
Faculty of Technology

Department of Mathematics and Physics

Laboratory of Applied Mathematics

Differential Evolution approach and
parameter estimation of chaotic

dynamics.

by Vladimir Shemyakin

The topic of this Master’s thesis was approved

by the faculty council of the Faculty of Technology on 25.10.2012

The examiners of the thesis were:

Prof. Heikki Haario and prof. Jari Hämäläinen

The thesis was supervised by: Prof. Heikki Haario

Supporting supervisor: Prof. Jari Hämäläinen

Lappeenranta, 2012

Vladimir Shemyakin

Punkkerikatu 7A, 12

53850, Lappeenranta

+ 358 417 059 605

vladimir.shemyakin [at] lut.fi

Abstract

Lappeenranta University of Technology

Faculty of Technology

Department of Mathematics and Physics

Vladimir Shemyakin

Differential Evolution approach and parameter estimation of chaotic

dynamics.

Thesis for the Degree of Master of Science in Technology

2012 year

96 pages, 27 figures, 8 tables, 2 appendices

Supervisors: Prof. Heikki Haario, Prof. Jari Hämäläinen.

Examiners: Prof. Heikki Haario, Prof., Jari Hämäläinen.

Keywords: Evolutionary algorithm, Differential evolution, mutation, crossover,

selection, chaotic dynamics, generation jumping, Lorenz system, EPPES,

MCMC methods, importance sampling.

Parameter estimation still remains a challenge in many important applica-

tions. There is a need to develop methods that utilize achievements in mod-

ern computational systems with growing capabilities. Owing to this fact

different kinds of Evolutionary Algorithms are becoming an especially per-

spective field of research. The main aim of this thesis is to explore theoretical

aspects of a specific type of Evolutionary Algorithms class, the Differential

Evolution (DE) method, and implement this algorithm as codes capable to

solve a large range of problems. Matlab, a numerical computing environment

I

provided by MathWorks inc., has been utilized for this purpose. Our imple-

mentation empirically demonstrates the benefits of a stochastic optimizers

with respect to deterministic optimizers in case of stochastic and chaotic

problems. Furthermore, the advanced features of Differential Evolution are

discussed as well as taken into account in the Matlab realization. Test "toy-

case" examples are presented in order to show advantages and disadvantages

caused by additional aspects involved in extensions of the basic algorithm.

Another aim of this paper is to apply the DE approach to the parameter

estimation problem of the system exhibiting chaotic behavior, where the

well-known Lorenz system with specific set of parameter values is taken as

an example. Finally, the DE approach for estimation of chaotic dynamics

is compared to the Ensemble prediction and parameter estimation system

(EPPES) approach which was recently proposed as a possible solution for

similar problems.

II

Acknowledgements

There are a lot of people who has contributed to implementation of this

Thesis. That is why it is almost impossible to mention all of them, thus I

apologize in advance to those I have not mention personally.

First of all I would like to express my deep gratitude to my supervisors,

namely Professor Heikki Haario and Professor Jari Hämäläinen for their pa-

tient guidance, enthusiastic encouragement, useful critiques of this Thesis

and interesting research area. My grateful thanks are also extended to my

home university, namely Southern Federal University and particularly to

Faculty of Mathematics, Mechanics and Computer Sciences in the persons

of associate professors Mikhail Karyakin and Konstantin Nadolin who have

provided me with possibility to continue my study in Lappeenranta Univer-

sity of Technology and obtain double degree. My appreciation goes to staff

of the Department of Mathematics who has provided useful facilities and

made research time more convenient.

Besides, I wish to especially thank my girlfriend Alisa Zeleva who has been

supporting me and waiting for me during my studies in Lappeenranta, and

has been sympathetic to my studies far away from home.

Finally, I wish to thank my beloved family for their support and care about

me.

Lappeenranta, 2012

Vladimir Shemyakin

III

Contents

Abstract . I

Acknowledgements . III

List of Tables . VII

List of Figures . VIII

1 Introduction 1

2 Theory of Differential Evolution 3

2.1 Evolutionary Algorithms: stochastic versus deterministic meth-

ods . 3

2.2 DE: basics and history . 6

2.3 Mathematical Description . 10

3 Matlab implementation 15

3.1 Deterministic "toy-case" problem 16

3.1.1 Mathematical model 17

3.1.2 DE environment implementation 18

3.1.3 Artificial data generation 23

3.1.4 Application of DE approach to the artificial data . . . 24

3.1.5 Comparison and analysis 26

3.2 Stochastic "toy-case" problem 31

IV

3.2.1 Revision of Matlab implementation 31

3.2.2 Results . 32

3.3 Advanced features in DE theory 35

3.3.1 Alternative ways for mutation procedure 35

3.3.2 Investigation of influence of control parameters of al-

gorithm . 37

3.3.3 Alternative selection schemes 39

3.3.4 Dynamical implementation of DE approach 41

3.4 Application of advanced DE to "toy-case" problems 43

3.4.1 Implementation of advanced features in Matlab 44

3.4.2 Deterministic "toy-case" problem 46

3.4.3 Stochastic "toy-case" problem 48

4 Parameter estimation of chaotic dynamics 50

4.1 Overwiew of Lorenz system 50

4.2 DE application to parameter estimation of Lorenz system . . 54

4.3 Matlab implementation . 57

5 Comparison with EPPES solution 63

5.1 EPPES concept . 65

5.2 EPPES linear case example 71

V

5.3 Comparison of EPPES and DE approaches to solution of Lorenz

system . 73

6 Conclusion 75

References 76

A Matlab listings 77

A.1 Toy case. Classical DE . 77

A.2 Toy case. advanced DE . 81

A.3 Lorenz system estimation . 87

B Tables 94

B.1 Deterministic case . 94

B.2 Stochastic case . 96

VI

List of Tables

3.1 Best values of parameters and objective function values ob-

tained by DE algorithm. 29

3.2 Mean values of parameters and corresponded objective func-

tion values obtained by DE algorithm. 29

3.3 Standard deviation of parameters of final generation population. 30

3.4 Values of parameters and objective function values obtained

by built-in fminsearch function with default parameters. . . 30

B.1 Different combinations of proposed methods. 94

B.2 Different combinations of proposed methods. Continue. 95

B.3 Different combinations of proposed methods. 96

B.4 Different combinations of proposed methods. Continue. 97

VII

List of Figures

2.1 Initializing the DE population. 7

2.2 Generating the difference vector. 8

2.3 Mutation. 8

2.4 Selection. 9

2.5 Differential mutation. 12

2.6 Crossover. 13

3.1 True and noisy data with standard deviation σ = 0.1. 24

3.2 Number of generation and fails percentage dependence on size

of population. 26

3.3 Fitting the data with noise level σ = 0.0. 27

3.4 Fitting the data with noise level σ = 0.2. 28

3.5 Fitting the data with noise level σ = 0.4. 28

3.6 Number of generation and fails percentage dependence on size

of population. Stochastic case. 33

3.7 Fitting the data with noise level σ = 0.1. 34

3.8 Fitting the data with noise level σ = 0.5. 34

3.9 Number of generation and fails percentage dependence on size

of population. 48

3.10 Number of generation and fails percentage dependence on size

of population. 49

VIII

4.1 Lorenz system’s phase portrait with initial values [x0, y0, z0] =

[0, 1, 1.05]. 52

4.2 Example of one time window for Lorenz system. 55

4.3 Solution for one time window of length range*aint. 60

4.4 Parameter evolution. 61

4.5 Parameter evolution with recalculation of cost function. . . . 63

5.1 Illustration of the EPPES algorithm. 69

5.2 Convergence of hyperparameter µ. 71

5.3 Convergence of hyperparameter Σ and W 72

5.4 Convergence of hyperparameter Σ to Σtrue componentwise. . 72

5.5 Solution of parameter estimation problem of Lorenz system

obtained by EPPES approach. 73

5.6 Solution of parameter estimation problem of Lorenz system

obtained by DE approach. 74

IX

1 INTRODUCTION 1

1 Introduction

The topic of the research is devoted to the field of Differential Evolution (DE)

algorithm which has become a demanded area due to the growth of efficiency

of modern computational systems. Considerable attention for this framework

from investigators is caused by potentially huge range of problems arises

in many modern area of research such as parameter estimation problems

particularly dedicated to weather forecasting problems which can be solved

applying this method. First algorithmic description of DE algorithm was

proposed by Kenneth Price and Rainer M. Storn and published as a technical

report in 1995. The basic population structure and main stages of algorithm

was discussed what had given a birth to a powerful probabilistic optimization

tool.

Although there are plenty of implementations of classical DE approach,

there is a lack of specific numerical experiments devoted to estimation of

dynamic of chaotic systems. Moreover, modern advanced features dedicated

to the background of the DE algorithm have been intensively establishing

and they can be taken into account during implementation of such algorithm

as well. Owing to the probabilistic nature of DE approach, the influence of

advanced method which can be included to the extension of basic DE method

should be tested on specific problem. Another challenging question which

should be investigated is the performance advantages of DE method over the

existed EPPES method which is proposed by Marko Laine, Antti Solonen,

Heikki Haario and Heikki Järvinen as possible approach to numerical weather

prediction (NWP) modeling.

Therefore, this study focuses on investigation of theory of the DE algo-

rithm which is further implemented in Matlab. Also, two types of examples

will be tested on applicability of DE algorithm, namely deterministic and

stochastic cases of simple three-parameter estimation problem. Comparison

between deterministic solver and DE solver is done and inapplicability of

deterministic solver to estimate stochastic problem is demonstrated. Fur-

1 INTRODUCTION 2

thermore possible directions of improvements of DE algorithm is discussed

and the most profitable features are included into implementation of ex-

tended version of DE solver. The final part of the work is dedicated to

the estimation of chaotic dynamics. As an example of the system exhibiting

chaotic behavior the Lorenz system is used. The application of DE method is

conducted and followed by Ensemble Prediction and Parameter Estimation

(EPPES) approach discussion. Comparison between these two approaches

sums performed research.

The paper is divided into four main sections and finalized by the Con-

clusion sections. The implementation of proposed algorithms and results are

provided by numerical computing environment Matlab. The crucial parts

of the code listings are included into proper chapters of paper, however full

listings can be found in Appendix.

2 THEORY OF DIFFERENTIAL EVOLUTION 3

2 Theory of Differential Evolution

Differential evolution (DE) is a method of multidimensional mathemati-

cal optimization which belongs to the class of Evolutionary Algorithm (EA).

This metaheuristic method tries to find optimum of the problem by itera-

tively improving of the candidate solution with respect to value of the ob-

jective function (function to be optimized). First of all, it is necessary to

describe EA class of optimizers.

2.1 Evolutionary Algorithms: stochastic versus determinis-
tic methods

Evolutionary Algorithm (EA) is a generic population-based metaheuris-

tic optimization algorithm which tries to mimic the Darwinian Theory of

Evolution through three basic elements, namely: mutation, recombination,

and survival of the fittest. Metaheuristic algorithms in general make no as-

sumption on the character of the cost function or the region where the solu-

tion is found which tends to the high diversity of possible space for searching

of candidate solution. Nevertheless, disadvantage of such type of algorithms

is that they do not ensure finding of solution of original problem. Moreover,

EA belongs to the class of stochastic optimizers where parameters, functions

and constraints, contrary to deterministic optimizers, can involve random

variables.

Deterministic optimizers have a long history of intensive development

and considerable success. Although they are perfect for educational pur-

poses owing to mathematical elegance, most of deterministic algorithms set

requirements on differentiability, continuity and convexity which strongly re-

strict field of applicability of such algorithms. Also, deterministic algorithms

are quite sensitive to starting points. Although a choice of starting point is

critical for the success of deterministic optimization algorithm, usually it

cannot be done by chance and demands either reliable prior knowledge or

trial and error approach to allocate appropriate starting point. Computa-

2 THEORY OF DIFFERENTIAL EVOLUTION 4

tionally efficiency of deterministic optimizers in the problems where they

are applicable is the main advantage of such methods. However, at present

computer technology is developing day by day and more powerful stochastic

optimization tools have become more preferable for a huge range of appli-

cations. This statement can by confirmed by statistic which shows that the

use of stochastic optimization is growing exponentially during last decade.

Let us consider the main differences between deterministic and stochastic

optimizers.

There are five key features that distinguish stochastic optimizers from

deterministic. Most of them are considered somewhat controversial due to

the fact that researches have opposite opinion about these properties[2].

1. Randomness. This property means that results obtained by execu-

tion of such algorithm in general cannot be predicted due to random-

ness occurred in the problem. It leads to controversy about applicabil-

ity of such methods since proof of convergence to true optimal solution

is a question demanding deep theoretical and numerical research and

challenging to modern scientists. Despite the lack of guarantee of pos-

itive results, in practice stochastic optimizers demonstrate high level

of success.

2. Simplicity. Typically, stochastic algorithms are easier in implemen-

tation because they do not require calculation of additional functions

such as approximate or exact derivatives of objective functions. A

background for the simplicity is that most of them were inspired by

real natural phenomena like Darwinian Theory of Evolution. How-

ever, each stochastic optimizer has at least one control parameter, but

performance of algorithm which can be obtained by tuning of this pa-

rameter is a complicated task.

3. Efficiency. Stochastic optimization algorithms usually require more

evaluation of objective function to get expected result. That fact makes

such algorithm more computationally expensive, time consuming or

less efficient.

2 THEORY OF DIFFERENTIAL EVOLUTION 5

4. Robustness. This crucial property appears due to random-oriented

origin of such algorithms. For instance, from one hand stochastic op-

timization algorithm may miss optimal solution even in favorable con-

ditions, from the other hand it may find quasi-optimal solution which

is close to real optimal solution under conditions where deterministic

algorithms totally fail.

5. Versatility. The most of stochastic optimizers does not impose re-

striction on the optimization task, which means that they equally ap-

plicable for continuous, discrete and even symbolic data.

2 THEORY OF DIFFERENTIAL EVOLUTION 6

2.2 DE: basics and history

DE algorithm is originated by Kenneth Price and Rainer M. Storn and first

publication of idea of this method was published as a technical report in

1995 (Storn and Price 1995). Just after inception of this method it has be-

come an attractive field for research and after establishing by Storn in 1997

a website (http://www.icsi.berkeley.edu/_storn/code.html) an explo-

sive expansion in differential evolution research took place. Moreover, the

current progress in the field of computer computations makes in practice DE

a powerful tool for stochastic optimization due to its parallelizable nature

from the computational point of view. This situation is caused by the ability

to perform calculations on each element of the population separately.

DE algorithm inherits common idea of EA that is idea of Natural

selection which consists of following stages: maintaining a population of

candidate solution, generation of new candidate solution by perturbation of

present population according basic formulae, and then selection procedure

of new generation which has the best (in general) value of the objective

function. Moreover, this method is commonly used for multidimensional real-

valued objective functions and does not take advantage of typical gradient-

based optimization methods; thereby requirement for differentiability of the

objective function does not take place. Hence, DE method is applicable for

even non-continuous, noisy and non-deterministic problems.

Before giving a precise mathematical description of the steps of the

DE algorithm, it is convenient to present the main idea of the algorithm in a

graphical form [1], considering one full cycle of the algorithm and accompa-

nying graphics by explanatory information. Let us consider two-dimensional

objective function.

The Figure 2.1 demonstrates this function as contour lines, where opti-

mum point is situated in the center ellipse. There are plenty of possible ways

of initial population generation. Although the chosen way can influence on

speed of algorithm convergence, the nature of DE approach makes possible

http://www.icsi.berkeley.edu/_storn/code.html

2 THEORY OF DIFFERENTIAL EVOLUTION 7

to move towards the optimum even if the initial population was generated

out of optimum vicinity and did not cover whole exploring domain. The

classical DE approach operates with uniform distribution within specified

region. The preset parameters define this domain and the Np vectors of the

initial population will be chosen out of this region. All vectors of popula-

tion get unique index in range (0,Np-1) to be distinguished in conducted

competition.

Figure 2.1: Initializing the DE population.

The distinctive feature of DE is the procedure of trial vector producing.

For this purpose DE randomly chooses two vectors and calculates difference

vector based on them (Figure 2.2). Then, difference vector is scaled and

added to a third randomly selected vector forming trial vector (Figure 2.3).

All these three randomly chosen vectors have to be different.

2 THEORY OF DIFFERENTIAL EVOLUTION 8

Figure 2.2: Generating the difference vector.

Figure 2.3: Mutation.

2 THEORY OF DIFFERENTIAL EVOLUTION 9

Figure 2.4: Selection. u0 replaces the vector with index 0 because it has
lower value of objective function.

Recombination-mutation step is followed by the selection stage, where

the trial vector competes against the population vector of the same index

(Figure 2.4). Thus, Np pair wise competitions are conducted, the survivors

of which become parents for next generation of evolutionary cycle.

2 THEORY OF DIFFERENTIAL EVOLUTION 10

2.3 Mathematical Description

This part is devoted to the mathematical description of typical structure of

main DE algorithm stages.

Population structure. According to K. Price and R. M. Storn [1],

classical population structure of DE algorithm has the following form. One of

the vector populations, called the current population, consists of all approved

either the initial points or selected by the competition points. All population

vectors contain Np D-dimensional vectors of real-valued parameters. Index

g shows the generation which the vector belongs to, two other indexes i and

j are responsible for population and dimension indexes respectively (2.1):

Px,g = (xi,g), i = 0, 1, . . . ,Np− 1, g = 0, 1, . . . , gmax, (2.1)

xi,g = (xj,i,g), j = 0, 1, . . . ,D− 1.

