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Abstract

Polina Belova
QUASICLASSICAL APPROACH TO THE VORTEX STATE IN IRON-BASED SUPER-
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132 p.
Acta Universitatis Lappeenrantaensis 490
Diss. Lappeenranta University of Technology
ISBN 978-952-265-314-7, ISBN 978-952-265-315-4 (PDF), ISSN 1456-4491

The quasiclassical approach was applied to the investigation of the vortex properties in the iron-
based superconductors. The special attention was paid to manifestation of the nonlocal effects of
the vortex core structure. The main results are as follows:
(i) The effects of the pairing symmetries (s± and s++) on the cutoff parameter of field distribution,
ξh, in stoichiometric (like LiFeAs) and nonstoichiometric (like doped BaFe2As2) iron pnictides
have been investigated using Eilenberger quasiclassical equations. Magnetic field, temperature and
impurity scattering dependences of ξh have been calculated. Two opposite behavior have been dis-
covered. The ξh/ξc2 ratio is less in s± symmetry when intraband impurity scattering (Γ0) is much
larger than one and much larger than interband impurity scattering (Γπ), i.e. in nonstoichiometric
iron pnictides. Opposite, the value ξh/ξc2 is higher in s± case and the field dependent curve is shifted
upward from the "clean" case (Γ0 = Γπ = 0) for stoichiometric iron pnictides (Γ0 = Γπ � 1).
(ii) Eilenberger approach to the cutoff parameter, ξh, of the field distribution in the mixed state of
high κ-superconductors is developed. It is found that normalized value of ξh/ξc2 decreases both with
temperature (due to Kramer-Pesch effect) and with impurity scattering rate Γ. The theory explains
µSR experiments in some low-field superconductors and different ξh values from the Ginzburg-
Landau theory predictions in isotropic s-wave superconductors. A comparison with another charac-
teristic length ξ1, describing the gradient of the order parameter in the vortex center, is done. They
have very different Γ-dependences: monotonous suppression of ξh(B) values and crossing behavior
of the ξ1(B) curves at various Γ. This is explained by the nonlocal effects in the Eilenberger theory.
(iii) The generalized London equation in the mixed state of high-κ s-wave pairing superconductors
with impurities is considered as a projection of the quasiclassical nonlocal nonlinear Eilenberger
theory. Both nonlocal effects originated from extended states between the vortices and bound An-
dreev states in the vortex are taken into account. Comparison with different analytical nonlocal
linear approaches (the Kogan-Gurevich, Amin-Franz-Affleck, Kogan-Zhelezina models) including
only extended states is done. The influence of the impurities on the ratio of the cutoff parameter ξh
and the Ginzburg-Landau coherence length ξc2 is considered. Quasiparticle scattering by impurities
and lowering of the temperature reduces the value of ξh to the values much less than ξc2. This is
different from the prediction of the local Ginzburg-Landau theory where ξh is scaled by ξc2. It is
found that impurities influence by different way on the cutoff parameter ξh and the order parameter
coherence length ξ1. The ξh decreases monotonously with the impurity scattering time in contrast
to the nonmonotonous behavior of ξ1.
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Preface

The analysis of the field distribution experimental results in mixed state of type-II superconductors
is usually done [Sonier (2004, 2007)] in the framework of the Hao-Clem theory (analytical solution
of the Ginzburg-Landau theory, AGL [Hao et al. (1991); Yaouanc et al. (1997)]). Strictly speaking,
Ginzburg-Landau theory is valid only near Tc but it is often used in whole temperature range taking
the cutoff parameter ξv and penetration depth λ as fitting parameters. Recently an effective London
model with the effective cutoff parameter ξh(B) as a fitting parameter was obtained for clean [Laiho
et al. (2007)] and dirty [Laiho et al. (2008)] superconductors, using self-consistent solution of qua-
siclassical nonlinear Eilenberger equations. To emphasize the differences between calculated cutoff
parameter and variational parameter of the AGL we changed the notations ξv → ξh. In this ap-
proach the coherence length obtained from the Ginzburg-Landau model is extended over the whole
field and temperature range. In this case the effects of bound states in the vortex cores leading to
Kramer-Pesch effect [Kramer and Pesch (1974)], their delocalization between the vortices [Ichioka
et al. (1999a)] and non-local electrodynamic [Kogan et al. (1996a)] are self-consistently included.
In this model the magnetic field distribution is given by [Laiho et al. (2008)]

hEHC(r) =
Φ0

S

∑

G

F (G)eiGr

1 + λ2G2
, (1)

where F (G) = uK1(u), K1(u) is the modified Bessel function, u = ξhG, G is a reciprocal lattice
vector and S is the area of the vortex lattice unit cell. Because the magnetic field distribution is
similar to the Hao-Clem model we will call this approach as Eilenberger-Hao-Clem model. Here, λ
is not a fitting parameter but is calculated from the microscopical theory of the Meissner state and
cutoff parameter ξh is calculated from Eilenberger theory of the mixed state.

The subjects of the original publications are (i) the field distribution in the mixed state of iron-based
superconductors was investigated using Eilenberger quasiclassical equations taking into account
possible pairing symmetries (s± and s++). The s± pairing symmetry is mediated by ferromagnetic
spin fluctuation while s++ is created by moderate electron-phonon interaction due to Fe-ion os-
cillation and critical orbital fluctuation. The cutoff parameter ξh was calculated numerically using
the Riccati parametrization of the Eilenberger equations. The results are presented in Papers 1-3.
The physical properties of iron-based superconductors are described in Introduction and Chapter
II. The model for s± and s++ are presented in comment in Papers 1 and 2, respectively. Com-
ments to Paper 3 is devoted to experimental µSR results in iron pnictides. Transformation of the
Eilenberger Equations to a Riccati equation is described in the Chapter III. (ii) The comparison
between nonlinear nonlocal Eilenberger approach and local Ginzburg-Landau and Usadel models,
and linear nonlocal Kogan-Gurevich, Kogan-Zhelezina theories is done in Papers 4-6. The analyt-
ical Ginzburg-Landau model is considered in the comments to Paper 4. The Kramer-Pesch effect
which is absent in the local theories is described in the comments to Paper 5. Usadel model and its
comparison with µSR experiments is presented in the comments to Paper 6. The importance of the
nonlocal effects in the calculation of cutoff parameter ξh is discussed in detail in Papers 4-6.

The obtained results can be used for interpretation of muon spin resonance and small angular neu-
tron scattering measurements data.
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PART I: OVERVIEW OF THE THESIS





CHAPTER I

Introduction

The discovery of superconductivity, in 2008, with Tc = 26 K in florine-doped LaFeAsO (1111-type)
[Kamihara et al. (2008)] has focused a worldwide interest to the new class of the materials. Such
supprising Tc was unexpected for Fe metal, which is ferromagnet. The crystal structure contains
FeAs layers with Fe atoms in a square planar lattice arrangement, and these layers alternate with
LaO layers along the c-axis. It was found, that applying pressure increases the Tc even further
to 43 K [Takahashi et al. (2008)] and then as high as 55 K by replacement of La by other rare
earth elements [Chen et al. (2008b)]. A lot of efforts by the condensed-matter community have
been devoted during few years after the discovery to understand normal state properties of Fe-based
materials, the pairing mechanism, the symmetry and the structure of the pairing gap.

The family of Fe-based pnictides (binary compounds of the elements from the 5th group: N, P,
As, Sb, Bi) is already quite large and keeps growing. It includes various Fe-based superconductors
(FeSCs) such as 1111 systemsRFeAsO (R = rare earth element) with Tc up to 55 K [Kamihara et al.
(2008); Chen et al. (2008a,b)], 122 systemsXFe2As2 (X = alkaline earth metals) with Tc up to 38 K
[Rotter et al. (2011); Ni et al. (2010)], 111 systems like LiFeAs with Tc up to 18 K [Borisenko et al.
(2010)], and also 11 Fe-chalcogenides (Fe-based compounds with elements from the 6th group: S,
Se, Te) such as FeTe1−xSex [Chen et al. (2009)] and AFesSe2 (A = K,Rb,Cs) [Guo et al. (2010);
Qian et al. (2011)].

Parent compounds of FeSCs are metals, in distinction to cuprate superconductors for which parent
compounds are Mott insulators. Still, in similarity with the cuprates, in most cases these parent
compounds are antiferromagnetically ordered [Inosov et al. (2010a)]. Because electrons which carry
magnetic moments still travel relatively freely from site to site, the magnetic order is often termed
as a spin-density-wave (SDW), by analogy with e.g., antiferromagnetic Cr, rather than ’Heisenberg
antiferromagnetism’ - the latter term is reserved for systems in which electrons are ’nailed down’ to
particular lattice sites by very strong Coulomb repulsion.

Superconductivity (SC) in FeSCs emerges upon either hole or electron doping (see Fig. 1.1), but
can also be induced by pressure or by isovalent replacement of one pnictide element by another,
e.g., As by P [Nakai et al. (2010a)]. In some systems, like LiFeAs [Borisenko et al. (2010)] and
LaFePO [Kamihara et al. (2006)], SC emerges already at zero doping, instead of a magnetic order.
The magnetism, the electronic structure (see Fig. 1.2), the normal state properties of FeSCs, and
the interplay between FeSCs and cuprate superconductors have been reviewed in several recent
publications [Mazin (2010); Chubukov (2009); Kuroki et al. (2009)].

13



14 1. Introduction

Figure 1.1: Schematic phase diagram of Fe-based pnictides upon hole or electron doping. In
the shaded region, superconductivity and antiferromagnetism co-exist. Not all details/phases
are shown. Superconductivity can be initiated not only by doping but also by pressure and/or
isovalent replacement of one pnictide element by another [Nakai et al. (2010a)]. Nematic order
at T > TN is subject of debates. Superconductors at large doping are KFe2As2 for hole doping
[Sato et al. (2009); Dong et al. (2010)] and AxFe2−ySe2 (A = K, Rb, Cs) for electron doping
[Guo et al. (2010); Qian et al. (2011)]. Whether superconductivity in pnictides exists at all
intermediate dopings is not clear yet. From Ref. [Basov and Chubukov (2011)].

The phenomenon of SC has a long history. SC was discovered by Kamerlingh Onnes a century ago,
in 1911. It has been explained in general terms nearly fifty years later, in 1957, by Bardeen, Cooper,
and Schrieffer (BCS), who demonstrated that an arbitrary weak attractive interaction between two
low-energy fermions is sufficient to pair them into a bound state. At weak coupling, paired fermions
immediately form Bose-Einstein condensate and behave as one single macroscopic quantum object
and they move coherently under the applied electric field, i.e superconduct. In d-dimensional elec-
tronic systems low-energy fermonic states are located, in momentum space, near particular d − 1
dimensional surfaces, called Fermi surfaces (FS) on which fermionic energy is zero relative to the
chemical potential. At weak/moderate coupling, the pairing problem is confined to a near vicinity
of a FS. The interaction between fermions is generally non-singular with respect to variations of the
distance to the FS and can be approximated by its value right on the FS [Chubukov (2012)].

What causes the attraction between fermions is a more subtle question, and the nature and the origin
of the pairing glue have been the subject of great debates in condensed-matter community over the
last 50 years. BCS attributed the attraction between fermions to the underlying interaction between
electrons and phonons [Bardeen et al. (1957)] (the two electrons effectively interact with each other
by emitting and absorbing the same phonon which then serves as a glue which binds electrons into
pairs). Electron-phonon mechanism has been successfully applied to explain SC in a large variety of
materials, from Hg and Al to recently discovered and extensively studied MgB2 with the transition
temperature Tc = 39 K [Kortus et al. (2001)]. Nonphononic mechanisms of the pairing have also
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Figure 1.2: The electronic structure of FeSCs. In weakly and moderately electron-doped ma-
terials (left panel) the FS consists of quasi-2D warped cylinders centered at (0, 0) and (π, π) in
a 2D cross-section. The ones near (0, 0) are hole pockets (filled states are outside cylinders),
the ones near (π, π) are electron pockets (filled states are inside cylinders). There also exists a
quasi-3D hole pocket near kz = π. In hole-doped FeSCs the electronic structure is very similar,
but 3D hole pocket becomes quasi-2D warped hole cylinder. From Ref. [Mazin and Schmalian
(2009)].

been discussed, most notably in connection with superfluidity in 3He [Anderson and Morel (1961)],
but did not become the mainstream before the discovery of SC in LaBaCuO in 1986 [Bednorz
and Muller (1986)]. That discovery, and subsequent discoveries of superconductivity at higher Tc
in other cuprates signaled the beginning of the new era of ’high-temperature superconductivity’ to
which FeSCs added a new avenue with quite high traffic over the last four years [Kohn and Luttinger
(1965)].



CHAPTER II

Superconductivity in iron pnictides

Superconductivity is quite robust phenomenon. It has been known from early 60’s that in isotropic
systems the equation for superconducting Tc factorizes if one expands the interaction between the
two fermions in partial components corresponding to interactions in the subspaces with a given an-
gular momentum of the two interacting fermions l = 0, 1, 2, 3, etc [in spatially isotropic systems
l = 0 component is called s-wave, l = 1 component is called p-wave, l = 2 component is called
d-wave, and so on]. If just one component with some l is attractive, the system undergoes a SC
transition at some temperature T = Tc. For phonon-mediate superconductors, s-wave superconduc-
tivity is the most likely outcome. In the cuprates, however, the pairing symmetry has been firmly
established as d-wave. The vast majority of researches believe that such pairing is not caused by
phonons and emerges instead due to screened Coulomb interaction between electrons. The screened
Coulomb interaction U(r) is constant and repulsive at short distances but has a complex dependence
on r at large distances and may develop an attractive component at some l. One solid reason for
the attraction, at least at large l, has been identified by Kohn and Luttinger back in 1965 [Kohn and
Luttinger (1965)].

In lattice systems, angular momentum is no longer a good quantum number, and the equation for Tc
only factorizes between different irreducible representations of the lattice space group. In tetragonal
systems, which include both cuprates and FeSCs , there are four one-dimensional irreducible repre-
sentations A1g, B1g, B2g, and A2g and one two-dimensional representation E2g. Each representation
has infinite set of eigenfunctions. The eigenfunctions from A1g are invariant under symmetry trans-
formations in a tetragonal lattice: x → −x, y → −y, x → y, the eigenfunctions from B1g change
sign under x→ y, and so on. If a superconducting gap has A1g symmetry, it is often called s-wave
because the first eigenfunction from A1g group is just a constant in momentum space (a δ-function
in real space). If the gap has B1g or B2g symmetry, it is called d-wave (dx2−y2 or dxy, respectively),
because in momentum space the leading eigenfunctions in B1g and B2g are cos kx − cos ky and
sin kx sin ky, respectively, and these two reduce to l = 2 eigenfunctions cos2θ and sin2θ in the
isotropic limit.

In the cuprates, the superconducting gap has been proved experimentally to have B1g symmetry.
This gap symmetry appears quite naturally in the cuprates, in the doping range where they are met-
als, if one assumes that the glue that binds fermions together is a spin-fluctuation exchange rather
than a phonon (see Fig. 2.1). The notion of a spin fluctuation is actually nothing but the conve-
nient way to describe multiple Coulomb interactions between fermions. It is believed, although

16



17

Figure 2.1: A comparison of the pairing state from spin-fluctuation exchange in cuprate SCs
and in FeSCs. In the cuprates (left panel) the FS is large, and antiferromagnetic Q = (π, π)

connects points on the same FS. Because spin-mediated interaction is positive (repulsive), the
gap must change sign between FS points separated by Q. As the consequences, the gap changes
sign twice along the FS. This implies a d-wave gap symmetry. In FeSCs (right panel) scattering
by Q moves fermions from one FS to the other. In this situation, the gap must change sign
between different FS, but to first approximation remains a constant on a given FS. By symmetry,
such a gap is an s-wave gap. It is called s± because it changes sign between different FSs. From
Ref. [Basov and Chubukov (2011)].

not proved rigorously, that in systems located reasonably close to a magnetic instability, the fully
screened Coulomb interaction between fermions can be approximated by an effective interaction
in which fermions exchange quanta of their collective fluctuations in the spin channel. That B1g

gap is selected is not a surprise because such gap ∆(k) ∝ cos kx − cos ky changes sign not only
under kx → ky but also between k and k′ = k + Q where Q = (π, π) is the momenta at which
spin fluctuation mediated pairing interaction U(k,k′) is peaked. This sign change is the crucial el-
ement for any electronic mechanism of superconductivity because one needs to extract an attractiv
(negative) component from repulsive (positive) screened Coulomb interaction. For B1g gap such
a component is

∫
dkdk′∆(k)U(k,k′)∆(k′), and the integral obviously has a negative value when

U(k,k′) is peaked at (π, π).

In FeSCs, magnetism and superconductivity are also close neighbors on the phase diagram, and it
has been proposed [Mazin et al. (2008); Kuroki et al. (2008)] at the very beginning of the Fe era
that the pairing mechanism in FeSCs is also a spin-fluctuation exchange. However, the geometry
of low energy states in FeSCs and in the cuprates is different, and in most FeSCs the momentum
Q connects low-energy fermionic states near the center and the corner of the Brillouin zone (see
Fig. 2.1). A simple experimentation with trigonometry then tell us that the SC gap ∆(k) must be
symmetric with respect to kx → ky and kx → −kx, but still must change sign under k → k + Q.
Such gap belongs to A1g representation, but it only has contributions from a particular subset of A1g

states with the form cos kx+cos ky, cos(3kx)+cos(3ky), etc which all change sign under k→ k+Q.
Such gap is generally called an extended s-wave gap, or s± gap.

Majority of researches do believe that in weakly/moderately doped FeSCs the gap does have s±
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symmetry. However, numerous studies of superconductivity in FeSCs over the last four years
demonstrated that the physics of the pairing is more involved than it was originally thought be-
cause of multi-orbital/multi-band nature of low-energy fermionic excitations in FeSCs. It turns out
that both the symmetry and the structure of the pairing gap result from rather non-trivial interplay
between spin-fluctuation exchange, intraband Coulomb repulsion, and momentum structure of the
interactions. In particular, an s±-wave gap can be with or without nodes, depending on the orbital
content of low-energy excitations. In addition, the structure of low-energy spin fluctuations evolves
with doping, and the same spin-fluctuation mechanism that gives rise to s± gap at small/moderate
doping in a particular material can give rise to a d-wave gap at strong hole or electron doping.

There is more uncertainly on the theory side. In addition to spin fluctuations, FeSCs possess also
charge fluctuations whose strength is the subject of debates. There are proposals [Onari and Kon-
tani (2009); Yin et al. (2010)] that in multi-orbital FeSCs charge fluctuations are strongly enhanced
because the system is reasonably close to a transition into a state with an orbital order (e.g., a spon-
taneous symmetry breaking between the occupation of different orbitals). A counter-argument is
that orbital order does not develop on its own but is induced by a magnetic order. If charge fluc-
tuations are relevant, one should consider, in addition to spin-mediated pairing interaction, also the
pairing interaction mediated by charge fluctuations. The last interaction can give rise to a conven-
tional, sign-preserving s-wave pairing [Onari and Kontani (2009)]. A ’p-wave’ gap scenario (a gap
belonging to E2g representation) has also been put forward [Lee and Wen (2008)].

From experimental side, s-wave gap symmetry is consistent with angle-resolved photoemission
spectroscopy (ARPES) data on moderately doped KFe2As2 and BaFe2(As1−xPx)2, which detected
only a small variation of the gap along the FSs centered at (0, 0), and with the evolution of the tun-
neling data in a magnetic field [Hanaguri et al. (2010)]. However, various experimental probes for
heavily hole-doped KFe2As2[Dong et al. (2010)] indicate the presence of gap nodes, which for the
FS geometry in these materials [Sato et al. (2009)] are consistent with a d-wave gap. For the doping
range where the gap is very likely an s-wave, the data on some FeSCs were interpreted as evidence
for the full gap [Christianson et al. (2008); Malone et al. (2009)], while the data for other FeSCs
were interpreted as evidence that the gap has nodes [Fletcher et al. (2009)] or deep minima [Martin
et al. (2009)]. In addition, recent nuclear magnetic resonance (NMR) experiments on LiFeAs have
been interpreted in favor of a p-wave gap [Brydon et al. (2011)]. All these seemingly very different
gap structures (with the exception of a p-wave), actually follow quite naturally from the same under-
lying physical idea that FeSCs can be treated as moderately interacting itinerant fermionic systems
with multiple FS sheets and effective four-fermion intraband and interband interactions in the band
basis.

All of the FeAs-based high-Tc superconductors contain square lattice layers of Fe atoms where each
Fe atom is at the center of a (usually) distorted As tetrahedron to form an equiatomic FeAs layer (see
Fig. 2.2). These FeAs layers are separated by spacer/charge donation layers along the c-axis such as
Ba layers in body-centred-tetragonal BaFe2As2 or LaO layers in primitive tetragonal LaFeAsO. The
same structures are sometimes formed when P replaces As, and/or when Co, Ni or other transition
metals partially or completely replace the Fe.

Partially replacing isoelectronic P for As in BaFe2As2 suppresses the long-range structural and
antiferromagnetic transitions and induces superconductivity [Jiang et al. (2009)]. Since P is smaller
than As, this substitution results in a shrinking of the unit cell, corresponding to what is called
’chemical pressure’. On the other hand, it is known that by substituting isoelectronic Sr for Ba, the
unit cell shrinks to the same volume for which BaFe2(As1−xPx)2 becomes superconducting, but the
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Figure 2.2: Comparison of the crystal structures of (a) LaFeAsO1−xFx, (b) SrFe2As2, (c)
LiFeAs, and (d) Fe1+xTe. Each of these structures contains a square lattice of Fe atoms at high
temperatures that can distort at low temperatures. Each Fe atom is tetrahedrally coordinated
by As (a,b,c) or Te (d). In (b), the outline of the low-temperature orthorhombically distorted
unit cell is shown, and ordered magnetic moments on the Fe atoms below the magnetic ordering
temperature are shown by arrows. In (d), the Fe(2) atoms are the extra x atoms in Fe1+xTe, with
x ∼ 1− 10% [Lynn and Dai (2009)].

Sr substitution does not suppress the crystallographic/antiferromagnetic transition temperature T0

or induce superconductivity [Wang et al. (2009)]. In fact, Sr substitution monotonically enhances T0

from 137 K for the pure Ba compound to 205 K for the pure Sr compound. Therefore, the unit cell
volume is not the only parameter determining whether the crystallographic and magnetic transitions
are suppressed and superconductivity is induced.

Rotter et al. [Rotter et al. (2010)] have discovered a significant crystallographic difference between
the (Ba1−xSrx)Fe2As2 and BaFe2(As1−xPx)2 systems. They find that due to the large size mis-
match between P and As, these two atoms are at different heights from the Fe layers, even though
they nominally occupy the same crystallographic position. This is the same situation as in the
Fe1−y(Te1−xSex) system, in which the Se and Te atoms have different heights from the Fe layers
[Louca et al. (2010)]. From the crystallographic data and band calculations, Rotter et al. infer that
the different heights of the P and As layers in the BaFe2(As1−xPx)2 system have a dramatic influ-
ence on suppressing the magnetic and crystallographic transitions in favor of superconductivity, due
to the giant magnetoelastic coupling.

The low temperature structures are distortions of the high temperature structures, rather than a
complete rearrangement of the atoms. Remarkably, even though second-order transitions between
the two structures are allowed by symmetry since the orthorhombic space groups are, respectively,
subgroups of the tetragonal space groups, some of these transitions are reported to be first order
such as in CaFe2As2 [Goldman et al. (2008); Ni et al. (2008)], SrFe2As2 [Loudon et al. (2010)], and
BaFe2As2 [Huang et al. (2008)]. On the other hand, Wilson et al. [Wilson et al. (2009)] found that
their magnetic and structural neutron diffraction data on a single crystal of BaFe2As2 near the SDW
transition temperature were consistent with a second-order phase transition.

The relationship between the a − b plane axes in the tetragonal and orthorhombic structures of
the 122- and 1111-type compounds is shown in Fig. 2.3. One would expect twinning to occur
because the orthorhombic distortion is small. Twins have indeed been observed optically below the
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Figure 2.3: Relationships between the basal plane a and b axes of the high temperature tetrag-
onal (T, dashed outline) and the low-temperature orthorhombic (O, solid outline) structures of
the 1111-type and 122-type FeAs-based compounds. For clarity, only the Fe atoms in a single
layer parallel to the a− b plane of the structures are shown in the figure. The basal-plane lattice
parameters are related to each other by aT = bT , aO ≈ bO ≈

√
2aT (orthorhombic lattice

parameters cO > aO > bO for both the 1111-type and 122-type compounds) [Johnston (2010)].

respective tetragonal-orthorhombic transition temperature in AFe2As2 (A = Ca, Sr, Ba) [Tanatar
et al. (2009)] and Ba(Fe0.985Co0.015)2As2 [Chu et al. (2010)]. The twin boundaries run along the
orthorhombic [110] and [110] directions (tetragonal [100] and [010] directions) and form planes
that traverse the materials parallel to the c-axis and are separated in the a − b plane by ≈ 10 − 50
µm. Transmission electron microscopy of the AFe2As2 compounds gives similar results except that
the twin boundaries are separated by only 0.1 − 0.4 µm [Ma et al. (2009)]. In addition, a fine
tweed pattern is found in CaFe2As2 [Ma et al. (2009)]. It is not clear why optical and electron
microscopies give different results for the twin boundary spacing. The reason is possibly associated
with the sample preparation needed for the transmission electron microscope measurements that
require extremely thin samples.

Within an MX4 tetrahedron where M is the transition metal atom and X is a pnictogen (Pn = P,
As, Sb, Bi) or chalcogen (Ch = S, Se, Te), there is a twofold X −M − X bond angle where the
two X atoms are on the same side of the M atom layer along the c axis, and a fourfold X −M −X
bond angle where the two X atoms are on opposite sides of the M layer. The twofold and fourfold
X −M −X bond angles are given by [Nath et al. (2009)]

θ2 = arccos[
−α2

4
+ (z − α)2c2

r2
], (twofold)

θ4 = arccos[
−(z − α)2c2

r2
], (fourfold) (2.1)

where

r2 =
α2

4
+ (z − α)2c2, (2.2)
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and α = 0, 1/4, 1/2 and 1 for the FeSe-type (11-type), BaFe2As2-type (122-type), LaFeAsO-type
(1111-type) and LiFeAs (111-type) structures, respectively. Here, α and c are the tetragonal lattice
parameters, z is the c-axis position parameter of the X atom in a unit cell of the respective structure
(e.g. z ≈ 0.25 in FeSe, z ≈ 0.35 in BaFe2As2, z ≈ 0.65 in LaFeAsO, and z ≈ 0.75 in LiFeAs),
and r is the nearest-neighbor M − X distance within an M -centered MX4 tetrahedron (all four
M −X nearest-neighbor distances are the same in each of the structures). The average bond angle
for all six X −M −X bonds is close to the value of 109.47◦ for an undistorted tetrahedron. Thus
if θ2 > 109.47◦ then θ4 < 109.47◦, and vice versa. The M atoms in each structure form a square
lattice where the fourfold nearest-neighborM−M distance in all four structures is dM−M = a/

√
2.

The distance (height h) between an M layer and either adjacent X layer is h = |z − α|c.



CHAPTER III

Transformation of the Eilenberger Equations to a Riccati equation

The vortex core of traditional high-κ superconductors is well described by the Bardeen-Stephen
model [Bardeen and Stephen (1965)] which represents the core by a region of normal electrons.
The Bardeen-Stephen model is justified as long as the mean free path, l, is much shorter than the
core size, so that the motion of an electron gets randomized before it leaves the core. This condition
is not fulfilled in high-Tc superconductors which are generally clean superconductors with l > ξ‖.
The core of a vortex in a clean superconductor was first studied in the classic papers of Caroli,
Matricon, and deGennes [Caroli et al. (1964, 1965)]. These authors calculated the spectrum of
quasiparticle states in the core, and showed that electrons and holes form bound states at energies
below the bulk energy gap. Further early studies of the excitation spectrum in the core can be
found in Refs. [Bardeen et al. (1969)] and [Kramer and Pesch (1974)]. In particular, Bardeen et al.
[Bardeen et al. (1969)] estimated the bound-state contribution to the circulating current of a vortex
and noted that the bound states were most important in weakly type-II superconductors (κ ' 1),
i.e., when the current is confined to the core region, r . ξ.

Theoretical work was stimulated by the direct observation of core states in NbSe2 by scanning tun-
neling spectroscopy (STS) [Hess et al. (1989)]. The report of STS in YBCO [Renner and Ø. Fischer
(1995)] provided new information on the excitation spectrum of vortices in the high-Tc cuprates.
Consequently, theoretical efforts focused on the tunneling density of states of bound states in iso-
lated vortices and vortex lattices [Klein (1990); Gygi and Schluter (1990)]. These calculations
showed that the bound states in the core have a different nature compared with the usual quantum
mechanical bound states in a potential well. The core states are coherent superpositions of particle
states and hole states, and are formed by repeated Andreev scattering from the pair potential (order
parameter) in the core. Andreev scattering is a process of "retroreflection" of excitations: spatial
variations of the amplitude or the phase of the order parameter induce branch conversion of elec-
tronlike excitations into holelike excitations, and vice versa. Bound states occur at energies at which
the phases of multiply reflected electronlike and holelike states interfere constructively. The charge
current carried by an incoming electron and an outgoing Andreev reflected hole is identical because
the reversal of the velocity in an Andreev reflection process is compensated by the reversal of the
charge due to electron-hole conversion. Consequently, Andreev bound states can transport a charge
current, unlike bound states in a potential well. Charge conservation requires that the current carried
by the bound states inside the core is transported outside the core by bulk supercurrents. This leads
to an interplay between supercurrents flowing past the core and the bound states in the core. Hence,
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the physics of the "normal core" in clean superconductors is basically the physics of the bound states
in contact and intimate exchange with the superconducting environment outside the core.

Consider a stack of "pancake" vortices forming an isolated vortex line whose axis is oriented per-
pendicular to the layers. A supercurrent in homogeneous superconductors is distributed over all
continuum states. These states exhibit Doppler shifts of their energies, δε = vf · ps, in the presence
of a phase gradient in the order parameter (or superfluid momentum, ps = (}/2)∇χ − (e/c)A).
The total current can be obtained by adding the contributions of states with positive shifts from
quasiparticles comoving with the flow and the contributions with negative shifts from quasiparticles
that are countermoving relative to the flow field. The currents in the core have a very different spec-
tral distribution from bulk supercurrents. The continuum states (scattering states) show smeared
out Doppler shifts, and contribute very little to the total current. The dominant contributions to the
circulating currents around the vortex center, as well as the currents through the core, come from
Andreev bound states. Hence, the physics of vortex cores in clean superconductors (ξ‖ � l) is
very different from the physics of the vortex core in a dirty superconductor (l � ξ‖), which is well
described by a continuum of normal electronic states. The bound states react sensitively to the en-
vironment outside of the core. This leads to a coupling of the collective degrees of freedom in the
London range of the vortex and the bound states in the core, which will produce a rich spectrum of
largely unexplored dynamical phenomena.

There are two versions of a quasiclassical formulation of the BCS theory of superconductivity:
(a) Andreev’s theory [Andreev (1964)] which represents the quasiclassical limit of Bogolyubov’s
equations [Bogolyubov et al. (1958)], and (b) the quasiclassical theory of Eilenberger [Eilenberger
(1968)], Larkin and Ovchinnikov [Larkin and Ovchinnikov (1969)] which represents the quasiclas-
sical limit of Gorkov’s Green’s function theory. Andreev’s theory and the quasiclassical theory are
essentially equivalent for clean superconductors, and in this limit the choice of approach is largely a
matter of taste. However, the quasiclassical theory has a wider range of application. It is the gener-
alization of Landau’s Fermi-liquid theory to the superconducting state, and is capable of describing
a broader range of superconducting materials and phenomena, such as dirty superconductors or su-
perconductors with short inelastic lifetimes (strong-coupling superconductors) [Rainer and Sauls
(1995)].

Quasiclassical approach

According to the BCS theory of superconductivity the quasiparticle excitations above the Cooper
pairing groundstate depend on spin (↓ or ↑) and also on a particle-hole index (+ or -) which indicates
the flight direction of a quasiparticle (parallel or antiparallel to the Fermi velocity vF ). Coherent
superpositions of such excitations form wave packets that transport energy, momentum, charge and
spin inside a superconductor.

In metals and alloys of interest to technical applications of superconductivity the Cooper pairs dis-
play an even parity symmetry (spin singlet), and often the influence of paramagnetic effects (Zeeman
splitting, Pauli limiting, spinorbit coupling etc.) may be ignored. Then spin and particle-hole indices
may be identified. As a result the 4× 4-matrix equations of superconductivity may be simplified to
2× 2-matrix equations.

It is known that the characteristic length to heal a local (static) perturbation of the Cooper pairing
amplitude ∆(r,pF ) in a superconductor (due to the presence of an impurity, a vortex line, an in-
terface etc.) is approximately ξ = ~vF/∆∞, and often the quasiclassical condition kF ξ � 1 is
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fulfilled, where r refers to a point in position space (center of mass of a Cooper pair), and pF = ~kF
denotes a point on the Fermi surface (FS).

Then, as first shown by Eilenberger [Eilenberger (1968)] and Larkin and Ovchinnikov [Larkin and
Ovchinnikov (1969)], the relevant part of the physical information coded in quantum mechanical
expectation values (for example the charge density, the current, the pressure functional etc.) may be
calculated more efficiently with the help of the quasiclassical propagator

ĝ(r; pF , iεn) =

(
g(r; pF , iεn) f(r; pF , iεn)
f̄(r; pF , iεn) ḡ(r; pF , iεn)

)
. (3.1)

The quasiclassical propagator is, by definition, just the Green’s function of the Gorkov theory of
superconductivity in a form where it has been integrated with respect to the kinetic energy of the
quasiparticles [Andreev (1964)]. Remarkably, ĝ(r; pF , iεn) may be calculated also directly solving
a transport type system of ordinary differential equations (the right hand side is a commutator):

− i~vF · ∇ĝ(r; pF , iεn) =

[(
iεn + vF · ecA(r) −∆(r,pF )

∆†(r,pF ) −iεn − vF · ecA(r)

)
, ĝ(r; pF , iεn)

]
. (3.2)

The physical solution to this equation must also fulfill a normalization condition:

ĝ(r; pF , iεn) · ĝ(r; pF , iεn) = −π2 · 1̂. (3.3)

General symmetries of the Gorkov Green’s functions imply corresponding symmetries of the qua-
siclassical propagator:

f̄(r; pF , iεn) = −f ∗(r; pF ,−iεn), (3.4)
ḡ(r; pF , iεn) = g(r;−pF ,−iεn), (3.5)
f(r;−pF ,−iεn) = f(r; pF , iεn), (3.6)
g(r; pF , iεn) = g∗(r; pF ,−iεn). (3.7)

In equilibrium the quasiclassical propagator displays also a particle-holesymmetry:

ḡ(r; pF , iεn) = −g(r; pF , iεn). (3.8)

This means that the trace of ĝ(r; pF , iεn) vanishes. As a traceless 2×2-matrix the square of ĝ should
be equal to a multiple of unity:

ĝ2 = ĝ(r; pF , iεn) · ĝ(r; pF , iεn) = C · 1̂. (3.9)

Using the fact, that ĝ2 is a solution to the Eilenberger equations (provided ĝ is a solution), it follows
that −i~vF · ∇C = 0, i.e. the scalar C is necessarily a constant along a straight line orientated
parallel to the Fermi velocity vF . But C could still be a function of the form C = C(r∧vF ; pF , iεn).
The normalization condition Eq. (3.3) fixes C such that ĝ2 = −π2 · 1̂ for all straight lines orientated
parallel to vF , and this for all Fermi momenta pF on the Fermi surface and also for all Matsubara
frequency iεn. The particular value C = −π2 is chosen in order to achieve consistency with the
functional form of the quasiclassical propagator in the bulk.
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In thermal equilibrium the pair potential ∆(r,pF ), the electrical current J(r) associated with a
(stationary) flow of quasiparticles, the local density of states N(r, E), the Gibbs free energy GS of
the superconducting state for weak coupling [Bardeen et al. (1969)], and other observables may be
directly calculated using the quasiclassical propagator:

∆(r,pF ) =

∫

FS

dp′FNFS(p′F )V (pF ,p
′
F ) ·KBT

∑

|εn|<ωc

f(r; p′F , iεn), (3.10)

J(r) =
KB

~
T
∑

εn

∫

FS

dp′FN(p′F )v′Fg(r; p′F , iεn), (3.11)

N(r, E) = − 1

π

∫

FS

dp′FN(p′F )Im(r; p′F , iεn → E + i0+), (3.12)

Gs(T ) =

∫
dr




−2T ·
∫∞
−∞ dEN(r, E) · ln(e

E
2T + e

−E
2T )

+
∫
FS
dpF

∫
FS
dp′F∆†(r,pF ) ◦ (V −1)pF ,p′F ◦∆(r,p′F )

+ 1
8π

(∇∧ A(r)− Bext(r))2


 . (3.13)

In these expressions the function NFS(pF ) denotes the (angle resolved) density of states in the
normal phase at the Fermi level. This function typically enters as a weight function into Fermi
surface integrals (FS denotes the Fermi surface) of the Eilenberger propagator. In the isotropic case
NFS(pF ) simplifies to the usual constant N(0).

