Tommi M. Tykkälä
REAL-TIME IMAGE-BASED RGB-D
CAMERA MOTION TRACKING AND
ENVIRONMENT MAPPING
Acta Universitatis
Lappeenrantaensis 533
Thesis for the degree of Doctor of Science (Technology) to be presented with
due permission for public examination and criticism in the Auditorium 1383
at Lappeenranta on the 22nd of November, 2013, at noon.
Thesis is a double-degree project with Université Nice Sophia Antipolis.
Tommi M. Tykkälä
REAL-TIME IMAGE-BASED RGB-D
CAMERA MOTION TRACKING AND
ENVIRONMENT MAPPING
Thesis for the degree of Doctor of Science (Technology) to be presented with due per-
mission for public examination and criticism in the Auditorium 1383 at Lappeenranta
on the 22nd of November, 2013, at noon.
A double-degree project between
Acta Universitatis
Lappeenrantaensis 533
Supervisors Dr. Andrew I. Comport
Autonomous Navigation and Mapping Systems, CNRS-I3S
Université Nice Sophia Antipolis, France
Professor Joni-Kristan Kämäräinen
Machine Vision and Pattern Recognition Laboratory,
Lappeenranta University of Technology, Finland
Reviewers Dr. Shahram Izadi
Microsoft Research
Interactive 3D technologies (I3D) group
Cambridge
United Kingdom
Professor José Maria Martinez Montiel
Automatic Control and Systems Engineering
University of Zaragoza
Spain
Professor Eric Marchand
IRISA
INRIA Rennes - Bretagne Atlantique
France
Opponent Dr. Heikki Huttunen
Department of Signal Processing
Tampere University of Technology
Finland
ISBN 978-952-265-473-1
ISBN 978-952-265-474-8 (PDF)
ISSN 1456-4491, ISSN-L 1456-4491
Lappeenrannan teknillinen yliopisto
Yliopistopaino 2013
Preface
I thank everyone who have participated in this project and provided valuable feedback
and support. Foremost, I have received tireless feedback and improvement ideas from
my supervisors Andrew I. Comport and Joni-Kristian Kämäräinen, who have helped
me in polishing the publications and this manuscript into a clear and concise form.
As a double-degree project, both I3S laboratory in Sophia-Antipolis and MVPR/LUT in
Kouvola provided research environment and facilities to carry out research. I would like
to thank Sebastien Clerc in Thales-Alenia Space for funding the project and introducing
related industrial research methods. The first experiment was carried out in INRIA us-
ing a turn-table and a stereo camera, which were kindly provided by Patrick Rives and
A.I. Comport. Maxime Meilland showed a reference result for the sequence and Math-
ieu Seiler was there for general assistance and support. With the second publication,
I’m happy for inspiring collaboration with Cédric Audras. Based on Cédric’s prelimi-
nary results with the Microsoft Kinect sensor, it was easy to see that RGB-D tracking has
potential in indoor applications. During the first half of the project, Vesa Jääskeläinen
arranged professional svn maintenance and support for me, which really made software
development possible.
In MVPR/LUT, I’m glad that Joni-Kristian Kämäräinen persuaded me to switch to
Ubuntu Linux and offered a modern laptop. With kind help of Jukka Lankinen, it was
quick and easy to learn the best Linux tools and practises. Developing a real-time GPU
implementation from scratch took a lot of time and effort, but it was also a great learn-
ing experience. Many experiments were carried out in MedusaTV studio in Kouvola,
where camera tracking was benchmarked in live AR use. Marko Siitonen, Heikki Or-
tamo, Sauli Simola, Taija Lumitähti and Jori Pölkki consulted me with television studio
practises, offered support with motion capture system and helped with the relevant
tests. Big thanks to Hannu Hartikainen at Aalto University for helping out with Kinfu
reference measurements.
Last but not the least, I thank all my lab mates for entertaining discussions during the
project!
Helsinki, October 2013
Tommi M. Tykkälä

Abstract
Tommi M. Tykkälä
Real-time Image-based RGB-D Camera Motion Tracking
and Environment Mapping
Helsinki, 2013
148 p.
Acta Universitatis Lappeenrantaensis 533
Diss. Lappeenranta University of Technology
ISBN 978-952-265-473-1
ISBN 978-952-265-474-8 (PDF)
ISSN 1456-4491, ISSN-L 1456-4491
In this work, image based estimation methods, also known as direct methods, are stud-
ied which avoid feature extraction and matching completely. Cost functions use raw
pixels as measurements and the goal is to produce precise 3D pose and structure esti-
mates. The cost functions presented minimize the sensor error, because measurements
are not transformed or modified. In photometric camera pose estimation, 3D rotation
and translation parameters are estimated by minimizing a sequence of image based
cost functions, which are non-linear due to perspective projection and lens distortion.
In image based structure refinement, on the other hand, 3D structure is refined using a
number of additional views and an image based cost metric. Image based estimation
methods are particularly useful in conditions where the Lambertian assumption holds,
and the 3D points have constant color despite viewing angle. The goal is to improve
image based estimation methods, and to produce computationally efficient methods
which can be accomodated into real-time applications. The developed image-based 3D
pose and structure estimation methods are finally demonstrated in practise in indoor
3D reconstruction use, and in a live augmented reality application.
Keywords: Visual SLAM, Camera tracking, Image registration, 3D reconstruction,
Augmented reality, Visual odometry, RGB-D sensor, Direct methods
UDC 004.93’1:51.001.57:77
ABBREVIATIONS
SLAM Simultaneous Localization And Mapping
RANSAC Random Sample Consensus
EKF Extended Kalman Filter
IRLS Iteratively Re-weighted Least-Squares
NLSQ Non-Linear Least SQuares
BA Bundle Adjustment
BRDF Bidirectional Reflectance Distribution Function
IR Infra-Red
RGB Red-Green-Blue
RGB-D Red-Green-Blue-Depth
GPU Graphics Processing Unit
FPGA Field Programmable Gate Array
FPS Frames Per Second
AR Augmented Reality
3D Three-dimensional
2.5D Two-dimensional + Depth
2D Two-dimensional
1D One-dimensional
TV Television
SVD Singular Value Decomposition
TSDF Truncated Signed Distance Function
IIR Infinite Impulse Response
CCD Charge-Coupled Device
FOV Field-Of-View
ICP Iterative Closest Point
MAD Median Absolute Deviation
The work has been supported by

CONTENTS
1 Introduction 15
1.1 Objectives . 16
1.2 Contribution and publications . 17
1.3 Outline of the thesis . 19
2 Multi-view Geometry and Estimation 21
2.1 Perspective camera model . 21
2.1.1 Extrinsic matrix structure . 22
2.1.2 Perspective projection . 23
2.1.3 Lens distortion model . 23
2.1.4 Intrinsic matrix structure . 24
2.1.5 The inverse model . 25
2.2 3D point initialization . 25
2.2.1 Midpoint triangulation . 26
2.2.2 Hartley-Sturm triangulation . 26
2.2.3 Rectified stereo triangulation . 27
2.3 Estimation using Nonlinear Least Squares Minimization 28
2.3.1 Levenberg-Marquardt . 29
2.3.2 Gauss-Newton . 29
2.3.3 Random sample consensus . 30
2.3.4 M-estimators . 31
2.3.5 Iteratively re-weighted least squares 31
2.3.6 Linear system solvers . 32
2.4 3D point refinement using multiple views 34
2.5 Geometrical pose estimation methods . 35
2.5.1 Generating small motion . 35
2.5.2 Matrix normalization . 38
2.5.3 3D-to-2D . 39
2.5.4 3D-to-3D . 40
2.5.5 Statistical matching . 41
2.6 Bundle adjustment for simultaneous estimation 42
2.6.1 Sparse structure . 43
2.6.2 Marginalization . 44
2.6.3 Extended Kalman Filter . 44
2.7 Feature-based simultaneous localization and mapping 45
2.7.1 Feature points as measurements . 46
2.7.2 Loop-closure . 46
2.7.3 PTAM . 46
2.7.4 FrameSLAM . 47
2.8 Dense tracking and mapping . 47
2.8.1 Microsoft Kinect . 48
2.8.2 KinectFusion . 50
2.8.3 Multi-resolution surfels . 51
3 Direct Image-based Estimation 52
3.1 Image registration techniques . 52
3.1.1 Lukas-Kanade optical flow . 53
3.1.2 Remarks on image gradient computation 53
3.1.3 Image registration using homography mapping 54
3.1.4 Image registration using a rigid 3D structure 56
3.1.5 Inverse compositional image alignment 57
3.1.6 Combining multiple images into cost function 58
3.1.7 Multi-resolution pyramid for better convergence 58
3.2 Direct stereo matching methods . 60
3.2.1 Semi-global block matching . 62
3.2.2 Stereo camera and calibration . 62
3.2.3 Bayer filtering . 63
3.3 Quadrifocal stereo tracking . 64
3.3.1 Stereo cost function . 65
3.4 Pixel selection . 65
3.5 Lighting variations . 65
3.6 Efficient Second-order Minimization . 67
3.7 Photometrical structure refinement . 67
3.8 Direct localization and mapping . 70
3.8.1 From outdoor stereo systems to indoor environments 70
3.8.2 DTAM . 70
4 Efficient stereo tracking by variance bounded disparities 72
4.1 Trifocal tensor warping . 73
4.2 Disparity map initialization . 73
4.3 Estimation in two phases . 75
4.4 Disparity map refinement within bounds 76
4.5 Experiments . 77
4.6 Analysis and limitations . 78
5 Robust tracking by concurrent pixel and depth matching 86
5.1 Combining appearance and structure in cost function 86
5.1.1 Bi-objective minimization . 87
5.1.2 Balancing the cost by λ . 88
5.1.3 Hybrid pixel selection . 89
5.2 Simulation experiments . 90
5.3 Results on PRoVisG MARS 3D Challenge 91
5.4 Analysis and limitations . 94
6 Real-time RGB-D tracking for a low-end GPU 96
6.1 Tracking modes . 97
6.1.1 Incremental tracking . 97
6.1.2 Keyframe tracking . 98
6.1.3 SLAM mode . 99
6.2 Features . 100
6.2.1 Embedding distortions in warping function 100
6.2.2 Tolerating dynamic foreground . 100
6.3 Scalable GPU tracking . 101
6.3.1 Warping . 102
6.3.2 M-estimator . 102
6.3.3 Linear system reduction . 103
6.3.4 Evaluating matrix exponential . 103
6.3.5 Selecting points on GPU . 104
6.3.6 Vertex attributes at different stages 105
6.3.7 Preprocessing RGB images . 106
6.3.8 Point cloud from raw disparity map 106
6.3.9 Online visualization issues . 107
6.4 Accuracy . 107
6.5 Results . 108
7 Watertight and textured 3D reconstructions by RGB-D tracking 111
7.1 Depth map fusion using RGB data . 112
7.2 Optional bundle adjustment for a 3D model 113
7.2.1 Interactive editor for bundle adjustment 114
7.3 Watertight polygonization . 115
7.4 Mesh texturing . 116
7.5 Memory consumption . 119
8 Augmented Reality in Live Television Broadcasting 123
8.1 System . 124
8.1.1 AR graphics using Panda3D . 124
8.1.2 Motion capture system for live character animation 125
8.1.3 AR composition using depth maps 126
8.2 Studio lighting and Microsoft Kinect . 127
8.3 Tracking configurations . 128
8.3.1 RGB-D sensor towards the scene . 128
8.3.2 RGB-D sensor towards the floor . 129
8.4 3D modeling of a studio environment . 132
8.4.1 Depth map noise in a studio environment 133
8.4.2 Depth map filtering for studio model 133
8.5 Experiment: Tracking accuracy . 134
8.6 Constraints . 137
8.7 Summary . 137
9 Conclusions 139
9.1 Perspectives . 140
Bibliography 142
Appendix
I Simulated Asteroid datasets 149
II Depth map fusion algorithms 152

“Nothing will work unless you do.”
Maya ANGELOU
14
CHAPTER I
Introduction
In computer vision, camera pose estimation and 3D structure refinement are approached
by defining cost functions whose minimum corresponds to desired model configura-
tion. Because these two problems are by nature geometrical, original image measure-
ments are often replaced by 2D feature points, which are extracted from the images.
Feature points are distinctive local regions, such as corners and edges, which can be
matched across multiple images. Finally, a geometrical cost function determines which
parameters are ideal in relation to all 2D feature point observations. Despite that geo-
metrical cost metric can provide precise estimates, the estimation process paradoxally
utilizes only indirectly the original image data. 2D points must be extracted from im-
ages and matched in multiple views. This is the weak link of the estimation process,
because extraction and matching errors can not be avoided. Especially matching errors
must be addressed by techniques such as RANSAC [18, 55] and M-estimators [27] to
increase tolerance to gross outliers. Feature extraction, also, is imprecise because the
points are likely to have an offset to the ideal projection of a 3D point. For example,
viewing angle and lighting conditions affect on the feature extraction process.
In this work, image based estimation methods, also known as direct methods, are studied
which avoid feature extraction and matching completely. Cost functions are directly
defined using raw pixel measurements and the goal is to produce precise pose and
structure estimates. The presented cost functions minimize the sensor error, because
measurements are not transformed or modified. In photometric camera pose estima-
tion, 3D rotation and translation parameters are estimated by minimizing a sequence of
image based cost functions. These cost functions are non-linear due to perspective pro-
jection and lens distortion. In image based structure refinement, 3D structure is refined
by minimizing appearance variance to the reference view using a number of additional
views. Image based estimation methods are usable whenever the Lambertian illumina-
tion assumption holds, where 3D points have constant color despite viewing angle. The
main application domains considered in this work are indoor reconstructions, robotics
and augmented reality, which all benefit from more precise 3D camera tracking and
environment mapping.
15
16 1. Introduction
1.1 Objectives
The overall project goal is to improve image based estimation methods, and to enable
their use in real-time applications. The main questions for this work are
1. "How to use RGB-D measurement data efficiently in 3D pose estimation and structure
refinement?"
2. "How to organize computation to enable a real-time (30Hz) implementation on a low-end
GPU?"
3. "What are the practical considerations in applications such as augmented reality and 3D
reconstruction?"
Table 1.1 illustrates family of different photometric cost function types. The contribution
in this thesis has been studying these cost function in theory and in practise.
Cost type Cost function Publications
Quadrifocal stereo e1W1e1 + e2W2e2 Comport’07
? Trifocal stereo SLAM e1W1e1 + edWded Tykkala’11
ICP GPU 30Hz ezWzez Newcombe’11**
? RGB-D + ICP e1W1e1 + λezWzez [Tykkala’11,Whelan’12]
? RGB-D GPU 30Hz e1W1e1 [Tykkala’13]
Table 1.1: The family of direct cost functions. Stars denote the ones were developed
in this project.
In the beginning of the project, the aim was to bring state-of-the-art computer vision
to space applications in collaboration with Thales-Alenia Space. One interesting appli-
cation is in autonomous navigation and mapping of space environments. In a recent
Itokawa asteroid sampling mission, also asteroid images were collected using an au-
tonomous robot. These image were then used in manual 3D reconstruction of Itokawa
asteroid. Thus our work began from a Mars orbiting and asteroid reconstruction set-
ting, which provided a testing framework for testing novel cost function formulations.
The goal was to use multi-view inference for autonomous pose estimation and 3D re-
construction. Particularly computational efficiency and tracking robustness were con-
sidered in the first two publications. Since standard benchmarking for visual odometry
was not available, it was also developed during the process to monitor the accuracy
and robustness. Blender software was used to generate synthetic datasets along with a
ground truth trajectories. Also turn-table was used to test visual odometry with more
realistic input.
During the project, the Microsoft Kinect sensor was released, which meant that rela-
tively accurate RGB-D measurements could be captured in textureless indoor environ-
ments at 30Hz using a structured IR light pattern. Compared to depth maps generated
from stereo camera input, structural accuracy became much more consistent and image
1.2 Contribution and publications 17
content independent. I made a request to transform this PhD project into a double-
degree with Lappeenranta University of Technology to be able focus on television pro-
duction studio environments. This change simplified data acquisition, since real data
could be easily captured in the actual application environment.
The goal in the second part of the project to develop a 3D camera tracking solution to
television production studios, which enables rendering AR graphics to live broadcasts.
The film industry knows this technique as matchmoving, which is traditionally done in
post-processing using semi-automatic trackers [17]. A tracker is a tool which estimates
a 3D camera motion trajectory based on observed 2D point tracks [85, 86]. In case mul-
tiple shots are required, the process easily becomes expensive. Using a live AR system,
the scenes can be practised in real-time using sufficient AR quality. When the scenes are
captured in their final form, post-processing can be done only once. In studios, online
matchmoving is typically done using an external motion capture system [49], which
tracks a camera in real-time based on passive markers attached to the camera. A 3D en-
gine is then used to render view-dependent graphics in real-time [7]. Although motion
capture is precise and enables a large operating volume, the total price of a professional
system is currently 200− 500k€. Also cheaper systems exists, such as NaturalPoint Op-
titrak [51], which cost around 25k€, but their precision and capture rate are lower.
A real-time image based tracker was developed to allow affordable and automatic cam-
era tracking, which KyAMK University of Applied Sciences in Kouvola could use for
educational purposes. The project was funded by European Regional Development
Fund and The Federation of Finnish Technology Industries. To avoid drift, 3D model
acquisition method had to be developed to obtain a fixed reference for camera tracking.
Also tolerance with foreground actors was required in a setup where the program con-
tent is used to camera pose estimation. As alternative approach a RGB-D sensor was
pointed toward a textured carpet to avoid scene manipulation. A lot of experimenting
was carried out in the studio environment along with studio people to obtain a usable
system. The toolset was tested using a wide range of input videos, both synthetic and
real. Finally, the tracking solution was experimented both in television programs with
live augmented reality content and in 3D reconstruction of indoors.
1.2 Contribution and publications
The following publications were written during the project:
Publication (i)
“A Dense Structure Model for Image Based Stereo SLAM”, T. M. Tykkälä,
and A.I. Comport, IEEE International Conference on Robotics and Automa-
tion (ICRA), Shanghai, China, May 2011,
Publication (ii)
“Direct Iterative Closest Point for Real-time Visual Odometry”, T. M. Tykkälä,
C. Audras, and A. I. Comport, Workshop on Computer Vision in Vehicle
Technology: From Earth to Mars in conjunction with the International Con-
ference on Computer Vision (CVVT/ICCV), Barcelona, Spain, Nov 2011,
18 1. Introduction
Publication (iii)
“RGB-D Tracking and Reconstruction for TV Broadcasts”, T.M. Tykkälä, H.
Hartikainen, A.I. Comport, and J-K. Kämäräinen, 8th International Confer-
ence on Computer Vision Theory and Applications (VISAPP), Barcelona,
Spain, Feb 2013,
Publication (iv)
“Live RGB-D Camera Tracking for Television Production Studios”, T.M. Tykkälä,
A.I. Comport, J-K. Kämäräinen and H. Hartikainen, Journal of Visual Com-
munication and Image Representation, Elsevier, Apr 2013,
Publication (v)
“Photorealistic 3D Mapping of Indoors by RGB-D Scanning Process”, T.M.
Tykkälä, A.I. Comport, and J-K. Kämäräinen, IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), Tokyo, Japan, Nov 2013.
In publication (i), simultaneous estimation of 3D pose and structure parameters is for-
mulated using an image-based SLAM cost function [82]. The disparity values are treated
as free parameters whose joint covariance with pose parameters is estimated. Image
based disparity variances are obtained by marginalizing the motion parameters out.
These variances are then used to bound the estimation of the next disparity map. This
process boosts disparity map computation, which is commonly a bottleneck. Thales-
Alenia Space provided a realistic orbiting trajectory around Itokawa. The trajectories
and available asteroid 3D models were used to evaluate the method.
In publication (ii), 2.5D maps are represented as general RGB-D measurements directly
without depending on a specific measuring technique [81]. Maintaining small drift is
essential for any visual odometry problem. To reduce drift, RGB image and depth map
errors are concurrently minimized. When cost function consists of two components,
the numerical uncertainty (standard deviations) can also vary between them. An ad-
ditional parameter λ is required to balance the uncertainties in such a way that drift is
minimized. To gain computational efficiency, salient image regions are selected using a
gradient magnitude histogram. The histogram method reduces computational require-
ments from O(nlogn) to O(n), because sorting can be fully avoided. The experiments
show that pose estimation can be made more precise, especially in cases where Lamber-
tian assumption is only partially valid. The method is also demonstrated with using a
real space sequence in PRoVisG MARS 3D Challenge [29].
In publication (iii), a system is presented which uses Microsoft Kinect sensor for aug-
menting graphics to a live TV broadcast. Live augmented reality is useful when design-
ing TV and film scenes with interactive characters and props. RGB-D camera tracking
is proposed for live AR use in television studios to reduce post-processing needs and
lower the costs [84]. During a live AR broadcast, drift is not an option and frequent
loop-closure will be required. When tracking is defined relative to a set of keyframes,
the drift will not cumulate in time. A pre-defined keyframe model is also necessary
when avoiding moving actors in the scene. The static model provides distance values
and intensity values which are compared with the current RGB-D measurement. By
filtering out image regions with too large discrepancy to the model, foreground motion
1.3 Outline of the thesis 19
does not bias the tracking process. The keyframes are not allowed to contain dynamic
regions, because the appearance changes are modeled only by mathematical camera
model.
In publication (iv), a real-time RGB-D tracker is developed which benefits from compu-
tational capacity and scalability of a GPU [80]. The implementation is one of the first
ones for GPU. Several GPU optimizations are presented and discussed which enable
real-time performance even on a low-end GPU. The system is designed to be low-cost
and it only requires a RGB-D sensor and a laptop. RGB-D tracking is experimented
in a TV production studio with and without foreground actors. Novel tools are built
to pre-filter and refine 3D models generated by RGB-D tracking. The accuracy is com-
pared with a recent KinectFusion system which concurrently tracks 3D camera pose and
builds a voxel-based 3D model [53]. The comparison shows how the proposed method
outperforms KinectFusion in a larger operating volume. Using a keyframe based 3D
model as reference requires a nearest neighbor metric which measures pose similar-
ity using a single metric. A metric is proposed which unifies angular and translational
units. This thesis also provides examples how photorealistic and watertight appartment
models are generated by a RGB-D mapping process (Chapter 7). The models are stored
in a standard format to allow online visualization and 3D printing.
In publication (v), the real-time RGB-D tracker developed earlier is used to produce 3D
camera trajectories in real appartments. These trajectories are then used along with a
stored RGB-D video to generate dense keyframe based 3D model. The memory con-
sumption problem is addressed by 1) depth-fusing more measurements into keyframes
to gain higher precision and 2) fitting an implicit surface to the point set using Pois-
son method. When polygonizing the zero-level set using chosen octree resolution, it is
possible to reduce memory consumption dramatically. The keyframe images are finally
used as texture maps for which UV-coordinates are generated by favouring the best
spatial resolution.
1.3 Outline of the thesis
The thesis is structured as follows. In Chapter 2, the basic methods of geometrical,
vision-based pose and structure estimation methods are summarized. In Chapter 3, the
image-based estimation methods are presented which give context to this thesis. The
following chapters describe the contributions. In Chapter 4, disparity maps computa-
tion becomes more efficient by a re-localization scheme, where a part of disparity map
is estimated within temporally propagated bounds [82]. In Chapter 5 camera tracking
dependency on image quality is reduced by simultaneous minimization of depth map
error [81]. In Chapter 6, a computationally efficient real-time GPU implementation is
developed which minimizes a image based cost function, and produces robust and pre-
cise pose estimates [80]. In Chapter 7 the process is described how watertight, textured
3D models can be produced by RGB-D tracking process [83]. In Chapter 8 the real-time
tracking and mapping technology is demonstrated in a real application case in a televi-
sion production studio. The camera tracking is used to render interactive 3D graphics
into a live television broadcast [84, 80]. The conclusions are made in Chapter 9.
20 1. Introduction
CHAPTER II
Multi-view Geometry and Estimation
To understand the relationship between a 3D scene and it’s 2D projection images, a
mathematical camera model needs to be described. The model is fundamental for com-
puter graphics, computer vision and augmented reality, because it enables rendering
2D images from 3D models (the forward problem), reconstructing 3D models based on 2D
images (the inverse problem), and rendering graphics using the estimated camera poses.
The computer vision field has traditionally been focused on the inverse problem. How-
ever, due to rapid development of RGB-D sensors, the forward process has also become
increasingly important, because it enables generating synthetic but photo-realistic 2.5D
images. 2.5D images are color images associated with a depth map. In this work, image-
based modeling enables precise photometric cost functions for camera pose estimation
and structure refinement. The notations given in this section are at times less general
than the ones defined by Hartley [21] to focus only on the transformations required in
this project. Namely, projective 3-spaces (P3) are not considered, because the 3D points
are assumed to have finite coordinates.
2.1 Perspective camera model
Essentially a camera model is a geometrical mapping P : R3 ⇒ R2, which transforms
3D points Pk into 2D image points pk. The components of the model are:
1. Extrinsic part, the 3D transformation of the geometry into a camera reference
frame. The transformation is defined by rotation matrix R ∈ SO(3) and trans-
lation vector t ∈ R3, which are often embedded in a 4× 4 matrix to allow better
manipulation properties.
2. Perspective projection from 3D to 2D, by normalizing a homogeneous 3D coordi-
nates by the depth (3rd component). The normalization function N (P) is defined
explicitly to allow differentiation.
21
22 2. Multi-view Geometry and Estimation
3. Lens distortion modeling using radial and tangential offsets using the function
D(p, α) whose coefficients α ∈ R5 are separately calibrated for every physical
lens.
4. Intrinsic part, 2D transformation to the image points by 3× 3 intrinsic matrix K,
which is the result of camera calibration. This transformation models image reso-
lution, image aspect ratio, pixel skew and projection center on the image plane. A
projection matrix Π is used to extract the final 2D coordinates. Π is used because
3-component homogeneous form is redundant.
The full camera model is
p = ΠKD(N(RP + t), α), where Π =
[
1 0 0
0 1 0
]
. (2.1)
The color generation is typically modeled using a Bidirectional Reflectance Distribution
Function (BRDF). BRDF defines how much an infinitesimally small surface patch at 3D
point P reflects radiance into projected point p using various lighting parameters. In
computer vision, Lambertian BRDF is often assumed for simplicity. Lambertian surfaces
reflect the same color uniformly into all directions. Thus, images captured from multiple
viewpoints will be directly color-wise comparable.
2.1.1 Extrinsic matrix structure
The world coordinate system WC is the fixed coordinate system where all 3D geometry
is finally transformed into. One or several camera coordinate systems CC can be defined
relative to WC. To map 3D points WC ⇒ CC, a 4× 4 extrinsic matrix T is required, which
is composed of 3D rotation and translation.
The extrinsic matrix structure is
T =
(
R t
0 1
)
=