Once initialized, DE mutates randomly chosen vectors to generate in-

termediate population which consists of mutant vectors (2.2):

Pv,g = (vi,g), i = 0, 1, . . . ,Np− 1, g = 0, 1, . . . , gmax, (2.2)

vi,g = (vj,i,g), j = 0, 1, . . . ,D− 1.

Next step is recombination of current population with intermediate popula-

tion to produce a trial population of trial vectors (2.3):

Pu,g = (ui,g), i = 0, 1, . . . ,Np− 1, g = 0, 1, . . . , gmax, (2.3)

ui,g = (uj,i,g), j = 0, 1, . . . ,D− 1.

After considering the population structure, it is possible to discuss the im-

plementation of the main stages of DE.

2 THEORY OF DIFFERENTIAL EVOLUTION 11

Initialization. According to idea described earlier, it is necessary

to specify the parameters characterizing boundary of searching space. The

convenient way is to collect this data in two D-dimensional vectors where

subscripts indicate the lower and upper bounds respectively. Once these

parameters have been predefined, the initial population can be constructed

using random number (e.g. rand-function in Matlab) generator under fol-

lowing formula (2.4):

(xj,i,0) = randj(0, 1) · (bj,U − bj,L) + bj,L, (2.4)

i = 0, 1, . . . ,Np− 1,

j = 0, 1, . . . ,D− 1.

This random generator produces uniformly distributed random num-

bers from the range (0, 1). The crucial difference here is that in spite of the

required nature of parameters, the initialization is made by floating-point

values, owing to DE internally treats all variables in such manner regardless

of their true type.

Mutation. Every specific type of EA has its own mechanism of mu-

tation. The procedure of mutation is applied for every population member

in current population Px,g to produce intermediate population Pv,g. DE

algorithm got his name from differential mutation, which for the current

generation g has the following form (2.5):

vi,g = xr0,g + F · (xr1,g − xr2,g), i = 0, 1, . . . ,Np− 1, (2.5)

where F is the scale factor controlling evolvement of population. It is a

positive real number and although there is no upper limit of this constant,

effective value is rarely greater than one. One can distinguish three types

of vector contained in this formula, they are target vector with index i, base

vector with index r0 and difference vectors with index r1 and r2. r0, r1 and

r2 are three different randomly chosen numbers corresponding to indexes in

current population which differ from index of target vector. The procedure

of mutant generation in two-dimensional parameter space can be illustrated

by the following graph Figure 2.5.

2 THEORY OF DIFFERENTIAL EVOLUTION 12

Figure 2.5: Differential mutation.

Crossover. Crossover is essential part of every EA methods, which

is responsible for recombination of current with mutant population to pro-

duce trial population. Similarly to mutation, crossover mechanism is ap-

plied for every element in intermediate population (i = 0, 1, . . . ,Np− 1, j =

0, 1, . . . ,D − 1) in current generation g. Hence, the output trial population

has the same size as the current population. Due to this circumstance the

selection step of DE algorithm can be conducted element wise. Classical DE

provides uniform crossover procedure according following formula (2.6):

ui,g = uj,i,g =

{
vj,i,g, if (randj(0, 1) ≤ Cr or j = jrand);
xj,i,g, otherwise.

(2.6)

Thus, Parameter Cr here is the crossover probability which is user-

defined parameter controlling fraction of parameters inherited from the mu-

tant.In order to determine which source contributes a given parameter, a

uniformly random-generated number is compared with the crossover proba-

bility. Also, additional condition (j = jrand) ensures that trial vector differs

from current vector. This scheme can be illustrated by following Figure 2.6:

2 THEORY OF DIFFERENTIAL EVOLUTION 13

Figure 2.6: Crossover. Possible additional trial vectors u′i,g,u
′′
i,g.

Selection. Procedure of surviving the fittest is realized in DE accord-

ing to the value of objective functions for given trial and current vectors.

Thus, every trial vector is compared with current vector element wise and

in the case when objective function value for trial vector is lower or equal to

such value of current vector, it replaces the current vector in next genera-

tion. This procedure can be explained by the following formula (2.7) where

i = 0, 1, . . . ,Np− 1:

xi,g+1 =

{
ui,g, if f(ui,g) ≤ f(xi,g)

xi,g, otherwise.
(2.7)

Once the next generation is fully constructed, whole process starting

from mutation to selection is repeated with selected population until the

optimum is located or specified termination condition is satisfied.

2 THEORY OF DIFFERENTIAL EVOLUTION 14

Termination conditions. It is necessary to discuss issue concerning

completion of DE algorithm. We describe three the most common termina-

tion criteria, namely [2]:

• Objective met. This criterion is used only for problems with known

optima to test applicability of algorithm and rectify errors. Such condi-

tion is usually used while starting the implementation of DE algorithm

or introducing new features to prevent damaging of algorithm or con-

trolling the work in a proper way.

• Limit on Number of Objective Function Evaluations. This con-

cept is widely used for real problems. Due to the fact that finding of

optimal solution should take limited time, such termination criteria

helps to control evolution of population in case when no more im-

provement takes place. The possible alternative to this criterion but

with similar meaning is the limitation of the generations number. In

classical DE approach this criterion can be controlled simpler, but in

the case when distinguish between generations is vanished it becomes

inappropriate.

• Limit of Population Diversity. This criterion is based on the nature

of DE algorithm and connected to the notion of premature populations

in evolutionary computations. Premature population is the population

in which elements differ from each other slightly, thus, taking into

account specificity of the next generation construction, it is practically

pointless to continue computations.

Last to criteria will be considered as default termination condition in Matlab

implementation.

3 MATLAB IMPLEMENTATION 15

3 Matlab implementation

This section will be devoted to describing the implementation of DE ap-

proach to the toy-cases of inverse problem. The inverse problem is a general

class of mathematical problems that can be used for determination properties

and information about physical object or system according measured data.

Thus, one of the examples of inverse problem is estimating unknown param-

eters of mathematical model defining specific phenomena with the help of

given measured data. A typical approach to test a an estimation algorithm

is the following. Using known parameters of specific mathematical model it

is possible to generate artificial data which will be handled as measured data

during estimation procedure. Hence, it becomes possible to compare known

true parameters of model with estimated ones using specific approach, e.g.

widely used least square approach.

The essential feature in this approach is simulating of the noise in

data. In real life every measurement can be conducted only with specific

level of noise due to different reasons, for example human factor, finite limit

of accuracy of measuring instruments or truncation error in digital represen-

tation of the data. Hence, the simple mathematical model for the parameter

estimation problem in a general form can be presented as:

y = f(x, θ) + ε, (3.1)

where x and y are input and response, respectively; θ is the vector of param-

eters to be estimated, and ε represents the measurement noise. It is assumed

that the measurement noise is a random normally distributed variable with

zero mean value and non-zero standard deviation (ε ∼ N (0, σ2)), which can

be estimated using different techniques, for instance repeated measurements.

3 MATLAB IMPLEMENTATION 16

Taking into account the measurement noise we face with so-called

Bayesian approach of parameter estimation problem. We are not going to

provide deep description of Bayesian inference here, but the key idea of

such approach is following [5]. Instead of estimation the fittest vector of

parameters, we are interested in producing set of vectors which reasonably

– statistically appropriate due to the noise in data – fit the data. Statisti-

cally appropriate means that a model with estimated parameters should fit

the data with the same accuracy as the measurements are obtained. Hence,

if we substitute estimated parameters into a model and calculate residual

which is the difference between data and the model values (Equation 3.2),

the basic statistical requirement should be satisfied, namely the residuals of

the fit should be roughly equal to the estimated level of measurement noise

(Equation 3.3).

res = y − f(x, θ̂) (3.2)

res ' ε (3.3)

3.1 Deterministic "toy-case" problem

The first aim of research is to test applicability of DE approach for esti-

mating parameters of deterministic problem. Deterministic problem means

that no randomness involved into the behavior of future states. Thereby, a

deterministic model always produces the same result under the same prede-

fined parameters and initial values. As it was announced earlier, a numer-

ical computing environment provided by Matlab which is developed by the

MathWorks inc. will be used as a main programming tool for realization of

considered algorithms. Owing to a high amount of built-in function available

by default in Matlab, in this toy case we can compare the results obtained

by DE with the results obtained by built-in optimizers, e.g. FMINSEARCH

optimizer.

3 MATLAB IMPLEMENTATION 17

3.1.1 Mathematical model

Let us consider the following model containing three parameters:

y = f(x, θ) = eθ0+θ1x+θ2x
2

(3.4)

It is expected to implement in Matlab the full procedure of solving inverse

problem for estimation unknown parameters using DE approach. In order to

handle this task, it is possible to divide implementation of assigned problem

into several steps:

• The 1st step is “DE environment implementation”. All functions and

data structures which are necessary for DE algorithm will be imple-

mented on this step.

• The 2nd step is “Artificial data generation”. According method dis-

cussed above, we will produce some artificial data, generated using

predefined parameters, and test DE approach with help of this data.

• The 3rd step is “Application of DE approach to the artificial data”.

This step will be devoted to testing of implemented DE environment

on generated data.

• The 4th step is “Comparison and analysis”. Considering concrete so-

lutions, plotting graphs, comparison different aspects influencing on

solution and analysis of obtained result will be discussed in this step.

3 MATLAB IMPLEMENTATION 18

3.1.2 DE environment implementation

First of all, it is necessary to define data structures which are responsible

for allocation of algorithm parameters. Moreover, the essential thing here is

generalized form of implementation, which means that all function written

for DE environment have to work not only for specific problem, but be able to

be reused for huge amount of problems without being changed dramatically.

The main structure of parameters is called paramsDE and has following fields:

paramsDE.init_bounds % bounds for initialization of DE
paramsDE.SoP % size of population
paramsDE.F % scale factor of mutation
paramsDE.CR % crossover probability parameter
paramsDE.func % name of cost function
paramsDE.D % dimension of problem (number of ...

unknown parameters)
paramsDE.Hl % length of history of generations
paramsDE.Tol % tolerance for standard deviation of ...

Hl previous generations' objective values means
paramsDE.Gmax % maximum number of generations

This structure should be specified by user. Moreover, there is only two

compulsory input parameters; they are the name of cost function (paramsDE.func)

and range of intervals for initialization of first generation (paramsDE.init_bounds).

It is necessary to mention that an objective function to be minimized is usu-

ally called cost function. Thus, this notation will be utilized further. The

parameter paramsDE.Hl corresponds to the ’Limit of Population Diversity’

stopping criterion. Hence, when standard deviation of cost function values

average of paramsDE.Hl previous population less then paramsDE.Tol the

algorithm stops. The implementation of cost function will be described later

in the 3rd step. Once someone of the rest of parameters is not implicitly

specified by user, default values are used:

%% Default values:
paramsDE.D = size(paramsDE.init_bounds,1);
paramsDE.SoP = 10*paramsDE.D;
paramsDE.F = 0.5;
paramsDE.CR = 0.9;

3 MATLAB IMPLEMENTATION 19

paramsDE.Tol = 1e−10;
paramsDE.Hl = 10;
paramsDE.Gmax = 1e3;

Besides, there is a data structure which usually contains input and

response of true model, but also may contain additional fields characterizing

measured data:

data.xdata = x; % input
data.ydata = y; % response

Moreover, for convenience the model in-line function in stored in the

same structure:

data.f = f; % model function

The main variable of program keeping current population is pop. This

is SoP by (D+1) matrix, where every row represents member of population,

first D columns saves parameter values and the last D+1 column saves the

value of objective function for every member of population. The classical

DE implementation consists of four functions, namely: initialization,

mutation, crossover, and selection. Let us provide Matlab code listings

of these functions:

• initialization:

function pop = initialization(data,paramsDE)
SoP = paramsDE.SoP;
init_bounds = paramsDE.init_bounds;
func = paramsDE.func;
D = paramsDE.D;
% generation of first population of parameters :
pop = ones(SoP,1)*init_bounds(:,1)' + ...

ones(SoP,1)*(init_bounds(:,2) − ...
init_bounds(:,1))'.*rand(SoP,D);

% calculation of cost function :
tmp = func(pop,data);
% pop = [<parameters>,cost]

3 MATLAB IMPLEMENTATION 20

pop = [pop tmp];
end

• mutation:

function res = mutation(pop,paramsDE)
SoP = paramsDE.SoP;
F = paramsDE.F;
D = paramsDE.D;
cur_pop = pop(:,1:D); % only parameters
% choosing base and difference vectors ...
% differ from target vector:
[tmp,ind] = sort(rand(SoP,SoP−1),2);
ind = ind(:,1:3) + (ind(:,1:3) > [0:SoP−1]'*ones(1,3));
% mutation itself
res = cur_pop(ind(:,3),:) + F*(cur_pop(ind(:,1),:) − ...

cur_pop(ind(:,2),:));
end

• crossover:

function res = crossover(new,pop,data,paramsDE)
SoP = paramsDE.SoP;
D = paramsDE.D;
CR = paramsDE.CR;
func = paramsDE.func;
% generating of index vector of members to be tested ...
% for being inherited from previous generation ...
% including protection from exact copies.
temp = rand(SoP,D);
ind = randi(D,SoP,1);
temp(sub2ind([SoP,D],[1:SoP]',ind)) = 0;
% testing
ind = (temp > CR);
% crossover itself: generating trial vector
new(ind) = pop(ind);
% calculation of cost function of trial vector
tmp = func(new,data);
res = [new tmp];

end

• selection:

function res = selection(new,pop,paramsDE)
D = paramsDE.D;
% selection: comparison of objective function values:

3 MATLAB IMPLEMENTATION 21

ind = (new(:,D+1) > pop(:,D+1));
% construction of next generation:
new(ind,:) = pop(ind,:);
res = new;

end

Once these functions are implemented, it is convenient to implement

additional function de which is responsible for initialization of missing fields

of paramsDE structure and calling of previously realized functions in an

appropriate order:

function [pop,G,evolution,fval,element] = de(data,paramsDE)
%% default values
if ~(isfield(paramsDE,'func') && ...

isfield(paramsDE,'init_bounds'))
display('Error!');
pop = [];
G = 0;
evolution = {};
return;

end
paramsDE.D = size(paramsDE.init_bounds,1); % dimension ...

of problem
if ~(isfield(paramsDE,'SoP'))

paramsDE.SoP = 10*paramsDE.D; % size of ...
population

end
if ~(isfield(paramsDE,'F'))

paramsDE.F = 0.5; % scale ...
factor in mutation

end
if ~(isfield(paramsDE,'CR'))

paramsDE.CR = 0.9; % crossover ...
probability

end
if ~(isfield(paramsDE,'Tol'))

% tolerance for standard deviation of Hl previous ...
generations'

% objective values means:
paramsDE.Tol = 1e−10;

end
if ~(isfield(paramsDE,'Hl'))

paramsDE.Hl = 10; % length of history ...
of generations

end
if ~(isfield(paramsDE,'Gmax'))

paramsDE.Gmax = 1e3; % maximum number of ...
generations

3 MATLAB IMPLEMENTATION 22

end
%% initialization of variables
D = paramsDE.D;
Tol = paramsDE.Tol;
Gmax = paramsDE.Gmax;
history = 100*rand(1,paramsDE.Hl);
G=1;
pop = initialization(data,paramsDE);
evolution = {};
%% DE process
while std(history)>=Tol && G<=Gmax

mutant = mutation(pop,paramsDE);
new = crossover(mutant,pop,data,paramsDE);
pop = selection(new,pop,paramsDE);
evolution{G} = pop;
ind = pop(:,D+1)<Inf;
history(mod(G,paramsDE.Hl)+1) =sum(pop(ind,D+1));
G = G+1;

end
[fval,element] = min(pop(:,D+1));

end

By default this function returns the last population and optionally the

number of generations spent for solution and cell array containing the full

evolution of the population.

3 MATLAB IMPLEMENTATION 23

3.1.3 Artificial data generation

This step as it was announced earlier is devoted to generating of artificial

data in order to test implemented DE algorithm. We will consider mentioned

model (Equation 3.4) in the interval x ∈ [0, 10] with increment equal to 0.1

taking following parameter vector as true values:

θtrue = (θ0, θ1, θ2) = (−6, 3,−0.3) (3.5)

Hence, the true model has a form:

y = f(x, θ) = e−6+3x−0.3x2 , x ∈ [0, 10] (3.6)

Once true response has generated, it is necessary to simulate the noise in

data. According to basic statistical assumption, the noise is produced as a

normally distributed random variable with zero mean value and predefined

standard deviation. For convenience, it is sufficient to check the algorithm

on perfect data without noise and then try to introduce noise to perfect data.

Matlab code for this part is listed below:

%% Generating data
x = [0:0.1:10]; % input
% in−line model function
% applicable for theta (3 by n)−matrix:
f = @(theta,x)exp(theta*[ones(size(x));x;x.^2]);
theta_true = [−6 3 −0.3]; % true parameters
y_true = f(theta_true,x); % response of input with true ...

parameters
sigma = 0.1; % std for noise
y = y_true+sigma*randn(size(y_true)); % "measured data" (with ...

noise);
% store the model data in structure
data.xdata = x; % input
data.ydata = y; % true response
data.fun = f; % model function

To illustrate the problem, the plot of true data and noisy data has

been generated Figure 3.1

3 MATLAB IMPLEMENTATION 24

0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

True Data
Noisy Data

Figure 3.1: True and noisy data with standard deviation σ = 0.1.