The calculation of Fermi surface integrals of the Eilenberger propagator becomes comparatively
simple in the bulk, where the pair potential, ∆(pF ), is independent on position r, and where the
quasiclassical propagator assumes the form:

ĝ(pF , iεn) =
−π√

ε2
n + |∆(pF )|2

(
iεn −∆(pF )

∆(pF )† −iεn

)
. (3.14)

A considerably more complicated problem is posed when the pair potential depends on position r,
for instance near a surface, in the vicinity of an implanted impurity or ion, or around a flux line in a
type-II superconductor.

Usually the solution ĝ(r; pF , iεn) of the Eilenberger equations must be found numerically. But
the task is more difficult than just solving a differential equation. To determine the pair potential
∆(r,pF ) and the magnetic field B(r) = ∇ × A(r) from the (magnetostatic) Maxwell Equation,
∇ × B(r) = 4π

c
J(r), one needs to solve a (nonlinear) selfconsistency problem, since J(r) and

∆(r,pF ) depend themselves on ĝ(r; pF , iεn).

Eilenberger equations along a characteristic line

First a layered material assuming normal axis parallel to ĉ was considered, for example, a Fermi ve-
locity vF that is orientated predominantly within the ab-plane (Fermi circle). Let the triade {â, b̂, ĉ}
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span an orthonormal basis in the λab frame, while θ denotes the angle the Fermi velocity vF makes
with the â-axis. Clearly, along a straight line

r(x) = xv̂ + yû ≡ (3.15)
≡ ra(x)â + rb(x)b̂, (3.16)

−∞ < x <∞
with v̂ and û denoting unit vectors (orientated parallel and orthogonal to vF , respectively),

v̂ = cos(θ)â + sin(θ)b̂, (3.17)
û = − sin(θ)â + cos(θ)b̂, (3.18)

the directional derivative vF · ∇ in the Eilenberger Equation Eq. (3.2) is equivalent to an ordinary
derivative:

~vF · ∇ĝ(r; pF , iεn) = ~vF
∂

∂x
ĝ[r(x); pF , iεn]. (3.19)

The θ-dependent parameter y associated with such a characteristic line r(x) (see Eq. (3.15)) has the
natural meaning of an impact parameter. The straight line r(x) intersects with a fixed position point

r = ra(x)â + rb(x)b̂, (3.20)

where the solution ĝ(r; pF , iεn) is sought at the particular parameter value x = xP . Introducing
polar coordinates,

ra + irb =
√
r2
a + ir2

b · eiφ, (3.21)

it is evident that

ra(x) + irb(x) = (x+ iy)eiθ, (3.22)

and

xP + iy =
√
r2
a + ir2

b · ei(φ−θ). (3.23)

The extension to 3-dimensions is straightforward. For instance, for a spherical Fermi surface the
unit vectors v̂ and û are parametrised by two angles, the azimutal angle θ ∈ [0, 2π) and the polar
angle χ ∈ [0, π), respectively:

v̂ = sin(χ)[cos(θ)â + sin(θ)b̂] + cos(χ)ĉ, (3.24)

û = sin(χ)[− sin(θ)â + cos(θ)b̂] =
∂

∂θ
v̂. (3.25)

Again, along a straight line, r(x) = xv̂ + yû + zv̂ ∧ û, the directional derivative in the Eilenberger
equations becomes just an ordinary derivative. Making the identification r ≡ raâ+rbb̂+rcĉ = r(xP )
explicit expressions for xP and both ’impact’ parameters y and z in terms of θ, χ and the cartesian
coordinates ra, rb, rc of the fixed point r in position space are easily derived.

Finally, the notation is simplified by dropping the functional dependence of ∆, A and ĝ on arguments
that stay constant as x varies from −∞ to∞:

∆(x) = ∆[r(x),pF ], (3.26)

iε̃n(x) = iεn + vF ·
e

c
A[r(x)], (3.27)

ĝ(x) = ĝ[r(x); pF , iεn]. (3.28)
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Riccati parametrization of Eilenberger propagator

Any traceless 2× 2-matrix may be expanded into the basis

K̂3 =
1

2
τ̂3, (3.29)

K̂± = − i
2
· (τ̂1 ± iτ̂2), (3.30)

(τ̂1, τ̂2, and τ̂3 are standard 2× 2-Pauli matrices). It should be noted that

[K̂+, K̂−] = −2K̂3, (3.31)

[K̂3, K̂±] = ±K̂±. (3.32)

The Eilenberger equations may then be rewritten along a characteristic line r(x) orientated parallel
to the Fermi velocity vF in the form:

~vF
∂

∂x
ĝ(x) = [−2ε̃n(x)K̂3 + ∆(x)K̂+ −∆†(x)K̂−, ĝ(x)]. (3.33)

The following 2 × 2 system of ordinary differential equations for an auxiliary propagator Ŷ (x)
(fundamental system) was considered:

~vF
∂

∂x
Ŷ (x) = (−2ε̃n(x)K̂3 + ∆(x)K̂+ −∆†(x)K̂−)Ŷ (x), (3.34)

Ŷ (0) = Ŷ0. (3.35)

The initial values for Ŷ (x) at x = 0 may be prescribed in terms of a (yet unknown) constant
2 × 2 matrix Ŷ0 of rank 2. The physical propagator ĝ can be reconstructed, the one that solves the
Eilenberger equations and respects the normalization condition, ĝ(x) · ĝ(x) = −π2 · 1̂, from the
fundamental system Ŷ (x):

ĝ = −πi · Ŷ (x) · 2K̂3 · Ŷ −1(x). (3.36)

By putting x at the end of the calculations to the particular value xP , the physical propagator (i.e.
the input into the self consistency equations) is recovered:

ĝ(xP ) = ĝ[r(xP ); pF , iεn] ≡ ĝ[r; pF , iεn]. (3.37)

The commutator in the Eilenberger equations implies the existence of several invariants along the
characteristic line r(x). For example, if the normalization condition Eq. (3.3) is fulfilled at a partic-
ular fixed point r(x0), it will be fulfilled everywhere along the line r(x). Likewise, the determinant
detĝ(x) and the trace trĝ(x) remain constant for −∞ < x <∞.

Next the 2× 2-matrix Ŷ (x) was parameterize in the form

Ŷ = exp(a+K̂+) exp(a3K̂3) exp(a−K̂−), (3.38)
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in terms of three unknown functions a3(x), a+(x) and a−(x) (Euler type ’angles’ in particle-hole
space). The physical propagator, Eq. (3.36), assumes then the form

ĝ(x) = −πi ·




[1− 2a−(x)a+(x)exp(−a3(x))] · 2K̂3

+a+(x) · [a−(x)a+(x)exp(−a3(x))− 1] · 2K̂+

+a−(x) · exp(−a3(x)) · 2K̂−


 . (3.39)

One finds from the differential equation for Ŷ (x) a set of three coupled differential equations for
a3(x), a+(x) and a−(x):

ȧ3 − 2a+ exp(−a3)ȧ− = − 2ε̃n
~vF

, (3.40)

exp(−a3)ȧ− = − ∆†

~vF
, (3.41)

ȧ+ − a+ȧ3 + a2
+ exp(−a3)ȧ− =

∆

~vF
. (3.42)

Here ȧ(x) ≡ ∂
∂x
a(x). It is readily seen that the three equations decouple, and that a− and a3 may be

expressed in terms of a+ only:

a3(x) = − 2

~vF
[ε̃nx+

∫ x

0

ds∆†(s)a+(s)] + a
(0)
3 , (3.43)

a−(x) = − 1

~vF
·
∫ x

0

ds∆†(s) exp[a3(s)] + a
(0)
− .

The differential equation that remains to be solved for a+(x) is a Riccati equation:

~vF
∂

∂x
a+(x) + [2ε̃n + ∆†(x)a+(x)]a+(x)−∆(x) = 0. (3.44)

However, the accurate numerical calculation of the nested integral for a−(x) is time consuming
(even on a fast computer). To overcome this difficulty one trick can be used. Let ĝA(x) and ĝB(x) be
two different solutions of the Eilenberger equations. Then not only the linear combination cAĝA(x)+
cB ĝB(x) is a solution, but also the products ĝB(x) · ĝA(x) and ĝA(x) · ĝB(x) are solutions as well.
For example, the linear combination ĝB(x) · ĝA(x)− ĝA(x) · ĝB(x) solves the Eilenberger equations
and fulfills the necessary condition trĝ(x) = 0.

Two particular zero trace solutions to the Eilenberger equations are:

ĝA(x) = ŶA(x) · K̂− · [ŶA(x)]−1, (3.45)
ĝB(x) = ŶB(x) · K̂+ · [ŶB(x)]−1, (3.46)

with

ŶA = exp(a+K̂+) exp(a3K̂3) exp(a−K̂−), (3.47)
ŶB = exp(b−K̂−) exp(b3K̂3) exp(b+K̂+), (3.48)

denoting two equivalent fundamental systems ŶA(x) and ŶB(x). The different order of factors in
the defining expressions for ŶA and ŶB serves the purpose to avoid the difficult terms a−(x) and
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b+(x) in the expressions for ĝA and ĝA. The evaluation of nested integrals, see Eq. (3.43), is then
not necessary.

The set of equations fulfilled by b3(x) and b±(x) is only slightly different from the one for a3(x),
a+(x) and a−(x):

ḃ3 + 2b− exp(b3)ḃ+ = − 2ε̃n
~vF

, (3.49)

exp(b3)ḃ+ =
∆

~vF
, (3.50)

ḃ− + b−ḃ3 + b2
− exp(b3)ḃ+ = − ∆†

~vF
. (3.51)

Here ḃ(x) ≡ ∂
∂x
b(x). It is readily seen that the three equations decouple, and that b+(x) and b3(x)

may be expressed in terms of b−(x) only :

b3(x) = − 2

~vF
[ε̃nx+

∫ x

0

ds∆(s)b−(s)] + b
(0)
3 , (3.52)

b+(x) =
1

~vF
·
∫ x

0

ds∆(s) exp[−b3(s)] + b
(0)
+ . (3.53)

The differential equation to be solved for b−(x) is also a Riccati equation:

~vF
∂

∂x
b−(x)− [2ε̃n + ∆(x)b−(x)]b−(x) + ∆†(x) = 0. (3.54)

Any solution of this differential equation is related to the Riccati equation Eq. (3.44) via a reci-
procity relation: If a+(x) solves Eq. (3.44), then

b−(x) = − 1

a+(x)
, (3.55)

solves Eq. (3.54).

From the defining equations, Eq. (3.45) and Eq. (3.46), the following explicit expressions were
found:

ĝA = exp(−a3)(K̂− − 2a+K̂3 + a2
+K̂+), (3.56)

ĝB = exp(b3)(K̂+ + 2b−K̂3 + b2
−K̂−). (3.57)

Note that the square of ĝA and ĝB vanishes identically,

ĝA · ĝA = 0̂ = ĝB · ĝB, (3.58)

because K̂2
± ≡ 0. For x→ ±∞ the propagators ĝA and ĝB ’explode’, i.e.

ĝA,B ∼ exp(± 2x

~vF

√
ε̃n + |∆|2). (3.59)
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On the other hand, the commutator [ĝA(x), ĝB(x)] remains bounded in the limit x→ ±∞. The ob-
servation that a bounded solution to the Eilenberger equations may be constructed using the commu-
tator of two unbounded solutions ĝA(x) and ĝB(x) is the well known ’explosion’ trick [Thuneberg
et al. (1982)].

The general (particle-hole symmetric) solution to the Eilenberger equations (3.2) may be given in
the form

ĝ(x) = cAĝA(x) + cB ĝB(x) + [ĝA(x), ĝB(x)]. (3.60)

Here, cA and cB represent initial values, b3(0) and a3(0), to the functions b3(x) and a3(x), respec-
tively. Of course, in an unbounded region exploding solutions must be forbidden. Then the physical
propagator ĝ must be written, on either side of the turning point x = 0, as a superposition of a
decaying solution and a bounded solution:

ĝ(x) =

{
cB ĝB(x) + [ĝA(x), ĝB(x)] if x > 0

cAĝA(x) + [ĝA(x), ĝB(x)] if x < 0
. (3.61)

The square of ĝ(x) is in this case independent on the constants cA and cB:

ĝ(x) · ĝ(x) = [ĝA(x), ĝB(x)] · [ĝA(x), ĝB(x)] = −π2 · 1̂. (3.62)

It is not difficult to show, that cA = 0 = cB, provided the propagators ĝA(x) and ĝB(x) are continu-
ous at x = 0.

In fact, if the contrary was assumed: cA · cB 6= 0. Then the continuity of ĝ(x) at x = 0 leads to

cB ĝB(0+) + [ĝA(0+), ĝB(0+)] = ĝ(0) = cAĝA(0−) + [ĝA(0−), ĝB(0−)]. (3.63)

Both solutions, ĝA(x) and ĝB(x), are continuous at x = 0. Then it follows from Eq. (3.63):
cB ĝB(0) = cAĝA(0). This implies, in turn, a vanishing commutator, [ĝA(0), ĝB(0)] = 0, since
ĝB(0) and ĝA(0) become proportional. Also, the physical solution ĝ(0) at x = 0 must fulfill the
normalization condition, i.e. ĝ(0) · ĝ(0) = −π2 · 1̂. But ĝB(0) · ĝB(0) = 0̂ = ĝA(0) · ĝA(0) according
to Eqs. (3.58). This is a contradiction! Hence cA = 0 = cB.

The conclusion is that in an infinitely extended system the physical propagator ĝB(x) is completely
determined by the commutator of the ’exploding’ solutions:

ĝ(x) = [ĝA(x), ĝB(x)] = exp(b3 − a3) ·
[

1− (a+b−)2 2ia+(1 + a+b−)
−2ib−(1 + a+b−) −1 + (a+b−)2

]
. (3.64)

Then the normalization condition was check:

ĝ(x) · ĝ(x) = [ĝA(x), ĝB(x)] · [ĝA(x), ĝB(x)] = (3.65)
= [g3(x) · g3(x) + g+(x) · g−(x)] · 1̂ =

= [1 + a+(x)b−(x)]4 · exp[2b3(x)− 2a3(x)] · 1̂ = c · 1̂.

Indeed, C is a constant multiple of unity:

∂

∂x

{
[1 + a+(x)b−(x)]4 · exp[2b3(x)− 2a3(x)]

}
= 0. (3.66)
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From the normalization condition, C = −π2, there follows for all x (up to a sign ± that is chosen
to coincide with the bulk propagator):

exp[b3(x)− a3(x)] =
−πi

[1 + a+(x)b−(x)]2
. (3.67)

Then the Eilenberger propagator may be parameterized in the form:

ĝ(x) =
−πi

1 + a(x) · b(x)
·
[

1− a(x) · b(x) 2i · a(x)
−2i · b(x) −1 + a(x) · b(x)

]
. (3.68)

Here and in the following were used notation b−(x) ≡ b(x) and a+(x) ≡ a(x), since the other
functions a−(x), a3(x) and b+(x), b3(x) are obsolete for the parametrization of the Eilenberger
propagator. It is remarkable that the solution to the Eilenberger equations (3.2) may be given a
representation where it depends just on the solution of an initial value problem to a scalar differential
equation of the Riccati type [Schopohl and Maki (1995)].

To integrate the Riccati equations, (3.44) and (3.54), in a stable manner suitable initial values for
the functions b(x) and a(x) are needed. For iεn situated in the upper half of the complex plane the
function a(x) may be found in a stable manner integrating Eq. (3.44) as an initial value problem
from x = −∞ towards increasing x-values, while the function b(x) may be found integrating Eq.
(3.54) as an initial value problem from x = +∞ towards decreasing x-values. The initial values for
a(x) at x = −∞ and b(x) at x = +∞ are

a(−∞) =
∆(−∞)

εn +
√
ε2
n + |∆(−∞)|2

, (3.69)

b(+∞) =
∆†(+∞)

εn +
√
ε2
n + |∆(+∞)|2

, (3.70)

provided εn is in the upper half of the complex plane.

The differential equations to be solved are:

~vF
∂

∂x
a(x) + [2ε̃n + ∆†(x) · a(x)] · a(x)−∆(x) = 0, (3.71)

~vF
∂

∂x
b(x)− [2ε̃n + ∆(x) · b(x)] · b(x) + ∆†(x) = 0. (3.72)

Sometimes knowledge of just one of the functions, say a(x), along a line r(x) (for−∞ < x < +∞)
suffices to fix the other function, b(x), along the same line. An illustrative example is provided by a
single cylindrically symmetric vortex line, orientated parallel to ĉ, and centered at the origin of the
ab-plane, say at R = 0. Due to energetic reasons, of course, only a single quantum of circulation,
h

2m
, is attached to the vortex. The corresponding pair potential becomes along the straight line

r(x) = ra(x)â + rb(x)b̂ a function of x (and also of the impact parameter y) of the form:

∆(r(x),pF ) = F (
√
x2 + y2, θ) · x+ iy√

x2 + y2
· eiθ. (3.73)
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The prefactor F (
√
x2 + y2, θ) is a suitable ’form factor’ to shape the vortex core. It can be seen

from Eqs. (3.71) and (3.72) that in the presence of such a vortex line, b(x) is related to a(x) by
symmetry:

b(x) = −a(−x)e−2iθ. (3.74)

Using Eq. (3.68) it follows that the corresponding Eilenberger propagator ĝ for negative x is related
to the propagator for positive x by the relation:

ĝ(−x) = −eiθτ̂3 · τ̂2 · ĝ(x) · eiθτ̂3 . (3.75)

To determine the local density of states one needs the retarded and the advanced propagator of
the quasiclassical theory. Actually, in equilibrium, only the retarded (or advanced) propagator is
needed in the calculations, since both propagators are related to each other by complex conjugation.
A convenient numerical method for the calculation of the retarded propagator ĝ(ret)(r, θ, E) is to
replace the discrete Matsubara frequency iεn according to the prescription iεn → E + i0+, and to
solve the Riccati equations, Eqs. (3.71) and (3.72), as functions of the energy E and of the impact
parameters y and z.

If the denominator of the quasiclassical propagator, 1 +a(x) · b(x), becomes equal to zero at a point
r(x0) for a characteristic energy E = Eb, it vanishes indeed for all x along the trajectory r(x):

[1 + a(x) · b(x)] = exp[
1

~vF

∫ x

x0

ds(∆(s)b(s)−∆†(s)a(s))] · [1 + a(x0) · b(x0)]. (3.76)

A simple proof of this relation uses differentiation with respect to x, and Eqs. (3.71) and (3.72).
So, if the denominator 1 + a(x0) · b(x0) of the quasiclassical propagator Eq. (3.68), considered as a
function of energyE, displays a simple zero atE = Eb, this zero,Eb, has a natural interpretation as a
bound state energy, provided there exists a finite residue of the retarded propagator atE = Eb+i0

+.

To obtain the quasiclassical Green function, the Riccati equations (3.71) and (3.72) are solved by
the Fast Fourier Transform (FFT) method. Unlike the square vortex lattice studied in [Miranović
and Machida (2003)], we consider a triangular vortex lattice, for which the wave vector mesh is
transformed from square to hexagonal shape [Safonchik (2007)].



CHAPTER IV

Comments on the original publications

Paper 1. Quasiclassical Eilenberger approach to the vortex state in pnictide
superconductors

Magnetism in the FeAs stoichiometric compounds and its interplay with superconductivity in vortex
states was studied by solving self-consistently the Bogoliubov-de Gennes equations based on a two-
orbital model with including the on-site interactions between electrons in the two orbitals [Jiang
et al. (2009)]. It was revealed that for the parent compound, magnetism is caused by the strong
Hund’s coupling, and the Fermi-surface topology aids to select the spin-density-wave (SDW) pat-
tern. The superconducting order parameter with s± = ∆0 cos(kx) cos(ky) symmetry was found to
be the most favorable pairing for both the electron- and hole-doped cases while the local density of
states exhibits the characteristic of nodal gap for the former and full gap for the latter. In the vortex
state, the emergence of the field-induced SDW depends on the strength of the Hund’s coupling and
the Coulomb repulsions. The field-induced SDW gaps of the finite-energy contours on the electron-
and hole-pocket sides lead to the dual structures with one reflecting the SC pairing and the other
being related to the SDW order.

This model does not include the self-consistent calculation of the field distribution which is the aim
of this theses. The study of the full solution of the Bogoliubov-de Gennes equations is time consum-
ing [Atkinson and Sonier (2008)]. Therefore, a simplification of the model is needed. The current
theoretical opinion on the SC order parameter has converged on a nodeless s± order parameter that
changes sign between the electron (e) pockets and hole (h) pockets. This order parameter comes
out of both the strong- and the weak-coupling pictures of the iron-based superconductors [Mazin
et al. (2008); Chubukov et al. (2008); Stanev et al. (2008); Maier et al. (2009)] and owes its origin to
the pnictide Fermi surface (FS) topology of h pockets at the Γ and e pockets at the X (π, 0)/(0, π)
point of the unfolded Brillouin zone. The dominant scattering contributions originate from h pocket
scattering at Γ to e pockets at X , yielding the s± SC order parameter for the doped case and the
collinear antiferromagnetic phase in the undoped case.

In paper 1 we apply this s± two-band model to the vortex state and solve Eilenberger equations
self-consistently. We neglect antiferromagnetic ordering in the vortex core (these effects will be
discussed in the comments to paper 3) and small anisotropy of s± state in FS, i.e., cos(kx) and
cos(ky) are approximated by ±1 in different FS sheets. By fitting the calculated field distribution
to Eq. (1) we can find the cutoff parameter ξh. To do that we need the penetration depth λ(T )

33
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which was calculated in Ref. [Vorontsov et al. (2009)]. It scales as 1/
√
ρS(T ), where ρS(T ) is

the superfluid density. The latter is, up to a factor, the zero frequency value of the current-current
correlation function and can be written in the form [Choi and Muzikar (1989)],

ρS(T )

ρS0

= πT
∑

n

∆̃2
n

(∆̃2
n + ω̃2

n)3/2
, (4.1)

where ρS0 is the superfluid density at T = 0 in the absence of impurities. The integrand in Eq. (4.1)
is defined in terms of impurity-renormalized Matsubara energy, ω̃n, and the superconducting vertex
∆̃n. In an s± superconductor the order parameters on the hole (c) and electron (f ) FS pockets are
related, ∆̃c

n = −∆̃f
n = ∆̃n and in Born approximation,

iω̃n = iωn − Γ0g
c(ω̃n, ∆̃n)− Γπg

f (ω̃n, ∆̃n), (4.2)

∆̃n = ∆ + Γ0f
c(ω̃n, ∆̃n) + Γπf

f (ω̃n, ∆̃n), (4.3)

where ωn = 2π(2n + 1), Γ0 = πniNF |u0|2, and Γπ = πniNF |uπ|2 are are the intra- and interband
impurity scattering rates, respectively (u0,π are impurity scattering amplitudes with correspondingly
small, or close to π = (π, π), momentum transfer), ∆ is the SC order parameter, and functions gc,f

and f c,f are ξ-integrated normal and anomalous Green′s functions for holes and electrons,

gc = gf =
−iω̃n√
ω̃2
n + ∆̃2

n

,

f c = −f f =
∆̃n√

ω̃2
n + ∆̃2

n

. (4.4)

Since the f function has opposite signs in two bands, Γπ has the same effect on anomalous self-
energy as the scattering on magnetic impurities in an ordinary s-wave superconductor. Following
the customary path one may introduce ηn = ω̃n/ωn and ∆̄n = ∆̃n/ηn that satisfy

ηn = 1 +
Γ0 + Γπ√
∆̄2
n + ω2

n

, (4.5)

∆̄n = ∆(T )− 2Γπ
∆̄n√

∆̄2
n + ω2

n

. (4.6)

The order parameter ∆(T ) is determined by the selfconsistent equation,

∆(T ) = V SC2πT
∑

0<ωn<ωc

f c(ω̃n, ∆̃n) = πT
∑

0<ωn<ωc

V SC∆̄n√
∆̄2
n + ω2

n

, (4.7)

where V SC is the s± coupling constant and ωc is the ultraviolet cutoff. Notice that the last expression
contains ∆̄n and bare Matsubara frequencies ωn. Eqs. (4.2)-(4.7) can be extended to the case when
the gaps on hole and electron FS have different magnitudes.



35

Figure 4.1: (a) Suppression of Tc by interband scattering in a two-band (∆,−∆) model; (b)
superfluid stiffness ρS(T ) in a dirty s± superconductor for fixed intraband impurity scattering
Γ0/2πTc0 = 3 and various interband scatterings ζ = Γπ/2πTc0; and (c) low-T plot of ρS vs T 2

showing near n=2 power law around onset of gapless regime [Vorontsov et al. (2009)].

Solutions of the system of Eqs. (4.6) and (4.7) give the values of ∆(T ) and ∆̄n. In particular, Eq.
(4.6) is an algebraic equation (valid at any T ) which expresses ∆̄n in terms of ∆. The latter itself
depends on Γπ because the self-consistent equation, Eq. (4.7), contains ∆̄n. Without interband
scattering (Γπ = 0) the ∆̄n = ∆ = ∆0 = 1.76Tc0 , where Tc0 and ∆0 are the BCS transition
temperature and the T = 0 gap in a clean superconductor. For Γπ 6= 0, ∆̄n differs from ∆, and ∆
differs from ∆0. Converted to real frequencies, Eqs. (4.6) and (4.7) yield a complex function ∆̄(ω).
For 2Γπ ≥ ∆, ∆̄(ω = 0) vanishes, i.e., superconductivity becomes gapless [Abrikosov and Gor’kov
(1961)]. At the critical point 2Γπ = ∆, ∆̄(ω) ∝ (−iω)2/3 at small ω, at larger Γπ, ∆̄(ω) = −i const
ω + O(ω2).

The results can be expressed using dimensionless parameter ζ = Γπ/2πTc0. For equal gap magni-
tudes and 2Γπ/∆ < 1, y = ∆/∆0 is the solution of y = exp[−πeγζ/y], where γ ≈ 0.577 is the
Euler constant [Skalski (1969)]. At a given T a gapless superconductivity emerges, when y becomes
smaller than 4ζeγ , i.e., for ζ > (1/4) exp[−(γ + π/4)] ≈ 0.064. The transition temperature obeys
[Choi and Muzikar (1989); Skalski (1969)]

ln(Tc/Tc0) = Ψ(1/2)−Ψ(1/2 + 2ζTc0/Tc), (4.8)

where Ψ(x) is the di-Gamma function (Fig. 4.1 (a)). Tc decreases with ζ and vanishes at ζcr =
e−γ/8 ≈ 0.07 (i.e. Γπ/∆0 = 1/4). For 0.064 < ζ < ζcr, ∆̄(T, ω) ∝ iω for small ω, including T =
0, and thus even at T = 0 zero-energy density of states becomes finite and gapless superconductivity
arises (at the onset, at ζ = 0.064, Tc ≈ 0.22Tc0, and ∆(0) = 0.46∆0). The ratio 2∆(0)/Tc increases
with ζ and reaches 7.2 at the onset of the gapless behavior and 8.88 at ζ = ζcr [Skalski (1969)]. A
large value of 2∆(0)/Tc is often attributed to strong coupling [Scalapino (1969)] but, can also be
due to impurities.
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Figure 4.2: The fits to experimental data for BaFe2As2 [Martin et al. (2009)]. Only low-T data
were used as at higher T the experimental λ(T ) may be influenced by sample geometry and fluc-
tuations. (a) The data for electron-doped BaFe2As2 for optimally doped (x = 7.4%) and over-
doped (x = 10%) samples can be fitted reasonably well using (∆,−∆)-model; (b) the fit of data
for two Co-doped (x = 7.3%, 10%) and one K-doped samples with a phenomenological exten-
sion of the presented two-band model to the case of four gaps. The gaps are (∆,−∆; ∆,−∆h)
with ∆h = ∆/3,∆/2. In this case the pairbreaking parameter does not need to be large. The
fitting values of T = 0 penetration length are large, but for x = 7.4% sample a fit with inclusion
of Fermi-liquid effects that reduces this parameter to λFL(0) ≡ λ0 ∼ 190 nm in agreement with
experimental values is shown [Vorontsov et al. (2009)] .

In terms of auxiliary ∆̄n and ηn,

ρS(T )

ρS0

= πT
∑

ωn

∆̄2
n

ηn(∆̄2
n + ω̄2

n)3/2
. (4.9)

In general, the value of ρS(T = 0) and the functional form of ρS(T ) depend on both Γπ and Γ0

because Γ0 is explicitly present in Eq. (4.9) via ηn given by Eq. (4.5). Impurity scattering amplitude
is a decreasing function of momentum transfer, and, in general, Γ0 � Γπ, or Γ0 � ∆ (in the case
of Γπ ∼ ∆) and

ρS(T ) ≈ BT
∑

ωn

∆̄2
n

∆̄2
n + ω̄2

n

, (4.10)

where B = πρS0/(Γ0 + Γπ). As can be seen, Γ0 only affects the overall factor B, and all nontrivial
T dependence comes from frequency and temperature dependence of ∆̄n.

Several results for ρS(T ) given by Eq. (4.10) can be obtained analytically. First, near Tc, ρS(T ) ∝
∆2(T ) ∝ Tc − T , i.e.,

ρS
ρS(T = 0)

= B(ζ)(1− T

Tc
), (4.11)
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where ρS(T = 0) is the actual zero-temperature value of ρS . In a clean BCS superconductor B = 2.
In the present dirty case (Γ0 � Tc,Γπ) B(ζ) is nonmonotonic in ζ and equals B(ζ → 0) ≈ 2.65,
B(ζ = 0.064) ≈ 1.67, and B(ζ ≈ ζcr) = 2.03. This implies that a linear extrapolation of ρS
from T ≈ Tc to T = 0 still yields a value significantly larger than the actual ρS(0). Secondly, at
ζ < 0.064 the T dependence of ρs(T ) remains exponential at low T , ρs(T ) ∝ e−∆̄(ω=0)/T with
∆̄(ω = 0) = ∆0[1 − (ζ/ζcr)

2/3]3/2, but at the onset of gapless superconductivity, when ∆̄(ω) ∝
(−iω)2/3, ρs(T ) ∝ T 5/3 was obtained. Finally, in the gapless regime 0.064 < ζ < ζcr, ρs(T ) ∝ T 2

was found at low T .

To obtain ρS(T ) at arbitrary T , the gap equation, Eq. (4.7), was numerically selfconsistently solved
together with equations for the impurity self-energies, Eqs. (4.2) and (4.3), and the Green′s func-
tions, Eq. (4.4); found ∆(T ) and ω̃n, substituted them into Eq. (4.1), and obtained ρS(T ). Fig. 4.1
contains the results for several values of ζ .

Once the interband impurity scattering increases, the range of exponential behavior of ρS(T ) pro-
gressively shrinks to smaller T (Fig. 4.1 (b)). Outside this low T range, the temperature dependence
of ρS(T ) strongly resembles T 2 behavior (see Fig. 4.1 (c)). The T 5/3 behavior at the onset of gapless
superconductivity is difficult to see numerically as this power is confined to very low T , while for
slightly larger T the behavior is again close to T 2. Overall, the behavior of the superfluid density in
a relatively wide range of ζ is a power law T n with n reasonably close to 2 down to quite low T .

Judging by the value of 2∆(0)/Tc [Malone et al. (2009)] , the material with the least amount of
interband impurity scattering is SmFeAsO1−xFx, where Tc ∼ 55K. In this compound it is difficult
to expect a large ζ since the observed exponential BCS-type behavior of ρS(T ) at small T [Malone
et al. (2009)] is consistent with extended s-wave gap and weak interband impurity scattering [Nagai
et al. (2008)].

The data for electron- and hole-doped BaFe2As2 [Martin et al. (2009)] are fitted in Figs. 4.2 (a)
and 4.1 (b). The measured ρS(T ) scales approximately as T 2, which is similar to behavior shown in
Fig. 4.1 (c). Left panel of Figs. 4.2 is the fit assuming that the gaps on two electron FSs and two hole
FSs are ∆ and−∆; right panel is a more realistic fit assuming, guided by ARPES data [Evtushinsky
et al. (2009a)], that the gaps on the inner hole and the two electron FS are the same, but the gap on
the outer hole FS is two to three times smaller.

The values ζ = 0.04− 0.06 used in these fits correspond to Tc/Tc0 ∼ 0.6− 0.3 which is consistent
with the values of Tc ∼ 10 − 30K in this material in the assumption that Tc0 in the clean case is
roughly the same as in SmFeAsO. The curves shown in Figs. 4.2 (a) and 4.2 (b) represent the best
fits, but it is not needed to adjust ζ to get a T 2 behavior - it persists over a range of ζ (see Fig. 4.1
(c)). However, λ0 used in the fits is rather large compared with the experimentally obtained values
∼ 200 − 300 nm [Martin et al. (2009)]. This discrepancy may be due to the omission of Fermi-
liquid effects. The qualitative argument, supported by numerical estimates, is as follows. Assume,
by analogy with the cuprates, that fermion-fermion interactions renormalize ω → ωZω, where Zω
is a decaying function of frequency, and further assume that Zω ≈ 1 at energies comparable to ∆
so that it does not affect the relation between ∆(0) and Tc. Then, the low-temperature dependence
f(T/Tc) of the penetration length is rescaled ∆λ/λ0 ∼ f(Z0T/Tc) and the value of the fitting
parameter λ0 ≡ λFL(0) decreases compared to what is obtained without Fermi-liquid effects. This
Z factor is particularly relevant in heavily underdoped regime where it increases because of spin-
density wave (SDW) fluctuations. This is the reason why it is needed to use very large λ0 = 2800
nm to fit the data. At larger dopings, Z is smaller, but according to ARPES, Z ∼ 2 in optimally
doped Ba1−xKxFe2As2. For f ∼ T 2, from the analytic reasoning the effective λ0 four times smaller
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Figure 4.3: (a) The calculated temperature dependence of the upper critical field Bc2 at in-
terband scattering Γπ = 0 with different values of intraband scattering values Γ0. (b) The
calculated temperature dependence of Bc2 at intraband scattering rate Γ0 = 3 with different
values of interband scattering Γπ.

than λ(0) was chosen, reducing it to λ0 ∼ 150 − 400 nm, in the range of what is experimentally
extracted. The numerical analysis confirms this, and for Z = 2 a fit for one of the electron-doped
samples is shown, which gives a reasonable value for the zero-temperature penetration length. It
can be concluded that the penetration depth data for 122 material can be fitted by a model of a dirty
s± superconductor.

To study the obtained ξh(B, T,Γ0,Γπ) dependences it is convenient to use the normalization to the
GL coherence length ξc2 determined from the upper critical field Bc2 = Φ0/2πξ

2
c2 (in our units

ξc2 = 1/
√
Bc2). Using the similarity to the model of spin-flip superconductors, Bc2(T ) for two

dimensional s± pairing can be determined from the equations [Ovchinnikov and Kresin (1995)]

ln(
Tc0
T

) = 2πT
∑

n≥0

[ω−1
n − 2D1(ωn, Bc2)], (4.12)

where

D1(ωn, Bc2) = J(ωn, Bc2) × [1− 2(Γ0 − Γπ)J(ωn, Bc2)]−1, (4.13)

J(ωn, Bc2) = (
4

πBc2

)1/2 ×
∫ ∞

0

dy exp (−y) arctan [
(Bc2y)1/2

α
], (4.14)

where α = 2(ωn + Γ0 + Γπ).