rx1 ry1 rz1 t1
rx2 ry2 rz2 t2
rx3 ry3 rz3 t3
0 0 0 1
 ∈ SE(3), (2.2)
where R is 3× 3 rotation matrix and t is translation vector. The rows r1, r2, and r3 are
unit vectors which represent the X, Y, and Z-axes of the camera in WC.
The camera pose matrix T−1 maps points into the opposite direction CC ⇒ WC, and it
is defined by
T−1 =
(
RT −RTt
0 1
)
=
(
RT c
0 1
)
, (2.3)
where c represents the camera origin in WC. Thus, general matrix inversion procedure
is not required.
2.1 Perspective camera model 23
Figure 2.1: A perspective camera model
2.1.2 Perspective projection
3D points are converted into projective coordinates (in group P2) by defining equiva-
lence (x, y, z)⇔ (x/z, y/z, 1) . This definition performs implicit perspective projection,
because 3D points move along 3D ray onto normalized image plane at z = 1. However,
explicit function N (P) : R3 ⇒ R3 is necessary to allow differentiation.
The 3D points Pk in CC are projected into normalized image points pnk by
pn = N (P) =
 p1/p3p2/p3
1
 =
 uv
1
 . (2.4)
(u, v, 1)T are general image coordinates which do not depend on the physical camera
properties.
2.1.3 Lens distortion model
Real lenses, especially low-cost, produce images which can not be modeled with simple
perspective projection. The imaging process contains an additional non-linear compo-
nent which performs lens distortion. The lens distortions are typically radial and tan-
gential displacements around the optical axis [6]. The intersection point between the
optical axis and the image plane is called the principal point. The principal point does
not have any distortion and and is often very close to the center of the image.
We use standard Caltech distortion model to obtain distorted image points pd by
pd = D(p, α) =
[
p(1+ α1r2 + α2r4 + α5r6) + dx
1
]
, (2.5)
24 2. Multi-view Geometry and Estimation
where r2 = p21 + p
2
2 and dx denotes the tangential distortion
dx =
[
2α3 p1 p2 + α4(r2 + 2p21)
α3(r2 + 2p22) + 2α4 p1 p2
]
. (2.6)
α1, α2, α5 are the radial coefficients, α3 and α4 are the tangential coefficients, Since lens
distortions are mostly radial distortions, dx can often be ignored.
This distortion model produces both pincushion and barrel distortions depending on the
parameters. In pincushion distortion, the focal length increases with the radius of a lens.
Barrel distortion, on the other hand, is the opposite, and the focal length decreases with
the radius. Both distortion types are illustrated in Figure 2.2.
No distortion Pincusion Barrel
Figure 2.2: Pincushion and barrel distortion illustrated
2.1.4 Intrinsic matrix structure
The intrinsic matrix K scales and translates the normalized image coordinates pnk into
pixel coordinates pk. The image resolution is (width, height).
p = Kpn =
 − fu 0 ou0 fv ov
0 0 1
 uv
1
 =
 − fuu + oufvv + ov
1
 , (2.7)
and based on similar triangles fu and fv scale the normalized units into pixel units,
where
fu =
width/2
F tan αu2
=
width/2
tan αu2
fv = a fu. (2.8)
F is the focal length in metric units, but for normalized image points it is always F = 1
(on the left side in Figure 2.1). a = heightwidth is the aspect ratio of the image. αu is the
viewing angle (radian units) in the U-axis direction. Square pixels are assumed when
a = 1. o = (ou, ov)T is the principal point, which is the projection of c in pixel coordinates.
Here a convention from standard computer graphics libraries is adopted as negative z-
axis represents the viewing direction (Fig. 2.1) and the origin of the image plane is in
the upper left corner.
2.2 3D point initialization 25
2.1.5 The inverse model
The inverse camera model maps image points pk into 3d rays rk(t) in WC. The scale
t0 which matches with the first intersection is not known, and requires additional mea-
surements. t0 can be recovered for example by using multiple views and triangulation,
or by direct measurement.
The rays are defined by
r(t) = tRTD−1(K−1
[
p
1
]
, α) + c. (2.9)
The inverse lens distortion model D−1(p, α) can be formulated either as an image re-
sampling problem or a point warping problem. When a distorted source image Id is
re-sampled by
I(pk) = Id(KD(K−1
[
pk
1
]
, α)), (2.10)
the image I will be undistorted. After replacing the original input images Id by undis-
torted images I , lens distortion will not require further addressing. The inverse model
will be
r(t) = tRTK−1
[
p
1
]
+ c. (2.11)
The problem is, however, that image undistortion degrades image quality, because in-
terpolation function must be used to obtain intensity values in between the pixels. I
will also contain regions that do not map into any intensity value in Id.
The undistorted points pk can also be directly estimated. Since D(p, α) can not be an-
alytically inverted, the first-order Taylor approximation can be used [41]. The approx-
imation works well especially for minor distortions, because the mapping is relatively
smooth.
D−1(pn, α) =
(
pn +
−pn(α1r2+α2r4+α21r4+α22r8+2α1α2r6)
(1+4α1r2+6α2r4)
1
)
, (2.12)
where pn is the distorted point, r = p21 + p
2
2, and α are the distortion coefficients. In this
model only radial components α1 and α2 are supported and tangential distortions are
ignored.
2.2 3D point initialization
In triangulation, a 3D point is produced by intersecting two or more 3D rays. Stereo tri-
angulation methods are relevant when generating dense and sparse depth maps using
two views. In this work, stereo triangulation will be used mostly to generate a 3D point
cloud from a disparity map. Stereo triangulation methods are, however, also studied in
unrectified case, because the asteroid mission two satellites require initial guess of 3D
structure (see Sec. I in Appendix).
26 2. Multi-view Geometry and Estimation
Calculating an intersection point is purely geometrical problem when noise is not present.
However, when the projection points are extracted from images, and the rays are inter-
sected, the 3D point will be contaminated by noise or may not even exist if the rays did
not intersect. Two common approaches for triangulation will be described which can
tolerate small amount of noise.
2.2.1 Midpoint triangulation
Let there be two rays r1(s) = a + sb and r2(t) = c + td. a, c ∈ R3 are the ray origins,
and b, d ∈ R3 the direction vectors respectively. s, t ∈ R+ are the scales of the rays,
which are free parameters. The problem is to estimate such s and t which satisfy r1(s) =
r2(t) and thus define the intersection point. This point can be found by minimizing the
Euclidean distance between the rays. Euclidean squared distance is defined by
D(s, t) = ‖r1(s)− r2(t)‖2 = ‖sb− td + a− c‖2. (2.13)
At the intersection point, the derivatives respect to s and t are both zero
∂D(s, t)
∂s
= 2b · (sb− td + a− c) = 0 (2.14)
∂D(s, t)
∂t
= 2d · (sb− td + a− c) = 0. (2.15)
s0 and t0 become
t0 =
(−a · b + b · c)(b · d)/‖b‖2 + a · d− c · d
‖d‖2 − (b · d)(b · d)/‖b‖2 (2.16)
s0 =
(b · d)t0 − (a · b) + (b · c)
‖b‖2 . (2.17)
In case the the rays do not intersect, s0 and t0 will match with the closest points along the
rays. The midpoint is trivially calculated P = r1(s0)+r2(t0)2 (Figure 2.3a). The intersection
may also have infinite solutions, when the projection point coordinates are equal.
The midpoint method does not minimize optimal quantity and can even increase er-
ror when compared to selecting either one of the points. For example, when using the
midpoint method in a situation where r1(s) is a noiseless ray and r2(t) is not, the mid-
point can not be more precise than r1(s0). This case may occur when the other camera is
much closer to the target. A better approach is to weight r1(s0) and r2(t0) with camera
distance and angle based weights.
2.2.2 Hartley-Sturm triangulation
Hartley and Sturm presented an optimal triangulation method for projections with
Gaussian error distribution [21]. Instead of minimizing 3D distance, a cost function
can be directly formulated for the 2D projection points. When r1(s) is projected into
view 2 and r2(t) is projected into view 1, 2D epipolar lines e1 and e2 are produced.
2.2 3D point initialization 27
The problem is then to estimate such image points p˙1 and p˙2 which satisfy epipolar
constraint p˙T1 Fp˙2 = 0 and minimize distance to the measured points p1 and p2 (Figure
2.3b). The fundamental matrix F is 3× 3 matrix which can be estimated using a set of
corresponding 2D points or derived from the camera parameters [21].
The cost function is thus
c(p˙1, p˙2) = (p1 − p˙1)TW1(p1 − p˙1) + (p2 − p˙2)TW2(p2 − p˙2) (2.18)
subject to p˙T1 Fp˙2 = 0, (2.19)
where Wk are the 2D covariances for 2D measurements.
The minimization finally requires estimating the roots of 6th order polynomial [21].
Tossavainen presents a computationally faster approximation [78]. The final 3D point is
triangulated from corrected 2D projections by using the midpoint method which is now
guaranteed to produce the exact result.
Figure 2.3: a) Midpoint triangulation, b) Hartley-Sturm triangulation.
2.2.3 Rectified stereo triangulation
Two views are rectified, when the epipolar lines are strictly horizontal. If this is not the
case, it is possible to rectify the stereo pair by re-sampling one or both images. For a
rectified stereo view, the rays will always intersect and triangulation becomes simpler.
The corresponding projection points p1 = (u, v, 1)T and p2(d) = p1 + (d, 0, 0)T can
be encoded by 1D disparity parameter d.
Based on two similar triangles
1)
X
X− x1 =
Z
F + Z
, 2)
b− X
b− X + x2 =
Z
F + Z
, (2.20)
where (X, Y, Z) is a 3D point in the view 1, F is the focal length in metric units, b is the
distance between the focal points, and xk are the projection x-coordinates in different
views. Figure 2.4 illustrates the case geometrically.
28 2. Multi-view Geometry and Estimation
The first equation implies X = −Zx1/F. By substituting X in the second equation
Z =
Fb
x2 − x1 ⇒ z(d) =
Fb
d
(2.21)
follows. Thus, the depth depends on the disparity value d, the focal length F and the
baseline b.
Figure 2.4: Rectified stereo triangulation. P, optical center ck and the projection
point xk are on the same line based on perspective projection model. Relation
between the disparity and depth value is determined by similar triangles. Right
triangles are formed from point P at distances Z and Z + F, where F is the focal
length.
2.3 Estimation using Nonlinear Least Squares Minimization
Non-linear least squares minimization is widely used in computer vision problems
to estimate parameters when a cost function has been defined. When a mathemati-
cal model exists, which generates data similar to observed measurements, its parame-
ters can be estimated using NLSQ. Typically the cost function is defined to be a sum
of squared errors, because NLSQ minimization methods can be used. When an ini-
tial guess x0 exists, NLSQ produces an estimate which has the minimal cost. Due to
limited number of iterations, cost smoothness and numerical inaccuracy, the estimate
will still contain a small error. Let a vector function f : Rm ⇒ Rn be the model,
whose initial x0 ∈ Rm. The problem is to estimate x ∈ Rm minimizing scalar error
e(x) = e(x)Te(x) =
(
m − f (x))T(m − f (x)) = ‖m − f (x)‖2, where m ∈ Rn is the
measurement vector.
2.3 Estimation using Nonlinear Least Squares Minimization 29
In 3D computer vision problems, the model f is non-linear due to perspective projec-
tion, lighting effects, shadows, occlusions and complicated surface models. However, if
f is a piece-wise smooth mapping, the cost function can be locally approximated by the
first-order Taylor expansion e(δx) = e0 + Jδx, where e0 = e(x0) is the current residual,
J = ∂e(x0)∂x is the Jacobian and δx is a parameter increment to be estimated.
The scalar error function becomes
e(δx) =
1
2
e(δx)Te(δx) =
1
2
eT0 e0 + δ
T
x J
Te0 +
1
2
δTx J
TJδx (2.22)
where the derivative is zero when
JTJδx = −JTe0 . (2.23)
This linear system is also called normal equation, and it is solved by a method which fits
the exact matrix structure involved. Popular choices are Cholesky decomposition and
conjugate gradient method (Section 2.3.6). If the cost function assumptions are valid,
the estimated increment satisfies e(x0 + δx) < e(x0). However, increment x0 + δx must
be estimated multiple times in cases where the mapping is not linear. The following
sections outlines few strategies to estimate the local minimum.
2.3.1 Levenberg-Marquardt
Levenberg-Marquardt (LM) optimization is typically used as a local optimization method
for non-linear least squares minimization, because it has good convergence properties
even when the initial guess is relatively far away from the optimum [37]. LM has adap-
tive step control which adjusts the rate of descend to take bigger steps when the function
is flat. LM can, to some extent, cope with ill-posed problems where the measurements
do not imply sufficient constraints to solve a unique estimate. In computer vision prob-
lems, insufficient texturing may lead into an ambiguous problem. The steps are com-
puted by using Tikhonov regularized normal equation
δx = −(JTJ + µI)−1JTe, (2.24)
where δx is the parameter increment which minimizes the error, I is identity matrix and
e is the residual vector. µ is Tikhonov regularizer which is used to guarantee a safe
iteration step size. δx is accepted only when the increment actually minimizes the error.
Otherwise, µ is increased until the step size becomes so small that error is inevitably
minimized. With acceptable step, µ is decreased and the next iteration will try a larger
step. The algorithm listing is given in Algorithm 2.1. The maximum norm is defined
‖g‖∞ = max(|g1|, . . . , |gm|).
2.3.2 Gauss-Newton
Gauss-Newton minimization is a special case of LM, where µ = 0. Thus, the step size
is not adjusted, and each increment is estimated directly from the normal equation (eq.
2.23). The underlying assumption is that the initial guess is near the minimum of a
smooth and convex cost function. In this case, step control can be avoided completely
and the minimization becomes very efficient (Algorithm 2.2).
30 2. Multi-view Geometry and Estimation
Algorithm 2.1 Levenberg-Marquardt minimization algorithm.
Input: A function f : Rm ⇒ Rn, a measurement m ∈ Rn and initial parameters x0 ∈ Rm.
Output: A vector x+ ∈ Rm minimizing ‖m− f (x)‖2.
1: x = x0, ν = 2, ε1 = ε2 = 10−15, τ = 10−3, kmax = 100
2: A = JTJ; µ = τ ∗maxi=1...m(Aii)
3: for all iterations k ∈ [0, kmax] do
4: repeat
5: A = JTJ, ex = m− f (x), g = JTex
6: Solve (A + µI)δx = g
7: if ‖δx‖ ≤ ε1‖x‖ or ‖g‖∞ ≤ ε2 then return x # residual is sufficiently small
8: else
9: xnew = x + δx
10: ρ = (‖ex‖2 − ‖m− f (xnew)‖2)/
(
δTx (µδx + g)
)
compute step condition variable
11: if (ρ ≤ 0) then
12: µ = µ ∗ ν; ν = 2 ∗ ν # decrease step size
13: end if
14: end if
15: until (ρ > 0)
16: x = xnew # apply parameter increment
17: µ = µ ∗max(13 , 1− (2ρ− 1)3); ν = 2 # increase step size
18: end forreturn x
Algorithm 2.2 Gauss-Newton minimization algorithm.
Input: A function f : Rm ⇒ Rn, a measurement m ∈ Rn and initial parameters x0 ∈ Rm.
Output: A vector x+ ∈ Rm minimizing ‖m− f (x)‖2.
1: x = x0, ε1 = ε2 = 10−15, kmax = 100
2: for all iterations k ∈ [0, kmax] do
3: A = JTJ, ex = m− f (x), g = JTex
4: Solve Aδx = g
5: if ‖δx‖ ≤ ε1‖x‖ or ‖g‖∞ ≤ ε2 then return x # residual is sufficiently small
6: end if
7: x⇐ x + δx
8: end forreturn x
2.3.3 Random sample consensus
False 2D correspondences lead into unrobust estimation. Traditional sparse, feature-
based pose estimation uses the Random Sample Consensus (RANSAC) for focusing on
a few noiseless 3D points [55]. It works by finding subsets of points randomly until a
consensus is found. The consensus set yields to the motion parameter hypothesis, which
is supported by a sufficient number of inliers. Three 3D points or five 2D projection
pairs are required to define 3D rotation and translation [20, 54]. The problem of this
approach it’s computational requirement which can be in the worst case O(n3) for n 3D
points, if the last subset spans acceptable parameters. Also the inlier threshold is very
problem-specific.
2.3 Estimation using Nonlinear Least Squares Minimization 31
2.3.4 M-estimators
Due to the various noise sources in the estimation process, a mechanism to prevent
noise to alter estimation process is very useful. Such measurements, which are not pre-
dictable by the generative model, are considered outliers or noise. The M-estimator can
be used for managing outliers when the residual vector is of sufficient length for sta-
tistical purposes [27]. Essentially a M-estimator is a function for producing uncertainty
based weights for residual elements. The main idea is to generate small weights for
residual elements which are considered outliers. Spurious residual values are detected
by analyzing the distribution of residual values. Typically in model fitting problems,
the distribution of the residual has two components. The first component resembles
a Gaussian distribution and represents the elements which are in accordance with the
assumed model (e.g. values are close to zero). The second component consists of all
elements which do not follow the model, and thus can be considered to be outliers. This
rough division can be used to find such a threshold which optimally divides the dis-
tribution into inliers and outliers. Inliers always have small error whereas outliers may
have any error value. Increased robustness is obtained by damping the high error values
out from the estimation (Figure 2.5). Instead of using a fixed threshold, M-estimators
provide a certain adaptation level to error profile variations. One method to determine
the damping weights is by the Tukey weighting function
uk =
|ek|
c ∗median(ea) , (2.25)
wk =
{
(1− (ukb)2)2 if |uk| <= b
0 if |uk| > b
, (2.26)
where ea = {|e1|, |e2|, . . . , |en|} is a set of absolute residual values, c = 1.4826 is the
robust standard deviation, and b = 4.6851 is the Tukey specific constant. Thus, Tukey
weighting generates adaptive weighting based on the statistical distribution of the resid-
ual. The weights wk are produced per each residual element and they are roughly pro-
portional to the inverse variances 1/σ2k .
The weighted step is obtained by rewriting eq. 2.23 as follows
JTWJx = −JTWe, (2.27)
where W is a diagonal matrix with diag(W)k = wk. The robust step is obtained by
J ⇐ √WJ and e ⇐ √We and therefore both LM and Gauss-Newton estimation can be
trivially weighted. When the weights are quadratic, the square roots do not need to be
evaluated in practice.
2.3.5 Iteratively re-weighted least squares
In Iterative Re-weighted Least-Squares (IRLS) [27] minimization, the weights are up-
dated in each iteration using an element-wise weighting function ρ : Rm ⇒ Rn. ρ
usually corresponds to an M-estimator, but also other weighting strategies can be used.
IRLS algorithm is listed in Algorithm 2.3. IRLS minimization may require more itera-
tions than Gauss-Newton, because often some inliers will also be given a small weight.
32 2. Multi-view Geometry and Estimation
Figure 2.5: Tukey M-estimator effect illustrated. The points with high error values
are given small or zero weight, because their appearance change is not explained
by the motion model.
Algorithm 2.3 IRLS
Input: A function f : Rm ⇒ Rn, a measurement m ∈ Rn, initial parameters x0 ∈ Rm, and
element-wise weighting function w : Rn ⇒ Rn.
Output: A vector x+ ∈ Rm minimizing ‖wT(x)(m− f (x))‖2.
1: x = x0, ε1 = ε2 = 10−15, kmax = 100
2: for all iterations k ∈ [0, kmax] do
3: w = ρ(x), W = zeros(n, n), Wii = wi
4: J⇐ √WJ, e⇐ √We
5: A = JTJ, ex = m− f (x), g = JTex
6: Solve Aδx = g
7: if ‖δx‖ ≤ ε1‖x‖ or ‖g‖∞ ≤ ε2 then return x # residual is sufficiently small
8: end if
9: x⇐ x + δx
10: end forreturn x
2.3.6 Linear system solvers
In this section, conjugate gradient method and Cholesky decomposition are described,
which can both efficiently solve a linear system Ax = b, where A is a positive defi-
nite matrix. Linear system must be solved in every iteration of the estimation process.
Various other methods exist, such as Singular Value Decomposition (SVD), but here we
focus on the methods most fit for real-time estimation.
CONJUGATE GRADIENT METHOD
Krylov subspace methods form an important class of iterative methods. The Krylov
subspace of order k generated by a d× d matrix A and a vector b of dimension d is the
linear subspace.
B(A, b) = span{b, Ab, A2b, . . . , Ak−1b}. (2.28)
2.3 Estimation using Nonlinear Least Squares Minimization 33
Krylov subspace algorithms construct an orthogonal basis of subspace B(A, b) and use
the basis vectors as movement directions, going along each one of them only once. Thus,
at each iteration a method of this type eliminates one of the possible directions of the
motion and after d iterations the solution is known. Thus, with exact arithmetic as-
sumed, these methods can be regarded as direct methods. However, due to the roundoff
errors in computations performed by computers, these methods can require more than
d iterations to converge. Moreover, usually the dimension of the problem is very large
and the algorithms are stopped well before d steps are done. An efficient method gives
a good approximation in much less than d iterations. In Krylov methods the iterates xk
are constructed by minimizing an error-function.
The Conjugate Gradient (CG) algorithm is a very effective and popular method for the
optimization of quadratic functions and the solution of symmetric positive definite sys-
tems of equations. CG generates d conjugate search directions {δ0, δ1, . . . δd−1}, where
conjugancy is defined by δTk Aδj = 0, when k 6= i. The CG directions δk form an orthog-
onal basis in the Krylov subspace B(A, b). The iteration starts from x0 = 0. The initial
residual is then e0 = b−Ax0 = b, and the first search direction is chosen to be δ1 = e0.
Now assuming the solution can be written as a linear combination
x =
d
∑
k=1
γkδk, (2.29)
iteration update for parameters and residual will be
xk+1 = xk + γk+1δk+1, ek+1 = ek − γk+1Aδk+1 (2.30)
To solve step lengths γk, the final residual is first written as
ed = b−
d
∑
j=1
γjAδj = 0. (2.31)
The optimal step length for iteration k is obtained when multiplying both sides of the
equation 2.31 by δTk
δTk
(
b−
d
∑
j=1
γjAδj
)
= 0⇒ γk = δ
T
k b
δTk Aδk
=
δTk ek−1
δTk Aδk
. (2.32)
All sum terms equal zero, except the k-th term due to conjugancy rule. The same rule
is also used in the last ek−1 ⇐ b substitution. Next an update is of interest, which can
produce conjugate directions as a linear combination of ek and δk.
Let
δk+1 = ek + βkδk, (2.33)
where βk must be
δTk+1Aδk = (ek + βkδk)
TAδk = 0⇒ βk = −
eTk Aδk
δTk Aδk
(2.34)
Computational requirements of the terms γk and βk can be reduced using the recursion
formulas and conjugancy rule. The optimized conjugate gradient method is listed in
Algorithm 2.4.
34 2. Multi-view Geometry and Estimation
Algorithm 2.4 Optimized conjugate gradient method
Input: a d× d positive definite matrix A, a d× 1 vector b.
Output: A d× 1 vector x minimizing ‖Ax− b‖.
1: x0 = 0, δ1 = b, e0 = b
2: for all iterations k ∈ [1, d] do
3: γk =
eTk ek
δTk Aδk
4: xk = xk−1 + γkδk, ek = ek−1 − γkAδk
5: βk =
eTk ek
eTk−1ek−1
6: δk+1 = ek + βkδk
7: end forreturn x
CHOLESKY FACTORIZATION
A n × n real and positive definite matrix A can be factorized into A = LLT , where L
is a lower triangular matrix. A linear system Ax = b, becomes easier to solve when
substituting
L(LTx) = b⇒ Lz = b, LTx = z, (2.35)
because inverting a system with a lower or upper triangular matrix requires merely
back-substitution. In back-substitution, the rows can be solved in an incremental order.
Thus the only problem is how to factorize A = LLT . A can be represented in a block
matrix form
A = LLL =
(
l11 0
L21 L22
)(
l11 LT21
0 LT22
)
=
(
l211 l11L
T
21
l11L21 L21LT21 + L22L
T
22
)
, (2.36)
and thus l11 =
√
a11 and L21 = 1l11 A21 trivially, where a11 is the upper-left element in
matrix A and A21 is the lower left sub-matrix.
L22 must be computed from
A22 − L21LT21 = L22LT22. (2.37)
The problem is identical to original factorization problem but the matrix size is (n −
1)× (n− 1). Thus full factorization can be found recursively.
2.4 3D point refinement using multiple views
When a 3D point P has been triangulated using two views, but more 2D observations
are available, it is possible to refine the point to be in consensus with all measurements.
The cost function measures total re-projection error by
e(P) =
n
∑
k=0
ρ
(∥∥KkDk(N(RkP + tk), αk)− pk∥∥2) = eTWe. (2.38)
The residual elements are
ek =
∥∥KkDk(N(RkP + tk), αk)− pk∥∥2 = dTd, (2.39)
2.5 Geometrical pose estimation methods 35
and the Jacobian elements are
Jkj =
∂ek
∂Pj
= 2dTk
∂dk
∂Pj
= 2dTkΠKk
∂Dk(p, α)
∂p
∂N(P)
∂P
T̂k∂Pj. (2.40)
iX
Xi+1
Xideal
C2
C1
Ray 2Ray 1
C3
Ray 3
Measurement update
Measurement update
No measurement update
Figure 2.6: 3D point refinement using multiple views. Xk are 3D point estimates
at iteration k. In every iteration, the measurements which are near the projection
points are used in the update.
The cost function is the same that is used in bundle adjustment [79], but here the view-
ing parameters remain fixed. 3D point estimation can be done by minimizing the re-
projection error in all views concurrently but also sequentially by applying measure-
ment updates to the Extended Kalman Filter (EKF), which is initialized at P (Figure 2.6).
EKF will be discussed in more detail in Section 2.6.3.
2.5 Geometrical pose estimation methods
When points can be matched between the reference view and the current view, the rel-
ative pose can be estimated by minimizing a geometrical cost function. 2D or 3D Eu-
clidean distances can be used as the error metric, depending on the dimensionality of
the points in both views. Cost formulations exist for 2D-to-2D, 3D-to-3D or 3D-to-2D
cases, which are discussed in this section.
2.5.1 Generating small motion
It is often sufficient to parameterize only small motion, assuming that an initial guess
exists. Especially when focusing on small angles, many sources of ambiguity can be
avoided. According to the Euler theorem, each rotation sequence can be compactly ex-
presses by rotation around a single axis. However, rotations can be expressed us-
36 2. Multi-view Geometry and Estimation
ing various mathematical representations, such as quaternions, Euler angles, and axis-
angle. Parameterized rotations are problematic for estimation because 1) they are non-
linear mappings and 2) they are not unique. Besides natural ambiguities (α ∼ α± 2pi),
some rotation parameterizations suffer from additional implicit ambiguities. For exam-
ple, Euler angle parameterization allows parameterizing the same orientation in many
ways. Quaternions contain an implicit vector normalization, which generates ambigu-
ity for estimation, because axis-length can be arbitrary. Also other peculiarities exist
such as the gimbal lock, where certain Euler rotation sequences lose degrees of freedom
and numerical stability/accuracy can vary in the parameter space. Thus careful design
is required when minimizing cost functions with rotation parameters.
Euler parameterization is given by
T(α, β,γ, tx, ty, tz) =
(
R(α, β,γ) t
0 1
)
∈ SE(3), (2.41)
where R(α, β,γ) = RγRβRα, where α, β, and γ are the rotations around x-, y-, and
z-axises, and t = (tx, ty, tz) is the translation vector.
The explicit matrix components are
Rα =
 1 0 00 cos α − sin α
0 sin α cos α
 , Rβ =
 cos β 0 sin β0 1 0
− sin β 0 cos β
 , (2.42)
Rγ =
 cosγ − sinγ 0sinγ cosγ 0
0 0 1
 , (2.43)
and the product becomes
R =
 cos β cosγ − cos α sinγ+ sin α sin β cosγ sin α sinγ+ cos α sin β cosγcos β sinγ cos α cosγ+ sin α sin β cosγ − sin α cosγ+ cos α sin β cosγ
− sin β sin α cos β cos α cos β

(2.44)
A common linearization strategy with small angles is to replace the non-linear compo-
nents by
R
′
α =
 1 0 00 1 −α
0 α 1
 , R′β =
 1 0 β0 1 0
−β 0 1
 , R′γ =
 1 −γ 0γ 1 0
0 0 1
 , (2.45)
and the product becomes
R
′
(α, β,γ) =
 1 αβ− γ β+ αγγ αβγ+ 1 βγ− α
−β α 1
 ≈
 1 −γ βγ 1 −α
−β α 1
 (2.46)
The final form follows from applying the small angle approximations sin θ = θ, cos θ =
1, and neglecting the higher than linear terms (αβ, αβγ, αγ, βγ ⇐ 0). The linearized
2.5 Geometrical pose estimation methods 37
form can be used in small angle estimation, but it is not elegant, because the R
′
(α, β,γ) /∈
SO(3). This means that the column vectors in R
′
(α, β,γ) must be normalized to obtain
a valid rotation matrix.
An alternative representation T(ω, υ) ∈ SE(3) forms a Lie group by exponential map-
ping [40]:
T(ω, υ) = eA(ω,υ) =
(
R t
0 1
)
, A(ω, υ) =
[
[ω]× υ
0 0
]
, (2.47)
where (ω, υ) ∈ R6 encodes relative 3D rotation and translation between two camera
poses. ω is the rotation axis and ‖ω‖ is the rotation angle in radians, and υ is the
velocity twist.
[ω]× =
 0 −ω3 ω2ω3 0 −ω1
−ω2 ω1 0
 (2.48)
produces a skew-symmetric matrix which performs a cross product.
The matrix exponential produces a 3× 3 rotation matrix R and a 3× 1 translation vector
t embedded in a 4× 4 matrix. This form suits estimation well, because linearization can
be implemented without additional approximations. When estimating small motion
using an iterative method, previous increments can be concatenated into a fixed base
transform T̂, because the transformations form a group SE(3). The next increment is
then parameterized by T̂T(x). Linearization of the iteration is only required at x = 0,
and the Jacobian becomes
J = T̂
∂T(0)
∂x
= T̂
∂eA(0)
∂A(0)
∂A(0)
∂x
= T̂
∂A(0)
∂x
. (2.49)
Now ∂A∂xk are constant matrices for each degree of freedom k = 1 . . . 6 independently to
parameterization (ω, υ).
∂A
∂ω1
=

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0
 , ∂A∂ω2 =

0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0
 , ∂A∂ω3 =

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

∂A
∂υ1
=

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
 , ∂A∂υ2 =

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0
 , ∂A∂υ3 =

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0
 .
When adding a motion increment to the base transform T̂, normalizations are not, in
theory, required since T̂T(ω̂, υ̂) ∈ SE(3) applies without special normalization tricks1.
1In practise, all real valued matrix operations on a computer introduce numerical errors which can be
reduced by matrix normalization.
38 2. Multi-view Geometry and Estimation
A closed form solution exist for evaluating the matrix exponential
eA(ω,υ) =
 R(ω) (I−R(ω))[ω]×υ+ωωTυ‖ω‖
0 1
 , if ω 6= 0 (2.50)
eA(ω,υ) =
(
I υ
0 1
)
, if ω = 0 (2.51)
where
R(ω) = I + [ω]×‖ω‖ sin(‖ω‖) +
[ω]2×
‖ω‖2
(
1− cos(‖ω‖)) (2.52)
is the Rodriguez formula.
Unfortunately, there is an important degenerate case at ω = 0, which is the important
small angle case. This is why the closed form solution is often replaced by the numerical
Padé approximant. Calculating the matrix exponential using Padé Approximation is
defined by
eA(ω,υ) ≈ [Dpq(A)]−1Npq(A), (2.53)
where
Npq(A) =
p
∑
j=0
(p + q− j)!p!
(p + q)!j!(q− j)! A
j, and Dpq(A) =
p
∑
j=0
(p + q− j)!q!
(p + q)!j!(q− j)! (−A
j). (2.54)
Notice the similarity with the Taylor series. If q = 0 then Eq. 2.53 would be a Taylor
series. The Padé algorithm has some advantages over the Taylor series. In particular,
Padé can obtain the same accuracy as Taylor in significantly less time. A drawback of
Padé is that the algorithm performs poorly as ‖A‖ increases. From Higham [24] it was
seen that the Padé approximation is more efficient when p = q. Like the Taylor series
there is the question of where to terminate the series, and what are the appropriate
values of p. Most articles say that 8 or 6 terms will give the best approximation, however
Higham suggests that 13 terms gives the best approximation [24].
The main problem with the Padé approximation is that the accuracy decreases and com-
putational requirements increases as ‖A‖ increases. To overcome this problem, the fol-
lowing identity
eA = (eA/n)n (2.55)
is used. This technique is called scaling-and-squaring and it works by solving eA/n using
Padé and squaring the result to the power n. Typically, n is chosen to be the smallest
power of two such that ‖A/n‖ < 1.
2.5.2 Matrix normalization
By definition, a transformation matrix belongs to SE3 algebraic group, where 3× 3 sub-
matrix must be SO3 rotation matrix R. 3D rotation matrices are orthonormal, which
means that the column and row vectors have unit length and u1 × u2 = u3, u2 × u3 =
u1, and u3 × u1 = u2. When small motion is generated, small amount of numerical
error will be introduced to 4× 4 matrix T. Numerical errors cumulate in time especially
2.5 Geometrical pose estimation methods 39
Algorithm 2.5 Gram-schmidt orthogonalization procedure
Input: 3× 3 matrix R.
Output: Orthonormal 3× 3 matrix R′ .
1: Extract column vectors from R⇒ (u1, u2, u3)
2: for all iterations k ∈ [1, 3] do
3: uk ⇐ uk‖uk‖
4: for all iterations j ∈ [k + 1, 3] do
5: uj ⇐ uj − projuk (uj)
6: end for
7: end for
8: Store column vectors back into R
Algorithm 2.6 Optimized orthogonalization procedure
Input: 3× 3 matrix R.
Output: Orthonormal 3× 3 matrix R′ .
1: Extract column vectors from R⇒ (u1, u2, u3)
2: u3 ⇐ u3‖u3‖
3: u2 ⇐ u3 × u1, u2 ⇐ u2‖u2‖
4: u1 ⇐ u2 × u3
5: Store column vectors back into R
when extending a keyframe map. This is because additional real valued matrix opera-
tions are required to estimate the relative transformation to the nearest keyframe. When
numerical bias cumulates in time, T /∈ SE3, due to arbitrary scaling. Scaling increases
exponentially and results in a non-recoverable tracking state.
To prevent numerical errors to cumulate, matrix normalization is required. Gram-
schmidt procedure is well known method to guarantee an orthonormal base. The al-
gorithm works by removing previously introduced directions from the remaining di-
rections (see Algorithm 2.5). Despite that the algorithm looks simple, it contains more
operations than is required. Because orthogonalization is convenient after every itera-
tion, even small performance improvements are valuable. Algorithm 2.6 sketches com-
putationally efficient orthogonalization. In effect, orthogonalization procedure removes
scaling anomalies from SO3 matrices.
2.5.3 3D-to-2D
When the baseline between two views can be assumed to be small, and a sufficient
number of reliable feature points can be extracted from the images, it is possible to use
a local minimization strategy for finding the relative pose between the views.
Let a set of 3D points Pk ∈ P exists in a reference view with associated image descrip-
tors fk ∈ Rn, whose length is n. pj ∈ R2 are extracted from the current image and the
associated image descriptors fcj are stored. Now m 2D-3D point pairs (p, P)k are gener-
ated by finding the most similar fcj for each fk. Note that this may produce false matches
which have to be eliminated by an outlier rejection mechanism (2.3.3,2.3.4).
40 2. Multi-view Geometry and Estimation
The pose parameters (R, t) are estimated by minimizing the following cost function
e(R, t) =
m
∑
k=1
ρ
(
‖KD(N(RPk + t), α)− pk‖2) = eTWe, (2.56)
where m is the amount of matching points, and ρ(x) : R⇒ R neglects statistical outliers
by damping them to zero (Sec. 2.3.4).
The residual elements are
ek = ‖KD
(
N(RPk + t), α
)− pk‖2 = dTk dk, (2.57)
and the Jacobian elements become
Jkj =
∂ek
∂xj
= 2dTk
∂dk
∂xj
= 2dTkΠK
∂D(p, α)
∂p
∂N(P)
∂P
T̂
∂A(0)
∂xj
Pk, (2.58)
With a decent initial guess and sufficient number of points, Gauss-Newton method pro-
duces accurate estimates (Sec. 2.3.2).
2.5.4 3D-to-3D
The traditional method for surface registration is the Iterative Closest Point algorithm
(ICP) which alternates between finding temporary point correspondences and updating
motion parameters until the system converges [38]. The algorithm estimates pose pa-
rameters by minimizing a point-to-plane distance in 3D. The computational efficiency
depends on the amount of points to be matched. A naive ICP implementation which
does not utilize parallel computation does not scale well when the number of points
increases. ICP can be made more noise tolerant when combining it with M-estimation
or RANSAC. ICP accuracy can improve when it is initialized by matching a set of 3D
points by an effective 2D descriptor such as SIFT [39]. There are various way of finding
temporary point correspondences during ICP iteration [59, 61] A common performance
improvement is to use kd-tree for nearest neighbor searches, when aiming at real-time
applications. A more efficient matching, however, uses projective association, in a case
where the baseline is small [53].
The reference point cloud P∗ must be associated with normals N ∗ = (nk1 , . . . , nkm). The
point normals allow measuring a point set distance only in normal direction. This way
tangential displacements are free in the cost function and surface alignment becomes
more efficient. This cost metric is called point-to-plane distance, despite that plane is not
defined outside a single point. Assuming 3D points are reconstructed from a depth
map, the normals are trivially estimated by
n(u, v) =
(
P(u + 1, v)− P(u, v)
)
×
(
P(u, v + 1)− P(u, v)
)
. (2.59)
Unit normals are generated by n(u, v)⇐ n(u, v)/‖n(u, v)‖.
The pose parameters (R, t) are estimated by minimizing the following cost function
e(R, t) =
m
∑
k=1
ρ
((
RPk + t−Qk) · nk
)2)
= eTWe, (2.60)
2.5 Geometrical pose estimation methods 41
where m is the amount of matching points, and ρ(x) : R⇒ R neglects statistically large
displacements by damping them to zero, and nk = (nx, ny, nz)T are the point normals.
The point associations Pk ←→ Qk are generated automatically for each iteration of the
minimization. The nearest Qk are updated using Euclidean or projective distance. In
projective association, the source points are projected onto the destination mesh from
the point of view of the destination mesh’s range camera. Kd-trees have been used to
speed-up nearest neighbor searches to O(logN) time, but projective association can be
done even more efficiently in constant time [61].
Point-to-plane distance does not vary when sliding along the reference surface. This
means that surface registration can often have larger convergence domain than a one
using point-to-point based Euclidean distance. However, in mostly planar scenes, the
motion will not be fully constrained by the cost function. To reduce the problem, the
points Pk can be selected in such a way that their normals nk have as uniform distribu-
tion as possible to all directions [61].
To minimize (2.60), it is useful to use the small angle approximation (eq. 2.46), and
re-organize the residual elements into
ek = (Pk −Qk) · nk + r · ck + t · nk, (2.61)
where ck = Pk × nk, and r = (α, β,γ).
The Jacobian will be simply
J =
 c0(0) c0(1) c0(2) n0(0) n0(1) n0(2)...
cm(0) cm(1) cm(2) nm(0) nm(1) nm(2)
 . (2.62)
2.5.5 Statistical matching
Besides using raw measurements for pose estimation, various other approaches exist
which rely on matching abstract primitives derived from the raw measurements. For
example, statistical matching of point clouds can be justified in case raw measurements
contain noise. It is possible to construct a mixture of Gaussians model from a raw point
cloud and use it directly to align a relative pose [72]. Assuming GaussiansN ∗k (µ∗,Σ∗) in
the reference coordinate system are associated with Nk(µ,Σ) in the current coordinate
system, the following likelihood function can be formulated
p(x) =∏
k
1
(2pi)3‖Σk‖ 12
exp
(
− dTk (x)Σ−1k (x)dk(x)
)
, (2.63)
where
dk(x) = µk − T(x)µ∗k (2.64)
Σk(x) = Σk + R(x)Σ
∗
k R(x)
T , (2.65)
where R(x) is 3× 3 rotation matrix embedded in 4× 4 rigid transformation matrix T(x).
The likelihood measures similarity between paired Gaussians. dk are the 3D differences
42 2. Multi-view Geometry and Estimation
between the means in the current coordinates system, and Σk are covariances which are
summed together from the current and projected reference covariances.
Instead of maximizing likelihood, its possible to minimize the negative logarithm
e(x) = −∑
k
− 3 ln(2pi)− 1
2
ln |Σk| − dTk (x)Σ−1k (x)dk(x) (2.66)
∼ ∑
k
1
2
ln |Σk(x)|+ dTk (x)Σ−1k (x)dk(x), (2.67)
where |Σ| is the determinant of the covariance.
The benefit of this approach is that it is more invariant to measurement noise, but the
challenge is to construct and temporally match a mixture of Gaussians which does not
regularize the original data too much.
2.6 Bundle adjustment for simultaneous estimation
In bundle adjustment, multiple camera poses and a 3D point set are concurrently opti-
mized [8, 37, 79]. Bundle adjustment provides the best accuracy possible and should
be used whenever a decent initial guess and measurement association can be provided.
The name refers to the bundles of light rays originating from each 3D point and converg-
ing on each camera centre, which are adjusted optimally with respect to both structure
and viewing parameters. The problem is formulated by a cost function which measures
2D re-projection error of the current pose and the structure configuration. The mini-
mization requires an initial guess, which is iteratively improved until the cost decreases
below a threshold. The relative pose between two views are often inferred from the es-
sential matrix, which can be estimated from 2D point correspondences. The structure can
be initialized using direct depth measurements or by triangulation from 2D projection
points. The pose estimation process suffers from some drawbacks. Feature point extrac-
tion and matching is an error-prone process and requires an outlier rejection mechanism
such as RANSAC. Extraction of high quality features such as SIFT can be expensive for
real-time systems and still mismatches can not be fully prevented. For example, repeti-
tive patterns and homogeneous textureless regions easily produce mismatches.
The minimization often relies on Levenberg-Marquardt, because the mapping from the
parameters into 2D observations is non-linear. The cost function is
e(a, b) =
m
∑
i=1
n
∑
j=1
ρ
(∥∥KjDj(N(RjPi + tj), αj)− pij∥∥2) = eTWe, (2.68)
where a = (R1, . . . , Rn, t1, . . . , tn, K1, . . . , Kn, α1, . . . , αn)T contain the extrinsic, and in-
trinsic parameters of n cameras, b = (P1, . . . , Pm)T is a vector of m 3D points which are
associated with the measured projections pij, and ρ is the robust weighting function.
Concurrent minimization of all free parameters is the key to coherent 3D reconstruc-
tions and SLAM. Despite being theoretically sound method, many practical problems
arise when applying it to computer vision problems. One major problem is 2D feature
2.6 Bundle adjustment for simultaneous estimation 43
extraction and matching between 2D views. General unrestricted images simply do not
contain enough information to guarantee correct matches. As an example, repetitive
patterns and textureless images are impossible to match automatically without addi-
tional information. Another problem is the large number of free parameters involved.
n camera view introduces 6n extrinsic parameters, 3n intrinsic parameters (square pix-
els without skew), 5n distortion parameters, and m points introduces 3m structure pa-
rameters. Often the intrinsic parameters and lens distortions can be estimated for each
camera view prior to bundle adjustment which reduces the number of free parame-
ters from 14n + 3m to 6n + 3m. The cost function minimization requires careful de-
sign to enable as many views and points as possible. Traditional sba library [37] and
recently introduced g2o library [36] implement various techniques to reduce compu-
tational requirements. These libraries can provide convergent estimates automatically,
when close enough initial guess has been provided. Initialization is finally the most
critical phase, which can be extremely expensive using exhaustive trial-and-error ap-
proach. Thus manual or semi-automatic tools are considerable option to obtain correct
initialization in a limited time frame.
2.6.1 Sparse structure
Taking into account sparse structure of bundle adjustment problem, a significant per-
formance optimization is possible [37]. Let Aij be a 1× 6 matrix which encodes linear
relationship from camera parameters j to the projection distance of Pi in view j (eq. 2.58).
Also let Bij be 1× 3 matrix which encodes linear relationship from point Pi to projection
distance in view j (eq. 2.40).
The full Jacobian for n = 3 views and m = 4 points becomes
Jkj =
∂ek
∂xj
=

