Sensor-based Grasping

Current grasp planning approaches are usually based on an assumption of perfect knowl-
edge of target objects. While geometric models are good approximations of the objects in
the real world, the models are not exactly accurate, especially when speaking of household
items. Thus, a difference between expected and realized grasp arises from these approxi-
mations, although in many cases the difference is small enough to achieve a stable grasp.
However, this discrepancy is usually ignored.

On the other hand, methods using sensor information to grasp by making corrective
motions or reacting to the tactile sensor information have been proposed. Contrary to
most grasp planners, accurate object models are not usually available in this type of
grasping.

This chapter presents a probabilistic framework which unifies some the ideas behind
grasp planning and the possibilities of sensor-based grasping. The framework considers
the required variables and models for grasping as probability distributions and allows
probabilistic representation of the current belief, so that the uncertainty of the knowledge
can be modeled. The framework allows interplay between grasp planning and corrective
motions – in situations where object attributes, such as pose, are not precisely known –
by utilizing sensor information gained during grasping. Such a situation can arise when,
for example, visual sensing is used to initially estimate the target objects. The framework
is demonstrated in simulation and with real robot platforms.

5.1 Uncertainty in grasping and grasp planning

The proposed approach to finding good grasps, described in section 5.2, is closely related
to the field of grasp planning, which was detailed in chapter 2. However, compared to
the method presented here, most current grasp planning methods do not account for the
uncertainty present in the object or in the object’s pose information. Most grasp planners
also require a geometric model of the object before grasp planning can be executed on

67
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the object. This section gives an overview of current grasp planning techniques and some
of the techniques used to reduce uncertainty from tactile and proprioceptive information.

To simplify the grasp planning that is based on the geometric model of the object, many
methods employ some form of object decomposition. The goal of the decomposition is
to reduce the amount of feasible grasps without trying every grasp on an object. In [34],
the object is decomposed to minimum volume bounding boxes, in an effort to understand
the underlying shape of the object. The primitive shape is then used to reduce the search
space for stable grasps. Instead of boxes, superquadrics are used in [35]. In addition to
the construction of the superquadric decomposition, a heuristic is used to define the trial
grasps based on the superquadric form of the object which limits the space of possible
grasps significantly.

The Columbia Grasp Database [44] takes an approach different from most grasp planners
and computes the best grasps for a set of thousands of objects. The grasp planning
problem is then transformed to a problem of matching a new object with an object
found in the precomputed database of grasps. The work has also been extended to
consider partial data [127].

If the object is not known, i.e. a geometric model is not available, the grasp planning
methods can still be used if the model of the object can be constructed. The model
construction can either be done by vision, laser or tactile exploration. However, the geo-
metric model in this case is usually a mesh or a point cloud, and contains no information
about the inherent uncertainty related to the perception. Approaches such as [34] can
be applied here, as well, but the results can be worse than in the cases where the full
geometric model is known, and the decomposition may fail in cases where large volumes
are missing from the perceived object. It is also possible to use simpler approaches to
grasp objects instead of grasp planners described above when the geometric model is
not known. In [128], unknown objects are grasped by first segmenting a user indicated
object and then grasping the object using a parallel jaw gripper. The grasp orientation
and location are based on simple rules applied to the segmented point cloud.

Another approach for finding grasps is object affordance modeling. While object affor-
dance is a broader subject, the affordances can also be thought of in the sense of grasp
stability. In some grasp related studies, grasp affordances consider the overall stability
of the grasp [129], [130] or, for example, the grasp affordance in specific tasks [131].

Learning to find good grasps is another view on the problem. In [129], a real robot learns
the grasp affordances of an object. The learning process reduces a vision bootstrapped
distribution of grasps to a smaller set containing only good grasps. Reinforcement learn-
ing [132] can also be applied to learn a sequence of grasps which will lead to a stable
grasp on an object.

The approach presented in this chapter is more related to methods that explicitly assume
uncertainty in the object’s attributes. Some of these methods are described next. The
aim of [133] is to reduce the uncertainty of an object’s pose to enable grasping of the
object, and in [134], the shape of the object is also uncertain in addition to the pose. In
both of the studies, the method is presented with a parallel jaw gripper grasping a 2D
object. However, these methods do not utilize sensor information gained during grasping.
Also in [135], the authors propose a decision-theoretic controller which minimizes the
uncertainty of the object pose using arm trajectories to enable task specific grasps on
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objects, i.e. a specific, pre-determined, grasps. The pose of the object is inferred with
the help of a simulator and tactile sensors that detect contact. The uncertainty of
measurements is also considered in [136, 137], where visual and depth information is
used to partially observe objects. Then, a set of object representations, derived from
the partial data, is generated. Grasp planning is performed on these different object
representations in simulation. As the initial data from the object is uncertain and partial,
the object representations can give different grasps with varying confidence levels of
success. The actual, executed, grasp is then chosen from the possible grasps by means
of Bayesian principles.

A new algorithm, Guaranteed Recursive Adaptive Bounding (GRAB), for inference was
developed in [98]. The algorithm was also tested in a manipulation environment where
the algorithm made an accurate inference of the object’s pose in both simulation and
real environments. However a geometric model is required. The method was further
developed in [99]. Nevertheless, only the problem of object localization was studied, and
a force probe was used as the end effector instead of a more complex hand which would
be capable of grasping the object.

5.2 Framework for grasping under uncertainty

The probabilistic framework is now presented in a general form. The sensor-based grasp-
ing is modeled with the following variables: S denotes the stability of a grasp as a
continuous value from 0 to 1, G the grasp attributes (e.g. the pose of the end-effector),
O the object attributes (e.g. the pose of the target object) and T represents on-line
measurements, for example, proprioceptive information. The variables have different
characteristics: G, the grasp attributes, can be controlled, T can be measured for each
grasp attempt, while O is not directly observable, that is, we assume we only have an
uncertain initial estimate of the object attributes.

Traditional grasp planning algorithms can be interpreted in a probabilistic framework as
attempting to maximize the stability S by controlling the grasp attributes G with perfect
knowledge of the object attributes O,

arg max
G

P (S|G,O) . (5.1)

In the proposed model, O is not assumed to be precisely known, but instead, it is repre-
sented as a probability distribution. In addition, the model for the stability (5.1) is not
required to be fully accurate. Instead, the model can be uncertain in itself due to ap-
proximations and inaccuracies in, for example, simulation when computing grasp quality
measures.