Fig. 4.3 shows Bc2(T ) dependences at (a) Γπ = 0, Γ0 = 0, 1, 2, 3, 4, 5, 6 and (b) Γ0 = 3, Γπ =
0.01, 0.02, 0.03, 0.04, 0.05, 0.06 calculated from Eqs. (4.12-4.14). In Fig. 4.3 one can see the differ-
ent influence of the intraband and interband scattering on Bc2(T ) dependence. The Bc2(T ) curve
increases with Γ0 (ξc2 decreases with Γ0), but Γπ results in decreasing Bc2(T ) (increasing of ξc2).

Paper 2. Cutoff parameter of the field distribution in the mixed state of iron
pnictides with s± and s++ pairing symmetries

Core structure of the vortices in iron pnictides has been studied in paper 2 solving Eilenberger
equations numerically. We consider s± symmetry (this mechanism is described in comments to
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paper 1) and s++ symmetry without sign reversal in the FS, which is discussed below. Different
impurity scattering rate dependences of cutoff parameter ξh have been found for these cases. In non-
stoichiometric case, when intraband impurity scattering (Γ0) is much larger than interband impurity
scattering rate (Γπ) the ξh/ξc2 ratio is less in s± symmetry. When Γ0 ≈ Γπ (stoichiometric case)
opposite tendencies has been found, in s± symmetry the ξh/ξc2 goes upward from the "clean" case
curve (Γ0 = Γπ = 0) while it goes downward in s++ case.

Regardless of the beauty of the s± mechanism, there are several serious discrepancies for the s±-
wave state. For example, although the s±-wave state is expected to be very fragile against impuri-
ties due to the interband scattering [Onari and Kontani (2009)], the superconducting (SC) state is
remarkably robust against impurities [Kawabata et al. (2008)] and α-particle irradiation [Tarantini
et al. (2010)]. Moreover, clear ’resonancelike’ peak structure observed by neutron scattering mea-
surements [Christianson et al. (2008)] is reproduced by considering the strong correlation effect via
quasiparticle damping, without the necessity of sign reversal in the SC gap [Onari et al. (2010)].
These facts indicate that a conventional s-wave state without sign reversal (s++-wave state) is also
a possible candidate for iron pnictides. Isotropic energy gaps found in angular-resolved photoemis-
sion spectroscopy [Borisenko et al. (2010)] of LiFeAs implies s± pairing state.

Then, a natural question is whether the electron-phonon (e-ph) interaction is important or not. Al-
though first principle study predicts a small e-ph coupling constant λ ∼ 0.21 [Boeri et al. (2008)],
several experiments indicate the significance of the e-ph interaction. For example, the structural
transition temperature TS is higher than the Néel temperature in underdoped compounds, although
the structural distortion is small. Also, prominent softening of the shear modulus is observed to-
wards TS or Tc in Ba122 [Fernandes et al. (2010)]. Raman spectroscopy [Rahlenbeck et al. (2009)]
also indicates larger e-ph interaction.

Interestingly, there are several ’high-Tc’ compounds with nodal superconducting gap structure, like
BaFe2(As1−xPx)2 [Hashimoto et al. (2010)] and some 122 systems [Martin et al. (2010)]. Although
the nodal s±-wave state can appear in the spin-fluctuation scenario due to the competition between
the dominant Q = (π, 0) and subdominant fluctuations [Kuroki et al. (2008); Maier et al. (2009)],
the Tc is predicted to be very low. Thus, it is a crucial challenge to explain the rich variety of the
gap structure in high-Tc compounds.

The five-orbital Hubbard-Holstein (HH) model for iron pnictides, considering the e-ph interaction
by Fe-ion vibrations was introduced in Ref. [Kontani and Onari (2010)]. A relatively small e-ph
interaction (λ . 0.3) induces the large orbital fluctuations, which can realize the high-Tc s++-wave
SC state. Moreover, the orbital fluctuations are accelerated by Coulomb interaction. In the presence
of impurities, the s++-wave state dominates the s±-wave state for a wide range of parameters.

First, the e-ph iteration term was derived, considering only Einstein-type Fe-ion oscillations for
simplicity. The d orbitals in the XY Z coordinate was described in Ref. [Kuroki et al. (2008)],
which is rotated by π/4 from the xyz coordinate given by the Fe-site square lattice: the Z2, XZ,
Y Z, X2 − Y 2, and XY orbitals as 1, 2, 3, 4, and 5, respectively, can be written [Kuroki et al.
(2008)]. The e-ph matrix elements due to the Coulomb potential was calculated, by following Ref.
[Yada and Kontani (2008)]. The potential for a d electron at r (with the origin at the center of
the Fe ion) due to the surrounding As3−-ion tetrahedron is U±(r; u) = 3e2

∑4
s=1 |r + u − R±s |−1,

where u is the displacement vector of the Fe ion, and R±s is the location of the surrounding As ions;√
3R+

s /RFe−As = (±
√

2, 0, 1) and (0,±
√

2,−1) for Fe(1), and
√

3R−s /RFe−As = (±
√

2, 0,−1)
and (0,±

√
2, 1) for Fe(2) in the unit cell with two Fe-sites. Note that uX,Y and uZ belong to Eg

and B1g phonons [Rahlenbeck et al. (2009)]. The u linear term of U±, which gives the e-ph in-
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Figure 4.4: (a) FSs in the unfolded Brillouin zone. (b) Phonon-mediated electron-electron
interaction. (c) A bubble-type diagram that induces the critical orbital fluctuations between
(2,4) orbitals. (d) A ladder-type diagram that is ignorable when ωD � EF [Kontani and Onari
(2010)].

teraction, is obtained as V ±(r; u) = ±A[2XZuX − 2Y ZuY + (X2 − Y 2)uZ ] + O(r4), where
A = 30e2/

√
3R4

Fe−As. Then, its nonzero matrix elements are given as

〈2|V |4〉 = ±2a2AuX/7,

〈2|V |2〉 = ±2a2AuZ/7,

〈3|V |4〉 = ±2a2AuY /7,

〈3|V |3〉 = ±2a2AuZ/7, (4.15)

where a is the radius of the d orbital. Here, 〈i|V |j〉 is considered only for orbitals i, j = 2 − 4
that compose the Fermi surfaces (FSs) in Fig. 4.4 (a) [Kuroki et al. (2008)]. The obtained e-ph
interaction does not couple to the charge density since 〈i|V |j〉 is traceless. Thus, the Thomas-
Fermi screening for the coefficient A is absent. The local phonon Green function is D(ωl) =
2ū2

0ωD/(ω
2
l + ω2

D), which is given by the Fourier transformation of 〈Tτuµ(τ)uµ(0)〉(µ = X, Y, Z).
Here, ū0 =

√
~/2MFeωD is the position uncertainty of Fe ions, ωD is the phonon frequency, and

ωl = 2πlT is the boson Matsubara frequency. Then, for both Fe(1) and Fe(2), the phonon-mediated
interaction is given by

V24,42 = V34,43 = −(2Aa2/7)2D(ωl) ≡ −g(ωl),

V22,22 = V33,33 = −V22,33 = −g(ωl), (4.16)

as shown in Fig. 4.4 (b). Note that Vll′,mm′ is symmetric with respect to l↔ l′,m↔ m′, and (ll)′ ↔
(mm)′. In the case when RFe−As ≈ 2.4Å, a ≈ 0.77Å (Shannon crystal radius of Fe2+), and ωD ≈
0.018eV , the g(0) ≈ 0.4eV . The e-ph coupling was neglected due to d− p hybridization [Yada and
Kontani (2008)] considering the modest d− p hybridization in iron pnictides [Singh (2009)]. Thus,



41

Figure 4.5: (a) Obtained U − g(0) phase diagram. (b) Obtained χc24,42(q, 0) and χc22,22(q, 0)

for αc = 0.97 [Kontani and Onari (2010)].

the multiorbital Hubbard-Holstein model for iron pnictides was obtained by combining Eq. (4.16)
with the onsite Coulomb interaction; the intra- (inter-) orbital Coulomb U (U ′), Hund coupling J ,
and pair hopping J ′.

In this part, the rich electronic properties realized in the multiorbital Hubbard-Holstein model is
studied [Capone et al. (2004)]. The irreducible susceptibility in the five-orbital model is given by
χ0
ll′,mm′(q) = −(T/N)

∑
kG

0
lm(k+ q)G0

m′l′(k), where Ĝ0(k) = [iωn + µ− Ĥ0
k ]−1 is the d-electron

Green function in the orbital basis: q = (q, ωl), k = (k, ωn) and ωn = (2n + 1)πT is the fermion
Matsubara frequency, µ is the chemical potential, Ĥ0

k is the kinetic term given in Ref. [Kuroki et al.
(2008)]. Then, the susceptibilities for spin and charge sectors in the random phase approximation
(RPA) are given as [Takimoto et al. (2002)]

χ̂s(c)(q) = χ̂0(q)[1− Γ̂s(c)χ̂0(q)]−1. (4.17)

For the spin channel, Γsl1l2l3l4 = U,U ′, J and J ′ for l1 = l2 = l3 = l4, l1 = l3 6= l2 = l4,
l1 = l2 6= l3 = l4 and l1 = l4 6= l2 = l3, respectively [Kuroki et al. (2008)]. For the charge channel,
Γ̂c = −Ĉ − 2V̂ (ωl), where V̂ (ωl) is given in Eq. (4.16), and Cl1l2l3l4 = U,−U ′ + 2J, 2U ′ − J and
J ′ for l1 = l2 = l3 = l4, l1 = l3 6= l2 = l4, l1 = l2 6= l3 = l4 and l1 = l4 6= l2 = l3, respectively
[Kuroki et al. (2008)]. Fig. 4.4 (c) shows one of the bubble diagrams for the (2,4)-channel due to
the ’negative exchange coupling V24,42’ that leads to a critical enhancement of χ̂c(q) (the effect of
Coulomb interaction on χc24,42(q, 0) is not large if Cll′,ll′ + Cll′,l′l = −U ′ + J + J ′ is small). The
ladder diagrams given by V̂ (ωl) in Fig. 4.4 (d) were neglected since ωD � Wband [Boeri et al.
(2008); Rahlenbeck et al. (2009)]. ωD = 0.02eV , U ′/U = 0.69, J/U = 0, 16, and J = J ′ were
chosen and the electron number n = 6.1 (10% electron doping) was fixed; the density of states per
spin is N(0) = 0.66eV −1. Numerical results are not sensitive to these parameters, 1282k meshes,
and 512 Matsubara frequencies were used. Hereafter, the unit of energy is eV.
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Fig. 4.5 (a) shows the obtained U−g(0) phase diagram. αs(c) is the spin (charge) Stoner factor, given
by the maximum eigenvalue of Γ̂s(c)χ̂0(q, 0). Then, the enhancement factor for χs(c) is (1−αs(c))−1,
and αs(c) = 1 gives the spin (orbital) order boundary. Because of the nesting of the FSs, the AFM
fluctuation with Q ≈ (π, 0) develops as U increases, and s±-wave state is realized for αs . 1
[Kuroki et al. (2008)]. In contrast, the orbital fluctuations develop as g(0) increases. For U = 1, the
critical value gcr(0) is 0.4 for αc = 1, and the critical e-ph coupling constant is λcr ≡ gcr(0)N(0) =
0.26 (λi for orbital i = 2 − 4 is λi ≈ −Σ4

j=2Nj(0)Vij,ij(0) = N(0)g(0), where Nj(0) is the partial
DOS, then, λ ≈ N(0)g(0) in the band-diagonal basis). Since the obtained λcr is close to λ given by
the first principle study [Boeri et al. (2008)], strong orbital fluctuations are expected to occur in iron
pnictides. At fixed U , λcr decreases as J/U approaces zero.

Figs. 4.5 (b) and (c) show the obtained χcll′,mm′(q, 0) for (ll′,mm′) = (24, 42) and (22,22), respec-
tively, for U = 1.14 and αc = 0.97 (g(0) = 0.40): Both of them are the most divergent channels
for electron-doped cases. The enhancement of (24, 42)-channel is induced by the multiple scatter-
ing by V24,42. The largest broad peak around q = (0, 0) originates from the forward scattering in
the electron-pocket (FS3 or FS4) composed of 2-4 orbitals (FS1,2 are composed of only 2 and 3
orbitals.) These ferro-orbital fluctuations would induce the softening of shear modulus [Fernandes
et al. (2010)], and also reinforce the ferro-orbital ordered state below TS [Shimojima et al. (2010)]
that had been explained by different theoretical approaches [Krüger et al. (2009)]: The divergence
of χc24,42 (χc34,43) pushes the 2,4 (3,4) orbitals away from the Fermi level, and the Fermi surfaces
in the ordered state will be formed only by 3 (2) orbital, consistently with Ref. [Shimojima et al.
(2010)]. The lower peak around Q = (π, 0) comes from the nesting between hole- and electron-
pockets. Also, the enhancement of (22, 22)-channel for Q = (π, 0) is induced by the nesting via
multiple scattering by V22,22 and V22,33. In contrast, the charge susceptibility

∑
l,m χ

c
ll,mm(q, 0) is

finite even if αc → 1 since χc22,33 ≈ −χc22,22.

The large orbital fluctuations, which are not considered in the first principle study of Tc [Boeri
et al. (2008)], can induce the s++-wave state when g(0) > 0. The following linearized Eliashberg
equation using the RPA [Kuroki et al. (2008)] was analyzed, by taking both the spin and orbital
fluctuations into account on the same footing:

λE∆ll′(k) =
T

N

∑

k′,mi

Wlm1,m4l′(k − k′)Gm1m2(k
′)∆m2m3(k

′)Gm4m3(−k′), (4.18)

where Ŵ (q) = −3
2
Γ̂sχ̂s(q)Γ̂s + 1

2
Γ̂cχ̂c(q)Γ̂c − 1

2
(Γ̂s − Γ̂c) for singlet states. The eigenvalue λE

increases as T → 0, and it reaches unity at T = Tc. In addition, the impurity effect was taken
into consideration since many iron pnictides show relatively large residual resistivity. Here, the
Fe-site substitution was assumed, where the impurity potential I is diagonal in the d-orbital basis
[Onari and Kontani (2009)]. Then, the T matrix in the normal state is given by T̂ (εn) = [I−1 −
N−1ΣkĜ(k, εn)]−1 in the orbital basis [Onari and Kontani (2009)]. Then, the normal self-energy is∑̂n

(εn) = nimpT̂ (εn), where nimp is the impurity concentration. Also, the linearized anomalous
self-energy is given by

Σa
ll′(εn) =

nimp
N

∑

k,mi

Tlm1(εn)Gm1m2(k, εn)∆m2m3(k, εn)× (4.19)

×Gm4m3(−k,−εn)Tl′m4(−εn).

Then, the Eliashberg equation for nimp 6= 0 is given by using the full Green function Ĝ(k) =

[iεn + µ − Ĥ0
k − Σ̂n(εn)]−1 in Eqs. (4.18) and (4.19), and adding Σa

ll′(εn) to the right hand side of



43

Figure 4.6: nimp dependence of λE at αc = 0.98. For g(0) = 0 (s± state), λE at nimp = 0

decreases by 0.1 ∼ 0.15, since the ferro-orbital fluctuations enhance both the s++ and s± wave
states. Inset: αc dependence of λE [Kontani and Onari (2010)].

Eq. (4.18). Hereafter, the equation was solved at relatively high temperature T = 0.02 since the
number of k meshes (1282) is not enough for T < 0.02.

Fig. 4.6 shows the nimp dependence of λE at αc = 0.98, for U = 1.11, 1.14 and 1.18. Considering
large λE & 0.8 at T = 0.02, relatively high-Tc (. 0.02) is expected. For the smallest U (U = 1.11;
αs = 0.85) the nearly isotropic s++-wave state is realized; the obtained λE is almost independent
of nimp, indicating the absence of the impurity effect on the s++-wave state, as discussed in Ref.
[Onari and Kontani (2009)] (above Tc, λE slightly increases with nimp in conventional s-wave su-
perconductors, but never exceeds unity). For the largest U (U = 1.18; αs = 0.91), the s±-wave
state is realized at nimp = 0; λE decreases slowly as nimp increases from zero, whereas it saturates
for nimp ≥ 0.05, indicating the smooth crossover from s±- to s++-wave states due to the interband
impurity scattering. For U = 1.14 (αs = 0.88), the SC gap at nimp = 0 is a hybrid of s++ and s±;
only ∆FS2 is different in sign.

The inset of Fig. 4.6 shows λE for the s++-wave state in the presence of impurities: Since λE(αc =
0.98) - λE(αc = 0.9) is only ∼ 0.15 for each value of U , relatively large Tc for s++-wave
state is realized even if orbital fluctuations are moderate. The obtained λE is almost constant for
ωD = 0.02 − 0.1, suggesting the absence of isotope effect in the s++-wave state due to the strong
retardation effect [Yada and Kontani (2008)]. By the same reason, λE for the s++-wave state is
seldom changed if U = 3 is put in the Hartree-Fock term 1

2
(Γ̂s − Γ̂c) in W (q), indicating that the

Morel-Anderson pseudopotential almost saturates.

Fig. 4.7 shows the SC gap on the FSs in the band representation for (a) nimp = 0, (b) 0.03, and
(c) 0.08. They satisfy the condition N−1Σk,lm|∆lm(k)|2 = 1. The horizontal axis is the azimuth
angle for the k point with the origin at Γ (M) point for FS1,2 (FS4); θ = 0 corresponds to the kx



44 4. Comments on the original publications

Figure 4.7: SC gap functions for U = 1.18 as functions of θ at (a) nimp = 0, (b) 0.03, and (c)
0.08, respectively [Kontani and Onari (2010)].

direction. In case (a), the s± state with strong imbalance, |∆FS1|, |∆FS2| � ∆FS4, is realized, and
∆FS4 takes the largest value at θ = π/2, where the FS is mainly composed of orbital 4. In case
(c), the impurity-induced isotropic s++ state [Mishra et al. (2009)] with ∆FS1 ∼ ∆FS2 ∼ ∆FS4 is
realized, consistently with many ARPES measurements [Evtushinsky et al. (2009b)]. In case (b), ∆k

on FS1 is almost gapless. However, considering the kz dependence of the FSs, a (horizontal-type)
nodal structure is expected to appear on FS1,2. In real compounds with Tc ∼ 50K, the s± → s++

crossover should be induced by small residual resistivity ρimp ∼ 20µΩcm (nimp ∼ 0.01 for I = 1 ),
as estimated in Ref. [Onari and Kontani (2009)].

At nimp = 0, s±-wave state is realized in the RPA even if αs . αc, due to factor 3 in front of
1
2
Γ̂sχ̂sΓ̂s in W (q). For the same reason, however, reduction in αs (or increment of Ucr for αs = 1)

due to the ’selfenergy correction by U ’ is larger, which will be unfavorable for the s±-wave state.
Therefore, self-consistent calculation for the self-energy is required to discuss the value of αc,s and
the true pairing state.

Here, the location of real compounds in the αs−αc phase diagram in Fig. 4.5 (a) is discussed. Con-
sidering the weak T dependence of 1/T1T in electron-doped SC compounds [Nakai et al. (2010b)],
it is expected that they belong to the area αc � αs. Then, the s++-wave SC state will be realized
without (or very low density) impurities, like the case of U = 1.11 or 1.14 in Fig. 4.6. On the
other hand, impurity-induced s± → s++ crossover may be realized in BaFe2(As1−xPx)2 (undoped)
or (Ba1−xKx)Fe2As2 (hole-doped) SC compounds, where AFM fluctuations are rather strong.

The non-Fermi-liquid-like transport phenomena in iron pnictides is discussed. For example, the re-
sistivity is nearly linear in T , and the Hall coefficientRH increases at lower temperatures [Kawabata
et al. (2008); Kasahara et al. (2010)]. Although the forward scattering induced by ferro-orbital fluc-
tuations might be irrelevant, antiferro-orbital and AFM fluctuations with Q = (π, 0) are expected to
cause the anomalous transport properties, due to the current vertex correction [Kontani (2008)].

A mechanism of the s++-wave SC state induced by orbital fluctuations, due to the phonon-mediated
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electron-electron interaction, was proposed. Three orbitals (XZ, Y Z, and X2 − Y 2) are necessary
to lead the ferro-orbital fluctuations. The SC gap structure drastically changes depending on param-
eters αs, αc and nimp, consistent with the observed rich variety of the gap structure that is a salient
feature of iron pnictides. The orbital-fluctuation-mediated s++-wave state is also obtained for hole-
doped cases, although the antiferro-orbital fluctuations become stronger than the ferro-orbital ones.

The s-wave superconductivity induced by orbital fluctuations was discussed in Ref. [Takimoto
et al. (2002)] for U ′ > U ; this condition can be realized by including the A1g phonon [Yanagi et al.
(2010)]. In the present model, however, the A1g phonon is negligible since gcr(0) given by the A1g

phonon is much greater than gcr(0) ∼ 0.4 in Fig. 4.5 (a): The ferro-obtital fluctuations in Fig. 4.5
(b) originate from the negative exchange interaction caused by the Eg phonon, as shown in Fig. 4.4
(c).

Paper 3. Effects of the order parameter symmetry on the vortex core structure
in the iron pnictides

In paper 3 is found that ξh/ξc2 from (B/Bc2) dependence is nonuniversal, depending on the cho-
sen parameter set it can reside both below and above AGL curve. Such behavior is quite different
from that in s++ pairing symmetry where intraband and interband scattering rates act in similar
way and ξh/ξc2 decreases always with impurity scattering. It is found that intraband scattering
(Γ0) suppresses ξh/ξc2 leading to values much less than unit at high Γ0. The small value of ratio
ξh/ξc2 (∼ 0.27) which is comparable with our theoretical prediction, Fig. 1 in paper 3, was ob-
tained in µSR investigation of Co-doped BaFe2As2 [Sonier et al. (2011)]. The effects of interband
impurity scattering (Γπ) depend on the value of Γ0: at small Γ0 ξh/ξc2 increases with Γπ, but at
high Γ0 it decreases with Γπ. The effects of interband impurity scattering at moderate Γ0 depends
on the field range resulting in increasing of ξh/ξc2 at low fields, but suppressing it at high fields.
The ξh/ξc2(B/Bc2) calculations for parameters of doped BaFe2As2 compounds [Vorontsov et al.
(2009)], where Γ0 � Γπ, are done. These dependences demonstrate growing behavior defined by
Γ0 with values much less that one in whole field range, i.e. they are under the AGL curve of ξv.
It should be noted that substantial deviation from the magnetic field distribution of a nearly per-
fect vortex lattice by field-induced magnetic order and strong vortex-lattice disorder can be also
significant for iron-arsenic superconductors [Sonier et al. (2011)]. The influence of these effects to
transverse-field muon spin rotation (TF µSR) is described below.

TF µSR is routinely used to determine the magnetic penetration depth λ of type-II superconductors
in the vortex state, which provides indirect information on the energy gap structure [Sonier et al.
(2000)]. The magnetic field distribution n(B) in the sample is measured by detecting the decay
positrons from implanted positive muons that locally probe the internal fields, and λ is subsequently
determined by modeling the contribution of the vortex lattice (VL) to n(B). However, even in
conventional superconductors the VL contribution is not known a priori, and one must rely on phe-
nomenological models to deduce what is really an ’effective’ penetration depth λ̃. One reason is that
only cumbersome microscopic theories account for the effects of low-energy excitations on n(B)
[Ichioka et al. (1999b)]. Extrapolating low-temperature measurements of λ̃ to zero field to eliminate
intervortex quasiparticle transfer, nonlocal and/or nonlinear effects, has been demonstrated to be an
accurate way of determining the ’true’ λ [Sonier (2007); Sefat et al. (2008)]. Yet an underlying as-
sumption is always that the VL is highly ordered and that other contributions to n(B) are relatively
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Figure 4.8: TF-µSR line shape of BaFe1.82Co0.18As2 at H = 0.5 T and T = 3.9 K (green
circles). (a) The red curve is the Fourier transform of a fit in the time domain assuming Eq. (4.21)
[Sonier et al. (2011)]. In addition to the indicated values of λ̃ and ξ̃, the fit yields σ = 0.265

µs−1 and a PM shift of 8.6 G. (b) Fourier transform of a fit that assumes the model of field-
induced AFM order described in the main text (red curve). The fit yields σ = 0.251 µs−1 and a
PM shift of 9.2 G. Other fit parameters are shown in Fig. 4.10 [Sonier et al. (2011)].

minor. This is not the case in many of the recently discovered iron-arsenic superconductors, making
a reliable determination of λ by TF µSR extremely difficult.

High-statistics TF-µSR spectra in BaFe1.82Co0.18As2 (Tc = 21 K) single crystals [Sefat et al. (2008)]
of 20×106 muon decay events were collected in magnetic fieldsH = 0.02−0.5 T applied transverse
to the initial muon spin polarization P (t = 0), and parallel to the c axis of the crystals. The TF-µSR
signal is the time evolution of the muon spin polarization, and is related to n(B) as follows:

P (t) =

∫ ∞

0

n(B) exp(iγµBt)dB, (4.20)

where γµ is the muon gyromagnetic ratio. Generally, the TF-µSSR signal is fit in the time domain,
with the inverse Fourier transform or ’TF-µSR line shape’ providing a visual approximation of the
internal field distribution. For a perfectly ordered VL, n(B) is characterized by sharp cutoffs at the
minimum and maximum values of B(r) and a sharp peak at the saddle-point value of B(r) [Sonier
et al. (2000)]. These features are observed in single crystals when the VL is highly ordered and
other contributions to n(B) are minor, but are not observed in polycrystalline samples, where the
orientation of the crystal lattice varies with respect to H .

The TF-µSR spectra was fitted to a theoretical P (t) that has been successfully applied to a wide
variety of type-II superconductors, and utilized in some of the experiments on iron-arsenic super-
conductors. The spatial variation of the field, from which n(B) is calculated, is modeled by the
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Figure 4.9: (a) Envelopes of TF-µSR spectra of BaFe1.82Co0.18As2 in the normal state at T =

23 K. The solid curves are fits to a single exponential relaxation function G(t) = exp(−Λt),
yielding Λ = 0.081 ± 0.003 µs−1 and Λ = 0.119 ± 0.003 µs−1 at H = 0.02 T and H = 0.5

T, respectively. (b) TF-µSR line shapes of BBaFe1.82Co0.18As2 below Tc at H = 0.02 T. The
dashed vertical line corresponds to H [Sonier et al. (2011)].

analytical Ginzburg-Landau (GL) function [Sonier et al. (2000)]

B(r) = B0(1− b4)
∑

G

e−iGruK1(u)

λ̃2G2
, (4.21)

where G are the reciprocal lattice vectors of a hexagonal VL, b = B/Bc2 is the reduced field, B0 is
the average internal magnetic field, K1(u) is a modified Bessel function, u2 = 2ξ̃2G2(1 + b4)[1 −
2b(1 − b)2], and ξ̃ is the coherence length. As explained later, P (t) is multiplied by a Gaussian
depolarization function exp(−σ2t2) to account for the effects of nuclear dipolar fields and frozen
random disorder. The fitting parameters λ̃ and ξ̃ can deviate substantially from the ’true’ λ and ξ if
other contributions to n(B) are significant. An important feature of Eq. (4.21) is that it accounts for
the finite size of the vortex cores, by generating a ’high-field’ cutoff in n(B). The GL coherence
length ξab ∼ 26 Å calculated from the upper critical field Hc2 ∼ 50 T of BaFe1.84Co0.16As2 with
H||c [Kano et al. (2009)] represents a lower limit for the vortex core radius [Sonier (2007)]. The
core size can be much larger if there are spatially extended quasiparticle core states associated
with either the existence of a second smaller superconducting gap [Callaghan et al. (2005)] or a
single anisotropic gap [Sonier et al. (1999)]. Yet fits of the TF-µSR spectra of BaFe1.82Co0.18As2

using Eq. (4.21) show no sensitivity to the vortex cores at any field and converge with values of ξ̃
approaching zero. Fig. 4.8 shows that even at 0.5 T, where the vortex density is highest, a high-
field cutoff is not discernible in the TF-µSR line shape. There are two reasons responsible for this:
magnetism and disorder.

a) Magnetism. The effective field Bµ experienced by the muon is a vector sum of various con-
tributions that may be static or fluctuating in time. With correlation times generally much longer
than the muon lifetime, the nuclear moments constitute a dense static moment system that cause
a Gaussian-like depolarization of the TF-µSR spectrum. Yet as shown in Fig. 4.9 (a),above Tc
BaFe1.82Co0.18As2 exhibits an exponential depolarization that is typical of dilute or fast fluctuat-
ing electronic moments [Uemura et al. (1985)]. The latter is consistent with the observation of a
paramagnetic (PM) shift of the average internal field 〈Bµ〉 sensed by the muons below Tc. This is
evident in Fig. 4.9 (b), where representative Fourier transforms of P (t) at H = 0.02 T is shown.
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Figure 4.10: Results of fits of TF-µSR time spectra of BaFe1.82Co0.18As2 at H = 0.5 T,
assuming the model of magnetic order described in the main text. Temperature dependence of
(a) 1/λ̃2, (b) the depolarization rates σ (Gaussian) and Λ (exponential), (c) BAFM and the ratio
ξAFM/ξ̃. Also shown in (a) results of fits without magnetic order but with ξ̃ fixed to be 5 Å
(blue circles) [Sonier et al. (2011)].

Instead of the expected diamagnetic shift imposed by the superconducting state, 〈Bµ〉 exceeds H .
The magnitude of the PM shift increases with increasing H and/or decreasing T .

The occurrence of a PM shift in the superconducting state of BaFe2−xCoxAs2 and SrFe2−xCoxAs2

has been reported by others [Khasanov et al. (2009b); Williams et al. (2010)] and implies an en-
hancement of 〈Bµ〉 from magnetic order occupying a large volume of the sample. Magnetic order
exists in underdoped samples at H = 0 [Marsik et al. (2010)] and is apparently induced in over-
doped samples by the applied field. Yet the effects of magnetism on the linewidth and functional
form of n(B) have not been considered. A strong relaxation of the TF-µSR signal occurs even
in long-range magnetically ordered systems, and with decreasing temperature there must be an in-
creased broadening of n(B) associated with the growth of the correlation time for spin fluctuations.

Accounting for such magnetism is nontrivial because of the spatially varying superconducting order
parameter and the likelihood that the field-induced magnetism occurs in a nematic phase [Chu et al.
(2010)]. Even so excellent fits of the TF-µSR spectra of BaFe1.82Co0.18As2 to polarization functions
that incorporate enhanced magnetism in the vortex core region (e.g., commensurate spin-density
wave, ferromagnetism, spin glass), where superconductivity is suppressed, were achieved. Here
typical results for one model of magnetism are described: First, P (t) is multiplied by an exponential
depolarization function exp(−Λt), as observed above Tc. In addition, enhanced magnetic order in
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the vortex cores is modeled by adding the following term to Eq. (4.21):

BAFM(r) = BAFMe
−r2/2ξ2AFM

∑

K

(e−iKr − e−iKr′). (4.22)

The K sum is the reciprocal lattice of an antiferromagnetic square iron sublattice of spacing a = 2.8
Å, BAFM is the field amplitude, ξAFM governs the radial decay of BAFM from the core center, and
r and r′ are the position vectors for ’up’ and ’down’ spins, respectively. This kind of magnetic
order has the effect of smearing the high-field cutoff, and can even introduce a low-field tail in
n(B) [Sonier et al. (2007)]. As indicated by the large value of ξ̃ in Fig. 4.8 (b), fits to this model
are sensitive to the vortex cores. With decreasing temperature, the magnetism induced relaxation
evolves from exponential to Gaussian [see Fig. 4.10 (b)] and the magnetic order in the vortex cores
is enhanced [see Fig. 4.10 (c)]. Consistent with behavior deduced from TF-µSR measurements on
BaFe1.772Co0.228As2 [Williams et al. (2010)], fits to a model without magnetism that is insensitive
to the vortex cores (i.e., ξ̃ fixed to 5 Å) yield an unusual linear temperature dependence of 1/λ̃2

immediately below Tc and a saturation of λ̃ at low T [see Fig. 4.10 (a)]. In contrast, fits assuming
magnetic order exhibit a linear temperature dependence well below Tc that is suggestive of gap
nodes. However, these results simply demonstrate the ambiguity in modeling such data. Without
knowledge of the precise form of the magnetism, this model cannot be deemed rigorously valid.

b) Disorder. Thus far TF µSR has been applied to iron-arsenic superconductors under the assump-
tion that one is probing a fairly well-ordered hexagonal VL. Vortex imaging experiments on the
RFeAs(01−xFx), A1−xBxFe2As2, and AFe2−xCoxAs2 families all show a highly disordered VL in-
dicative of strong bulk pinning [Eskildsen et al. (2009); Inosov et al. (2010b)]. In Fig. 4.11 the
effect of such disorder on the ideal n(B) is shown. Molecular dynamics to simulate n(B) of the
disordered VL was used. In particular, molecular dynamics iterations were performed until a radial
distribution function closely resembling that observed in overdoped BaFe1.81Co0.19As2 [Inosov et al.
(2010b)] was achieved [see Fig. 4.11 (a)]. The vortex configuration at this point was then assumed
to be static and n(B) was calculated. Although the line shape of the disordered VL in Fig. 4.11 (b)
is asymmetric, it is strongly smeared with a field variation greatly exceeding that of the perfect VL.

Small perturbations of the VL by random pinning can be handled by convoluting the ideal theo-
retical line shape with a Gaussian distribution of fields [Brandt (1988)]. This causes a Gaussian
depolarization exp(−σ2t2) of P (t). But for polycrystalline samples, n(B) is always nearly sym-
metric, so that the contribution from disorder cannot be isolated. Consequently, VL disorder has not
been accounted for in TF-µSR studies of polycrystalline or powdered ironarsenic superconductors
[Khasanov et al. (2008); Carlo et al. (2009)]. Given the severity of disorder in these materials and
no knowledge about how this disorder evolves with temperature or doping, the accuracy of informa-
tion deduced about λ is questionable. Since disorder of rigid flux lines broaden n(B), such studies
certainly underestimate λ.

While small perturbations of B(r) by vortex pinning may be accounted for in measurements on sin-
gle crystals, a Gaussian convolution of the ideal n(B) becomes increasingly inadequate as the degree
of disorder is enhanced [Menon et al. (2006)]. In Fig. 4.11 (b) is shown that Gaussian broadening
of the ideal line shape does not precisely reproduce n(B) of the disordered VL. Moreover, because
the large disorder-induced broadening smears out the high-field cutoff, the fitting parameters λ̃ and
ξ̃ are ambiguous. This is illustrated in Fig. 4.11 (c), where nearly identical Gaussian-broadened line
shapes are obtained for very different values of these parameters. Hence substantial disorder intro-
duces considerable uncertainty even in measurements on single crystals [Khasanov et al. (2009b);
Williams et al. (2010); Khasanov et al. (2009a)].
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Figure 4.11: (a) Radial distribution function (RDF) of BaFe1.81Co0.19As2 at H = 0.5 T from
Ref. [Inosov et al. (2010b)] (dashed curve) and of the disordered VL shown in the lower right
generated by molecular dynamics (MD). Note 5000 vortices were used in the MD simulation.
The horizontal scale is normalized with respect to the intervortex spacing a = 691 Å of the
perfect hexagonal VL. (b) Theoretical simulations of the TF-µSR line shape of the perfect VL
(black curve) and of the disordered VL (red curve) corresponding to the RDF shown in (a). The
green circles show the line shape of the perfect VL convoluted by a Gaussian distribution of
fields, corresponding to σ = 1.9 µs−1. All three simulations assume λ̃ = 2000 Å and ξ̃ = 50 Å.
(c) Same Gaussian-broadened line shape as shown in (b) and a Gaussian-broadened ideal line
shape with λ̃ = 1600 Å, ξ̃ = 1000 Å and σ = 1.8 µs−1. The heights of the line shapes in (b)
and (c) are normalized with respect to the height nmax(B) of the ideal line shape [Sonier et al.
(2011)].
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The effects of magnetic order and/or random frozen VL disorder in iron-arsenic superconductors
introduce considerable uncertainty in values of λ obtained by TF µSR. Unfortunately, these effects
cannot be modeled in a reliable way. Compounding the problem is a lack of information on how
these factors evolve with temperature. Consequently, caution is warranted in drawing conclusions
about the anisotropy of the superconducting gap in these materials from TF-µSR measurements.