A11 0 0 B11 0 0 0
0 A12 0 B12 0 0 0
0 0 A13 B13 0 0 0
A21 0 0 0 B21 0 0
0 A22 0 0 B22 0 0
0 0 A23 0 B23 0 0
A31 0 0 0 0 B31 0
0 A32 0 0 0 B32 0
0 0 A33 0 0 B33 0
A41 0 0 0 0 0 B41
0 A42 0 0 0 0 B42
0 0 A43 0 0 0 B43

. (2.69)
Sparse Jacobian implies sparse normal equations
JTWJ =

U1 0 0 Q11 Q21 Q31 Q41
0 U2 0 Q12 Q22 Q32 Q42
0 0 U3 Q13 Q23 Q33 Q43
QT11 Q
T
12 Q
T
13 V1 0 0 0
QT21 Q
T
22 Q
T
23 0 V2 0 0
QT31 Q
T
32 Q
T
33 0 0 V3 0
QT41 Q
T
42 Q
T
43 0 0 0 V4

=
(
U Q
QT V
)
, (2.70)
44 2. Multi-view Geometry and Estimation
where Uk =
4
∑
i=1
ATijWijAij, Vk =
3
∑
j=1
BTijWijBij, Qij = A
T
ijWijBij, and Wij is the weight for
measurement pi in view j.
Finally, the normal equation becomes(
U Q
QT V
)(
δa
δb
)
=
(
ra
rb
)
, (2.71)
where the camera parameters are denoted δa, the structural parameters are δb, and
r = (ra, rb)T = JTe.
2.6.2 Marginalization
A key technique for efficient bundle adjustment is marginalization of the cost function.
In practise, the error function 2.68 is more sensitive to camera parameters than point
parameters. This information can be used by solving the system in two phases: first δa,
and then δb. Left multiplication of eq. 2.71 by the block matrix(
I −QV−1
0 I
)
, (2.72)
results in (
U−QV−1QT 0
QT V
)(
δa
δb
)
=
(
ra −QV−1rb
rb
)
, (2.73)
Now estimation of δa is possible without δb by
(U−QV−1QT)δa = ra −QV−1rb (2.74)
followed by the estimation of δb
Vδb = rb −QTδa. (2.75)
These equations are also known as Schur complements.
2.6.3 Extended Kalman Filter
The bundle adjustment problem can also be formulated as a stochastic process using
the Extended Kalman Filter [87]. The non-linear cost function is first linearized and Jaco-
bian J is obtained which maps a parameter increment into linear displacement in the
measurement space. The EKF estimates parameters by an alternating sequence of lin-
ear predictions and corrections. For every discrete time step, a motion model is used to
predict the current parameters x
′
k, which are then refined into xk using the current mea-
surement zk. A is the matrix which linearizes continuous motion model, but it can also
be set to identity which means that initial guess is directly the previous estimate. The
main difference to bundle adjustment is that the EKF is an incremental method which
aims at estimating only the most recent state (current camera pose along with the 3D
points). The problem could be solved by marginalizing the previous pose parameters
2.7 Feature-based simultaneous localization and mapping 45
Predict motion
Kalman gain
Measurement update
Covariance update
Phase Formula
Kalman gain Kk = P
′
kJ
T(JP
′
kJ
T + R)−1
Measurement update xk = x
′
k + Kk(zk − Jx
′
k)
Covariance update Pk = (I−KkJ)P′k
Predict motion x
′
k+1 = Axk, P
′
k+1 = APkA
T + Q
Figure 2.7: Kalman filtering process.
out from the full linear system (Section 2.6.2). Because full marginalization is not a com-
putationally scalable process, EKF simplifies the estimation by forward propagating a
Gaussian parameter distribution in time (xk+1 ⇐ xk, Pk+1 ⇐ Pk). The propagated
Gaussian can correspond to the marginal distribution after a system identification phase,
where the noise terms (Q, R) are tuned based on the application. The EKF essentially fil-
ters parameters from noisy measurements, where the noise must comply with Gaussian
assumptions. The EKF does not recover if the state (parameter estimates and covariance)
is corrupted due to outlier measurements. In practise, linearization and the process in-
accuracies can result into non-positive definite covariance P. One method for avoiding
the problem is regularizing P ⇐ PTP when necessary. If camera motion parameters
are assumed to be constant, EKF essentially improves only structure by performing a
sequence of measurement updates (Figure 2.6).
2.7 Feature-based simultaneous localization and mapping
When explicit an 3D model is not specified, camera pose tracking essentially becomes
Simultaneous Localization And Mapping (SLAM) where both structure and motion are
estimated concurrently. Several sparse, feature-based systems have been presented,
which extract feature points from images, match them temporally and after tracking
them during multiple frames, can generate a sparse set of 3D points. The sparse point
cloud is used as a model with which 2D point locations can be predicted in the new
images. Camera pose and 3D points can then be simultaneously estimated by minimiz-
ing the prediction error between the model points and 2D point measurements. As tool
bundle adjustment and EKF have been proven useful. Davison’s MonoSLAM is the first
real-time system to execute visual SLAM [15]. It is based on Extended Kalman Filter.
After MonoSLAM, various other systems have been built, such as Royer’s system [60],
46 2. Multi-view Geometry and Estimation
FrameSLAM [34] and PTAM [33], which do not use EKF but are based on bundle ad-
justment.
2.7.1 Feature points as measurements
Features can be extracted by various feature detectors such as SIFT [39] and SURF [4].
Features have 2D image coordinates and a descriptor which describes the local appear-
ance of a point. The descriptors are often scale- and rotation invariant, because the
features have to be matched in different views. Feature points simplify image data and
allow defining smooth distance based cost functions. The downside, however, is that
compression loses information and feature point matching often fails which may cost
in the robustness and accuracy of the estimation. Although a relative camera pose can
be estimated from a sufficient amount of 2D feature matches [26, 37], the problem can
be simplified by introducing depth measurements. A RGB-D sensor such as a stereo
camera or the Microsoft Kinect sensor can provide depth measurements densely over
the full image. There are also methods for estimating depths by using a sequence of
monocular images [15]. The depth values can be used to measure camera pose error in
terms of 2D re-projection error or 3D point distance. In controlled environments, feature
points can be efficiently extracted by using markers. Markers may even carry identifi-
cation information such as color or a blinking pattern. The downside of markers is the
manual effort in setting up the system.
2.7.2 Loop-closure
Typically the estimation process suffers from time evolving drift, which is often cor-
rected by a loop closure mechanism. In a loop closure, the current viewpoint is iden-
tified using a previously stored map. The cumulated pose error can then be divided
evenly along the loop for removing the drift. Loop closure is illustrated in Figure 2.8.
Loop closure mechanisms are problematic in real-time AR applications unless they re-
move drift nearly in every frame, because bigger corrections are often visually disturb-
ing. No loop closure can also be visually disturbing due to drift and false geometry.
Royer divides the SLAM problem into separate learning phase and online phase which
utilizes the pre-recorded visual learning path to guide a robot [60].
2.7.3 PTAM
PTAM is a monocular system which estimates camera pose in an unknown scene [33].
It is specifically designed to track a hand-held camera in a small AR workspace. In
PTAM tracking and mapping are split into two separate tasks, processed in parallel
threads on a dual-core computer: one thread deals with the task of robustly tracking
erratic hand-held motion, while the other produces a 3D map of point features from
previously observed video frames. This allows the use of computationally expensive
bundle adjustment (sec.2.6) which is not usually associated with real-time operation:
The result is a system that produces detailed maps with hundreds of landmarks which
can be tracked at 30Hz frame-rate, at best with an accuracy and robustness competing
with state-of-the-art model-based systems. PTAM system is able to do loop closure via
bundle adjustment for each frame, but suffers from error-prone feature extraction and
2.8 Dense tracking and mapping 47
matching process. It is noteable that the sparse 3D points must be initialized by a special
procedure which imitates a stereo camera using a horizonally moved monocular cam-
era. This has proven to be more practical than executing EKF with initially unknown
depth parameters.
2.7.4 FrameSLAM
FrameSLAM initializes 3D points using stereo triangulation method and uses bundle
adjustment (sec.2.6) for estimating camera poses and 3D points in multiple frames si-
multaneously [34]. The pose configuration is estimated within a sliding window of n
recent frames, because the same scene geometry may be visible only for short time when
the camera is moving. Despite that bundle adjustment is used to estimation, only a rel-
ative frame pose information (a skeleton) is stored. The skeleton is a reduced nonlinear
system that is a faithful approximation of the larger system, and is used to solve large
loop closures quickly, as well as forming a backbone for data association and local reg-
istration. Konolige illustrates the working of the system with large outdoor datasets (10
km), showing largescale loop closure and precise localization in real-time.
Figure 2.8: Loop closure when re-entering same viewpoints. Loop-closure detec-
tion effectively removes drift cumulated during the loop. Dashed trajectory is con-
taminated by the errors cumulated during the loop.
2.8 Dense tracking and mapping
When the Kinect sensor was released, several emerging systems have been presented
for camera tracking and environment mapping, which take advantage of dense and
accurate depth maps. Henry et al. describe an approach for indoor mapping, where
48 2. Multi-view Geometry and Estimation
traditional feature-point based RANSAC pose estimate is refined using ICP and the final
3D maps are bundle adjusted [22]. A recent KinectFusion system does effort to avoid
bundle adjustment completely [53]. It integrates dense depth maps into a voxel grid
and rasterizes smooth reference depth maps using a ray caster, which are used with
ICP method for camera tracking. Due to KinectFusion’s memory-scalability problem,
Kintinuous system has been introduced for mapping larger indoor environments [89].
It simply uses moving reconstruction volume and replaces the past geometry with a
triangulated surface. The problem is that triangulated surfaces can not be easily used
for loop-closure because triangulated surfaces have degraded texturing and geometry.
2.8.1 Microsoft Kinect
A RGB-D sensor such as the Microsoft Kinect sensor is well-suited for camera pose
estimation because it produces a real-time feed of RGB-D measurements. The sensor
consists of IR projector, IR sensor and a RGB camera. Internal hardware is used to
generate a disparity map by matching IR light pattern and projected IR image. The
RGB images are in 640 × 480 resolution at 30Hz, but due to Bayer filtering they are
redundant. The depth maps are also stored in 640× 480 resolution. The sensor depth
range is ≈ 1− 5m, and the accuracy decreases in distance [12].
Figure 2.9: Microsoft Kinect the plastic cover removed. Image is courtesy of
www.ros.org.
EXTENDED CALTECH CALIBRATION
Since the Microsoft Kinect sensor can be set into a special mode where the raw IR images
can be stored, it is possible to use standard stereo calibration procedure for obtaining
the calibration parameters for the IR and the RGB view [6] (Fig. 2.10). IR view and the
depth view are trivially associated with image offset (−4,−3).
A single camera calibration is used to initialize IR and RGB camera parameters. Then
calibration is followed by a stereo procedure which re-estimates the Caltech parameters
KIR, KRGB, kcRGB, and Tb. The IR lens distortion parameters (kcIR) are forced to zero,
because data has already been used to generate the raw disparity map. This means that
2.8 Dense tracking and mapping 49
the IR lens distortion is compensated by tweaking the enumerated Caltech parameters.
The RGB camera lens distortion parameters kcRGB are estimated without any special
concerns. In practice, the distortion seems to be minor and the first two radial coeffi-
cients are sufficient. In our calibration kcRGB ≈ (0.2370,−0.4508, 0, 0, 0), and the stereo
baseline is b ≈ 25mm. Tb stores the baseline transform as 4× 4 matrix. The conversion
from raw disparities into depth values can be done by z = 8p fB−d , where p is the base-
line between the projector and the IR camera, B is a device specific constant and f is IR
camera focal length in pixel units. p and B are estimated by solving the linear equation[−1 Z] [A B]T = D, where A = 8p f , Z is n× 1 matrix of reference depth values zk
from the chessboard pattern, and D is a n× 1 matrix whose elements are dkzk. Typical
values are p ≈ 75mm and B ≈ 1090. Note, that this reconstruction method is merely an
approximation which precludes measurements at long ranges [12].
Figure 2.10: RGB and IR images of the calibration pattern.
OULU CALIBRATION
The Microsoft Kinect sensor is conveniently calibrated using a specialized toolbox by
Herrera et al., which jointly estimates all calibration parameters [23]. A chessboard pat-
tern is printed and a set of matching raw disparity images and RGB images are captured
and loaded into the toolbox. The toolbox then semi-automatically provides the intrinsic
matrices KIR, KRGB, the baseline transform Tb between the views, reconstruction pa-
rameters (c0, c1) ∈ R2 and distortion coefficients αRGB, α0, α1 and β. The raw disparity
map D(u, v) is then undistorted by
u(d, α0, α1, β) = d + β(u, v) exp (α0 − α1d), (2.76)
and converted into depth values by
z(d) =
1
c0 + c1u(d)
. (2.77)
The disparity undistortion model corrects bias which increases with distance [12], and
also models per pixel distortions using a map β(u, v). The RGB image lens distortion
is modeled using the standard Caltech parameters αRGB ∈ R5, which models radial
50 2. Multi-view Geometry and Estimation
distortions using three coefficients and tangential distortions using two coefficients [6].
Typically only the first two radial components are necessary, and the rest can be fixed to
zero to speed up computation. The toolbox allows fixing distortion parameters prior to
calibration.
(a) (b) (c)
Figure 2.11: a) RGB b) planar board in disparity image c) disparity distortion pat-
tern β [23]
DEPTH NOISE REMOVAL BY BILATERAL FILTERING
Unfortunately, the captured disparity maps can be contaminated by noise. An amount
of noise can be reduced by filtering the maps prior to use. Bilateral filter smooths surfaces
without mixing data from different depth layers [77]. A bilateral filter is defined by
Db(p) = 1n ∑q∈Ω
D(q) ∗ f (‖q− p‖, σf) ∗ g(‖D(q)−D(p)‖, σg), (2.78)
where D(p) is the disparity value at 2d point p, Ω is a spatial neighborhood around
p, Db(p) is the filtered disparity value, and n is the amount of pixels in neighborhood
Ω. The weights are calculated as a product of two kernels f and g. f is the spatial
damping which enforces weights to decay when the distance to p increases. g is the
data-dependent weighting term which compares the value at p with a neighborhood
value and damps weight when the difference increases. g essentially prevents mixing
values at different depth levels and thus maintains the original edges. Generally, f and
g are taken to be Gaussian functions with standard deviations σf and σg. Real-time
bilateral filtering is possible when the filter is implemented on the GPU. Figure 2.12
shows the benefit of a bilateral filter over a Gaussian filter in depth map filtering.
2.8.2 KinectFusion
The KinectFusion system [53] is a recent technique for computationally feasible cam-
era tracking and reconstruction. It incrementally reconstructs a voxel-based 3D model
of the scene which is used as motion reference. ICP is used to estimate camera pose
(Sec. 2.5.4), because it can utilize dense depthmap measurements directly. However,
ICP algorithms are not robust in planar environments. This is why problems can be
expected for example at offices with flat walls. The voxel volume is improved in time
2.8 Dense tracking and mapping 51
Figure 2.12: Bilateral filter removes noise without altering range discontinuities.
by fusing current depth maps into it which are associated with ICP pose estimate. The
3D points are reconstructed using the current depth map and replaced by Truncated
Signed Distance Functions (TSDF). TSDFs are 1D functionals, which describe a scalar
density in the direction of a ray through a pixel. TSDF starts from +1 value, has 0-value
at the expected surface and changes sign to −1 after the surface. The negative value is
truncated shortly after the intersection point. Truncation is useful, because further in-
tersections are not known due to occlusion. A smooth surface is defined as zero level set
of the superposition of TSDF functions, and can it be reconstructed, for example, using
a ray caster. To obtain a degree of adaptation to environment changes, the density val-
ues of the voxel grid are IIR filtered in time. This means that the influence of old depth
maps decreases in time. Also normal directions of 3D points can be optionally used in
filtering to favor measurements with similar normal. The KinectFusion system works
well in smaller than 3m× 3m× 3m operation volumes where sufficient grid density can
be guaranteed. KinectFusion executes in real-time on a high-end GPU and consumes
memory cubically as a function of voxel grid dimension.
2.8.3 Multi-resolution surfels
RGB-D measurements can also be converted into 6D Gaussians in 3D space, and treated
as density functions. Stückler et al. describe a 3D environment as a multi-resolution
surfel map [72]. Surfels are 2D elliptical surface patches whose coordinate system is
determined by the two most significant principal components. New measurements are
converted into surfels and associated with the model. The relative pose is estimated
using statistical pose inference (Sec. 2.5.5). The benefit of surfel representation is that it
allows fusing RGB-D measurements directly into the model by a simple Gaussian up-
date. The surfels are stored in an octree whose resolution is adapted to measurement
data distribution. Because surfels are oriented surfaces, 6 surfels are required per each
octree node to take into account all viewing directions. The fused surfel maps are glob-
ally optimized using g2o framework [36].
CHAPTER III
Direct Image-based Estimation
2D feature point extraction and matching is an error-prone process which produces bias
to estimated parameters. 3D pose and structure estimation can become more precise
when using image-based cost functions to refine a good initial guess [59]. Direct im-
age based cost functions warp image data into a reference view and measure the cost as
a per-pixel difference [28, 2, 14]. The warping typically requires a 3D model or a rela-
tively accurate 3D estimate of the environment geometry. When tracking a planar image
region, homography mapping itself is sufficient for warping and explicit 3D model is
not required [31]. Direct methods benefit of using more points to estimate parameters
than sparse feature-based methods. Denser point clouds allow compensating with pixel
noise, lighting variations and occlusions. However, sometimes the number of salient
points in an image can be too small to allow parameter inference. Direct methods are
thus often also directly dependent on the amount of texture in the environment. The
direct estimation produces, at best, very precise results. In many applications, such as
industrial robotics, precise 3D models exist and can be used. However, when estimat-
ing 3D structure also using image measurements, the pose estimation accuracy directly
depends on the reconstruction accuracy, which can vary a lot especially when using
dense stereo matching methods. Lighting variations can be problematic to model at
local pixel level. The direct methods work well in environments with Lambertian sur-
faces, where 3D surface colors can be assumed to remain nearly constant independently
of the viewing angle. Lighting variations have also been modeled at pixel level [46].
Due to view-dependencies in the appearance, direct approaches are at their best in local
optimization when initial guess exists. In real-time applications, high frame rate is ben-
eficial, because it reduces appearance changes at pixel level. The convergence domain
can be extended by using multiple image layers.
3.1 Image registration techniques
Image registration techniques are rooted to the Lukas-Kanade method which aims at
minimizing photometrical difference between two image patches [2]. The relation be-
52
3.1 Image registration techniques 53
tween a reference image I∗ and the current image I is defined by the warping function
w(x), which generates re-sampling points using parameters x. The warping function
usually perform a 2D or 3D transformation to the reference points.
3.1.1 Lukas-Kanade optical flow
Optical flow models the image appearance change due to 2D fronto-parallel translation
during a time interval dt [2]. The optical flow field is the velocity field representing how
much a single pixel at (u, v) moves between consecutive frames. Optical flow methods
are useful when tracking 2D points over a time interval.
An image I∗ is captured at time instant t. When the camera moves a few frames in
side-ways, perpendicular to the scene, the problem is to estimate the 2D translation
parameters x = (du, dv)T ∈ R2 which satisfy Lambertian assumption
I(p, t) = I(p + x, t + dt) ∀p ∈ Ω, (3.1)
which implies that the only difference between two image regions captured at time
instants t and t+ dt is a 2D displacement. Ω ∈ R2 is the image region around a point of
interest.
The scalar error function encoding the problem is
e(x) = ∑
p∈Ω
(
I(w(x, p))− I∗(p)
)2
= eTe, (3.2)
where I is the current image captured at time instant t + dt, I∗ is the reference image
captured at time instant t, the warping function w(x, p) = p + x, and the n× 1 residual
vector e contains error elements for every p ∈ Ω.
The Jacobian becomes
J =
∂e
∂x
=
∂I
∂p
∂w(x, p)
∂x
=
(
∂I
∂u
∂I
∂v
)
, (3.3)
and the estimate becomes (
du
dv
)
= (JTJ)−1JTe. (3.4)
This estimation works only for small displacements, because the pixel values change
linearly only within 1 grid unit (see Fig. 3.1). Larger displacements can be estimated by
bootstrapping the estimation using a flow field estimated at lower resolution.
3.1.2 Remarks on image gradient computation
The image gradient can be evaluated exactly at the warped points by differentiating the
interpolation function. Bilinear interpolation is defined by
I(s, t) = (1− s)(1− t)I1 + s(1− t)I2 + stI3 + (1− s)tI4 (3.5)
54 3. Direct Image-based Estimation
Figure 3.1: Lukas-Kanade optical flow. A 2D displacement (du, dv) is estimated
which minimizes image difference between I∗ and I .
where I1, I2, I3, and I4 are the nearest pixel values, in clockwise-order starting from
upper-left corner, and (s, t) is the sub-pixel coordinate of the warped sample point.
The differential becomes
∂I(s, t)
∂s
= −(1− t)I1 + (1− t)I2 + tI3 − tI4 (3.6)
∂I(s, t)
∂t
= −(1− s)I1 − sI2 + sI3 + (1− s)I4. (3.7)
Notice that bilinear interpolation is continuously defined only inside its one pixel do-
main. Discontinuities can be expected at the borders of a pixel. The Gaussian PSF would
guarantee smooth derivatives over a larger domain, but it is computationally expensive
for real-time applications. Also interpolation functions generally produce only approx-
imate surfaces, which may not correspond to reality.
To obtain continuity over a larger image region, it is better to compute numerical gradi-
ents based on measurements
Gx =
(
(Ix+1 − I) + (I − Ix−1)
)
/2 = (Ix+1 − Ix−1)/2
Gy =
(
(Iy+1 − I) + (I − Iy−1)
)
/2 = (Iy+1 − Iy−1)/2.
This does not produce exactly correct intensity derivatives, but the benefit is that 3x3 re-
gions provide larger convergence domain compared to operating only inside one pixel.
3.1.3 Image registration using homography mapping
Camera tracking in 3D space becomes possible by introducing a priori information of
surrounding 3D geometry into the estimation. If a planar region can be detected in an
image sequence, a homography mapping describes the optical flow analytically. Planar
homography mapping is essentially a 3× 3 matrix
H(x, n, d) = R(x)− t(x)n
T
d
, (3.8)
where x ∈ R6 are the motion parameters, n is the plane normal and d is the plane
distance to origin (Fig 3.2).
3.1 Image registration techniques 55
Figure 3.2: A normal n, plane distance to origin d and relative pose (R, t) define a
homography mapping h : R2 ⇒ R2 between the camera image and the plane.
The warping function for a homography is then
w(x, n, d, p) = KH(x, n, d)K−1p, (3.9)
where p = (u, v, 1)T is a 2D point.
Using a planar homography for camera pose estimation is accurate and works even
with a monocular view. However, during motion the reference patch must be updated
before it moves outside the camera view. Reference update systematically introduces
cumulating drift. Also if the reference patches are automatically initialized, the physical
geometry under a patch may not always be planar and tracking bias will be introduced.
Several algorithms have been developed to track a camera based on a set of known 3D
planar surfaces [68]. Silveira et al. describe an image-based pose estimation approach
using multiple planar patches extracted from an image (Figure 3.3). In their work, an ef-
fort is made also to model lighting variation by introducing a local gain parameter α for
each patch and a global brightness parameter β. The residual elements to be minimized
for a patch are
ek =
(
αI(w(x, n, d, pk))+ β)− I∗(pk), (3.10)
where I∗ is the reference image, I is the current image, and pk are the points in 2D
patch region R. As can be seen, the cost function is direct pixel based error which does
not rely on feature extraction.
56 3. Direct Image-based Estimation
Figure 3.3: Planar patch based pose estimation by Silveira et al [68]. Planar patches
are automatically detected from image and tracked. When patches go out of view,
new patches are initialized.
In practise, the translations, rotations and normals must be initialized with a closed-
form solution before the minimization can take place. The initialization is tricky because
image noise may be more dominant than motion during the first frames. Specifically a
sufficient translational motion is required. The problem is solved by tracking the patch
region using a 8 degree of freedom homography matrix H without decomposition into
(R, t). After some frames, decomposition Ĥ ⇒ (R̂, t̂) would be possible, but it has
two solutions [40]. Silveira et al. choose to evaluate the residual (eq. 3.10) using Ĥ
and estimate subset (R̂, t̂, α̂, β̂) using approximate ∂w∂x , without precise normals. Then
(R̂, t̂) are used to initialize the normals. After initialization phase, the estimation can
be executed in SLAM mode, by updating all parameters simultaneously including the
normals.
3.1.4 Image registration using a rigid 3D structure
Lukas-Kanade style minimization can be extended to minimize 3D transformation pa-
rameters of a fixed rigid 3D structure [14, 30, 59]. The projective pose estimation de-
scribed in Section 2.5.3 can be modified to minimize appearance-based cost. In this
case, the warping function is defined by the camera transformation
w(x, P) = KD
(
N(R(x)P + t(x)), α
)
, (3.11)
and the pose parameters (R, t) are estimated by minimizing the following cost function
e(x) =
m
∑
k=1
ρ
((
I(w(x, Pk))− I∗(w(0, Pk)))2) = eTWe, (3.12)
where m is the amount of 3D points Pk, and ρ(x) : R ⇒ R neglects statistically large
displacements by damping them to zero (Sec. 2.3.4).
The residual elements are
ek = I
(
w(x, Pk)
)− I∗(w(0, Pk)), (3.13)
3.1 Image registration techniques 57
and the Jacobian elements become
Jkj =
∂ek
∂xj
=
∂I
∂p
ΠK
∂D(p, α)
∂p
∂N(P)
∂P
∂A(0)
∂xj
Pk. (3.14)
The minimization process is illustrated in Figure 3.4. In forward compositional minimiza-
tion, the pose increments are concatenated into the right side of the base transform T̂
(Sec. 2.5.1). When concentrating on the image difference between Iw and I∗, the base
transform T̂ becomes irrelevant to linearization and the geometrical optical flow ∂w(0,P)∂x
can be computed only once for all iterations. The gradient of the warped image Iw
is computed in every iteration. Gradient computation is problematic especially when
the reference point cloud is sparsified by saliency selection. With sparsified points, it is
not certain whether a neighborhood of a point p ∈ R2 is fully defined to compute the
numerical gradient at ∆Iw(p).
Figure 3.4: Forward compositional image alignment. The reference points are
warped from the reference to current image and the interpolated intensities gen-
erate warped image Iw. The increment T(x) is estimated which minimizes the
difference between Iw and I∗. ∆Iw must be updated in every iteration. Tg is the
initial guess of the current pose and T̂ is the base transformation.
3.1.5 Inverse compositional image alignment
The inverse compositional approach is adopted for efficient minimization of the cost
function [2]. The cost is reformulated as
c∗(x) = I∗
(
w
(
P∗; e−A(x)
))
, cw = I
(
w
(
P∗; T̂
))
e = c∗(x)− cw,
where reference point colors in c∗ are now a function of the inverse motion increment
(Figure 3.5). When the current camera pose estimate Tg is expressed relative to the
nearest reference T∗, the initial base transform becomes T̂ = Tg(T∗)−1. The current
warped intensities cw are produced by re-sampling I using T̂. The residual e is then
minimized by re-sampling the reference image I∗. The benefit can be observed from
the form of the Jacobian
Jij =
∂c(0)
∂x
= ∇I∗ (w(Pi; I)) ∂w(Pi; I)∂xj , (3.15)
58 3. Direct Image-based Estimation
where ∇I(p) = [∂I(p)∂x ∂I(p)∂y]. Now J does not depend on T̂ anymore and it can
be computed only once for each K∗ for better computational performance. The SE(3)
group associativity enables collecting the estimated increment into the base transform
by T̂keA(x̂) ⇒ T̂k+1.
Figure 3.5: Inverse compositional image alignment. The inverse increment is es-
timated which minimizes the difference between Iw and I∗. The full Jacobian is
computed only once using I∗ and P∗. Tg is the initial guess of the current pose.
3.1.6 Combining multiple images into cost function
It is also possible to use multiple subsequent images to obtain increased precision with
pose increments. Figure 3.6 illustrates how different base transforms map into differ-
ent images in the past. Now the increments T(x) must maintain image registration
concurrently in multiple views. One useful combination is to use multiple photomet-
ric references (n previous images) and one geometric reference P∗ which can be older
because Lambertian assumption does not need to hold. P∗ can also be temporally re-
fined using hundreds of images as long as P∗ is visible in the current view. In practise,
photometric registrations can be implemented by inverse-compositional approach and
geometric reference is registered using ICP (sec. 2.5.4) and forward compositional align-
ment. The downside in using multiple images is additional computational requirements
compared to single inverse- or forward compositional minimization, but the benefit is
higher precision.
3.1.7 Multi-resolution pyramid for better convergence
Considering that image gradient can change its direction between every pixel, lineariza-
tion from the motion parameters to pixel values is guaranteed to hold only within one
pixel. This means that convergence domain depends on the image resolution and may
remain small with high resolution images. Convergence domain can be improved by
utilizing a multi-resolution image pyramid during the estimation. In coarse-to-fine es-
timation, the motion parameters are first estimated using a low-resolution image and
refined layer-by-layer into precise estimate.
According to Nyquist sampling theorem, "If a function x(t) contains no frequencies higher
than B hertz, it is completely determined by giving its ordinates at a series of points spaced
1/(2B) seconds apart".
3.1 Image registration techniques 59
Figure 3.6: Combining inverse compositional and forward compositional image
alignment. The inverse increment is estimated which minimizes the difference be-
tween Iw and I . Base transformations T1, T2 and T map into previous images I1,
I2 and I∗.
In image processing, the function x(t) is a 2D image. The statement means that a con-
tinuous image whose maximum frequency in Fourier domain is B sinusoidal cycles per
a pixel, can be replaced without loss, by a discrete image whose sampling points are
1/(2B) pixels apart in the original image. Thus, depending on the image content, the
multi-resolution pyramid may represent the original image or may not. When the im-
age contains rapid intensity variation, low resolution layers are contaminated due to
aliasing. In aliasing high frequency data is falsely converted into low frequency noise.
Despite that a multi-resolution pyramid can not represent all images without loss, a
larger convergence domain is typically obtained by using only few additional layers
which are not too much contaminated by aliasing. In practise, the convergence domain
using 320× 240 images can be extended by a multi-resolution pyramid with layers in
320× 240, 160× 120, and 80× 60 resolutions. When a multi-resolution pyramid is used
in photometric camera tracking, discontinuities in the cost function may occur when
switching between different resolutions. This is why it is better to use the highest avail-
able depth map resolution during tracking with all pyramid layers.
Figure 3.7 illustrates aliasing effect after 80× 60 layer. To reduce aliasing effects, high
frequencies are normally removed prior to downsampling using a low-pass filter (Fig-
ure 3.8). Then a discrete image is converted into a continuous form using an interpola-
tion filter so that image can be resampled.
A rapid method to generate a multi-resolution pyramid is to downsampling layers re-
cursively using a 2× 2 box filter as anti-aliasing filter. This means that box filter size
becomes 2L × 2L, where L is the layer index. The drawback of this approach is a small
displacement in the layer images. The displacement occurs, because the origin of the
downsampled image is averaged from 4 nearest neighbors, whose coordinates are (0, 0),
(1, 0), (0, 1) and (1, 1). This displacement is taken into account by using the formula
pL = ap + b, when moving from high resolution coordinates to low resolution, where
a = 12L and b = 0.5 ∗ (a− 1.0). Figure 3.9 shows how the displacement is formed. In
each layer, the units are scaled by 12 and −0.25 displacement is applied.
60 3. Direct Image-based Estimation
320× 240 160× 120 80× 60 40× 30 20× 15
Figure 3.7: A cycle of B = 1/8px in 320× 240 resolution downsampled into lower
resolutions without filtering. Aliasing effects will occur after sampling points are
more than 4 pixels apart (80× 60). In 40× 30 and 20× 15 layers nothing is left of
the original content. Lenna images also illustrated as reference.
320× 240 160× 120 80× 60 40× 30 20× 15
Figure 3.8: A low-pass filter prior to downsampling removes high frequencies and
maintains better image quality. The cycle images are reconstructed using bi-linear
interpolation and Lenna using cubic interpolation.
3.2 Direct stereo matching methods
Direct pose estimation methods must know the scene structure to minimize photometric
cost. Stereo matching methods are used to generate depth or disparity maps from two
images. Disparity maps encode depths by scalar values which determine horizontal
displacement between two projection points. In this section, particular interest is in
direct stereo matching methods, that use unmodified image data to infer 3D structure.
A slightly out-dated survey of dense matching methods is provided by Scharstein et
al [63].
The survey divides dense matching into following subtasks:
1. matching cost computation;
2. cost (support) aggregation;
3. disparity computation / optimization; and
4. disparity refinement.
3.2 Direct stereo matching methods 61
Figure 3.9: The multi-resolution pyramid layers are displaced when a rapid 2× 2
box filtering is used as anti-aliasing filter.
Then disparity parameters are estimated either locally or globally. Estimating general
dense structure is computationally expensive, but typically local methods have the ad-
vantage of being more easily parallelizable, which makes them more attractive. Global
methods try to find optimal dense matching of full images instead of focusing on indi-
vidual points. According to Middlebury online stereo benchmark the global methods
are generally more successful as they are capable of producing correct matches also in
regions with homogeneous texturing or discontinuities. Global methods aim to estimate
a smooth map where the disparity map may have complex inter-dependencies through
smoothness constraints. Both local and global methods first choose a comparison metric
between stereo images. Then aggregation strategy differs between the approaches.
Local methods aggregate cost values from a templates, which are fixed around both pro-
jection points. The costs are typically evaluated using SSD (Sum-of-Squared-Difference),
SAD (Sum-of-Absolute-Diffecence) or Census, which uses Hamming distance for com-
paring internal intensity orders within a template. Global methods, on the other hand,
aggregate cost terms for the full disparity map configuration, without specific rules.
Global method may need to visit all image pixels many times to produce a global score.
For local methods, the disparity computation typically follows Winner-Takes-All (WTA)
principle, where the disparity value with lowest aggregated cost is chosen. After recti-
fication, the solution space is 1D horizontal line, where all candidates are evaluated by
exhaustive search. With global methods, dynamic programming and graph-cut meth-
ods are popular choices for discrete optimization over all map configurations.
Finally, the parameter estimates are refined by a sub-pixel refinement phase. The locally
aggregated matching scores are enumerated in a discrete pixel neighborhood, and then
based on a parabol fit, provide an estimate between the pixels. In practise, the success of
sub-pixel refinement can not be guaranteed, because there is no real data in-between the
pixels. However, parabola peak is a good guess, assuming that matching score function
is locally smooth.
The problem of local methods is the template size selection. Small template sizes pro-
duce unreliable matches and bigger ones inaccurate matches. This is why multi-resolution
coarse-to-fine approach improves robustness and precision in template matching [90].