3.1.4 Application of DE approach to the artificial data

The last compulsory part of the program is the definition of a cost function.

To decide which element of the population produce the best result, the least

squares principle is utilized. The idea of this principle is minimization of sum

of squared difference between measured data and response of substituted

parameters:

LSQ : min(l(θ̂)) =

n∑
i=1

(yi − f(xi, θ̂))
2 (3.7)

Hence, the natural criterion for selection is the value of the cost func-

tion, i.e. in selection procedure an element vector with lower value of cost

function survives for the next population. The Matlab function responsi-

ble for calculation of cost function is called fun_ss. Due to the fact that

the model function is implemented in the manner which allows calling with

the whole matrix of parameters, the cost function can be implemented in a

rather compact form:

3 MATLAB IMPLEMENTATION 25

function res = fun_ss(theta,data)
% (Length−of−data.xdata by SoP)−matrix of responses
y = data.fun(theta,data.xdata)';
% calculation of LSQ
res = sum((repmat(data.ydata',1,size(y,2))−y).^2);
res = res';

end

It is important to mention that all functions are realized in separate

files, at the same time generation of data, initialization of parameters by

user, running DE algorithm and analysis of results are realized in the main

script file run.m. Full listings of programs are presented in the appendix

of this work. Thus, once all necessary functions are implemented and the

artificial data are generated, it is required to initialize parameters of DE and

run the program:

%% Initialization of Compulsory parameters of DE
paramsDE.init_bounds = [−10 −10 −3; 10 10 3]'; % bounds for ...

initialization of DE
paramsDE.func = @fun_ss; % cost function
%% DE run
[pop,G,evolution] = de(data,paramsDE);

Due to probabilistic nature of the DE approach, it is crucial to conduct

several calculations of the same problem to evaluate the mean number of

generation required for finding solution with set accuracy. Because of the

same reason there is probability to obtain absolutely incorrect results which

will be considered as fail attempts for estimation. Moreover, it is possible to

find the optimal population size as proportion between number of generations

and accuracy of the solution. This can be done by introducing following part

of Matlab code into run.m:

%% DE run
Gmean = 0; % number of generations
K = 100; % number of simulations
Fails = 0; % number of fails in estimation
M = 10; % estimate for mean cost function
for i = 1:K

[pop,G,evolution] = de(data,paramsDE);

3 MATLAB IMPLEMENTATION 26

Gmean = Gmean + G;
Fails = Fails + (mean(pop(:,4))>=M);
i

end
Gmean/K % mean number of generations
Fails/K % mean number of fails

3.1.5 Comparison and analysis

According to scheme discussed earlier, it is necessary to conduct several

calculation of the task. Also we want to find optimal size population corre-

sponding to accurate result and high efficiency. During every calculation we

will compare solution obtain by DE approach and built-in solver to count

number of fails in determination of problem parameters. Moreover, we can

introduce different noise level into the exact data to analyze influence of

noise into optimal size of population. Finally, the required relationship can

be illustrated by the following graph Figure 3.2:

10 15 20 25 30 35 40 45 50 55 60
100

200

300

400

500

600

size of population

nu
m

be
r

of
 g

en
er

at
io

ns

10 15 20 25 30 35 40 45 50 55 60

0

0.2

0.4

0.6

0.8

size of population

pe
rc

en
ta

ge
 o

f f
ai

ls

Percentage of fails dependence on size of population

σ = 0.1
σ = 0.2
σ = 0.3
σ = 0.4
σ = 0.5

Figure 3.2: Number of generation and fails percentage dependence on size
of population.

3 MATLAB IMPLEMENTATION 27

It is possible to conclude from this graph that optimal size of popu-

lation lies in the region Np ≈ 10 · D. This empirical results agrees with

theoretical estimation which will be described in the next section.

Once the optimal size of population is determined, it can be used to

produce computations with different noise level and illustrate solutions by

plotting graphs of fitting the data with DE approach(Figure 3.3, Figure 3.4,

Figure 3.5). Furthermore, concrete values will be presented in Table 3.1, Ta-

ble 3.2 and comparison of obtained results with built-in solver fminsearch

solution can be made with the help of Table 3.4.

0 1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

3

3.5

4

x

y

true data
DE−solution
noisy data

Figure 3.3: Fitting the data with noise level σ = 0.0.

Although there are Np different solutions from DE approach, the de-

fault stopping criterion in implemented algorithm is standard deviation of

history of DE evolution is equal to 1e-10, which means in the case of de-

terministic problem that the population in the final generation has almost

equal values of parameters. Owing to this it is possible to take into account

only the best member of the population according to the value of objective

function. This member is considered to be the DE-solution. Values of esti-

mated parameters will be presented in the Table 3.1. Due to similarity of

graphs, the illustrations of the case σ = 0.1 and σ = 0.3 are skipped.

3 MATLAB IMPLEMENTATION 28

0 1 2 3 4 5 6 7 8 9 10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x

y

true data
DE−solution
noisy data

Figure 3.4: Fitting the data with noise level σ = 0.2.

0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4

x

y

true data
DE−solution
noisy data

Figure 3.5: Fitting the data with noise level σ = 0.4.

The tables with concrete values of parameters and objective function

are presented below. It is important to remind that the true vector of pa-

3 MATLAB IMPLEMENTATION 29

rameters of considered model is θtrue = (θ0, θ1, θ2) = (−6, 3,−0.3).

σ θ1 θ2 θ3 fval
0.0 -5.9999998844 2.9999999501 -0.2999999951 3.3906658015e-014
0.1 -6.0221395147 2.9979231887 -0.2991487160 9.7582084808e-001
0.2 -5.7521311294 2.9016465779 -0.2901442080 3.5205629995e+000
0.3 -5.9252642622 2.9588615071 -0.2951914396 7.3744607077e+000
0.4 -5.9305662150 2.9625471950 -0.2962109595 1.3263261144e+001

Table 3.1: Best values of parameters and objective function values obtained
by DE algorithm.

As it was mentioned earlier, the solution of parameter estimation prob-

lem in this case is considered as the best member of the population of the

last generation. However, the mean values of population parameters can be

treated as the solution as well. Thus, the mean parameters corresponding

to population of last generation are computed and value of objective func-

tion should be calculated additionally. Finally, the solution of parameter

estimation problem in the sense of mean parameter values has the following

form:

σ θ1 θ2 θ3 fval
0.0 -6.0000001400 3.0000000639 -0.3000000069 4.1154110407e-014
0.1 -6.0221395790 2.9979232049 -0.2991487166 9.7582084808e-001
0.2 -5.7521309442 2.9016465228 -0.2901442042 3.5205629995e+000
0.3 -5.9252640886 2.9588614478 -0.2951914351 7.3744607077e+000
0.4 -5.9305661771 2.9625471761 -0.2962109570 1.3263261144e+001

Table 3.2: Mean values of parameters and corresponded objective function
values obtained by DE algorithm.

The Table 3.3 presents standard deviation of final generation popu-

lation. Small values for standard deviation confirm idea of uniqueness of

deterministic problem solution.

Finally, solutions obtained by built-in fminsearch solver is presented

in Table 3.4 to compare correctness of stochastic optimizer with determinis-

tic optimizer (fminsearch uses the Nelder-Mead simplex algorithm which

can be found for instance in http://en.wikipedia.org/wiki/Nelder\T1\

textendashMead_method):

http://en.wikipedia.org/wiki/Nelder\T1\textendash Mead_method
http://en.wikipedia.org/wiki/Nelder\T1\textendash Mead_method

3 MATLAB IMPLEMENTATION 30

σ std(θ1) std(θ2) std(θ3)
0.0 4.2051835838e-007 1.7350187042e-007 1.7440197092e-008
0.1 3.6830618356e-007 1.4501196782e-007 1.4284506860e-008
0.2 5.1680344874e-007 2.0661655439e-007 2.0639802688e-008
0.3 4.7644372814e-007 1.8993529210e-007 1.8722104250e-008
0.4 3.9492539809e-007 1.7014517267e-007 1.7884189936e-008

Table 3.3: Standard deviation of parameters of final generation population.

σ θ1 θ2 θ3 fval
0.0 -6.0000206559 3.0000092031 -0.3000008172 9.1267068776e-009
0.1 -6.0221606272 2.9979317105 -0.2991494460 9.7582085210e-001
0.2 -5.7521626369 2.9016604062 -0.2901456669 3.5205630012e+000
0.3 -5.9252818250 2.9588676625 -0.2951918903 7.3744607101e+000
0.4 -5.9305956970 2.9625592788 -0.2962120935 1.3263261146e+001

Table 3.4: Values of parameters and objective function values obtained by
built-in fminsearch function with default parameters.

Summing obtained result, it can be concluded that DE approach is ap-

plicable for deterministic problems although the performance is lower then

built-in Matlab deterministic optimizers have. However this result is pre-

dictable due to the fact that stochastic DE optimization procedure is more

universal and hence more computationaly consuming. Moreover, the main

aim of the research is to apply DE algorithm to chaotic and stochastic prob-

lems where almost all deterministic optimizers fail. The next subsection is

devoted to application of DE approach to the basic stochastic model.

3 MATLAB IMPLEMENTATION 31

3.2 Stochastic "toy-case" problem

In general, stochastic problem means that some stochasticity is involved to

the behavior of the problem. It leads to the fact that system describing the

problem can behave differently from run to run as opposed to deterministic

problems. This property makes almost impossible to solve such type of

problems by deterministic algorithms.

The simple stochastic model has the following form:

y = f(x, θ) + εnew (3.8)

This model seems to be similar to the deterministic model Equation 3.1.

However the crucial distinguish here is the fact that in stochastic model

εnew, which in general sense is the measurement noise in the system, differs

from run to run. Although εnew can contain fixed measurement noise which

remains for every run, it also contains adjustable component. Neverthe-

less the basic assumption still treated, namely εnew ∼ N (0, σ2) is normally

distributed random variable.

3.2.1 Revision of Matlab implementation

The only difference which is needed to the existed implementation is stochas-

tic component in the calculation of objective function value. It can be done

by several ways but in order to test applicability of DE approach to the

simple stochastic problem the global variable global SIGMA which is re-

sponsible for stochastic noise will be introduced. It is added to the true data

in every call of objective function calculation. Thus objective function will

produce different values for every single call even with the same parameter

values. Taking into account such idea, definition of objective function for

stochastic problem can be implemented in following form:

3 MATLAB IMPLEMENTATION 32

function res = fun_ss(theta,data)
% (Length−of−data.xdata by SoP)−matrix of responses
y = data.fun(theta,data.xdata)';
% provide stochasticity
global SIGMA;
y = y + SIGMA*randn(size(y));
% calculation of LSQ
res = sum((repmat(data.ydata',1,size(y,2))−y).^2);
res = res';

end

3.2.2 Results

Exploiting the same idea as for deterministic example, several series of cal-

culations should be conducted to determine influence of the population size

on accuracy and performance of DE algorithm. Moreover, comparison with

built-in solver cannot be made in this case due to inapplicability of deter-

ministic optimizers to solution of stochastic problems. However, fitting the

data by solution obtained by DE will be illustrated and correlation between

obtained parameters will be explored with the help of plotted data and co-

variance matrix.

Firstly, the graph illustrating required dependence is presented on Fig-

ure 3.6. It is possible to conclude out of this graph that optimal population

size according to accuracy (percentage of fails) tends to 20 ·Np and increases

with growing noise level. Behavior of generation number spent for getting the

solution in stochastic case differs from behavior in deterministic case. In the

deterministic case the function describing dependence between generations

number and population size approaches specific constant almost indepen-

dently on population size. At the same time, in the stochastic case there is

no upper limit of number of generation with growth of population size. It

can be explained by the fact that the main stopping criterion implemented

here is devoted to standard deviation of members of population through

specified length history. Thus, with rising of population size the growth of

the diversity among population is introduced simultaneously. Hence, the

stochasticity involved to the behavior of the system is responsible for diffi-

3 MATLAB IMPLEMENTATION 33

culty of meeting the stopping criteria, because the huge population will be

updated more probable contributing in diversity of generation history.

10 20 30 40 50 60 70 80
50

100

150

200

250

300

350

400

size of population

nu
m

be
r

of
 g

en
er

at
io

ns

Number of generation dependence on size of population

10 20 30 40 50 60 70 80

0

0.2

0.4

0.6

0.8

size of population

pe
rc

en
ta

ge
 o

f f
ai

ls

Percentage of fails dependence on size of population

σ = 0.1
σ = 0.2
σ = 0.3
σ = 0.4
σ = 0.5

σ = 0.1
σ = 0.2
σ = 0.3
σ = 0.4
σ = 0.5

Figure 3.6: Number of generation and fails percentage dependence on size
of population. Stochastic case.

Similarly to deterministic case, figures describing the original data fit-

ting with different noise levels by the DE approach are presented in the

Figure 3.7, Figure 3.8. Besides it is important to point out that in this case

there is a distribution of possible optimal solutions contrary to the single

optimal solution in the deterministic case. This fact also is presented in the

graphs and covariance matrices are mentioned above the graphs. Two cases

with low and high level of noise are used as an example:

mean(θ) = [−5.9898965011, 2.9968101829,−0.2997310363];

cov(θ) =

 0.0109479212 −0.0043066165 0.0004138307
−0.0043066165 0.0017167433 −0.0001668795
0.0004138307 −0.0001668795 0.0000164162

 ;

3 MATLAB IMPLEMENTATION 34

0 2 4 6 8 10

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fitting the data with noise level σ = 0.1:

x

y

DE−solution
true data

−6.1 −6 −5.9 −5.8
2.9

2.95

3

3.05

θ
1

θ
2

Correlation between parameters:

−6.1 −6 −5.9 −5.8

−0.305

−0.3

−0.295

−0.29

θ
1

θ
3

2.9 2.95 3 3.05

−0.305

−0.3

−0.295

−0.29

θ
2

θ
3

Figure 3.7: Fitting the data with noise level σ = 0.1.

0 2 4 6 8 10

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fitting the data with noise level σ = 0.5:

x

y

DE−solution
true data

−7 −6.5 −6 −5.5 −5
2.5

3

3.5

θ
1

θ
2

Correlation between parameters:

−7 −6.5 −6 −5.5 −5
−0.35

−0.3

−0.25

θ
1

θ
3

2.5 3 3.5
−0.35

−0.3

−0.25

θ
2

θ
3

Figure 3.8: Fitting the data with noise level σ = 0.5.

mean(θ) = [-6.02119103, 3.010629061, -0.3013245289];

cov(θ) =

 0.3582556082 −0.1382550489 0.01285172823
−0.1382550489 0.0543814342 −0.00515219543
0.0128517282 −0.0051521954 0.00049825664

 ;

3 MATLAB IMPLEMENTATION 35

3.3 Advanced features in DE theory

After testing the DE approach on the simple example, it is possible to con-

clude that although this method is quite powerful tool even in the classical

form, the full potential of this method is not revealed in this form. To deter-

mine the elements of the algorithm requiring development, it is necessary to

turn to the theoretical aspects again [3]. One of the most essential properties

of the DE algorithm is contour matching. Contour matching means that the

population vector has capability to adapt to the objective function surface in

such way that the challenging regions are explored automatically once they

are found. Moreover, DE algorithm has ability of basin-to-basin transfer,

where searching points can move from one vicinity of attraction to another.

Thus, diversity yielded by specific amount of difference vectors allows basin-

to-basin transfer causing the global optimum determination. However, there

is a weak side of contour matching when deceiving nature of objective func-

tion matches vector of population leading away from the global minimum,

hence one should keep balance related to contour matching. There are sev-

eral ways which should be investigated to improve performance properties of

DE algorithm; they can be divided into four groups:

1. Alternative ways for mutation procedure;

2. Investigation of influence of control parameters of algorithm;

3. Alternative selection schemes;

4. Dynamical implementation of DE approach.

Following subsection will describe all this aspects in details.

3.3.1 Alternative ways for mutation procedure

Perturbation of the base vector by mutation has been treated very early

by researchers and appeared in literature ([3],[4]). Thereby, the notation

3 MATLAB IMPLEMENTATION 36

scheme of mutation was established and has had a form ’DE/x/y/z’, where

x denotes the way of base vector choosing, y denotes the number of dif-

ference vectors used, and z denotes the crossover method. Thus, classical

DE approach belongs to DE/rand/1/bin class.There is a plenty of different

schemes which can be handled as well, for instance:

• DE/best/1/bin:

vi,g = xbest,g + F · (xr1,g − xr2,g) (3.9)

• DE/current− to− best/2/bin:

vi,g = xr0,g + F · (xbest,g − xr0,g) + F · (xr1,g − xr2,g) (3.10)

• The variant of DE/best/2/bin:

vi,g = xbest,g +
1

2
F · (xr1,g − xr2,g + xr3,g − xr4,g) (3.11)

In fact there are many other linear combinations of vectors which can

be used, the key point here to be maintained is that the base vector should

be distinct from the other vectors. Thus, generalization of possible linear

combinations can be presented as:

vi,g = yi,g + F · 1

N

N−1∑
n=0

(xr(2n+1),g − xr(2n+2),g) (3.12)

In practice the most widely used formulas are (2.5) and (3.9) owing to

the fact that other combinations are greedy. These schemes will be imple-

mented in Matlab and tested after describing all other developing issues.

3 MATLAB IMPLEMENTATION 37

3.3.2 Investigation of influence of control parameters of algorithm

The crucial property of optimization algorithm is rotationally invariance.