To summarize, three possible reasons (nonlocal effects in Eilenberger equations, Fig. 1 in paper 3,
the core induced SDW and disorder effects in flux line lattice) can explain the TF µSR line shape of
BaFe1.82Co0.18As2 where impurity scattering rate is strong. The detail investigation the µSR results
of whole field range can clarify the main origin of observed phenomena.

We study the case of weak intraband scattering which can be realized in stoichiometrical pnictides
such as LiFeAs. The single absolute gap value is found in LiFeAs and the high value ξh(B →
0, T = 0) = 9.8 nm in comparison with ξc2(T = 0) ≈ 2−4 nm is obtained in SANS measurements
[Inosov et al. (2010c)], i.e. ξh/ξc2 ≈ 3. Fig. 2 in paper 3 present the ξh/ξc2 field dependence
at Γ0 = Γπ = Γ = 0, 0.05, 0.06, 0.065 and T/Tc0 = 0.15. As can be seen from this picture
the shape of curve not change considerably, but the absolute values of ξh/ξc2 depend crucially on
it. At low values of Γ ξh/ξc2 resides below the AGL curve and moves above it at high Γ (for
gapless superconductivity case Γ > 0.064), opposite to the case of the strong intraband scattering
considered in Fig. 1 in paper 3. Such behavior is quite different from that in s++ pairing symmetry
where intraband and interband scattering rates act in similar way and ξh/ξc2 decreases always with
impurity scattering. The obtained ξh(B → 0)/ξc2 = 1.75 in the s± model is much more near to the
experimental results [Inosov et al. (2010c)] than in the s++ model, where strong reduction of ξh is
visible. But this requires too high value of Γπ > 0.064, so the sample would be in the gapless state
in this case. This contradicts to the observed value of gap by the ARPES measurements [Inosov
et al. (2010c)].

Paper 4. Eilenberger and Ginzburg-Landau models of the vortex core in high
κ-superconductors

The field distribution of the mixed state in dirty s-wave superconductors in wide temperature and
field range is investigated in the framework of the Eilenberger theory in paper 4. The normalized
dependences of the cutoff parameter ξh/ξc2(B/Bc2) responsible for the line shape of the µSR reso-
nance are calculated. It is found that this dependence is nonuniversal and depends on temperature
and on impurity scattering rate, Γ. This is different from the universal dependence expected from
the GL theory. At high values of Γ/2πTc0 ≥ 0.5 the dependence shows plateau in intermediate
field range and the values ξh(B)/ξc2 are less than one. The strong suppression ξh/ξc2 with Γ can
qualitatively explain the µSR experimental results in some low-temperature superconductors V3Si,
NbSe2 and LuNi2B2C in high field range (see Fig. 7 in Ref. [Sonier (2007)]). For the quantitative
comparison of the theory and experimental results the anisotropy of the Fermi surface should be
taken into account. The coherence length ξKZ of the linearized Eilenberger equation was calculated
for three-dimensional (3D) isotropic case of the Fermi sphere and two-dimensional (2D) isotropic
materials, i.e. the Fermi cylinder [Kogan and Zhelezina (2005)]. A close-form equation for ξKZ(B)
was found for both Fermi surfaces. It was shown that the results can be represented in the reduced
form as ξKZ(B)/ξc2(Bc2) = U(B/Bc2) with U being an universal function. The only difference
between 2D and 3D situations is the numerical coefficient (α) in this universal function. We be-
lieve that the similar consideration about minor importance of the Fermi surface anisotropy can be



52 4. Comments on the original publications

applied for our cutoff parameter ξh if it is presented in the reduced form ξh/ξc2(B/Bc2). Our mi-
croscopical model justified the empirical methods for the interpretation of the µSR [Sonier (2004,
2007)] and magnetization [Kogan et al. (2006)] investigations and shows that at least one parameter,
different from GL theory, is needed for the explanation of the result even in the isotropic s-wave su-
perconductors. It results in three-parameter (λ(Γ, T ), Bc2(Γ, T ), and ξh/ξc2(Γ, B, T )) model of the
mixed state of s-wave superconductors. Absolute values of ξh and ξ1 show different dependence on
impurities: ξh(B) curves decreases monotonously with impurity scattering rate, while ξ1(B) curves
cross each other in this case.

The Ginzburg-Landau free energy per unit volume over cross-sectional area A in a plane perpendic-
ular to the vortices, measured relative to that of the Meissner state, can be expressed in dimensionless
form as [Hao et al. (1991)]

F = Fc + Fkg + Fkj + Ff , (4.23)

where

Fc =
1

A

∫
d2ρ

1

2
(1− f 2)2, (4.24)

Fkg =
1

A

∫
d2ρ

1

κ2
(∇f)2, (4.25)

Fkj =
1

A

∫
d2ρf 2a2

s,

as = a +
1

κ
∇γ, (4.26)

and

Ff =
1

A

∫
d2ρb2, (4.27)

are the condensation energy, kinetic energy associated with gradients in the magnitude of order
parameter, kinetic energy associated with supercurrent, and magnetic field energy; f and γ are the
normalized magnitude and phase of the order parameter Ψ = Ψ0fe

iγ (Ψ0 is the magnitude of order
parameter in absence of field); a is the vector potential satisfying ∇ · a = 0; b = ∇× a is the local
magnetic flux density; and the two-dimensional integral is taken over A.

The dimensionless units were used, which correspond to measuring the magnitude of the order
parameter in units of Ψ0, length in units of λ, magnetic field in units of

√
2Hc = κΦ0/2πλ

2,
vector potential in units of

√
2Hcλ = κΦ0/2πλ, and energy in units of H2

c /4π, where Hc is the
thermodynamic critical field, and Φ0 = hc/2e = 2.07 × 10−7 G cm2 is the flux quantum (Φ0

corresponds to 2π/κ in the dimensionless expressions).

In Ginzburg-Landau theory, the temperature dependence of a superconductor is contained in the
scaling factors, such as

√
2Hc(T ) and λ(T ), and therefore all physical quantities in their dimen-

sionless form are independent of T , and the only parameter intrinsic to the sample is κ. The second
Ginzburg-Landau equation is

j = −f 2as, (4.28)
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where j is the supercurrent density.

For a vortex centered on the z axis, in terms of cylindrical coordinates ρ, φ, and z, with unit vectors
ρ̂, φ̂, and ẑ, γ = −φ, b = ẑbz(ρ), j = φ̂jφ(ρ), and a = φ̂aφ(ρ) the ∇γ = −∇φ = −φ̂(1/ρ),
as = φ̂(aφ − 1/κρ), and therefore

∇× as = ẑ[bz −
2π

κ
δ(ρ)]. (4.29)

For an array of vortices at positions ρi,

∇× as = ẑ[bz −
2π

κ

∑

i

δ(ρ− ρi)], (4.30)

where each term in the summation represents one vortex carrying one quantum of magnetic flux
centered at ρi.

Using Eqs. (4.28) and (4.30), and with the help of Ampere’s law j = ∇ × b and the divergence
theorem, the electromagnetic free energy per unit volume Fem = Fkj + Fj can be simply written as

Fem = Bbz(0), (4.31)

where B = 2π/κAcell is the averaged magnetic flux density, Acell is the unit-cell area of the flux-
line lattice (B = Φ0/Acell in conventional units), and bz(0) is the local magnetic flux density at
the center of a vortex resulting not only from the vortex’s own field but also that of all surrounding
vortices.

Then the superposition was applied

bz(ρ) =
∑

i

b0z(ρ− ρi), (4.32)

where b0z(ρ−ρi) is the magnetic flux density of an isolated vortex located at ρi, and the summation
runs over all vortices; and to obtain b0z, one should follow the procedure of Ref. [Clem (1975)] and
take into account the effect of overlapping of vortices. For the order parameter a trial function

f =
ρ

(ρ2 + ξ2
v)

1/2
f∞, (4.33)

where ξv and f∞ are two variational parameters representing the effective core radius of a vortex
and the depression in the order parameter due to overlapping of vortices, respectively. It is expected
that f∞ → 1 as B → 0 and f∞ → 0 as B → Bc2 (Bc2 = Hc2 = κ in the dimensionless units).
Then, with the help of Ampere’s law and b = ∇× a, the second Ginzburg-Landau equation can be
solved analytically, and

b0z =
f∞K0(f∞(ρ2 + ξ2

v)
1/2)

κξvK1(f∞ξv)
, (4.34)

where Kn(x) is a modified Bessel function of nth order.

For a two-dimensional array of vortices at the positions ρi = L, where L is a lattice vector, there
is a corresponding two-dimensional reciprocal lattice of lattice vector G such that eiG·L = 1. The
Fourier transform of b0z, given by Eq. (4.34), is

b̃0z(q) =

∫
d2ρb0z(ρ)eiq·ρ =

2πf∞K1(ξv(q
2 + f 2

∞)1/2)

κ(q2 + f 2
∞)1/2K1(f∞ξv)

, (4.35)
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where the below formulas were used [Abramowitz and Stegun (1964); Gradshteyn and Ryzhik
(1965)]

1

π

∫ π

0

dθeix cos θ = J0(x), (4.36)

and
∫ ∞

0

dx · xJ0(βx)K0(α(x2 + z2)1/2) =
zK1(z(α2 + β2)1/2)

(α2 + β2)1/2
. (4.37)

(Note that b̃0z(0) = 2π/κ is the flux quantum). Then Eq. (4.32) becomes

bz(ρ) =
∑

L

b0z(ρ− L) =
∑

L

∫
d2q

(2π)2
b̃0z(q)e

i(ρ−L)·q =
1

Acell

∑

G

b̃0z(G)eiρ·G, (4.38)

where the relation

Acell
∑

L

eiL·q = (2π)2
∑

G

δ(q−G), (4.39)

has been used. Using the fact that B = 2π/κAcell and separating the term with G = 0 from the
summation, the above equation becomes

bz(ρ) = B[1 +
∑

G 6=0

f∞K1(ξv(G2 + f 2
∞)1/2)

(G2 + f 2
∞)1/2K1(f∞ξv)

eiρG]. (4.40)

The magnetic flux density at the vortex center is obtained by setting ρ = 0:

bz(0) = B[1 +
∑

G 6=0

f∞K1(ξv(G2 + f 2
∞)1/2)

(G2 + f 2
∞)1/2K1(f∞ξv)

]. (4.41)

The summation approximation in G space by an integral taken over the outside of the first Brillouin
zone is:

∑

G 6=0

≈ 1

ABZ

∫

G≥GBZ

d2G, (4.42)

where ABZ = πG2
BZ = (2π)2/Acell is the area of the first Brillouin zone, and the zone boundary

has been approximated by a circle of radius GBZ . That B = 2π/κAcell gives GBZ =
√

2Bκ. Note
that, although the approximation of Eq. (4.42) is valid only at low field when the reciprocal lattice
spacing (which is inversely proportional to the vortex spacing) is small, for high field the error due
to the approximation is reduced by the fact that the contribution of the sum becomes small compared
to that of the G = 0 term; therefore the approximation for the whole field region was used. Thus,

bz(0) = B +
f∞K0(ξv(f

2
∞ + 2Bκ)1/2)

κξvK1(f∞ξv)
]. (4.43)

The above equation shows the properties that bz(0)→ b0z(0) when B → 0 and bz(0)→ B when B
becomes large.
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Therefore, Eq. (4.31) becomes

Fem = B2 +
Bf∞K0(ξv(f

2
∞ + 2Bκ)1/2)

κξvK1(f∞ξv)
]. (4.44)

With f being given by Eq. (4.33), Fc and Fkg are calculated by taking the integral over one lattice
cell, which is approximated by a circle centered at a vortex axis and having the same cell area. This
approximation means that the energy differences between specific vortex structures (hexagonal,
square, amorphous, ...) was neglected, which is expected to be only a few percent. So,

Fc =
1

2
(1− f 2

∞)2 +
Bκξ2

vf
2
∞

2
[(1− f 2

∞)ln[
2

Bκξ2
v

+ 1] +
f 2
∞

2 +Bκξ2
v

], (4.45)

and

Fkg =
Bf 2
∞(1 +Bκξ2

v)

κ(2 +Bκξ2
v)

2
. (4.46)

Now the variationally-calculated total free-energy density F is the sum of Fc,Fkg, and Fem, given
by Eqs. (4.45), (4.46) and (4.44), where the variational parameters f∞ and ξv satisfy

∂F

∂f∞
= 0, (4.47)

and

∂F

∂ξv
= 0. (4.48)

The thermodynamic magnetic field H is given by

H =
1

2

dF

dB
=

1

2
[
∂F

∂B
]f∞,ξv , (4.49)

where the third part of the equation is obtained by using Eqs. (4.47) and (4.48). By a straightforward
calculation,

H =
κξ2

vf
2
∞

2
[
1− f 2

∞
2

ln[
2

Bκξ2
v + 1

]− 1− f 2
∞

2 +Bκξ2
v

+
f 2
∞

(2 +Bκξ2
v)

2
] +

f 2
∞(2 + 3Bκξ2

v)

2κ(2 +Bκξ2
v)

3
+

+ B +
f∞

2κξvK1(f∞ξv)
[K0(ξv(f

2
∞ + 2Bκ)1/2)− BκξvK1(ξv(f

2
∞ + 2Bκ)1/2)

(f 2
∞ + 2Bκ)1/2

], (4.50)

where the first two terms correspond to Fc and Fkg, respectively, and the last two terms correspond
to Fem. The magnetization M is related to H by

− 4πM = H −B. (4.51)

Eqs. (4.50) and (4.51) give us the implicit function M(H).

Note that H is the internal field, which is equal to the applied field only for a sample of zero de-
magnetization coefficient, but is approximately equal to the applied field when the demagnetization
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Figure 4.12: Calculated −4πM vs H in dimensioneless units for (a) κ = 5 and (b) κ = 50,
where the dashed lines are the corresponding Abrikosov high-field results [Hao et al. (1991)].

effect can be neglected. For the case when the demagnetization effect is important, H is equal to
the applied field minus the field of demagnetization (see Ref. [Fetter and Hohenberg (1969)]).

Hc1 is given by the limit of H as B → 0.

Hc1 =
κξ2

v0

8
+

1

8κ
+

K0(ξv0)

2κK1(ξv0)
, (4.52)

where ξv0 is the value of ξv at B = 0, which minimizes the free energy of a single vortex and
satisfies

κξv0 =
√

2[1− K2
0(ξv0)

K2
1(ξv0)

]1/2. (4.53)

The value of κξv0 ≈
√

2 for κ � 1. Note that both Eqs. (4.52) and (4.53) have been obtained in
Ref. [Clem (1975)], which are the limits of Eqs. (4.50) and (4.48) as B → 0, as expected.

In principle, f∞ and ξv are found for arbitrary B and κ by solving Eqs. (4.47) and (4.48) simul-
taneously, but this procedure involves numerical analysis and is not convenient in practical use.
The approximation of f∞(κ,B) and ξv(κ,B) was used instead by some suitable functions. The
following formulas are good approximations for the case of κ > 10:

f 2
∞ = 1− [

B

κ
]4, (4.54)

[
ξv
ξv0

]2 = [1− 2[1− B

κ
]2
B

κ
][1 + [

B

κ
]4]. (4.55)

For smaller κ the above formulas need modification; for example, for κ ≈ 5, ξv is better approxi-
mated by

[
ξv
ξv0

]2 = 1 + [
B

κ
]4, (4.56)

with f∞ remaining unchanged as given by Eq. (4.54).
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The mixed-state diamagnetism can readily be measured, and, when compared to theory, can give
the diamagnetic Hc2. Close enough to Hc2, the diamagnetism is given by

− 4πM =
Hc2(T )−H
(2κ2 − 1)βA

, (4.57)

where βA is 1.16 for a hexagonal array. This suggests that a linear extrapolation of M(H) or M(T )
data should determine Hc2(T ).

Curves of −4πM(H) for the cases of κ = 5 and 50 are calculated using the above formulas and
shown in Figs. 4.12 (a) and (b). Abrikosov’s high-field results, Eq. (4.57) with βA = 1.16, for
the same values of κ are also shown for comparison. As can be seen, the results satisfy the qual-
itative properties of type-II superconductors: the slope d(−4πM)/d(H) is infinite at Hc1; in the
high-field region was covered the Abrikosov result that −4πM decreases linearly as H increases
and vanishes at Hc2.The magnitude of the limiting slope of −4πM versus H obtained from Eqs.
(4.50) and (4.51) is actually slightly less than that of the Abrikosov result [Eq. (4.57) with βA is
1.16 for a hexagonal array] very close to Hc2, because of using of the circular cell approximation in
Eqs. (4.45) and (4.46). Nevertheless, as seen from Figs. 4.12 (a) and (b), the results are practically
indistinguishable from the linear Abrikosov curve over the field range 0.4Hc2 < H < Hc2. Quanti-
tatively, as shown by the comparison with Abrikosov’s high-field result, these results appear to be a
good approximation to the solution of the Ginzburg-Landau equations.

Paper 5. Generalized London theory of the mixed state of high-κ supercon-
ductors as a projection of the quasiclassical Eilenberger approach

The field distribution of the mixed state in dirty s-wave superconductors in a wide temperature and
field range is investigated in the framework of the nonlocal Eilenberger theory and projected on the
London equation in paper 5. The normalized magnetic field dependences of the cutoff parameter
ξh/ξc2(B/Bc2) responsible for the line shape of the µSR resonance are obtained. It is found that
this dependence is nonuniversal and depends on the impurity scattering rate Γ and the temperature.
At high enough values of Γ/2πTc0 ≥ 0.5, the dependence plateaus in the intermediate field range
and the low temperatures, and ξh(B)/ξc2 is of the order of 0.25. The strong suppression of ξh/ξc2
with Γ and T can explain the experimental results in many low-temperature superconductors (V3Si,
NbSe2 and LuNi2B2C and iron pnictide superconductor BaFe1.82Co0.18As), where the values
ξh/ξc2 < 1 has been observed. It is connected with the nonlocal bound Andreev states of the vortex
core. The obtained projection of the Eilenberger equations is compared with the nonlocal Kogan-
Gurevich theory. The field dependence of the cutoff parameter changes the magnetization and the
variance of the magnetic field. A difference is observed between ξh(T ) and nonlocal range ρ(T )
of the Kogan-Gurevich theory [Kogan et al. (1996b)], where only the contribution of the extended
state is taken into account. A strong difference from the AGL theory and linearized Eilenberger
approach (the Kogan-Zhelezina theory [Kogan and Zhelezina (2005)]) is found. This is explained
by the Kramer-Pesch effect which is not taken into account in these theories.

The detailed microscopical approach to the Kramer-Pesch effect, i.e., the shrinking of the core
radius upon lowering T (to be exact, an anomalous increase in the slope of the pair potential at the
vortex center at low T ) was obtained by Hayashi et al. [Hayashi et al. (1998)]. The Bogoliubov-de
Gennes (BdG) equation, which is one of the most fundamental equation of superconductivity and
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contains fully quantum effects, was self-consistently solved there. The starting point was the BdG
equation for the quasiparticle wave functions uj(r) and vj(r) labeled by the quantum number j:

[
−1

2kF ξ0

∇2 − EF ]uj(r) + ∆(r)vj(r) = Ejuj(r),

− [
−1

2kF ξ0

∇2 − EF ]vj(r) + ∆∗(r)uj(r) = Ejvj(r), (4.58)

in a dimensionless form, where ∆(r) is the pair potential and EF ( = kF ξ0/2 ) is the Fermi energy.
The length (energy) scale is measured by ξ0(∆0). For an isolated single vortex in an extreme type-II
superconductor, the vector potential in Eq. (4.58) may be neglected. The pair potential is determined
self-consistently by

∆(r) = g
∑

|Ej |≤ωD

uj(r)v∗j (r)(1− 2f(Ej)), (4.59)

with the Fermi function f(E). Here, g is the coupling constant and ωD = 10∆0 is the energy cutoff,
which are related by the BCS relation via the transition temperature Tc and the gap ∆0. The current
density is given by

j(r) ∝ Im
∑

j

[f(Ej)u
∗
j(r)∇uj(r) + (1− f(Ej))vj(r)∇υ∗j (r)]. (4.60)

An isolated vortex was considered under the following conditions: (a) The system is a cylinder with
a radius R. (b) The Fermi surface is cylindrical, appropriate for the materials such as NbSe2 and
high-Tc cuprates. (c) The pairing has isotropic s-wave symmetry. Thus the system has a cylindrical
symmetry. The eigenfunctions are

uj(r) = unµ(r) exp[i(µ− 1

2
)θ], (4.61)

and

vj(r) = vnµ(r) exp[i(µ+
1

2
)θ], (4.62)

with ∆(r) = ∆(r) exp[−iθ] in polar coordinates, where n is a radial quantum number and the
angular momentum |µ| = 1

2
, 3

2
, 5

2
, .... The eigenfunctions were expanded in terms of the Bessel

functions Jm(r) as

unµ(r) =
∑

i

cniφi|µ− 1
2
|(r), (4.63)

and

vnµ(r) =
∑

i

dniφi|µ+ 1
2
|(r), (4.64)

with

φim(r) = [
√

2/RJm+1(αim)]Jm(αimr/R), (4.65)
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Figure 4.13: The spatial variation of the pair potential ∆(r) normalized by ∆0 around the vortex
for several temperatures and kF ξ0 = 16. The length r is measured by ξ0 [Hayashi et al. (1998)].

[i = 1, 2, ..., N, and αim is the ith zero of Jm(R)]. The BdG is reduced to a 2N × 2N matrix
eigenvalue problem [Gygi and Schlüter (1991)]. This system is characterized by kF ξ0, which is a
key parameter of the present problem.

In Fig. 4.13, the calculated spatial variation of ∆(r) is displayed for various T . It is seen that as
T decreases, the core size ξ1 defined by ξ−1

1 = limr→0 ∆(r)/r shrinks and the oscillatory spatial
variation with a wave length ∼ 1/kF becomes evident in ∆(r) [Kramer and Pesch (1974); Gygi
and Schlüter (1991)]. The physical reason for this Friedel-like oscillation lies in the following facts.
All eigenfunctions unµ(r) and vnµ(r) contain a rapid oscillation component with 1/kF . At lower
T the lowest bound states, whose oscillation amplitude is large near the core, dominate physical
quantities. The oscillatory behavior always appears at sufficiently low T irrespective of values of
kF ξ0. A similar oscillatory spatial variation around a vortex core in the Bose condensate of 4He is
found theoretically, due to the roton excitations [Giorgini et al. (1997)].

The associated supercurrent jθ(r) and the field H(r) are shown in Fig. 4.14. Reflecting the above
oscillation, jθ(r) also exhibits a weak oscillation around r = (0.2 − 0.5)ξ0. It is difficult to see
the oscillation in H(r), because it is obtained by integrating jθ(r) via the Maxwell equation ∇ ×
H = 4π

c
j(r), resulting in a smeared profile. It is also seen that the position of the maximum of

jθ(r) becomes shorter as T decreases. These features quite differ from those obtained within the
Ginzburg-Landau framework [Fetter and Hohenberg (1969); Brandt (1997)].

The T dependence of ξ1(T ) for various kF ξ0 values is shown in Fig. 4.15. Coinciding with Kramer
and Pesch [Kramer and Pesch (1974)] for the s-wave pair and Ichioka et al. [Ichioka et al. (1996)]
for the d-wave pair, ξ1(T ) decreases almost linearly with T ; that is, ξ1(T )/ξ0 ∼ T/Tc except at
extremely low T . An important difference from these quasiclassical theories [Kramer and Pesch
(1974); Ichioka et al. (1996)] appears at lower T . At a lower T < T0 ' Tc/(kF ξ0), where the
quantum limit is realized, the shrinkage of the core size stops to saturate, and the saturated value is
estimated as ξ1/ξ0 ∼ (kF ξ0)−1.
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Figure 4.14: The current distribution normalized by cφ0/(8π
2ξ3

0κ
2) for several temperatures,

where φ0 is the flux quantum and κ (� 1) is the GL parameter. The inset shows the field
distribution normalized by φ0/(2πξ

2
0κ

2). The temperatures are the same as in Fig. 4.13, and
kF ξ0 = 16 [Hayashi et al. (1998)].

According to the µSR experimental data [Sonier et al. (1997a,b)], the core radius in NbSe2 shows
a strong T dependence, while that in YBCO with Tc = 60 K is almost T independent below
∼ 0.6Tc. This seemingly contradicting result can be understood as follows. The strong T de-
pendence in NbSe2 is the usual Kramer and Pesch (KP) effect [Kramer and Pesch (1974); Gygi and
Schlüter (1991); Volovik (1993); Ichioka et al. (1996)] corresponding to the curves for larger kF ξ0

in Fig. 4.15. At T below T0 estimated as ∼ 100 mK (kF ξ0 ∼ 70), the shrinkage must saturate (the
above experiment is done above ∼ 2 K). As for the YBCO data, since the estimated kF ξ0 is small
(∼ 4 [Maggio-Aprile et al. (1995)] for YBCO with Tc = 90 K), the saturation is already attained at
a relatively high T such as shown in Fig. 4.15. Thus the absence or weakness of the KP effect in
YBCO is simply attributable to the fact that the quantum-limit temperature T0 is quite high.

Reflecting the shrinkage of the core radius, the boundstate energiesEµ increase as T decreases. This
T -dependent Eµ shift, due to the KP effect, and its saturation at lower T may lead to a nontrivial T
dependence in thermodynamic and transport properties.

In Fig. 4.16, the energy levels Eµ of the low-lying bound states (µ = 1
2
, 3

2
, ..., 13

2
) are presented as a

function of kF ξ0, at sufficiently low T (T/Tc = 0.01) where increasing of the energy levels saturates.
It is seen that in the large kF ξ0 region, the bound states densely pack inside the gap ∆0, allowing us
to regard them as continuous ones. This is the case where the quasiclassical approximation [Kramer
and Pesch (1974); Ichioka et al. (1996)] validates. It is found that even for small |µ|, the spacing
between the energy levels Eµ is not constant, but rather becomes narrower as |µ| increases. The
often adopted formula Eµ/∆0 = 2µ/(kF ξ0) or 2µ/(kF ξ1) due to Caroli et al. [Caroli and Matricon
(1964)], or Eµ/∆0 = (2µ/kF ξ0) ln[ξ0/2ξ1] by Kramer and Pesch in the limit ξ1 � ξ0 [Kramer
and Pesch (1974)] do not satisfactorily explain the self-consistent results. Instead, the result is
empirically fitted to a formula E1/2/∆0 = (0.5/kF ξ0) ln[kF ξ0/0.3] for large kF ξ0 as shown in the
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Figure 4.15: The T dependence of the vortex radius ξ1 normalized by ξ0 for several kF ξ0

(= 1.2, 2, 4, and 16 from top to bottom) [Hayashi et al. (1998)].

Figure 4.16: The lowest seven bound-state energies Eµ, normalized by ∆0, as a function of
kF ξ0, with µ = 1/2, 3/5, 5/2, ..., 13/2 at enough low temperature T/Tc = 0.01. The dotted
line is a fitting curve (see the text) [Hayashi et al. (1998)].
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Figure 4.17: The spectral evolution N(E, r) at T/Tc = 0.05 and kF ξ0 = 8. It is normalized
by the normal-state density of states at the Fermi surface. E and r are measured by ∆0 and ξ0,
respectively [Hayashi et al. (1998)].

dotted curve in Fig. 4.16.

In Fig. 4.17, the spectral evolution, i.e., the spatial variation of local density of states, which is
calculated byN(r, E) ∝∑j[|uj(r)|2f ′(E−Ej)+|vj(r)|2f ′(E+Ej)], is shown for kF ξ0 = 8 at low
temperature T = 0.05Tc. It is well contrasted with that of the higher T case by Gygi and Schlüter
[Gygi and Schlüter (1991)] (see, for comparison, Fig. 15 in Ref. [Gygi and Schlüter (1991)], where
kF ξ0 = 70 and T = 0.13Tc, calculated under the two-dimensional Fermi surface). As one lower
T , because of the quantum effects, the thermally smeared spectral structure drastically changes
and becomes far finer around the vortex. The spectra are discretized inside the gap and consist of
several isolated peaks, each of which precisely corresponds to the bound states Eµ (|µ| = 1

2
, 3

2
, ...,).

Reflecting the oscillatory nature of the eigenfunctions uµ(r) and vµ(r) with the period 1/kF , the
spectral evolution also exhibits the Friedel-like oscillation as seen in Fig. 4.17.

To show clearly the particle-hole asymmetry of the local density of states of Fig. 4.17, the spectra at
the vortex center r = 0 and 0.2ξ0 is presented in Fig. 4.18. At the center r = 0, the bound-state peak
with E1/2, which comes from u1/2 and v−1/2, appears on the E > 0 side and other peaks for |Eµ| <
∆0 (which include E−1/2) vanish at r = 0, because only u1/2(r) and v−1/2(r) ∝ J0(r = 0) 6= 0.
The particle-hole asymmetry in the vortex bound states appears even if the normal-state density of
states is symmetric. These features are subtle [Gygi and Schlüter (1991)] or absent [Hayashi et al.
(1996)] in the previous calculations. This asymmetry around the vortex is quite distinctive, should
be checked by STM experiments, and may be crucial for the Hall conductivity in the mixed state.

The lowest bound state level E1/2/∆0 is estimated by Maggio-Aprile et al. [Maggio-Aprile et al.
(1995)] for YBCO with Tc = 90 K (E1/2 = 5.5 meV and ∆0 = 20 meV), yielding kF ξ0 ∼ 4.
Since it implies that ξ0 is only of the order of the crystal-lattice constant, it should be mentioned that
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Figure 4.18: The local density of states N(E, r) at r = 0 (solid line) and 0.2ξ0 (dotted line).
T/Tc = 0.05 and kF ξ0 = 8 [Hayashi et al. (1998)].

Maggio-Aprile et al. [Maggio-Aprile et al. (1995)] take their data for the spectral evolution every
10 Å apart near the core; thus the important spatial information on the local density of states might
be lost. So far the existing STM data [Maggio-Aprile et al. (1995); Hess et al. (1989); Wilde et al.
(1997)] taken at the vortex center are almost symmetric about E = 0, e.g., on NbSe2 at T = 50 mK
[Hess et al. (1989)]. The reason why the so-called zero-bias peak is centered just symmetrically at
E = 0 is that kF ξ0 is large and T is too high to observe the quantum effects. In any clean s-wave
type-II superconductors at appropriately low T [< T0 ' Tc/(kF ξ0)], one can observe these eminent
characteristics associated with the quantum effects.

Paper 6. Coherence length of magnetic field in the mixed state of type-II su-
perconductors

Although the main superconductivity research in the last few years has been dominated by the study
of iron-pnictides, there exist unresolved issues concerning conventional superconductors. NbSe2 is
particularly well suited for a µSR study of the vortex state since the geometry of the vortex lattice is
well established - thus removing one of the largest experimental uncertainties. Scanning tunneling
microscopy (STM) measurements at the surface [Hartmann et al. (1993); Hess et al. (1989, 1992)]
and small angle neutron scattering (SANS) measurements in the bulk [Gammel et al. (1994)] have
produced high quality images of a nearly perfect triangular lattice with long range order. Also the
coherence length and the magnetic penetration depth in NbSe2 are nearly ideal for a µSR investiga-
tion of the vortex cores. In particular, the large coherence length and correspondingly small value
of Hc2 (< 4T ) imply a large signal from the vortex-core regions at moderate magnetic fields.

Nearly universal field dependence with a minimum near critical temperature in clean superconduc-
tors is found in paper 6. A similar slope d(ξh/ξc2)/d(B/Bc2) at B/Bc2 = 1 weakly dependent
on temperature and scattering rate is discovered. Quasiparticle scattering by impurities and lower-
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Figure 4.19: The Fourier transforms of the muon spin precession signal in NbSe2 after field
cooling to T = 0.33Tc in magnetic fields of H = 0.1, 0.35, and 0.7 T. The average magnetic
field of the residual background signal is denoted as Bbkgd [Sonier et al. (1997b)].

ing of the temperature reduce the value of ξh shifting it considerably downward from the analyti-
cal Ginzburg-Landau curve and at low temperatures strong influence of the Kramer-Pesch effect is
found. It can explain muon spin rotation experimental results in some low temperature superconduc-
tors, where the ratio ξh/ξc2 � 1 [Sonier (2007)] is observed in intermediate fields. A comparison
with the behavior of the order parameter coherence length ξ1 and another theories is done. It is
found that impurities influence by different way on ξh and ξ1. A clear impurity dependence of the
ξh/ξc2 value even at high temperatures (compare Fig. 1 (a) and Fig. 1 (b) in Paper 6) can not be
explained by the local Usadel theory, where scaling ξh/ξc2 = Const (independent on Γ) is expected
[Golubov and Hartmann (1994)].

Most theoretical calculations have modeled the core structure using Ginzburg-Landau (GL) theory,
which is strictly valid only near the superconducting phase boundary. The field dependence of the
vortex-core radius has been determined deep in the superconducting state from the microscopic
theory in the dirty limit, by Golubov and Hartmann [Golubov and Hartmann (1994)] solving the
Usadel equation. The vortex-core radius was found to decrease monotonically with increasing ap-
plied magnetic field due to the increased strength of the vortex-vortex interactions. Although the
authors reported good agreement with STM measurements [Hartmann et al. (1993)] at the surface
of NbSe2 at T = 0.6Tc, ρ0 was somewhat arbitrarily defined and the uncertainty in the measure-
ments was large. The results were relatively surprising since NbSe2 is a clean superconductor - the
ratio of the coherence length to the mean free path in the â − b̂ plane is ξ0/l ∼ 0.15 [Takita and
Masuda (1985)]. Muon-spin rotation spectroscopy has been used to measure the internal magnetic
field distribution in NbSe2 for Hc1 < H < 0.25Hc2 [Sonier et al. (1997b)]. The deduced profiles of
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Figure 4.20: The magnetic field dependence of (a) λab(H) and (b) κ′(H) = λab(H)/ρ0(H) in
the vortex state of NbSe2 at T = 0.33Tc (open circles) and T = 0.6Tc (solid circles). The solid
line fits are described in the text [Sonier et al. (1997b)].

the supercurrent density Js indicate that the vortex-core radius ρ0 in the bulk decreases sharply with
increasing magnetic field. This effect, which is attributed to increased vortex-vortex interactions,
does not agree with the local Usadel theory.

In Fig. 4.19 the Fourier transforms of the muon precession signal in NbSe2 are shown for different
fields at T = 0.33Tc. The real amplitude of the Fourier transforms is a good representation of
the internal magnetic field distribution from the vortex lattice convoluted with small nuclear dipolar
fields. Note the small peak near zero in the top panel of Fig. 4.19. This is due to a small (2%) residual
background signal due to muons which miss the sample. Line shapes have been renormalized to the
same maximum amplitude. The sharp features expected for a perfect triangular vortex lattice, such
as the Van Hove singularity at the saddle point, are obscured partly by the broadening effects of
the finite Fourier transform and by flux-line lattice disorder. Nevertheless there is a clear high-field
cutoff observed in the µSR line shape originating from the finite size of the vortex cores. The effect
of increasing H on the high-field cutoff is clearly seen in Fig. 4.19. At all of the magnetic fields the
signal-to-noise ratio of the highfield tail is so large that one can unambiguously extract the vortex-
core radius. In order to test the strength of the pinning forces on the vortex lattice the sample was
cooled in an applied field of 0.5 T to 2.3 K, after which the field was decreased by 7.5 mT.