Global methods mainly suffer from computational complexity, but for example dynamic
programming has proven to be efficient also for real-time tasks. Imposing smoothness
62 3. Direct Image-based Estimation
constraints is also problematic, because universal parameters do not exist and the scene
may contain discontinuities too.
3.2.1 Semi-global block matching
Global methods are often computationally too demanding for real-time use, but a few
methods, such as Semi-Global Block Matching (SGBM), have proven to be sufficiently
efficient. An example of real-time dense matching method, semi-global block matching
(SGBM) is described.
SGBM uses dynamic programming over a discrete cost volume which can be done ef-
ficiently by using FPGA, GPU or multi-core CPU [25]. It has been implemented into
OpenCV and FPGA-based real-time implementation have also been developed [3]. The
SGBM finds smooth disparity maps by minimizing the following energy functional
E(d) =∑
p
C(p, dp) + ∑
q∈Np
P1δ(|dp − dq| − 1) (3.16)
+ ∑
q∈Np
P2δ(|dp − dq| − k), (3.17)
where p ∈ R2 are center points of the pixels in the image grid and dp the disparity
values associated with them. Np is a set of points containing the 8 neighbor points
of p. C(p, d) is the block matching cost for p and P1 and P2 are the constant discon-
tinuity penalties for unit jumps and greater jumps (k > 1, k ∈ Z) [25]. In sequences
with little lighting variations, the Birchfield-Tomasi metric is the recommended metric
for block matching due to it’s computational efficiency [76]. In block matching, single
pixels scores in the block are locally aggregated to obtain more reliable score. In envi-
ronments with lighting variations, lighting invariant block matching such as the BRIEF
must be used instead [10]. The minimum of E is obtained by dynamic programming
where the independent costs of 8 incoming 1D directions are maintained per each point.
The global aggregation of the directional costs is done in two passes where, the first pass
aggregates the costs propagated from upper and left sides and the second pass aggre-
gates the lower and right side directions. Finally the disparities which have the smallest
cost sum of the eight directions are selected. Penalty constants P1 and P2 need to sat-
isfy P1 < P2 for penalizing slanted surfaces and discontinuities appropriately. Disparity
values are refined into sub-pixel accuracy as a post-process. Occlusions are handled by
a consistency check, which means computing disparity map from left to right and right to
left and then removing the inconsistencies as occlusions. This is obviously an expensive
approach as the disparity map will be computed twice. Finally the disparity values are
refined to sub-pixel accuracy.
3.2.2 Stereo camera and calibration
A stereo camera consists of two cameras which have fixed baseline. The standard Cal-
tech calibration kit is often used to obtain intrinsic and extrinsic parameters [6]. Since
Caltech calibration decides to use only extracted corner points in calibration, it could be
further improved by refining the parameters using a direct method. However, due to
wide use of the kit, the parameters are compatible with OpenCV and various other tools.
3.2 Direct stereo matching methods 63
The calibration procedure requires a stereo sequence, which contains a planar checker-
board pattern (Figure 3.10). The kit then finds the board corners and gives them as
input to Zhang’s method [91], which estimates the parameters. After stereo calibration
procedure, K1, K2 and Tb are known and 3D point triangulation is well defined. Trian-
gulation methods were discussed in Section 2.2. Depending on the optics of the camera,
lens distortion may add radial and tangential displacement into the image which must
be modeled and corrected (Section 2.1.3). Usually the parameters of the distortion are
estimated as a part of calibration procedure. Although stereo baseline is often roughly
a horizontal displacement, rectification is still performed for both views to ensure that
epipolar lines are strictly horizontal. Then the baseline transformation simplifies into
a horizontal displacement, and the disparity map is generated by storing per-pixel dis-
placement dk as a result of a dense matching method. Typically disparity maps are
defined for the right stereo view and dk > 0.
(a) (b)
Figure 3.10: a) RGB image 1 b) RGB image 2
3.2.3 Bayer filtering
In low-cost RGB cameras, such as Microsoft Kinect, a RGB measurement is not done
per each pixel. Instead, each pixel receives either R, G, or B measurement, which are
interpolated across the full image. The bayer filtering pattern is illustrated in Figure
3.11. Due to interpolation, the image edges can spread or disappear artificially and may
not correspond with the true scene edges anymore. If de-Bayered RGB image is bi-
linearly interpolated, two interpolations will be done. The other one can be eliminated
by always interpolated directly using original Bayer data [19]. The effect can be noticed
especially when observing sharp edges (Figure 3.11). In this work, 640× 480 images
are Gaussian filtered by 5× 5 kernel and sub-sampled into 320× 240 resolution to filter
out potentially faulty high-frequencies. When using image-based registration approach,
the image quality should be as good as possible. With professional HD cameras, Bayer
filtering is not used, but each pixel receives a unique RGB value.
64 3. Direct Image-based Estimation
(a) (b)
Figure 3.11: a) Bayer pattern in Kinect sensor. b) Examples how interpolation can
remove edges and spread them.
3.3 Quadrifocal stereo tracking
Via a disparity map based dense 3D point cloud, it is possible track the camera pose by
minimized image difference at projected 3D points. Considering a 3D reference point P
and the 2D projections p1 . . . pn into n views, the correct motion x ∈ R6 has the property
that c(P) = c(pi(x)), for all i ∈ [1, n] where the function c returns the color of a point.
This property assumes Lambertian reflection for the surfaces of the environment, but
the assumption holds particularly well for the views which have a small baseline to the
reference view.
A quadrifocal relationship between all projection points pi means that they are con-
strained by a common 3D point [21]. The constraint can be expressed as 3× 3× 3× 3
array of scalar parameters called the quadrifocal tensor. In an application to dense vS-
LAM, the constraint can be parameterized by 3D motion parameters x which define
the pose between two stereo views. Assuming a fixed reference view for which dense
matching has been solved, 3D points can be expressed either by projection pairs (p∗1, p
∗
2)
but also by (p∗1, l
∗
2) where 3D points are generated at the intersection point of a ray and
a back-projected plane through l∗2. l∗2 can be arbitrary 2D line through projection point
p∗2. By varying the motion parameters x, the quadrifocal constraint fixes the matching
projection points in the current stereo view. Thus it can be used as a model to warp
points from the reference view into the current view.
In the work of Comport et al, the quadrifocal warping of reference points into the cur-
rent view is formulated in terms of two trifocal tensors in a stereo camera setting [14].
Trifocal tensor is a 3× 3× 3 array of scalar parameters which defines the relative pose
between three views. The first trifocal tensor warps the 3D point defined by projec-
tion pair (p∗1, l
∗
2) into p3(x) in the right view of the current camera. The second trifocal
tensor, correspondingly, warps the point into p4(x) in the left view of the current cam-
era. Interestingly, the trifocal warping of 3D points from the reference view into the
3.4 Pixel selection 65
current view this way is equivalent to homography mapping, where homographies are
defined per-point. The motion fitness is evaluated by color consistency c(P) = c(pi(x)).
When the two trifocal warps are applied simultaneously using the relative pose in
the adjoint map, the quadrifocal relationship holds between all four projection points
(p∗1 , p
∗
2 , p3(x), p4(x)).
3.3.1 Stereo cost function
The cost function measures the intensity difference between the reference stereo image
and the current stereo image. Bilinear interpolation is used to interpolate a color value
per each projection point which is then stored in the warped image in the reference view.
The warped image and the reference image are re-organized into 1D vectors, which
are then directly compared pixel-by-pixel with robust least-squares metric. The cost
function is
C(x) = eTR(x)WReR(x) + e
T
L(x)WLeL(x), (3.18)
where eR and eL are the intensity residuals between right and left views. WR and WL
are the robust weight matrices obtained from a M-estimator (Sec. 2.3.4). This cost func-
tion form does not require any predefined temporal correspondences as they are solved
iteratively via estimating the camera pose increments. Figure 3.12 illustrates the compo-
nents of the cost function. The minimization can be done using coarse-to-fine approach
for improving the convergence domain. An image pyramid is generated from each orig-
inal image by warping. The minimization starts from the lowest resolution images and,
after convergence, proceeds to higher resolutions until the original resolution is met.
3.4 Pixel selection
The Jacobian of the cost function is composed of image gradient and geometric warp
gradient J = JI ∗ JG . The elements of J will be zero for the points which do not have any
image gradient (JI = 0) or whose JG is invariant to a given motion. For example, points
at infinity constrain only rotation but not translation. J = [J1, J2, J3, J4, J5, J6], where the
columns [J4, J5, J6] contain the differentials for the rotational movement. The elements
of these columns corresponding to points that are far away will be close to zero. Meil-
land et al has taken into account these observations when compressing large outdoor
environment maps, consisting of a set of spherical image and depth measurements [45].
An even amount of points are selected from each column based on their magnitude. The
points which are already selected once are skipped. The sorting of columns is compu-
tationally expensive for real-time purposes which is why the processing is done offline
for the map.
3.5 Lighting variations
Lighting variations can cause tracking problems when ∆t between image measurements
increases. Due to the Lambertian reflection assumption, the colors of 3D points should
stay constant independently of the point of view. As the ∆t increases, the colors can
change either due to non-Lambertian reflection or by lighting variation and shadows.
66 3. Direct Image-based Estimation
(a)
(b)
Figure 3.12: a) In contrary to Silveira, Comport et al. use dense matched 3D points
to direct visual odometry. b) Left and right stereo images are matched from the
available 4 combinations.
One approach to solve the problem is simply to maintain a sufficiently high frame rate
for the assumption to hold. Explicit modeling of lighting variation is required in ap-
plications where high frame can not be maintained. Lighting variation can be divided
into global and local variation, where global variation means overall image brightness
changes and local variation are more complicated phenomena such as non-Lambertian
surfaces, spotlights and ramps. Although some lighting effects, such as spotlights, can
be tolerated by using a M-estimator, an explicit model for local variations is useful, be-
cause it allows using more data for the estimation. Meilland et al. have modeled lighting
variations [46] in similar way as Silveira et al. [68]. However Silveira combines a global
affine transformation with a robust model which is not possible in the former work.
The lighting tolerant residual is
ek(x) = (αkI (w(x, dk)) + β)− I∗ (pk) (3.19)
where I∗ is the reference image, I is the current image, w(x, dk) is the trifocal mapping
which depends on 3D camera motion x ∈ R6 and pk are the points selected using pixel
selection described in the previous section. The cost function is robust as residuals are
weighted by W. The lighting parameters are α and β, where α is the gain per each pixel
and β is the global brightness. These parameters are updated during run-time based on
3.6 Efficient Second-order Minimization 67
current images. Fixed 3D model is assumed throughout tracking, but an approach is
suggested for automatic 3D model acquisition.
3.6 Efficient Second-order Minimization
Efficient Second-order Minimization (ESM) is a technique which can increase conver-
gence speed in image registration tasks [68]. The idea is to replace
J⇐ 1
2
(
J(0) + J(x)
)
, (3.20)
where J(0) is the Jacobian of inverse compositional cost function and J(x) is the cur-
rent Jacobian which can be computed by warping the current image data into reference
coordinate system and using the same formula as with J(0). By this procedure x will
be defined in the same coordinate system without problems. ESM has been originally
developed for homography based warping function which can continuously map im-
age data. A numerical image gradient requires pixel samples both horizontally, and
vertically at ±1 units away from the reference pixel. When dealing with rigid 3D struc-
tures and a photometrical cost function, a problem arises for due to pixel selection and
missing depth measurements, since the image gradient can not always be computed.
There are two alternative methods to circumvent this limitation. One method to utilize
ESM is to generate support pixels which are dilated from pixel selection mask by one
unit. The support pixels are not used in the cost function, but merely enable obtaining
the necessary pixels for gradient computation. If all pixel neighbors have a valid depth
value, it is possible to warp a template region from the current image and compute the
current gradient. Another method is to use the original pixel selection mask, sample the
gradients from current image and then rotate the image gradients to match reference
image orientation. Because the gradients can only be rotated in a 2D plane, only an
approximation is possible by projecting the current motion estimate into a simple z-axis
rotation.
3.7 Photometrical structure refinement
Despite that the Kinect sensor is fairly accurate, the depth measurements still contain an
amount of noise which can be reduced by combining information from multiple maps.
In the context of this work, photometrical optimizations are interesting. The necessary
pre-condition is that the precise depth values reside within bounded ranges, and image
measurements with relatively accurate camera poses are available.
Plane sweeping method use a photometrical cost function for discrete depth optimization
and can also operate in real-time [56]. The only difference to eq. 3.21 is that cost evalu-
ations are grouped into planes with same depth value (Figure 3.14b). The space before
the reference camera is discretized in planes. For every depth candidate zk, every pixel
of the reference view is back-projected onto this plane and re-projected into every addi-
tional view. Using these color values, a cost error can be calculated, allowing to derive
the optimal depth for that reference pixel. In case lighting variations exist, normalized
cross correlation can be used as as robust similarity measure for plane-sweep [88]. Due
68 3. Direct Image-based Estimation
to independent point optimizations, the algorithm can operate in parallel. The preci-
sion can be increased, besides increasing the number of views, by taking into account a
larger support region in the reference image. When the support region size is above 1
pixel unit, a fronto-parallel surface assumption is also introduced.
Figure 3.13 illustrates the cost curve within search bounds with and without image gra-
dient. The depth map estimate is generated from a stereo view using SGBM and the
reference depth maps are produced by ray tracing.
(a)
(b)
Figure 3.13: a) Textured Stanford bunny edges are associated with cost curves from
16 views. The vertical white line represents the correct depth value within the
bounds. Yellow parabola’s minimum represents the final image based estimate. b)
Without edge information, image based estimation is not precise.
When total variation prior is neglected, the photometrical optimization for individual
3D points is done by by defining a discrete number of solution candidates in domain
[zm − δ, zm + δ] around initial guess depth zm. A set of points Pk matching with the
depth candidates zk is then generated, and projected into the surrounding images (Fig-
ure 3.14). The optimal depth zo is selected using a photometrical error function
zo = eT3
(
argmin
k
n
∑
j=1
(I j(w(Pk; Tj))− I∗(w(Pk; I)))2), (3.21)
where eT3 = (0, 0, 1)
T selects the z-coordinate of solution point Po. It is noted that this
cost function will provide arbitrary results for points which are on homogeneous image
regions without any gradient. Therefore photometrical refinement can only be done
for the points with sufficient image gradient magnitude. In DTAM, this problem was
addressed by assuming smoothness when the image gradient has small magnitude [52].
The benefit with discrete optimization is that it works even when the amount of image
3.7 Photometrical structure refinement 69
(a)
(b)
Figure 3.14: a) Photometrical refinement using bounded depth range. The optimal
depth has the most similar color in all images. The pose configuration is assumed
to be precise. b) Traditional plane sweeping algorithm illustrated. A depth value at
reference image pixel is determined by the best color consistency in multiple views.
measurements is small. In our implementation, the refinement is not done in case the
optimal depth is found at the search range boundary. This is to ensure that a local
minimum is within the range.
70 3. Direct Image-based Estimation
3.8 Direct localization and mapping
A direct localization and mapping task is typically divided into a separate camera track-
ing and structure refinement problems, because simultaneous problem is difficult to
solve. The main difficulties are 1) unknown noise distribution with the point clouds, 2)
maintaining low computational requirements, and 3) view-dependent measurements.
3.8.1 From outdoor stereo systems to indoor environments
The point clouds generated from an image sequence with varying viewpoint are con-
taminated by noise whose distribution depends on the image content and the recon-
struction method. To be able to use the first-order Taylor approximation in photometri-
cal pose estimation, the cost function must be assumed to be locally smooth. In stereo
systems, especially local dense matching methods may produce noise in arbitrary mag-
nitude, which may sometimes prevent further mathematical inference. Global matching
methods work better in continuous and smooth environments, but easily produce false
surfaces at discontinuities with arbitrary error magnitude. In textured outdoor environ-
ments, visual 3D maps have been experimented for urban navigation. The maps consist
of spherical keyframe images with depth maps and GPS-based pose [45]. These maps
have limited lifetime due to changing weather and lighting conditions. However, with a
valid map, a robot which has cameras oriented to all directions can navigate in outdoor
environments despite that some of the stereo-based depth maps may be contaminated
by noise.
In indoor settings, more controlled lighting environment can be obtained. Due to recent
developments with RGB-D sensors, the noise in depth maps has greatly reduced. Only
a small bias is introduced when the distance to sensor increases to several meters [12].
RGB-D sensors can thus produce depth maps whose noise is local and almost Gaussian.
The remaining noise can be removed almost fully by a simple depth fusion mechanism
(one method described in sec. 7.1). Also image content is contaminated by pixel noise,
which is due to CCD sensor noise, bi-linear interpolation, Bayer filtering, and compli-
cated non-Lambertian surfaces. Compared to depth noise, pixel noise sources are less
problematic, because their magnitude is relatively small. Thus, novel RGB-D sensors al-
low utilizing direct localization and mapping approaches indoors with accuracy never
seen before. Audras et al. presented a CPU desktop system performing photometrical
cost function minimization using a RGB-D sensor [1]. As follow-up work, Chapter 6
presents a GPU implementation, which is efficient and scalable with hardware devel-
opment [80].
3.8.2 DTAM
DTAM is a system for real-time camera tracking and reconstruction which relies not
on feature extraction but dense, every pixel methods [52]. It is a monocular system
which aims at estimating dense textured depth maps at selected keyframes. For some
reason it does extra effort in depth map estimation by not utilizing a RGB-D sensor. In-
stead, it uses a non-convex optimization framework to minimize photometric cost and
smoothness cost over the full depth map domain. Particularly total variation smooth-
ness prior, imposed through primal-dual formulation minimization, is used to de-noise
3.8 Direct localization and mapping 71
depth maps [73]. In primal-dual minimization, iteration becomes computationally more
efficient by decoupling data and prior minimization into separate phases. Total varia-
tion prior is used to guess a smooth surface at image regions whose photometrical cost
terms are small. Photometric RGB-D camera tracking is used to update camera pose
for each incoming frame whose data can then be fused into depth map optimization.
The algorithm is parallelisable throughout and DTAM achieves real-time performance
using current high-end GPU hardware. Due to dense measurements DTAM becomes
more robust than PTAM under heavy motion. The drawbacks of the system are a spe-
cial initialization procedure, discretization of the depth range, and incompatibility with
dynamic scenes. Smoothness terms also typically require parameter tuning.
CHAPTER IV
Efficient stereo tracking by variance bounded disparities
In this chapter, bundle adjustment spirited joint cost function is presented for direct si-
multaneous localization and mapping. Bundle adjustment was discussed in Section 2.6.
Direct estimation is often simplified into separate structure and pose estimation phases,
due to its computational complexity. Here this simplification is not made and a Gaus-
sian distribution for both pose parameters and disparity parameters [82]. Stereo camera
is used as a RGB-D sensor and the disparity maps are generated from the stereo images
by using a local dense matching method (Sec. 3.2). The initial matching is assumed to
produce disparities whose error is local and Gaussian. The motion is initialized to x = 0
assuming that previous increments have been concatenated to the base transform T̂.
The joint cost function is
C(x) = eTx Wxex + e
T
d Wded, (4.1)
where
ex = IR
(
wR(x, dk)
)
− I∗R
(
pRk
)
(4.2)
ed = I∗L
(
wL(dk)
)
− I∗R
(
pRk
)
, (4.3)
where ex is the temporal residual between the subsequent images and ed is the spatial
residual of the direct and dense matching. Wx and Wd are the corresponding robust
weight matrices. Section 4.1 presents the associated warping functions w∗(x, dk) and
wL(dk) in detail. The task is to estimate the motion parameters x ∈ R6 and the disparity
bounds.
The cost function is direct and image-based as both structure and pose depend purely
on a photometric cost metric. The estimation process in done soundly in two phases
through marginalization and the conditional disparity variances are calculated. These
bounds are then propagated into the current stereo frame and they are used to boost
disparity map computation. The phases are
1. Exhaustive search to initialize D0
72
4.1 Trifocal tensor warping 73
2. Non-linear motion parameter estimation for finding x̂
3. Determine Cd from cost function by marginalization
4. Find integrated Dm+1 using bounded search
5. m = m + 1, jump to phase 2)
4.1 Trifocal tensor warping
The warping from a reference stereo view to the current view can be modeled by a
trifocal tensor. The trifocal tensor requires fixed projection points in the reference view
and the motion parameters. As an example, the process is described from the right
reference image into the right current image. A fixed reference pose of a stereo camera
is expressed as (I, TRL), where right camera view is chosen as the reference coordinate
system which as identity transformation, and TRL is the baseline transformation from
the right view into the left view. The motion of the current right view is expressed
relative to the reference as eA(x).
The dynamical configuration is expressed as trifocal tensor by (s1, s2, s3), where each
matrix slice of the tensor is sj(x) = ajbT4 (x) − a4bTj (x), where aj are the columns of
[TRL]3×4 and bj(x) are the columns of [(eA(x))−1TRL]3×4. The homography mapping
for a point k is denoted hk(x), whose columns j are defined as
hjk(x) = s
T
j (x)(K
R)TlRk , (4.4)
where KR is the intrinsic matrix of the right camera and lRk = [1, 0,−xRk]T defines a
vertical line through point pRk .
For mapping all image points from the reference view to the current right view, the
following two warping functions are required:
wL(dk) = pRk + (dk, 0)
T (4.5)
wR(x, dk) = N
(
KRhk(x)(KL)−1[wL(dk) 1]T
)
, (4.6)
where KL is the intrinsic matrix of left camera, KR the intrinsic matrix of target view
and N(p) = (u/w, v/w)T for p = (u, v, w)T . wL(dk) warps points to the left stereo view
based on the given disparity map. wR(x, dk) and wL(x, dk) warp points under motion x
into current right and left view. The process illustrated in Figure 4.1.
4.2 Disparity map initialization
It is convenient to select a dense matching technique(Section 3.2), which fits both ini-
tialization and refinement within search bounds. Most of the local methods can be
straight-forwardly applied for both phases and they can be implemented efficiently
74 4. Efficient stereo tracking by variance bounded disparities
Figure 4.1: The warping of a reference point pair into the current stereo view. The
intersection point Pk of a ray through wL(dk) and a plane through lRk is thus pro-
jected into next view using trifocal tensor.
using parallel computing. Various local dense matchers (SSD, SAD, NCC, Daisy, and
multi-resolution SAD) were experimented for producing initial disparity maps. Tem-
plate matching methods perform the best when the environment consists of fronto-
parallel surfaces with distinctive texturing. These two conditions are not always met in
general environments and large mismatches can occur which produce structural noise
of arbitrary magnitude. Disparity map noise can be reduced by multi-resolution ap-
proaches that regularize the 3D surfaces sufficiently. Therefore the estimates become
for the majority part, only locally deviated. Three multi-resolution layers are selected
in the experiments whose costs were summed up together. Yang et al. have shown that
this approach can be implemented efficiently for real-time applications [90].
Multi-resolution SAD performs quite well when initializing the disparity maps. The
initial disparity d̂k is estimated for each pRk by performing an exhaustive search over an
initially large bounded interval along the epipolar line,
d̂k = argmin
d
Cd(wL(dk), pRk), dk ∈ bk (4.7)
Cd(pL, pR) = Σ
ui∈S
(IL(pL + ui)− IR(pR + ui))2, (4.8)
where bk = [xRk , width] ∈ R2 defines the 1D search region, and cost function Cd mini-
mizes direct image error over the template region S .
4.3 Estimation in two phases 75
The initial guess is refined to sub-pixel accuracy by:
ek = IL(wL(dk))− IR(pRk), gk =
∂ek
∂dk
, (4.9)
d̂k = d̂k + min(max(−ek/gk,−0.5), 0.5). (4.10)
Sub-pixel corrections are bounded to [−0.5, 0.5] due to per-pixel evaluation of C. This
results in d̂0 and the same procedure is used for initializing new points. Because tem-
plate matching is prone to gross outliers. A local smoothness constraint is valuable in
filtering out bad matches. Disparity map smoothness are measured trivially by
S(p) = ‖∂D
∂u
(p)‖+ ‖∂D
∂v
(p)‖. (4.11)
4.3 Estimation in two phases
The weighted normal equations show the linear relationship between (∆x,∆d) and
(ex, ed)
JTWJ
[
∆x
∆d
]
= −JTW
[
ex
ed
]
, (4.12)
where JTWJ is the inverse covariance (or Hessian). The equation can be decomposed
into motion and structure specific blocks[
JTx WxJx JTx WxJxd
JTxdWxJx J
T
xdWxJxd + J
T
d WdJd
] [
∆x
∆d
]
= −
[
JTx Wxrx
JTxdWxrx + J
T
d Wdrd
]
, (4.13)
where Jx = ∂ex∂x , Jxd =
∂ex
∂d and Jd =
∂ed
∂d .
The equation 4.13 can be simplified into form[
A B
C D
] [
∆x
∆d
]
=
[
E
F
]
, (4.14)
from which marginalized problems are obtained by Gaussian elimination
(A− BD−1C)∆x = E− BD−1F (4.15)
(D− CA−1B)∆d = F− CA−1E. (4.16)
As in Section 2.6.2, the marginalized covariances are Cx =
(
A− BD−1C)−1 and Cd =(
D− CA−1B)−1. This pose estimation uses IRLS optimization to estimate the marginal-
ized motion from the linear system
(A− BD−1C)x = E− BD−1F. (4.17)
Locally, disparity estimation problem involves estimating a Lukas-Kanade problem (Sec-
tion 3.1.1), whose Jacobian Jd =
∂ed
∂d depends on intensities in the template region. How-
ever, due to template size problem, these variances are valid only for fronto-parallel sur-
faces with sufficient texturing. On the other hand, if the disparities are not associated
76 4. Efficient stereo tracking by variance bounded disparities
with a template and are treated as point offsets, the disparity cost function becomes a
single pixel intensity comparison, which is vulnerable to noise. In this work, the latter
cost function was chosen, despite that sufficient accuracy must be assumed with stereo
images and dense matching.
4.4 Disparity map refinement within bounds
During tracking, the disparity maps become unions of 3D points which are measured
at different time instants. The main idea is to gain computational efficiency by perform-
ing an exhaustive search only for the new points whose previous observations are not
available. Initially for the first frame, the full 3D structure is determined by the multi-
resolution SAD [90]. After previous motion has been estimated, the disparity values are
searching withing bounded domains. The diagonal elements in the disparity covari-
ance Cd matrix define the 1D variances for each dk in the reference image. The intervals
are solved as [−pσ, pσ], whose end points are warped into the next reference frame for
re-localization. σk are relative uncertainties up-to-scale, because the linear system can
be multiplied on both sides by any non-zero scalar value. This is why reasonable scale
p must be found experimentally. A sufficiently large p is selected to model also process
noise.
The disparity propagation and refinement within the bounds in done in the following
way:
1. for each d̂k if (wdkw
x
k > 0 and pσ̂k <
1
16 width)
bsk =
[
1 0
] (
wL(x̂, d̂k − pσ̂k)− wR(x̂, d̂k)
)
bek =
[
1 0
] (
wL(x̂, d̂k + pσ̂k)− wR(x̂, d̂k)
)
d+k = argmin
d+
Cd
(
wL(d+k), w
R(x̂, d̂k)
)
, d+k ∈ [bsk, bek]
Dm+1(p) = d+k , where p ∈ R3×3(wR(x̂, d̂k))
2. Initialize un-assigned parameters in Dm+1 using maximum bounds
3. Do subpixel refinement for Dm+1
Deviations σ̂k are obtained as square-rooted diagonal values of covariance Cd andR3×3(p)
is a set of nearest grid points in 3× 3 region around point p. wdk and wxk are the robust
weights for initial disparity matching phase and the pose estimation phase. The dis-
parity bound propagation is illustrated in Figure 4.2. The propagated bounds are pro-
jected into horizontal bounds, because their direction in the new reference image can
be arbitrary. The re-localized disparities at discrete pixel coordinates are refined into
sub-pixel accuracy by fixing the bound mid point in the left image, and by estimating
the exact corresponding point in the right image based on the numerical cost gradient.
The sampling points are filtered using 3× 1 Gaussian kernel to reduce pixel noise. Re-
localization is not done for the full disparity map, because pixel selection, M-estimator
and variance thresholding sparsify propagated data. The combination map is illustrated
in Figure 4.3.
4.5 Experiments 77
Figure 4.2: The transfer of a bounds into next stereo view. A bound is defined as
[−pσk, pσk] interval using the disparity variance σk. The appropriate bound scale p
is selected which includes also warping process noise.
4.5 Experiments
The Mars sequence using a real texture [50] was rendered in 640× 480 resolution with
Blender along with a ground truth trajectory. No lighting conditions were simulated
and thus the model emitted texture colors directly. Three multi-resolution layers were
used for motion estimation (see video1). A significant performance improvement is ob-
tained by bounded search directly after the first frame (Fig. 4.5). Estimated trajectories
for bounded and non-bounded cases are illustrated in Fig. 4.4. As can be seen, using a
bounded search does not degrade pose estimation quality. The disparity map accuracy
is improved by bounding in the problematic cases where the camera is closer to homo-
geneously textured Mars (Fig. 4.5). Structural accuracy is measured by 1nΣ(dk − dok)2,
where dok are the ground truth disparities. In practice, they are obtained by projecting
the intersection point between a ray and the object into the second view.
In another simulation, the method was evaluated using the Mars and Stanford bunny
sequences, where stereo camera was rotated 360◦ around the object. This simulation
experiment was done as a preparation for using a real turn-table sequence. Once again
the amount of required template operations drops dramatically when bounding is used
(Fig. 4.6). The curves show, how trajectory accuracy (Fig. 4.7) and structural accuracy
(Fig. 4.8) are slightly improved due to bounding.
The proposed method is also tested using a real rock sequence (Fig. 4.5). A rock se-
quence was recorded using a calibrated stereo camera and a turn-table (Figure I.2).
The original stereo images at 1280× 960 resolution were first downsampled into 320×
1http://youtu.be/T7skSaNTvQo
78 4. Efficient stereo tracking by variance bounded disparities
Figure 4.3: The disparity map as a combination of old and new points. New points
are initialized by using exhaustive search over the full epipolar line where as the
old points are re-localized efficiently within tight bounds.
240, then background subtraction and rectification were performed to simulate a video
recorded in space (see input videos23). A performance improvement is obtained by a
bounded search directly after the first frame (Fig. 4.9). The camera pose trajectory is
marginally better for the bounded version. Two multi-resolution layers were used for
motion estimation (see video4).
An implementation of the proposed method was built with C++. Initially simple tem-
plate matching was used for generating disparity maps, but as good template size
was not found for real sequences, the exhaustive search had to be done using multi-
resolution SAD, which also minimizes direct image error.
4.6 Analysis and limitations
The proposed approach models current motion and structure estimate using a single pa-
rameter vector, and propagates disparity bounds over time. The results show that pose
estimation accuracy does not degrade while computational requirements with dispar-
ity map generation are dramatically reduced. Because motion error is larger than local
structural error, the minimization uses Schur complement (eq. 4.1). The 6D pose esti-
mation problem has shown to have good convergence properties, because the number
of point measurements is large compared to number of parameters to be estimated [14].
The distribution of structural residual ultimately depends on the measurement hard-
ware. In case, the distribution variance is large, global optimization method must be
2http://youtu.be/F0TkNRzG2aI
3http://youtu.be/TPbqk4bxkhE
4http://youtu.be/U7kE-bemLsw
4.6 Analysis and limitations 79
used. The marginalization works only when an initial guess exists and disparity pa-
rameters are only locally biased. Multi-resolution dense matching methods can provide
relatively accurate disparity maps, but the results vary a lot depending on the image
content. Template matching can, in worst case, produce errors with arbitrary magni-
tude. The obtained results are therefore optimistic when considering real application
context. Semi-global block matching (SGBM) has the clear advantage over simple tem-
plate matching based methods, because it abuses continuity constraint by penalizing
discontinuities (Figure 4.10). Thus, relying on naive template matching produces sig-
nificantly worse depth maps than global methods with compatible smoothness con-
straint. Global/semi-global matching methods on the other hand are computationally
demanding. Real-time implementations of SGBM method exist for GPU and FPGA
hardware [3]. When combining disparity measurements from multiple time instants,
the disparity maps can be refined over time (see sections 7.1 and 3.7).
When a camera is moving rapidly and a photometric cost function is minimized, the
reference image must be changed frequently to avoid image interpolation based in-
accuracy. The Lambertian assumption holds well only within a short temporal win-
dow. If the camera is known to move slowly compared to the frame rate, another Schur
complement (eq. 4.16) could be used to improve the reference disparity map accuracy.
This, however, requires higher dense matching accuracy than what the current multi-
resolution SAD approach produces.
The initial disparity parameters were refined into sub-pixel accuracy. By experiment,
sub-pixel refinement improves tracking significantly. The problem, however, is that the
disparity covariances depends on a very local image region, which becomes vulnerable
to image noise. More stable disparity covariances are obtained from the Lukas-Kanade
template matcher. Unfortunately larger template region implies degrades disparity pre-
cision. In this work, a design choice was made to maintain as accurate initial disparity
values as possible, despite that covariance robustness decreases. As future work, a hy-
brid approach could be experimented where disparity values are kept accurate, but the
covariances are computed using a larger image patch.
80 4. Efficient stereo tracking by variance bounded disparities
−10
−5 0 5
−5
0
5
10
−15
−10
−5
0
5
10
Figure 4.4: Simulated Mars dataset, ground truth trajectory (blue) around Mars
with estimated camera trajectories. Non-bounded in red (×1.03) and bounded in
green (×0.97). As can be seen, the method can robustly track complicated 3D mo-
tion with low drift.
4.6 Analysis and limitations 81
(a)
50 100 1500
5
10
x 107
frame
SA
D
op
er
at
io
ns