In order to perform grasp planning, the distribution of object attributes needs to marginal-
ized over, i.e. the mode of P (S|G) needs to be found. The marginalization can be written
as

P (S|G) =
∫
P (S|G,O)P (O) dO . (5.2)

This is a major difference to traditional grasp planning, where the best single estimate
of object attributes, that is, the mode of O, is used instead of marginalization over the
whole distribution.
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Because the proprioceptive measurements for a grasp attempt is not available before the
attempt is performed, the proprioceptive information from the previous grasp attempts
can be used only to update the posterior distribution for the object attributes P (O).
That is, the model P (O|G,T ) can be used to update the posterior distribution of object
attributes. Thus, after some sensor information has been collected from sequential grasp
attempts, for grasp planning the argument for G corresponding to the maximum of

arg max
G

P (S|G) ≈

arg max
G

∫
P (S|G,O)P (O|Gt0:t−1, Tt0:t−1) dO ,

(5.3)

is found. This shows that the stability S can be maximized by finding the best grasp G,
when Gt0:t−1 and Tt0:t−1 are known (subscripts denoting that these are from the previous
attempts).

The process described by Equation (5.3) is depicted in Figure 5.1, which shows that
the knowledge of the object attributes O is iterated over the time steps, t0, . . . , t −
1, t, t+ 1, . . . , tn. The knowledge of O is refined using information from the known grasp
attributes G and the measurements T . One of the drawbacks of the presented framework
is that the object must stay as static as possible across the grasp attempts. This may
seem unreasonable, but given the advancements in tactile sensing, it should be possible
to detect contact without disturbing the object in the future. However, note that the
first grasp attempt, which is likely not to be a stable grasp, can of course move the object
freely. Furthermore, if the object moves between the grasp attempts, the motions only
increases the uncertainty of the estimation as the measurements do not correspond, for
example, to a single object pose across the grasps.

Figure 5.1: Process of refining object knowledge.

To build a working system based on Equation (5.3), two models are needed:

• Model for T |G,O, describing the relation between measurements and grasp and
object attributes

• Model for S|G,O, stability as a function of grasp and object attributes
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It should be noted that posterior distribution P (O|G,T ) can be obtained from the pre-
diction model of sensor measurements T |G,O using the Bayes formula, where P (T |G,O)
is the likelihood for the posterior distribution P (O|G,T ). These models are not trivial to
build and depend on the object and the manipulator used to grasp the object. Still, there
exists models for both cases, see e.g. [138, 99, 135] for a model for P (O|G,T ) and [6]
for a model for P (S|G,O, T ) or [129] for P (S|G,O). The simplest approach to create
these models is to utilize a simulator with geometric models of both the object and the
end effector. However, this may become unfeasible due to the computational demands of
more complex objects and end effectors. The second approach is to generate the models
from data by sampling a set of grasps and recording the required measurements T and
the stability of each grasp. This procedure also applies to real end effectors. Both of
these approaches are presented in section 5.3 to demonstrate the framework. The section
also includes experiments with a real robot.

The framework does not place constraints on the actual models, and the attributes G,
O and T can be freely chosen. For example, G and O can include the poses of the
manipulator and the object. The benefit of the presented probabilistic framework is that
throughout the grasping process the uncertainty of the actions arising from Equation (5.3)
is known. Also, measurement errors can be accounted for during both grasp planning
and on-line grasp stability detection.

5.3 Experiments

As was described in section 5.2, the grasping framework gives a great deal of room to
choose the models and possible attributes. For this reason, the framework is demon-
strated with a simulation based approach in section 5.3.1 and a data-driven approach in
section 5.3.2, where both simulated and real data is used. However, both experiments
model a table top scenario where only top grasps are performed. In addition, only three
DOFs, translation and rotation on a plane, are used in the experiments.

The simulated approach is based on a simple static simulation of a rectangle and a
two finger gripper to keep the computational cost of simulating a single grasp small.
The depicted problem is quite basic, but demonstrates the principles of the framework
adequately. These results were published in [9] and represent a simpler version of the
framework which does not consider a sequence of multiple grasp attempts.

The data-driven model is based purely on data. The models used in these experiments
are built with Gaussian Process Regression. The GPR was chosen as it can effortlessly
represent the uncertainty in the prediction which can be directly used in the estimation
of the posterior distribution P (O|G,T ). The GPR can be thought of as a surrogate
for the simulation, comparable for example to [107], where SVM was used to learn grasp
stability for certain superquadrics. This data-driven approach to the framework has been
submitted to 2012 International Conference on Intelligent Robots and Systems [10].

The general approach for both demonstrations is based on the sequence of actions shown
in Figure 5.2. It is assumed that some type of initial estimate (with associated uncer-
tainty) of the object pose is obtained in phase 1, for example from vision. Using the
estimate, a grasp can be planned with the uncertainty from the initial estimate (phase
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2). Then a grasp is performed (phase 3) giving measurement data (at least joint config-
uration data should be made available). Using the measurement data, a decision on the
grasp stability can be made (phase 4). If the grasp is stable, the object can be manipu-
lated, if not, a new grasp can be planned (phase 5) with the new information from the
attempted grasp. This loop can then be further iterated until grasp stability conditions
are satisfied.

Figure 5.2: Sequence of actions.

Both of the demonstrations are based on the same algorithm, which is construed in
Algorithm 5.1. The algorithm is divided into three parts. Algorithm 5.1 describes the
sequence of actions shown in Figure 5.2. Algorithms 5.2 and 5.3 are subalgorithms
that infer the object properties, given some measurements T ∗, and find the best grasp
possible given the known uncertainty, respectively. The variables used in the algorithms
are marked with a bold font.

Algorithm 5.1 requires the initial estimates of the uncertainty given in µinit and σinit

for each of the variables (x, z, θ). The particle set O in Algorithm 5.1 represents the
posterior distribution of the object, P (O|G,T ). This initial particle set is then given
to the grasp planner, Algorithm 5.3, in which the particle filter technique is utilized
to find a grasp that is most likely to produce a stable grasp. Although particle filters
are usually employed with dynamical systems for tracking, here the particles are guided
with a random process to find a single maximum value from the posterior P (S|G,O).
Particle swarm optimization (PSO) [139] is also used in the experiments in section 5.3.2.
PSO algorithm replaces Algorithm 5.3 in these experiments completely. The result of
the algorithm is a single grasp that produces the most stable grasp given the uncertainty
present in O.