Basically, this property means, that the mean number of function evalua-

tions for an objective function and its rotated counterpart is the same, i.e.

algorithm does not depend on coordinate axes of problem. At the same time

it was shown [1] that the mean number of function evaluations for an ob-

jective function and its rotated counterpart the same in DE algorithm only

with crossover probability Cr = 1. Thus rotationally invariance property

holds only for this particular case. Nevertheless, this statement does not

mean that lower values of this parameter should be avoided. For instance,

low values of Cr parameter are appropriate for separable objective functions.

However, there is a rule for default values for control parameters proposed

by Storn and Price which empirically has approved their usefulness, namely:

scale factor, F ∈ [0.5, 1.0]

crossover probability, Cr ∈ [0.8, 1.0] (3.13)

size of population, Np = 10 ·D

Although they are applicable for huge range of practical purposes, tun-

ing of control parameters should be made for specific problems additionally.

Once it is required to find a general solution for this problem, a task of es-

timation of the best settings of F , Cr and Np automatically arises. One of

the recent approaches is to consider F and Cr as supplementary parameters

in population vector. Hence each parameter vector has D + 2 parameters,

where last two parameters contain individual values for F and Cr. Thereby,

if the trial vector wins in selection procedure then either both F and Cr in-

herited from the base vector to the next generation or individual parameter

F and Cr generated randomly to particular vector. The results obtained

by researches show that this schemes yields improving of objective function

value after fixed set of function evaluation, compared to classical DE with

F = 0.5 and Cr = 0.9.

3 MATLAB IMPLEMENTATION 38

Considering aspects which make DE algorithm a powerful tool for

stochastic optimization [3], it is important to mention the fact that in the

classical ’one difference vector’ scheme the vector perturbations are based

on Np · (Np − 1) nonzero difference vectors as opposite to other types of

evolutionary algorithms where a predetermined probability density function

is employed for that purpose. This fact provides contour matching prop-

erty mentioned earlier. However, in the endeavor to obtain fast convergence

the population size Np is usually kept low, which leads, in fact, to limit

probability (Np · (Np − 1) possible directions) to find regions with possi-

ble improvements of objective function and so-called stagnation may occur.

Stagnation here means that there is no improvements of cost function during

several generations. Such dependence between size of population and speed

of convergence demands alternative ways for diversity enhancement without

increment of population size. It can be seen that one of the methods for

diversity enhancement has always been an integral part of DE, crossover.

It is important to mention that there are two main deficiency of crossover,

namely: loosing of contour matching property when strong crossover used

(e.g. Cr = 0.1) and non-rotationally invariant nature. Nevertheless, strong

crossover is perfect for separable functions where the main tendency is to

search along the main parameter axes. Moreover, diversity enhancement im-

pact of crossover is proved to outweigh disadvantages of this method espe-

cially for light crossover (Cr close to 1) for non-separable objective functions.

Scale factor F seems to be useful tool for solving the diversity enhance-

ment task. There are two approaches to expand number of possible search

direction tuning F parameter and maintaining size of population. Both of

them exploit randomization of this parameter and called dither and jitter

[3]. Dither employs following formula for randomization of parameter F :

Fdither = Fl + randg(0, 1) · (Fh − Fl), (3.14)

where Fh and Fl the highest and the lowest values of F . As it can be pointed

out from this formula, F scale factor is randomized for whole generation;

3 MATLAB IMPLEMENTATION 39

however it can be generated for each of Np difference vector separately:

Fdither = Fl + randi(0, 1) · (Fh − Fl), i = 0, ..., Np− 1 (3.15)

Besides improving the speed of convergence of DE algorithm, it has

been proved that such method improves handling of problems with noisy ob-

jective functions. Thereby, due to the fact that the dither maintains contour

matching and rotationally invariant property, it can be used for diversity

enhancement.

Although jitter also randomizes scaling factor F , it makes it for every

single parameter and every new mutant vector i according to:

Fjitter,i = F · (1 + δ · (randj(0, 1)− 0.5)) (3.16)

The impact of jitter to diversity enhancement is not totally analyzed

yet, whilst it has been shown that crucial thing in this method is that δ should

be very small (∼ 0.001). Moreover, δ itself can be randomized as well. It

has been also shown that in general jitter is not rotationally invariant, but

for small values of δ this deficiency negligible.

Generalization of principles mentioned above can be following formula,

where both idea of dither and jitter are taken into account:

Fjitter&dither,i,g = (Fl + randg(0, 1) · (Fh − Fl)) · (1 + δ · (randj(0, 1)− 0.5))

(3.17)

Thereby, all advantages of proposed control parameter developing make

these features appropriate for diversity enhancement and may be imple-

mented as Matlab code.

3.3.3 Alternative selection schemes

There is another approach which may be useful for convergence acceleration

of classical DE approach. It is usually called as generation jumping [3]. To

3 MATLAB IMPLEMENTATION 40

begin with, it is necessary to describe opposition-based scheme of DE. Idea

of this scheme is to generate opposite population to current or mutant vector

with respect to existing parameter vector. This concept can be illustrated

by the following formula:

vi,g,opposed = xg,min + xg,max − vi,g, (3.18)

where xg,min and xg,max denote minimum and maximum of parameter values

for current generation respectively. For the initial generation the absolute

bounds are used. It is necessary to mention that opposite point’s generation

scheme neither maintains rotationally invariance nor basin-to-basin transfer,

that is why this approach is proved to be applicable only inside generation

jumping scheme.

According to the generation jumping idea, the opposing points are not

chosen on an individual basis but generated to the whole population with

given probability Jp (for example Jp = 0.25). In this case there is two times

more diversity in choosing direction: Np possible directions from the original

population and Np possible directions from the opposite population. Out of

this 2 ∗Np points the Np best ones are chosen to form the next generation.

In the community connected with evolutionary computations this approach

is called elitist or (λ + µ)-selection, where λ best points are chosen out of

λ + µ candidates. Although elitist scheme has the possibility to speed up

convergence with comparison to classical one-to-one selection scheme, at the

same time it can lead to premature convergence to improper solution.

Thus, owing to elitist selection is not used in every generation but only

with given probability Jp, generation jumping scheme maintains proper bal-

ance between elitist and one-to-one scheme of selection candidates for the

next generation. Thereby, generation jumping scheme collects both diversity

expanding feature from opposition-based scheme and fast convergence coun-

teracting the loss of focus towards the global minimum from (λ+µ)-selection

with λ = µ = Np.

3 MATLAB IMPLEMENTATION 41

3.3.4 Dynamical implementation of DE approach

Once whole algorithm of DE has described specific influences of different

mutation schemes and control parameters, it is possible to analyze the evo-

lution mechanism itself. It can be seen from the existed implementation that

the classical DE has two inherit defects, namely, slow feedback to update of

population status and extra memory requirement.

From the point of view how classical DE algorithm updates population,

it can be classified as static algorithm [2]. It means that the whole population

Px,g of generation g remains unchanged until it is replaced by the next

population Px,g+1 of generation g + 1. Thus, the classical DE method does

not utilize any information which has taken place during current evolution

loop. The classical DE approach keeps using current population to produce

mutant vector until current evolution loop is completed, for example in the

scheme DE/best/*/* the best vector maintained even when more dominant

vector is found during this evolution loop. Therefore, classical DE method

delays response on the progress of the population status making convergence

slower.

It is possible to reformulate evolution mechanism of classical DE using

well-known distinguish between the Jacobi method and the Gauss–Seidel

method for solution of a set of linear algebraic equations as inspiration. It is

necessary to remind these methods. The classical iteration numerical method

for solution of system of linear equation A · x = b is Jacobi method which

can be presented as following formula:

xn+1
i =

bi −
∑

j 6=iAijx
n
j

Aii
, (3.19)

where x0i is predefined initial guess. Like in the case of classical DE, this

method does not overwrite anyone of component of the solution xn before the

new solution xn+1 is fully obtained. This method has a slow convergence and

one of the most essential reasons for this is considered deficiency. The Gauss-

Seidel method avoids this drawback taking into account new component of

3 MATLAB IMPLEMENTATION 42

solution xn+1 as soon as it is available being updated:

xn+1
i =

bi −
∑

j<iAijx
n+1
j −

∑
j>iAijx

n
j

Aii
(3.20)

Although iteration index n still remains in this formula, the only reason

is convenience to emphasize the dynamic updating scheme. As it can be

concluded out of this method, there is no more need in the memory for

the next iteration, because updated solution is already included into current

iteration. As a result better convergence of solution is obtained with weaker

conditions and less memory requirements. Mimicking such development of

static solution, dynamic DE method is proposed. Now, all modification

of population during current evolution loop is being treated immediately.

The most important drawback of dynamic DE is the fact that it cannot

be simply parallelized any more. Summing up all possible modification of

classic DE approach, the new implementation in Matlab is developed and

tested on introduced both deterministic and stochastic toy-cases which can

be found further. Also analysis of results obtained during these experiments

is performed to be utilized in the more complex problems.

3 MATLAB IMPLEMENTATION 43

3.4 Application of advanced DE to "toy-case" problems

This subsection is devoted to implementation of discussed earlier modifica-

tion of classical DE algorithm and determination of the most efficient schemes

among possible combination of proposed changes. Since it is necessary to

implement several new modifications, the structure of our functions will be

changed. There are two main differences from the previous realization. The

first distinguish is that now dde.m function contains all routines dedicated

to initialization, mutation, crossover and selection stages of DE instead of

having several separate function. The second distinguish is the drawback of

the dynamical approach, i.e. it is necessary to introduce loop of calculation

where changes in the population will be taken into account immediately.

Moreover, it is essential to provide possibility for user to choose which muta-

tion and selection scheme have to be used. Also, user can specify the value of

parameter Jp which is responsible for generation jumping scheme. To com-

pare productivity of proposed improvement it will be tried to estimate mean

number of generation length required for approaching the specified accuracy

for different possible combinations of mutation and selection schemes and for

probability values of generation jump. Hence, we will consider sixty differ-

ent combinations. Besides, the fail attempts to solve the problem may occur

due to weak initial guesses and noise level in the stochastic case, thus it can

be considered as additional parameter for comparison. Afterwards we can

choose several best schemes in the meaning of appropriate relation between

productivity and accuracy which will be used in the main problem of the

paper. Therefore, in the following sections the key points of implementation

of modifications will be discussed and the improved DE algorithm will be

applied to the deterministic and stochastic cases of proposed example.

3 MATLAB IMPLEMENTATION 44

3.4.1 Implementation of advanced features in Matlab

First of all we will consider key points of generation jumping procedure. We

skip most of auxiliary lines of Matlab code and emphasize on the most crucial

parts.

%% generation jump
...
Jp = paramsDE.Jp;
cur_pop = pop(:,1:D+1); % parameters + cost
if rand(1)<=Jp

mins = []; % minimum values of each parameter ...
vector

maxs = []; % maximum values of each parameter ...
vector

... % calculation of min/max

% "oposite population":
op_pop = repmat(mins,SoP,1) + repmat(maxs,SoP,1) − ...

cur_pop(:,1:D);
tmp = func(op_pop,data);
op_pop = [op_pop tmp];

% joined population:
cur_pop = [cur_pop;op_pop];

% the fittest SoP−size population from the joined ...
population:

[TMP,IX] = sort(cur_pop);
ind = IX(1:SoP,D+1);
res = cur_pop(ind',:);
return;

end

When algorithm have to make generation jump the minimum and max-

imum values of each D parameter vector in current population are calculated

to be involved into computation of opposite generation. Once this generation

has been constructed, the cost function should be calculated and then both

populations are joined to select SoP best ones. It is important to mention

that according to the theory of generation jumping approach, this procedure

replaces all mutation-selection steps in current generation, i.e. in the case of

generation jumping only procedure of survival the fittest joined population

3 MATLAB IMPLEMENTATION 45

elements are fulfilled.

The mutation routine remains the same whilst the crossover and the

selection parts cannot be divided into independent parts due to Dynamical

approach restrictions.

%% crossover and selection
temp = rand(SoP,D);
ind = randi(D,SoP,1);
temp(sub2ind([SoP,D],[1:SoP]',ind)) = 0;
indCrossover = (temp > CR);
...
switch F_type

...
% Choosing the specified scheme of parameter F evaluation

end
% Population loop is drawback of Dynamical approach :
for i = 1:SoP

switch mutation_type
...
% Choosing the specified scheme of mutant vector ...

generation
end
% Construction of trial vector:
new(indCrossover(i,:)) = cur_pop(i,indCrossover(i,:));
tmp = func(new,data);
% Selection:
if tmp<cur_pop(i,D+1)

cur_pop(i,:) = [new tmp];
end

end

This listing illustrates that one full step of population evolution is now

divided into SoP sequential steps where all changes in current population

are updated immediately and allowed for following elements to use updated

values in computations. To solve the problem of the determination of the

best DE scheme, it is necessary to modify main file of the program. It should

provide possibility to generate information about mean number of generation

and number of fails for every combination of control parameters. Therefore,

several nested loops are needed and procedure of saving the data into log

file will be implemented. It should be mentioned that repeated calculations

for every combination of control parameters will be used for the purpose

3 MATLAB IMPLEMENTATION 46

of estimation the mean number of generations which is necessary to reach

suitable accuracy.

3.4.2 Deterministic "toy-case" problem

Once the extended version of the DE approach has been taken into considera-

tion in Matlab implementation, the analysis of improvement influence should

be done according performance this algorithm with different control param-

eters combination in deterministic case. The results containing all possible

combination of introduced tuning parameters with mean generation number

and accuracy are presented in Table B.1 and Table B.2 in Appendix. This

table provides the information about solution of deterministic case problem

with noise level σ = 0.2 and population size Np = 30. The following abbre-

viation will be utilized to indicate different values of tuning parameters:

1. Mutation type:

• ′Cls′ corresponds to the scheme (2.5);

• ′Bst′ corresponds to the scheme (3.9);

• ′CtB′ corresponds to scheme (3.10).

2. F type:

• ′Cls′: F is equal to the predefined constant value for all members;

• ′Dthr1′: F is calculated according to (3.14);

• ′Dthr2′: F is calculated according to (3.15);

• ′Jttr′: F is calculated according to (3.16);

• ′Mix′: F is calculated according to (3.17).

3. Jp is generation jumping probability. It has four values, namely: 0.0,

0.1, 0.2, and 0.3.

According to this table the most efficient combination of parameters

are:

3 MATLAB IMPLEMENTATION 47

• [′Bst′,′Cls′, 0.0]

• [′Bst′,′Dthr1′, 0.0]

• [′Bst′,′Dthr2′, 0.0]

• [′Bst′,′ Jttr′, 0.0]

• [′Bst′,′Mix′, 0.0]

All these combinations demonstrate roughly equal performance in cur-

rent example and improve the classical DE scheme almost three times which

can be concluded out of Figure 3.2.

It should be mentioned that in deterministic case it is impossible to

analyze the influence of generation jumping scheme and different scheme of

F parameter evaluation on the performance of the algorithm because the

main impact in this case is caused by the mutation scheme and dynamical

implementation. Particulary, it can be seen that the best scheme in this case

is DE/Best/1/bin.

Improvement in performance obtained by implementation of advanced

features can be illustrated by Figure 3.9 which is obtained by introducing

DE/best/1/bin mutation scheme, dither and jitter and generation jumping

with probability 0.0. This figure can be compared with Figure 3.2.

The main conclusion that can be made out of this figure is that al-

though introduced features demand higher size of population in comparison

with classical implementation, this drawback is totally overweighed by the

average number of generation which are needed to estimate parameters of

the deterministic problem with specified accuracy. In the advanced imple-

mentation of DE the mean number of generation is two or even three times

less then in classical scheme. Moreover, influence of the most of the tuning

parameters remains unestimated due to the nature of deterministic problem

and should be tested during application to stochastic case of the proposed

example.

3 MATLAB IMPLEMENTATION 48

10 15 20 25 30 35 40 45 50 55 60
0

100

200

300

400

500

size of population

nu
m

be
r

of
 g

en
er

at
io

ns

Number of generation dependence on size of population

10 15 20 25 30 35 40 45 50 55 60

0

0.2

0.4

0.6

0.8

size of population

pe
rc

en
ta

ge
 o

f f
ai

ls

Percentage of fails dependence on size of population

σ = 0.1
σ = 0.2
σ = 0.3
σ = 0.4
σ = 0.5

σ = 0.1
σ = 0.2
σ = 0.3
σ = 0.4
σ = 0.5

Figure 3.9: Number of generation and fails percentage dependence on size
of population.

3.4.3 Stochastic "toy-case" problem

The same analysis as for deterministic case should be conducted here as

well. The full table which contains different combinations of tuning parame-

ters and corresponding performance and fail percentage can be found in the

Appendix (Table B.3, Table B.4). This table was obtained with stochastic

noise level σ = 0.4 and size of population Np = 60. Stochastic nature of

problem and optimizer leads to appearance of fail attempts to estimate pa-

rameters. It should be pointed out from these tables that classical scheme

is more accurate but time consuming. At the same time taking into account

an approach which take an appropriate proportion between performance and

accuracy as measure for goodness of tuning parameter set the following sets

should be emphasized:

• [′Bst′,′Dthr1′, 0.1]

• [′Bst′,′Mix′, 0.2]

3 MATLAB IMPLEMENTATION 49

• [′CtB′,′ Jttr′, 0.2]

Crucial consequence of current example is the fact that when stochasticity

involved into behavior of system, utilization of generation jumping approach

stabilizes the population evolution making the estimation more accurate and

reduces probability of fail attempts. The following figure illustrates influence

of population size on performance and accuracy of DE algorithm during

application to stochastic example. [′Bst′,′Mix′, 0.2] set of tuning parameters

was used for this purpose:

10 20 30 40 50 60 70 80 90 100
20

40

60

80

100

120

140

160

size of population

nu
m

be
r

of
 g

en
er

at
io

ns

Number of generation dependence on size of population

10 15 20 25 30 35 40 45 50 55 60

0

0.2

0.4

0.6

0.8

size of population

pe
rc

en
ta

ge
 o

f f
ai

ls

Percentage of fails dependence on size of population

σ = 0.1
σ = 0.2
σ = 0.3
σ = 0.4
σ = 0.5

σ = 0.1
σ = 0.2
σ = 0.3
σ = 0.4
σ = 0.5

Figure 3.10: Number of generation and fails percentage dependence on size
of population.