nonbounded
bounded
0 50 100 150 2000
0.5
1
1.5
frame
a
vg
 e
rro
r i
n
pi
xe
l u
ni
ts

nonbounded
bounded
(b) (c)
Figure 4.5: a) Mars stereo sequence with the corresponding disparity image. Com-
putational requirements of SAD dense matching are reduced without loss in track-
ing quality. b) The difference in amount of SAD operations with (green) and with-
out disparity (red) bounding. The Mars silhouette area varies during the sequence
causing fluctuations to the required computational requirement. c) The difference
in disparity map accuracy with (green) and without (red) disparity bounding. In
the problematic frames 60 and 140 camera is closer to Mars which, in general, has
homogeneous texturing.
82 4. Efficient stereo tracking by variance bounded disparities
(a)
(b)
Figure 4.6: The difference in the amount of SSD operations with (green) and with-
out (red) bounding for a) 360◦ Mars sequence, b) 360◦ Stanford bunny sequence
4.6 Analysis and limitations 83
(a)
(b)
Figure 4.7: The difference in the cumulative rotation and translation error without
and with bounding for a) 360◦ Mars sequence, b) 360◦ Stanford bunny sequence.
Rotation and translation errors are slightly reduced when bounding is enabled.
84 4. Efficient stereo tracking by variance bounded disparities
(a)
(b)
Figure 4.8: The difference in the disparity map error without and with bounding for
a) 360◦ Mars sequence, b) 360◦ Stanford bunny sequence. The structural accuracy
improves in case a) due to bounding. With Stanford bunny occlusions exist, which
interfere bounding, but structural accuracy is still maintained.
4.6 Analysis and limitations 85
(a)
20 40 60 80 100 120 140 160 180 200 2200
0.5
1
1.5
2
2.5
3
x 106
frame
SA
D
op
er
at
io
ns

nonbounded
bounded
−1−0.500.511.5
−2.5
−2
−1.5
−1
−0.5
0
w
o
rld
 z
 d
im
en
sio
n
world x dimension
(b) (c)
Figure 4.9: a) Rock with the corresponding disparity image. b) The difference
in amount of SAD operations with (green) and without disparity (red) bounding.
c) The difference in bounded trajectory (green) and non-bounded trajectory (red).
Bounded trajectory intentionally scaled by 0.98 for separation.
Figure 4.10: The difference in rock reconstruction quality between multi-resolution
SAD (on left) and SGBM (on right). The rock image is illustrated in Fig. 4.9.
CHAPTER V
Robust tracking by concurrent pixel and depth matching
Already known research confirms, that using local bundle adjustment produces more
accurate estimates than filtering in the context of localization and mapping [71]. Stras-
dat et al. conclude that : "In order to increase the accuracy of visual SLAM it is usually
more profitable to increase the number of features than the number of frames. This is the key
reason why BA is more efficient than filtering for visual SLAM". When considering a vi-
sual odometry problem, this is a statement also in favor of using simply more data than
propagating covariances in frame-to-frame basis. In this chapter, the measurements
data is increased in frame-to-frame pose estimation by introducing depth residuals into
estimation. The drift is reduced by also aligning the current depth map values with
the reference points [81]. The combination produces an image-based method which
is comparable with the standard ICP technique, but has advantages in computational
requirements, precision and robustness. On the contrary to ICP, all data is stored in im-
ages which makes it possible to avoid expensive nearest neighbor searches in 3D space.
As the cost function is directly image-based, it is therefore robust and precise. Instead
of using KD-tree for point association [30], projective point association is utilized to fa-
vor computational performance. Additional efficiency is gained by a rapid, histogram
based point selection procedure and M-estimation. Similar bi-objective minimization
has also been experimented with Inertial Measurement Unit (IMU) and a hand-held
camera [47]. The dense depth measurements that can be obtained by using a RGB-D
sensor such as a stereo camera with a state-of-the-art dense matching technique or al-
ternatively with a LIDAR, a structured light patterns (infra-red or visible light), sonar,
etc. For indoor settings, the Microsoft Kinect provides good results at low costs (Sec-
tion 2.8.1).
5.1 Combining appearance and structure in cost function
A bi-objective least squares cost function is proposed which measures pose fitness using
the cost
C(x) = eTI WIeI + λ
2eTZWZeZ, (5.1)
86
5.1 Combining appearance and structure in cost function 87
where
eI = I
(
w(P ; T̂T(x))
)
− I∗ (w(P ; I)) (5.2)
eZ = Z
(
w(P ; T̂T(x))
)
− eZT̂T(x)P , (5.3)
where eZ = (0, 0, 1) and WI and WZ are the diagonal weight matrices obtained from
a M-estimator. I : R2 ⇒ R is a color brightness function and Z : R2 ⇒ R is a depth
function. Reference variables and functions are denoted by *. eZ measures depth map
discrepancy, but it can be further improved by neglecting penalization of tangential
motion (sec.2.5.4).
5.1.1 Bi-objective minimization
Since C(x) (eq. 5.1) is a non-linear function of the unknown pose parameters, it has to
be linearized with x for iterative minimization. With linearization it is assumed that
function is locally continuous, smooth and differentiable.
The Jacobian is of the form
J(x) =
[
J1
λJ2
]
=
[
JI JwJT
λ(JZ JwJT − eZJT)
]
, (5.4)
where JI and JZ are the image and depth gradients with respect to pixel coordinates of
dimension n× 2n, Jw is the derivative of perspective projection of dimension 2n× 3n,
and JT represents motion of a 3D point respect to motion parameters x with a dimension
of 3n× 6.
x is obtained using the pseudo-inverse by
∆x = −(JTWJ)−1JTW
[
eI
λeZ
]
(5.5)
The increments are updated into the base transformation by T̂ ⇐ T̂T(x) as long as it is
necessary until reaching convergent condition ‖x‖ < e.
Commonly multiple resolutions are used for increasing the convergence domain. The
minimization starts from a low resolution and the solution is refined using a sequence of
higher resolution images. For generating a multi-resolution pyramid each layer has to
be low-pass filtered and then sub-sampled to avoid aliasing effects. In the case of depth
images, low-pass filtering is problematic as it alters the underlying 3D structure. For
preventing this, depth values are always sampled at the highest resolution even though
matching intensity values are low-pass filtered.
As explained in Section 3.1.7, when downsampling images using a 2× 2 box filter, the
sub-samples are produced in the middle of each 2× 2 region. This needs to be taken
into account, when matching points between different layers. In a case of sampling the
high resolution depth image, the bilinear filtering coordinates at higher resolution are
xh = 2Lx + 0.5(2L − 1), where L is the amount of layers in-between.
Now since the depth component depends directly on the pose parameters, forward
compositional alignment is proposed for bi-objective minimization, because the Jaco-
bian must be updated in every iteration.
88 5. Robust tracking by concurrent pixel and depth matching
Figure 5.1: Photometric and depth errors are minimized between subsequent im-
age frames. In practise, the 3D point associated with color I∗ is transformed and
re-projected into the current coordinate system where it is possible to compute
eI = I(x)− I∗ and eZ = Z(x)− Z∗(x).
5.1.2 Balancing the cost by λ
Looking at the Hessian matrix approximation,
H = JTWJ = JT1 WI J1 + λ
2JT2 WZ J2, (5.6)
it can be seen how the local curvature of the cost function depends on both intensity and
depth differentials. The benefit of incorporating depth measurement shows in this form
where the Hessian is less likely to be singular, because the curvature is gathered from
two sources. H can be singular in the cases where motion does not infer any appearance
changes (e.g. homogeneous regions) or motion infers arbitrary appearance changes (e.g.
non-Lambertian surfaces, occlusions). λ acts as a gain for the depth component and it
is necessary to adjust it for proper balancing of the error function.
Depending on the metric unit of the 3D coordinate system and the local covariances of
the components, one of the components of the residual may be negligible or fully dom-
inate the error. This happens for example when pixel noise is numerically comparable
to depth variations. Mathematically the wrong choice of λ results in cases H ≈ JT1 WI J1
and H ≈ JT2 WZ J2, where the fusion does not bring any benefits.
The optimal λ is the one which improves the estimated camera trajectory the most when
compared to a purely intensity based cost function (Section 3.1.4) or plain ICP (Sec-
tion 2.5.4). There are mathematical methods such as L-curve based metrics and cross
5.1 Combining appearance and structure in cost function 89
validation for automatic selection [47]. L-curve based selection finds such Pareto opti-
mal λ which minimizes both cost components simultaneously by finding the optimal
point in the curve whose axices represent the costs of the separate components. In cross
validation, on the other hand, a geometry independent λ is learned by finding such
parameter which minimizes projection error for an average cost over all leave-one-out
combinations of the point data.
The manual selection of λ can be done by simulating the real application by an im-
age sequence with depth maps and experimenting with different λ values. In many
application cases the optimal λ can be fixed only once at the beginning if the depth
range is known a priori. To automatically determine λ in real-time, a robust ratio be-
tween the centers of the I and Z distributions is proposed such that λ = |(σI/σZ) ∗
median(I)/median(Z)| ≈ |median(I)/median(Z)|. By experiments it was noticed
that this produces close to manually chosen values for the test sequences used. This for-
mula finds a robust scale factor which balances between the relative uncertainty of the
components assuming unit standard deviations σI and σZ. After balacing both depth
and intensity distributions have similar numerical variance.
5.1.3 Hybrid pixel selection
It is proposed that pixel selection is done efficiently without sorting the columns J by ne-
glecting the geometrical component of Jacobian and focusing only on image and depth
image gradients. Thus reference points P are selected into motion estimation using a
2D selection mask where the selection fitness is the combination gradient magnitude
S(x, y) = |∇Ix|+ |∇Iy|+ λ′(|∇Zx|+ |∇Zy|), (5.7)
where λ′ finds the balance between the depth and intensity gradient.
Figure 5.2: A. Stanford bunny image. B. The best 15% pixels selected by image gra-
dients. C. The best 15% pixels selected by depth gradients. Combination selection
is required for constraining the motion the most efficiently.
Selection scores S(x, y) are accumulated into a histogram and a portion of pixels are
selected from the end of the histogram. A histogram is useful, because it is trivial to
compute such a threshold which selects n best pixels efficiently without explicit sorting.
90 5. Robust tracking by concurrent pixel and depth matching
A naive pixel selection first sorts n points in O(nlogn) and then selects k points with
the greatest S(x, y) score. Using a histogram the complexity is O(n), because full image
sorting is avoided. A comparison of intensity and depth gradient based pixel selections
is illustrated in Figure 5.2. Note, that same method can be used in M-estimation phase
to avoid median computation. These optimizations are used also in the developed GPU
implementation (Chapter 6).
Traditional point-to-plane ICP (section 2.5.4) does not focus only on depth map gradient
regions but takes the advantage of full 3D point set. It, however, suffers from a degen-
erate case when the scene is mostly planar, because the motion is not fully constrained.
By focusing on gradient regions only, the computational requirement is reduced and
the estimate does not easily drift, because the gradient regions often contain varying
normals [61].
Figure 5.3: Itokawa and the corresponding depth map. True Itokawa BRDF is the
same as the Hapke model. Specularity will cause problems for intensity based
estimation. The rendered picture has a general specular surface for simulating the
problem.
5.2 Simulation experiments
Robustness and accuracy improvements were observed using two simulated sequences.
In the first sequence, synthetic RGB-D sensor was set to rotate around Stanford bunny,
whose image was toggled between textured and plain white. Because intensity based
pose estimation relies on image gradients, divergence occurs once in a while when
the edge information of the silhouette is not sufficient for tracking (Figure 5.4). This
problem is fixed by incorporated depth maps. The depth map matching keeps H non-
singular during tracking and the intended trajectory of a full circle is obtained from
camera pose estimation (see video1). In the second sequence, the accuracy improve-
ment is obtained by manually finding an optimal λ for a rendered Itokawa sequence. A
single gray image and depth image of the sequence are illustrated in Figure 5.3. The
depth maps are generated using ray tracing and available asteroid model. The esti-
mated trajectories with and without incorporated depth maps are compared with the
ground truth trajectory in Figure 5.4. The figure shows how the camera trajectory is
1http://youtu.be/VVJkMpFliJw
5.3 Results on PRoVisG MARS 3D Challenge 91
improved when using depth data. Non-Lambertian surface properties of the Itokawa
sequence produces error in purely intensity based minimization. The same result is
illustrated in a video with2 and without3 depth residual minimization.
(a)
(b)
Figure 5.4: a) Orbiting sequence around Stanford bunny. A. image from the se-
quence, B. the corresponding depth map, C. the estimated camera trajectory (red)
along with the ground truth (green). Insufficient texturing produces a singular H
which causes divergence during pose estimation. This problem is fixed by incorpo-
rating depth maps. b) Simulated Itokawa asteroid sequence. A) A complex camera
trajectory is shown to be more accurate when also matching the depth maps. The
green curve represents the ground truth camera trajectory and the red curve is the
estimated one. B. trajectory of purely intensity-based minimization for comparison.
5.3 Results on PRoVisG MARS 3D Challenge
The cost function was also experimented with a real stereo sequence provided by the
PRoVisG MARS 3D Challenge [29]. In the task setting, the aim is to automatically de-
2http://youtu.be/JWqu97sp1tM
3http://youtu.be/hIgfGhbusLY
92 5. Robust tracking by concurrent pixel and depth matching
termine the 3D trajectory and the reconstruction from a sequence of stereo images. The
tasks are divided into dense matching, camera pose estimation and 3D reconstruction.
The given sequence consists of 35 stereo images at 1280× 1024 resolution, which have
been captured using a moving Mars rover. The cameras have a 64◦ FOV and the baseline
of the stereo camera is 10 centimeters. The estimated length of the rover trajectory is 7.8
meters. The frame rate of the sequence is relatively low compared to the vehicle motion
and the images do not contain a large quantity of texture detail as the sand covers the
most part of the views. However 3–10 small rocks are visible in the view in all of the
frames. There are no major lighting effects in the sequence. An example intensity image
and a depth image of the right stereo view along with the corresponding residuals is
illustrated in Figure 5.7.
The algorithm was executed on Samsung R530 laptop using single Intel i3 CPU (2.13
GHz). The implementation was written in C++ and relies on Fortran based LAPACK
and EXPOKIT routines for linear algebra and matrix exponentials. Figure 5.6 illustrates
the optimization delay in milliseconds per frame with and without the depth compo-
nent. By incorporating the depth component, roughly 50% more delay is added into
computation. As a further optimization step, the algorithm could be run in parallel
with both cores for halving the delays. It is unfortunate that the competition sequence
has low frame rate and SIFT extraction and matching is required. The computational
requirement of using SIFT was not evaluated because it was considered redundant
phase in a real application where sufficient camera frame rate can be used. Three it-
erations with the initial cost function were required. Then three multi-resolution layers
were used for convergence with the proposed cost function. In these sequences, the
M-estimator rejects 20 − 30% of the points by setting zero weights (Figure 5.6). The
matrix sizes of the linear equation were kept the same, which is why the rejection does
not show in Figure 5.6. In a real-time application FPGA hardware can be used for com-
puting disparity maps [3]. The other additional phases such as pixel selection and 3D
point extraction are O(n) passes for the raw images which are very fast. The quality
improvement when incorporating the depth component is difficult to evaluate as the
ground truth trajectory for the PRoVisG MARS 3D Challenge has not been published.
However by observing Figure 5.5 the camera trajectory and the 3D reconstruction are
qualitatively good.
Depth maps were generated by converting SGBM disparity maps into depth format
(Sections 3.2.1 and 2.2). The images are low-pass filtered and downsampled into 320×
240 resolution using a multi-resolution pyramid because pixel noise has to be filtered
out and the minimization of the proposed cost function works more efficiently with
smoother gradients. The baseline of the stereo used is small and thus the matching was
done using a discrete disparity range of [0, 32]. The disparity values were refined into
sub-pixel accuracy in post-processing. Finally the obtained disparity map are converted
into a depth map to evaluate the cost function.
Local stereo matching methods often produce false discontinuities (Figure 4.10), which
are a potential problem for depth minimization as the greatest depth gradients have the
greatest influence in the final pose estimate. This is why using a global matcher, such as
SGBM, is important because smooth maps are produced by penalizing discontinuities.
SGBM assigns discontinuities implicitly whenever image matching starts to fail. When
the discontinuities are set locally in the wrong place, small deviations may occur which
5.3 Results on PRoVisG MARS 3D Challenge 93
Figure 5.5: PRoVisG MARS 3D Challenge sequence. The resulting camera trajec-
tory and 3d reconstruction illustrated. The reconstruction shows the part of ground
which is visible during the sequence.
are filtered out as a post-process by using 5× 5 median filter.
The proposed cost function is minimized in order to estimate the pose parameters. In a
typical application case the frame rate is high enough for using T̂ = I as the initial guess.
For the given sequence the frame rate is low and an initial guess must be obtained by
other means. T̂ was generated by first matching temporally a set of 2D points and then
minimizing the 2D distance between the warped points and the fixed target points Psift
in the current image. In this experiment, the 2D points were extracted and matched
using SIFT. Initial pose parameters were estimated by minimizing the residual
eG = ρ(Psift − w(P ; T(x)T̂)), (5.8)
where ρ produces weighted distances and neglects statistically large displacements.
Simple M-estimator ρ(x) = ‖x‖ if ‖x‖ < τ and otherwise 0, was used in the experi-
ment where τ is a fixed threshold. After minimization, the initial pose will have only
small bias which can be corrected by minimizing the proposed cost function (eq. 5.1).
Figure 5.7 illustrates the intensity and the depth residuals after convergence. Real-time
performance is reached by using the histogram based pixel selection. Figure 2.5 shows
how the Tukey window based M-estimator rejects 20− 40% of all selected pixels. Pixel
selection was set to 50% which produces 38400 points in 320× 240 resolution.
94 5. Robust tracking by concurrent pixel and depth matching
5 10 15 20 25 30 35
0
20
40
60
80
100
frame
%
 in
lie
r p
ixe
ls

intensity pixels
depth pixels
0 5 10 15 20 25 30 35
0
50
100
150
frame
de
la
y
in
 m
illi
se
co
nd
s