After a suitable grasp has been found in Algorithm 5.3, it is executed. The grasp config-
uration is stored in an array grasp and the measurements, in this case the joint configu-
ration after the grasp execution, are stored in an array T∗. Note that all measurements
and grasp configurations are stored to enable the inference over sequential grasps. In
Algorithm 5.2, the measurements and the grasp configuration are used to infer the pose
of the object. The particle set O, which describes the posterior distribution of the object
pose, is refined using the information from the object model, object with the stored
grasp configurations and measurements. The goal is to produce a posterior distribution
for the object pose which can then be utilized in Algorithm 5.3. The method used to
infer the posterior distribution is different in the two experiments and will be detailed
further in the corresponding sections.
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Given the refined uncertainty O, the probability for a stable grasp can be estimated, and
given a threshold, p, a decision can be made whether to manipulate the object further,
in line 10 of Algorithm 5.1. Remember that Algorithm 5.2 has run while the object is
still in the grasp, making it possible to decide whether, for example, to lift the object or
continue executing Algorithm 5.1.

Relating to Figure 5.2, Algorithm 5.3 takes care of the grasp planning, that is, phases 2
and 5. Algorithm 5.2 handles phase 3, updating the posterior distribution of the object
pose, but Algorithm 5.1 handles the execution of a grasp. In lines 9-11 of Algorithm 5.1,
the grasp stability probability is computed and corresponds to phase 4 of the action
sequence.

Algorithm 5.1 find_stable_grasp(object,n,p,µinit,Σinit)
1: Generate initial particle set O of size n, according to N (µinit,Σinit)
2: q ← 1
3: while q >= 1 do
4: (x, y, θ) ← find_best_grasp(object,O,Σinit)
5: grasp(q) ← (x, y, θ)
6: Move end effector to grasp(q)
7: Grasp object, measure T∗(q) after grasp is complete
8: O← find_object_attributes(object,grasp,T∗, O)
9: G← grasp(q)

10: Approximate P (S|G) by
∑
i

1
n
P (S|G,Oi)

11: if P (S|G) > p then
12: q ← 0
13: end if
14: q ← q + 1
15: Release grasp
16: end while

Algorithm 5.2 find_object_attributes(object,grasp,T∗, O)
1: while O is not converged do
2: for i=1, . . ., n do
3: for j=1, . . ., q do
4: Query the object model, object, for measurements Ti(j) given known Oi and

grasp(j)
5: end for
6: end for
7: Estimate posterior distribution P (O|G,T ) through the likelihood P (Ti|T∗)
8: Choose a new particle set, Onew, based on O and a chosen statistical approach
9: O← Onew

10: end while
11: return O
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Algorithm 5.3 find_best_grasp(object,O,Σinit)
1: µO ← mean(O)
2: ΣO ← cov(O)
3: Generate a particle set, M according to N (µO, 5ΣO)
4: while M is not converged do
5: Weigh particles in M with w ∝ P (S|G,O)
6: (xmax,ymax, θmax) ← arg max

G
P (S|G,O)

7: Apply importance filtering using w
8: Use N (0,Σ) as proposal distribution with Σ← 0.2 Σinit

9: end while
10: return (xmax,ymax, θmax)

5.3.1 Simulation model

The purpose of this demonstration is to demonstrate the theoretical possibilities of the
basic idea behind the framework described in Section 5.2. The simulation environment
is depicted in Figure 5.3. The environment consists of a parallel jaw gripper with finger
width lfinger and a rectangular object with side lengths of 6 and 2. Note that in the
demonstration, the cases where the gripper fingers would touch the shorter side or the
corners of the rectangle are not considered. The angle of the gripper in degrees is denoted
by θ, which is zero when the gripper is perpendicular to the long side of the rectangle.
The gripper center is denoted with (x, y), which is relative to the object center (x0, y0).
In the experiment, the object is static. When grasping, the two fingers of the gripper
can be closed independently of each other and the distance to contacts from gripper
center d1 and d2 are used as the measurements, representing the sensor information T .
Also, it is assumed that the fingers have the capability to detect when they come into
contact with the object and that the fingers can be stopped at those time instants. A
3-tuple (x, y, θ) is used to denote the gripper variables, which are in relation to the object
center (x0, y0, θ0). Moreover, (x, y, θ) represent G, the grasp attributes, while (x0, y0, θ0)
represent O, object attributes.

Note that because of the symmetry of the setup, there is ambiguity about the orientation
of the object, due to the symmetrical fingers of the gripper. Also due to the symmetry
of the object, the uncertainty along the x-axis cannot be reduced.

In these experiments, Algorithm 5.2 is implemented with a particle filter to make the
computation of posterior distribution P (O|G,T ) tractable. Algorithm 5.4 describes the
object pose inference used in the experiments. Particle filters have been used in ma-
nipulation, for example in [138], to estimate the object pose using tactile sensors. The
advantages of this approach is that the particle filter process quickly converges to the
maxima of the posterior distribution. However, particle filters do not represent the whole
posterior distribution as well as some other methods, such as the Metropolis- algorithm,
which is used in the data-driven experiments. Likelihood, P (T |G,O), which are shown in
Figure 5.4, were chosen manually for the purposes of this demonstration. Figure 5.4(a)
shows how likely a measurement T , in this case d, is a correct measurement in relation to
the true measurement T ∗ or d∗; this model is used for both d1 and d2, and represents addi-
tive Gaussian noise in the measurement. Figure 5.4(b)-(d) represents how likely a grasp is



5.3 Experiments 75

d
1

d
2

(x,y)
(x ,y ,   )

0 0

l
f inger

0

6

2

Figure 5.3: Simulation environment.

stable relative to the posterior distribution of object pose O. The stability model defines
that a grasp is stable when the grasp is performed close enough to the center of the object.
The stability model is further simplified so that the model is factorized into independent
factors for different coordinate axes, i.e. , P (S|G,O) = P (S|x, x0)P (S|y, y0)P (S|θ, θ0).