It can be noticed that the main tendency of tuning parameters influ-

ence for stochastic case is similar to deterministic case. Thus, drawback in

average increasing of population size needed to avoid fail attempts of pa-

rameter estimation can be neglected owing two twice or triple growth in

performance as measured by average generations needed to reach the spec-

ified accuracy. Thereby, advanced features involved into implementation of

the DE algorithm shows strong benefits and will be maintained during esti-

mation of chaotic dynamics.

4 PARAMETER ESTIMATION OF CHAOTIC DYNAMICS 50

4 Parameter estimation of chaotic dynamics

This section is devoted to exploring of the Lorenz system, which exhibits

chaotic dynamics, using DE approach. The main aim is to apply the DE

algorithm to the parameter estimation problem of the Lorenz system and

solve additional problems which will be faced during this procedure. Thus

proposed dynamical implementation with advanced techniques described and

tested earlier on toy-case example will be taken into account for improving

convergence properties of solution. For further investigation of the proposed

problem, historical and theoretical background dedicated to Lorenz system

will be presented.

4.1 Overwiew of Lorenz system

The Lorenz system is a specific system of ordinary differential equations

and a classical example of a dynamical continuous system exhibiting chaotic

behavior.

From the mathematical point of view a dynamical system is a concept

where a fixed rule determines the time dependence of a point in a geometrical

space. In other words, for every given time the behavior of the dynamical

system is characterized by a state which is a vector and corresponded to a

point in an appropriate state space. Besides, the evolution rule is a fixed

rule describing future states of the system uniquely. Thus, the rule is de-

terministic leading to the fact that for given time interval only one future

state follows from current state. Chaotic behavior of a dynamical system is

a behavior which is highly sensitive to initial conditions. It means that in

long time period two runs of the same dynamical system with small differ-

ence in initial conditions have totally different states. Although evolution

of such dynamical system can be fully determined by initial conditions and

the fixed evolution rule as in considering case, prediction of evolution is im-

possible in general due to the fact that small differences in initial conditions

can be caused even by rounding errors during computations. In other words,

4 PARAMETER ESTIMATION OF CHAOTIC DYNAMICS 51

although no artificial randomness is not involved into the definition of a

system, the behavior of the system remains unpredictable.

The Lorenz system was firstly published by Edward Lorenz in his paper

in 1963 [6]. There he described a three parameter family of three-dimensional

ordinary differential equations which show extremely complicated solution

while applying to the computational system which was available in that time.

These equations, now known as Lorenz equations, gave a rise to research of

such system and have been studied by many authors which contributed a lot

to investigation of this field. Lorenz’s work is important even today because

he had an insight of the essence of chaos although no one did not know it

in those days and his work settled the today’s chaos theory. Notability of

these equations is caused by the fact that they were derived by Lorenz while

searching for a three-dimensional set of ordinary differential equations which

can be used as a model for unpredictable behavior normally associated with

weather and atmosphere. Lorenz, a meteorologist as well as a mathemati-

cian, derived his equation from the Navier-Stokes equations with the Boussi-

nesq approximation, which described the atmospheric convection. Although

the Lorenz equation loses the correspondence to the actual atmosphere in

the process of approximation, it is important that chaos appears from the

equation which describes the dynamics of the nature. Hence, Lorenz system

has a following form:

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y, (4.1)

dz

dt
= xy − βz,

where σ, ρ and β are three real positive constants.

Variables involved to this system has specific physical meanings related

to the essence of the problem, namely the variable x measures the rate of

convective overturning, the variable y determines the horizontal temperature

variation and the variable z determines the vertical temperature variation.

Three parameters σ, ρ and β contained in the system are respectively pro-

4 PARAMETER ESTIMATION OF CHAOTIC DYNAMICS 52

portional to the Prandtl number, the Rayleigh number, and some physical

proportion of the region under consideration. The Prandtl and Rayleigh

numbers are dimensionless numbers which are responsible for specific phys-

ical properties of a fluid.

It was shown that with the values σ = 10, ρ = 28 and β = 8/3

the Lorenz system exhibits chaotic behavior which can be illustrated by the

three-dimensional plot of its trajectory:

−20 −15 −10 −5 0 5 10 15 20−50

0

50
0

5

10

15

20

25

30

35

40

45

50

X
Y

Z

Figure 4.1: Lorenz system’s phase portrait with initial values [x0, y0, z0] =
[0, 1, 1.05].

It was also proved that this figure has different turbulence-type prop-

erties, they are [6]:

1. The trajectory presented in Figure 4.1 is not periodic.

2. However long the numerical integration is continued the trajectory does

not approaches either stationary or periodic behavior.

3. The general form of the Figure 4.1 does not depend either on choice

4 PARAMETER ESTIMATION OF CHAOTIC DYNAMICS 53

of initial conditions if initial transient part of trajectory is ignored;

or on choice of integrating routine being responsible for calculation of

trajectory. This trajectory of Lorenz system is usually called Lorenz

Attractor.

4. Contrary to the previous property, the details in Figure 4.1 is crucially

dependent both on initial conditions and integration routine. As a con-

sequence of such sensitivity, the property of unpredictability is taken

place which is typical for chaotic behavior.

Once historical and theoretical aspects of Lorenz system is covered,

study of parameter estimation of inverse problem related to Lorenz system

can be discussed. The following subsection is devoted to this aim.

4 PARAMETER ESTIMATION OF CHAOTIC DYNAMICS 54

4.2 DE application to parameter estimation of Lorenz sys-
tem

The aim of the parameter estimation problem is to determine unknown pa-

rameter values of given model according to measured data. Thus, in order

to estimate the Lorenz system artificial data should be generated in ad-

vance. One of the most crucial problems to be faced is high sensitivity of

presented system to initial values. It makes impossible to predict behavior

of the system in long time period. This problem can be handled by dividing

full time interval into smaller time intervals where system exhibits relatively

deterministic behavior. Turn to the DE approach implementation, the basic

idea to solve this problem is to apply one full evolutional step consisting

of mutation, crossover and selection sequentially from one time subinterval

to another. As an initial population for the every next time subinterval

the ’survival’ population from the previous subinterval is treated. The cost

function is calculated by commonly used sum of squared differences between

observation(measured noisy data) and the model. However the key point

here is the fact that cost function is different in every subinterval because

measured data differs. Moreover, it is assumed that the state of the system

in the beginning of considered time window is known but noisy. Thus, these

values can be used as mean values for initial values of the system in current

time interval. Further, specific initial values for every population member

are generated from Normal distribution with known mean value and specified

standard deviation.

The state of Lorenz system Si can be described by the following model:

Si = F (ti, X0, θ̃), (4.2)

where F (...) = (f1(...), f2(...), f3(...)) is Lorenz equations,X0 = (t0, x0, y0, z0)

is a set initial conditions, θ̃ = (β, σ, ρ) is a set of parameters of Lorenz system.

According to the scheme presented earlier, if there is a j− time window

of length w with data measurements Y = (y1, y2, y3) in every dt time points

then the cost function LSQ of the model with current set of parameters can

4 PARAMETER ESTIMATION OF CHAOTIC DYNAMICS 55

be calculated using following formula:

LSQj =
∑

i=w·(j−1)+1:dt:w·j

(F (ti, X0j , θ)− Yi)2, (4.3)

where X0j = (t0, x0, y0, z0) = (tw·j−1,N (Yw·j−1, σ
2)), and σ is specified stan-

dard deviation. Thus, whole procedure of estimation of parameters is divided

into several step:

• Initialize the population for current time window by the population

obtained on previous time window;

• Apply one full DE step for current population taking into account new

data measurements and initial values influencing on calculation of cost

function Figure 4.2.

• Continue this process until estimated parameters have been found with

desired accuracy.

0 0.2 0.4 0.6 0.8 1 1.2
−20

0

20

X

0 0.2 0.4 0.6 0.8 1 1.2

−20

0

20

Y

0 0.2 0.4 0.6 0.8 1 1.2
0

20

40

One time window

Z

Measured data
Model values

Measured data
Model values

Measured data
Model values

Figure 4.2: Example of one time window for Lorenz system.

During one evolutional step of the DE method, new parameter values which

fit the data for current time window in the best way are proposed. Although

there is probability of appearance of parameter sets exhibiting suitable fit-

ting of the data only for current time window, they will be neglected during

next time windows due to high values of cost function. According to this

4 PARAMETER ESTIMATION OF CHAOTIC DYNAMICS 56

idea, the DE approach adopts population with increasing number of time

window taking into account the noise in measured data. As a result, true

parameters of the system can be estimated. The presented concept is im-

plemented in Matlab. Most of computational routines devoted to the DE

approach are already implemented during investigation of previous toy-cases.

Therefore, the implementation of solution of the current problem is required

artificially measurements generation, Matlab-functions providing calculation

of cost function, several tunings in DE routines and main file which is re-

sponsible for assembling all parts of realization to complete solver.

4 PARAMETER ESTIMATION OF CHAOTIC DYNAMICS 57

4.3 Matlab implementation

It is assumed here that performance which can be obtained by the dynamical

implementation of DE algorithm overweighs the drawback in loss of paral-

lelizability. It is truth under conditions of limited computational capacity

and impossibility to provide parallel calculations. In the case when parallel

computations can be conducted, the static implementation should be used.

Thus, in this case the dynamical advanced implementation of DE method

will be applied to the current problem.

Required data for parameter estimation problem of Lorenz system is

generated using built-in Matlab solver with integration step dt = 0.0025

on the time interval [0:500]. Based on this data, measurements are chosen

with analyze time interval aint = 0.4. Thus, the cost function for popula-

tion members is calculated based on solution of Lorenz system with given

integration step compared to the truth data in every aint time points.

Calculation of cost function in this particular case can be implemented

in following way. Firstly, function which produces evolution of dynamic of

Lorenz system is needed. In presented project it is called lorenzeq.m:

function sdot = lorenzeq(t,s,params)
% parameters
beta = params(1);
sigma = params(2);
rho = params(3);
% states values
x = s(1);
y = s(2);
z = s(3);
% equation
dx = sigma*(y−x);
dy = x*(rho − z) − y;
dz = x*y−beta*z;
% differential
sdot = [dx;dy;dz];

end

This function has typical structure which is required for built-in Matlab

4 PARAMETER ESTIMATION OF CHAOTIC DYNAMICS 58

ode-solvers. It is important to mention that even for solution of autonomous

systems (a system of ordinary differential equations which does not explicitly

depent on the independent variable, in this case t) the independent variable

has to be mentioned in the list of function parameters. Once such function

has implemented, solution of a given system of differential equations with

specified initial values and parameter set can be obtained using lorenz_m.m:

function y = lorenz_m(data,theta,y0)
time = data.xdata;
% parameters of solver:
opt = odeset('RelTol',1e−11,'AbsTol',1e−11);
[t,y] = ode113(@lorenzeq,time,y0,opt,theta);

end

Finally, required cost function can be implemented in following way:

function [res,Y] = lorenz_ss(theta,data,init)
res = [];
aint = data.aint; % analysis interval
dt = data.dt; % integration interval
truth = data.truth; % truth data
for i = 1:size(theta,1)

y0 = init(i,:);% initial value
Y(:,:,i) = ...

lorenz_m(data,[theta(i,1),theta(i,2),theta(i,3)],y0);
end
% solution in the point where truth values are calculated
response = Y(aint/dt:aint/dt:end,:,:);
% cost function calculated in LSQ−sense
nens = size(response,3);
ss = (response−repmat(truth,[1 1 nens])).^2;
for i = 1:nens

res(i) = sum(sum(ss(:,:,i)));
end
res = res(:);

end

It should be pointed out that parameter theta in this function contains

the whole population, e.g. Np-by-D matrix.

Further, dde.m routine should be slightly modified. According to the

model and physical sense only positive parameter values are suitable, hence

4 PARAMETER ESTIMATION OF CHAOTIC DYNAMICS 59

to prevent appearance of negative parameter values checking the signs of

parameters chosen during selection state is conducted and selection of only

positive occurrence even with higher values of cost function is assumed.

Next step is implementation of the main function which is responsible

for calling and treating of all subroutines to solve the problem. Before start-

ing main part of estimation procedure, user should specify parameters of

the DE algorithm like in toy cases. Once all required parameters have been

specified, the main part of estimation process skipping detailed description

can be coded as follows:

...
for i = 1:nSim

% current time window
a = (i−1)*range;
b = (i)*range;
time = a*aint:dt:b*aint;
% analysis points for calc of cost function
data.truth = truth(a+2:b+1,:);
analysis = truth(a+1,:);
% initial values generating
INIT = repmat(analysis,SoP,1);
init = INIT + init_std*randn(size(INIT));
% encapsulation of data
data.init = init;
data.xdata = time;
if i==1

% initialization at the 1st step
pop = initialization(data,paramsDE);
...

end
...
% one DE−step
pop = dde(pop,data,paramsDE);
% save evolution of parameter values
history.beta = [history.beta pop(:,1)];
history.sigma = [history.sigma pop(:,2)];
history.rho = [history.rho pop(:,3)]
save(['history.mat'],'history');

end
...

It should be mentioned that in context of this problem the time window

and generation has the same meaning, e.g. the i-th time window corresponds

4 PARAMETER ESTIMATION OF CHAOTIC DYNAMICS 60

to the i-th generation. Thus Figure 4.3 illustrates solution for one time

window obtained by DE approach. Color lines demonstrate solution of the

problem with different population members using perturbed initial values.

Black circles denote the true solution in given time points.

4 4.5 5 5.5 6
−15

−10

−5

0

x

4 4.5 5 5.5 6
−15

−10

−5

0

y

4 4.5 5 5.5 6
10

20

30

40

z

time

Figure 4.3: Solution for one time window of length range*aint.

The result of estimation and evolution of population members can be

illustrated by Figure 4.4. Mean values of population members of the last

generation are β̄ = 2.674722, σ̄ = 10.110571, ρ̄ = 27.980898, with standard

deviations equal to 0.00666, 0.16551, and 0.03762 respectively.

Following set of DE parameters was used to perform presented esti-

mation:

• Dynamical version of DE was used;

• Size of population SoP = 30;

• Crossover probability Cr = 0.9;

• Scale factor in mutation F ∈ [0.45, 0.55];

4 PARAMETER ESTIMATION OF CHAOTIC DYNAMICS 61

10 20 30 40 50 60 70 80 90 100

2

4

6

8
θ

1

10 20 30 40 50 60 70 80 90 100

6
8

10
12
14

θ
2

10 20 30 40 50 60 70 80 90 100

26
28
30
32

generation number

θ
3

Figure 4.4: Parameter evolution.

• Mutation type is "DE/best/1/bin";

• Crossover scheme is mixed with both dither and jitter approach;

• Generation jumping technique with probability Jp = 0.3 was used;

• Standard deviation for generation of initial values init_std = 0.1.

Also, it should be mentioned that the artificial data was generated

with noise level σ = 0.1 and number of data points for analysis was used as

range = 3.

Although implemented algorithm shows relatively high level of perfor-

mance, it can be improved by additional adaptive step. The idea inspiring to

propose such step is based on the fact that currently in every time window

the values of cost function of trial population is compared to the values of

cost function of current population calculated in the previous time window.

Thus, speed of convergence of algorithm can be increased by introducing

recalc_cost.m function. This function is responsible for recalculation of

cost functions according to goodness of survived population in the current

4 PARAMETER ESTIMATION OF CHAOTIC DYNAMICS 62

time window. Moreover, cost function should be updated taking into ac-

count generation number i. Finally, the following formula for updating cost

function values is proposed:

ssi−1,upd = ssi−1 +
ssi − ssi−1

e
√
i

, (4.4)

where ssi−1 is value of cost function obtained in previous time window, ssi
is value of cost function calculated for current population in current window.

Denominator is used for the purpose to reduce influence of difference between

previous and current cost function values with increasing generation number.

The meaning of such approach is based on the fact that the difference in the

numerator in the time windows which are situated far from initial time point

is mostly caused by the local behavior of the system while already chosen

population members approved their suitability upon long time interval.

Once this additional step has been implemented, the estimation pro-

cedure can be conducted again and Figure 4.5 illustrates the evolution of

population members with involved recalculation of cost function during first

20 steps. Mean values of population members of the last generation in this

case are β̄ = 2.677374, σ̄ = 10.299152, ρ̄ = 27.992075, with standard devia-

tions equal to 0.00596, 0.11498, and 0.02411 respectively.

Thereby, introduced additional step may improve performance prop-

erties of the implemented DE algorithm, though scheme proposed during

previous research provides a powerful tool for estimating parameters of the

system exhibiting chaotic behavior. The next and the final aim of the paper

is to compare DE approach to one of already existed approach for estimating

chaotic behavior. The next part of the thesis is devoted to this purpose.