intensity opt
intensity+depth opt
(a) (b)
Figure 5.6: PRoVisG MARS 3D Challenge sequence [29]. a) M-estimator func-
tionality illustrated for the rover sequence. Total amount of selected pixels (in-
liers+outliers) is set to 50% which produces 38400 points in 320× 240 resolution. b)
Optimization delay per frame in milliseconds with (blue) and without (red) depth
component. Incorporating the depth component increases computational require-
ment by 50%. For a full real-time system disparity maps must be generated by
external hardware/GPU.
5.4 Analysis and limitations
The results show that the drift can be reduced by incorporating depth map alignment
into into pose the pose estimation. With simulated sequences, depth noise does not
exist, and therefore an improvement is easy to obtain. The PRoVisG sequence shows
that estimation works but no ground truth trajectory is available for measuring drift. A
multi-resolution semi-global block matching was used to produce the initial disparity
maps which were converted into depth maps. SGBM implements a smoothness con-
straint which is somewhat compatible with the sequence. Adjusting λ can be tedious
when testing with different sequences. Without an automatic parameter optimization
tool, cost function balancing may prevent wider use of this approach. To simplify the
selection of λ, it can be thought only as Tikhonov regularizer, which is chosen to be a
small value. This way one of the residuals is leading the estimation, and the other only
prevents ambiguity in cases where the primary residual does not fully determine the
3D motion.
The presented method can be improved by at least by two techniques a) using normal
distance instead of Euclidean distance (Section 2.5.4), b) replace hybrid pixel selection
by full selection with depth maps and image gradient based saliency selection with the
images. The first improvement is obvious since the normal distance based metric has
been proven beneficial over Euclidean distance. One example of its performance is the
KinectFusion system [53]. The second improvement is based on the insight that one
point may not have strong gradient in both image and depth, and on the other hand,
full depth maps can be used with ICP. Note that depth map alignment is possible with
much wider baseline than photometric minimization. This implies that combination
method can be successful by using old reference depth map and a recent image mea-
surement simultaneously (Section 3.1.6). At the end of this project, point-to-plane ICP
5.4 Analysis and limitations 95
Figure 5.7: PRoVisG MARS 3D Challenge sequence. The minimization of the pro-
posed cost function is visualized. A) Image 1 B) Image 2 C) The intensity residual
after minimization D) Depth map 1 E) Depth map 2 F) The depth residual after
minimization. The remaining error is due to interpolation/filtering inaccuracy, oc-
clusions and depth noise.
was combined with photometric tracking using dense pixel selection (full image for
depth maps, salency selection for color images) to improve this approach further (see
video4).
The computational requirements are higher when incorporating depth maps to photo-
metric minimization. Because the benefit is small improvement in the tracking accuracy,
it is not beneficial to use combination method in all applications. The main benefit ap-
pears in applications where larger environments are reconstructed and frame-to-frame
estimation bias must be eliminated by all means. In Chapter 8, on the other hand, a real-
time tracking solution will be presented which can be made precise simply by incresing
texturing in a controlled environment.
4Video:http://youtu.be/drAzCeHUa98
CHAPTER VI
Real-time RGB-D tracking for a low-end GPU
The Microsoft Kinect sensor has sufficient RGB-D quality and frame rate for RGB-D
tracking. One of the contributions in this work is a real-time GPU implementation for
Microsoft Kinect which has been developed from scratch and can be easily accommo-
dated into applications. The library depends on CUDA, which essentially performs all
relevant computations in parallel on GPU threads. The library has been tested using
various input RGB-D sequences. Our method was implemented in Ubuntu Linux envi-
ronment using open software tools, Microsoft Kinect and a commodity PC laptop hard-
ware on which the method runs real-time. The cost minimization requires special atten-
tion when aiming at an efficient real-time implementation. Because the computational
phases benefit from parallel computing, we implement the full algorithm (6.4) on a com-
modity GPU. The minimization algorithm can be used for both incremental tracking
and keyframe tracking and it scales into multiple threads/cores. Only Cholesky inver-
sion and matrix exponential computation are executed on a single GPU thread. Stein-
brücker et al. have recently studied a similar minimization and suggested a real-time
GPU implementation [70]. In the following GPU implementation also a M-estimator is
supported which can increase robustness with negligible computational cost and min-
imization is performed efficiently using inverse compositional approach. The imple-
mentation accuracy and computational requirements are compared with Kinfu, which
is an open-source implementation of KinectFusion [62].
The depth map registration proposed in Chapter 5 increases computational require-
ments linearly with the number of points selected for minimization. The least expen-
sive way to implement it is to measure depth error with the same points which are
already selected based on image gradient magnitude. Still Jacobian re-computation will
be required in every iteration. In environments where texturing can be increased, depth
registration does not bring benefits. The current implementation is designed to be used
in television broadcasting studios where real-time performance is crucial therefore the
cost function does not minimize depth residual. This design choice simply favors com-
putational efficiency in a textured environment. Also, when considering applications,
where drift is not an option, bundle adjustment or other global techniques are used to
96
6.1 Tracking modes 97
produce a consistent model. It is important that the online tracker is merely locally
precise to be able to switch between the keyframes.
6.1 Tracking modes
RGB-D pose tracking can be executed in three different modes: incremental, keyframe
and SLAM. These modes have been implemented and this section describes each mode.
All modes minimize the photometric cost (eq. 3.13) using the inverse compositional
image alignment.
6.1.1 Incremental tracking
In incremental tracking, a keyframe model is not present and previous RGB-D mea-
surements are used as the motion reference frame. The benefit is that reference will
typically be a very similar image to the current one, and photometrical minimization
will produce good, smooth results. Incremental tracking has the reference update fre-
quency as free parameter. Automatic reference update is possible by analyzing Median-
Absolute-Deviation (MAD) during M-estimation. When the modeling error increases
over a threshold, reference update can be signaled. However, signaling reference up-
dates from a GPU side is a bad idea, since it introduces conditional statements and
reading back variables into main memory which both are slow on GPU. Therefore a
fixed update rate is used. High update frequency implies that Lambertian assumption
holds better and tracking will be smooth and precise. The scene appearance can change
quickly within few frames and therefore a common update frequency is in practise be-
tween 1− 3 frames. The downside with incremental tracking is that time-evolving drift
will slowly cumulate in a long-term use. Reference update at lower frequency implies
that the same geometry will be fixed for a longer period of time, with the cost of worse
image similarity. In this case, computational requirements will naturally be lower on
average, but the motion must be assumed to be limited.
Algorithm 6.1 Incremental pose tracking algorithm
Require: {P∗, c∗} ⇐Select the best points from 1st RGB-D.
Input: Tcur = Tre f = I
Output: Trajectory {I, T1cur, . . . , Tncur}.
1: for each RGB-D measurement do
2: T̂⇐Minimize(I,P∗, c∗, Icur)
3: Tcur ⇐ T̂Tre f
4: if reference update signaled then
5: {P∗, c∗} ⇐ Select the best points
6: Precompute Jacobian
7: Tre f = Tcur
8: end if
9: end for
98 6. Real-time RGB-D tracking for a low-end GPU
Algorithm 6.2 Keyframe tracking algorithm.
Require: Keyframe database available
Input: Tcur = I
Output: Trajectory {I, T1cur, . . . , Tncur}.
1: for each RGB-D measurement do
2: {P∗, c∗, Tkey} ⇐FindKeyframe(Tcur)
3: T̂⇐Minimize(TcurT−1key,P∗, c∗, Icur)
4: Tcur ⇐ T̂Tkey
5: end for
6.1.2 Keyframe tracking
The incremental tracking suffers from time-evolving drift, which is not acceptable in
studio use, because it causes virtual items to move away from their correct pose. A fixed
3D model is required to avoid drift (Figure 8.1). In keyframe tracking, a set of fixed RGB-
D keyframes exist, which can be used as a global reference for motion. The benefit is that
time-evolving drift does not exist. The downside is that the content of the keyframes
can easily change due to lighting variations and geometrical displacements in a studio
setting. Thus, the keyframe model must be updated whenever lighting conditions or
environment configuration changes. However, when keyframes are measured prior to
online tracking, this problem can be avoided. Also work has been done to increases
tolerance to varying lighting conditions (Section 3.5).
A keyframe model can be generated with various online/offline techniques prior to
broadcasting [86, 53]. The online tracking is initialized at the first keyframe whose T̂ =
I. The cost function (eq.3.13) is then minimized in each frame to obtain 3D camera
pose. The reference keyframe is switched when the current pose becomes closer to
another keyframe. The keyframe tracking is sketched in Algorithm 6.2. Online tracking
is driftless and very fast due to keyframe pre-computations and the utilization of GPU.
A similarity metric is required to find the nearest key pose Tk. The challenge is to unify
rotation and translation differences, because they are expressed in different units. First,
we define the relative transformation
∆Tk = TcurT
−1
k ⇒ (θk, vk, dk), (6.1)
where Tcur is the current camera pose. The relative rotation is decomposed into angle-
axis representation (θ, v) based on the Euler’s rotation theorem. The translation between
the poses is expressed as the vector d between the origins. We define a potential keyframe
index set as
Ω = { |θk| < θmax, ||dk|| < dmax || k ∈ [1, n] }, (6.2)
where n is the number of keyframes in the database. Thus Ω contains a subset of
keyframe indices whose angle and distance are below user defined thresholds θmax and
dmax. This pre-selection prunes out distant poses efficiently. Thresholds are easy to
set based on keyframe density in a 3D volume. The best keyframe is chosen by trans-
forming the view frustum, represented by a set of 3D points, from the keyframe into
the current frame and observing the 2D point discrepancy. This unifies rotation and
6.1 Tracking modes 99
(a) (b)
Figure 6.1: a) The 3D test point set P used to compare camera poses is illustrated.
P approximates the view frustum by three 2D point grids. The projection error
of P between the current view and each keyframe view is compared to find the
nearest keyframe. b) As comparison, frustum intersection volume based metric.
The metric varies little when rotating around z-axis and can behave un-predictable
way when the camera angles are significantly different.
translation errors into a single metric
s = argmin
k ∈ Ω
||w(P ;∆Tk)− w(P ; I)||, (6.3)
where Ks is the nearest keyframe. The idea is illustrated in Figure 6.2. In contrast
to frustum intersection, this metric varies significantly also when the camera is rotating
around z-axis. The test point set P is a sparse representation of the view frustum (Figure
6.1). In particular, the frustum is approximated by three sparse 2D grids, each having
uniformly sampled depth coordinates in the overall depth range of the RGB-D sensor.
The 3D points at different layers are generated by discrete steps along the viewing rays.
6.1.3 SLAM mode
In the SLAM mode, the keyframe database is built concurrently while tracking the cam-
era. The algorithm is listed in Algorithm 6.3. First, an initial keyframe is generated with
identity pose using the first RGB-D measurement. Two search ranges {θ1max, d1max} ≤
{θ2max, d2max} are defined, where the second one is required in case the nearest keyframe
is out of domain and the map should be extended. When the pose estimate is no longer
in the keyframe database domain, a new keyframe is generated. The domain can be
checked using the pose distance criteria developed in section 6.1.2. In the current imple-
mentation, keyframes can be added until GPU memory runs out. SLAM mode is useful
especially when the camera is known to re-enter scenes. For example, when building
a 3D model of an appartment, it is sometimes necessary to add missing keyframes to
remove holes in the model (see video1). Figure 2.8 showcases a loop-closure. The down-
side of SLAM mode is that keyframes must have very small baseline to the current mea-
surement, otherwise more bias will be generated compared to incremental tracking.
1Video:http://youtu.be/aFrVROLja38
100 6. Real-time RGB-D tracking for a low-end GPU
Figure 6.2: The phases of finding the nearest pose. a) Pruning out distant poses, b)
Finding the pose difference which minimizes optical flow of a 3D test point set.
With a sequences that do not contain loop closures, the incremental tracking is a better
option, because the Lambertian assumption holds well and large occlusions do not exist.
In another example scene, the environment is scanned by hand in almost a direct 360◦
turn without a loop closure. The incremental tracking produces more accurate result
(Fig. 7.11). More details are provided in Chapter 7.
6.2 Features
6.2.1 Embedding distortions in warping function
As discussed in Section 2.1.5, the lens distortions can be corrected by re-sampling the in-
put images using the distortion model. It is better to model the distortions in the warp-
ing function, because image re-sampling degrades original image quality and part of
the data is even lost. Image re-sampling requires interpolation, which will not produce
exact image intensities between the samples. Also the number of distortion operations
for a set of points will be smaller than full image resolution even though warping must
be be done many times per frame.
6.2.2 Tolerating dynamic foreground
Comport et al. proposes intensity-based M-estimation in a stereo setting [14], because
disparity map computation is expensive for each frame. Due to recent development
with RGB-D sensors, it is possible to measure both intensity and depth maps in real-
time.
Now also depth correlation weights can be computed from the depth residual
ez = Z
(
w(P ; T̂)
)
− eT3 T̂
[P
1
]
, (6.4)
6.3 Scalable GPU tracking 101
Algorithm 6.3 Keyframe SLAM algorithm.
Require: Keyframe database contains 1st RGB-D measurement
Input: Tcur = I, Search ranges {θ1max, d1max} ≤ {θ2max, d2max}
Output: Trajectory {I, T1cur, . . . , Tncur}, Keyframe model K.
1: for each RGB-D measurement do
2: newKeyFlag = false
3: F = {P∗, c∗, Tkey} ⇐FindKeyframe(Tcur, θ1max, d1max)
4: if F = ∅ then
5: newKeyFlag = true
6: {P∗, c∗, Tkey} ⇐FindKeyframe(Tcur, θ2max, d2max)
7: end if
8: T̂⇐Minimize(TcurT−1key, P∗, c∗, Icur)
9: Tcur ⇐ T̂Tkey
10: if newKeyFlag = true then
11: {P, c} ⇐ Select a subset of points with largest gradients
12: Precompute Jacobian
13: K = {K, {P, c, Tcur}}
14: end if
15: end for
where Z : R2 ⇒ R is the depth map function of the current RGB image and eT3 =
(0, 0, 1, 0) is used to obtain the current depth value. When the standard deviation of
depth measurements is τ, the warped points whose depth differs more than τ from the
current depth map value can be interpreted as foreground objects. The depth weights
become
wzk = max
(
1− e2z(k)/τ2, 0
)2
. (6.5)
The weighting matrix W is now a product of intensity and depth based weighting
diag(W)k = wkcwkz.
6.3 Scalable GPU tracking
The pose estimation described in Section 3.1.4 is implemented on a low-end GPU with
48 CUDA cores. This implementation is important, because it is scalable. Scalability
means that performance increases simply by adding new CUDA cores and the code it-
self does not require any modifications. CPU implementations have scalability problem,
because the number of CPU cores increases very slowly compared to GPUs. Whereas
the high-end CPUs may have 4-8 cores, the most powerful GPUs, such as the NVIDIA
Tesla K10, have 3072 CUDA cores. This GPU implementation has been developed using
NVS4200m GPU which is low-end GPU, but achieves real-time 30Hz frame rate. Con-
sidering that photometrical minimization benefits from texture details, HD resolution at
1920× 1080 is interesting, because improved image gradient accuracy directly increases
pose estimation precision. According to the Kinect 2.0 sensor specifications, it will sup-
port HD resolution and directly benefits from this scalable GPU implementation.
102 6. Real-time RGB-D tracking for a low-end GPU
Algorithm 6.4 Minimization on GPU.
Input: IL={1,2,3} with 320× 240, 160× 120, and 80× 60 sizes. Z in 320× 240. Iteration counts
{n1, n2, n3}. T̂ = T0.
Output: Relative pose T̂.
1: for all L = {3, 2, 1} do
2: for all j = {1 . . . nL} do
3: Compute residual e and Wz (6.3.1)
4: Determine M-estimator weights Wc (6.2.2)
5: W⇐ Wc ∗Wz
6: J⇐ √WJ, e⇐ √We
7: Reduce linear system (6.3.3)
8: Solving linear system for x̂ (6.3.3)
9: T̂⇐ T̂eA(x̂) (6.3.4)
10: end for
11: end for
6.3.1 Warping
The warping function is applied in parallel to the selected Pk ∈ P in the keyframe.
The cost function (eq. 3.13) is evaluated using bilinear interpolation. Additionally the
points are transformed into IR view for evaluating the nearest depth value (eq. 6.4). By
evaluating the depth values directly in the IR view, re-sampling errors are avoided. The
depths are used to generate weighting Wz. The warping is illustrated in Figure 6.3.
Figure 6.3: The warping of points from keyframe into Microsoft Kinect RGB and
IR image coordinate systems. The additional depth lookup from an IR image is
required by Equations 5.3 and 6.4.
6.3.2 M-estimator
Tukey based weighting using the median absolute deviation of the error distribution,
easily becomes a bottleneck on GPU. Therefore, it is proposed that the histogram tech-
nique (eq.6.7) is used to find an approximate median. The distribution of the residual is
6.3 Scalable GPU tracking 103
represented using a 64-bin histogram and n is set to half the residual length. The CUDA
SDK histogram64 routine fits this purpose, because it is fast enough to be executed at
every iteration and is specifically designed for NVIDIA video cards [57]. By experiment,
64 bins seems to provide sufficient adaptation to different error distribution profiles.
6.3.3 Linear system reduction
The reduction of the linear system means computing JTJ and JTe. This phase com-
presses the linear equations from n-dimensional to six-dimensional space. Reduction
is required for each iteration and, therefore it must be implemented efficiently. Matrix
multiplication is often computed in parallel by dividing k dot products into separate
threads. In this case, we have only 36 dot products, but our video card can manage
1024 threads in parallel. To gain maximal efficiency, we parallelize the computation
in the dot product direction instead. The process is illustrated in Figure 6.4. Each dot
product has n elements, where n is usually 8192 or more. Dot products are reduced by
dividing them into sub-blocks and summing them efficiently in parallel. The total sum
is finally cumulated from the sub-sums. JTJ is a positive semidefinite matrix which is
also symmetric. This means it is sufficient to compute only the upper triangle of the
values and mirror the results into the lower triangle. This property reduces the num-
ber of dot products from 36 to 21. JTe requires six dot products. The inversion can be
efficiently calculated using Cholesky decomposition due to positive definite property
(Section 2.3.6). The explicit inverse of JTJ can also be avoided by using the conjugate
gradient method (CGM) with six iterations. Both approaches are fast due to the small
matrix size. The execution times were compared in practical use and CGM required on
average 0.0119ms whereas Cholesky 0.0251ms on a single GPU thread. These numbers
are sequence independent because the number of selected points remains fixed. CGM
was chosen, because it is slightly faster.
The parameter vector x contains both rotational units (radians) and translational units,
whose units are fixed in the calibration procedure. It should be noted that a big differ-
ence in parameter magnitudes may introduce numerical instability. For example, if the
translation units are expressed in millimeters, their scale can be over 1000× radian unit
scale. To prevent any potential numerical problems, it makes sense to change the input
point scale before computing the Jacobian J and change it back after final transforma-
tion increment has been estimated. In our implementation, we pre-scale the points by
1
1000.0 and post-scale the translation increment by 1000.0. This trick produces parame-
ter vectors whose maximum magnitudes in our test sequences are uniformly order of
≈ 0.01.
6.3.4 Evaluating matrix exponential
Matrix exponentials can be computed in closed form using the translation extended Ro-
driquez formula [40]. Unfortunately is not numerically stable in the most important small
angle case. Expokit, however, provides various numerical approaches which are guar-
anteed to produce smooth mapping [67]. By comparing them with the MATLAB default
implementation using Padé approximation, it seems that complex matrix exponential
(zgpadm) is the most accurate. Thus, we choose to evaluate T(x) = eA(x) by the ma-
trix exponential of a general complex matrix in full, using the irreducible rational Padé
104 6. Real-time RGB-D tracking for a low-end GPU
Figure 6.4: Efficient reduction on GPU. Dot products are divided into sub-ranges
which are reduced in parallel. JTJ is symmetric 6× 6 matrix and elements can be
mirrored with respect to the diagonal. The Jacobian columns are transposed into
rows to improve memory caching.
approximation combined with scaling-and-squaring. The exponential is computed in
a single GPU thread due to sequential nature of the operation. One evaluation takes
0.2613ms on average. The evaluation is rather slow on GPU, because a single thread
must manouver many sequential operations. Despite using the Lie generators to pro-
duce SE3 group transformations, normalization is still required (Section 2.5.2).
6.3.5 Selecting points on GPU
The points used in the motion estimation can be freely selected from a reference RGB-D
keyframe. The points which do not contribute to the residual vector through lineariza-
tion are not useful. A subset of points should be selected, which are associated with the
greatest absolute values of the Jacobian [45]. The selected points will then have strong
geometric flow ‖ ∂w∂x ‖ > θw and/or strong image gradient ‖ ∂I∂p‖ > θg. We use a simpler
selection criteria and focus on the set of points P∗s which only have strong image gra-
dient. This method fits GPUs better, because it does not require sorting of the Jacobian
elements.
P∗s = { Pk | ‖∇I∗(w(Pk; I))‖ > θg , Pk ∈ P∗}, (6.6)
where θg is the threshold which selects p percent of all points. p depends on the com-
putational capacity available and the amount of image edges in the application context.
Even though keyframe reference points can be selected in a pre-process, a fast imple-
mentation is useful when executing photometric tracking incrementally. We adopt the
histogram technique to find the best points efficiently [81]. We seek such histogram bin
Bt for which
Σ255k=Bt−1 h(k) < n <= Σ
255
k=Bt h(k), (6.7)
where n is the number of points to be selected and
G = |∇uI∗ (w (P∗; I)) |+ |∇vI∗ (w (P∗; I)) |
h = histogram(G/2.0)
Computing histograms on GPU is tricky, because simultaneous writing into the his-
togram bins is not possible. CUDA SDK presents a method [57] (histogram256) which
reduces the problem by creating partial histograms, which are finally summed together.
6.3 Scalable GPU tracking 105
thread 1 thread 2 thread 3 thread 4
Figure 6.5: Index buffer packing illustrated. Each thread selects points from a sub-
range. The sub-counts are shared between the threads and the output buffer writ-
ten.
The data is processed in warp sized blocks, where warp determines the amount of con-
current threads. Write collisions can occur inside a warp, but they are avoided by tag-
ging. In tagging, a memory slot is tested after a write and if the result is not what
is expected, the operation is done again. This guarantees that at least one thread in
a warp will succeed. The gradient value range is pre-scaled into [0, 255] which fits
histogram256 method exactly. Shams et al. developed a similar implementation in-
dependently [64]. The downside of the method is that uncoalesced memory writes to
global GPU memory are relatively slow. The final n indices are collected into a packed
array. Packing is important because it allows eliminating all non-interesting points from
further processing in the pipeline. Packing is implemented on a GPU by assigning each
thread a slice of the original index range to compress (Figure 6.5). Each thread stores the
interesting points into a temporary packed buffer with the count. The counts must be
collected from all threads to determine the final output range of each thread. This allows
parallel point selection which scales into multiple threads. Due to the discretization into
bins, n pixels may not match the bin boundary automatically. n must be divisible by
Tmax to match the maximum amount of threads on a GPU. On our GPU Tmax = 1024.
This is why it is useful to classify points into
Psemi = { |∇ck| = Bt | Pk ∈ P }
Pgood = { |∇ck| > Bt | Pk ∈ P },
where Pgood are all selected and the remaining points are chosen from Psemi to obtain
exactly n selected points. Bt is determined by Equation 6.7.
6.3.6 Vertex attributes at different stages
The vertices extracted from RGB-D images originally are associated with 21 float at-
tributes which are used in pre-processing phases. After points have been selected, only
9 float attributes are useful during minimization. Normals are estimated to take into
account normal distance based cost evaluation (see Section 2.5.4). With fully image
intensity based residuals the compression could be taken further by removing also
vertex normals. The table of vertex attributes are illustrated in Table 6.1. Assum-
ing that 320× 240 points are pre-processed using point selection procedure and only
106 6. Real-time RGB-D tracking for a low-end GPU
8192 points are selected and compressed, memory consumption per one point cloud
is 6.15MB ⇒ 0.28MB. This is very efficient compression since only 4.6% of original
memory is required.
Table 6.1: Vertex attributes. During minimization only fraction of the attributes are
required. GPU memory is optimized as soon as preprocessing phase is finished.
Uncompressed vertex attribute Compressed vertex attribute
X-coordinate x X-coordinate x
Y-coordinate y Y-coordinate y
Z-coordinate z Z-coordinate z
Normal X-direction nx Normal X-coordinate nx
Normal Y-direction ny Normal Y-coordinate ny
Normal Z-direction nz Normal Z-coordinate nz
Image U-coordinate u Image intensity (layer 1) c1
Image V-coordinate v Image intensity (layer 2) c2
Color R r Image intensity (layer 3) c3
Color G g
Color B b
Image gradient-U (layer 1) ∆uI1
Image gradient-V (layer 1) ∆vI1
Image gradient magnitude (layer 1) ‖∆uI1‖+ ‖∆vI1‖
Image intensity (layer 1) c1
Image gradient-U (layer 2) ∆uI2
Image gradient-V (layer 2) ∆vI2
Image intensity (layer 2) c2
Image gradient-U (layer 3) ∆uI3
Image gradient-V (layer 3) ∆vI3
Image intensity (layer 3) c3
6.3.7 Preprocessing RGB images
The preprocessor converts 640× 480 Microsoft Kinect Bayer images into a pyramid of
320× 240, 160× 120, and 80× 60. A 5× 5 Gaussian filter is used with downsampling of
the high resolution images. Downsampling is almost lossless, because the Bayer images
are redundant. 2× 2 block averaging is used to produce the rest of the layers. The lower
resolution coordinates are obtained by xL = 12L x +
1
2L+1 − 12 , where L is the amount of
layers in-between. The RGB pre-processing steps are per-pixel operations which are
executed in separate threads on the GPU.
6.3.8 Point cloud from raw disparity map
The 3D points are generated in parallel by a baseline transform
Pk = Tbz(dk)K−1IR
[
pk
1
]
, (6.8)
where pk = (uk, vk)T are the pixel coordinates in the IR view, K is the intrinsic matrix of
the IR view, and the 4× 4 baseline matrix Tb maps points from the IR view into the RGB
view. Each cloud P has storage for 320× 240 points which are processed in parallel and
stored in a linear array. The intensity vector c∗ corresponding to the 3D points Pk ∈ P is
6.4 Accuracy 107
produced by bi-linear interpolation, because the points do not match with RGB image
pixels.
6.3.9 Online visualization issues
When designing a real-time implementation, visualization needs and performance op-
timizations are contradictory. On one hand, visualization is necessary for debugging
purposes, but on the other hand, with CUDA it can become expensive. CUDA interop
is a technology which allows locking OpenGL pixel and vertex buffers for CUDA use.
The buffers can be manipulated by CUDA programs and finally rendered using stan-
dard OpenGL API. There is no need to copy any data from/to main memory. The buffer
locking delay with CUDA interop can vary from negligible delay to tens of milliseconds
depending on how it is done. If a locking call is done immediately after graphics ren-
dering has started, huge delay can occur because the call will wait until the rendering
has finished. Therefore CUDA manipulations and graphics rendering must be fully sep-
arated into different phases. A normal delay with the NVS4200m graphics card is few
milliseconds in the worst case. If there are many buffers to be visualized, the run-time
performance will be significantly degraded. Therefore it is necessary to consider which
data is the most valuable for debugging purposes. The current GPU implementation
allows setting a flag per each buffer to determine whether it is allowed to be rendered
using CUDA interop or not. The buffers which are withheld from rendering, are simply
allocated from GPU memory without a CUDA interop context. This small optimization
saves several milliseconds in the GPU implementation but still allows efficient online
visualization when necessary.
6.4 Accuracy
The incremental tracking is sketched in Algorithm 6.1. In this section the tracking ac-
curacy is evaluated using the RGB-D SLAM benchmark provided by Technical Uni-
versity of Münich [74]. Kinfu is the open source implementation of KinectFusion [62]
(Sec. 3.8). The RGB-D tracking accuracy is also compared with Kinfu (Figure 6.6). Kinfu
experiments were executed on a workstation with the NVIDIA Quadro 2000 GPU with
1024MB RAM and 192 CUDA cores, because our development laptop could not pro-
vide real-time computations. In this comparison, a fixed 3D model is not used and
time-evolving drift is present in both systems. Our real-time tracker is executed in in-
cremental mode without depth fusion. The depth maps were also re-sampled back into
disparity maps to fit our implementation.
Table 6.2: Drift and delay compared to Kinfu with (3m)3 and (8m)3 voxel grids.
Dataset Incremental Kinfu(3) Kinfu(8) Motion
freiburg1/desk 2.60cm/s 8.40cm/s 3.97cm/s 41.3cm/s
52.2ms 135ms 135ms
freiburg2/desk 1.08cm/s 0.64cm/s 1.30cm/s 19.3cm/s
35.5ms 135ms 135ms
108 6. Real-time RGB-D tracking for a low-end GPU
Table 6.2 shows the comparison between our method and Kinfu numerically using
two Freiburg sequences with known ground truth trajectory. Our method uses 320×
240 resolution where as Kinfu uses 640 × 480 resolution. The photometric tracking
drifts 1.08cm/s with the slower freiburg2/desk sequence and 2.60cm/s with the faster
freiburg1/desk sequence. Kinfu has smaller drift with small voxel volumes (such as
(3m)3), but seems to suffer from gross tracking failures with bigger volumes such as
(5m)3 and (8m)3. The operation volume is limited because a 5123 voxel grid becomes
too coarse with increasing size and bigger grids not not fit into GPU memory. Also
ICP breaks down easily when the scene contains mostly planar surface (e.g. floor) 2.
Thus the scene must contain sufficient geometrical variations. Drift was measured by
dividing the input frames into subsegments of several seconds (10s and 2s correspond-
ingly) whose median error was measured against the ground truth. 1 second average
error was computed from the median subsegment. The error values were computed
from bigger windows to average out random perturbations and neglect Kinfu tracking
failures, which occurred in all cases except on freiburg2/desk using (3m)3 volume.
Our photometric tracking has generally smaller drift with the faster freiburg1/desk
sequence, but both Kinfu (with the most compatible grid) and our method lose tracking
once during the sequence. In this case (3m)3 grid does not contain constraining ge-
ometry and operates worse than a bigger volume. Re-localization issues are discussed
later in this chapter. Kinfu’s dependency on careful setting of volume size, and depen-
dency on geometrical variations makes it unsuitable to be used in our application. In
many applications, the scenes can easily be larger than (3m)3 and sufficient geometrical
variation is more difficult to guarantee than sufficient texturing. Our photometric track-
ing operates without failures even when planar surfaces are present, because our cost
function matches also texturing. Memory consumption can be low even in larger oper-
ating volumes, because the keyframe placement can be optimized based on the camera
motion zones.
6.5 Results
The minimization algorithm is implemented on a low-end NVIDIA Nvs4200m GPU us-
ing CUDA. Our laptop GPU has 48 CUDA cores and it allows executing 1024 parallel
threads on a single multi-streaming processor. Because our implementation divides the
computational task into n threads, it is scalable and benefits from GPU hardware de-
velopment. However, despite that the system can be executed with a fraction of GPU
capacity compared to KinectFusion, the accuracy is not essentially different. In effect,
the system operates at 30Hz and the computation takes 23ms which leaves 10ms for
rendering the augmented graphics. The computation time of the processing phases is il-
lustrated in Figure 6.7. The green bars represent the minimization phases which directly
scale into n threads and therefore become faster with more powerful GPU. 8192 points
are selected and the minimization uses three multi-resolution layers 80× 60, 160× 120
and 320× 240. The corresponding iteration counts are 2, 3, and 10 for each level of the
pyramid. These numbers are represent the current performance at the time of writing
this text. The drift removal is possible by tracking with respect to a static keyframe
model, which can has been globally optimized.
2 Video: http://youtu.be/tNz1p1sdTrE
6.5 Results 109
Figure 6.6: Kinfu performance compared with photometric tracking using
freiburg_desk2 sequence with motion capture ground truth (green trajectory).
Kinfu is executed with (3m)3, (5m)3 and (8m)3 voxel volumes. The red trajecto-
ries on the left are output from from Kinfu. Based on the trajectories, Kinfu gains
lower drift due to structure integration, but planar surfaces cause tracking fail-
ures. (3m)3 volume does not contain the floor and therefore Kinfu works well. On
the right, the yellow trajectory is the proposed incremental RGB-D tracking result.
Problems with planar surfaces do not exist, and the method allows larger operating
volumes due to lower memory consumption. By using keyframes, the drift can be
completely eliminated. The green dots reveal the selected points.
110 6. Real-time RGB-D tracking for a low-end GPU
lock d2z multi pcloud warp mest reduct minc
GPU delay distribution
m
illi
se
co
nd
s
0
2
4
6
8
Figure 6.7: GPU tracking time distribution (23ms) for one frame. Green bars rep-
resent phases scalable to n threads. The red bar is executed by a single thread. The
gray bar (lock) contains CUDA interop delays which are only required for visu-
alization. d2z is disparity to depth conversion, multi is multi-resolution pyramid
generation, pcloud is the 3D reconstruction, warp contains the cost function evalua-
tions, mest is the M-estimation, reduct is linear system reduction, and minc motion
estimation and update.
CHAPTER VII
Watertight and textured 3D reconstructions by RGB-D tracking
The keyframe SLAM algorithm (alg. 6.3) is tested in an appartment. The goal is to gen-
erate a 3D model without holes in the geometry. After recording a video, GPU-boosted
RGB-D tracking is executed which produces 3D trajectory. Whether or not RGB-D track-
ing uses keyframes, only the trajectory is stored. The model keyframes are selected by
looping the trajectory and storing a keyframe whenever user-specified angular or trans-
lational distance to the existing model is exceeded. The neighboring RGB-D measure-
ments to the keyframes are efficiently localized (timestamp or frame index) and depth
map fusion is executed. In depth map fusion, keyframe depth maps are filtered using
all RGB-D measurements available. Then, optionally, bundle adjustment is possible for
the full model. The results presented in this paper do not use bundle adjustment at
all, because the sequences are relatively short and pose error remains small. Finally
watertight polygon model is generated from the RGB point cloud using Poisson recon-
struction method. Keyframe images are stored into a single texture and UV coordinates
are generated for each polygon. The textured mesh is then stored in a simple Wavefront
format which can be loaded into various standard 3D modeling programs for further
refinement. The video3 illustrates the full process for sequence Room A.
The phases in our process are thus
1. Record RGB-D video (manual)
2. Generate 3D trajectory by RGB-D tracking (automatic) (chap. 6)
3. Select keyframes (automatic)
4. Depth map fusion (automatic) (sec. 7.1)
5. Optional : bundle adjustment (semi-automatic) (sec. 7.2)
6. Watertight polygonization (automatic) (sec. 7.3)
7. Texture map generation (automatic) (sec. 7.4)
8. UV coordinate generation (automatic) (sec. 7.4)
9. Store Wavefront mesh (automatic)
3Video:http://youtu.be/tD3lFxrCHaw
111
112 7. Watertight and textured 3D reconstructions by RGB-D tracking
7.1 Depth map fusion using RGB data
By noting that local tracking is always accurate, depth map accuracy can be increased
by local data fusion. Because the keyframes are sparsely selected from the stream of
RGB-D measurements, they do not automatically utilize all information available. The
intermediate point clouds, which are not selected as keyframes, are warped into a near-
est keyframe and the final maps are filtered in post-processing. In effect, this improves
depth map accuracy and fills holes. If larger resolution is used during depth fusion,
more precise depth maps can be obtained [44]. In general environments with occlu-
sions and complex geometries, the warped depths may form multi-peaked depth dis-
tributions in the reference view, and a method is required for determining a local depth
range which contains the best depth value. The depth maps are corrupted by measure-
ment noise, whose magnitude and distribution depends on the measurement device,
the scene content and the distance. Noise is often managed by imposing smoothness
constraints on the environment geometry. Such constraints can also cause problems as
they might connect sparse geometries and add surfaces where they do not actually exist.
One method to avoid smoothness constraints is to use median filtering for each points
independently. This approach has been taken, for example, by Hirschmüller [25]. When
the depths are transformed, only one point is allowed per each target pixel. In case of
multiple points, the nearest one to camera is selected. Median filtering is rapid, robust
and can be executed in parallel per each pixel using, for example, Quickselect algo-
rithm [58]. Median filtering is especially useful when the depth values may have large
variances (for example stereo camera + template matching). Depth maps with small
variance can be used as initial guess directly. When the initial guess exists, bounds can
be generated within which local averaging can take place. The inverse depth samples
within zm ± δ are averaged to find the robust estimate (Figure 7.1). Inverse depths are
more likely to have Gaussian distribution in stereo based settings [13, 48]. δ is the depth
sample window, which is user-specified. δ depends on the RGB-D sensor depth noise
level.
Figure 7.1: Robust depth estimation. A local average is computed within bounds
near the median depth. Inverse depths are more likely to have Gaussian distri-
bution in stereo camera settings. In case of small depth error, the bounds can be
directly initialized near a depth map measurement.
As can be seen from Figure 7.2, the area covered by a pixel increases with depth. If the
median is computed per each pixel, care should be taken that (∆x,∆y) will be bounded
for the samples. Ray distance based uncertainty is roughly proportional to σr ≈ zf σpix,
where z is the depth value, f is the focal length and σpix is the standard deviation of an
image coordinate [13].
7.2 Optional bundle adjustment for a 3D model 113
Figure 7.2: The area covered by a pixel becomes larger at longer distances. The
pixel median can be improved by focusing on samples near a ray which is defined
through the pixel center.
Now the depth values are defined by local averages near the median depth. It is ex-
pected that depth values are close to correct value. Thus photometrical adjustment is
possible within uncertainty bounds. The bounds are generated by computing Gaussian
variances from the depth samples near the optimum. Raw disparity maps are provided
without any confidence measure. The Microsoft Kinect’s benefit over a stereo camera
is that structural error distribution is often local, where dense matching methods may
produce any distribution depending on the scene texturing. Local error distribution in
structure is crucial both for pose estimation and structural estimation. Locality reduces
computational requirements and allows searching the best estimate within bounds. A
large portion of the outlier points can be neglected based on color deviation to the
keyframe pixels. Thus, prior to any filtering, it is useful to discard the points whose
color difference to the reference color is larger than a threshold. The basic algorithm is
listed in Algorithm II.1.
The filtered depth map can be photometric refined further using the standard devia-
tions with Algorithm II.2. In practise, OpenMP is used to parallelize computations on
CPU. The benefit with discrete optimization is that it works even when the amount of
image measurements is small. An example standard deviation image is illustrated in
Figure 7.3b. As can be seen, the standard deviations increase monotonically as func-
tion of distance. The standard deviations are used to bound a photometrical refinement
phase, which seeks the best depth value in terms of a re-projection error into multi-
ple views (Sec. 3.7). The candidate points are generated by dividing the bound region
evenly into n points.
7.2 Optional bundle adjustment for a 3D model
In the case that pose errors at the boundary keyframes contain too much drift, a global
pose refinement must be done using bundle adjustment or a graph optimization frame-
work [36, 37]. In smaller spaces, the initial pose estimates are, however, sufficiently
accurate. Sparse bundle adjustment (SBA) can be used to remove the small global er-
ror at the end of estimated camera trajectory [37]. SBA does not converge without a
good initial guess. Sometimes an initial guess can be successfully extracted from an
unordered image set by extracting and matching feature points and initializing cam-
era configurations using their geometrical relations. The process is error-prone because
image content such as homogeneous texturing and repetitive patterns prevents reliable
114 7. Watertight and textured 3D reconstructions by RGB-D tracking
(a) (b)
(c) (d)
Figure 7.3: Photometrical refinement for a 3D model. a) The green points are se-
lected for photometrical refinement. Only the regions with strong gradient can be
photometrically refined. b) Depth standard deviation image after depth map fu-
sion phase. The photometrical search bounds are set based on this image. c,d) The
cost values visualized for n depth values within the bounds. White color denotes
low cost and black high cost.
extraction/matching. SBA is then used to optimize global configuration. As a result the
camera trajectory is improved and multiple geometries disappear (Figure 7.4).
7.2.1 Interactive editor for bundle adjustment
An interactive tool was built to generate annotations for projection points (Figures 7.5,7.6).
The editor produces a list of 3D points and their projections in all keyframe views in a
small text file. A mouse is used for 2D point selection and linking across the views. The
editor visualizes a 3D line segment for each 2D point. The line segment starts from the
camera origin and ends at the 3D point determined by the depth map. Therefore its
easy to verify that 3D points are associated with precise depth measurement. Finally,
the output file is directly used to execute bundle adjustment function in SBA library.
7.3 Watertight polygonization 115
Figure 7.4: The effect of sparse bundle adjustment illustrated. Minor error at the
end of the trajectory is corrected.
SBA library has depth axis in reverse direction compared to OpenGL, which must be
taken into account by mirroring camera depth axices and all depth coordinates.
7.3 Watertight polygonization
Polygon models are compact in their memory consumption and are better supported by
standard 3D modeling programs than point clouds. A polygonization phase generates
a polygon mesh from a point cloud. There are various methods available which gen-
erate polygon models from points clouds[5], but the main criteria in our applications
is tolerance to noise and missing data. This rules out basic Delaunay based triangu-
lation methods. Marron et al. acknowledge noise in the point clouds and propose a
greedy method for rapid polygonization [43]. The method does not fit implicit surface
to a point cloud, but incrementally grows surfaces by inspecting the near vertices with
oriented normals. Triangles are generated based on local planar regression, to take into
account noise in the raw point data, and also hole filling is supported. Marron’s method
has been used in Kintinous system which documents the results [89]. In the presence of
sampling noise, an alternative and common approach is to fit the points using the a zero
level-set of an implicit function, such as a sum of radial base or piecewise polynomial
functions [30].
In this work, the Poisson method is selected, because it produces a watertight surface
based on a photometrically refined, oriented point cloud [83, 32]. The point normals
are derived from the depth fused maps (eq. 2.59). Oriented points are transformed
into a reference coordinate system. The Poisson method finds a scalar function whose
gradients best match the vector field, and extracts the appropriate isosurface. The algo-
rithm uses OpenMP for multi-threaded parallelization and octree data structure to re-
duce memory consumption [32]. To further avoid memory limitations, the mesh could
also be done piece-by-piece using a single, moving reconstruction volume. The most
interesting parameters are octree grid resolution, point weights and minimum point
count in an octree node. Because octree resolution is limited, the resulting mesh may
116 7. Watertight and textured 3D reconstructions by RGB-D tracking
Figure 7.5: The interactive tool for semi-automatic annotation of projection points
illustrated. Annotated projection points can be added/removed using mouse. The
projections are linked into a unique 3D point.The tool also shows corresponding
3D points (green spheres) along with 3D ray which can be moved over a keyframe
image.
become over-smooth at complex regions. The reconstruction accuracy depends mostly
on the precision of the oriented point cloud. With Microsoft Kinect sensor, the depth
noise increases with distance. In our tests, we measure distance to the camera and set
quadratically decaying point weights. Poisson reconstruction result without and with
depth fusion can be observed in Figure 7.7b. Notice how Poisson method generates the
floor and fills holes despite that measurements do not exist (compare with Fig. 7.7a).
7.4 Mesh texturing
The example sweep in Figure 7.7a created 23 RGB-D keyframes whose textures are re-
dundant in color due to Bayer filtering. The images are downsampled into 320× 240
resolution and stored into a 2048× 2048 texture (Figure 7.8). The size is good for testing
purposes and it allows 6× 8 keyframes to be used.
The Poisson polygons which are in the visible range of the RGB-D sensor are projected
onto all keyframe views and UV-coordinates are generated. Poisson reconstruction
module outputs polygons with n corner points. 2D area of a polygon 4 is evaluated
7.4 Mesh texturing 117
Figure 7.6: The depth values for 3D points can be guaranteed to be correct by 3D
ray vs. surface comparison.
using the following formula
A() = 1
2
n
∑
k=0
det
([pTk
pTmod(k+1,n)
])
, (7.1)
where points pk = (u, v)T are the corner points of a 2D polygon. The formula applies to
convex and concave polygons as long as they are not self-intersecting. When a polygon
is visible in more than one view, we choose to favor largest spatial resolution with the
formula
uvkey = argmax
j
Aj() ∈ N, (7.2)
where uvkey is the index of the best UV-mapping keyframe (Fig. 7.9). Because frequent
switches in UV-mapping directions can cause visually disturbing seams, mapping can
be improved by enforcing the locally dominant keyframe. One method to do so is to
recursively enumerate connected polygon neighbors in n passes, and then prefer the
mapping direction which has the largest number of votes. Finally the selected UV-
coordinates are converted into global texture coordinates and stored. The keyframe
images are not undistorted to better maintain maximum texture quality. The resulting
meshes can be observed in Figure 7.12.
When final texturing is patched together from keyframes, some color banding effects
may occur if brightness varies across the images. Manual camera settings reduce global
lighting variation across images. To reduce the problem further, averaging or median
118 7. Watertight and textured 3D reconstructions by RGB-D tracking
(a)
(b)
Figure 7.7: Room B sequence. a) A keyframe model obtained by executing keyframe
SLAM in an appartment. b) Watertight Poisson reconstruction without and with
depth fusion. Notice how holes are filled and missing regions such as the floor
appears.
7.5 Memory consumption 119
Figure 7.8: Keyframe images are stored into a single big texture.
filtering could be attempted. Also more sophisticated multi-texture blending methods
exist [59, 75].
7.5 Memory consumption
The memory consumption is shown in Table 7.1. The consumption is separated into
geometry and texture consumption for Poisson meshes. The datasets Room A, Room B
and Kitchen have 47, 23 and 14 keyframes. After the trajectory has been estimated,
a raw point cloud is generated. The minimum requirement per vertex is 9 attributes
(position, normal and color). After Poisson reconstruction and texture mapping, the
vertices require only 3 floats (x,y,z) and n triangles have in total 9 ∗ n attributes (3 ∗ 2 UV
coordinates + 3 ∗ 1 index). In addition texture map requirement is computed directly as
k ∗ 320 ∗ 240 ∗ 3, where k is the number of keyframes. Table 7.1 shows memory footprint
for 27, 28, and 29 octree grids. The corresponding geometric quality is illustrated in
Figure 7.10. The reconstructions in Figure 7.12 are generated using 29 grid.
Table 7.1: Memory consumption of the test sequences.
Dataset Raw Poisson(9) Poisson(8) Poisson(7)
Room A 124MB (32+ 12)MB (7.8+ 12)MB (2.0+ 12)MB
Room B 60.6MB (21+ 5)MB (5.8+ 5)MB (1.6+ 5)MB
Kitchen 36.9MB (14+ 3)MB (3.8+ 3)MB (1.1+ 3)MB
120 7. Watertight and textured 3D reconstructions by RGB-D tracking
Figure 7.9: Poisson(7) polygons are projected onto keyframe images. UV-
coordinates can be chosen from the view which has the best spatial resolution. The
corner of the shelf is visible in two different keyframes, but the selection favors the
left image, because the camera is closer.
Figure 7.10: Kitchen scene reconstructed with 27, 28 and 29 octree resolution. Phong
shading reveals the level of geometrical details at each resolution.
7.5 Memory consumption 121
(a) (b)
Figure 7.11: Room B sequence. Reconstruction bias in when operating in a) incre-
mental mode, b) SLAM mode. After 360◦ turn the first and last keyframe should
map points consistently into a single 90◦ corner. In this case a) is slightly more
precise, because subsequent images are photometrically the most comparable with
negligible interpolation errors.
122 7. Watertight and textured 3D reconstructions by RGB-D tracking
Figure 7.12: Final textured Poisson meshes loaded into Meshlab for inspection: a)
Room B, b) Kitchen. Poisson reconstruction produces watertight mesh, whose tex-
turing is photorealistic as it is directly mapped from the keyframe images. The cost
of reduced memory footprint is over-smoothing, which may occur at thin surfaces
such as the shelf in 7.12a. Also lighting changes can be detected at seams where
texture data source switches from one keyframe to another. Otherwise the models
are photorealistic and in metric units.
CHAPTER VIII
Augmented Reality in Live Television Broadcasting
In this chapter, a real-time camera tracking system is developed for television produc-
tion studios based on our GPU implementation. The aim is to reduce the costs of match-
moving in studio environments by introducing an affordable RGB-D sensor based cam-
era tracking tool which operates in real-time, fits studio use, and only requires a low-end
GPU. This system has the following novelties in comparison to other low-cost camera
tracking solutions [1, 53]. 1) A RGB-D keyframe-based tracking method is proposed,
which does not suffer from time-evolving drift. A static studio scene is first modeled as
a database of RGB-D keyframes, which are obtained by using incremental photometric
tracking approach and fine-tuned using bundle adjustment. The database is then used
as a reference for real-time pose estimation (Figure 8.1)1. By defining the camera track-
ing problem relative to the nearest keyframes, drift is avoided. It will be shown how
the keyframe tracking eventually outperforms incremental tracking. The estimation is
robust due to gradient-based pixel selection and an M-estimator.
When aiming at processing dense RGB-D data in real-time, the algorithms must be par-
allelized to obtain sufficient performance and scalability properties. 2) The computa-
tional scalability of the camera tracking is improved by designing the full algorithm for
a low-end GPU. A detailed description from a cost function definition into an efficient
GPU implementation is given.
3) With a static keyframe-based 3D model available, the dynamic foreground points are
rejected from the camera pose estimation by observing discrepancies in intensity and
depth simultaneously. Generally in RGB-D tracking, outliers both in color and depth
can exist (occlusions, foreground objects, lighting effects etc) and must be taken care
of. Our results are verified in a real television broadcasting studio with and without
foreground dynamics. By these steps, RGB-D based tracking is evaluated in actual ap-
plication use [84].
1http://youtu.be/L_OLnFc7QxU
123
124 8. Augmented Reality in Live Television Broadcasting
Figure 8.1: A RGB sensor is used to build a keyframe database which contains the
views in the camera motion zone. The TV camera pose is estimated by registering
the image content with the nearest keyframe.
8.1 System
An overall sketch of the full system is illustrated in Figure 8.2. The system consists of a
motion capture studio (NaturalPoint Optitrack [51]) which sends motion capture stream
in real-time to a Linux client which uses Panda3D engine to render an interactive 3D
character into live TV broadcast. The camera pose is tracked using the developed GPU
implementation (Chapter 6). First a static keyframe model is recorded using keyframe
SLAM mode prior to broadcasting. Then live tracking utilizes the keyframe model to
obtain driftless tracking which is robust to foreground actors when sufficient portion of
background remains visible. A professional HD camera is calibrated with the Microsoft
Kinect sensor and the depth maps are re-sampled to match HD camera point of view.
The depth maps are available to AR composition, where the final pixels are selected
based on the distance.
8.1.1 AR graphics using Panda3D
AR graphics are rendered in real-time using Panda3D engine. Panda3D is a library of
subroutines for 3D rendering and game development [11]. The library is C++ with a set
of Python bindings, but in this project only C++ components were utilized. Panda3D
was created for commercial game development, and its primary users are still commer-
cial game developers. It was developed by Disney for their massively multi-player on-
line game Toontown, and has also been used in the Pirates of the Caribean game. It was
released as free software in 2002. Since version 1.5.3, Panda3D has been released under
the modified BSD license, which is a free software license with very few restrictions on
usage. Panda3D is currently developed jointly by Disney and Carnegie Mellon Univer-
8.1 System 125
Figure 8.2: A schematic view of the overall broadcasting system. The RGB-D sensor
is attached to the TV camera and oriented either towards the scene or toward the
floor. The former configuration uses background scene texturing and the latter
textured carpet for 3D tracking.
sity’s Entertainment Technology Center. In this project, Panda3D is used to render AR
graphics into live video stream from the current camera angle (Figure 8.4). Panda3D
animates a character using the skinning technique, where a discrete set of rigid bodies
deform skin vertices based on their bone weights.
8.1.2 Motion capture system for live character animation
In our studio application, we experiment the Optitrak system for live 3D character an-
imation. The Microsoft Kinect SDK has a built-in skeleton tracker, but it is only useful
for games which do not require maximal precision. The tracking uses a single point of
view and therefore can not always track the full body configuration. Tracking failures
happen with complicated/partially occluded motion. When the pose is too complicated
for the tracker, it is enforced to match its training data [65]. Despite the shortcomings,
the Kinect SDK pose estimator is an alternative for low-cost live motion capture. The
NaturalPoint Optitrack system, however, is more precise, because it uses tens of cam-
eras for skeleton tracking. The system is bundled with Arena software which supports
real-time 3D character pose streaming. 24 cameras in a truss setup track character pose
in 3D based on retro-reflective marker motion (Fig. 8.3). The markers are illuminated
by IR light sources which are attached to the cameras. In this case, the IR light will not
126 8. Augmented Reality in Live Television Broadcasting
interfere with the RGB-D sensor, because the motion capture system is not setup in the
same space with the scene (Figure 8.2). An actor wears a special full-body costume
where the markers are attached. The tracking operates fully in IR zone. Arena soft-
ware receives a synchronized set of IR images, extracts the marker 2D coordinates and
reconstructs a sparse 3D point cloud. The software fits a fixed skeleton structure into
point cloud and converts the data into a set of rigid bodies. The software uses NatNet
protocol for real-time data broadcasting over a network. A custom client software was
implemented which connects to Arena and receives the data. The motion parameteri-
zation is mapped to a Panda3D 3D character, which is created in Blender. The skeleton
armature was made compatible by inspecting and replicating Arena software output.
Because the local coordinate systems did not automatically match, fixed conversions
were required from the Arena definition into the Panda3D format. Also the bone scales
vary depending on the motion capture actor. Therefore local scale adjustment was made
possible, which functions by scaling the relative translations between the bones.
(a) (b) (c)
Figure 8.3: a) 24 cameras in truss setup are used to track live 3D character motion.
b) Optitrack skeleton structure c) Blender skeleton structure
8.1.3 AR composition using depth maps
AR composition was experimented on the GPU using a custom-made cg shader [42],
which compares Kinect depth value and AR character depth value and renders the
source which is closer to the camera (Figure 8.4). Depth map up-sampling is necessary
when registering range images with professional HD camera images. When a point
cloud is transformed and projected onto a RGB image, it will produce an irregular set
of 2D sample points whose data should be interpolated over the full image. If the point
set is relatively accurate, a connected mesh (based on the original image grid) can be
ray casted to obtain a depth value for each pixel. In a trivial approximation, the source
depth map is up-sampled and the points are directly transformed into a target view. All
holes are not filled, but computational requirements will be low when using a parallel
implementation.
Also novel methods are available, but have not been tested in our application. Joint bi-
lateral up-sampling is a method which uses a high resolution RGB image to guide depth
8.2 Studio lighting and Microsoft Kinect 127
map filtering [35]. A depth data is diffused within precise edges in the HD image us-
ing a bilateral filter. The process is continued by a sequence of post-processing passes
which improve depth map continuity locally until the quality is sufficient [69]. One pass
discretely optimizes such depth variants which produce smoothest neighborhoods. Lo-
cal discontinuity is used as the error function, and pixel domain is the same as with the
initial bi-lateral pass. The subregions which are already smooth are not altered. This ap-
proach is GPU-friendly because each subregion can be processed independently. Depth
discontinuity weights are not used, and therefore problems can be expected on depth
discontinuity regions where color does not significantly change.
Capturing HD images directly into GPU memory is possible using NVIDIA SDI capture
card which is placed to the side of a graphics card. Then data transfer is possible trans-
parently and directly into the GPU memory. This setup is particularly useful because
transfer of full HD image resolution (1920× 1080) easily becomes a bottleneck. Typi-
cal graphics cards store images first into RAM and then upload them into the GPU. In
this applications, the GPU is heavily used already and memory transfers must also be
optimized.
In practise, the depth maps obtained using a RGB-D sensor have an amount of mea-
surement noise, which produces noise to composition. The depth values are captured
correctly at sofa regions, but especially floor and background wall contain noise. Visual
artifacts are possible only in preview use, such as when practising scenes which have
virtual 3D characters. For noiseless composition, Ultimatte chroma keyer2 performs
purely key color based composition. Ultimatte was experimented in a live television
broadcast without problems.
8.2 Studio lighting and Microsoft Kinect
In studio environments, the color constancy assumption works well, because lighting
can be fixed. The keyframe database will be valid as long as the lighting conditions
do not change. However, the Microsoft Kinect sensor adapts to environment lighting
changes by default. This degrades the tracking algorithm performance and prevents
total lighting control during broadcasting. Due to Ubuntu Linux operating system, the
freenect API was used in the project as it is compiles easily on Linux and is customiz-
able and open source. The API operates by sending and receiving messages using the
USB channel. According to reverse engineered protocol documentation, it is possible
to fix white balance and exposure parameters. By experiment, the initial values could
not be set however. The initial values are determined by the current lighting condi-
tions. This is slightly restrictive since, for example, the frame rate easily switches into
15Hz if the initial conditions are low light. Also OpenNI drivers are available for Linux,
but were not experimented. The Microsoft Kinect RGB camera is of low quality and in
standard studio lighting conditions the colors can saturate (see Fig. 8.5). Also specular
surfaces must be avoided in the scene and external IR light must not exist.
With professional HD cameras this is not the case since they have remarkably better
dynamic range (Figure 8.6). To circumvent this limitation, the RGB-D sensor depth
maps can be directly calibrated with a HD camera [23] (Section 8.1.3).
2http://www.ultimatte.com
128 8. Augmented Reality in Live Television Broadcasting
Figure 8.4: A real-time AR broadcast with virtual 3D characters which are rendered
from the estimated pose using Panda3D. See example video1.
8.3 Tracking configurations
Two different tracking configurations are considered. The RGB-D sensor is oriented
either towards the scene or towards a textured carpet on the floor (Figure 8.7).
8.3.1 RGB-D sensor towards the scene
This is a novel approach, which allows using high quality gradient information from
HD images to increase RGB-D tracking accuracy. Professional HD cameras are also
compatible with studio lighting conditions (Section 8.2). The challenge is, however, to
avoid the foreground actors during the estimation. When HD images are directly stored
to GPU memory, AR composition is possible with a customized technique. By imple-
menting chroma keying directly on GPU, the system costs are significantly reduced.
The de facto standard is the Ultimatte keyer, which performs chroma keying in many
production studios and costs 25k€.
During broadcasting, the scene will contain moving actors. The pose estimation should
only use the static background in order to avoid estimation bias. After the static keyframe
8.3 Tracking configurations 129
Figure 8.5: Brightness saturation effect with Microsoft Kinect sensor when increas-
ing studio lighting.
Figure 8.6: HD camera (left) and Microsoft Kinect RGB image (right) in a typical
studio lighting conditions.
model has been captured, the scene can be segmented into static and dynamic compo-
nents. The segmentation is useful for weighting the dynamic foreground out from cam-
era estimation. The Tukey weighting is illustrated in Figure 8.8. The estimation requires
a sufficient amount of visible points and, therefore, foreground actors are not allowed
to occlude more than a fraction of the selected points. In the Figure 8.8, rougly 1/3 of
the keyframe points are occluded and the tracking still works. See an example video
of M-estimator performance in a scene with extreme foreground motion 4. The moving
actor does not disturb camera tracking when relying on the keyframes.
In case multiple cameras are used during the broadcast, RGB-D sensors interfere each
other, because each sensor projects an IR pattern towards the scene. Reconstructing a
precise depth map from a mixed IR pattern is difficult. One solution has been proposed
by Microsoft Research to overcome this problem [9]. The idea is to literally shake the
RGB-D sensors to blur the interfering patterns out from the disparity map estimation. In
practise, attaching a shaking device into TV camera requires special attachment method.
8.3.2 RGB-D sensor towards the floor
This is a typical industrial solution, because outliers do not exist and a simply homogra-
phy mapping models image changes (Section 3.1.3). In the experiment, A flower pattern
4http://youtu.be/iVdYPbHY2ro
130 8. Augmented Reality in Live Television Broadcasting
(a) (b)
(c) (d)
Figure 8.7: The camera tracking was experimented in two different configurations.
a) The RGB-D sensor oriented towards the scene where and tracking uses the back-
ground pixels. b) AR character added to a physical scene c) The RGB-D sensor
oriented toward the floor with a textured carpet. d) A virtual scene with a real
character extracted from video.
was printed on a 2.5m× 2.5m carpet and set below a TV camera. The flower pattern pro-
vides excellent image gradients in all directions and does not have repetitive texturing
which could confuse the tracker. The RGB-D sensor was attached as close to the TV
camera objective as possible and oriented towards the carpet. The RGB-D tracker was
executed in the SLAM mode (Section 6.1.3) and thus the pattern is learned concur-
rently to tracking (Figure 8.9). Multiple AR characters were positioned on the carpet
and animated using a single 3D pose stream sent by the Arena software. The floor was
estimated from the first RGB-D measurement by plane regression. Plane parameters
are used to position AR characters exactly on the floor level. Then camera is rotated
and translated in 3D space above the floor. AR graphics remain at their correct floor
coordinates through-out the experiment5.
This configuration allows using a green-screen for background subtraction and allows
5http://youtu.be/CpXXWeCDD5o
8.3 Tracking configurations 131
Figure 8.8: The points which currently participate in pose estimation are selected
based on the image gradient magnitude. M-estimator weights are damped by the
depth residual based weights to neglect the dynamic foreground. The weight 1.0
is assigned to the green points and 0.0 to the red points. The foreground actors can
cause a tracking failure in KinectFusion system [53].
using multiple cameras, because the RGB-D sensors do not interfere each other. Now
the background scene is fully computer generated, and rotates and translates based on
the camera pose (Figure 8.7d). Because TV camera and RGB-D sensor are pointed to
different directions without any overlap, the estimation of the relative transformation
is trickier. Rotational motion is the same for both cameras, because they belong to the
same physical body. The RGB-D sensor was placed as close to the TV camera objective
as possible to minimize translation bias.
The angle and translation range is limited when using a textured carpet and a green-
screen. In our studio, the green-screen was set only on one wall and it was difficult to
rotate the camera and maintain fully green images. The rotation range was only ∼ 45◦.
The carpet also limits translational motion to one meter in all directions. In many TV
studios, fancy camera motion does not exist, and cameras are only little rotated, trans-
lated and zoomed during the broadcast. Thus carpet solution is practical in studio use
and can replace pan/tilt heads, which mechanically measure limited camera motion.
132 8. Augmented Reality in Live Television Broadcasting
(a) (b)
(c) (d)
Figure 8.9: a) A carpet with a flower pattern used for 3D camera tracking. Selected
points on green. b) 3D map of the carpet built concurrently. c) Nearest keyframe
points illustrated on green. d) AR graphics positioned on the carpet coordinate
system.
8.4 3D modeling of a studio environment
The same pipeline described in Section 7 is useful for 3D modeling of a studio environ-
ment, but in addition a keyframe consistency check turned out to be useful (sec. 8.4.1).
The initial setup contained an IR emitting lightsource and a specular statue which cor-
rupted regions in the depth maps.
A polygon model is useful when designing AR interaction in a reference coordinate sys-
tem. It allows defining AR placement in the scene and enables motion with collisions
to real world objects. Despite the fact that the algorithms formulated in this project all
utilize point based reconstructions, polygon models are more compact in their memory
consumption and are better supported by standard 3D modeling programs such as Au-
todesk’s 3DSMax and Meshlab. A Poisson polygonization was discussed in Section 7
8.4 3D modeling of a studio environment 133
and an example in studio environment is illustrated in Figure 8.10 with video3.
Figure 8.10: Wireframe model of TV studio scene via Poisson method.
8.4.1 Depth map noise in a studio environment
Image-based pose estimation depends on the depth map quality and the amount of
static edges. An experiment was carried out to check how consistent 3D structure is
produced when combining the selected keyframe points from multiple keyframes into
one reference coordinate system. An example studio scene is illustrated in Figures 8.1
and 8.4. When four keyframes are combined in Figure 8.11, it can be noticed how the
IR emitting light source and the black specular statue in the scene produce inconsistent
edge information. False depth coordinates bias pose estimation, because motion across
images is not fully explained by camera motion. M-estimator reduces outlier problems,
but does not prevent bias, because also outlier points with small residual are accepted.
IR emitting or specular surfaces should not be placed into the studio scene, but the
problem can reduced by performing filtering described in section 8.4.2.
8.4.2 Depth map filtering for studio model
To increase keyframe quality for online 3D tracking, the depth maps are fused from sev-
eral RGB-D frames. As described in Section 7.1, it is also useful to neglect points which
are statistically rare. When a certain (x, y) coordinate in the reference depth map does
not collect a sufficient amount of support with similar RGB color, it should be discarded.
This mechanism essentially filters out all geometry whose appearance is not directly de-
pendent on camera motion. Also the reconstruction problems illustrated in Fig. 8.11 can
be removed from the final reconstruction. Observe how the incorrectly reconstructed
3 Video: http://youtu.be/Xnn_06r7tFE
134 8. Augmented Reality in Live Television Broadcasting
Figure 8.11: 4 keyframes transformed into same reference coordinate system.
Kinect reconstruction problems can be noticed from multiple edges. The blue circle
reveals how IR emitting light source does not have consistent edges. The purple
circle reveals how the black specular statue does not have consistent edges.
specular statue and IR light source disappear when increasing the minimum amount
of support points N (Figure 8.12). The result after geometric depth fusion illustrated in
Figure 8.12f.
8.5 Experiment: Tracking accuracy
In Figure 8.13, it is shown how the drift increases with photometric tracking when mov-
ing front and back along a fixed rail in a studio environment. The pose estimation
problem could be replaced by a simpler one, since the motion is restricted. The experi-
ments are, however, carried out in the most general 6DOF, because scene specific tuning
degrades usability. Distance to the ground truth is measured in every frame as an error
metric. For this sequence, the ground truth is generated using photometric tracking but
without the bundle adjustment phase. The drift problem is solved by tracking relative
to corrected keyframes. In a long-term use, even a small number of keyframes even-
tually outperforms photometric tracking due to drift. With shorter sequences drift is
naturally negligible6.
The demonstration video shows the difference between incremental tracking and keyframe
tracking in terms of AR graphics 7. In this experiment, larger tracking bias can be ex-
pected. The RGB-D sequence is difficult, because it contains only few edges which can
be used to track the camera. Some of these edges are also associated to false depth
values and must be filtered out using the scheme proposed in Section 7.1. Depth map
inaccuracy introduces false edge motion which can increase bias during estimation.
Figure 8.14 shows how the online tracking accuracy depends on the number of keyframes.
The sequence is illustrated in Figure 8.1, but keyframe switching error are quantified in
6http://youtu.be/wALQB3eDbUg
7http://youtu.be/zfKdZSkG4LU
8.5 Experiment: Tracking accuracy 135
(a) (b)
(c) (d)
(e) (f)
Figure 8.12: Filtering out inconsistent 3D points. The images illustrate final
keyframe model, when each 3D points must have at least N observations with
same color. a) N = 1 b) N = 32 c) N = 64 d) N = 128. Notice how the black
statue and IR emitting light disappear when N is increased. These object types are
not well supported by Microsoft Kinect sensor. e) The raw keyframe point cloud,
f) The keyframe points after depth map fusion. Random noise has disappeared.
136 8. Augmented Reality in Live Television Broadcasting
(a)
0 1000 2000 3000 4000
0
10
0
20
0
30
0
40
0
50
0
frame