The µSR spectra was fitted in the time domain, where there are no complications associated with
fitting finite Fourier transforms [Sonier et al. (1997a)]. The distribution of muon precession fre-
quencies from the vortex lattice was modeled with a theoretical field distribution generated from a
GL model [Hao et al. (1991)]. The local field at any point in the â − b̂ plane is given in a suitable
approximation by [Yaouanc et al. (1997)]

B(ρ) = B0(1− b4)
∑

G

e−iGρuK1(u)

λ2
abG

2
, (4.66)

with

u2 = 2ξ2
abG

2(1 + b4)[1− 2b(1− b)2].
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Figure 4.21: The magnetic field dependence of the vortex-core radius in NbSe2 determined
by STM [Hartmann et al. (1993)] at T = 0.6Tc (open squares) and by µSR at T = 0.33Tc
(open circles) and 0.6Tc(solid circles). The solid lines are from calculations of supercurrent
density Js(ρ) profiles using Hc2(0) = 3.5 T, Hc2(0.33Tc) = 2.9 T, and Hc2(0.6Tc) = 1.9 T
from magnetization. The dotted lines through the µSR data are from Eq. (4.72) [Sonier et al.
(1997b)].

Here, B0 is the average magnetic field, G are the reciprocal lattice vectors, b = B0/Bc2, ξab is the
GL coherence length, and K1(u) is a modified Bessel function. The cutoff factor uK1(u) accounts
for the finite size of the vortex core, whereas, in the London model, B(ρ) diverges logarithmically
as ρ → 0. Recently, Yaouanc et al. [Yaouanc et al. (1997)] showed that uK1(u) is a good ap-
proximation of the cutoff factor determined from the exact numerical solutions of the GL equations
[Brandt (1997)] at low reduced fields b.

The theoretical muon polarization function was generated by assuming the field profile of Eq. (4.66)
and then multiplying by a Gaussian relaxation function e−σ2t2/2 to take into account any residual
disorder in the flux-line lattice and the contribution of the nuclear dipolar moments to the internal
field distribution. The residual background signal was fitted assuming a Gaussian broadened distri-
bution of fields. All fitted parameters were treated as independent variables. From the fitted values
of σ, the root-mean-square deviation of the vortices from their ideal positions in the triangular lat-
tice was determined to be less than 3% of the intervortex spacing over the entire field range studied.
This small disorder is consistent with STM and SANS imaging experiments on NbSe2.

The magnetic field dependence of λab is shown in Fig. 4.20 (a). Contrary to the Meissner state, a
linear-H dependence is observed in the field range studied. A fit to the linear relation λab(H) =
λab(0)[1 + βh], where h = H/Hc2(T ), gives λab(0) = 1323 Å and β = 1.61 at T = 0.33Tc and
λab(0) = 1436 Å and β = 1.56 at T = 0.6Tc. Note that d[∆λ/λ(0)]/d(H/Hc2) is considerably
weaker than for YBa2Cu3O6.95 (Ref. [Sonier et al. (1997a)]), in which there is strong evidence for
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line nodes in the superconducting energy gap function.

An effective vortex-core radius ρ0 is defined as the distance from the vortex center for where the
supercurrent density Js(ρ) reaches its maximum value. Js(ρ) was obtained from fits of the data to
Eq. (4.66) and the Maxwell relation J(ρ) = ∇ × B(ρ). In Fig. 4.21, µSR measurements of ρ0 are
shown as a function ofH at T = 0.33Tc (open circles) and 0.6Tc (solid circles), along with the STM
measurements (open squares) of Ref. [Hartmann et al. (1993)]. The smaller error bars and reduced
scatter in the µSR data reflect the statistical improvement of a µSR experiment which samples a
large number of vortices in the bulk of the crystal, as opposed to STM which averages the radius
of only a few vortices at the surface. The dashed line drawn through the STM results comes from
tunneling current I(ρ) profiles calculated from the Usadel equations, as explained in Ref. [Golubov
and Hartmann (1994)]. To generate Js(ρ) profiles from Usadel’s dirty-limit theory the work of
Ref. [Golubov and Hartmann (1994)] was extended to include the self-consistency equation for the
vector potential A(ρ). In cylindrical coordinates the equation of motion is [Kramer et al. (1974)]

1

ρ

d

dρ
(ρ
dθ

dρ
) = κ̄−2A2 sin θ cos θ −∆ cos θ + ω sin θ, (4.67)

where θ parametrizes Usadel’s normal (G = cos θ) and anomalous (F = sin θ) Green’s functions
[Usadel (1970)], ∆(ρ) is the order parameter, ω = (T/Tc)(2l + 1) is the Matsubara frequency and
κ̄ = [4π5/7ζ(3)]1/2 (where κ = λ/ξ). Eq. (4.67) is supplemented by the following selfconsistency
equations:

∆ ln(T/Tc) = −2(T/Tc)
∑

ω

[∆/ω − sin θ], (4.68)

Js(ρ) =
d

dρ

1

ρ
(
d

dρ
ρA) = 16πκ̄−2(T/Tc)A

∑

ω

sin2 θ, (4.69)

and the boundary conditions for singly quantized vortices with a Wigner-Seitz cell radius ρs =
(Φ0/πH)1/2,

∆(0) = θ(ω, 0) = 0,

∆′(ρs) = θ′(ω, ρs) = 0, (4.70)

A(ρ→ 0)→ −κ̄/ρ,
A(ρs) = 0. (4.71)

Eq. (4.67), subject to these boundary conditions, was solved numerically for θ(ω, ρ) starting with
the initial trial potentials ∆(ρ) = ∆0 tanh(ρ) and A(ρ) = κ̄(1/ρ − ρ/ρ2

s). Improved values of
∆(ρ) and A(ρ) were obtained by including the self-consistent conditions (4.68) and (4.69). The
parameter κ in Eqs. (4.67) and (4.69) was determined from fits to the data. κ was found to be
nearly temperature independent at all fields studied, which is consistent with the original definition
of κ near Tc in GL theory [Ginzburg and Landau (1950)]. The deduced values of ρ0 were not very
sensitive to κ. In Fig. 4.20 (b) κ′ = λab/ρ0 was defined, where κ′(H) = 1.06κ(H) − 1.98 and
κ′(H) = 1.12κ(H) − 1.26 at T = 0.33Tc and T = 0.6Tc, respectively. At both temperatures,
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Figure 4.22: The current density and order parameter for T = 0.6Tc and H/Hc2(0.6Tc) =

0.053. The solid lines are from the dirty-limit microscopic theory while the dashed line is the
supercurrent density from a µSR measurement of the field distribution in NbSe2 [Sonier et al.
(1997b)].

κ′ (and hence κ) increases linearly with H . Fitting to the linear relation κ′(H) = κ′(0)[1 + γh],
κ′(0) = 6.9 and γ = 9.5 at T = 0.33Tc and κ′(0) = 5.1 and γ = 10.2 at T = 0.6Tc were obtained.

Fig. 4.22 shows the theoretical Js(ρ) and ∆(ρ) profiles together with the Js(ρ) profile obtained from
experiment for a particular T and H . The vortex-core radius taken from the Js(ρ) profiles of the
dirty-limit theory are shown as solid lines in Fig. 4.21. Not surprisingly, there is poor agreement
with the µSR data at T = 0.33Tc, where thermal smearing of the bound states in the vortex core
is negligible. Contrary to the STM results [Hartmann et al. (1993)], however, there is also poor
agreement at T = 0.6Tc - suggesting that the dirty-limit theory does not adequately describe the
shrinking of the vortex-core radius with increasing H . In the STM experiment it was necessary to
arbitrarily define ρ0 as the radius in which the tunneling current decreased to 36% of Imax − Imin
and ∆(ρ)/∆(ρs) = 1/

√
2. However, the Js(ρ) profiles generated from the dirty-limit theory do not

peak exactly at a radius corresponding to ∆(ρ)/∆(ρs) = 1/
√

2 for all values of T/Tc and H/Hc2.
Thus, the previous definition of ρ0 should provide a better description of the true H dependence of
the vortex-core radius. The STM data may also be influenced somewhat by the discontinuity in the
energy spectrum of the vortex cores which occurs at the sample surface. It has been suggested that
the effect may be an enlargement of ρ0 [Klein (1990)].

On the other hand, the µSR results fit well (see dotted lines in Fig. 4.21) to the phenomenological
equation,

ρ0(H) =
λab(H)

κ′(H)
= ρ0(0)

[1 + βh]

[1 + γh]
, (4.72)

where ρ0(0) = λab(0)/κ′(0). From the fits to λab(H) and κ′(H), ρ0(0) = 191 and 282 Å at
T = 0.33Tc and 0.6Tc, respectively. For a triangular vortex lattice H ∼= B0 = 3Φ0/

√
2L2, where L
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is the intervortex spacing. Thus, for a given temperature, Eq. (4.72) may be rewritten as a function
of the distance between vortices.

In paper 6 we do not consider the field dependence of penetration depth nor take its value as in
the Meissner state. This dependence can be introduced by the separation of the extended states
contribution by considering the nonlocal London equation. This method is described in paper
5. It is shown that it does not give the essential improvement of the fitting, i.e., microscopical
determination of the cutoff parameter is needed.

As is shown in [Kadono et al. (2004)] that the vortex core radius ξ2 (or ρ0 in notation to Fig. 4.21)
is strongly correlated with cutoff parameter ξh. In the case of strong impurity scattering ξ2/ξc2 and
ξh/ξc2 are much less than one and order parameter coherence length ξ1/ξc2 (Fig. 3 in paper 6). This
can explain the difference between characteristic lengths measured by µSR and STM experiments
presented in Fig. 4.21. Nonlocal Eilenberger approach should be used in first case. As it noted in
paper 4 the symmetry ξ2 ≈ ξ1 can be broken by strong impurity scattering in Eilenberger theory.



CHAPTER V

Conclusions

The field distribution of the mixed state in type-II superconductors with different pairing symme-
tries is investigated in the framework of the Eilenberger theory and projected on the London equa-
tion in wide temperature and field range. The normalized dependences of the cutoff parameter
ξh/ξc2(B/Bc2) responsible for the line shape of the µSR resonance are calculated. It is found that
this dependence is nonuniversal and depends on temperature and on impurity scattering rate, Γ. This
is different from the universal dependence expected from the Ginzburg-Landau theory.

Core structure of the vortices in iron pnictides have been studied using s± symmetry (connected with
antiferromagnetic spin fluctuation mechanism) and s++ symmetry (mediated by moderate electron-
phonon interaction due to Fe-ion oscillation and the critical orbital fluctuation). Different impurity
scattering rate dependences of cutoff parameter ξh have been found for these cases. In nonstoi-
chiometric case, when intraband impurity scattering (Γ0) is much larger than interband impurity
scattering rate (Γπ) the ξh/ξc2 ratio is less in s± symmetry. When Γ0 ≈ Γπ (stoichiometric case)
opposite tendencies has been found, in s± symmetry the ξh/ξc2 goes upward from the "clean" case
curve (Γ0 = Γπ = 0) while it goes downward in s++ case.

Low temperature s-wave superconductors are also considered. At high enough values of Γ ≥ 0.5,
the dependence plateaus in the intermediate field range and the low temperatures, and ξh(B)/ξc2 is
of the order of 0.25. The strong suppression of ξh/ξc2 with Γ and T can explain the experimental
results in many low-temperature superconductors (V3Si, NbSe2 and LuNi2B2C), where the values
ξh/ξc2 < 1 has been observed. It is connected with the nonlocal bound Andreev states of the
vortex core. The obtained projection of the Eilenberger equations is compared with the nonlocal
Kogan-Gurevich theory. The field dependence of the cutoff parameter changes the magnetization
and the variance of the magnetic field. A difference is observed between ξh(T ) and nonlocal range
ρ(T ) of the Kogan-Gurevich theory, where only the contribution of the extended state is taken into
account. A strong difference from the analytical Ginzburg-Landau theory and linearized Eilenberger
approach (the Kogan-Zhelezina theory) is found. This is explained by the Kramer-Pesch effect
which is not taken into account in these theories.
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Abstract. Quasiclassical Eilenberger equations are solved for s±-wave superconductors in the
mixed state. This symmetry has been proposed for multiband superconductors as pnictides.
This mechanism can be realized because of Umklapp scattering between the electron and the
hole Fermi surface pockets resulting in opposite sign of pairing gap in these pockets. The
applicability of the phenomenological Hao-Clem theory is investigated. Magnetic, temperature
and impurity scattering rate dependencies of vortex core size are calculated. It is found that the
accuracy of the effective London model gets better with the presence of the impurity scattering
and even near the second critical field it is below 6%. The model with the parameters of
intraband and interband impurity scattering, describing well superfluid density in BaFe2As2,
is also considered.

The discoveries of the superconductivity in the layered FeP [1] and FeAs [2] systems
have ignited tremendous research activities for understanding of the superconductivity in Fe
pnictides. The superconducting transition temperature Tc of electron-doped LaFeAsO1−xFx

(”1111”) reaches 43 K under pressure [3], and NdFeAsO1−xFx and SmFeAsO1−xFx show Tc

higher than 40 K at ambient pressure [4]. BaFe2As2 (”122”) also shows superconductivity by
hole doping with the highest Tc of 38 K in (Ba, K)Fe2As2 [5] and by electron doping with the
highest Tc of 25 K in Ba(Fe, Co)2As2 [6]. Stoichiometric iron pnictides such as LiFeAs or
NaFeAs (”111”) are also interesting because they become superconducting without doping [7].
These Fe pnictides commonly have the FeAs layers, where the Fe ions form a square lattice
and each Fe ion is tetrahedrally coordinated by four As ions.

One key feature for understanding the origin of the high critical temperature and the pairing
mechanism in superconductors is the symmetry of the order parameter. For iron pnictides,
one of the attractive idea is that antiferromagnetic spin fluctuations mediate interband pairing.
The sign of the Umklapp scattering between the electron and the hole Fermi surface, which
is responsible for the superconducting pairing, is positive and the order parameter is fully
gapped but changes sign between different Fermi sheets [8]. This situation is referred to as the
extended s± symmetry. Using an s± model for the superconducting gap, a good explanation of
experimental results on penetration depth in electron-doped and hole-doped BaFe2As2 pnictides
has been obtained [9, 10]. In this model the Fermi surface is approximated by two cylindrical
pockets centered at Γ (hole) and M (electron) points of the Fermi surface, i.e. two dimensional
limit of five-band model is proposed. Recently, strong evidence of the s± symmetry in iron
pnictides has been found by scanning tunneling microscopic measurements [11]. In spite of
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success of s± model, there are some indications, e.g. weak sensitivity of Tc to the impurity
concentration [12], that a conventional s-wave state without sign reversal (so called s++-wave
state) is also possible candidate for iron pnictides. It has been proposed that the moderate
electron-phonon interaction due to Fe-ion oscillation can induce the critical orbital fluctuation,
without being prohibited by the Coulomb interaction. These fluctuations give rise to the strong
pairing interactions for the s++-wave superconductivity [13].

The aim of our paper is to apply quasiclassical Eilenberger approach to the vortex state of
stoichiometric and nonstoichiometric iron pnictides considering s± and s++ pairing symmetries
as presumable states [9] and to calculate magnetic coherence length ξh [14, 15]. As described
in Ref. [16], ξh is important for the description of the muon spin rotation (µSR) experiments
and can be directly measured. On theoretical ground, the magnetic coherence length can be
found from the fitting of the calculated magnetic field distribution hE(r) to the Eilenberger -
Ginzburg-Landau field distribution hEGL(r) [14, 15]

hEGL(r) =
ϕ0

S

∑

G

F (G)eiGr

1 + λ2G2
, (1)

where F (G) = uK1(u), K1(u) is the modified Bessel function, u = ξhG, G is a reciprocal lattice
vector and S is the area of the vortex lattice unit cell. It is important to note that ξh in Eq. (1)
is obtained from solving the Eilenberger equations and doesn’t coincide with the variational
parameter ξv (analytical Ginzburg-Landau (AGL) model), ”improved” analytical GL solution
[17] or numerical GL solution [18]. We will call the obtained field distribution as an Eilenberger
- Ginzburg-Landau field distribution hEGL(r). Using the GL type of the field distribution does
not mean direct connection to the GL theory and it is taken as a reasonable starting point of
the investigation similar to the empirical approach to the problem [16, 19]. In Eq. (1) λ(T ) is
calculated in Ref. [9]

λ2
L0

λ2(T )
= 2πT

∑

ωn>0

∆̄2
n

ηn(∆̄2
n + ω2

n)3/2
, ηn = 1 + 2π

Γ0 + Γπ√
∆̄2

n + ω2
n

, (2)

where λL0 is the London penetration depth at T = 0 K in the absence of the impurities. Here,

∆̄n = ∆(T ) − 4πΓπ∆̄n/
√

∆̄2
n + ω2

n for the s± pairing and ∆̄n = ∆(T ) for the s++ pairing

symmetry. The order parameter ∆(T ) is determined by the selfconsistent equation

∆(T ) = 2πT
∑

0<ωn<ωc

V SC∆̄n√
∆̄2

n + ω2
n

. (3)

With the Riccati transformation of the Eilenberger equations quasiclassical Green functions
f and g can be parameterized via functions a and b [20]

f̄ =
2a

1 + ab
, f † =

2b

1 + ab
, g =

1 − ab

1 + ab
, (4)

satisfying the nonlinear Riccati equations. In Born approximation for impurity scattering we
have

u · ∇a = −a[2(ωn + G) + iu · A] + (∆ + F ) − a2(∆∗ + F ∗), (5)

u · ∇b = b[2(ωn + G) + iu · A] − (∆∗ + F ∗) + b2(∆ + F ), (6)
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where ωn = πT (2n + 1), G = 2π ⟨ g ⟩(Γ0 + Γπ) ≡ 2π ⟨ g ⟩Γ∗, F = 2π ⟨ f ⟩(Γ0 − Γπ) for s±

pairing symmetry and F = 2π ⟨ f ⟩Γ∗ for the s++ pairing symmetry. Here, Γ0 = πniNF |u0|2
and Γπ = πniNF |uπ|2 are the intra- and interband impurity scattering rates, respectively
(u0,π are impurity scattering amplitudes with correspondingly small, or close to π = (π, π),
momentum transfer) and u is a unit vector of the Fermi velocity. The FLL create the anisotropy
of the electron spectrum. Therefore the impurity renormalization correction in Eq. (5) and
(6), averaged over Fermi surface, can be reduced to averages over the polar angle θ, i.e.
⟨. . .⟩ = (1/2π)

∫
. . . dθ. To take into account the influence of screening the vector potential A(r)

in Eqs. (5) and (6) is obtained from the equation ∇ × ∇ × AE = 4
κ2 J, where the supercurrent

J(r) is given in terms of g(ωn, θ, r) by

J(r) = 2πT
∑

ωn>0

∫ 2π

0

dθ

2π

k̂

i
g(ωn, θ, r). (7)

Here A and J are measured in units of ϕ0/2πξ0 and 2evF N0Tc, respectively. The self-consistent
condition for the pairing potential ∆(r) is given by

∆(r) = V SC2πT
∑

ωn>0

∫ 2π

0

dθ

2π
f(ωn, θ, r), (8)

where V SC is the coupling constant and ωc is the ultraviolet cutoff determining Tc0 [15].
All over this paper the energy, the temperature and the length are measured in units of Tc0

and the coherence length ξ0 = vF /Tc0, where vF is the Fermi velocity. The magnetic field h is
given in units of ϕ0/2πξ2

0 . The impurity scattering rates are in units of 2πTc0. In calculations the
ratio κ = λL0/ξ0 = 10 is used. It corresponds to κGL = 43.3 [20]. To obtain the quasiclassical
Green function, the Riccati equations [Eq. (5, 6)] are solved by the Fast Fourier Transform
(FFT) method for triangular FLL [15]. This method is reasonable for dense FLL discussed in
this paper. In high field the pinning effects are weak and they are not considered in our paper.
To study high field regime we should calculate upper critical field Bc2(T ). It can be found from
the similarity of the considered model to the model of spin-flip superconductors [21].

Solid lines in Fig. 1 demonstrate magnetic field dependence ξh(B) in reduced units for
superconductors with impurity scattering at T/Tc0 = 0.5 with Γ0 = Γπ = 0; Γ0 = 3, Γπ = 0.03
and Γ0 = 0.5, Γπ = 0.01. Dash line demonstrates the result of the AGL theory for ξv[22]

ξv = ξc2(
√

2 − 0.75

κGL
)(1 + b4)1/2[1 − 2b(1 − b)2]1/2, (9)

where ξc2 is determined from the relation Bc2 = Φ0/2πξ2
c2 (in our units ξc2 = 1/

√
Bc2).

This dependence with ξc2 as a fitting parameter is used often for the description of the µSR
experimental results [16, 19]. As can be seen from Fig. 1 (a) the magnetic field dependence of
ξh/ξc2 is nonuniversal because it depends not only from B/Bc2 (as in the AGL theory, dash line
in Fig. 1 (a)), but also on interband and intraband impurity scattering parameters. In the case
when, Γ0 = Γπ = 0, the results are the same for s± and s++ pairing symmetries. We mark this
curve as ”clean” one. In this figure is considered the case Γ0 ≫ Γπ and the value of ξh is reduced
considerably in comparison with clean case. One can compare the observed behavior with that
in s++ pairing model. In s++ pairing symmetry the intraband and interband scattering rates
act in similar way and ξh/ξc2 decreases always with impurity scattering. In contrast, in s±

model ξh/ξc2(B/Bc2) dependences show different behavior with Γπ: ξh/ξc2 increases with Γπ at
B/Bc2 < 0.8 and decreases at higher fields, i.e. the curves are getting more flat. A crossing point
appears in the dependences ξh/ξc2(B/Bc2) for s± and s++ pairing. This can be explained by
the fact that in superconductors without interband pair breaking the increasing in high field is
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Figure 1. (a) The magnetic field dependence of ξh/ξc2 for superconductors with impurity
scattering. Dashed line demonstrates the result of the AGL theory for ξv from Eq. 9. Solid lines
represent our solution of Eilenberger equations at T/Tc0 = 0.5 for the ”clean” case (Γ0 = Γπ = 0)
and s± model (Γ0 = 0.5, Γπ = 0.04 and Γ0 = 3, Γπ = 0.03). Dotted lines show result for
s++ model (Γ∗ = 0.5 and Γ∗ = 3). (b) Magnetic field dependence of mean square deviation
of the hEGL distribution from the Eilenberger distribution normalized by the variance of the
Eilenberger distribution, ε, for T/Tc0 = 0.5 for the ”clean” case, Γ0 = 3, Γπ = 0.03 and Γ0 = 0.5,
Γπ = 0.04 for the s± model.

connected with field-dependent pair breaking under approaching to the upper critical field. We
also calculate magnetic field dependence of mean square deviation of the hEGL distribution of the
magnetic field from the Eilenberger distribution normalized by the variance of the Eilenberger

distribution ε =

√
(hE − hEGL)2/(hE − B)2, where · · · is average over unit vortex cell. Fig. 1

(b) demonstrates ε(B) dependence for T/Tc0 = 0.5 at Γ0 = 0, Γπ = 0; Γ0 = 3, Γπ = 0.03 and
Γ0 = 0.5, Γπ = 0.04. It can be seen from this figure that accuracy of effective London model
getting worse with increasing magnetic field, but in superconductors with impurity scattering
the accuracy is below 6% even near the second critical field (Fig. 1 (b)).

The superfluidity density in pnictides shows often a power law dependence with exponent
approximately equal to two at low temperatures [9, 10]. This law was explained by s± model
with parameters Γ0 = 3 and Γπ = 0.04 − 0.06. Fig. 2 (a) shows ξh/ξc2(B/Bc2) dependence
with Γ0 = 3 and Γπ = 0.06 at different temperatures. All curves demonstrate growing behavior
with values much less that one in whole field range, i.e. they are under the AGL curve of ξv.
This shows strong effect of interband scattering. The inset to Fig. 2 (a) presents ξh/ξc2(B/Bc2)
results for Γ0 = 3, Γπ = 0.06 (s± pairing) and Γ∗ = 3 (s++ pairing) at T/Tc0 = 0.15. This type
of the behavior is cut off by the impurity pair breaking and introducing characteristic field B∗ in
the field dependence by the substitution B/Bc2 → (B + B∗(Γπ))/Bc2(Γπ). There is additional
low-field crossing point between s± and s++ curves in this low-temperature case comparing
with T/Tc0 = 0.5 (Fig. 1 (a)). It can be explained by the restoration of the Usadel dirty
limit behavior (where Γ ≫ 1 and monotonously decreasing ξh(B) is expected [20, 23]) which
is not realized for s± symmetry due to the pair breaking there. Opposite, slowly increasing
ξh/ξc2(B/Bc2) function is obtained for s± case in low-field range (Fig. 2 (a) main plot). It
can be explained by the field-dependent splitting of the low-energy spectrum of bound state
in the vortex core similar to the case of the surface bound states in d-wave superconductors
[24]. The same effect is realized for extended state in high-field (for B/Bc2 > 0.5 in Fig. 2 (a)).
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Figure 2. (a) The magnetic field dependence of coherence length ξh with different temperatures
Tc/Tc0 for Γ0 = 3, Γπ = 0.06. The inset shows the magnetic field dependence of ξh/ξc2 for
s± model (Γ0 = 3, Γπ = 0.06) and s++ model (Γ∗ = 3, dotted line) at T/Tc0 = 0.15. (b)
The interband scattering Γπ dependence of ξh/ξc2 at different temperatures T/Tc0 (intraband
scattering Γ0 = 3 and B = 5) for the s± pairing.
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Figure 3. The magnetic field dependence of coherence length at T/Tc0 = 0.5 with the
similar values of intraband Γ0 and interband Γπ scattering Γ (Γ = 0 for ”clean” case and
Γ = 0.02, 0.03, 0.04 for the s± pairing). Dotted line shows result for s++ model (Γ∗ = 0.5).

Study of the field dependence ξh/ξc2(B/Bc2) can clarify the both branches [25] of the energetic
spectrum of the mixed state which can not be done in the phenomenological GL theory. Thus,
the field-dependent suppression of ξh/ξc2 is expected in s± model in comparison to s++ one in
nonstoichiometric iron pnictides with high Γπ (like doped 122 compounds). Also nonmonotonous
ξh/ξc2(Γπ) dependence is possible in general as is shown in Fig. 2 (b).

We also study the case of weak intraband scattering. This case can be realized in
stoichiometric pnictides such as LiFeAs. Fig. 3 presents the ξh/ξc2 magnetic field dependence
with scattering parameters Γ0 = Γπ = Γ equal to 0, 0.02, 0.03 and 0.04. Dotted line shows the
result for s++ model (Γ∗ = 0.5). The ξh(B) dependence shifts upward from the ”clean” curve
and have higher values in s± model. In contrast, ξh/ξc2 curve shifts downward with impurity
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scattering in s++ model. The high values of ξh observed in µSR measurements in LiFeAs [7]
supports the s± pairing.

To conclude, Eilenberger equations have been solved in the mixed state for superconductors
with s± pairing symmetry. This symmetry is proposed to realize in iron pnictide
superconductors. Effects of interband (Γ0) and intraband (Γπ) impurity scattering on coherence
length ξh are investigated. It is found that ξh/ξc2(B/Bc2) dependence is nonuniversal and
different from the GL theory prediction. In the case of intraband scattering ξh/ξc2 decreases with
Γ0. The effects of interband scattering on ξh depends on Γ0. The predictions for ξh/ξc2(B/Bc2)
for doped 122 compounds (nonstoichiometric iron pnictides), where Γ0 ≫ Γπ, are done. These
dependencies demonstrate growing behavior defined by Γ0 with values much less that one in
whole field range, i.e. they are under the ”clean” (Γ0 = Γπ = 0) curve. In the case of
weak impurity scattering, Γ0 = Γπ ≪ 1, the ξh/ξc2(B/Bc2) dependence shifts upward from the
”clean” curve. This case can be realized in stoichiometric 111 compounds. A comparison with
s++ pairing model is done. Opposite tendencies with interband scattering for ξh/ξc2(B/Bc2)
dependences are found for s± and s++ models for stoichiometric and nonstoichiometric iron
pnictides. The predictions can be tested by µSR experiments.

This work was supported by the Finnish Cultural Foundation.
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Cutoff parameter of the field distribution in the mixed state of iron pnictides with s± and s++
pairing symmetries
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The effects of the pairing symmetries (s± and s++) on the cutoff parameter of field distribution, ξh, in
stoichiometric (like LiFeAs) and nonstoichiometric (like doped BaFe2As2) iron pnictides have been investigated
using Eilenberger quasiclassical equations. Magnetic field, temperature, and impurity scattering dependencies of
ξh have been calculated. Two opposite behaviors have been discovered. The ξh/ξc2 ratio is less in s± symmetry
when the intraband impurity scattering (�0) is much larger than 1 and is much larger than the interband impurity
scattering (�π ), i.e., in nonstoichiometric iron pnictides. In contrast, the value ξh/ξc2 is higher in the s± case
and the field-dependent curve is shifted upward from the “clean” case (�0 = �π = 0) for stoichiometric iron
pnictides (�0 = �π � 1). Results can be tested in muon spin rotation measurements.

DOI: 10.1103/PhysRevB.83.104518 PACS number(s): 74.20.Rp, 74.20.Fg, 74.25.Op

The discovery of superconductivity (Tc = 26K) in fluorine-
doped LaFeAsO (“1111”)1 has generated remarkable interest
in the community. This interest has lead to the discovery
of other oxyarsenides having critical temperatures exceeding
55 K.2 Later, superconductivity, with Tc as high as
38 K, was discovered in Ba1−xKxFe2As2 (Ref. 3) and in
Ba(Fe1−xCox)2As2 (Ref. 4) with Tc = 23 K. These “122”
compounds are not oxides, downplaying the role of oxygen
in the mechanism of high-temperature superconductivity.
Stoichiometric iron pnictides such as LiFeAs or NaFeAs (111
pnictides) are also interesting because they become super-
conducting without doping.5 Close proximity to a magnetic
state could imply the importance of magnetic fluctuations for
pairing and may be reflected in the symmetry of the super-
conducting gap. At the same time, band-structure calculations
and angle resolved photoemission spectroscopy experiments6

show that multiple bands cross the Fermi level, opening a
possibility for multiband superconductivity.

The results of scanning tunneling microscopy7 indicate
that the sign is reversed between the hole and the electron
Fermi-surface pockets (s± wave), favoring the unconventional
pairing mechanism associated with spin fluctuations. The order
parameter is fully gapped but changes sign between different
Fermi sheets.8 This situation is referred to as the extended
s± symmetry. Using an s± model for the superconducting
gap, a good explanation of experimental results on penetration
depth in electron-doped and hole-doped BaFe2As2 pnictides
has been obtained.9,10 In this model the Fermi surface is
approximated by two cylindrical pockets centered at � (hole)
and M (electron) points of the Fermi surface; i.e., a two-
dimensional limit of a five-band model is proposed. Recently,
strong support for the s± symmetry in iron pnictides has been
found by scanning tunneling microscopic measurements.7

Despite the success of the s± model, there are some indi-
cations that a conventional s-wave state without sign reversal
(s++-wave state) is also a possible candidate for iron pnictides.
It has been proposed that the moderate electron-phonon
interaction due to Fe-ion oscillation can induce the critical
orbital fluctuation, without being prohibited by the Coulomb

interaction. These fluctuations give rise to the strong pair-
ing interactions for the s++-wave superconductivity.11 A
resonancelike peak structure observed by neutron scattering
measurements12 is reproduced by considering the strong
correlation effect via quasiparticle damping, without the
necessity of sign reversal in the superconducting gap.13 The
s±-wave state is expected to be very fragile against impurities
due to the interband scattering,14 and the superconducting
state is remarkably robust against impurities and α-particle
irradiation.15

The aim of our paper is to apply a quasiclassical Eilenberger
approach to the vortex state of iron pnictides considering s±
and s++ pairing symmetries as presumable states9 for the
different levels of impurity scattering rates �∗ and to calculate
the cutoff parameter ξh.16,17 As described in Ref. 18, ξh is
important for the description of the muon spin rotation (μSR)
experiments and can be directly measured.

The London model used for the analysis of the experimental
data does not account for the spatial dependence of the
superconducting order parameter and it breaks down at
distances on the order of coherence length from the vortex
core center, i.e., B(r) logarithmically diverges as r → 0. To
correct this, the G sum in the expression for vortex lattice
free energy can be truncated by multiplying each term by the
cutoff function F (G). Here, G is a reciprocal vortex lattice
vector and G is its module. In this method the sum is cut
at high Gmax ≈ 2π/ξh, where ξh is the cutoff parameter. The
characteristic length ξh accommodates a number of inherent
uncertainties of the London approach, the question discussed
originally by de Gennes19 and in some detail in Ref. 20. It is
important to stress that the appropriate form of F (G) depends
on the precise spatial dependence of the order parameter in the
vortex core region, and this in general depends on temperature
and magnetic field.

A smooth Gaussian cutoff factor F (G) = exp(−αG2ξ 2)
was phenomenologically suggested. Here, ξ is the Gizburg-
Landau coherence length. If there is no dependence of
the superconducting coherence length on temperature and
magnetic field, then changes in the spatial dependence of the

104518-11098-0121/2011/83(10)/104518(5) ©2011 American Physical Society
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order parameter around a vortex correspond to changes in
α. By solving the Ginzburg-Landau (GL) equations, Brandt
determined that α = 1/2 at fields near Bc2 (Ref. 21) and
arbitarily determined that α ≈ 2 at fields immediately above
Bc1.22 For an isolated vortex in an isotropic extreme (the GL
parameter κGL � 1) s-wave superconductor, α was obtained
by numerical calculation of GL equations. It was found
that α decreases smoothly from α = 1 at Bc1 to α ≈ 0.2 at
Bc2.23 The analytical GL expression was obtained by Clem24

for isotropic superconductors at low inductions B � Bc2.
Using a Lorentzian trial function for the order parameter
of an isolated vortex, Clem24 found for large κGL � 1 that
F (G) is proportional to the modified Bessel function. Hao
et al.25 extended the model24 to larger magnetic fields up to
Bc2 through the linear superposition of the field profiles of
individual vortices. In this model, the Clem trial function24

is multiplied by a second variational parameter, f∝, to
account for the suppression of the order parameter due
to the overlapping vortex cores. This model gave the method
to calculate the magnetization of type-II superconductors in
the full range Bc1 < B < Bc2. Their analytical formula is in a
good agreement with the well-known Abrikosov high-field
result and corrected the results obtained with exponential
cutoff function at low field considerably.26 This approximation
was widely used for the analysis of the experimental data on
magnetization of type-II superconductors (see Refs. 27–29
in Ref. 27). The improved approximate GL solution for the
regular flux-line lattice using a circular cell method was
obtained in Ref. 27. It gives better coincidence with numerical
solution of GL equations.

Strictly speaking, GL theory is valid only near Tc but it
is often used in whole temperature range taking the cutoff
parameter and penetration depth λ as fitting parameters.
Recently an effective London model with the effective cutoff
parameter ξh(B) as a fitting parameter was obtained for
clean16 and dirty17 superconductors, using a self-consistent
solution of quasiclassical nonlinear Eilenberger equations. In
this approach λ is not a fitting parameter but is calculated
from the microscopical theory of the Meissner state. This
consideration implies only one fitting parameter for analysis
of experimental data, i.e., f∝ = 1, similar to the theory used
for the explanation of the magnetization experiments.28 As
was shown in Ref. 29 the reduction of the amount of the
fitting parameters to one simplified considerably the fitting
procedure. In this method the cutoff parameter obtained from
the GL model is extended over the whole field and temperature
range. In this case the effects of bound states in the vortex
cores leading to the Kramer-Pesch effect,30 their delocalization
between the vortices31,32 and nonlocal electrodynamic33 are
self-consistently included.