Algorithm 5.4 find_object_attributes_pf(object,grasp,T∗,O)
1: while O is not converged do
2: for i=1, . . ., n do
3: for j=1, . . ., q do
4: Query the object model, object, for measurements Ti(j) given known Oi and

grasp(j)
5: end for
6: end for
7: Assign weights, w, for each particle in O ∝ P (Ti|T∗)
8: Choose a new set of particles Onew according to importance filtering of O
9: Apply a proposal distribution to Onew

10: O← Onew

11: end while
12: return O

Results

Figure 5.5 shows a single example run of Algorithm 5.1. The example was run with
the true object pose (x0, y0, θ0) set to (0, −0.3, −15). Figure 5.5(a) shows the initial
distribution of O1, which was initialized around zero with σinit = [0.3 0.3 6]. Particle lo-
cations are shown in green, indicating the possible object location, and 1

4 of the particles
are plotted with a blue line, indicating the orientation θ0 of the object. As the distribu-
tion is Gaussian, most of the particles are located near the mean, both in position and
orientation. As the initial distribution is zero mean, during the first iteration the grasp
planning stage will produce a grasp that would be optimal if the object were at (0, 0, 0).
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(a) (b)

(c) (d)

Figure 5.4: Likelihoods for: (a) Measurement model, p(T |T ∗); (b) Grasp stabil-
ity, x; (c) y; (d) θ.

In Figure 5.5(b), the first grasp attempt has been made, and the distribution of object
pose changes to account for the measurements, d1 and d2. The figure also shows the
symmetry of the problem and two modes arising from this symmetry, one for θ0 = 15,
the other for θ0 = −15. This grasp does not satisfy the threshold of 0.5 for the grasp
stability probability. Maximizing P (S|G,O) yields the solution (0.07, −0.32, −14.3) for
the grasp G. Figure 5.5(c) shows the posterior distribution of O after the information
from the second grasp is used. This grasp is determined as stable as the probability of a
stable grasp is greater than the probability of an unstable grasp. The mean of the final
posterior distribution O was (−0.24, −0.32, −14.28) compared to the set pose which
was (0, −0.3, −15). As can be seen, the method was able to find a corrective motion
for the gripper and produce a stable grasp and after the two grasps, the particle cloud
converged to near optimal values for the object pose, except for the x-variable for which
the uncertainty cannot be reduced.

However, as the method is probabilistic, for the second grasp attempt maximizing the
probability P (S|G) can produce a motion that is opposite to the correct one in θ. This
is the result of the symmetry present in both the gripper and the object. For example, if
the widths of the fingers on the gripper were different, the object rotation angle θ0 could
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Figure 5.5: Sequential distributions of particles modeling P (O|G,T ), (a)-(c), for
a single run of Algorithm 5.1: (a) Initial distribution ; (b) Distribution after the
first grasp; (c) Distribution after the second grasp, for which P (S|G) = 0.503; (d)
An example of the particles used in Algorithm 5.3.
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be solved from the first grasp.

One of the benefits of the probabilistic approach is that uncertainty behind the actions
is known. By marginalizing over O, the uncertainty is directly taken into account in the
stability estimation and grasp planning. Also, if non-contact measurements are preferred,
a low probability of a stable grasp in the planning could be used to trigger additional
visual measurements to improve the object pose estimate.

5.3.2 Data-driven model

Contrary to the experiments in section 5.3.1, the data-driven models do not require sim-
ulation to infer the object pose or the stability of the grasp. The models replace the need
for simulation. Of course, simulation is still used in a majority of the experiments due to
the need to simulate the actual grasps, but fundamentally, the simulation environment is
not required by the data-driven models. Also, compared to the previous experiments, the
object pose inference is implemented with the Metropolis algorithm [140]. The Metropo-
lis algorithm was chosen for the object attribute inference because the method allows
modeling of the whole distribution without the degeneracy problems occuring with par-
ticle filters. Algorithm 5.5 describes the use of Metropolis algorithm in the context of
object pose inference. Note that traditionally the Metropolis algorithm has been used
to create a single chain across many iterations of the Metropolis algorithm which repre-
sents the posterior distribution. Here, instead of using just one chain, a set of chains,
as many as there are particles in the set O, is created and the chains are iterated fewer
times. This choice was made due to practical reasons; many simultaneous chains allowed
efficient sampling of the posterior distribution using the GPR models that were used in
the experiments. However, this setup should not change the outcome, i.e. the estimate
of the object pose posterior distribution.

Algorithm 5.5 find_object_attributes_metro(object,grasp,T∗, O)
1: while O is not converged do
2: For each particle Oi in set O, generate a proposal Onew

i using distribution N (0,Σ)

3: for i=1, . . ., n do
4: for j=1, . . ., q do
5: Query the object model, object, for measurements Ti(j) given known Oi and

grasp(j)
6: Query the object model, object, for measurements Tnew

i (j) given known Onew
i

and grasp(j)
7: end for
8: Compute acceptance probability α = min

[
1, P (Ti|T∗)

P (Tnew
i |T∗)

]
9: Replace Oi with Onew

i with probability of α
10: end for
11: end while
12: return O

For the experiments in the simulation, five objects (two mugs, a pitcher, a cylinder and a
cube) were chosen. The objects are shown in Figure 5.6 with the end effector, the Barrett
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hand. The simulation environment was the GraspIt! simulator. The data was collected
using a 3D grid in (x, z, θ), where the x and z represent the table plane. The object
was grasped at each of the points in the grid. For the cylinder and cube, x and z were
discretized from -50 mm to 50 mm at 10 mm intervals and θ was discretized from -180
to 180 degrees at a 15 degree interval. For the two mugs and the pitcher, x and z were
discretized from -100 mm to 100 mm at 20 mm intervals and θ was discretized from -180
to 180 degrees at a 15 degree interval. The grid was centered on the object and contained
3025 points for each object. Each grasp was executed using the auto grasp-function in
GraspIt!; thus, only one preshape was used when grasping. After each grasp, the quality
of the grasp was measured and the finger joint values were recorded with the relative pose
between the object and the end effector. For the quality measure, the existing quality
measures from GraspIt! were used. In this case, the force-closure quality measure, i.e.
the ε-measure, was employed. Values above 0.1 were considered fully stable. From these
measurements, one can build the models S|G,O and T |G,O. Note that the object is
modeled through the joint configuration and not as a geometric presentation.

Figure 5.6: Objects used in the experiments, from the left: mug 1, mug 2, cube,
cylinder and a pitcher. The simulated Barrett-hand is also shown in the figure
grasping the cube.

A similar procedure was performed on two real robotic platforms. The platforms con-
sisted of a Melfa RV-3SB 6-DOF arm and either a Weiss WRT-102 robotic gripper or
a Robotiq 3-finger hand. The same approach was used to sample the objects with the
platforms, as was used with the simulated objects. The platform with the WRT-102
gripper and the sampled object, a correction roller, is shown in Figure 5.7. The platform
with the Robotiq hand and the object, a cardboard box, is shown in Figure 5.8.