0
10
0
20
0
30
0
40
0
50
0
m
illi
m
et
er
s
dense
keyframe
(b)
Figure 8.13: a) A rapid 3D scene reconstruction is made by moving a camera along
a fixed 3.30m studio rail. b) A comparison between incremental tracking and
keyframe tracking. In incremental tracking drift increases in time, but keyframe
tracking maintains small bounded error. A person is moving in the scene during
the last cycles.
8.6 Constraints 137
an empty scene. The ground truth is generated by applying bundle adjustment to 27
keyframes which are initialized by incremental tracking. Keyframe tracking is then exe-
cuted with a sparse number of ground truth keyframes (14, 9, 7, 5) by skipping a number
of keyframes along the trajectory. The camera pose is compared in each frame to the cor-
responding ground truth pose. A small number of keyframes produce local drift which
shows as error ramps between the keyframes. This can be visually disturbing. With a
sufficient number of keyframes and sufficient scene texturing, the error remains small.
In longer sequences, keyframe pose error finally depends on the bundle adjustment ac-
curacy. Bundle adjustment removes global error but easily introduces local variance to
the key poses if the 2D point correspondences are not precise. With the demonstration
video, 14 keyframes produce small switching effects. Even more precise ground truth
could be obtained by varying poses and evaluating image-based consistency globally.
This phase is avoided, because the experiments are carried out with a laptop, whose
computational capacity is limited.
8.6 Constraints
If the camera is moving too quickly, the minimization may not converge, because we
use local optimization strategy. Global minimization strategies of the cost function are
not discussed in this work because they are computationally too expensive to operate
in real-time. Therefore, to avoid re-localization needs, we must assume limited cam-
era speed, sufficient scene texturing, sufficient keyframe density, and that a sufficient
amount of selected keyframe points are visible despite the occluding actors.
8.7 Summary
In this work, an affordable real-time matchmoving solution was developed, which can
be used to produce broadcasts with interactive digital components, such as virtual char-
acters and stage items. The solution performs in real-time using a RGB-D sensor, and
a laptop with a low-end GPU (NVS4200m). This system was able to accurately and ro-
bustly track a camera in broadcasting studio sized operating volumes which are too big
for voxel based approaches. Drift does not exist as the camera is tracked relative to the
nearest keyframe. The pose error without bundle adjustment is space-evolving, because
the distant keyframes will contain more error. The keyframes were generated using
GPU-enhanced incremental tracking, and fine-tuned, when necessary, using sparse bun-
dle adjustment. A M-estimator was enhanced by segmentation-based weights, which
allows actors to move in the foreground while tracking the camera. When operating
in the RGB-D sensor range, our pose estimation accuracy depends mostly on the tex-
turing, which is trivial to increase in studio environments. On the other hand, when
pointing RGB-D sensor towards the floor, a green-screen can be used. Experimentation
was also done how textured carpet works when rendering fully virtual scene from the
correct camera angle. Camera tracking has been demonstrated in a real broadcast stu-
dio with and without a dynamic foreground. Drift and keyframe switching errors have
also been quantified. Future work will address the practical issues of how studio staff
and cameramen can use this computer vision system in live broadcasts.
138 8. Augmented Reality in Live Television Broadcasting
0 50 100 150 200 250
0
50
10
0
15
0
frame
m
illi
m
et
er
s
0
50
10
0
15
0
m
illi
m
et
er
s
0
50
10
0
15
0
m
illi
m
et
er
s
0
50
10
0
15
0
m
illi
m
et
er
s
5 keyframes
7 keyframes
9 keyframes
14 keyframes
0 50 100 150 200 250
0.
0
0.
5
1.
0
1.
5
2.
0
2.
5
3.
0
frame
de
gr
ee
s
0.
0
0.
5
1.
0
1.
5
2.
0
2.
5
3.
0
de
gr
ee
s
0.
0
0.
5
1.
0
1.
5
2.
0
2.
5
3.
0
de
gr
ee
s
0.
0
0.
5
1.
0
1.
5
2.
0
2.
5
3.
0
de
gr
ee
s
5 keyframes
7 keyframes
9 keyframes
14 keyframes
Figure 8.14: The translation and rotation error as a function of keyframe count.
The sequence is illustrated in Figure 8.1 and the ground truth is generated by ap-
plying bundle adjustment technique for maximal amount of keyframes. Keyframe
switching error depends on the amount of keyframes. At least 14 keyframes are re-
quired to obtain small keyframe switching error. Inconsistent keyframe geometry
and local errors in bundle adjustment produce ramps.
CHAPTER IX
Conclusions
The presented work covered many theoretical and practical aspects of RGB-D tracking
and reconstruction. Photometric cost functions were formulated and efficiently mini-
mized in different use cases. The accuracy and robustness of theses approaches was
verified using real and simulated sequences with ground truth data. Temporal corre-
spondence was elegantly expressed via a photometric cost function and 3D structure
was also photometrically refined within the estimated depth bounds. Finally, an effi-
cient GPU implementation was developed, which minimizes photometric pose error
in real-time. Due to Lambertian assumption, photometric cost functions are effective
within a short temporal window. The precision is good because they minimize true
sensor error and the raw measurements need not to be simplified into feature points.
Image based refinement methods can replace and enhance the initial estimates obtained
using traditional geometrical estimation methods. Overall, this project became a path
from photometric cost function definitions to real-time and online systems, whose ac-
curacy and practical aspects were made visible using various sequences.
In publication (i) [82], a photometric cost function was presented, which measures the
fitness of 3D pose and dense disparity map with given stereo images. Disparity variance
based bounds were derived and propagated in frame-to-frame basis to speed-up dispar-
ity map generation. The formulation itself is mathematically sound, but problems arise
in the practical application setting (Section 4.6). Generating dense depth maps with suf-
ficient precision is difficult, because two satellites are required (see Appendix), and tex-
turing may not be sufficient for precise dense matching. Monocular SLAM techniques
exist, but they require special initialization phase, and depend heavily on the optical
flow quality. Real sequences are absolutely necessary to test these ideas further. Despite
these practical problems, the proposed cost function provides novel insight on how joint
estimation of 3D pose and structure is possible using a photometric cost function and
also how to avoid unnecessary disparity map computation.
In publication (ii) [81], 2.5D maps were represented as general RGB-D measurements
without depending on a specific measuring technique. Both RGB and depth map dis-
crepancies were concurrently minimized to reduce drift. This novel formulation is more
139
140 9. Conclusions
robust than purely image based approach in environments with homogeneous textur-
ing. Also novel histogram based saliency selection was proposed to reduce computa-
tional requirements in pixel selection from O(nlogn) to O(n). At the end of this project,
point-to-plane ICP was combined with photometric tracking using dense pixel selection
(full image for depth maps, salency selection for color images) to improve this approach
further (see video1).
Publications (iii) [84] and (iv) [80], focus on developing practical and real-time tools for
indoor mapping and augmented reality using a RGB-D sensor. Camera tracking solu-
tion was developed for a television production studio, which uses photometric mini-
mization for pose estimation. A procedure was proposed to build a 3D keyframe model
of the static studio, which then provides a fixed reference for driftless camera tracking.
Keyframe model is post-processed in offline to increase depth map and pose quality. An
offline model is also useful when designing AR interaction prior to the broadcast. Many
computational enhancements were required to be able to execute the system in real-
time using the available low-end GPU. A scalable GPU implementation was developed,
which implements various optimizations, but does not compromise tracking accuracy.
Designing a real-time tracking system is by nature more reductive than incremental in
terms of new functionalities, because care has to be taken that 30Hz implementation is
actually obtained using the available hardware. In this project, the hardware has been
more or less light-weight since all experiments have been carried out using a laptop
with a low-end GPU. All tools used to experiment, validate, test, visualize and under-
stand the characteristics of photometrical estimation methods were developed from the
scratch. The tracking and mapping methods were evaluated in a real television produc-
tion studio. High tracking precision was maintained in indoor environments and even
foreground actors were tolerated.
Publication (v) demonstrated how the developed tools are used to reconstruct real ap-
partments [83]. Poisson reconstruction method and texture mapping were combined
into the toolset to produce photometric and watertight 3D models in post-processing
(Section 7). The pipeline was shown to work very well, but large indoor environments
currently require additional tools to remove spatially evolving drift.
9.1 Perspectives
This section discusses the remaining problems which could be addressed in future work.
In larger environments, the incremental keyframe generation will produce spatially-
evolving error, which finally must be corrected using a global technique. One cor-
rection solution is traditional SBA. SBA uses projection point associations in multiple
views, which are tedious to generate in environments with homogeneous texturing.
More automatic pose correction methods should be developed. One option would be
to initialize the configuration using the current approach and proceed with automatic
but bounded feature extraction and matching [59]. That would eliminate gross fea-
ture matching problems. After traditional bundle adjustment, final refinement could
be done by photometric bundle adjustment. Some novel techniques have been recently
developed for global keyframe optimization. For example g2o framework developed
1Video:http://youtu.be/drAzCeHUa98
9.1 Perspectives 141
for graph optimization tasks [36] has been used for automatic and global keyframe op-
timization [72].
The re-localization problem is still to be solved. Re-localization is necessary if the cam-
era speed or occluded image region increases too much. Image-based re-localization is
very difficult in general environments, because nothing guarantees a unique mapping
between a current view and an available model. A feature vector histogram database
(bag-of-words) has been used to identify the current image from tens of thousands of im-
ages [16]. In our studio applications case, natural re-localization scheme is to initialize
the current camera pose using an external tracking system since NaturalPoint Optitrak
is available. Recent developments in re-localization are reported by Shotton et al. [66].
In the current implementation, keyframes are stored uniformly in the angle and po-
sition spaces. In online use, keyframe switching may sometimes cause small ramps,
which could be avoided if the local keyframe density would be selected appropriately.
Comport et al. observe Median absolute deviation (MAD) of the error residual to de-
termine when the reference should be changed. Appearance changes are not uniform
when a keyframe is approached in different directions. Thus, a mechanism to optimize
keyframe amount to its minimum would be useful, which takes into account various
incoming directions.
The Microsoft Kinect is imprecise with specular surfaces and image regions with ex-
ternal IR light (Figure 8.11). Gross reconstruction errors may occur when the environ-
ment is not fully compatible with the device. This is a problem especially when stor-
ing keyframe points, because invalid geometry implies tracking problems. Currently a
depth map fusion phase helps in filtering out points whose appearance does not vary
solely as a function of the camera pose. This removes a large amount of outliers, but the
model should be qualitatively verified in a model editor, which supports manual outlier
removal.
In live AR application, which uses a textured carpet, a calibration tool should be devel-
oped which produces exact calibration between the RGB-D sensors oriented towards
the floor and the TV camera oriented towards the scene.
BIBLIOGRAPHY
[1] AUDRAS, C., COMPORT, A. I., MEILLAND, M., AND RIVES, P. Real-time dense
rgb-d localisation and mapping. In Australian Conference on Robotics and Automation.
Monash University, Australia, 2011 (2011).
[2] BAKER, S., AND MATTHEWS, I. Lucas-kanade 20 years on: A unifying framework.
International Journal of Computer Vision 56, 3 (Feb. 2004), 221–255.
[3] BANZ, C., HESSELBARTH, S., FLATT, H., BLUME, H., AND PIRSCH, P. Real-time
stereo vision system using semi-global matching disparity estimation: Architecture
and fpga-implementation. In Embedded Computer Systems (SAMOS), 2010 Interna-
tional Conference on (2010), pp. 93–101.
[4] BAY, H., ESS, A., TUYTELAARS, T., AND VAN GOOL, L. Surf: Speeded up robust
features", computer vision and image understanding. Computer Vision and Image
Understanding 110, 3 (2008), 346–359.
[5] BOISSONNAT, J.-D., DEVILLERS, O., PION, S., TEILLAUD, M., AND YVINEC, M.
Triangulations in CGAL. Comput. Geom. Theory Appl. 22 (2002), 5–19.
[6] BOUGUET, J.-Y. Camera calibration toolbox for Matlab. Referred Nov 4th, 2010.
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html.
[7] BRAINSTORM MULTIMEDIA. Brainstorm products for managing ar graphics at tv
studios. Referred Apr 28th, 2013. http://www.brainstorm.es/live.
[8] BROWN, D. The Bundle Adjustment—Progress and Prospects. Int. Archives of Pho-
togrammetry 21, 3 (1976), 3–33.
[9] BUTLER, D. A., IZADI, S., HILLIGES, O., MOLYNEAUX, D., HODGES, S., AND KIM,
D. Shake’n’sense: reducing interference for overlapping structured light depth
cameras. In Proceedings of the 2012 ACM annual conference on Human Factors in Com-
puting Systems (Austin, Texas, USA, 2012), CHI ’12, ACM, pp. 1933–1936.
[10] CALONDER, M., LEPETIT, V., STRECHA, C., AND FUA, P. Brief: binary robust inde-
pendent elementary features. In Proceedings of the 11th European conference on Com-
puter vision: Part IV (Berlin, Heidelberg, 2010), ECCV’10, Springer-Verlag, pp. 778–
792.
[11] CARNEGIE MELLON UNIVERSITY. Panda 3D engine. Referred Apr 28th, 2013.
http://www.panda3d.org.
142
BIBLIOGRAPHY 143
[12] CHANG, C., CHATTERJEE, S., AND KUBE, P. A Quantization Error Analysis for
Convergent Stereo. In International Conference on Image Processing (ICIP) (Austin,
Texas, USA, 1994), vol. 2, pp. 735–739.
[13] CIVERA, J., DAVISON, A. J., AND MONTIEL, J. Inverse Depth Parametrization for
Monocular SLAM. Robotics, IEEE Transactions on 24, 5 (Oct. 2008), 932–945.
[14] COMPORT, A. I., MALIS, E., AND RIVES, P. Accurate quadri-focal tracking for ro-
bust 3d visual odometry. In IEEE International Conference on Robotics and Automation
, ICRA’07 (Rome, Italy, April 2007).
[15] DAVISON, A., REID, I., MOLTON, N., AND STASSE, O. MonoSLAM: Real-time
single camera SLAM. PAMI 29 (2007), 1052–1067.
[16] DENG, J., BERG, A. C., LI, K., AND FEI-FEI, L. What does classifying more than
10,000 image categories tell us? In Proceedings of the 11th European conference on
Computer vision: Part V (Heraklion, Crete, Greece, 2010), ECCV’10, Springer-Verlag,
pp. 71–84.
[17] DOBBERT, T. Matchmoving: The Invisible Art of Camera Tracking. Sybex, 2005.
[18] FISCHLER, M., AND BOLLES, R. Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography. In
Workshop In DARPA Image Understanding (University of Maryland, College Park,
April 1980), pp. 71–88.
[19] GONÇALVES, T., AND COMPORT, A. I. Real-time direct tracking of color images in
the presence of illumination variation. In ICRA (2011), pp. 4417–4422.
[20] HARALICK, R., LEE, C., OTTENBERG, K., AND NOLLE, M. Review and analysis of
solutions of the three point perspective pose estimation problem. In Int. Journal of
Computer Vision (1994), vol. 13,3, pp. 331–356.
[21] HARTLEY, R., AND ZISSERMAN, A. Multiple View Geometry in computer vision. Cam-
bridge University Press, 2001.
[22] HENRY, P., KRAININ, M., HERBST, E., REN, X., AND FOX, D. RGB-D mapping:
Using Kinect-style depth cameras for dense 3D modeling of indoor environments.
The International Journal of Robotics Research 31, 5 (Apr. 2012), 647–663.
[23] HERRERA, D., KANNALA, J., AND HEIKKILA, J. Joint depth and color camera cali-
bration with distortion correction. IEEE Transactions on Pattern Analysis and Machine
Intelligence 34, 10 (2012), 2058–2064.
[24] HIGHAM, N. J. The scaling and squaring method for the matrix exponential revis-
ited. SIAM Journal on Matrix Analysis and Applications 26, 4 (2005), 1179–1193.
[25] HIRSCHMULLER, H. Stereo processing by semi-global matching and mutual infor-
mation. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 2 (2008),
328–341.
[26] HORN, B. K. P. Recovering baseline and orientation from essential matrix. MIT AI
Memo, Internal Report (1990).
144 BIBLIOGRAPHY
[27] HUBER, P.-J. Robust Statistics. Wiler, New York, 1981.
[28] IRANI, M., AND ANANDAN, P. About direct methods. In Proceedings of the Inter-
national Workshop on Vision Algorithms: Theory and Practice (London, UK, UK, 1999),
ICCV ’99, Springer-Verlag, pp. 267–277.
[29] JOANNEUM RESEARCH FORSCHUNGSGESELLSCHAFT, J. R. Instutute of Digital
Image Processing, PRoVisG Mars Challenge, Austria. Referred Apr 4th, 2013.
http://provisg.eu/news/provisg-mars-3d-challenge.
[30] JOHNSON, A. E., AND KANG, S. B. Registration and integration of textured 3-d
data. Image and Vision Computing 17, 2 (1999), 135–147.
[31] KATO, H., AND BILLINGHURST, M. Marker tracking and hmd calibration for a
video-based augmented reality conferencing system. In Proceedings of the 2nd Inter-
national Workshop on Augmented Reality (IWAR 99) (San Francisco, USA, Oct. 1999).
[32] KAZHDAN, M., AND HOPPE, H. Screened poisson surface reconstruction. ACM
Transactions on Graphics (2013). To Appear, Implementation: http://www.cs.jhu.
edu/~misha/Code/PoissonRecon/Version4.51/.
[33] KLEIN, G., AND MURRAY, D. Parallel tracking and mapping for small AR
workspaces. In Proc. Sixth IEEE and ACM International Symposium on Mixed and
Augmented Reality (ISMAR’07) (Nara, Japan, November 2007), pp. 225–234.
[34] KONOLIGE, K., AND AGRAWAL, M. FrameSLAM: from bundle adjustment to re-
altime visual mappping. IEEE Trans. on Robotics 24 (2008), 1066–1077.
[35] KOPF, J., COHEN, M. F., LISCHINSKI, D., AND UYTTENDAELE, M. Joint bilateral
upsampling. In ACM Transactions on Graphics, Proceedings of SIGGRAPH 2007 (New
York, NY, USA, 2007), vol. 26, p. 96.
[36] KÜMMERLE, R., GRISETTI, G., STRASDAT, H., KONOLIGE, K., AND BURGARD,
W. g2o: A General Framework for Graph Optimization. In IEEE International
Conference on Robotics and Automation , ICRA’11 (Shanghai, China, May 2011).
[37] LOURAKIS, M. A., AND ARGYROS, A. SBA: A Software Package for Generic Sparse
Bundle Adjustment. ACM Transactions on Mathematical Software 36, 1 (2009), 1–30.
[38] LOW, K. Linear least-squares optimization for point-to-plane icp surface registra-
tion. In Technical report TR04-004 (University of North Carolina, 2004).
[39] LOWE, D. G. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision 60, 2 (November 2004), 91–110.
[40] MA, Y., SOATTO, S., KOSECKA, J., AND SASTRY, S. An invitation to 3-D vision: from
images to geometric models, vol. 26 of Interdisciplinary applied mathematics. Springer,
New York, 2004.
[41] MALLON, J., AND WHELAN, P. F. Precise Radial Un-distortion of Images.
ICPR2004 - 17th International Conference on Pattern Recognition Cambridge, UK, 23rd
- 26th (August 2004), 18–21.
BIBLIOGRAPHY 145
[42] MARK, W. R., GLANVILLE, R. S., AKELEY, K., AND KILGARD, M. J. Cg: a system
for programming graphics hardware in a c-like language. ACM Trans. Graph. 22, 3
(2003), 896–907.
[43] MARTON, Z., RUSU, R., AND BEETZ, M. On fast surface reconstruction methods
for large and noisy point clouds. In Robotics and Automation, 2009. ICRA ’09. IEEE
International Conference on (2009), pp. 3218–3223.
[44] MEILLAND, M., AND COMPORT, A. Super-resolution 3D Tracking and Mapping.
In IEEE International Conference on Robotics and Automation, ICRA’13 (Karlsruhe,
Germany., May 6-10 2013).
[45] MEILLAND, M., COMPORT, A. I., AND RIVES, P. A spherical robot-centered rep-
resentation for urban navigation. In IEEE International Conference on Robotics and
Automation, ICRA’10 (Taipei, Taiwan, 2010).
[46] MEILLAND, M., COMPORT, A. I., AND RIVES, P. Real-time dense visual tracking
under large lighting variations. In Proceedings of the British Machine Vision Confer-
ence, BMVC’11 (University of Dundee, Scotland, 2011), BMVA Press, pp. 45.1–45.11.
[47] MICHOT, J., BARTOLI, A., AND GASPARD, F. Bi-Objective Bundle Adjustment
With Application to Multi-Sensor SLAM. In International Symposium on 3D Data
Processing, Visualization and Transmission (3DPVT’10) (Paris,France, 2010).
[48] MONTIEL, J., CIVERA, J., AND DAVISON, A. Unified inverse depth parametriza-
tion for monocular slam. In Proceedings of Robotics: Science and Systems (Philadel-
phia, USA, August 2006).
[49] MOTIONANALYSIS CORPORATION. MotionAnalysis products for motion capture
and live camera tracking. Referred Apr 28th, 2013. http://www.motionanalysis.
com.
[50] NASA/USGS. High resolution color texture map of Mars, captured by Viking
26th October 2001. Referenced Apr 2013, http://www.solarviews.com/cap/mars/
marscyl1.htm.
[51] NATURALPOINT. Optitrack motion capture system for low-cost tracking. Referred
Apr 28th, 2013. http://www.naturalpoint.com/optitrack.
[52] NEWCOMBE, R., LOVEGROVE, S., AND DAVISON, A. DTAM: Dense Tracking and
Mapping in Real-Time. In 13th International Conference on Computer Vision (ICCV’11)
(Barcelona, Spain, Nov. 2011).
[53] NEWCOMBE, R. A., IZADI, S., HILLIGES, O., MOLYNEAUX, D., KIM, D., DAVI-
SON, A. J., KOHLI, P., SHOTTON, J., HODGES, S., AND FITZGIBBON, A. Kinect-
fusion: Real-time dense surface mapping and tracking. In Proceedings of the 2011
10th IEEE International Symposium on Mixed and Augmented Reality (Washington,
DC, USA, 2011), ISMAR ’11, pp. 127–136.
[54] NISTÉR, D. An efficient solution to the five point relative pose problem. In Proceed-
ings in IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR 2003, 2003), vol. 2, pp. 195–202.
146 BIBLIOGRAPHY
[55] NISTÉR, D. Preemptive ransac for live structure and motion estimation. In Proceed-
ings of the Ninth IEEE International Conference on Computer Vision - Volume 2 (2003),
ICCV ’03, pp. 199–.
[56] PAALANEN, P., AND KAMARAINEN, J.-K. Narrow baseline GLSL multiview
stereo. In 3D Data Processing, Visualization and Transmission (3DPVT) (Paris, France,
2010).
[57] PODLOZHNYUK, V. Histogram calculation in cuda. In CUDA SDK, Nvidia Corpora-
tion (2007).
[58] PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLANNERY, B. P. Nu-
merical recipes in C (2nd ed.): the art of scientific computing. Cambridge University
Press, New York, NY, USA, 1992.
[59] PULLI, K. Surface modeling and display from range and color data. Ph.D. Thesis,
1997, Referred 29.8, 2013. http://grail.cs.washington.edu/theses/PulliPhd.
pdf.
[60] ROYER, E., LHUILLIER, M., DHOME, M., AND LAVEST, J.-M. Monocular
vision for mobile robot localization and autonomous navigation. JOURNAL OF
COMPUTER VISION 74, 3 (2007), 237–260.
[61] RUSINKIEWICZ, S., AND LEVOY, M. Efficient variants of the ICP algorithm. In Third
International Conference on 3-D Digital Imaging and Modeling (3DIM2001) (Quebec
City, Canada, 2001), pp. 145–152.
[62] RUSU, R. B., AND COUSINS, S. 3D is here: Point Cloud Library (PCL). In IEEE
International Conference on Robotics and Automation (ICRA) (Shanghai, China, May
9-13 2011).
[63] SCHARSTEIN, D., SZELISKI, R., AND ZABIH, R. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. In Proceedings of the IEEE Work-
shop on Stereo and Multi-Baseline Vision, Kauai, HI. (December 2001).
[64] SHAMS, R., AND KENNEDY, R. A. Efficient histogram algorithms for NVIDIA
CUDA compatible devices. In Proceedings of the International Conference on Signal
Processing and Communications Systems, IEEE (Gold Coast, Australia, 2007), pp. 418–
422.
[65] SHOTTON, J., FITZGIBBON, A., COOK, M., SHARP, T., FINOCCHIO, M., MOORE,
R., KIPMAN, A., AND BLAKE, A. Real-time human pose recognition in parts from
single depth images. In Proceedings of the 2011 IEEE Conference on Computer Vision
and Pattern Recognition (Washington, DC, USA, 2011), CVPR ’11, IEEE Computer
Society, pp. 1297–1304.
[66] SHOTTON, J., GLOCKER, B., ZACH, C., IZADI, S., CRIMINISI, A., AND FITZGIB-
BON, A. Scene Coordinate Regression Forests for Camera Relocalization in RGB-D
Images. In Proceedings in IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’13) (2013).
BIBLIOGRAPHY 147
[67] SIDJE, R. B. Expokit: Software package for computing matrix exponentials. ACM
- Transactions On Mathematical Software 24, 1 (1998), 130–156.
[68] SILVEIRA, G., MALIS, E., AND RIVES, P. An Efficient Direct Approach to Visual
SLAM. IEEE Transactions on Robotics 24, 5 (2008), 969–979.
[69] SMIRNOV, S., GOTCHEV, A. P., AND EGIAZARIAN, K. Methods for depth-map
filtering in view-plus-depth 3d video representation. EURASIP Journal on Advances
in Signal Processing (2012), 25.
[70] STEINBRÜCKER, F., STURM, J., AND CREMERS, D. Real-time visual odometry from
dense rgb-d images. In Workshop on Live Dense Reconstruction with Moving Cameras
at the International Conference on Computer Vision (ICCV’11) (Barcelona,Spain, 2011).
[71] STRASDAT, H., MONTIEL, J. M. M., AND DAVISON, A. J. Visual SLAM: Why filter?
Image and Vision Computing 30, 2 (Feb. 2012), 65–77.
[72] STÜCKLER, J., AND BEHNKE, S. Integrating Depth and Color Cues for Dense
Multi-Resolution Scene Mapping Using RGB-D Cameras. In In Proceedings of
IEEE International Conference on Multisensor Fusion and Information Integration (MFI)
(Hamburg, Germany, Sep 2012).
[73] STÜHMER, J., GUMHOLD, S., AND CREMERS, D. Real-time dense geometry from a
handheld camera. In Proceedings of the 32nd DAGM conference on Pattern recognition
(Berlin, Heidelberg, 2010), Springer-Verlag, pp. 11–20.
[74] STURM, J., MAGNENAT, S., ENGELHARD, N., POMERLEAU, F., COLAS, F., BUR-
GARD, W., CREMERS, D., AND SIEGWART, R. Towards a benchmark for rgb-d
slam evaluation. In Proc. of the RGB-D Workshop on Advanced Reasoning with Depth
Cameras at Robotics: Science and Systems Conf. (RSS) (Los Angeles, USA, June 2011).
[75] SZELISKI, R. Image alignment and stitching: A tutorial. Tech. rep., MSR-TR-2004-
92, Microsoft Research, 2004, 2005.
[76] TOMASI, C., AND BIRCHFIELD, S. Depth discontinuities by pixel-to-pixel stereo.
In Sixth International Conference on Computer Vision, (ICCV’98) (Bombay,India, 1998),
pp. 1073–1080.
[77] TOMASI, C., AND MANDUCHI, R. Bilateral filtering for gray and color images. In
Sixth International Conference on Computer Vision (ICCV’1998) (Bombay,India, 1998),
pp. 839–846.
[78] TOSSAVAINEN, T. Approximate and sqp two view triangulation. In Computer Vision
- ACCV 2010 - 10th Asian Conference on Computer Vision, Queenstown, New Zealand,
November 8-12, 2010, Revised Selected Papers, Part III (2010), R. Kimmel, R. Klette,
and A. Sugimoto, Eds., vol. 6494 of Lecture Notes in Computer Science, Springer,
pp. 1–14.
[79] TRIGGS, B., MCLAUCHLAN, P., HARTLEY, R., AND FITZGIBBON, A. Bundle ad-
justment - a modern synthesis. In Vision Algorithms: Theory and Practice (2000),
B. Triggs, A. Zisserman, and R. Szeliski, Eds., vol. 1883 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 298–372.
148 BIBLIOGRAPHY
[80] TYKKÄLÄ, T. M., , COMPORT, A. I., KÄMÄRÄINEN, J. K., AND HARTIKAINEN,
H. Live RGB-D Camera Tracking for Television Production Studios. In Journal of
Visual Communication and Image Representation, Elsevier (Jun 2013).
[81] TYKKÄLÄ, T. M., AUDRAS, C., AND COMPORT, A. I. Direct iterative closest point
for real-time visual odometry. In 13th International Converence on Computer Vision,
(ICCV’11), 2nd IEEE Workshop on Computer Vision in Vehicle Technology: From Earth
to Mars (Barcelona, Spain, Nov 2011).
[82] TYKKÄLÄ, T. M., AND COMPORT, A. I. A Dense Structure Model for Image Based
Stereo SLAM. In IEEE International Conference on Robotics and Automation (ICRA’11)
(Shanghai, China, May 9-13 2011).
[83] TYKKÄLÄ, T. M., COMPORT, A. I., AND KÄMÄRÄINEN, J.-K. Photorealistic 3D
Mapping of Indoors by RGB-D Scanning Process. In IEEE RSJ/International confer-
ence on Intelligent Robot and System, IROS (Tokyo, Japan, Nov 2013).
[84] TYKKÄLÄ, T. M., HARTIKAINEN, H., COMPORT, A. I., AND KÄMÄRÄINEN, J. K.
RGB-D Tracking and Reconstruction for TV Broadcasts. In 8th International Confer-
ence on Computer Vision Theory and Applications (VISAPP’13) (Barcelona, Spain, Feb
2013).
[85] VICON. Boujou, professional matchmoving solution for film industry. Referenced
Apr 2013, http://www.vicon.com/boujou/.
[86] VISCODA. Voodoo camera tracker: A tool for the integration of virtual
and real scenes, Digital Laboratorium für Informationstechnologie, University
of Hannover. Referenced Apr. 2013, http://www.viscoda.com/index.php/en/
voodoo-manual.
[87] WELCH, G., AND BISHOP, G. An Introduction to the Kalman Filter. Tech. Rep.
TR 95-041, University of North Carolina at Chapel Hill, Department of Computer
Science, 2006.
[88] WENDEL, A., MAURER, M., GRABER, G., POCK, T., AND BISCHOF, H. Dense re-
construction on-the-fly. In Proceedings in IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’12) (2012), pp. 1450–1457.
[89] WHELAN, T., KAESS, M., FALLON, M., JOHANNSSON, H., LEONARD, J., AND
MCDONALD, J. Kintinuous: Spatially extended KinectFusion. In RSS Workshop on
RGB-D: Advanced Reasoning with Depth Cameras (Sydney, Australia, Jul 2012).
[90] YANG, R., AND POLLEFEYS, M. Multi-resolution real-time stereo on commodity
graphics hardware. IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’03) 1 (2003), 211–217.
[91] ZHANG, Z. A flexible new technique for camera calibration. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI’00) 22, 11 (November 2000), 1330–
1334.
APPENDIX I
Simulated Asteroid datasets
Synthetic datasets were rendered with the Blender along with ground-truth trajectory.
The Eros and Itokawa 3D models were obtained from NASA and Thales-Alenia Space
provided a real trajectory around Itokawa asteroid (Figure I.1). The material proper-
ties, however, could not be modeled using default Blender and precise simulation of
an asteroid mission was not possible. Some softwares such as PANGU (Planet and Aster-
oid Natural Scene Generation Utility) exist for simulating Hapke BRDF with asteroid
models. PANGU is designed by European Space Agency specifically for producing real-
istic imaginery of space environments, but unfortunately it was not available for this
project. Therefore, general specular material was used instead as Hapke also contains
some specular components. Despite the material simulation problem, the asteroid or-
biting case was not natural for a stereo-based technology, because sufficient baseline
would have required a very large baseline (two separate satellites). The severity of this
problem was verified using Hartley-Sturm triangulation to reconstruct 3D points from
noisy 2D projections whose noise distribution is Gaussian (stdev 1px and 0.1px). The
image resolution is assumed to be 800 × 600 and camera field-of-view is 49.13◦. The
resulting graphs illustrate the reconstruction error dependency on stereo baseline (Fig-
ure I.1). If the disparity stdev is merely 0.1px, 200m baseline will be sufficient. These
numbers imply that applying stereo-based tracking and mapping technology is not fea-
sible for asteroid missions. Also monocular approaches exist [15], but producing precise
dense reconstructions without explicit depth measurements is problematic. In a recent
DTAM system, dense reconstruction is obtained with a monocular camera by assuming
continuous surface where measurements do not exist [52].
149
(a) (b)
(c) (d)
(e) (f)
Figure I.1: Blender generated dataset for asteroid reconstruction mission. a) Real
Eros Asteroid. b) A rendered Eros using Blender, c) A real satellite trajectory around
the Itokawa asteroid provided by Thales-Alenia Space, d) Convergence was veri-
fied by matching a precise target projection with an estimated projection points.
The precise projections on green and photometrically estimated ones on yellow be-
fore convergence. e) Hartley-Sturm reconstruction error in kilometers as a function
of stereo baseline in an asteroid orbiting mission. Assuming 1px Gaussian stdev
in disparity values. Over 1km baseline is required to reduce reconstruction error
into tens of meters. f) Assuming 0.1px Gaussian stdev in disparity values. 200me-
ters is a sufficient baseline, which produces 10m standard deviation for 3D points.
Calibration is exact without any noise.
Figure I.2: The turn-table at INRIA was used for recording the rock sequence.
APPENDIX II
Depth map fusion algorithms
Algorithm II.1 RGB-D depth map fusion procedure.
Input: Reference RGB-D image {I∗,Z∗} with depth map pose T∗, RGB-D images {Ik,Zk}, and
depth map poses Tk, where k = {1, 2, . . . , n}. Tb is the baseline transform and K is the intrinsic
matrix. B is initial mode bound, C is color threshold, G is maximum distance to pixel center
ray, N is a threshold to control statistical reliability.
Output: Filtered Z f and stdev image σ
1: A⇐ ∅
2: for all k = {1, 2, . . . , n} do
3: for all v = {1 . . . height} do
4: for all u = {1 . . . width} do
5: p = (u, v, 1)T
6: P⇐ Zk(u, v)K−1p # reconstruct a point
7: c⇐ Ik(w(Tb, P)) # sample color from associated RGB image
8: P∗ ⇐ T∗T−1k P # warp point into reference frame
9: if ‖c− I∗(w(Tb, P∗))‖ ≥ C then
10: continue # Lambertian assumption does not hold, next point
11: end if
12: p∗ ⇐ round(KN(P∗)) # project and discretise into integers
13: r∗ ⇐ normalize(K−1p∗) # generate a unit ray through pixel center
14: if ‖P∗ − (P∗ · r∗)r∗‖ ≥ G then
15: continue # point too distant from ray
16: end if
17: A(p∗)⇐ {A(p∗), (0, 0, 1) · P∗} # collect z measurement
18: end for
19: end for
20: end for
21: for all p ∈ {width× height} do
22: if #A(p) < N then
23: Z f (p)⇐ 0, σ(p)⇐ 0, continue; # not enough statistical support
24: end if
25: Zm ⇐ median(A(p)) # calculate median z
26: Ω⇐ listIndices(‖A(p)−Zm‖ ≤ B) # enumerate z samples near median
27: Z f (p)⇐ 1.0/(1N ∑ 1.0/AΩ(p)) # local average using inverted values
28: σ(p)⇐
√
1
N (Z f (p)−AΩ(p))2 # determine stdev image
29: end for
152
Algorithm II.2 Depth refinement using photometric minimization.
Input: Reference RGB-D {I∗,Z∗}, stdev image σ∗, reference depth map pose is T∗. gradient
mask M, RGB images Ik with poses Tk, where k = {1, 2, . . . , n}. baseline matrix Tb, intrinsic
matrix K, number of discrete candidates N.
Output: Photometrically refined Z f
1: for all v = {1 . . . height} do
2: for all u = {1 . . . width} do
3: if M(u, v) > 0 then
4: # enumarate discrete depth candidates in depth range
5: z0 ⇐ Z∗(u, v)− σ∗(u, v), z1 ⇐ Z∗(u, v) + σ∗(u, v)
6: S(u, v, p) = z0 + p ∗ (z1 − z0)/N , where p = {1, 2, . . . , N}
7: end if
8: end for
9: end for
10: C = ∅
11: for all k = {1, 2, . . . , n} do
12: T = Tk(T∗)−1
13: for all v = {1 . . . height} do
14: for all u = {1 . . . width} do
15: if M(u, v) > 0 then
16: # increment cost terms to the kth image
17: for all p = {1 . . . N} do
18: P⇐ S(u, v, p)K−1(u, v, 1)T # reconstruct a point
19: C(u, v, p) = C(u, v, p) + ‖Ik(w(T, P))− I∗(u, v)‖
20: end for
21: end if
22: end for
23: end for
24: end for
25: for all v = {1 . . . height} do
26: for all u = {1 . . . width} do
27: if (M(u, v) > 0) then
28: # avoid border samples (the minimum not within the bounds?)
29: bestIndex⇐ argmin
p
C(u, v, p))
30: if 1 < bestIndex < N then
31: Z f (u, v)⇐ S(u, v, bestIndex) # refine depth
32: end if
33: end if
34: end for
35: end for