Following the microscopical Eilenberger theory, ξh can
be found from the fitting of the calculated magnetic field
distribution hE(r) to the Eilenberger–Ginzburg-Landau (EGL)
field distribution hEGL(r)16,17:

hEGL(r) = φ0

S

∑
G

F (G)eiGr

1 + λ2G2
, (1)

where F (G) = uK1(u), where K1(u) is modified Bessel
function; u = ξhG; and S is the area of the vortex lattice

unit cell. It is important to note that ξh in Eq. (1) is obtained
from solving the Eilenberger equations and doesn’t coincide
with the variational parameter ξv [analytical Ginzburg-Landau
(AGL) model]. We call the obtained field distribution an EGL
field distribution, hEGL(r). Using the GL type of the field
distribution does not mean direct connection to the GL theory.
It can be taken as a reasonable starting point of the investigation
similar to the empirical approach to the problem.18,34 In Eq. (1),
λ(T ) is the penetration depth in the Meissner state. It is
calculated in Ref. 9 as

λ2
L0

λ2(T )
= 2πT

∑
ωn>0


̄2
n

ηn

(

̄2

n + ω2
n

)3/2 , (2)

where λL0 is the London penetration depth at T =
0 K in the absence of the impurities and ηn = 1 + 2π ∗
(�0 + �π )/(

√

̄2

n + ω2
n). Here, �0 = πniNF |u0|2 and �π =

πniNF |uπ |2 are the intra- and interband impurity scattering
rates, respectively (u0,π are impurity scattering amplitudes
with correspondingly small, or close to π = (π,π ), momentum
transfer). In this work, we investigate the field distribution
in the vortex lattice by systematically changing the impurity
concentration in the Born approximation and analyze the field
dependence of the cutoff parameter. In particular, we consider
two limits: small �∗ � 1 (calling it as “stoichiometric” case)
and relatively high �∗ � 1 (“nonstoichiometric” case). Here,
�∗ is measured in units of 2πTc0.

In Eq. (2), 
̄n = 
(T ) − 4π�π
̄n/
√


̄2
n + ω2

n for the s±
pairing and 
̄n = 
(T ) for the s++ pairing symmetry. The
order parameter 
(T ) in the Meissner state is determined by
the self-consistent equation


(T ) = 2πT
∑

0<ωn<ωc

V SC
̄n√

̄2

n + ω2
n

. (3)

Experimentally, λ(T ) can be obtained by radio-
frequency measurements35 and magnetization measurements
of nanoparticles.36 With the Riccati transformation of the
Eilenberger equations, quasiclassical Green’s functions f and
g can be parametrized via functions a and b (Ref. 37):

f̄ = 2a

1 + ab
, f † = 2b

1 + ab
, g = 1 − ab

1 + ab
, (4)

satisfying the nonlinear Riccati equations. In the Born approx-
imation for impurity scattering we have

u · ∇a = −a [2(ωn + G) + iu · A]

+ (
 + F ) − a2(
∗ + F ∗), (5)

u · ∇b = b [2(ωn + G) + iu · A]

− (
∗ + F ∗) + b2(
 + F ), (6)

where ωn = πT (2n + 1), G = 2π〈g〉(�0 + �π ) ≡ 2π〈g〉�∗,
F = 2π〈f 〉(�0 − �π ) for s± pairing symmetry, and F =
2π〈f 〉�∗ for the s++ pairing symmetry. Here, u is a unit vector
of the Fermi velocity. The flux line lattice (FLL) creates the
anisotropy of the electron spectrum. Therefore, the impurity
renormalization correction in Eqs. (5) and (6), averaged over
the Fermi surface, can be reduced to averages over the polar
angle θ , i.e., 〈· · ·〉 = (1/2π )

∫
. . . dθ . To take into account the

influence of screening the vector potential, A(r) in Eqs. (5) and
(6) is obtained from the equation ∇ × ∇ × AE = 4

κ2 J, where
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the supercurrent J(r) is given in terms of g(ωn,θ,r) by

J(r) = 2πT
∑
ωn>0

∫ 2π

0

dθ

2π

k̂
i
g(ωn,θ,r). (7)

Here A and J are measured in units of φ0/2πξ0 and
2evF N0Tc, respectively. The self-consistent condition for
the pairing potential 
(r) in the vortex state is given by

(r) = V SC2πT

∑
ωn>0

∫ 2π

0
dθ
2π

f (ωn,θ,r), where V SC is the
coupling constant and ωc is the ultraviolet cutoff determining
Tc0.17 All over our paper the energy, the temperature, and
the length are measured in units of Tc0, and the coherence
length ξ0 = vF /Tc0, where vF is the Fermi velocity. The
magnetic field h is given in units of φ0/2πξ 2

0 . The impurity
scattering rates are in units of 2πTc0. In calculations the ratio
κ = λL0/ξ0 = 10 is used. It corresponds to κGL = 43.3.37

To obtain the quasiclassical Green’s function, the Riccati
equations [Eqs. (5), (6)] are solved by the fast Fourier
transform (FFT) method for the triangular FLL.17 This method
is reasonable for the dense FLL discussed in this paper. In
high field the pinning effects are weak and they are not
considered in our paper. To study a high field regime we should
calculate upper critical field Bc2(T ). It could be found from
the similarity of the considered model to the model of spin-flip
superconductors.38

Figure 1(a) shows magnetic field dependence ξh(B) in
reduced units at T/Tc0 = 0.5 for the s± pairing with �0 = 3,
�π = 0.02 and �0 = 0.5, �π = 0.03 and the “clean” case
(solid lines) and for the s++ pairing with �∗ = 0.5 and �∗ =
3 (dotted lines). The dashed line shows the analytical solution

FIG. 1. (Color online) (a) The magnetic field dependence of
ξh/ξc2 for superconductors with impurity scattering. Solid lines
represent our solution of Eilenberger equations at T/Tc0 = 0.5 for
the “clean” case (�0 = �π = 0) and s± model (�0 = 0.5, �π = 0.03
and �0 = 3, �π = 0.02). Dotted lines show results for the s++ model
(�∗ = 0.5 and �∗ = 3). The dashed line demonstrates the result of
the AGL theory for ξv from Eq. (8). The inset shows magnetic field
dependence of mean square deviation of the hEGL distribution from the
Eilenberger distribution normalized by the variance of the Eilenberger
distribution, ε, for T/Tc0 = 0.5 at �0 = �π = 0 (clean); �0 = 3,
�π = 0.02 and �0 = 0.5, �π = 0.03. (b) The interband scattering
�π dependence of ξh/ξc2 at different temperatures T/Tc0 (intraband
scattering �0 = 0.5 and B = 5) for the s± pairing.

of the AGL theory25

ξv = ξc2

(√
2 − 0.75

κGL

)
(1 + b4)1/2[1 − 2b(1 − b)2]1/2. (8)

This dependence with ξc2 as a fitting parameter is often used
for the description of the experimental μSR results.18,34 As
can be seen from Fig. 1(a), the magnetic field dependence of
ξh/ξc2 is nonuniversal because it depends not only on B/Bc2

[as in the AGL theory, dashed line in Fig. 1(a)] but also
on interband and intraband impurity scattering parameters.
In the case when �0 = �π = 0, the results are the same for
s± and s++ pairing symmetries. We mark this curve as the
clean one. In this figure the case �0 � �π is considered
and the value of ξh is reduced considerably in comparison
with the clean case. One can compare the observed behavior
with that in the s++ pairing model. In s++ pairing symmetry
the intraband and interband scattering rates act in a similar
way and ξh/ξc2 decreases always with impurity scattering. In
contrast, in the s± model ξh/ξc2(B/Bc2) dependencies show
different behavior with �π . Here, ξh/ξc2 increases with �π at
B/Bc2 < 0.8 and decreases at higher fields; i.e., the curves are
getting more flat. A crossing point appears in the dependencies
ξh/ξc2(B/Bc2) for s± and s++ pairings. We also calculate
magnetic field dependence of the mean square deviation of the
hEGL distribution of the magnetic field from the Eilenberger
distribution normalized by the variance of the Eilenberger

distribution ε =
√

(hE − hEGL)2/(hE − B)2, where · · · is the
average over the unit vortex cell. The inset to Fig. 1(a)
demonstrates the ε(B) dependence for T/Tc0 = 0.5 at �0 = 0,
�π = 0; �0 = 3, �π = 0.02; and �0 = 0.5, �π = 0.03. From
this figure it can be seen that the accuracy of the effective
London model is getting worse with the increasing magnetic
field, but in superconductors with impurity scattering the
accuracy is below 6% even near with second critical field
[the inset to Fig. 1(a)].

In Fig. 1(b) the interband scattering �π dependencies of
ξh are presented in low fields for the s± pairing at different
temperatures T . As can be seen ξh/ξc2 increases with the
interband scattering rate �π . Strong decreasing of ξh/ξc2 with
decreasing of temperature can be explained by the Kramer-
Pesch effect.30 It should be noted that the normalization
constant ξc2 increases with �π because �π suppress Tc similar
to superconductors with spin-flip scattering (violation of the
Anderson theorem). Thus, the growing ξh/ξc2 implies more
strong growth of ξh than ξc2 (from GL theory one can
expect ξh/ξc2 = Const.). Qualitatively, it can be explained by
the strong temperature dependence of ξh(B,T /Tc) connected
with the Kramer-Pesch effect.30 Increasing �π results in
suppression of Tc, i.e., effective increasing of T and ξh(T/Tc).
ξc2(T/Tc) has not so strong Tc dependence leading to the
increasing of the ration ξh/ξc2 with �π .

The superfluidity density in pnictides shows often power
law dependence with an exponent approximately equal to 2
at low temperatures.9,10 This law was explained by the s±
model with parameters �0 = 3 and �π = 0.04–0.06. Figure 2
shows ξh/ξc2(B/Bc2) dependence with �0 = 3 and �π = 0.04
at different temperatures. All curves demonstrate growing
behavior with values much less than 1 in the whole field
range; i.e., they are under the AGL curve of ξv . This shows
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FIG. 2. (Color online) The magnetic field dependence of
cutoff parameter ξh/ξc2 with different temperatures (T/Tc0 =
0.2,0.3,0.4,0.5) for s± pairing with �0 = 3, �π = 0.04. The inset
shows the magnetic field dependence of ξh/ξc2 for the s± model
(�0 = 3, �π = 0.04, solid line) and the s++ model (�∗ = 3, dotted
line) at T/Tc0 = 0.5.

a strong effect of interband scattering. The inset to Fig. 2
shows ξh/ξc2(B/Bc2) for �0 = 3, �π = 0.04 (s± pairing)
and �∗ = 3 (s++ pairing). It can be seen from the inset
that ξh/ξc2 is strongly suppressed in the s± pairing with
comparison to the s++ pairing. This can be explained by the
fact that in superconductors without interband pair breaking
the increase in the high field is connected with field-dependent
pair breaking when approaching the upper critical field. This
type of behavior is cut off by the impurity pair breaking and
by introducing characteristic field B∗ in the field dependence
by the substitution B/Bc2 → [B + B∗(�π )]/Bc2(�π ). The
crossing point between the s± and s++ curves depends on
�π and it shifts to the lower field in comparison with the case
�π = 0.02 shown in Fig. 1(a).

We also study the case of weak intraband scattering.
This case can be realized in stoichiometrical pnictides such
as LiFeAs. Figure 3 presents the ξh/ξc2 magnetic field
dependence with scattering parameters �0 = �π = � equal
to 0, 0.01, and 0.035. The dotted line shows the results for the
s++ model (�∗ = 0.25). The ξh(B) dependence shifts upward

FIG. 3. (Color online) The magnetic field dependence of the
cutoff parameter at T/Tc0 = 0.5 with the same values of intraband
�0 and interband �π scattering � (� = 0 for the clean case and
� = 0.01,0.035 for the s± pairing). The dotted line shows result for
the s++ model (�∗ = 0.25).

from the clean curve and has higher values in the s± model.
In contrast, the ξh/ξc2 curve shifts downward with impurity
scattering in the s++ model. The high values of ξh observed in
μSR measurements in LiFeAs (Ref. 5) support the s± pairing.

To conclude, the core structures of the vortices in iron
pnictides have been studied using s± symmetry (connected
with antiferromagnetic spin fluctuation mechanism) and s++
symmetry (mediated by moderate electron-phonon interaction
due to Fe-ion oscillation and the critical orbital fluctuation).
Different impurity scattering rate dependencies of the cutoff
parameter ξh have been found for these cases. In the nonstoi-
chiometric case, when the intraband impurity scattering (�0)
is much larger than the interband impurity scattering rate (�π ),
the ξh/ξc2 ratio is less in s± symmetry. When �0 ≈ �π (the
stoichiometric case) opposite tendencies have been found, in
s± symmetry the ξh/ξc2 goes upward from the clean case curve
(�0 = �π = 0) while it goes downward in the s++ case.

This work was supported by the Finnish Cultural
Foundation.
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Abstract. Effects of the order parameter symmetry on the cutoff parameter ξh (determining
the magnetic field distribution) in the mixed state are investigated in framework of quasiclassical
Eilenberger theory for isotropic s± and for s++ pairing symmetries of superconductors using
computational methods. In s± pairing symmetry the gap function has opposite sign and equal
absolute values of the electron and hole pockets of the Fermi surface and in s++ pairing symmetry
the gap function has the same sign of the electron and hole pockets of the Fermi surfaces. The
s± pairing symmetry results in different effects of intraband (Γ0) and interband (Γπ) impurity
scattering on ξh. It is found that ξh/ξc2 decreases with the Γ0 leading to values much less than
those predicted by the analytical Ginzburg-Landau (AGL) theory for high Γ0. At very high Γ0

the interband scattering suppresses ξh/ξc2 considerably less than the one in the whole field range
making it flat. If Γ0 and Γπ are small and equal then the ξh/ξc2(B/Bc2) dependence behaves
like that of the AGL model and shows a minimum with value much more than that obtained for
s++ superconductors. With high Γπ the dependence of ξh/ξc2(B/Bc2) resides above the AGL
curve. Such behavior is quite different from that in s++ pairing symmetry where intraband
and interband scattering rates act in a similar way and ξh/ξc2 decreases monotonously with
impurity scattering and resides below the AGL curve.

Since the discovery of superconductivity of iron pnictides with high transition temperature
next to high-Tc cuprates, the structure of the superconducting gap has been studied very
intensively. The angle resolved photoemission spectroscopy (ARPES) and Andreev spectroscopy
measurements show that pnictide superconductors have the gap without nodes. Electronic band
configuration of the pnictides assumes two hole pockets centered at the Γ point, q = (0, 0), and
two electron pockets centered at the M points, (0, π) and (π, 0), in the unfolded Brillouin zone.
The sign of the Umklapp scattering between the electron and the hole Fermi surfaces, which is
responsible for the superconducting pairing, is positive and the gap function has opposite sign
on the electron and hole pockets (s± symmetry) [1]. By applying a magnetic field to break
the time-reversal symmetry, the relative sign of the superconducting gap can be determined
from the magnetic field dependence of quasiparticle impurity scattering amplitudes. The results
of scanning tunneling microscopy [2] indicate that the sign is reversed between the hole and
the electron Fermi-surface pockets (s±-wave), favoring the unconventional pairing mechanism
associated with the spin fluctuations.

In spite of success of s± model, there are some indications that a conventional s-wave
state without sign reversal (s++-wave state) is also a possible candidate for iron pnictides.
For example, resonancelike peak structure observed by neutron scattering measurements is



reproduced by considering the strong correlation effect via quasiparticle damping, without the
necessity of sign reversal in the SC gap [3]. Additionally, the s±-wave state is expected to
be very fragile against impurities due to the interband scattering [4]. In the same time s++

gap is much more steady with impurity scattering [4] consistently with the experiments. Even if
spin fluctuation mechanism dominates in clean superconductors impurities can induce transition
between s± and s++ symmetries [5].

We solve the quasiclassical self-consistent Eilenberger equations for triangular flux line lattice
(FLL) for s± and s++-wave pairing symmetries. With the Riccati transformation of the
Eilenberger equations, quasiclassical Green functions f and g can be parameterized via functions
a and b [6]

f̄ =
2a

1 + ab
, f † =

2b

1 + ab
, g =

1 − ab

1 + ab
, (1)

satisfying the nonlinear Riccati equations. In Born approximation for impurity scattering we
have

u · ∇a = −a[2(ωn + G) + iu · A] + (∆ + F ) − a2(∆∗ + F ∗), (2)

u · ∇b = b[2(ωn + G) + iu · A] − (∆∗ + F ∗) + b2(∆ + F ), (3)

where ωn = πT (2n + 1), F = 2π ⟨ f ⟩(Γ0 − Γπ) and G = 2π ⟨ g ⟩(Γ0 + Γπ). Here,
Γ0 = πniNF |u0|2 and Γπ = πniNF |uπ|2 are the intra- and interband impurity scattering rates,
respectively (u0,π are impurity scattering amplitudes with correspondingly small, or close to
π = (π, π), momentum transfer) and u is a unit vector of the Fermi velocity. The FLL creates
the anisotropy of the electron spectrum. Therefore the impurity renormalization correction in
Eqs. (2) and (3) averaging over Fermi surface can be reduced to averages over the polar angle θ,
⟨. . .⟩ = (1/2π)

∫
. . . dθ. Since the f function has opposite signs in two bands, Γπ has the opposite

effect on normal and anomalous self-energy. To take into account the influence of screening the
vector potential A(r) in Eqs. (2) and (3) is obtained from the equation ∇×∇×AE = 4

κ2 J, where
the supercurrent J(r) is given in terms of g(ωn, θ, r) from Ref. [6]. There A and J are measured
in units of Φ0/2πξ0 and 2evF N0Tc, respectively. The spatial variation of the internal field hE(r)
is determined through ∇ × A = hE(r). The pairing potential ∆(r) is expressed through the
Green function f . All over the paper the energy, the temperature, and the length are measured
in units of Tc0 and the coherence length ξ0 = vF /Tc0, where vF is the Fermi velocity. The
magnetic field h is given in units of Φ0/2πξ2

0 . In equations impurities are in a units of Tc0, but
in the plots impurities are in units of 2πTc0. In computations the ratio κ = λL0/ξ0 = 10 is used.
To obtain the quasiclassical Green function, the Riccati equations [Eqs. (2, 3)] are solved by the
Fast Fourier Transform (FFT) method for triangular FLL [7]. This method is reasonable for
dense FLL discussed in this paper. In high field the pinning effects are weak and not considered
in our paper.

The investigation of experimental results of field distribution in mixed state of type-II
superconductors is usually done [8] in the framework of the Hao-Clem theory (analytical solution
of the Ginzburg-Landau theory, AGL [9]). Strictly speaking, Ginzburg-Landau theory is valid
only near Tc but it is often used in whole temperature range taking the cutoff parameter ξv

and penetration depth λ as fitting parameters. Recently an effective London model with the
effective cutoff parameter ξh(B) as a fitting parameter was obtained for clean [10] and dirty [7]
superconductors, using self-consistent solution of quasiclassical nonlinear Eilenberger equations.
To emphasize the differences between calculated cutoff parameter and variational parameter of
the AGL we changed the notations ξv → ξh. In this approach the cutoff parameter obtained
from the Ginzburg-Landau model is extended over the whole field and temperature range. In
this case the effects of bound states in the vortex cores are leading to Kramer-Pesch effect and



their delocalization between the vortices [11] are self-consistently included. In this model the
magnetic field distribution is given [7]

hEHC(r) =
Φ0

S

∑

G

F (G)eiGr

1 + λ2G2
, (4)

where F (G) = uK1(u), K1(u) is the modified Bessel function, u = ξhG, G is a reciprocal lattice
vector and S is the area of the vortex lattice unit cell. Because the magnetic field distribution
is similar to the GL model we will call this approach as Eilenberger-Ginzburg-Landau model
and ξh as a GL cutoff parameter. Here, λ is not a fitting parameter but is calculated from the
microscopical theory of the Meissner state and ξh is calculated from Eilenberger theory of the
mixed state.

After solving the Eilenberger equations the obtained magnetic field distribution hE(r)
is fitted with the London field distribution hEHC(r) (Eq. (4)) with λ(T ) calculated from
isotropic s± model [1]. To study the obtained ξh(B, T,Γ0, Γπ) dependences it is convenient
to use the normalization to the coherence length ξc2 determined from the upper critical field
Bc2 = Φ0/2πξ2

c2 (in our units ξc2 = 1/
√

Bc2). Using the similarity to the model of spin-flip
superconductors Bc2(T ) for two dimensional, s± pairing can be determined from the equations
[12]. The superfluidity density in pnictides often shows the power shape dependence with
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Figure 1. The magnetic field depen-
dence of ξh/ξc2 with different tempera-
tures for Γ0 = 3 and Γπ = 0.05 for s±

model. The inset shows the magnetic
field dependence ξh/ξc2 for s± model
(Γ0 = 3,Γπ = 0.05) and s++ model
(Γ∗ = 3, dotted line) at T/Tc0 = 0.15.

exponent approximately equal to two at low temperatures. This law was explained by s± model
with the parameters Γ0 = 3 and Γπ = 0.04 − 0.06 [1]. Fig. 1 shows ξh/ξc2(B/Bc2) dependence
with the parameters Γ0 = 3 and Γπ = 0.05 at different temperatures. All curves demonstrate
growing behavior with values much less that one in whole field range. The small value of ratio
ξh/ξc2 (∼ 0.27) which is comparable with our theoretical prediction, Fig. 1, was obtained in µSR
investigation of Co-doped BaFe2As2 [13]. We also study the case of weak intraband scattering.
This case can be realized in stoichiometrical pnictides such as LiFeAs. Fig. 2 presents the ξh/ξc2

magnetic field dependence at Γ0 = Γπ = Γ = 0, 0.05, 0.06, 0.065 and T/Tc0 = 0.15. Dashed line
demonstrates the result of the AGL theory for ξv [9]

ξv = ξc2(
√

2 − 0.75

κGL
)(1 + b4)1/2[1 − 2b(1 − b)2]1/2, (5)

where ξc2 is determined from the relation Bc2 = Φ0/2πξ2
c2 (in our units ξc2 = 1/

√
Bc2).

This dependence with ξc2 as a fitting parameter is often used for the description of the µSR
experimental results [8]. As can be seen from this picture the shape of curve does not change
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Figure 2. The magnetic field depen-
dence of ξh/ξc2 at T/Tc0 = 0.15 with the
same values of intraband Γ0 and inter-
band Γπ scattering Γ (Γ = 0, 0.05, 0.06,
0.065). Dotted lines show the magnetic
field dependence of ξh/ξc2 for s++ model
(Γ∗ = 0.25). Dashed line demonstrates
the result of the AGL theory for ξv from
Eq. 5. The inset shows the magnetic field
dependence of ξh/ξc2 for Γ0 = 0.25, Γπ =
0.01, 0.02, 0.03, 0.04 at T/Tc0 = 0.15.

considerably, but the absolute values of ξh/ξc2 depend crucially on it. At low Γ values, ξh/ξc2

resides below the AGL curve and moves above it at high Γ, opposite to the case of the strong
intraband scattering considered in Fig. 2. Such behavior is quite different from that in s++

pairing symmetry where intraband and interband scattering rates act in similar way and ξh/ξc2

decreases always with impurity scattering.
To conclude, Eilenberger equations have been solved for superconductors with isotropic s±

and s++ pairing symmetries in the mixed state. These symmetries are proposed for the pairing
state of the Fe-pnictides. Effects of interband and intraband impurity scattering on Hao-Clem
cutoff parameter ξh are investigated. It is found that ξh/ξc2 from (B/Bc2) dependence is
nonuniversal, depending on the chosen parameter set it can reside both below and above AGL
curve. Such behavior is quite different from that in s++ pairing symmetry where intraband
and interband scattering rates act in similar way and ξh/ξc2 decreases always with impurity
scattering. It is found that intraband scattering (Γ0) suppresses ξh/ξc2 leading to values much
less than unit at high Γ0. The effects of interband impurity scattering (Γπ) depend on the value
of Γ0: at small Γ0 ξh/ξc2 increases with Γπ, but at high Γ0 it decreases with Γπ. The effects of
interband impurity scattering at moderate Γ0 depends on the field range resulting in increasing
of ξh/ξc2 at low fields, but suppressing it at high fields. The ξh/ξc2(B/Bc2) calculations for
parameters of doped BaFe2As2 compounds [1], where Γ0 ≫ Γπ, are done. These dependences
demonstrate growing behavior defined by Γ0 with values much less that one in whole field range,
i.e. they are under the AGL curve of ξv.

This work was supported by Finnish Cultural Foundation.
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Eilenberger approach to the cutoff parameter, nh, of the field distribution in the mixed state of high

j-superconductors is developed. It is found that normalized value of nh/nc2 decreases both with

temperature (due to Kramer-Pesch effect) and with impurity scattering rate C. Our theory explains

lSR experiments in some low-field superconductors and different nh values from the

Ginzburg-Landau theory predictions in isotropic s-wave superconductors. A comparison with

another characteristic length n1, describing the gradient of the order parameter in the vortex center,

is done. They have very different C-dependences: monotonous suppression of nh(B) values and

crossing behavior of the n1(B) curves at various C. This is explained by the nonlocal effects in the

Eilenberger theory. VC 2011 American Institute of Physics. [doi:10.1063/1.3610502]

I. INTRODUCTION

Much attention has been focused on a vortex structure in

high j-superconductors. It is explained by many predicted re-

markable phenomenon in the vortex core physics: induced

superconducting order parameter of other symmetries;1,2

induced antiferromagnetic order parameter in high-Tc super-

conductors;3–5 current-carrying bound states resulting in

Kramer-Pesch effect;6–8 Majorana states in topological super-

conductors;9,10 and the quasiparticle transfer between vortices,

i.e, the vortex lattice effects.1 Experimentally, several impor-

tant means to probe the vortex structure are now available,

such as muon spin resonance11–13 (lSR), nuclear magnetic

resonance,5 and small-angle neutron scattering14,15 through

the field distribution, heat transport16 or by scanning tunneling

microscopy17–19 through the local density of states in various

superconductors, including high-Tc superconductors.

The analysis of the experimental data in the mixed state

depends on the theoretical model of the distribution function

of local fields P(B) in the vortex lattice.16,20 One of the most

widely used models is an approximation of the analytical

Ginzburg-Landau theory (the AGL theory).21,22 For the

dense vortex lattice (B� Bc1) and high-j (jGL> 10) super-

conductors, the AGL theory prediction for the Fourier com-

ponents of the magnetic field is

BzðGÞ ¼
/0

S

f 2
1

k2G2
ðnvGÞK1ðnvGÞ; (1)

where K1(x) is a modified Bessel function, G is a reciprocal-

lattice vector, S is the area of the vortex lattice unit cell, and

nv and f1 are variation parameters representing the effective

core radius of a vortex and the depression of the order pa-

rameter due to the overlap of vortex cores, respectively.

They have simple functional dependences on b¼B/Bc2 and

jGL:

nv ¼ nc2ð
ffiffiffi
2
p
� 0:75

jGL
Þð1þ b4Þ1=2½1� 2bð1� bÞ2�1=2

(2)

and f 2
1 ¼ 1� b4. Here, nc2 and jGL are GL coherence length

and GL parameter, respectively. nc2 can be found from the

value of the upper critical field Bc2 ¼ /0=2pn2
c2. In Eq. (1),

/0=S ¼ B ¼ bBc2 is the mean induction. It is important to

note that, in this approximation, nv(B) is determined only by

nc2 and the ratio B/Bc2. It implies that nv/nc2 (B/Bc2) is a uni-

versal function. One can consider Eq. (1) as a solution of the

modified London equation (with cutoff nv and effective pen-

etration depth keff ¼ k=f1.)21 The comparison between the

variation and the exact numerical solution shows that the ac-

curacy of the AGL theory is in the order of 10%.21

In the analysis of the experimental data k and nv are of-

ten considered as fitting parameters. To emphasize that nv is

a fitting parameter, we will use another notation in the fol-

lowing consideration for it, nh, and leave nv notation for the

prediction of AGL theory. While the fitting analysis of the

lSR data is performed entirely in time domain, one can

reconstruct B(r) by Eq. (1), using the physical parameters

deduced from the fitting analysis. Using the reconstructing

field distribution and Maxwell equations, the supercurrent

density J ð
!

rÞ and the core radius n2 defined by

Jð n!2Þ ¼ Jmax (where Jmax denotes the current modulus

maximum of J ð
!

rÞ) can be obtained.23 In the AGL theory,

the equality nh¼ n1 is suggested. Here, the order characteris-

tic length n1, determined as 1=n1 ¼ ð@jDðrÞj=@rÞr¼0=jDNNj,
where jDNNj is the maximum value of the order parameter

along the nearest-neighbor direction, which is the direction

of taking the derivative. The length n1 is directly con-

nected with the length n3 responsible for the density of

states and STM measurements description.24 The micro-

scopic theory valid in the whole temperature range is the

quasiclassical Eilenberger theory. The characteristic lengths

n1 and n2 were calculated.8,24,25 The similarity n1ðBÞ
� n2ðBÞ was found for clean superconductors.24 However,

the case of dirty superconductors was not considered in

the details.
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Using this method, the experimental muon spin reso-

nance (lSR) results in V3Si, Nb3Sn, NbSe2, YNi2BC, and

LuNi2B2C in intermediate magnetic fields (where contribu-

tion of the weak superconducting gap is suppressed) and, at

low temperatures, showed that nh is much less than nv of the

prediction of AGL theory.16,20 Theoretical consideration is

needed for explanation of this experimental fact. Simultane-

ous experimental determination of keff and nh without any

restrictions is very problematic, regardless of the model used

to describe the vortex state.26 It has been suggested that P(B)

of flux-line lattice (FLL) can be explained using only one fit-

ting parameter.27 The magnetic-field penetration depth k(T)

is assumed to be field independent and have the same value

as in the Meissner state, i.e., f1¼ 1. In this approach, all

field dependent effects are taken into account in nh(B) de-

pendence. This is equivalent to the use of the effective criti-

cal field B�c2 for the description of the mixed state. It will be

impurity scattering (by a different way than Bc2) and field de-

pendent in this case. In this model, the field dependence of

the cutoff parameter was introduced phenomenologically for

explanation of deviations in M(ln B) from linear behavior

prescribed by the London model. It was used for explanation

of deviation of field dependence flux flow resistivity from

Bardeen-Stephen law.28 Deviations from the London model

description were also found in the investigation of magnet-

ization of superconductor nanoparticles in the mixed

state.29,30

Recently, an effective London model with the nh(B) as a

fitting parameter has been obtained for clean31 and dirty32

superconductors, using self-consistent solution of quasiclassi-

cal nonlocal Eilenberger equations. Such a theory looks

appropriate for the description of the vortex core, where

strong nonlinear and nonlocal effects are expected. In this

approach, the analysis of the coherence length nc2, obtained

from the Ginzburg-Landau model, is extended over the whole

field and temperature range. The Fourier components of mag-

netic field in this model are described by Eq. (1) with f1¼ 1

and keff¼ k:

hEGLðrÞ ¼
/0

S

X
G

FðGÞeiGr

1þ k2G2
; (3)

where F(G)¼ nhGK1(nhG). It is important to note that nh in

Eq. (3) is obtained from solving the Eilenberger equations and

does not coincide with the variational parameter nv of the

AGL model. We will call the field distribution (3) as an Eilen-

berger-Ginzburg-Landau field distribution hEGL (r). In Eq. (3)

k(T) is calculated from microscopic theory for the Meissner

state and renormalized by impurity scattering.33 In dirty super-

conductors, the value of k increases considerably and it is the

main effect of impurities in the field distribution (Eq. (3)),

suppressing deviation of the field from the mean value B.

Thus, in this model, there are only one fitting parameter

for the description of the vortex state, nh, similar to Kogan

et al. in Ref. 27, and two GL parameters k(T) and Bc2(T)

(three-parameter Eilenberger-Ginzburg-Landau model).

Using the Hao-Clem type of the field distribution does not

mean direct connection to the GL theory, and it is taken as a

reasonable starting point of the investigation, similar to the

empirical approach to the problem.16,20

It was recently demonstrated by the lSR measurements

that the variance of the magnetic field, r, at T ! 0 can be fit-

ted by GL theory using two fitting parameters k and Bc2.34–36

Moreover, the value of Bc2, evaluated in such a way, coin-

cides with the result of magnetization measurements. This

coincidence proves that the theoretical r(B) dependence cal-

culated in the framework of the GL theory can indeed be

used for quantitative analysis of isothermal experimental

data, even at temperatures T � Tc. It is most probable that

the distribution of the magnetic induction in the sample

(P(B)) is different from predictions of microscopic theory,

while a, as a more integral characteristic of this distribution,

remains practically the same.36 The doubts were expressed

in the expediency to use phenomenological field dependent k
and Bc2 in Ref. 36. The authors asserted also that, if the con-

ventional GL theory cannot describe the lSR results and if

all other possibilities (such as polycrystalline samples of ani-

sotropic superconductors) for this disagreement are

excluded, one may conclude that this superconductor is

unconventional. For example, such conclusion was done in

lSR investigation of PrPt4Ge12.11

The aim of our paper is to numerically calculate nh (B)/

nc2 dependences (characterizing line shape of the lSR data,

local field, and current distributions) at different tempera-

tures and impurity scattering rates in the framework of the

Eilenberger theory. In this way, one can check the reliability

of the GL theory in the whole parameter range and claim the

signatures about unconventional superconductivity: if the ra-

tio nh/nc2 can be much different from one, even in isotropic

s-wave superconductors, such statements should be taken

very carefully. Such consideration can also help to clarify

the value of the vortex core radius qv.
16,20

II. THE MODEL

With the Riccati transformation of the Eilenberger equa-

tions, quasiclassical Green functions f and g can be parame-

terized via functions a and b:25

�f ¼ 2a

1þ ab
; f † ¼ 2b

1þ ab
; g ¼ 1� ab

1þ ab
; (4)

satisfying the nonlinear Riccati equations. In Born approxi-

mation for the nonmagnetic impurity scattering, we have

n � ra ¼ �a 2ðxn þ GÞ þ in � A½ �
þ ðDþ FÞ � a2ðD� þ F�Þ; (5)

n � rb ¼ b 2ðxn þ GÞ þ in � A½ �

� (D * + F * )þ b2ðDþ FÞ; (6)

where xn ¼ pTð2nþ 1Þ, F ¼ 2phf i � C, and G ¼ 2phgi � C.

Here, C ¼ pniNFjuj2 is the impurity scattering rate (u is impu-

rity scattering amplitude) and n is a unit vector of the Fermi ve-

locity. The FLL create the anisotropy of the electron

spectrum.24 Therefore, the impurity renormalization correc-

tion in Eqs. (5) and (6) are averaged over Fermi surface and

can be reduced to averages over the polar angle h, i.e.,

h…i ¼ ð1=2pÞ
Ð
� � � dh.
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To take into account the influence of screening, the vec-

tor potential A(r) in Eqs. (5) and (6) is obtained from the

equation r	r	 AE ¼ 4
j2 J, where the supercurrent J(r) is

given in terms of gðxn; h; rÞ by

JðrÞ ¼ 2pT
Xxc

xn>0

ð2p

0

dh
2p

k̂

i
gðxn; h; rÞ: (7)

Here, A and J are measured in units of /0=2pn0 and

2evFN0Tc, respectively. The self-consistent condition for the

pairing potential D(r) is given by

DðrÞ ¼ VSC2pT
Xxc

xn>0

ð2p

0

dh
2p

f ðxn; h; rÞ; (8)

where VSC is the superconducting coupling constant and xc

is the ultraviolet cutoff frequency determining Tc0.32 All

over our paper, the energy, the temperature, and the length

are measured in units of Tc0 and the characteristic length

n0 ¼ vF=Tc0 ¼ nBCSpD0=Tc0. Here, nBCS ¼ vF=pD0, where

tF is the Fermi velocity and D0 is the temperature dependent

uniform gap. The magnetic field h is given in units of

/0=2pn2
0. The impurity scattering rates are in units of 2pTc0.

In computations, the ratio j ¼ kL0=n0 ¼ 10 is used. It corre-

sponds to jGL¼ 43.3.25 The Riccati equations [Eqs. (5) and

(6)] are solved by the fast Fourier transform (FFT) method.32

This method is reasonable for dense FLL discussed in this

paper. After solving the Eilenberger equations, the obtained

magnetic field distribution hE(r) is fitted with the London

field distribution hEGL(r) (Eq. (3)). In high field, the pinning

effects are weak and not considered in our paper. To study

the obtained nh(B,T, C) dependences, it is convenient to use

the normalization to the coherence length nc2, determined

from the upper critical field Bc2 ¼ /0=2pn2
c2 (in our units

nc2 ¼ 1=
p

Bc2). Figure 1(a) shows Bc2(T) dependences, and

nc2(T) dependences are shown in Fig. 1(b) with C¼ 0, 1, 2,

3, 4, 5, and 6, calculated from the model of two dimensional

s-wave superconductors37

ln
Tc0

T

� �
¼ 2pT

X
n
0

½x�1
n � 2D1ðxn;Bc2Þ�; (9)

where

D1ðxn;Bc2Þ ¼ Jðxn;Bc2Þ½1� 2CJðxn;Bc2Þ��1; (10)

Jðxn;Bc2Þ ¼
4

pBc2

� �1=2ð1
0

dy expð�yÞ arctan
ðBc2yÞ1=2

a

" #
;

(11)

where a ¼ 2ðxn þ CÞ.