The platform with the WRT-102 gripper posed some practical problems due to the single
DOF – the width of the grip. To work around this problem reactive grasping was utilized
to enable grasping the object. Additionally, the object had to be stationary. This was
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achieved by suspending the object on three screws that were mounted on the base. The
gripper width was also the only measurement T used with this platform. Furthermore,
due to the limitations of the gripper, e.g. the maximum gripper width being 70 mm, the
DOFs were decreased from three to two, (x, θ). The dimensions of the correction roller
were 45 mm across Y and 120 mm across X. A total of 26 samples were collected from
the object by grasping from -50 mm to 90 mm in x and from -7 degrees to 7 degrees in
θ. The stability of each grasp was determined manually by lifting the object after each
grasp and labeling each grasp as stable or unstable, depending on the outcome of the
lift. If the object moved in relation to the gripper during the lift, the grasp was unstable,
otherwise the grasp was stable.

The platform with the Robotiq hand had fewer practical issues, and the object could
be grasped in the experiments without making the object static. The dimensions of the
cardboard box were 55 mm across Y and 240 mm across X. We collected 133 samples
from the object, sampled area was -170 mm to 190 mm in x, -20 mm to 20 mm in y and
-20 degrees to 20 degrees in θ. The object was kept static during the sampling process.
The Robotiq hand is underactuated, each finger has three joints, but each finger is driven
only by a single actuator in the base of the hand. We used the measurements from the
positions of the three actuators as the measurements T .

Figure 5.7: The WRT-102 gripper and the object, a correction roller.

To build the required models, Gaussian process regression was employed in this task.
Both models, S|G,O and T |G,O, were built using the GPR. Next, a brief introduction
is given to GPR.

Gaussian process regression for modeling objects

The Gaussian Process (GP) used in GPR is defined as a set of random variables of which
any finite number have a joint Gaussian distribution. The GP function is defined as

f(x) ∼ GP(m(x), k(x, x′)) , (5.4)
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Figure 5.8: The Robotiq hand and the object, a cardboard box.

where
m(x) = E[f(x)] , (5.5)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))] . (5.6)

The GP is constructed of the mean function m(x) and the covariance function k(x, x′).
As GP models the data using these functions, the GP is also able to model the underlying
uncertainty present in the data, which increases in the gaps of the data and decreases
where the data has a high density.

Suitable mean and covariance functions are usually dependent on the form of the data
and require some thought. Different covariance functions enable different types of data to
be modeled. In the case of grasping, many discontinuities appear due to discrete events,
such as a finger missing an object completely during grasping. Due to this phenomenon,
the neural network covariance function [141] was chosen:

k(x, x′) =
2
π

sin−1

(
2x̃TΣx̃′√

(1 + 2x̃TΣx̃)(1 + 2x̃′TΣx̃′)

)
, (5.7)

where x̃ = (1, x1, . . . , xn), which is an augmented input vector. The neural network
covariance function is non-stationary and can model discontinuous data better than the
more commonly used squared exponential covariance function [142]. Choosing which
mean function to use is not as critical to the regression as the covariance function, and
therefor a constant mean function was chosen.

Once the model has been selected, GPR finds the most probable function over the training
data. GPR can then be used to estimate f(x), given a new x. Here, the input x is the
6 DOF relative pose between the end effector and the object (X,Y, Z, α, β, γ) while the
output, i.e. f(x), is the joint angle of a finger of the end effector in the case of the model
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T |G,O and the stability of the grasp in the case of the model S|G,O. Thus, each finger
of the end effector is separately modeled to form the model T |G,O.

However, to operate properly, GP requires that hyperparameters, i.e. parameters of the
mean and covariance functions, are set as well. Finding proper values for the hyperpa-
rameters is the most challenging task with GP techniques, but methods exist that use
training data to optimize the hyperparameters. Readers interested in GPs can get a
deeper understanding from e.g. [142].

The practical implementation used in the experiments was the GPML Matlab tool-
box [143]. The reason why this particular implementation was chosen was that it pro-
vided a complete toolkit for both Gaussian process regression and classification with a
number of ready-made covariance and mean functions and the minimization functions to
optimize the hyperparameters for the Gaussian processes. The toolbox also included an
approximation technique (fully independent training conditional or FITC) [144] that can
be used with large datasets to reduce computational demands. This feature was used
in all of the simulated data experiments. However, the approximation also reduces the
accuracy of the regression. A set of error histograms are shown in Figure 5.9. These
histograms depict the error in the prediction of T |G,O, given a separate test set. The
GPR computation times for the test set were 3.7 seconds for GPR without FITC, 1.9
seconds for GPR with 33% of data used as inducing inputs and 0.09 seconds for GPR
with 5% of the data used as inducing inputs. The times were obtained from the GPML
toolbox running on dual core 2.6 GHz Intel Core i5 processor. The computation times
show that a significant speed up can be achieved by utilizing the FITC approximation.
In the experiments, only 5% of the 3025 samples were used as the inducing inputs for the
FITC approximation to enable fast computation of the posterior distributions P (O|G,T )
and P (S|G,O).

Simulated experiments

In the experiments, a sequence of grasps is executed following the diagram in Figure 5.2.
The experiments show that objects can be localized using the Metropolis algorithm, given
some uncertain initial estimate. Then, using the computed distribution of the object pose,
a stable grasp can be achieved despite the uncertainty still present in the pose and the
relatively inaccurate models of the objects. All experiments, except the experiments with
the WRT-102, utilized the PSO algorithm to find the maximum of the grasp stability.
In the experiments with the WRT-102, Algorithm 5.3 was used instead. The difference
between the algorithms was 1-2%, i.e. the grasps that PSO algorithm found improved
the grasp stability expectation by 1-2% compared to the particle filter algorithm. In all
of the experiments, 1000 particles were used to model the object attribute distribution
in (x, z, θ), and 40 particles and 20 iterations were used within the PSO. Furthermore,
in the the experiments with the WRT-102, 100 particles were used in the particle filter
process.

In the experiments, the initial object mean µo = (0, 0, 0) and the initial object standard
deviation σo = (30, 30, 30) were assumed. Furthermore, µo and σo are given as input to
Algorithm 5.1. In the experiments, the number of grasps was limited to four, instead
of defining a threshold for the stable grasp probability. In Algorithm 5.5, the object
posterior distribution refinement was limited to 50 iterations of the Metropolis algorithm
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(a) (b)

(c)

Figure 5.9: Prediction of T |G,O: (a) Error histogram without FITC; (b) Error
histogram with FITC (33% of data); (c) Error histogram with FITC (5% of data)

instead of a more sophisticated convergence criterion. However, 50 iterations were found
to form the posterior distribution adequately. In total, 500 000 evaluations of the model
T |G,O and approximately 3 million evaluations of the model S|G,O are made in each
individual experiment. If the GPR models were replaced with a simulation, it would
mean that over three million simulated grasps would be needed to be made for each
experiment, which is currently infeasible. With the GPR models, each grasp can be
planned in less than two minutes on a computer with a 3.0 GHz Pentium D processor
released in 2005.