5 COMPARISON WITH EPPES SOLUTION 63

10 20 30 40 50 60 70 80 90 100

2

4

6

8
θ

1

10 20 30 40 50 60 70 80 90 100
6
8

10
12
14
16

θ
2

10 20 30 40 50 60 70 80 90 100
22
24
26
28
30
32
34

generation number

θ
3

Figure 4.5: Parameter evolution with recalculation of cost function.

5 Comparison with EPPES solution

As it was mentioned earlier, one of the reasons to conduct current research

dedicated to the DE approach for parameter estimation problems was the

endeavor to find an alternative scheme for solution of such type of problem

to the Ensemble Prediction and Parameter Estimation System (EPPES).

EPPES algorithm was proposed by Marko Laine, Antti Solonen, Heikki

Haario and Heikki Järvinen as a possible approach for the numerical weather

prediction (NWP) modeling [7]. The weather forecasts today include the so

called Ensemble Predictions: in addition to the main forecast, some 50 pre-

dictions are launched with perturbed initial values. The idea of EPPES is

to use these calculations by adding parameter perturbations and estimating

the performance of the parameters - at no additional CPU cost. From our

point of view, the ensemble members present the different DE population

members.

5 COMPARISON WITH EPPES SOLUTION 64

NWPmodels operate with so-called closure parameters approach. Gen-

eral assumption is that these closure parameters should define physical state

of the considered NWP model independently of discretization details of spe-

cific problem, i.e. represent overall constants which should perform well in

all weather types, times of day and year, etc. Manual tuning of these param-

eters becomes impossible with growth of models complexity. Moreover, some

of closure parameters do not express directly observable quantities. However,

the amount of observed data rises dramatically at present and it should be

taken into account while estimating parameters. All these drawbacks have

become a reason to propose algorithm which is responsible for estimating of

closure parameters algorithmically and with increasing amount of observed

data makes possible to provide suitable prediction for the model behavior.

5 COMPARISON WITH EPPES SOLUTION 65

5.1 EPPES concept

One of the main aims of proposed EPPES method is to provide information

about posterior distribution in a Bayesian spirit even for nonlinear corre-

lation between closure parameters. Although widely used for such type of

problems Markov chain Monte Carlo (MCMC) methods are not directly

applicable for this specific NWP case, the main idea of dealing with prior

information and how to update it according to new observed data can be

maintained. From the mathematical point of view MCMC methods are pow-

erful tool for estimating parameters of the problem using Bayesian approach

which considers data measurements and unknown parameters as random

variables. According to Bayesian principle the full distribution of param-

eters is searched instead of finding the best fit [5]. It can be reached by

combination of prior information about distribution of parameters which

was adjusted regarding to evidence come from measurements through the

likelihood (objective) function. This combination leads to the posterior dis-

tribution:

π(θ) ≡ p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

, (5.1)

where π(θ) is posterior distribution, p(θ) is prior distribution, p(y|θ) is the

likelihood function which contains the model itself, and the denominator is

the normalizing constant due to which
∫
θ π(θ)dθ = 1.

One of the most challenging tasks here is the calculation of the nor-

malizing constant in the denominator. To avoid necessity to calculate it, the

most of MCMC algorithms utilize the idea of Metropolis algorithm. Basically

this algorithm is consisted of two steps, namely the proposal step and the

acceptance step. The first one is responsible for sampling candidate value,

at the same time this value either accepted or rejected according to ratio of

the posterior distribution at the candidate value and the present value:

α = min(1,
π(θ̂)

π(θn)
), (5.2)

where α denotes the probability to accept candidate value θ̂. Due to the fact

that only ratio is needed, the problem of calculation of normalizing constant

5 COMPARISON WITH EPPES SOLUTION 66

is canceled out. Summing all mentioned above, the Metropolis algorithm

can be divided into three steps:

1. Initialization. Choosing the starting point θ1;

2. Sampling. Sample a new candidate value θ̂ from an appropriate pro-

posal distribution q(.|θn);

3. Acceptance. Accept the candidate value θ̂ according to probability

Equation 5.2. If candidate value is rejected then the previous value is

repeated in the chain. Go to step 2.

The crucial point in the Metropolis algorithm is the fact that the accep-

tance of candidate value is proportional to the likelihood in the current step

with previous step, thus the likelihood and the measurements have to remain

the same from one step to another. But in on-line estimation problems when

the new data appear during process it becomes impossible which makes the

direct application of Metropolis algorithm inappropriate. Nevertheless, the

key ideas of the algorithm can be maintained even for varying likelihood. In

this case Importance sampling approach can be used [7]. The idea of this

approach consists of two steps. The first step is weighting of each ensemble

member in EPPES according to performance against measured data; and up-

dating of proposal distribution for parameter perturbation by the weighted

ensemble. Thus, in ideal situation during the on-line ensemble prediction

process cumulatively new data are generated which leads to disappearing of

uncertainties in closure parameters distribution. Although such approach is

possible for testing the algorithm, taking into account non-ideal features of

a process, the possible distribution of parameters is the main target of the

estimation instead of individual value. This distribution is assumed to be a

static. Moreover, nonlinear model can lead to the non-Gaussian correlation

between the parameters. Thus, the history of parameter values evolution

from one time window to another can be used to investigate this complex

correlation. Moreover, instead of being directly interested in estimating of

non-Gaussian posterior distribution of Qi for every time window i, the vari-

5 COMPARISON WITH EPPES SOLUTION 67

ability of Qi between different time windows is a main target for estimation

and this distribution is assumed to be Gaussian.

To define theoretical aspects, the index i in variables will be used to

refer to the time window i and index j is used to refer to the j-ensemble

member. Hence, if the model in the i-time window is described by F (xi; θi)

and observations made for this time window is defined by yi then applying

ensemble structure to that model, it is possible to compare set of measure-

ments yi with each ensemble member F (xji ; θ
j
i) to obtain likelihood. Here it

is also assumed that θi is a realization of random variable satisfying Gaussian

distribution:

θi ∼ N (µ,Σ), i = 1, 2, . . . , (5.3)

where µ and Σ are static and unknown. Although the reason to treat target

closure parameters as a random variable was discussed earlier, it should be

mentioned here that µ parameter vector describes values of closure param-

eters which should perform optimally for the forecast model on average, at

the same time variability in these values from one time window to another

caused by the evident modelling errors are simulated by covariance matrix

Σ. Thus, a sequential statistical approach is used to update the prior infor-

mation according to incoming observation to produce posterior distribution

[8]. Such procedure is repeated until an appropriate distribution is met and

the posterior distribution of the current step becomes the prior distribution

for the next step. In order to estimate the uncertainties related to the clo-

sure parameters θ, the sequential hierarchical statistical model should be

proposed. Due to the fact that θ has unknown parameters of distribution,

they also should be taken into account for this model as well. Thus, before

analyzing the current time window i, the prior distribution of parameter

vector θi is known but depends on previous steps:

θi ∼ N (µ,Σ),

µ ∼ N (µi−1,Wi−1), (5.4)

Σ ∼ iWish(Σi−1, ni−1).

In this formulas parameters Wi and ni control the influence of the new data

5 COMPARISON WITH EPPES SOLUTION 68

to process of estimation of µ and Σ respectively. Thus, while Wi goes to

zero matrix and ni to infinity, the effect of a single time window is decreas-

ing. After generating a new ensemble θji according to prior distribution,

the reweighted parameter ensemble is calculated using importance sampling

procedure. Finally, the posterior distribution for µ and Σ can be evaluated

according following conditional distribution approach:

µ|θi,Σi−1 ∼ N (µi,Wi), (5.5)

Σ|θi, µi−1 ∼ iWish(Σi, ni), (5.6)

(5.7)

where

Wi = (W−1i−1 + Σ−1i−1)
−1,

µi = Wi(W
−1
i−1µi−1 + Σ−1i−1θi) (5.8)

ni = ni−1 + 1,

Σi = (ni−1Σi−1 + (θi − µi)(θi − µi)′)/ni.

These formulation gives an update formulas for unknown hyperparameters

when moving from time window i to time window i+1. Also should be men-

tioned that these formulas can be calculated for every member of ensemble

θji to produce µji ,Σ
j
i ,W

j
i and nji . Further, next time window parameters can

be obtained by calculating the mean values of these parameters.

Finally, the algorithm can be illustrated by the following scheme [8]:

1. Initialization of hyperparameters µ0,Σ0,W0 and n0. In this case the

distribution N (µ0,Σ0) corresponds to the prior and the proposal dis-

tribution for the first sample whereas W0 and n0 show the accuracy of

proposed initial values for µ0 and Σ0;

2. For every time window i the sample of proposal values θ̃ji are generated

from the multivariate Normal distribution:

θ̃ji ∼ N (µi−1,Σi−1), j = 1, . . . , nens. (5.9)

5 COMPARISON WITH EPPES SOLUTION 69

3. Ensemble of prediction is generated according set of proposed param-

eters θ̃ji ;

4. The objective function is calculated for each ensemble and importance

weights are calculated;

5. Resampled ensemble θji is generated out of θ̃ji taking into account im-

portance weights;

6. Calculate the hyperparameters µji ,Σ
j
i ,W

j
i and nji by applying values

of just generated θji using Equation 5.8;

7. Assign hyperparameters values for the next time window taking the

average of current values:

µi =

nens∑
j=1

µji/nens,Wi =

nens∑
j=1

W j
i /nens,Σi =

nens∑
j=1

Σj
i/nens, ni =

nens∑
j=1

nji/nens.

8. Set the proposal distribution for the next time window as θi+1 ∼
N (µi,Σi). Repeat the procedure from the step 2.

The clarification of one step of EPPES algorithm is made by following

Figure 5.1: Here the proposed new points θ̃ji are depicted by grey and black

Figure 5.1: Illustration of the EPPES algorithm.

dots, resampled points θji by black dots, old prior is the solid line and updated

prior is the dashed line.

5 COMPARISON WITH EPPES SOLUTION 70

Once EPPES algorithm have been briefly described, the simple ex-

ample of Matlab implementation of such algorithm should be provided by

the example. It should be pointed out that Matlab implementation already

exists and can be found here: http://helios.fmi.fi/~lainema/eppes/.

http://helios.fmi.fi/~lainema/eppes/

5 COMPARISON WITH EPPES SOLUTION 71

5.2 EPPES linear case example

This example is taken from the provided Matlab implementation and demon-

strates the ability of EPPES method to find the known true distribution in

case of linear model. In this case it is assumed that the observation came

from a hierarchical Gaussian model. At each iteration time window, the

observations are generated from y ∼ N (θ,Σobs). Moreover, the mean θ is

random and satisfy Gaussian distribution θ ∼ N (µ,Σ), where µ and Σ are

unknown hyperparameters. The aim of the estimation is determine the val-

ues for that hyperparameters which can be done sequentially by EPPES

method.

Let consider three-parameter problem and assume that the true values

for hyperparameters are:

µtrue = (1, 2, 3),

Σtrue =

0.3418 0.2102 0.2480
0.2102 0.3607 0.2291
0.2480 0.2291 0.3229

 .

Moreover, Σobs which is covariance matrix for distribution of θ is set to

be 0.5. The solution obtained by EPPES approach can be illustrated by

the Figure 5.2 and Figure 5.3. The first plot illustrates convergence of

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

iteration number

es
tim

at
e

of
 µ

Figure 5.2: Convergence of hyperparameter µ.

the hyperparameter µ. It is possible to conclude that in this case solution

obtained by EPPES algorithm starts to approache the true values of the

5 COMPARISON WITH EPPES SOLUTION 72

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

iteration number

m
at

rix
 n

or
m

||Σ − Σ

true
||

||W||

Figure 5.3: Convergence of hyperparameter Σ and W .

problem quickly even with specified high level of standard deviation. At the

same time according to the second plot estimated Σ tends to correct one

slowly and it takes 200-300 iterations to obtain an appropriate result. Also

it is important to present numeric values for estimated Σ, namely

Σ =

0.3158 0.1952 0.2163
0.1952 0.3221 0.1932
0.2163 0.1932 0.2976

 .

How close the estimated Σ to Σtrue is can be illustrated by plotting this

covariance matrices componentwise:

−2 −1 0 1 2
−2

−1

0

1

2

Σ
1

Σ
2

−2 −1 0 1 2
−2

−1

0

1

2

Σ
1

Σ
3

−2 −1 0 1 2
−2

−1

0

1

2

Σ
2

Σ
3

Σ

true

Σ
est

Figure 5.4: Convergence of hyperparameter Σ to Σtrue componentwise.

It can be seen that EPPES solution provide an suitable result on this

test example and now it should be applied to the Lorenz system.

5 COMPARISON WITH EPPES SOLUTION 73

5.3 Comparison of EPPES and DE approaches to solution
of Lorenz system

This section is devoted to comparison of EPPES and DE approach to the

parameter estimation problem of chaotic dynamics of Lorenz system. For

the purpose to conduct estimation procedure it is necessary to provide to

EPPES solver Matlab routines devoted to Lorenz system. Since the required

routines already exist from estimation procedure by DE approach, they can

be treated here as well.

According to idea of EPPES initial values of hyperparameters should

be specified. In general case close approximation for truth parameters is not

known, hence hyperparameters W and n which controls accuracy of pro-

posed initial values should be specified by huge numbers matrix and value

1 respectively. Also, noise in data is specified to be equal 0.01, initial val-

ues perturbation range is set to be equal 0.1, range for analysis is 5, and

size of ensemble is 100 members. Evolution of estimation procedure can be

illustrated by the following figure:

0 20 40 60 80 100
−10

0

10

20

θ
1

0 20 40 60 80 100
5

10

15

20

θ
2

0 20 40 60 80 100
20

25

30

35

θ
3

iteration number

Figure 5.5: Solution of parameter estimation problem of Lorenz system ob-
tained by EPPES approach.

The background idea of EPPES is that the estimated parameter is

5 COMPARISON WITH EPPES SOLUTION 74

stochastic, e.g. no ’true’ value exists. However, in the test runs performed

here it is assumed a fixed true value and compare the convergence properties

of DE and EPPES. Thus, it should be provided the solution by the problem

with the same parameters obtained by DE approach:

10 20 30 40 50 60 70 80 90 100

2

4

6

8
θ

1

10 20 30 40 50 60 70 80 90 100
6
8

10
12
14
16

θ
2

10 20 30 40 50 60 70 80 90 100

24
26
28
30
32
34

generation number

θ
3

Figure 5.6: Solution of parameter estimation problem of Lorenz system ob-
tained by DE approach.

Several runs with different initial values was conducted and EPPES

solution demonstrates more sensitivity to initial values of model in general

and particulary to initial values for parameters of algorithm. At the same

time DE approach shows more stable behavior with respect to specified pa-

rameters of the model and converge to truth closure parameters even with

default parameters of algorithm. This facts make possible to claim that for

the case of parameter estimation task for low-dimensional chaotic system

DE approach is an appropriate alternative to the existed EPPES approach,

but applicability and performance of DE algorithm to the high-dimensional

problem and advantages over EPPES algorithm should be tested addition-

ally, due to the fact that EPPES algorithm was invented and tested for

estimation more complex problem, for example for Lorenz-95 system.

6 CONCLUSION 75

6 Conclusion

This Master Thesis covers the main mathematical aspects regarding to DE

algorithm. The classical mathematical description consisted of the basic

population structure and main parts of DE algorithm such as initialization,

mutation, crossover, and selection are introduced. Also possible stopping

criteria and cases where they are mostly suitable are defined. Moreover,

possible improvement in the classical DE structure is discussed and Matlab

implementation which takes into account all these features is developed in

this paper and additionally tested on test examples. Influence of tuning pa-

rameters, especially population size, is investigated as well as influence of

noise level involved into the measured data. The key point of chaotic dy-

namic systems estimation is discussed and demonstrated on Lorenz system

behavior. Concrete techniques devoted to enhancement of convergence of

this specific problem are proposed and solutions are illustrated by plots of

population evolution. Overview of EPPES method is also included and ex-

plained by the example. Finally, the comparison between DE and EPPES

methods was conducted and result of this comparison makes possible to con-

clude that DE algorithm has several advantages as stability, less sensitivity

on initial values and noise involved into the system, which makes it suitable

alternative for EPPES approach at least for the low-dimensional problem.

Nevertheless, applicability of DE algorithm in more complex systems related

to modern NWP model remains possible direction of the future research.

REFERENCES 76

References

[1] K.V. Price, R.M. Storn and J.A. Lampinen, "Differential Evolution:

Practical Approach to Global Optimization", 2005 ed. Berlin, Heidel-

berg, New York: Springer, 2005, pp. 1-130.

[2] A. Qing, "Differential Evolution: Fundamentals and Applications in

Electrical Engineering", Singapore: Wiley-IEEE Press, 2009, pp. 18-24,

41, 61-64.

[3] U.K. Chakraborty, "Advances in Differential Evolution", Verlag, Berlin,

Heidelberg: Springer, 2008, pp. 1-15.

[4] V. Feoktiistov, "Differential Evolution: In Search of Solutions", New

York: Springer, 2006, pp. 41-65.

[5] H. Haario, "Statistical Analysis in Modelling: MCMC methods", course

presentation, Lappeenranta University of Technology, Finland, 2011.