III. RESULTS AND DISCUSSIONS

A. Comparison with the AGL theory

Figure 2 shows the calculated nh/nc2 values at different

temperatures. Strong decreasing of nh/nc2 with decreasing of

temperature is clearly visible in Fig. 2. It can be explained

by Kramer-Pesch effect.6–8 Similar effect was observed in

lSR investigation of the NbSe2 single crystal.16 Because

Kramer-Pesch effect says nh/nBCS decreases with tempera-

ture, the results with another normalization constant nBCS are

presented in the insets to this figure. Since nh/nBCS is temper-

ature dependent, it results in a minor difference between the

values of nh/nc2 and nh/nBCS taken with the different temper-

atures. Our calculations show that, in clean superconductors

nh(B) dependence has minimum, which disappears at low

temperatures. Surprisingly, a qualitative similarity is

observed with the AGL model (dashed line in Fig. 2), which

is supposed to be noncorrect.38 The absolute values of nh are

considerably less than those of the AGL theory predictions

because the Kramer-Pesch effect is not included in the phe-

nomenological GL theory. With increasing temperature,

magnetic field dependence of nh moves to higher values, to-

ward the AGL theory predictions (Fig. 2(a)). It looks like the

restoration of Ginzburg-Landau behavior at high tempera-

tures. In the presence of impurity scattering, the same tend-

ency is also visible (Fig. 2(b)), but shifting of nh to the

direction of the AGL curve is slower. It should be noted that

the normalization constant nc2 used in Fig. 2 is strongly de-

pendent on C. Some other explanation is needed.

In Fig. 3(a) at T/Tc0¼ 0.5, the change of the shape of the

nh(B) curve in low fields with increasing of scattering rate C

FIG. 1. (Color online) (a) The temperature dependence of the upper critical

field Bc2 with different values of scattering rates C. (b) The temperature de-

pendence of nc2/n0 with different values of scattering rates C.
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is shown. Strong suppression of the nh/nc2 values to values

much less than one is visible at increasing C. The obtained

small nh/nc2 values are consistent with the experimental ob-

servation in some high-j, low-Tc superconductors.16,20 Such

strong suppression of nh/nc2 values in dirty superconductors

is similar to that obtained in Ref. 39. But authors of this pa-

per used semianalytical methods, while we obtained numeri-

cal solution of the full self-consistent Eilenberger theory. We

also calculate magnetic field dependence of mean square

deviation of hEGL distribution of the magnetic field from the

Eilenberger distribution, e ¼ ððhE � hEGLÞ2=ðhE � BÞ2Þ1=2
,

where normalization is done by the variance of the Eilen-

berger distribution and � � � is average over vortex unit cell.

Figure 3(b) shows e(B) dependence at different impurity

scattering C. It can be seen that accuracy of the EGL model

is getting better, with increasing impurity scattering and sat-

urates at the C � 2.

With high C, it is well known that nc2 �
ffiffiffiffiffiffiffiffiffi
1=C

p
�

ffiffi
l
p

,

where l is the mean-free path. The decreasing of the nh/nc2

ratio implies stronger dependence of nh on l. It is found that,

in dirty superconductors, nh can be scaled with relaxation

time s, nhðB; T; sÞ ¼ npureðB; TÞ=ð1þ s0ðB; TÞ=sÞ, where

npure(B,T) is the cutoff parameter in clean superconductors31

and s0 is a characteristic relaxation time. It results in nh n l

dependence at high C similar to the behavior of nonlocality

radius,40 q, resulting in decreasing of nh/nc2 at high C,

observed in Fig. 3(a). Thus, Figs. 2 and 3 demonstrate the

strong differences between the nonlocal Eilenberger and the

local GL theories. With nonlocality effects, the field distribu-

tion should contain the new characteristic field B0 � /0=q
2

instead of Bc2 � /0=n
2
c2.40 Because of q(C,T)= nc2(C,T),

the limit nhðB! Bc2Þ is different from nc2, which is visible

at Figs. 2 and 3. We also note the difference between AGL

theory and our calculation in the limit of B! Bc2. In our

methods, there is only one fitting parameter nh, while in the

AGL theory, there are two of them, nv and f/ f/ � 1ð , in our

case). Because of the boundary condition of the field distri-

bution (hðrÞ ! B at B! Bc2), nh is the growing function of

B at the high fields, resulting in the appearance of the mini-

mum in the field dependence and the inequality of the nh and

nc2 at B! Bc2. In the AGL theory, the boundary condition

is satisfied by the limit f/ ! 0 at B! Bc2, so the behavior

of nv(B) dependence is not predetermined.38

FIG. 2. (Color online) (a) The magnetic field dependence of the calculated

nh/nc2 values at different temperatures with impurity scattering rate C¼ 0.

The inset shows the magnetic field dependence of the calculated nh/nBCS val-

ues at different temperatures with impurity scattering rate C¼ 0. (b) The

magnetic field dependence of the calculated nh/nc2 values at different tem-

peratures with impurity scattering rate C¼ 0.5. The inset shows the mag-

netic field dependence of the calculated nh/nBCS values at different

temperatures with impurity scattering rate C¼ 0.5. Dashed lines demonstrate

the result of the AGL theory for nv taken from Ref. 22.

FIG. 3. (Color online) (a) The magnetic field dependence of nh/nc2 at

T/Tc0¼ 0.5 with different impurity scattering rate C. (b) Magnetic field de-

pendence of mean square deviation, �, of the London distribution from the

Eilenberger distribution, normalized by the variance of the Eilenberger dis-

tribution for T/Tc0¼ 0.5 with different impurity scattering rate C.
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B. Characteristics’ lengths of the vortex core in the
mixed state

For the convenience of the reader, we summarized the

definitions of all characteristics’ lengths of the vortex core

used in our paper. Characteristics’ lengths of the vortex core

in the mixed state: 
 nv, the AGL cutoff parameter (Eq. (2))


 nh, the Eilenberger cutoff parameter, (Eq. (3)) 
 n0, the

characteristic scale in the calculation, tF/Tc 
 n1, the order

parameter coherence length, 1=n1 ¼ ð@jDðrÞj=@rÞr¼0=jDNN j

 n2, the core radius, where the superconductor current

around the vortex has its maximum 
 n3, the STM vortex

core radius, n3 ¼ 0:35½ðNð0Þ=N0Þ=ðH=Hc2Þ�1=2
(see Ref. 24)


 nBCS, the BCS coherence length, nBCS ¼ tF=pD0
 nc2, the

GL coherence length, nc2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/0=2pBc2

p

 nKZ, the coher-

ence length of the linearized Eilenberger equation (see Ref.

39).

Fast decreasing of nh can be compared with the behavior

of another characteristic length n1, which is determined as

1=n1 ¼ ð@jDðrÞj=@rÞr¼0=jDNNj, where |DNN| is the maximum

value of the order parameter along the nearest-neighbor

direction, which is the direction of taking the derivative.25

This length is important for the description of the scanning

tunneling microscopy experiments.24 At low temperatures,

impurity scattering suppresses Kramer-Pesch effect in n1(T)

dependence, resulting in nonmonotonous behavior of n1(C).

This is shown in Fig. 4, where normalization constant nBCS is

used (nBCS is not depending on C). It is clearly visible that

magnetic field dependence of nh decreases monotonously

with C (Fig. 4(a)) in contrast to crossing behavior of n1(B)

dependences for different C reported in Ref. 25 (Fig. 4(b)).

Different impurity induced behavior of nh and n1 is also visi-

ble when using C-dependent normalization constant nc2 (Fig.

5). The nh/nc2(B/Bc2) curve shifts downward with C, while

n1/nc2(B/Bc2) curve moves in the opposite direction. In the

same time, lowering of the temperature reduces both nh/nc2

and n1/nc2 values. The dependences of nh/nc2 from 1/C at dif-

ferent temperatures are shown in Fig. 6 in detail. A strong

suppression of the nh/nc2 with temperatures and scattering

time is clearly visible in this figure.

The similar tendencies in the temperature and impurity

scattering dependences are found for current characteristic

length n2: its value decreases monotonously with reducing T
and 1/C. It can be seen from Fig. 7, where nh/n2(B/Bc2) are

shown for different T and C. It is important to note that, in

the absence of impurity scattering, the value of n2 is scaled

with that of n1 and they have the same field dependences:

decreasing and increasing functions of B at T/Tc0¼ 0.5 and

T/Tc0¼ 0.2, respectively. Impurity scattering breaks the scal-

ing between n2(B) and n1(B). It means that different methods

of vortex core investigation, such as lSR experiments (con-

nected with nh and n2) and STM studies (connected with n3

and n1), can give different results for characteristic length of

the vortex core. The different vortex core sizes have been

found in lSR and STM investigations of NbSe2 single crys-

tals.41’42 But because these crystals are two-band supercon-

ductors, they cannot be described quantitatively by our one-

band model. We also note the strong different values of n2/
nc2 for high and low temperatures (compare curve for T/Tc0

¼ 0.9 and T/Tc0¼ 0.2). This means that using the Ginzburg-

Landau value for the cutoff parameter nv (approximately

FIG. 4. (Color online) (a) The magnetic field dependence of nh/nBCS at

T/Tc0¼ 0.2 with different impurity scattering rate C (C¼ 0, 0.1, 0.2, 0.4,

0.5, 0.67, 1, and 2). (b) The magnetic field dependence of n1/nBCS at T/

Tc0¼ 0.1 with different impurity scattering rate C taken from Ref. 25.

FIG. 5. (Color online) Comparison of field dependences of nh/nc2 (at T/Tc0

¼ 0.2, C¼ 0; 0.5 and T/Tc0¼ 0.5, C¼ 0, solid lines) and n1/nc2 (at T/Tc0¼ 0.1,

C¼ 0 and T/Tc0¼ 0.1, C¼ 2.64 from Ref. 25 and T/Tc0¼ 0.5, C¼ 0 from Ref.

24, dotted lines).
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valid at high temperatures), instead of the microscopic value

of nh, can give a nonadequate description of the FLL local

properties, in contrast to average over FLL units characteris-

tics, such as the variance of the magnetic field.34–36

Thus, for the descriptions of the vortex core, two

degrees of freedom are needed, nh (connected with the field

distribution) and n1 (connected with the order parameter).

This is characteristic of the nonlocal problems of the vortex

matter. For example, to describe the ac response of the vor-

tex lattice, two modes are needed: one is connected to the

displacements of the vortex cores and another determines the

perturbation of the magnetic field, resulting in two-mode

electrodynamics.43–45 In ac response, the nonlocality appears

from the wave-dependent elastic moduli,46 while in the con-

sidered case, it is connected with the finite size of the Cooper

pair.33

We believe that nh behavior is connected with the nature

of the current-carrying quantum states of the quasi-particles

in the vortex core (formed due to particle-holed coherence

and Andreev reflection6). The current distribution can be

decomposed in terms of bound states and extended states

contributions.47 Close to the vortex core, the current density

arises mainly from the occupation of the bound states. The

effect of extended states becomes important only at distances

larger than the coherence length. The bound states and the

extended states contributions to the current density have op-

posite signs. The current density originating from the bound

states is paramagnetic, whereas extended states contribute a

diamagnetic term. At distance larger than the penetration

depth, the paramagnetic and diamagnetic parts essentially

cancel, resulting in exponential decay of the total current

density. The similar paramagnetic current of Andreev bound

states has been found at the surface of d-wave superconduc-

tors.48 At low temperatures, the current rises to its maximum

over a distance of the order of n2, which is consistent with

the sharp rise of the pair potential in the same region. In this

region, the current is mainly carried by the lowest bound

state. As discussed in Ref. 49, for the proper description of

the bound states, quantum mechanical nonlocal approach is

needed, and the strong difference between the nonlocal

Eilenberger and the local Doppler-shift method has been

found. It is well known that nonlocal effects and current-car-

rying states are suppressed strongly by impurity scatter-

ing.6,40 It results in decreasing of the n2/nc2 value and

restoration of the local behavior for n1/nc2 (Fig. 5, upper

curve).

IV. CONCLUSIONS

The field distribution of the mixed state in dirty s-wave

superconductors in wide temperature and field range is inves-

tigated in the framework of the Eilenberger theory. The nor-

malized dependences of the cutoff parameter nh/nc2(B/Bc2)

responsible for the line shape of the lSR resonance are calcu-

lated. It is found that this dependence is nonuniversal and

depends on temperature and on impurity scattering rate, C.

This is different from the universal dependence expected from

the GL theory. At high values of C=2pTc0 
 0:5, the depend-

ence shows a plateau in intermediate field range, and the val-

ues nh(B)/nc2 are less than one. The strong suppression nh/nc2

with C can qualitatively explain the lSR experimental results

in some low-temperature superconductors, V3Si, NbSe2, and

LuNi2B2C, in high field range (see Fig. 7 in Ref. 16). For the

quantitative comparison of the theory and experimental

results, the anisotropy of the Fermi surface should be taking

into account. The coherence length nKZ of the linearized

Eilenberger equation was calculated for three-dimensional

(3D) isotropic case of the Fermi sphere and two-dimensional

(2D) isotropic materials, i.e., the Fermi cylinder.39 A close-

form equation for nKZ(B) was found for both Fermi surfaces.

It was shown that the results can be represented in the reduced

form as nKZ(B)/nc2(Bc2)¼U(B/Bc2), with U being a universal

function. The only difference between 2D and 3D situations is

the numerical coefficient (a) in this universal function. We

believe that the similar consideration about minor importance

of the Fermi surface anisotropy can be applied for our cutoff

parameter nh if it is presented in the reduced form nh/nc2(B/

Bc2). Our microscopic model justified the empirical methods

for the interpretation of the lSR16,20 and magnetization27

FIG. 6. (Color online) The impurity scattering rate 1/C dependence of nh/

nc2 at different temperatures T/Tc0 (T/Tc0¼ 0.2, 0.5, and 0.8) with B¼ 10.

FIG. 7. (Color online) The magnetic field dependence of n2/nc2 at different

temperatures and with different impurity scattering rates C (C¼ 0, T/

Tc0¼ 0.2, 0.5, and 0.9 and T/Tc0¼ 0.2, C¼ 0.5, 1, and 2).
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investigations and shows that at least one parameter, different

from GL theory, is needed for the explanation of the result,

even in the isotropic s-wave superconductors. It results in a

three-parameter (kðC; TÞ;Bc2ðC; TÞ; and nh=nc2ðC;B; TÞ)
model of the mixed state of s-wave superconductors. Absolute

values of nh and n1 show different dependence on impurities:

nh(B) curves decrease monotonously with impurity scattering

rate, while n1(B) curves cross each other in this case.
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a b s t r a c t

The generalized London equation in the mixed state of high-j s-wave pairing superconductors with

impurities is considered as a projection of the quasiclassical nonlocal nonlinear Eilenberger theory. Only

one fitting parameter – the cutoff parameter nh – is used in the theory. The distribution of the magnetic

field is calculated self-consistently. Both nonlocal effects originated from extended states between the

vortices and bound Andreev states in the vortex are taken into account. Comparison with different ana-

lytical nonlocal linear approaches (the Kogan–Gurevich, Amin–Franz–Affleck, Kogan–Zhelezina models)

including only extended states is done. The importance of the Kramer–Pesch nonlinear effect and the

field dependence of the cutoff parameter is emphasized and their strong influence on the variance of

the magnetic field is found. The influence of the impurities on the ratio of the cutoff parameter nh and

the Ginzburg–Landau coherence length nc2 is considered. Quasiparticle scattering by impurities and low-

ering of the temperature reduces the value of nh to the values much less than nc2. This is different from the

prediction of the local Ginzburg–Landau theory where nh is scaled by nc2. It is found that impurities influ-

ence by different way on the cutoff parameter nh and the order parameter coherence length n1. The nh

decreases monotonously with the impurity scattering time in contrast to the nonmonotonous behavior

of n1. The results can be used for analysis of the lSR experimental data.

Ó 2012 Elsevier B.V. All rights reserved.

1. Introduction

Recently, the field dependence and other properties of the vor-

tex structure in the conventional s-wave superconductors and in

high-Tc superconductors have attracted much attention. Several

important means to probe the vortex structure are available exper-

imentally in various superconductors. Specific heat experiments

[1] give information of low-energy excitations. Muon spin reso-

nance (lSR) [2,3] and small-angle neutron scattering [4] measure-

ments investigate the internal field distribution of the vortex

structure. Scanning tunneling microscopy (STM) [5] directly ob-

serves the local density of states. The vortex core size is deter-

mined from the lSR measurements by fitting it into a theoretical

function for B(r) that includes a cutoff function F(G, nh), where G re-

fers to the reciprocal lattice vectors. The parameter nh is the cutoff

Gmax of the sum over the reciprocal lattice. This removes the diver-

gence of the sum over the G in the expression for the field distribu-

tion in the London approach. The cutoff cannot be improved within

the London theory; to this end, one should use a theory which is

able to handle the core structure properly [6]. The functional form

of F(G, nh) depends on the spatial dependence of the superconduc-

ting order parameter D(r) in the core region. The cutoff parameter

nh is directly connected with the microscopical length n2 defined as

the distance where the screening current around the vortex has its

maximum [7]. Cutoff function F(G, nh) was obtained in the varia-

tional approach of the Ginzburg–Landau (GL) equations [8] (the

Hao–Clem theory (HC), the analytical GL theory (AGL)) and the

field dependence of nh was calculated (nv in a notation of the AGL

theory). In this model, nh/nc2 is a universal function of B/Bc2. Here,

nc2 is the GL coherence length determined from the relation

Bc2 ¼ U0=2pn
2
c2, where Bc2 is an upper critical field and U0 is a flux

quantum. The GL theory was carefully reanalyzed in Ref. [12],

where strong deviation from the AGL theory and the values of

the variational parameters were found i.e., the AGL model can be

considered as a very approximative and qualitative. But it can be

used for the description of the field distribution with nh obtained

by fitting to the numerical solution of the GL [13]. In this method

the HC type of the field distribution is conserved, but nh(B)– nv(B)

is found. In the same way, in analysis of experimental data the

functional form of F(G, nh) is often taken in the form of the HC
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model in all temperature range with nh as a fitting parameter. This

is explained by historical reasons and its convenience for the fit-

ting. It is important that connection between nh and n2 does not de-

pend strongly on fitting procedure [14] and does not include any

microscopical parameters. Using of any other fitting methods could

not change the conclusions about the microscopical length n2.

Analyzed with this method, lSR experimental results in V3Si,

NbSe2, and LuNi2B2C in intermediate magnetic fields and low tem-

peratures showed that nh/nc2(�0.7) < 1 (see Fig. 7 on page 1731 in

Ref. [3]). Similar effect has been observed also in iron pnictide

superconductor BaFe1.82Co0.18As where nh/nc2(�0.4) < 1 [15]. These

small values are quite different from the prediction of the AGL the-

ory (n
v
=nc2 ¼

ffiffiffi
2

p
), which needs explanations.

In the AGL theory, the equality nh = n1 is suggested. Here, the or-

der parameter coherence length n1 is determined as 1/n1 = (@jD(r)j/
@r)r=0/jDNNj, where jDNNj is maximum value of the order parameter

along the nearest-neighbor direction which is the direction of tak-

ing the derivative. The length n1 is directly connected with the

length n3 responsible for the density of states and STM measure-

ments description [16]. For the convenience of the reader we sum-

marized the definitions of all characteristics lengths of the vortex

core used in our paper in Table 1.

The measurements of the reversible magnetization of type-II

superconductors in the mixed state is also powerful method to

investigate of the characteristic lengths such as k and nc2. The AGL

model gives the possibility to calculate the magnetization of type-

II superconductors in the full range Bc1 < B < Bc2. The analytical for-

mula is in a good agreement with the well-known Abrikosov high-

field result. The Hao–Clem model was further extended to include

anisotropy. This approximation was widely used for the analysis of

the experimental data on magnetization of type-II superconductors

(see references 27–29 in Ref. [12]). While at high temperatures, the

analysis of data for Tl ÿ 2223 and Hg ÿ 1201 produced a well-be-

haved Hc2 / (Tc ÿ T) [17], the method failed when applied to low

T. Extensive magnetization data on Bi ÿ 2212 [18] analyzed with

the help of AGL approach have generated a nearly constant Bc2(T)

between 35 and 70 K, whereas the standard Helfand–Werthamer

estimate predicts a reduction by a factor of 3 or 5. This difficulty

motivatedKogan andGurevich to review themicroscopic derivation

of the London equations and to obtain corrections due to the basic

nonlocality of the relation between current density and the vector

potential (the KG theory) [11]. In this theory the field B enters M in

the combination B/B0 instead of the standard London or GL ratio

B/Bc2. The field B0 of a given sample increases with T; at a given T,

B0 of a set of samples increases fast with shorter mean-free path l.

The characteristic field B0 is related to the nonlocality range q. This
theory reasonably explains the magnetization data for strongly

anisotropic compounds (Bi ÿ 2212, Tl ÿ 2212, Hg ÿ 1201) [11] and

for nearly isotropic borocarbides [19,20].

The scaling field B0 is found to be nearly proportional to the field

B2 at which the vortex lattice undergoes the symmetry change in

high-quality crystals of borocarbides (the ‘‘square-to-hexagonal’’

transition) under reducing the field [21,22]. Anisotropic nonlocal

corrections to the London model were used to describe vortex lat-

tices in tetragonal LuNi2B2C [23]. The nonlocal corrections are ex-

pected to introduce a fourfold anisotropy as a function of the

magnetic field orientation within the a ÿ b plane [24]. Studies of

single crystal YNi2B2C revealed a fourfold anisotropy of the equilib-

riummagnetization in the square crystallographic basal plane [25].

This p/2 periodicity occurs deep in the superconducting mixed

state. The experimental results were well described by generalized

London theory incorporating nonlocal electrodynamics [24].

The nonlocal generalized London equation was also developed

to the description of the mixed state in high-Tc superconductors

such as YBa2Cu3O7ÿd compounds (the Amin–Franz–Affleck (AFA)

model) [26,27]. In this case fourfold anisotropy arises from d-wave

pairing. This theory was applied for investigation of the flux line

lattice (FLL) structures [28] and effective penetration depth mea-

sured by lSR experiments [29]. Deviations from the London model

description were also found in the investigation of magnetization

of YBaCuO superconductor nanoparticles in the mixed state

[30,31]. Detailed investigations of YBaCuO nanoparticles was done

in Refs. [32,33].

In the KG and AFA models the cutoff function was introduced

phenomenologically. The attempt to describe the vortex core

microscopically was made in Ref. [10] (the Kogan–Zhelezina (KZ)

model). In this model the linearized Eilenberger equations (EEs)

have been solved and uniform magnetic field has been suggested.

The obtained field dependence of the coherence length nKZ looked

similar to that observed experimentally but the temperature

dependence has opposite tendency, i.e., Kramer–Pesch effect is ab-

sent in this theory [2,3].

In spite of the nonlocal generalized London models look quite

attractive and convenient for analysis of the experimental data

their applicability is not clear because of using only partly Eilen-

berger theory results. The bridge between the full self-consistent

solution and phenomenologically renormalized London models is

needed.

The aim of this paper is to project the Eilenberger theory solu-

tion to the London model leaving only minimal possible amount of

parameters and to check the applicability of the above methods. To

do that, we will use two presentations of the field distribution

hEHC(r) and ~hEHCðrÞ. In both methods the Hao–Clem cutoff function

with one fitting parameter nh or k1, respectively, will be used. In the

second case the contribution of the extended electronic case out-

side the vortex core will be separated obviously.

2. Model

The microscopical theory valid in the whole temperature range

is the quasiclassical Eilenberger theory. The cutoff parameter can

be found from the fitting of the calculated magnetic field distribu-

tion obtained from the EE to the Hao–Clem type field distribution

[34,35]

hEHCðrÞ ¼
U0

S

X

G

FðGÞeiGr

1þ k2G2
; ð1Þ

where F(G) = uK1(u), K1(u) is the modified Bessel function, u = nhG

and S is the area of the vortex lattice unit cell. In Eq. (1), k(T) is cal-

culated from microscopical theory and renormalized by nonmag-

netic impurity scattering [36]. So that,

k2

k20
¼ 2pT

X

nP0

1

eDn 1þ u2
n

ÿ �3=2

 !ÿ1

; ð2Þ

Table 1

Characteristics lengths of the vortex core in the mixed state.

Length Definition

nh Cutoff parameter in the field distribution hEHC(r), (Eq. (1))

k1 The cutoff parameter in the field distribution ~hEHCðrÞ, (Eq. (13))
nv AGL cutoff parameter, (Eq. (18))

n0 Characteristic scale in the calculation, tF/Tc
n1 Order parameter coherence length, 1/n1 = (@jD(r)j/@r)r=0/jDNNj
n2 Core radius, where the superconductor current around the vortex

has its maximum

n3 STM vortex core radius [9], n3 = 0.35[(N(0)/N0)/(H/Hc2)]
1/2

nBCS BCS coherence length, nBCS = tF/pD0

nc2 GL coherence length, nc2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U0=2pBc2

p

nKZ Coherence length of the linearized Eilenberger equations [10]

q The nonlocality range [11]

k Magnetic field penetration depth in the Meissner state, (Eq. (2))

keff Effective penetration depth in the mixed state, (Eq. (16))
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where

eDn ¼ Dþ 2pCffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
n þ 1

p : ð3Þ

Here, k0 ¼ c2=4p2e2t2FN0

ÿ �ð1=2Þ
is the London penetration depth at

T = 0K, N0 is the density of states at the Fermi surface, C = pniNFjuj2
is the impurity scattering rate (u is impurity scattering amplitude),

un = wn/D and xn = (2n + 1)pT is the fermionic Matsubara fre-

quency. Fig. 1 shows the temperature dependence of the k20=k
2ðTÞ

with different values of the impurity scattering rates C. Within this

approach the London penetration depth is field independent.

Assuming a field dependent k would have changed the London

equation per se: the quantity k2(H) cannot be taken out of differen-

tiation operators. There is no microscopic justification for a field

dependent k (in nonmagnetic superconductors). In other words,

the London theory is rigid with respect to a constancy of k, unlike

the case of nh [37]. Additionally, simultaneous experimental deter-

mination of keff (depending on the magnetic field) and nh without

any restrictions is very problematic, regardless of the model used

to describe the vortex state [38].

It is important to note that nh in Eq. (1) is obtained from solving

the EE and nh does not coincide with the variational parameter of

the AGL theory, the improved analytical GL solution [12] or the

numerical GL solution [13]. We will call the obtained field distribu-

tion as an Eilenberger–Hao–Clem (EHC) field distribution hEHC(r).

Using the HC type of the field distribution does not mean direct

connection to the GL theory and it is taken as a reasonable starting

point of the investigation similar to the empirical approach to the

problem [2,3]. This approach allows to take into account the differ-

ent symmetries of the order parameter which ware demonstrated

in our investigation of iron pnictides superconductors [39]. The

main effect of the impurity scattering in this theory is the renor-

malization of k(T). In this paper the next order correction which

is described by nh(k) dependence is studied.

We solve the quasiclassical self-consistent EE for triangular FLL

and s-wave pairing symmetry. Quasiclassical Green functions f and

g can be parameterized with the Riccati transformation of the EE

via functions a and b [40]

�f ¼ 2a

1þ ab
; f y ¼ 2b

1þ ab
; g ¼ 1ÿ ab

1þ ab
; ð4Þ

satisfying the nonlinear Riccati equations. In Born approximation

for the nonmagnetic impurity scattering we have

n �ra ¼ ÿa 2ðxn þ GÞ þ in � A½ � þ ðDþ FÞ ÿ a2ðD� þ F�Þ; ð5Þ

n �rb ¼ b 2ðxn þ GÞ þ in � A½ � ÿ ðD� þ F�Þ þ b
2ðDþ FÞ; ð6Þ

where F = 2phfi � C, G = 2phgi � C and n is a unit vector of the Fermi

velocity. The impurity renormalization correction in Eqs. (5) and (6)

are averaged over Fermi surface and can be reduced to averages

over the polar angle h, i.e., h. . .i ¼ ð1=2pÞ
R
. . .dh.

To take into account the influence of screening, the vector po-

tential A(r) in Eqs. (5) and (6) is obtained from the equation

$� $� AE ¼ 4
j2 J, where the supercurrent J(r) is given in terms of

g(xn, h, r) by

JðrÞ ¼ 2pT
Xxc

xn>0

Z 2p

0

dh

2p

^k

i
gðxn; h; rÞ: ð7Þ

Here A and J are measured in units ofU0/2pn0 and 2eVFN0Tc, respec-

tively. The spatial variation of the internal field hE(r) is determined

through $� A ¼ hEðrÞ. The self-consistent condition for the pairing

potential D(r) is given by

DðrÞ ¼ VSC2pT
Xxc

xn>0

Z 2p

0

dh

2p
f ðxn; h; rÞ; ð8Þ

where VSC is the superconducting coupling constant and xc is the

ultraviolet cutoff frequency determining Tc0 [35]. All over our paper,

the energy, the temperature, and the length are measured in units

of Tc0 and the characteristic length n0 = vF/Tc0 = nBCSpD0/Tc0. Here

nBCS = vF/pD0, where vF is the Fermi velocity and D0 is temperature

dependent uniform gap. The magnetic field hE is given in units of

U0=2pn
2
0. The impurity scattering rates are in units of 2pTc0. In com-

putations the ratio j = k0/n0 = 10 is used. It corresponds to

jGL = 43.3 [40]. The Riccati equations (Eqs. (5 and 6)) are solved

by the Fast Fourier Transform (FFT) method [35]. This method is

reasonable for dense FLL discussed in this paper. In high field the

pinning effects are weak and not considered in our paper. After

solving the EE the obtained magnetic field distribution hE(r) is fitted

with the Eilenberger–Hao–Clem field distribution hEHC(r) finding

the fitting parameter nh. The normalized difference between these

fields corresponding to C = 0, B = 1 and T/Tc0 = 0.5 is shown in

Fig. 2. The accuracy of the fitting exceeds 1%. To study high field re-

gime we should calculate upper critical field Bc2(T) [41].

3. Nonlocal effects in generalized London equation

The change of the shape of nh(B) curve in different fields with

increasing scattering rate C is shown in details in Fig. 3 at

Fig. 1. The temperature dependence of the k20=k
2ðTÞ with different values of the

impurity scattering rates C.

Fig. 2. Normalized differences between the fields hEHC and hE calculated with the

generalized London model and with the Eilenberger equation, respectively, for

C = 0, B = 1 and T/Tc0 = 0.5. The scales of the lengths are those of the flux line lattice

unit vectors.
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T/Tc0 = 0.5. Strong suppression of nh/nc2 to values much lower than

1 at an increasing scattering rates C is also visible from this figure.

In Fig. 3, the normalization constant nc2 depends on the impu-

rity scattering rate C. It is well known that at a high C, the

nc2 �
ffiffiffiffiffiffiffiffiffi
1=C

p
�

ffiffi
l

p
. Therefore, the decreasing of the ratio nh/nc2 with

C implies a strong dependence of nh on l. It is found that nh in dirty

superconductors can be scaled with the relaxation time

s; nhðB; T; sÞ ¼ npureðB; TÞ= 1þ s0ðB;TÞ
s

� �
, where npure(B, T) is the effec-

tive coherence length in clean superconductors [35] and s0 is a

characteristic relaxation time. This results in nh � l dependence at

a high C similar to the behavior of the nonlocality range q(C, T)

[11] resulting in the decrease of nh/nc2 versus B/Bc2 at a high C,

as shown in Fig. 3. It means that the nonlocal effects are important

for the description of the vortex core even in the ‘‘dirty’’ limit. The

low obtained nh/nc2 values are consistent with the experimental

observation in some high-j low-Tc superconductors [3] and iron

pnictide superconductors [15]. The nonlocality of the Bardeen–

Cooper–Schrieffer (BCS) electrodynamics has been studied exten-

sively. Even before BCS, the nonlocal relation between the current

density j and the vector potential A was suggested by Pippard [42]

to explain data on the penetration depth. The physics of nonlocal-

ity originates in a finite size, nBCS at T = 0, of Cooper pairs: j at a gi-

ven point is determined by the vector potential A within a domain

�nBCS(T = 0) around this point. Instead of local relations between j

and A of the GL or London theories, BCS provide an integral equa-

tion with a kernel bQ extending to distances �nBCS(T = 0). In Fourier

space this relation is of the form jðkÞ / bQ ðkÞAðkÞ with the Fourier

transform of bQ explicitly depending on k.

Traditionally, it was widely thought that nonlocality effects

should be significant only in materials with a Ginzburg–Landau

parameter jGL = k/nGL � 1. Those materials, e.g., Nb, were clean en-

ough to have l� nGL, but the large vortex cores with nGL � k make

theoretical analysis very difficult. The tractable nonlocal London

formalism was developed [11] for understanding these intermedi-

ate-to-high j materials (the KG model). In this theory the term

k2G2 in the denominator of the Eq. (1) was replaced by the aniso-

tropic term bQ ijGiGj. In isotropic case this term was expanded up

to fourth-order of G. This gave the additional term q2k2G4 in

denominator of Eq. (1), where q2ðTÞ ¼ �h2t2

16D2
0ð0Þ

cðTÞ. Parameter c

which determine the temperature dependence of nonlocality range

q was calculated from microscopical BCS theory in the Meissner

state [11].

The inset of Fig. 4 shows the dependence of the nonlocality ra-

dius q/nc2 on the different scattering rates C in two-dimensional

superconductors [11] similar to nh/nc2 in Fig. 3. In this theory, in

addition to Bc2, a characteristic field B0 ¼ Bc2ffiffi
3

p
p

nc2
q

� �2
related to the

nonlocality range enters the free energy and the magnetization

reads

ÿ M

M0

¼ ln
B0

B
þ 1

� �
ÿ B0

B0 þ B
þ fðTÞ; ð9Þ

fðTÞ ¼ g1 ÿ ln
B0

g2Bc2

þ 1

� �
; ð10Þ

Here, M0 =U0/32p
2k2. The constant g1 � 1 was introduced to ac-

count for the uncertainty in defining the core size in an estimation

for the core contribution in the free energy; the constant g2 � 1

accommodates the uncertainty in the cutoff of the field distribution.

The quantity f slowly decreases with temperature due to the second

term. The leading term inM(B) of Eq. (10) is ln(H0/B), corrected with

terms on the order B/H0, which are impurity scattering dependent

and small in high-C limit. For three-dimensional situation, which

is more suitable for the description of the borocarbides, the nonlo-

cality range was calculated in Ref. [20]. The nonlocal London model

describes qualitatively and consistently the whole set of M(T, H)

data in high quality single crystals of Lu(Ni1ÿxCox)2B2C with

x = 0 ÿ 0.09 and, in particular, its temperature and the mean-free

path dependence [20].

In spite of good agreement between the prediction of the KG the-

ory (Eq. (9)) in experiments [19,20] the theoretical basis of this

model is lacking. Indeed, microscopically this theory takes into ac-

count only nonlocal effects outside the vortex core but short-scaled

effects are included only phenomenologically by using fitting

parameters g1 and g2. Additionally, the KG model is a linear theory

with respect to the magnetic field and nonlinear effects are ne-

glected. A priori, it is not clear which effects are more effective.