Due to the probabilistic nature of the algorithms, the first results are shown as examples
of posterior distributions, which can be seen in Figure 5.10 for two different runs of
Algorithm 5.1. Each run in Figure 5.10 shows how the posterior distribution of the
object pose evolves after grasp attempts are made and each run consists of four grasps.
The real object pose is marked with a red cross in each subfigure. The title of each
subfigure in the figure shows the quality measure (QM) computed by GraspIt! and the
corresponding stable grasp probability (Stab. Prob). A quality measure of −1 indicates
a non-force-closure grasp, i.e. a failed grasp. Note that the orientations of subfigures
differ to give a better view of the whole posterior distribution.

The first run in Figure 5.10(a)-(d), shows the result for the cube in Figure 5.6. The
distributions show that multiple modes are found near the correct pose. The probability
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.10: (a)-(d): Grasping the cube at pose (45,25,0);(e)-(h): Grasping the
mug 2 at pose (-32,38,68).
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Table 5.1: Probability of a force closure grasp across 100 runs.

Grasp Cube Cyl. Mug1 Mug2 Pitcher
1 0.43 0.49 0.47 0.27 0.13
2 0.76 0.52 0.82 0.49 0.40
3 0.76 0.56 0.85 0.61 0.46
4 0.72 0.60 0.87 0.72 0.53

of a stable grasp increases after each successive grasp due to the convergence of the object
pose posterior. The quality measure also shows that force-closure is achieved during the
grasps. In the second run, in Figure 5.10(e)-(h), mug 2, shown in Figure 5.6, is grasped.
The posterior distribution reflects the uncertainty in the orientation (vertical axis of the
figure) of the mug, as the mug is almost completely symmetric. As before, the grasp
stability probability increases after each grasp. The quality measure is also improved.
However, the posterior density is not as dense as in Figure 5.10(a)-(d) with remaining
uncertainty due to the symmetry. While the quality measure is increased between the
grasp attempts in most cases, the quality measure may also decrease due to the imperfect
stability model.

All of the posterior distributions show some outliers at the edges of the parameter space.
This is due to the imperfect regression results by GPR. One of the probable reasons
behind this phenomenon is the discretization of the sampling grid which is quite coarse
especially on the mugs and the pitcher.

To show that the probabilistic grasp planning presented in Algorithm 5.1 actually im-
proves the grasp quality, 100 tests were run on all five objects to find out how each
successive grasp reduces unstable grasps by refining the knowledge on the object pose.
For each individual run, the object pose was randomly chosen from a uniform distribution
within the model boundaries described in 5.3.2. The results are described in Table 5.1,
which shows the probability of achieving a stable grasp after the number of grasps shown
in the "Grasp" column. From the results, one can see that the framework is able to
refine the object pose distribution, and as a result, find a stable grasp more often. These
results can be compared to some extent to the results found in [135], although the object
set used in [135] is different. The results reported in [135] indicated that four actions are
needed to grasp an object correctly with 80% to 90% probability. However, in [135], each
action is planned to be as informative as possible. In this thesis, each grasp is planned
to produce the maximal stability. Also note that the definition of a successful grasp is
different in [135]. This thesis considers any grasp with a force closure property a success,
while in [135], the grasp must be within defined bounds.

Experiments on real robotic platforms

To validate the approach proposed in this paper on a real platform, the framework was
also implemented on the two robot platforms described earlier and shown in Figures 5.7
and 5.8.

In the experiment with the WRT-102, the object was displaced 40 mm, while setting
µo = (0, 0) and σo = (40, 4). The results of the two grasps executed with these parameters
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(a) (b)

(c) (d)

Figure 5.11: (a) First, unstable, grasp in sequence; (b) Posterior distribution
after first grasp; (c) Second, stable, grasp; (d) Posterior distribution after second
grasp.

are presented in Figure 5.11. As can be seen from the figure, the posterior distribution
converges close to the real pose in X. However, θ remains largely uncertain because
the measurements are not able to disambiguate the angle of the object. The stability
probabilities also reflect reality. After the first grasp, the probability of achieving a stable
grasp given by the model is only 2%. The first grasp was an unstable grasp when lifting
the object. After the second grasp, the probability had grown to 63%. The second grasp
was stable enough to lift the object.

Two experiments are reported for the platform with the Robotiq hand. However, many
similar experiments were conducted with this platform with consistent results, and the
reported experiments are examples of the expected outcomes of similar experiments. The
experiments show that the framework is able to function even when the assumption of
a static object is relaxed. In the first experiment the object is intially displaced roughly
120 mm in x and 20 mm in y and the object is also rotated by a small angle from the
expected mean. The initial uncertainty is set to µo = (0, 0, 0) and σo = (40, 5, 5). The
results of the two grasps executed with these parameters are presented in Figure 5.11. As
can be seen from the figure, the posterior distribution P (O|G,T ) converges close to the
real pose in X after the first grasp. The first grasp also aligned the object with the hand.
However, θ remains uncertain, because the measurements are not able to disambiguate
this. The stability probabilities reflect reality well as after the first grasp, the probability
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(a) (b)

(c) (d)

Figure 5.12: (a) First grasp in sequence which is an unstable grasp; (b)
P (O|G,T ) after the first grasp, note the low probability of stable grasp; (c) Second
grasp, which is a stable grasp; (d) P (O|G,T ) after the second grasp.

of a stable grasp given by the model is only 26%, which in reality is an unstable grasp,
but after the second grasp the probability has grown close to 99%, which was a stable
grasp when lifting the object.

The second experiment shows the implicit capability of the approach to explore the
environment. In this experiment, the robot fails to grasp the object during the first
attempt (Figure 5.13(a)). In this case the posterior distribution P (O|G,T ) has two
modes, shown in Figure 5.13(b). This leads to an exploration phase, where both modes
are explored. The second grasp (Figure 5.13(c)) fails, as well, as the robot decides to
grasp the wrong mode. However, the measurements after the second grasp support only
the correct mode (Figure 5.13(d)) and the robot successfully grasps the object on the
third attempt (Figure 5.13(e)).