Available: http://www.mafy.lut.fi/study/sam/statmode09.pdf

[6] C. Sparrow, "The Lorenz Equations: Bifurcations, Chaos, and Strange

Attractors" in Applied Mathematical Sciences, vol. 41, 1st ed., New

York: Springer, 1989, pp. 1-3.

[7] H. Järvinen, M. Laine, A. Solonen and H. Haario "Ensemble prediction

and parameter estimation system: The Concept", Quarterly Journal of

the Royal Meteorological Society, 2011.

[8] M. Laine, A. Solonen, H. Haario and H. Järvinen, "Ensemble prediction

and parameter estimation system: The Method", Quarterly Journal of

the Royal Meteorological Society, 2011.

[9] M. Laine, Ensemble prediction and parameter estimation system [On-

line]. Available: http://helios.fmi.fi/~lainema/eppes/

http://www.mafy.lut.fi/study/sam/statmode09.pdf
http://helios.fmi.fi/~lainema/eppes/

A MATLAB LISTINGS 77

A Matlab listings

A.1 Toy case. Classical DE

%% run.m − main file
%% Test initialization
clear all, close all, format compact, format long, ...

rng('shuffle'),clc;
%% Generating data
x = [0:0.1:10]; % input
% in−line model function
% applicable for theta (3 by n)−matrix:
f = @(theta,x)exp(theta*[ones(size(x));x;x.^2]);
theta_true = [−6 3 −0.3]; % true parameters
y_true = f(theta_true,x); % response of input with true ...

parameters
sigma = 0.1; % std for noise
y = y_true+sigma*randn(size(y_true)); % "measured data" ...

(with noise);
data.xdata = x; % input
data.ydata = y; % response
data.fun = f; % model function
global SIGMA;
SIGMA = 0.0; % stochasticity
%% Initialization of Compulsory parameters of DE
paramsDE.init_bounds = [−10 −10 −3; 10 10 3]'; % bounds for ...

initialization of DE
paramsDE.func = @fun_ss; % cost function
paramsDE.SoP = 35; % size of ...

population
%% DE run
Gmean = 0; % number of generations
K = 100; % number of simulations
Fails = 0; % number of fails in estimation
M = 10; % estimate for mean cost function
for i = 1:K

[pop,G,evolution] = de(data,paramsDE);
Gmean = Gmean + G;
Fails = Fails + (mean(pop(:,4))>=M);
i

end
Gmean/K % mean number of generations
Fails/K % mean number of fails
%% plotting
D = size(pop,2)−1;
[xll,fval,exitflag,output] = fminsearch(@fun_ss,[0,0,0],[],data);
plot(x,y_true,'−−k'); hold on;
plot(x,y,'.r');
plot(x,f(xll,x),'−.b');
plot(x,f(pop(:,1:D),x),'g');hold off;

A MATLAB LISTINGS 78

axis tight;
grid on;
legend('true data','noisy ...

data','FMINSEARCH−solution','DE−solution');

%% fun_ss.m − cost function
function res = fun_ss(theta,data)

% (Length−of−data.xdata by SoP)−matrix of responses
y = data.fun(theta,data.xdata)';
% provide stochasticity
global SIGMA;
y = y + SIGMA*randn(size(y));
% calculation of LSQ
res = sum((repmat(data.ydata',1,size(y,2))−y).^2);
res = res';

end

function [pop,G,evolution,fval,element] = de(data,paramsDE)
%% default values
if ~(isfield(paramsDE,'func') && ...

isfield(paramsDE,'init_bounds'))
display('Error!');
pop = [];
G = 0;
evolution = {};
return;

end
paramsDE.D = size(paramsDE.init_bounds,1); % dimension ...

of problem
if ~(isfield(paramsDE,'SoP'))

paramsDE.SoP = 10*paramsDE.D; % size of ...
population

end
if ~(isfield(paramsDE,'F'))

paramsDE.F = 0.5; % scale ...
factor in mutation

end
if ~(isfield(paramsDE,'CR'))

paramsDE.CR = 0.9; % crossover ...
probability

end
if ~(isfield(paramsDE,'Tol'))

% tolerance for standard deviation of Hl previous ...
generations'

% objective values means:
paramsDE.Tol = 1e−10;

end
if ~(isfield(paramsDE,'Hl'))

A MATLAB LISTINGS 79

paramsDE.Hl = 10; % length of history ...
of generations

end
if ~(isfield(paramsDE,'Gmax'))

paramsDE.Gmax = 1e3; % maximum number of ...
generations

end
%% initialization of variables
D = paramsDE.D;
Tol = paramsDE.Tol;
Gmax = paramsDE.Gmax;
history = 100*rand(1,paramsDE.Hl);
G=1;
pop = initialization(data,paramsDE);
evolution = {};
%% DE process
while std(history)>=Tol && G<=Gmax

mutant = mutation(pop,paramsDE);
new = crossover(mutant,pop,data,paramsDE);
pop = selection(new,pop,paramsDE);
evolution{G} = pop;
ind = pop(:,D+1)<Inf;
history(mod(G,paramsDE.Hl)+1) =sum(pop(ind,D+1));
G = G+1;

end
[fval,element] = min(pop(:,D+1));

end

function pop = initialization(data,paramsDE)
SoP = paramsDE.SoP;
init_bounds = paramsDE.init_bounds;
func = paramsDE.func;
D = paramsDE.D;
% generation of first population of parameters :
pop = ones(SoP,1)*init_bounds(:,1)' + ...

ones(SoP,1)*(init_bounds(:,2) − ...
init_bounds(:,1))'.*rand(SoP,D);

% calculation of cost function :
tmp = func(pop,data);
% pop = [<parameters>,cost]
pop = [pop tmp];

end

function res = mutation(pop,paramsDE)
SoP = paramsDE.SoP;
F = paramsDE.F;
D = paramsDE.D;
cur_pop = pop(:,1:D); % only parameters
% chosing base and difference vectors ...

A MATLAB LISTINGS 80

% differ from target vector:
[tmp,ind] = sort(rand(SoP,SoP−1),2);
ind = ind(:,1:3) + (ind(:,1:3) > [0:SoP−1]'*ones(1,3));
% mutation itself
res = cur_pop(ind(:,3),:) + F*(cur_pop(ind(:,1),:) − ...

cur_pop(ind(:,2),:));
end

function res = crossover(new,pop,data,paramsDE)
SoP = paramsDE.SoP;
D = paramsDE.D;
CR = paramsDE.CR;
func = paramsDE.func;
% generating of index vector of memebrs to be tested ...
% for being inherited from previous generation ...
% including protection from exact copies.
temp = rand(SoP,D);
ind = randi(D,SoP,1);
temp(sub2ind([SoP,D],[1:SoP]',ind)) = 0;
% testing
ind = (temp > CR);
% crossover itself: generating trial vector
new(ind) = pop(ind);
% calcilation of cost function of trial vector
tmp = func(new,data);
res = [new tmp];

end

function res = selection(new,pop,paramsDE)
D = paramsDE.D;
% selection: comparison of objective function values:
ind = (new(:,D+1) > pop(:,D+1));
% construction of next generation:
new(ind,:) = pop(ind,:);
res = new;

end

A MATLAB LISTINGS 81

A.2 Toy case. advanced DE

%% Test initialization
clear all, close all, format compact, format long, ...

rng('shuffle'),clc;

%% Generating data
x = [0:0.1:10]; % input
% in−line model function
% applicable for theta (3 by n)−matrix:
f = @(theta,x)exp(theta*[ones(size(x));x;x.^2]);
theta_true = [−6 3 −0.3]; % true parameters
y_true = f(theta_true,x); % response of input with true ...

parameters
sigma = 0.1; % std for measurement noise
global SIGMA; % std for stochastic noise (used ...

in fun_ss)
SIGMA = 0.1; % if 0.0 then deterministic case
y = y_true+sigma*randn(size(y_true)); % "measured data" ...

(with noise);
data.xdata = x; % input
data.ydata = y; % response
data.fun = f; % model function
%% Initialization of Compulsory parameters of DE
paramsDE.init_bounds = [−10 −10 −3; 10 10 3]'; % bounds for ...

initialization of DE
paramsDE.func = @fun_ss; % cost function
paramsDE.SoP = 80; % size of ...

population
paramsDE.Tol = 1e−5;
mutation_types = {'Cls','Bst','CtB'};
F_types = {'Cls','Dthr1','Dthr2','Jttr','Mix'};
JP = [0:0.1:0.3];
% methods = {'Bst'};
% mutation_types = {'Mix'};
% JP = 0.3;
name = ['Stoch−' datestr(now,1)];
name = [name '−' num2str(SIGMA) '−' num2str(paramsDE.SoP) '.log'];
for I = 1:length(mutation_types)

for J = 1:length(F_types)
for T = 1:length(JP)

paramsDE.mutation_type = mutation_types{I};
paramsDE.F_type = F_types{J};
paramsDE.Jp = JP(T);
%% DE run
Gmean = 0;
Fails = 0;
K = 10; % number of simulations
fprintf('\n');
disp(['DDE\' paramsDE.mutation_type '\' ...

paramsDE.F_type '\' num2str(paramsDE.Jp) ':']);

A MATLAB LISTINGS 82

disp(['Mean populations(parameters, ss−value and ...
number of generations):']);

for i = 1:K
[pop,G,evolution] = de(data,paramsDE);
Gmean = Gmean + G;
Fails = Fails + (mean(pop(:,4))>50);
fprintf('%2d)%12.5f %12.5f %12.5f %12.5f %4d ...

\n',i,mean(pop),G);
end
disp(['Mean number of generations is ' ...

num2str(Gmean/K)]);
disp(['Percentage of fails is ' ...

num2str(Fails/K*100) '%']);
% Output for LaTeX.
log = fopen(name,'at+');
fprintf(log,'\\hline \n');
fprintf(log,'%s & %5s & %5.3f & %6.2f & %5.3f \\\\ ...

\n',paramsDE.mutation_type,paramsDE.F_type,...
paramsDE.Jp,Gmean/K,Fails/K);

fclose(log);
end

end
end

function [pop,G,evolution] = de(data,paramsDE)
%% default values
if ~(isfield(paramsDE,'func') && ...

isfield(paramsDE,'init_bounds'))
display('Error!');
pop = [];
G = 0;
evolution = {};
return;

end
paramsDE.D = size(paramsDE.init_bounds,1); % dimension ...

of problem
if ~(isfield(paramsDE,'SoP'))

paramsDE.SoP = 10*paramsDE.D; % size of ...
population

end
if ~(isfield(paramsDE,'F'))

paramsDE.F = 0.5; % scale ...
factor in mutation

end
if ~(isfield(paramsDE,'CR'))

paramsDE.CR = 0.9; % crossover ...
probability

end
if ~(isfield(paramsDE,'Tol'))

% tolerance for standard deviation of Hl previous ...
generations'

A MATLAB LISTINGS 83

% objective values means:
paramsDE.Tol = 1e−10;

end
if ~(isfield(paramsDE,'Hl'))

paramsDE.Hl = 10; % length of history ...
of generations

end
if ~(isfield(paramsDE,'Gmax'))

paramsDE.Gmax = 1e3; % maximum number of ...
generations

end
if ~(isfield(paramsDE,'mutation_type'))

paramsDE.mutation_type = 'Cls'; % {'Cls','Bst','CtB'}
end
if ~(isfield(paramsDE,'crossover_type'))

paramsDE.crossover_type = 'Cls'; % ...
{'Cls','Dthr1','Dthr2','Jttr','Mix'}

end
if ~(isfield(paramsDE,'Jp'))

paramsDE.Jp = 0.0; % generation jump ...
probability

end
if ~(isfield(paramsDE,'F_range'))

paramsDE.F_range = [0.45,0.55]; % [F_l, F_h]
end

%% initialization of variables
D = paramsDE.D;
Tol = paramsDE.Tol;
Gmax = paramsDE.Gmax;
history = 100*rand(1,paramsDE.Hl);
G=1;
pop = initialization(data,paramsDE);
evolution = {}; % evolution of population
%% DE process
while std(history)>=Tol && G<=Gmax

pop = dde(pop,data,paramsDE);
evolution{G} = pop;
ind = pop(:,D+1)<Inf;
history(mod(G,paramsDE.Hl)+1) =sum(pop(ind,D+1));
G = G+1;

end
end

function pop = initialization(data,paramsDE)
SoP = paramsDE.SoP;
init_bounds = paramsDE.init_bounds;
func = paramsDE.func;
D = paramsDE.D;
% generation of first population of parameters :
pop = ones(SoP,1)*init_bounds(:,1)' + ...

A MATLAB LISTINGS 84

ones(SoP,1)*(init_bounds(:,2) − ...
init_bounds(:,1))'.*rand(SoP,D);

% calculation of cost function :
tmp = func(pop,data);
% pop = [<parameters>,cost]
pop = [pop tmp];

end

function res = dde(pop,data,paramsDE)
%% generation jump
D = paramsDE.D;
Jp = paramsDE.Jp;
SoP = paramsDE.SoP;
func = paramsDE.func;
cur_pop = pop(:,1:D+1); % parameters + cost
if rand(1)<=Jp

mins = []; % minimum values of each parameter ...
vector

maxs = []; % maximum values of each parameter ...
vector

for i=1:D
tmp1=min(cur_pop(:,i));
tmp2=max(cur_pop(:,i));
mins = [mins,tmp1];
maxs = [maxs,tmp2];

end
op_pop = repmat(mins,SoP,1) + repmat(maxs,SoP,1) − ...
cur_pop(:,1:D); % "opposite population"
tmp = func(op_pop,data);
op_pop = [op_pop tmp];
cur_pop = [cur_pop;op_pop];
[TMP,IX] = sort(cur_pop);
ind = IX(1:SoP,D+1);
cur_pop = cur_pop(ind',:);
res = cur_pop;
return;

end
%% Params
CR = paramsDE.CR;
mutation_type = paramsDE.mutation_type;
F_type = paramsDE.F_type;
%% mutation
[tmptmp,ind] = sort(rand(SoP,SoP−1),2);
indMutation = ind(:,1:3) + (ind(:,1:3) > ...

[0:SoP−1]'*ones(1,3));
%% crossover and selection
temp = rand(SoP,D);
ind = randi(D,SoP,1);
temp(sub2ind([SoP,D],[1:SoP]',ind)) = 0;
indCrossover = (temp > CR);
F_l = paramsDE.F_range(1);

A MATLAB LISTINGS 85

F_h = paramsDE.F_range(2);
F_g = F_l + rand(1)*(F_h−F_l);
switch F_type

case 'Cls'
F = paramsDE.F;

case 'Dthr1'
F = F_g;

case 'Dthr2'
F = F_l + rand(1)*(F_h−F_l);

case 'Jttr'
sigma = 0.001;
F = paramsDE.F*(1+sigma*(rand(1,D)−0.5));

case 'Mix'
sigma = 0.001;
F = F_g*(1+sigma*(rand(1,D)−0.5));

end
for i = 1:SoP

switch mutation_type
case 'Cls'

new = ...
cur_pop(indMutation(i,3),1:D) + ...
F.*(cur_pop(indMutation(i,1),1:D) − ...

cur_pop(indMutation(i,2),1:D));
case 'Bst'

[best_tmp,best_ind] = min(cur_pop(:,D+1));
if best_ind==indMutation(i,1)

indMutation(i,1) = indMutation(i,3);

end
if best_ind==indMutation(i,2)

indMutation(i,2) = indMutation(i,3);

end
new = ...

cur_pop(best_ind,1:D) + ...
F.*(cur_pop(indMutation(i,1),1:D) − ...

cur_pop(indMutation(i,2),1:D));
case 'CtB'

[best_tmp,best_ind] = min(cur_pop(:,D+1));
new = ...

cur_pop(indMutation(i,3),1:D) + ...
F.*(cur_pop(best_ind,1:D)−cur_pop(indMutation(i,3),1:D)) ...

+ ...
F.*(cur_pop(indMutation(i,1),1:D) − ...

cur_pop(indMutation(i,2),1:D));
end
new(indCrossover(i,:)) = cur_pop(i,indCrossover(i,:));
tmp = func(new,data);
if tmp<cur_pop(i,D+1)

cur_pop(i,:) = [new tmp];
end

end
res = cur_pop;

end

A MATLAB LISTINGS 86

A MATLAB LISTINGS 87

A.3 Lorenz system estimation

%% Parameter estimation with DE
clear all, close all, format compact, format long, clc;
% orginal parameters: [2.67,10,28];
addpath('DE','Model');
%% 'Original' data
load 'lorenz_0.4_0.0025_500_struct.mat';
truth = LORENZ.truth;
aint = LORENZ.aint;
dt = LORENZ.dt;
sigma = 0.01;
range = 5;
data.aint = aint;
data.dt = dt;
nSim = size(truth,1)−range−1;
nSim = 100; % for simplicity
%% Parameters of DE
mutation_types = {'Cls','Bst','CtB'};
crossover_types = {'Cls','Dthr1','Dthr2','Jttr','Mix'};
JP = 0:0.1:0.3;
paramsDE.init_bounds = [1 5 25; 10 15 35]'; % bounds for ...

initialization of DE
paramsDE.SoP = 100; % size of ...

population
paramsDE.F = 0.5; % scale factor ...

in mutation
paramsDE.CR = 0.9; % crossover ...

probability
paramsDE.init_std = 0.1; % std of ...

initial values
paramsDE.func = @lorenz_ss; % cost function
paramsDE.D = size(paramsDE.init_bounds,1); % demension of ...

problem
paramsDE.mutation_type = mutation_types{2}; % mutation type
paramsDE.crossover_type = crossover_types{5}; % crossover type
paramsDE.Jp = JP(4); % generation ...

jump probability
paramsDE.F_range = [0.45,0.55]; % [F_l, F_h]
paramsDE.update_cost = 1; % how long ...

generations update cost
%% Parameters of Model
maxIter = 1; %additional optimization if maxIter > 1
% history of parameter evolution
history.beta = [];
history.sigma = [];
history.rho = [];
% name of log−file
method = ['DDE_DIPLOM_' paramsDE.mutation_type '_' ...

paramsDE.crossover_type '_' num2str(paramsDE.Jp)];
% add noise to exact data

A MATLAB LISTINGS 88

truth = truth + sigma*randn(size(truth));
for i = 1:nSim

a = (i−1)*range;
b = (i)*range;
time = a*aint:dt:b*aint;
data.truth = truth(a+2:b+1,:);
analysis = truth(a+1,:);
SoP = paramsDE.SoP;
init_std = paramsDE.init_std;
INIT = repmat(analysis,SoP,1);
init = INIT + init_std*randn(size(INIT));
data.init = init;
data.xdata = time;
if i==1

% initialization at the 1st step
pop = initialization(data,paramsDE); % current ...

population
disp('Initial population:');
history.beta = [history.beta pop(:,1)];
history.sigma = [history.sigma pop(:,2)];
history.rho = [history.rho pop(:,3)];
l = 15+15+15+20+4+6;
fprintf('%15s | %15s | %15s | %20s \n','Theta1 ...