In Fig. 5 we compare the prediction of the KG theory for M(B)

(the main panel) and the numerical solution of the EE [43] (the in-

set) with different temperatures at jGL = 49. According the KG

assumption f(T) is not dependent function from the magnetic field

and f(T) is found from the boundary condition M(Tc) = 0. It can be

seen from this figure that the KG and Eilenberger theories have

quite different shape of the curves. In the later case there is a cross-

ing point of the curves but this point is absent in the first case. It

results from the neglecting of g1 and g2 field dependences which

present in nh(B) for the EHC theory (see Figs. 3 and 4). It can be also

noted that instead of the standard slope @M/@ lnB =M0 there is @M/

@ lnB =M0/(1 + B/B0)
2, i.e., the slope @M/@ lnB decreases with B in

the KG theory. It is worth recalling that in the Abrikosov solution

Fig. 3. The magnetic field dependence of nh/nc2 with different impurity scattering

values C at the temperature T/Tc0 = 0.5.

Fig. 4. The temperature dependence of the nonlocality radius q/nc2 for the

scattering rates C = 0 (the upper curve), 0.057, 0.14, 0.28, 0.56 and 2.8 (the bottom

curve) from Ref. [11]. The inset shows the scattering rates C dependence of the

nonlocality radius q/nc2 for the temperature T/Tc0 = 0.2 (the upper curve) and 0.8

(the bottom curve).
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of the GL theory there is the linear domain 4pM ¼ ðBÿ Bc2Þ= 2bAj
2
GL

near Bc2(T) for large j (see Ref. [44]), where bA = 1.16 is an Abriko-

sov parameter for the triangular FLL. Then the slope is

@M=@ lnB ¼ B@M=@B ¼ B=8pbAj
2
GL; i.e., here the slope @M/@ lnB in-

creases with B. Thus, in the KG theory the linear part of M(B) is dis-

carded altogether. It was proposed there that the Abrikosov region

of M(B) curve is narrow for high-j superconductors and can be of-

ten negligible in the analysis of experimental data. However, the

full self-consistent solution of EE shows clearly this linear Abriki-

sov part in high-j superconductors [45]. As can been seen from

the inset to Fig. 5, the linear slope ofM(B) curve near Bc2 is temper-

ature dependent. This is described by the introduction the Maki

parameter j2(T) instead of jGL (j2(T) = jGL at T = Tc and increases

with lowering the temperature [44]).

It is instructive to compare the solution of the EE with that of

the GL theory. A good fit of the numerical GL solution in the spirit

of the logarithmic approximation is

ÿ 4pM
Bc2

¼ 1

4j2
GL

ln 1þ 1ÿ b

b
f2ðbÞ

� �
; ð11Þ

f2ðbÞ ¼ 0:357þ 2:890bÿ 1:581b
2
; ð12Þ

where b = B/Bc2 [46]. This dependence is shown in the inset to Fig. 5

with jGL = 49 as a solid line. In reduced units used in Fig. 5 the GL

curve is a universal one and depends only on jGL. The deviation of

the EE solution from the GL curve is connected with the Kramer–

Pesch effect at low temperatures and effective field dependence of

jGL which results in the appearance of the crossing point in this in-

set. Obviously, the GL curve is the closest to the EE solution at high-

est temperature (T/Tc0 = 0.9 in this plot).

4. Influence of the Andreev bound states and Kramer–Pesch

effect on the cutoff parameter

A strong decrease in nh/nc2 with decreasing temperature is

clearly visible in Fig. 6 at C = 0.5. This can be explained by the Kra-

mer–Pesch effect [1], which was observed in the lSR investigation

of the NbSe2 single crystal [3].

Such behavior is quite different from that of q(T) which is not

dependent from T at low temperatures and decreases slowly at high

temperatures (the main panel in Fig. 4 [11]). The reason for this is

that in the KG model the nonlocality is described in the same way

as in theMeissner state, where only extended states exist in s-wave

superconductors. In contrast, low temperature physics of the vortex

state is connected with the nature of the current-currying quantum

states of the quasiparticles in the vortex core (formed due to parti-

cle-holed coherence and Andreev reflection [47]). The current dis-

tribution can be decomposed in terms of bound states and

extended states contributions [48]. Close to the vortex core, the cur-

rent density arises mainly from the occupation of the bound states.

The effect of extended states becomes important only at dis-

tances larger than the coherence length. The bound states and

the extended states contributions to the current density have

opposite signs. The current density originating from the bound

states is paramagnetic, whereas extended states contribute a dia-

magnetic term. At distance larger than the penetration depth, the

paramagnetic and diamagnetic parts essentially cancel, resulting

in exponential decay of the total current density. Similar paramag-

netic current of Andreev bound states has been found at the sur-

face of d-wave superconductors [49].

While all other length scales describing the superconducting

state, especially the London penetration depth and the coherence

length, reach a saturation value with decreasing temperature, this

investigation introduced a new length scale in the discussion of the

vortex state of clean superconductors. It can be defined as the in-

verse of the slope of the pairing potential at the vortex center

(the length n1(T)) and describes not only the spatial variation of

the gap function but also the maximum height of the supercurrent

density around the vortex center and thus measures the size of the

vortex core (the length n2(T)). In a clean superconductor without

impurity scattering this length nv decreases linearly with tempera-

ture, tending to zero for T? 0 (the Kramer–Pesch effect) [47]. At

low temperatures, the current rises to its maximum over a distance

of the order of n2, which is consistent with the sharp rise of the pair

potential in the same region. In this region, the current is mainly

carried by the lowest bound state. As discussed in Ref. [51] for

the proper description of the bound states quantum mechanical

nonlocal approach is needed and the strong difference between

the nonlocal Eilenberger and the local Doppler-shift method has

been found.

The Kramer–Pesch effect depends strongly on the impurity

scattering rate. The decrease of nh/nc2 in dirty superconductors

can be compared with the behavior of another characteristic length

n1/nc2. It has been found that at low temperatures impurity scatter-

ing suppresses Kramer–Pesch effect in n1(T) dependence, resulting

in the nonmonotonous behavior of n1(C). This can be seen from

Fig. 7, where the normalization constant nBCS is used (nBCS is not

dependent on C). It is apparent that nh monotonously decreases

with 1/C (Fig. 7a) in contrast to the nonmonotonous behavior of

Fig. 5. The magnetization by supercurrent as a function of B/Bc2 in the clean s-wave

superconductors. The temperatures are T/Tc0 = 0.9, 0.7, 0.5, and 0.3 (dashed lines

from bottom to top). The inset shows the magnetization by supercurrent as a

function of B/Bc2 in the clean s-wave superconductors from Ref. [43]. The

temperatures are T/Tc0 = 0.9, 0.7, 0.5, and 0.3 (dashed lines from top to bottom).

The solid lines show the numerical solution of the GL equations.

Fig. 6. The magnetic field dependence of nh/nc2 at different temperatures with

impurity scattering value C = 0.5.
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n1 for a single vortex obtained from Ref. [50] (inset to Fig. 7b). The

nonmonotonous behavior of n1 is also visible in its field depen-

dence. This is shown in the main panel Fig. 7b, which presents

the curves n1/nBCS(B/Bc2) at T/Tc0 = 0.1 with different impurity scat-

tering rates [40].

The difference between n1(B) and nh(B) can be explained by the

following reasons. According to the definition, n1(B) depends on

DNN (which is decreasing function of the field [16]) and, corre-

spondingly, on extended states. The core physics for this length

is descried by the derivative (@jD(r)j/@ r)r=0 which is also decreasing

function of the field [1]. Therefore, the field dependence of n1 is

determined by the competition between (@jD(r)j/@r)r=0(B) and

DNN(B). The cutoff parameter nh is directly connected with the

microscopical length n2 defined as the one where the screening

current around the vortex has its maximum [7]. Because this max-

imum is located in the core center nh(B) is related mainly with core

Andreev bound states.

We also note that indirect connection between the supercon-

ductor current and the modulus of the order parameter occurs of-

ten in the different nonlocal microscopical theories. For example,

the screening current in the Meissner state can even change the

sign near the surface in the type-I superconductors (overscreening)

while the order parameter is practically constant [42]. In this case

the effective penetration depth of the magnetic field and the region

of the shielding current are less than the coherence length of the

order parameter. This is similar to the results presented at Fig. 7

where nh can be much less than n1, i.e., the ‘‘effective’’ type-I super-

conductor is realized in the vortex core.

Likewise, the current flowing opposite to the screening current

appears at the d-wave high-j superconductors surface [52]. In this

case the electron reflecting from the surface feels the pairing po-

tential with opposite signs in its trajectory. It results in creating

of the bound Andreev states. With the anomalous Meissner current

flowing, the magnetic field initially increases before the normal

Meissner screening sets in and eventually screens out the magnetic

field exponentially. This situation is similar to that of the Andreev

bound states forming in the vortex core where the order parameter

changes its sign at the opposite side of the vortex because of the p-
phase altering.

5. Vortex core effects on the variance of the magnetic field and

effective penetration depth in the mixed state

To demonstrate the importance of core effects obviously one

can detach the contribution of the nonlocality of the extended elec-

tronic state outside the vortex core in the EHC theory similar to the

KG method and project the solution of the EE to the nonlocal gen-

eralized London equation (NGLE) [53]. In this presentation the

magnetic field distribution for clean superconductors is given as

~hEHCðrÞ ¼
U0

S

X

G

FðGÞeiGr
1þ LijðGÞGiGj

; ð13Þ

where

LijðGÞ ¼
Q i;jðGÞ
det bQ ðGÞ

: ð14Þ

The anisotropic electromagnetic response tensor is defined as

Q ijðGÞ¼
4pT

k20

X

xn>0

Z 2p

0

dh

2p
�

�DðhÞ2t̂Fit̂Fjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

nþ �DðhÞ2
q

x2
nþ �DðhÞ2þc2G

h i ; ð15Þ

where cG = vFG/2. In Eq. (15) the term including cG describes the non-
local correction to the London equation. With cG = 0 we obtain the

London result Lij(G) = k(T)2dij. In Eq. (13) the cutoff function is writ-

ten in the form of F(G) = u K1(u). The cutoff parameter k1 can be

found by comparison of the solution of the EE with the Eq. (13).

For ~hEHC we used the same shape of the cutoff function as for hEHC
but values of the cutoff parameters are different because of fitting

to various field distributions. In presentation ~hEHC anisotropy effects

of Eilenberger theory remained. To show the influence of the mag-

netic field and temperature dependence of k1we calculate the values

of hd~h2i using the field distribution obtained in the Eq. (13).

Fig. 8 shows the field dependence of the ratio hd~h2iwith the cut-

off parameter obtained from the solution of the EE to that with

k1 = 1. As one can find from the data presented in Fig. 8, this ratio

deviates considerably from unity when the temperature is lowered

pointing on the importance of the proper determine value of the

cutoff parameter.

This consideration proves that the nonlocal generalized London

model with ~hEHCðrÞ distribution also needs the proper determined

cutoff parameter k1, i.e., introducing only nonlocal extended elec-

tronic states does not allow to avoid the problem of vortex core

solving.

In the analysis of the lSR and SANS experimental data the field

dependent penetration depth keff(B) is often introduced [3]. It has

physical sense if it is not dependent from core effects, i.e., it should

be invariant of the cutoff parameter. One of such way to do that

was suggested in AFA model [27,29]:

keff

k
¼

dh
2
0

���
���

d~h2
EHC

���
���

0
B@

1
CA

1=4

: ð16Þ

Here, dh
2
0

���
��� is the variance of the magnetic field h0(r) obtained by

applying the ordinary London model with the same average field

B and k and with the same cutoff parameter as in the field distribu-

tion ~hEHCðrÞ.

(a)

(b)

Fig. 7. (a) The magnetic field dependence of nh/nBCS at B = 5 at different temper-

atures. (b) The magnetic field dependence of n1/nBCS at T/Tc0 = 0.1 with different

impurity scattering rate C taken from Ref. [40]. The inset shows the magnetic field

dependence of n1/nBCS at different temperatures from Ref. [50].
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In Fig. 9 is shown the magnetic field dependence of the ratio

k20=k
2
eff calculated from the ~hEHC distribution with k1 = 1 and with

Fit k1 from the solution of EE for the different temperatures. The

obtained keff(B) dependences are quite similar in these cases. The

low-field result (B/B0 = 0.1) for keff is close to k(T) in the Meissner

state. This demonstrates that keff is determined by a large scale of

the order of FLL period and is not very sensitive to details of the

microscopical core structure and the cutoff parameter. Thus, our

microscopical consideration justify the phenomenological AFA

model. The AFA model was originally developed for the explana-

tion of the structural transition in FLL in d-wave superconductors

where anisotropy and nonlocal effects arise from nodes of the

gap at the Fermi surface and appearing there of the long extending

electronic states [28]. They result also in the field dependent flat-

tening of keff(B) at low temperatures [29]. In this case the separa-

tion between localized and extended states looks quite

reasonably. The obtained anisotropy of superconducting current

around the single vortex in AFA theory agrees well with that found

from the EE [54]. Also keff(B, T) is not strongly dependent on the

core effects [55]. However, it was shown that full self-consistent

quasiclassical approach is needed when gap and Fermi surface

anisotropies exist simultaneously [45]. Recently, the measure-

ments of the angle resolved specific heat in a field rotated around

the c axis in d-wave pairing CeCoIn5 (Tc = 2.3K) down to a very low

temperature, 0.05Tc, were done. And a sign reversal of the fourfold

angular oscillation was observed [56]. This low temperature

‘‘quasiclassical’’ regime was explained by Eilenberger theory.

The field dependence of keff in s-wave superconductors (Fig. 9)

results from the nonlinear dependence of the zero-energy density

of states N(0)(B) even in the isotropic superconductors [16]. The

contribution of the extended states is essential even in the small

B region, meaning that vortex cores are overlapped there (vortex

lattice effect [16]) [57]. This invalidates rigid normal core picture

[6]. This is qualitatively similar to the d-wave superconductors

where nonlinear effects are stronger due to nodes in the gap and

N(0)(B) � B1/2. The introduction of keff(B) results in the transforma-

tion of the NGLE to usual local London equation but with two field-

dependent parameters keff(B) and k1(B). This consideration gives

the way for the fitting of the experimental results: firstly, to find

keff(B) using Eq. (16), secondly, to find k1(B) from the absolute value

of variance of the magnetic field. With this route one can avoid the

problems of two-parameter fitting discussed in Ref. [38]. We note

that keff(B) (like k1 and nh) is effective parameter and does not have

fundamental physical sense like k in the Meissner state where it is

connected with the superconducting electron density [58]. Both

fitting procedures are possible with parameters keff(B), k1(B) or

k(T) (from the Meissner state), nh(B). The accuracy is the neglecting

of the anisotropy effect.

6. High-field effects: comparison of Kogan–Zhelezina and

analytical Ginzburg–Landau models

The microscopical model which allows to obtain analytical solu-

tion for nh(B) has been suggested in Ref. [10] (the KZ model). In this

model linearized EE has been solved and uniform magnetic field

has been suggested. It means than Kramer–Pesch effect is not in-

cluded in the consideration. Also the distribution of the magnetic

field is not calculated self-consistently. The exact form equation

of nh(B) for the zero-T clean case for both Fermi sphere and cylinder

has been obtained. The result can be represented as nKZ(B)/

nc2(Bc2) = U(B/Bc2) with U being an universal function. The most

important features of the KZ model and nKZ(B) dependence are as

follows: (i) this dependence is weakened by scattering and disap-

pears in the dirty limit; (ii) the B dependence of n vanishes as

T? Tc; (iii) in reduced variables, the dimensionless coherence

length n⁄ = nKZ/nc2 should be nearly universal function of the re-

duced field b = B/Bc2 for clean materials in high fields and low tem-

peratures; and (iv) for materials on the clean side (C < 1) the low-T

slope dn⁄/d b(ÿ1/2) is nearly universal in high fields (b? 1).

The data in Fig. 10a and b demonstrate nearly universal behav-

ior near Tc and small scattering rates: (i) a nonmonotonous field

dependence with a minimum and (ii) a similar slope d(nh/nc2)/db

at b = 1 which is weakly dependent on temperature and scattering

rate. But the results are very different from the prediction of the KZ

theory because of neglecting of the Kramer–Pesch effect there. This

can be seen from Fig. 10c, where predictions of KZ theory for differ-

ent scattering rates and temperatures are presented. As is visible

from this figure, the clean limit results are not compatible with

the prediction of Kramer and Pesch that the core size of an isolated

vortex goes to zero as T? 0. In contrast, the strong suppression of

nh (Fig. 10a and b) and n1 [1,50] with temperature lowering is ob-

tained in the self-consistent Eilenberger theory. This difference

points out at the importance of Kramer–Pesch effect. But impurity

induced behavior is similar for nh/nc2 and nKZ/nc2: both decreases

with increasing impurity rates.

The analysis of the experimental data in the mixed state de-

pends on the theoretical model of the distribution function of local

fields P(B) in the vortex lattice [2,3]. One of the most widely used

model is an approximation of the analytical Ginzburg–Landau the-

ory (the AGL theory) [8,59]. For the dense vortex lattice (B� Bc1)

and high-j (jGL > 10) superconductors the AGL theory prediction

for the Fourier components of the magnetic field is

Fig. 8. The magnetic field dependence of the ratio of the second moment of the

magnetic field distributions obtained from the solution of the EE to that of the

nonlocal generalized London model with the parameter k1 = 1 for T = 0.2 (the upper

curve), 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 (the bottom curve). Here B0 ¼ U0=2pn
2
0 .

Fig. 9. The magnetic field dependence of the ratio k20=k
2
eff calculated from the

nonlocal generalized London equation with k1 = 1 (solid lines) and Fit k1 from the

solution of EE (dotted lines) for the different temperatures (T = 0.2 (the upper

curve), 0.4, 0.5, 0.6, 0.7, 0.8 (the bottom curve)). Here B0 ¼ U0=2pn
2
0 .
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BzðGÞ ¼
/0

S

f 21

k2G2
ðn

v
GÞK1ðnvGÞ; ð17Þ

where K1(x) is a modified Bessel function, G is a reciprocal-lattice

vector, S is the area of the vortex lattice unit cell, nv and f1 are var-

iation parameters representing the effective core radius of a vortex

and the depression of the order parameter due to the overlap of vor-

tex cores, respectively. They have simple functional dependences on

b � B/Bc2 and jGL:

n
v
¼ nc2

ffiffiffi
2

p
ÿ 0:75

jGL

� �
ð1þ b

4Þ1=2 � ½1ÿ 2bð1ÿ bÞ2�1=2; ð18Þ

and f 21 ¼ 1ÿ b
4
. Here, b = B/Bc2 is the reduced magnetic induction in

the units of upper critical field. It is important to note that in this

approximation nv(B) is determined only by nc2 and the ratio B/Bc2.

It implies that nv/nc2(B/Bc2) is an universal function. One can

consider Eq. (17) as a solution of the modified London equation with

cutoff nv and effective penetration depth keff = k/f1 [59]. The com-

parison between the variation and the exact numerical solution

shows that the accuracy of the AGL theory is the order of 10%

[59]. The dashed lines in Fig. 10 shows the prediction of the AGL

theory for nv.

The absolute values of nh are considerably less than those of the

AGL theory predictions because the Kramer–Persh effect is not in-

cluded in the phenomenological GL theory. With increasing tem-

perature the magnetic field dependence of nh moves to higher

values, towards the AGL theory predictions (Fig. 10a). It looks like

the restoration of Ginzburg–Landau behavior at high temperatures.

In the presence of impurity scattering the same tendency is also

visible (Fig. 10b), but shifting of nh to direction of AGL curve is

slower. It was recently demonstrated by the lSR measurements

that the variance of the magnetic field, r, at T? 0 can be fitted

by GL theory using two fitting parameters k and Bc2 [58,60,61].

Moreover, the value of Bc2, evaluated in such a way, coincides with

the result of magnetization measurements. This coincidence

proves that the theoretical r(B) dependence calculated in frame-

work of the GL theory can indeed be used for quantitative analysis

of isothermal experimental data even at temperatures T� Tc. It is

most probable that the distribution of the magnetic induction in

the sample (P(B)) is different from predictions of microscopical

theory, while r, as a more integral characteristic of this distribu-

tion, remains practically the same [58].

7. Conclusions

The field distribution of the mixed state in dirty s-wave super-

conductors in a wide temperature and field range is investigated in

the framework of the nonlocal Eilenberger theory and projected on

the London equation. The normalized magnetic field dependences

of the cutoff parameter nh/nc2 (B/Bc2) responsible for the line shape

of the lSR resonance are obtained. It is found that this dependence

is nonuniversal and depends on the impurity scattering rate C and

the temperature. At high enough values of C/2pTc0 P 0.5, the

dependence plateaus in the intermediate field range and the low

temperatures, and nh(B)/nc2 is of the order of 0.25. The strong sup-

pression of nh/nc2 withC and T can explain the experimental results

in many low-temperature superconductors (V3Si, NbSe2 and Lu-

Ni2B2C and iron pnictide superconductor BaFe1.82Co0.18As), where

the values nh/nc2 < 1 has been observed. It is connected with the

nonlocal bound Andreev states of the vortex core. The obtained

projection of the EE is compared with the nonlocal KG theory.

The field dependence of the cutoff parameter changes the magne-

tization and the variance of the magnetic field. A difference is ob-

served between nh(T) and nonlocal range q(T) of the KG theory,

where only the contribution of the extended state is taken into ac-

count. A strong difference from the AGL theory and linearized

Eilenberger approach (the KZ theory) is found. This is explained

by the Kramer–Pesch effect which is not taken into account in

these theories.
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Abstract. Influence of impurities on coherence length ξh in the mixed state of s-wave
superconductors is investigated in framework of quasiclassical Eilenberger theory. The increasing
of impurity scattering rate results in decreasing of ξh. The obtained field dependence of ξh for
clean superconductors has a minimum and it is similar to that in Hao-Clem and Miranović-
Ichioka-Machida theories for order parameter of coherence length. It is found that growing
behavior of ξh with magnetic field in dirty superconductors is different from order parameter
coherence length determining by pairing potential near with vortex core. The magnetic field
dependence of coherence length in normalized units, ξh/ξc2(B/Bc2), is nonuniversal and depends
on impurity scattering potential.

Last ten years much attention has been paid to the investigation of the field distribution
in high-κ superconductors [1–3]. On the theoretical level, there are four widely used methods:
solving of the Bogoliubov-de Geenes (BdG) equations [4], the quasiclassical nonlocal Eilenberger
theory [5–7] (this is the quasiclassical limit of the BdG theory for kF ξBCS ≫ 1), solving
of the Usadel theory [8] (this is the dirty local limit of the Eilenberger equations with the
strong impurity scattering rates (Γ/Tc ≫ 1)) and the phemenological Ginzburg-Landau (GL)
theory [9–13] which is valid near Tc. Because BdG method is very time consuming for the
self-consistent numerical calculation [4], the Eilenberger or Usadel theories are used in the
microscopical consideration. In analysis of the experimental data, the analytical GL model
(AGL) with penetration depth λ and cutoff parameter ξh as a fitting parameters is used very
often. The cutoff parameter ξh (in the notation of the AGL ξv) is connected with GL coherence
length ξc2, determined by the relation Bc2 = Φ0/2πξ2

c2. From theoretical reasons (see discussion
in Ref. [14]), λ can not be taken arbitrarily and should be taken as a differential operator Lij

[15], for the description of the nonlocal effects giving the additional field dependence in the
mixed state, or its local limit obtained from microscopical consideration of the Meissner state
[16] independent on the magnetic field.

There is no consensus about the meaning of ξh, the problem was discussed originally by de
Geenes group [17]. There are several proposes for the value of ξh: it can be taken as a coherence
length ξc2 with some numerical coefficient [18], or as the order parameter coherence length ξ1,
or as a proportional to the superconducting current coherence length ξ2. Characteristic length
ξ1 is determined as 1/ξ1 = (∂|∆(r)|/∂r)r=0/|∆NN |, where |∆NN | is the maximum value of
the order parameter along the nearest-neighbor direction which is the direction of taking the
derivative [19] and ξ2 is determined by maximum of screening current around the vortex [20].

Joint European Magnetic Symposia – JEMS 2010 IOP Publishing
Journal of Physics: Conference Series 303 (2011) 012114 doi:10.1088/1742-6596/303/1/012114

Published under licence by IOP Publishing Ltd 1



But connections between ξh, ξ1 and ξ2 is not investigated in detail yet. The microscopical model
allowing to obtain analytical solution for ξh(B) has been suggested in Ref. [21] (the KZ model).
In this model linearized Eilenberger equation has been solved and uniform magnetic field has
been suggested. It means than Kramer-Pesch effect is not included in the consideration. The
exact form equation of ξh(B) for the zero-T clean case for both Fermi sphere and cylinder has
been obtained. The result can be represented as ξKZ(B)/ξc2(Bc2) = U(B/Bc2) with U being
an universal function. The most important features of the KZ model and ξ(B) dependence
are as follows: (i) this dependence is weakened by scattering and disappears in the dirty limit;
(ii) the B dependence of ξ vanishes as T → Tc; (iii) in reduced variables, the dimensionless
coherence length ξ∗ = ξ/ξc2 should be nearly universal function of the reduced field b = B/Bc2

for clean materials in high fields and low temperatures; and (iv) for materials on the clean side
(Γ < 1) the low-T slope dξ∗/db(−1/2) is nearly universal in high fields (b → 1). It is found that
the microscopical calculations of ξ1 [5] do not agree with the KZ theory. In particular, these
calculations don’t confirm the KZ assertion about weakening of the field dependence of the core
size with the increasing scattering. As noted in Ref. [14] the question still remains: which of
these two theoretical approaches, Ref. [5] or Ref. [21], describes better various data on ξh(B)?
It is important to note also that the GL theory predictions is not reproduced by the KZ theory.

Recently, an effective London model with the magnetic coherence length ξh(B) as a fitting
parameter has been obtained for clean [22] and dirty [23] superconductors, using self-consistent
solution of quasiclassical nonlocal Eilenberger equations. Such theory looks appropriate for the
description of the vortex core where strong nonlinear and nonlocal effects are expected. In this
approach the coherence length obtained from the Ginzburg-Landau model is extended over the
whole field and temperature range. The Fourier components of magnetic field in this model are
described by London equation with GL type cutoff function

hEGL(r) =
ϕ0

S

∑

G

F (G)eiGr

1 + λ2G2
, (1)

where F (G) = uK1(u), u = ξhG. It is important to note that ξh in Eq. (1) is obtained by
solving the Eilenberger equations and ξh doesn’t coincide with the variational parameter of the
AGL model. We will call obtained field distribution as an Eilenberger - Ginzburg-Landau field
distribution hEGL(r). In Eq. (1) λ(T ) is calculated from microscopical theory for the Meissner
state and renormalized by impurity scattering [24]. In dirty superconductors the value of λ
increases considerable and gives the main effect of impurities in the field distribution (Eq. (1))
suppressing deviation of the field from the mean value B. Thus, in this model there is only one
fitting parameter for the description of the vortex state, ξh, similar to Ref. [14].

The aim of our paper is to calculate ξh(B) in the framework of the Eilenberger theory and
to study the applicability of the above mentioned theories in wide temperature range and at
different impurity scattering rates. In particular, we are interested in looking for possible
predicted universal behavior. With the Riccati transformation of the Eilenberger equations,
quasiclassical Green functions f and g can be parameterized via functions a and b [5]

f̄ =
2a

1 + ab
, f † =

2b

1 + ab
, g =

1 − ab

1 + ab
, (2)

satisfying the nonlinear Riccati equations. In Born approximation for impurity scattering we
have

u · ∇a = −a[2(ωn + G) + iu · A] + (∆ + F ) − a2(∆∗ + F ∗), (3)

u · ∇b = b[2(ωn + G) + iu · A] − (∆∗ + F ∗) + b2(∆ + F ), (4)
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Figure 1. The magnetic field dependence of ξh/ξc2 at different temperatures (a) with impurity
scattering Γ = 0 (b) with impurity scattering Γ = 0.5. Dashed lines dshow the result of the
AGL theory for ξv from Ref. [9].

where ωn = πT (2n + 1), F = 2π ⟨ f ⟩ · Γ and G = 2π ⟨ g ⟩ · Γ. Here, Γ = πniNF |u|2 is the
impurity scattering rate, u is impurity scattering amplitude and u is a unit vector of the Fermi
velocity. The FLL create the anisotropy of the electron spectrum [19]. Therefore the impurity
renormalization correction in Eq. (3) and (4) are averaged over Fermi surface and can be reduced
to averages over the polar angle θ, i.e. ⟨. . .⟩ = (1/2π)

∫
. . . dθ.

To take into account the influence of screening the vector potential A(r) in Eqs. (3) and (4)
is obtained from the equation ∇×∇×AE = 4

κ2 J, where the supercurrent J(r) is given in terms
of g(ωn, θ, r) by

J(r) = 2πT
∑

ωn>0

∫ 2π

0

dθ

2π

k̂

i
g(ωn, θ, r). (5)

Here A and J are measured in units of ϕ0/2πξ0 and 2evF N0Tc, respectively. The self-consistent
condition for the pairing potential ∆(r) is given by

∆(r) = V SC2πT
∑

ωn>0

∫ 2π

0

dθ

2π
f(ωn, θ, r), (6)

where V SC is the superconducting coupling constant and ωc is the ultraviolet cutoff determining
Tc0[23]. All over this paper the energy, the temperature, and the length are measured in units of
Tc0 and the coherence length ξ0 = vF /Tc0 = ξBCSπ∆0/Tc0. Here ξBCS = vF /π∆0, where vF is
the Fermi velocity and ∆0 is temperature dependent uniform gap. The magnetic field h is given
in units of ϕ0/2πξ2

0 . The impurity scattering rates are in units of 2πTc0. In calculations the
ratio κ = λL0/ξ0 = 10 is used. It corresponds to κGL = 43.3 [5]. The Riccati equations [Eq. (3
and 4)] are solved by the Fast Fourier Transform (FFT) method [23]. This method is reasonable
for dense FLL discussed in this paper. In high field the pinning effects are weak and they are
not considered in our paper. After solving the Eilenberger equations the obtained magnetic field
distribution hE(r) is fitted with the London field distribution hEGL(r) (Eq. (1)). To study high
field regime we should calculate upper critical field Bc2(T ) [25].

Our calculations show that in clean superconductors ξh(B) dependence has minimum which
disappears at low temperatures. The absolute values of ξh are smaller than those of the
AGL theory predictions, with increasing temperature ξh dependences move to higher values.
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Figure 2. (a) The magnetic field dependence of ξh/ξBCS at T/Tc0 = 0.5 with different impurity
scattering Γ. (b) Magnetic field dependence of mean square deviation of the London distribution
from the Eilenberger distribution normalized by the variance of the Eilenberger distribution, ε,
for T/Tc0 = 0.5 with different impurity scattering Γ.

These effects can be seen in Fig. 1 (a), where ξh(B/Bc2) are presented with Γ = 0 at
T/Tc0 = 0.2, 0.4, 0.6, 0.8, 0.95. The same tendency is also visible in the presence of impurity
scattering, but shifting of ξh to direction of AGL curve is slower. Fig. 1 (b) presents ξh(B/Bc2)
dependence with Γ = 0.5 at T/Tc0 = 0.2, 0.4, 0.6, 0.8, 0.95. Strong decreasing of ξh with
decreasing of temperature can be explained by Kramer-Pesch effect [7]. The change of the
shape of ξh(B) curve in low fields with increasing of scattering rate Γ is shown in details at
Fig. 2 (a) at T/Tc0 = 0.5. At high scattering rate, a flat dependence is clearly visible.

We also calculate magnetic field dependence of mean square deviation of hEGL distribution of
the magnetic field from the Eilenberger distribution normalized by the variance of the Eilenberger

distribution ε =

√
(hE − hEGL)2/(hE − B)2, where · · · is average over unit vortex cell. Fig. 2

(b) shows ε(B) dependence for T = 0.5 with different impurity scattering Γ. It can be seen from
this picture that accuracy of EGL model is getting better with increasing impurity scattering
and saturates at the Γ ≈ 1.5.

We should note that the the similarity of our results to the AGL theory (which is suppose to
be quantitavely incorrect [11]) can be considered only as a coincidence. First, in our methods
there is only one fitting parameter ξh, while in the AGL theory there are two of them, ξv and
f∝ (f∝ ≡ 1 in our case). Because of the boundary condition of the field distribution (h(r) → B
at B → Bc2) ξh is growing function of B at the high fields resulting in the appearance of
the minimum. In the AGL theory (and ”improved” analytical GL theory [11]) the boundary
condition is satisfied by the limit f∝ → 0 at B → Bc2, so the behavior of ξv(B) dependence is
not predetermined. For example, in the ”improved” analytical GL theory there is no minimum
in ξv(B) [11]. Absence of the minimum in ξh(B) results also from local Usadel theory for ξ1(B)
[26] and ξ2(B) [27] dependences. Second, there is clear impurity dependence of the ξh/ξc2 value
even at high temperatures (compare Fig. 1 (a) and Fig. 1 (b)), which can not be explained by the
local Usadel or ”improved” analytical GL theories, where scaling ξh/ξc2 = Const (independent
on Γ) is expected.

In Fig. 1 the normalization constant ξc2 is dependent on impurity scattering rate Γ. It is
well known that at high Γ ξc2 ∼

√
1/Γ ∼

√
l, where l is the mean-free path. Therefore, the
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Figure 3. Comparison between field dependences of ξh/ξc2 (at T = 0.2, Γ = 0; 0.5 and T = 0.5,
Γ = 0, solid lines), ξ1/ξc2 (at T = 0.1, Γ = 0 and T = 0.1, Γ = 2.64 from Ref. [5] and T = 0.5,
Γ = 0 from Ref. [19], dashed lines) and ξKZ/ξc2 (at T = 0, Γ = 0; T = 0.5, Γ = 0.05 and T = 0,
Γ = 2.5 from Ref. [21], dotted lines).

decreasing of the ratio ξh/ξc2 with Γ implies the most strong dependence ξh on l. It is found
that ξh in dirty superconductors can be scaled with relaxation time τ

ξh(B, T, τ) =
ξpure(B, T )

1 + τ0(B,T )
τ

(7)

where ξpure(B, T ) is the effective coherence length in clean superconductors [22] and τ0 is a
characteristic relaxation time. It results in ξh ∼ l dependence at high Γ similar to the behavior
of nonlocality radius [18] resulting in decreasing of ξh/ξc2 at high Γ. Such fast decreasing of
ξh can be compared with the behavior of the another characteristic length ξ1. It has been
found that at low temperatures impurity scattering suppresses Kramer-Pesch effect in ξ1(T )
dependence resulting in nonmonotonous behavior of ξ1(Γ). On the another hand, it is clearly
visible from Fig. 2 (a) that ξh monotonously decreases with Γ, where normalization constant
ξBCS is used (ξBCS is not dependent on Γ).

The data in Figs. 1 and 2 demonstrate nearly universal behavior near Tc and small scattering
rates: (i) the nonmonotonous field dependence with a minimum and (ii) the similar slope
d(ξh/ξc2)/db at b = 1 which is weakly dependent on temperature and scattering rate. But
the results are very different from the prediction of the KZ theory because of neglection of
the Kramer-Pesch effect there. This can be seen from Fig. 3, where predictions of the various
theories for clean superconductors and different temperatures are presented. Strong suppression
of ξh (the ξh curves) and ξ1 (the ξ1 curves) with temperature lowering is visible in contrast to
the increasing of ξKZ (the KZ curves). But impurity induced behavior is similar for ξh/ξc2 and
ξKZ/ξc2: both decreases with increasing impurity rates.

To conclude, the magnetic coherence length ξh (cutoff parameter) in the mixed state of
high-κ s-wave superconductors is investigated in framework of quasiclassical Eilenberger theory.
Nearly universal field dependence with a minimum is found near critical temperature in clean
superconductors. A similar slope d(ξh/ξc2)/d(B/Bc2) at B/Bc2 = 1 weakly dependent on
temperature and scattering rate is discovered. Quasiparticle scattering by impurities and
lowering of the temperature reduce the value of ξh shifting it considerably downward from the
the AGL curve and at low temperatures strong influence of the Kramer-Pesch effect is found. It
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can explain muon spin rotation experimental results in some low temperature superconductors,
where the ratio ξh/ξc2 ≪ 1 [3] is observed in intermediate fields. A comparison with the behavior
of the order parameter coherence length ξ1 and another theories is done. It is found that
impurities influence by different way on ξh and ξ1.

This work was supported by the Finnish Cultural Foundation.
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