5.4 Summary

This section presented a novel framework for grasping, which operates in a probabilistic
setting. The framework allows grasp planning, measurements, and corrective motions
to interact, leading to a system where uncertain object attributes, such as pose, can
be estimated and used as a foundation for improving grasp stability. While the pro-
posed framework has some drawbacks – such as the assumption of a static object – the
framework and the experiments show how to utilize the uncertainty in grasp planning.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Grasp sequence with the Robotiq hand: (a) First grasp fails com-
pletely; (b) Corresponding posterior distribution P (O|G,T ); (c) Second grasp; (d)
Posterior distribution after the second grasp; (e) Third grasp which succeeds; (f)
Posterior distribution after the third grasp.
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The framework can be divided into two parts: the object attribute inference and the grasp
planning that takes advantage of the object attribute inference. Under the framework,
object attributes can be inferred across multiple grasp attempts. The grasp planning
part then finds a suitable grasp that takes into account the uncertainty still left after
the inference. However, to plan for grasps, a model of the object is required. Both of
the presented parts have been separately introduced in earlier works, but the framework
combines these parts, producing a novel method for grasp planning under uncertainty.

The experiments were based on both simulated and data-driven versions of the funda-
mental models required by framework. While the experiment based on the simulated
model was to test the applicability of the framework, the data-driven models can be used
with real objects, even without the need for a static object. Gaussian process regression
was chosen as the base for the data-driven models, as it can provide an estimate of the
prediction confidence. The accuracy of the data-driven models was restricted compared
to the achievable accuracy to keep the computational costs reasonable. Furthermore,
the framework was demonstrated on both simulation and on real robotic platforms. The
experiments showed that, using the framework, the probability to acquire a stable grasp
can be increased using the information from the grasp attempts.
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Chapter VI

Discussion

The presented work dealt mostly with the sense of touch in a robotic grasping context.
The topics ranged from robot architectures to statistical methods. All of the proposed
approaches have both challenges and future prospects.

The abstraction architecture, discussed in chapter 3, has been designed scalable in the
sense of expanding the architecture to new robotic platforms and extending the function-
ality to new manipulation problems. Furthermore, also other possibilities exist that can
be brought into the architecture. For example, one could conceive a graphical user inter-
face for the architecture and enable easy construction of abstract actions which could be
transferred across multiple platforms. One of the more interesting additions would be to
integrate the methods found in chapters 4 and 5 into the architecture which would, for
example, enable platform specific learning of grasp stability instead of just using heuris-
tics to determine the stability. It is also important to note that the control architecture
inside the abstraction architecture can be driven dynamically, i.e. the state machine can
be built on-line according to some rule set. One example of this type of dynamic actions
can be found in [145].

The abstraction architecture can also be used as a basis for further research on the
use of sensors as a part of manipulation and especially of manipulation learning. The
architecture can be taken to the direction of simulation, as it was integrated into the
OpenRAVE environment and some steps have already been taken into this direction. For
example, the WRT-102 end effector was already implemented for the OpenRAVE and can
be driven through the abstraction architecture. Adding a complete simulation backend
for the robot platforms would simplify the design and verification of the abstract state
machines as the simulation can be driven with the same controllers as the real platform.

If one wants to consider the whole task execution then one critical piece is still missing, i.e.
how to divide the task into individual actions that can be executed within the abstraction
architecture. The task decomposition leans more towards the field of artifical intelligence
as the task decomposition requires reasoning about the objects and actions that can be
executed on them to reach the eventual goal of the whole task. Due to these reasons the
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task decomposition system was left out from the abstraction architecture itself. To fully
utilize the abstraction architecture, however, some type of a system to split the task into
suitable actions is required, either manual or autonomous.

The proposed approach to determine grasp stability from training data, described in
chapter 4, has some challenges due to its data-driven nature. One of the greatest chal-
lenges is sensor hysteresis, particularly on the tactile sensors. This effect was noticed on
a few of the end effectors used in the experiments and required new training grasps. One
obvious solution is to improve the quality of the sensors or replace them with sensors
that are based on more stable materials that can withstand, for example, variance in
temperature without changing the sensor output. Another solution would be to imple-
ment some type of on-line learning of the grasp stability, but this might be infeasible due
to the amount of grasps required to learn the stability adequately.

The second problem is how to choose the grasps that make up the training data. In the
experiments, the training data was essentially random grasps. It would be interesting to
develop a method that could optimize the grasps so that a fewer number of grasps would
be made, similarly to [129]. However, without any previous knowledge of the object,
as was assumed in the experiments, developing a method for minimizing the number
of grasps is difficult, if not impossible. Introducing some type of geometrical model or
other type of object representation ties this method with the probabilistic grasp planning
method presented in chapter 5. Both of the presented methods require some kind of
sampling of grasps to determine the field of grasp stability around a given object.

The work done to determine the grasp stability from sensor data raises some other,
tangential, questions. For example, which locations on the end effector would be the
most useful to cover with tactile sensing elements so that as many contacts as possible
could be measured during grasping. Answering this question would benefit both the
data-driven and the analytical grasp stability algorithms, as both require sensing of the
contacts.

Also one direction to take is to add another sensor modality in addition to the tactile and
proprioceptive sensing to help determine the grasp stability. One good candidate for this
is vision, which allows linking the global pose of the hand to the local sensing. Without
knowing the pose of the hand in relation to the object, it is difficult to determine the
grasp stability with the method proposed in this thesis, as the mass distribution and
the center of mass affects the torque seen by the contacts between the hand and the
object. This phenomenon is especially evident with relatively large objects, such as the
cardboard box used in the experiment shown in Figure 5.12. There has already been
some work in this direction, such as [78], which combine visual and tactile grasp stability
models.

Vision could also be used for training the system by automating the grasp synthesis and
the consequent labeling of the grasp result. Again, this is very similar setup that is
presented in [129], but instead of building the grasp affordance on top of visual models,
the tactile and proprioceptive sensor outputs could be used to build the grasp stability
model. The autonomous collecting of data would accelerate the learning of the grasp
stability models of real objects as the task of manually collecting training data was quite
time consuming.

Relating to the data collection, one important question was still left unanswered in this
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thesis: "How to use simulated grasp stability models with real objects?" While some very
preliminary tests were done, the tests showed that the simulated data was not useful when
classifying grasps with a real hand. The probable reason behind this is that the output
of the simulated sensors did not correspond to the output of the real sensors. Using
simulation would immensely speed up the generation of grasp stability models, similarly
to the Columbia Grasp Database [44]. However, if the problem lies within the simulation
itself, developing a more high quality simulation environment is a challenging task.