','Theta2 ','Theta3 ','SS−values ');
fprintf('%s\n',repmat(['_'],1,l));
fprintf('%15.10f | %15.10f | %15.10f | %20.10f \n',pop');
fprintf('%s\n',repmat(['_'],1,l));
disp(['Mean: ']);
fprintf('%15.10f | %15.10f | %15.10f | %20.10f ...

\n',mean(pop));
fprintf('%s\n',repmat(['_'],1,l));
disp(['Std: ']);
fprintf('%15.10f | %15.10f | %15.10f | %20.10f ...

\n',std(pop));
else

pop = recalc_cost(pop,data,paramsDE,i−1); % ...
recalculation

maxIter = 1;
end
for j = 1:maxIter;

fprintf('\n \n');
disp(['Current generation is ' num2str(i)]);
disp(['Time is [' num2str(a*aint) ',' num2str(b*aint) ...

']']);
pop = dde(pop,data,paramsDE);
l = 15+15+15+20+4+6;
disp('Current population:');
fprintf('%15s | %15s | %15s | %20s \n','Theta1 ...

','Theta2 ','Theta3 ','SS−values ');
fprintf('%s\n',repmat(['_'],1,l));
fprintf('%15.10f | %15.10f | %15.10f | %20.10f \n',pop');
fprintf('%s\n',repmat(['_'],1,l));
disp(['Mean: ']);

A MATLAB LISTINGS 89

fprintf('%15.10f | %15.10f | %15.10f | %20.10f ...
\n',mean(pop));

fprintf('%s\n',repmat(['_'],1,l));
disp(['Std: ']);
fprintf('%15.10f | %15.10f | %15.10f | %20.10f ...

\n',std(pop));
history.beta = [history.beta pop(:,1)];
history.sigma = [history.sigma pop(:,2)];
history.rho = [history.rho pop(:,3)];

end
save(['history_for_comparison',method,'.mat'],'history');

end
%% plotting
% load history_DDE_new_Bst_Mix_0.3.mat
figure(1);
subplot(3,1,1);
plot(history.beta','LineWidth',2);
% h = title('Evolution of populations');
% set(h,'fontsize',14);
axis tight;
grid on;
h = ylabel('\theta_1 ','rot',0);
set(h,'fontsize',12);
subplot(3,1,2);
plot(history.sigma','LineWidth',2);
axis tight;
grid on;
h = ylabel('\theta_2 ','rot',0);
set(h,'fontsize',12);
subplot(3,1,3);
plot(history.rho','LineWidth',2);
axis tight;
grid on;
h = xlabel('generation number');
set(h,'fontsize',12);
h = ylabel('\theta_3 ','rot',0);
set(h,'fontsize',12);

function y = lorenz_m(data,theta,y0)
time = data.xdata;
% parameters of solver:
opt = odeset('RelTol',1e−11,'AbsTol',1e−11);
[t,y] = ode113(@lorenzeq,time,y0,opt,theta);

end

function [res,Y] = lorenz_ss(theta,data,init)
res = [];
aint = data.aint; % analysis interval
dt = data.dt; % integration interval

A MATLAB LISTINGS 90

truth = data.truth; % truth data
for i = 1:size(theta,1)

y0 = init(i,:);% initial value
Y(:,:,i) = ...

lorenz_m(data,[theta(i,1),theta(i,2),theta(i,3)],y0);
end
% solution in the point where truth values are calculated
response = Y(aint/dt:aint/dt:end,:,:);
% cost function calculated in LSQ−sense
nens = size(response,3);
ss = (response−repmat(truth,[1 1 nens])).^2;
for i = 1:nens

res(i) = sum(sum(ss(:,:,i)));
end
res = res(:);

end

function sdot = lorenzeq(t,s,params)
% parameters
beta = params(1);
sigma = params(2);
rho = params(3);
% states values
x = s(1);
y = s(2);
z = s(3);
% equation
dx = sigma*(y−x);
dy = x*(rho − z) − y;
dz = x*y−beta*z;
% differential
sdot = [dx;dy;dz];

end

function res = dde(pop,data,paramsDE)
%% generation jump
D = paramsDE.D;
Jp = paramsDE.Jp;
SoP = paramsDE.SoP;
func = paramsDE.func;
init = data.init;
cur_pop = pop(:,1:D+1); % parameters + cost
if rand(1)<=Jp

mins = []; % minimum values of each parameter ...
vector

maxs = []; % maximum values of each parameter ...
vector

for i=1:D
tmp1=min(cur_pop(:,i));

A MATLAB LISTINGS 91

tmp2=max(cur_pop(:,i));
mins = [mins,tmp1];
maxs = [maxs,tmp2];

end
op_pop = repmat(mins,SoP,1) + repmat(maxs,SoP,1) − ...

cur_pop(:,1:D); % "oposite population"
tmp = func(op_pop,data,init);
op_pop = [op_pop tmp];
cur_pop = [cur_pop;op_pop];
[TMP,IX] = sort(cur_pop);
ind = IX(1:SoP,D+1);
cur_pop = cur_pop(ind',:);
res = cur_pop(randperm(SoP),:);
return;

end
%% Params
CR = paramsDE.CR;
mutation_type = paramsDE.mutation_type;
crossover_type = paramsDE.crossover_type;

%% mutation
[tmptmp,ind] = sort(rand(SoP,SoP−1),2);
indMutation = ind(:,1:3) + (ind(:,1:3) > ...

[0:SoP−1]'*ones(1,3));

%% crossover and selection
temp = rand(SoP,D);
ind = randi(D,SoP,1);
temp(sub2ind([SoP,D],[1:SoP]',ind)) = 0;
indCrossover = (temp > CR);
F_l = paramsDE.F_range(1);
F_h = paramsDE.F_range(2);
F_g = F_l + rand(1)*(F_h−F_l);
for i = 1:SoP

switch crossover_type
case 'Cls'

F = paramsDE.F;
case 'Dthr1'

F = F_g;
case 'Dthr2'

F = F_l + rand(1)*(F_h−F_l);
case 'Jttr'

sigma = 0.001;
F = paramsDE.F*(1+sigma*(rand(1,D)−0.5));

case 'Mix'
sigma = 0.001;
F = F_g*(1+sigma*(rand(1,D)−0.5));

end
switch mutation_type

case 'Cls'
new = ...

cur_pop(indMutation(i,3),1:D) + ...

A MATLAB LISTINGS 92

F.*(cur_pop(indMutation(i,1),1:D) − ...
cur_pop(indMutation(i,2),1:D));

case 'Bst'
[best_tmp,best_ind] = min(cur_pop(:,D+1));
if best_ind==indMutation(i,1)

indMutation(i,1) = indMutation(i,3);

end
if best_ind==indMutation(i,2)

indMutation(i,2) = indMutation(i,3);

end
new = ...

cur_pop(best_ind,1:D) + ...
F.*(cur_pop(indMutation(i,1),1:D) − ...
cur_pop(indMutation(i,2),1:D));

case 'CtB'
[best_tmp,best_ind] = min(cur_pop(:,D+1));
new = ...

cur_pop(indMutation(i,3),1:D) + ...
F.*(cur_pop(best_ind,1:D)−...
cur_pop(indMutation(i,3),1:D)) + ...
F.*(cur_pop(indMutation(i,1),1:D) − ...
cur_pop(indMutation(i,2),1:D));

end
new(indCrossover(i,:)) = cur_pop(i,indCrossover(i,:));
tmp = func(new,data,init(i,:));
if tmp<cur_pop(i,D+1) && sum(new<=0)==0 %% parametrs>0

cur_pop(i,:) = [new tmp];
end

end
res = cur_pop;

end

function pop = initialization(data,paramsDE)
% SoP − size of population (number)
% init_bounds − bounds for parameters (matrix)
% func − cost function
% data − additional data
% init_std − std of initial values
SoP = paramsDE.SoP;
init_bounds = paramsDE.init_bounds;
func = paramsDE.func;
D = paramsDE.D; % demension of problem
init = data.init;
% generation of first population of parameters :
pop = ones(SoP,1)*init_bounds(:,1)' + ...

ones(SoP,1)*(init_bounds(:,2) − ...
init_bounds(:,1))'.*rand(SoP,D);

% cost function

A MATLAB LISTINGS 93

tmp = func(pop,data,init);
% pop = [<parameters>,ss,init,ss_end]
pop = [pop tmp];

end

function res = recalc_cost(pop,data,paramsDE,step)
if step<=paramsDE.update_cost % length of adapting

func = paramsDE.func;
D = paramsDE.D;
init = data.init;
tmp = func(pop,data,init);
cur = pop(:,D+1) + (tmp − pop(:,D+1))./exp(sqrt(step));
res = [pop(:,1:D) cur];
l = 15+15+15+20+4+6;
fprintf('%s\n',repmat(['_'],1,l));
disp(['Recalculated mean: ']);
fprintf('%15.10f | %15.10f | %15.10f | %20.10f ...

\n',mean(res));
else

res = pop;
end

end

B TABLES 94

B Tables

B.1 Deterministic case

Noise level σ = 0.2:

Mutation type F type Jp mean(Gmax)

Cls Cls 0.000 122.57
Cls Cls 0.100 134.09
Cls Cls 0.200 133.47
Cls Cls 0.300 137.97
Cls Dthr1 0.000 122.65
Cls Dthr1 0.100 126.91
Cls Dthr1 0.200 131.60
Cls Dthr1 0.300 138.19
Cls Dthr2 0.000 121.88
Cls Dthr2 0.100 128.93
Cls Dthr2 0.200 132.95
Cls Dthr2 0.300 138.19
Cls Jttr 0.000 122.63
Cls Jttr 0.100 127.93
Cls Jttr 0.200 137.39
Cls Jttr 0.300 137.61
Cls Mix 0.000 122.95
Cls Mix 0.100 128.16
Cls Mix 0.200 132.89
Cls Mix 0.300 139.44
Bst Cls 0.000 50.53
Bst Cls 0.100 54.42
Bst Cls 0.200 60.50
Bst Cls 0.300 65.95
Bst Dthr1 0.000 50.67
Bst Dthr1 0.100 55.00
Bst Dthr1 0.200 60.37
Bst Dthr1 0.300 65.76

Table B.1: Different combinations of proposed methods.

B TABLES 95

Mutation type F type Jp mean(Gmax)
Bst Dthr2 0.000 50.26
Bst Dthr2 0.100 55.19
Bst Dthr2 0.200 59.65
Bst Dthr2 0.300 66.16
Bst Jttr 0.000 50.62
Bst Jttr 0.100 55.02
Bst Jttr 0.200 60.54
Bst Jttr 0.300 65.27
Bst Mix 0.000 49.80
Bst Mix 0.100 54.82
Bst Mix 0.200 60.38
Bst Mix 0.300 65.86
CtB Cls 0.000 72.58
CtB Cls 0.100 91.06
CtB Cls 0.200 91.16
CtB Cls 0.300 89.96
CtB Dthr1 0.000 73.84
CtB Dthr1 0.100 68.36
CtB Dthr1 0.200 77.22
CtB Dthr1 0.300 87.15
CtB Dthr2 0.000 82.67
CtB Dthr2 0.100 71.31
CtB Dthr2 0.200 78.69
CtB Dthr2 0.300 88.92
CtB Jttr 0.000 68.49
CtB Jttr 0.100 69.97
CtB Jttr 0.200 103.32
CtB Jttr 0.300 82.41
CtB Mix 0.000 75.74
CtB Mix 0.100 78.75
CtB Mix 0.200 77.76
CtB Mix 0.300 79.43

Table B.2: Different combinations of proposed methods. Continue.

B TABLES 96

B.2 Stochastic case

Stochastic noise level σ = 0.4:

Mutation type F type Jp mean(Gmax) Fails percentage, %
Cls Cls 0.000 375.90 0.000
Cls Cls 0.100 414.00 0.000
Cls Cls 0.200 349.40 0.010
Cls Cls 0.300 384.50 0.000
Cls Dthr1 0.000 358.60 0.010
Cls Dthr1 0.100 392.10 0.000
Cls Dthr1 0.200 376.60 0.000
Cls Dthr1 0.300 361.00 0.000
Cls Dthr2 0.000 324.50 0.000
Cls Dthr2 0.100 332.60 0.010
Cls Dthr2 0.200 383.10 0.000
Cls Dthr2 0.300 358.20 0.000
Cls Jttr 0.000 412.20 0.000
Cls Jttr 0.100 393.00 0.000
Cls Jttr 0.200 412.90 0.000
Cls Jttr 0.300 384.50 0.000
Cls Mix 0.000 416.10 0.000
Cls Mix 0.100 380.10 0.020
Cls Mix 0.200 431.00 0.000
Cls Mix 0.300 350.00 0.010
Bst Cls 0.000 280.70 0.030
Bst Cls 0.100 274.00 0.040
Bst Cls 0.200 291.60 0.000
Bst Cls 0.300 251.90 0.030
Bst Dthr1 0.000 230.10 0.050
Bst Dthr1 0.100 228.70 0.040
Bst Dthr1 0.200 269.10 0.020
Bst Dthr1 0.300 260.50 0.020

Table B.3: Different combinations of proposed methods.

B TABLES 97

Mutation type F type Jp mean(Gmax) Fails percentage, %
Bst Dthr2 0.000 255.20 0.050
Bst Dthr2 0.100 247.80 0.060
Bst Dthr2 0.200 272.70 0.020
Bst Dthr2 0.300 249.00 0.010
Bst Jttr 0.000 263.20 0.050
Bst Jttr 0.100 255.90 0.030
Bst Jttr 0.200 276.50 0.020
Bst Jttr 0.300 249.80 0.030
Bst Mix 0.000 261.20 0.080
Bst Mix 0.100 240.80 0.050
Bst Mix 0.200 225.80 0.020
Bst Mix 0.300 264.70 0.010
CtB Cls 0.000 284.30 0.010
CtB Cls 0.100 296.20 0.020
CtB Cls 0.200 264.70 0.030
CtB Cls 0.300 303.40 0.010
CtB Dthr1 0.000 308.90 0.010
CtB Dthr1 0.100 299.70 0.010
CtB Dthr1 0.200 254.60 0.040
CtB Dthr1 0.300 269.00 0.040
CtB Dthr2 0.000 287.80 0.400
CtB Dthr2 0.100 284.40 0.020
CtB Dthr2 0.200 295.50 0.000
CtB Dthr2 0.300 319.80 0.020
CtB Jttr 0.000 290.40 0.050
CtB Jttr 0.100 259.60 0.030
CtB Jttr 0.200 274.20 0.020
CtB Jttr 0.300 266.30 0.020
CtB Mix 0.000 299.20 0.010
CtB Mix 0.100 285.70 0.020
CtB Mix 0.200 275.10 0.010
CtB Mix 0.300 304.60 0.000

Table B.4: Different combinations of proposed methods. Continue.

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Theory of Differential Evolution
	Evolutionary Algorithms: stochastic versus deterministic methods
	DE: basics and history
	Mathematical Description

	Matlab implementation
	Deterministic "toy-case" problem
	Mathematical model
	DE environment implementation
	Artificial data generation
	Application of DE approach to the artificial data
	Comparison and analysis

	Stochastic "toy-case" problem
	Revision of Matlab implementation
	Results

	Advanced features in DE theory
	Alternative ways for mutation procedure
	Investigation of influence of control parameters of algorithm
	Alternative selection schemes
	Dynamical implementation of DE approach

	Application of advanced DE to "toy-case" problems
	Implementation of advanced features in Matlab
	Deterministic "toy-case" problem
	Stochastic "toy-case" problem

	Parameter estimation of chaotic dynamics
	Overwiew of Lorenz system
	DE application to parameter estimation of Lorenz system
	Matlab implementation

	Comparison with EPPES solution
	EPPES concept
	EPPES linear case example
	Comparison of EPPES and DE approaches to solution of Lorenz system

	Conclusion
	References
	Matlab listings
	Toy case. Classical DE
	Toy case. advanced DE
	Lorenz system estimation

	Tables
	Deterministic case
	Stochastic case