Probabilistic grasp planning, presented in chapter 5, takes some cues from grasp stability
learning, but extends the problem to include also grasp planning or grasp synthesis. In
many ways, this topic is the most interesting, as it brings together the estimation of grasp
stability with the estimation of the object attributes. However, one significant challenge
is the models required by the described framework. The data-driven models that were
used in the experiments were quite inaccurate due to computational constraints and the
simulation models, while accurate, cannot be efficiently used within the implemented
framework due to their computational demands. Given more accurate models, one could
imagine that the framework could be utilized to simultaneously infer, for example, object
scale and object identity as well as the pose.

In this thesis, these models were not explored very far. In traditional grasp planning,
the emphasis is to find good grasps and save these grasps for further use. However,
the models used for the probabilistic grasp planning requires that the grasps represent
the whole object from the point of view of the sensors embedded into the robotic hand.
Compared to the static grid used in this thesis to sample the grasps on individual objects,
a more adaptive sampling approach might be more useful and accurate in capturing the
details of the object.

There are also other possibilities that the presented framework is capable of, but were
not included in this thesis due to the time constraints on the thesis work itself. Perhaps,
the most interesting of these, is the capability to determine the most stable grasp among
many possible objects, all of which may have uncertain pose. The premise here is quite
similar to [136], but instead of considering the object presentation and its ability to
predict good grasps, all object models are considered simultaneously to provide the most
stable grasp across all of the given objects. This idea can also be extended to scenarios
where multiple physical objects are present but their pose and possibly their identity is
uncertain.

It would also be interesting to see how the particle based representation of uncertainty
used in chapter 5 could be utilized in other manipulation actions such as pushing. In this
type of scenario the object would be represented in a similar fashion to a mobile robot
that uses particle filter techniques to represent its own pose. However, the difference is
that the robot can use inbuilt sensors to reduce the uncertainty of the robot’s pose, while
the object must be observed externally. While the pushing action itself could be learned,
i.e. what are the effects of the push on the object given known poses of the robot hand
and the object, the planning phase requires additional thought and a new approach that
can plan multiple actions that move the object to the desired pose under uncertainty.

Some advances can also be made in the proposed grasp planning method. It should
be possible to direct the grasp planning process with some other measure than grasp
stability. One good example would be the task suitability of the grasp [131]. One can also
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direct the grasp planning into the direction of informative grasps. These grasps, instead
of optimizing the expected grasp stability, are optimized to reduce the uncertainty in the
object attributes. Some work has already been published in this area, for example [135].

In addition, it should be noted that improvements can also be made at the sensor mea-
surement level. For example, the work presented in this thesis considered only the propri-
oceptive sense, i.e. the joint angles of the robot hand, but given access to tactile sensing,
the accuracy of the object attribute estimation could be improved. With tactile sensing,
the robot could make a distinction between, for example, edges and corners, reducing
the ambiguity and the uncertainty of the estimation.



Chapter VII

Conclusion

The abstraction architecture, presented in chapter 3, proposes an approach to solve
hardware independence. The abstraction architecture is based on the concepts of abstract
and concrete actions. Both are represented by a finite state machine. The abstract action
describes a single action, such as picking and placing an object from one location to
another, in an abstract form; that is, the robot platform or embodiment has no effect
on the description of the abstract action. Furthermore, the abstract action is encoded
in XML, which allows both humans and computers to create and modify the abstract
actions in a codified manner.

One of the most important components of the abstraction architecture is the translator.
The translator translates the XML description of the abstract action into a concrete
action. The translator can utilize both platform independent and platform dependent
program code to form the concrete action. The concrete action is the hardware dependent
version of the abstract action. The concrete action might differ from the abstract action
due to deficiencies of the platform itself. However, the aim of the action remains the
same across the abstract and the concrete action. The concrete action is executed by
the control architecture, which includes all of the program code to run the finite state
machine. One goal of the abstraction architecture was to integrate the use of sensors
into the architecture. This goal is evident in the control architecture where all of the
components that need access to the sensors can access all of the sensors of the platform.

The demonstrations showed that implementing the abstraction architecture across multi-
ple platforms is feasible, and that the abstract action can be successfully translated into
concrete action on these platforms even if the capabilities of the hardware are different.
In addition, failure detection, which was also one of the design goals of the architecture,
was demonstrated. Integrating the failure detection into the architecture allows learning
from surprises and feedback to higher level systems utilizing the abstraction architecture.

Chapter 4 proposed an approach to determine the grasp stability from the feedback of
the sensors that are embedded into robot hands. As the main input or features, the
proposed method used both the prorioceptive and the tactile sense of the hand. From
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these inputs, the grasp stability can be learned through multiple example grasps that
had resulted in either stable or unstable grasps. The methods used to learn the stability
were machine learning algorithms called classifiers.

Several different classifiers, such as support vector machine and AdaBoost, and feature
representations were experimented on to find a suitable combination for further experi-
ments. Of the different classifiers tested, adaptive boosting and support vector machine
classification were the best. Further experiments considered the effect of the object
knowledge, that is, whether it helps to have more specific information about the object
in terms of grasp stability. The experiments showed, as could be expected, that increasing
the knowledge indeed improves the classification results.

The originally proposed method was also extended in this thesis. The original method
looks at the very end of the grasp and gives an estimate of the stability for that time
instant. The extended method classifies the whole grasp from the beginning until the
end and can make decisions on the stability faster in the case of a stable grasp. The
experiments on the extended method also showed that the classification performance
was similar to the original method.

The work to determine the grasp stability was further extended in chapter 5. Instead of
just estimating the stability of any grasp, the proposed method also planned for a stable
grasp, given an uncertain pose of an object. A general framework for planning grasps
under uncertainty was presented and consequently demonstrated to show the potential
of the framework.

The demonstrations were performed in both simulation driven and data-driven environ-
ments. While the simulation driven planning was shown to be accurate, the performance
of the simulation could not be scaled to the levels required to operate in a real environ-
ment. For this reason, the data-driven environment was adopted in further experiments.
The data-driven models were based on Gaussian process regression. These experiments
showed that the framework is capable of inferring object pose distribution, given infor-
mation from grasps, and that the framework is then able to plan for stable grasps given
the inferred object pose distribution.
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