ACTA UNIVERSITATIS LAPPEENRANTAENSIS
491. HIETANEN, IIRO. Design and characterization of large area position sensitive radiation
detectors. 2012. Diss.
492. PÄSSILÄ, ANNE. A reflexive model of research-based theatre Processing innovation of the
cross-road of theatre, reflection and practice-based innovation activities. 2012. Diss.
493. RIIPINEN, TOMI. Modeling and control of the power conversion unit in a solid oxide fuel
cell environment. 2012. Diss.
494. RANTALAINEN, TUOMAS. Simulation of structural stress history based on dynamic anal-
ysis. 2012. Diss.
495. SALMIMIES, RIINA. Acidic dissolution of iron oxides and regeneration of a ceramic filter
medium. 2012. Diss.
496. VAUTERIN, JOHANNA JULIA. The demand for global student talent: Capitalizing on the
value of university-industry collaboration. 2012. Diss.
497. RILLA, MARKO. Design of salient pole PM synchronous machines for a vehicle traction
application. 2012. Diss.
498. FEDOROVA, ELENA. Interdependence of emerging Eastern European stock markets. 2012.
Diss.
499. SHAH, SRUJAL. Analysis and validation of space averaged drag model for numerical sim-
ulations of gas-solid flows in fluidized beds. 2012. Diss.
500. WANG, YONGBO. Novel methods for error modeling and parameter identification of re-
dundant hybrid serial-parallel robot. 2012. Diss.
501. MAXIMOV, ALEXANDER. Theoretical analysis and numerical simulation of spectral ra-
diative properties of combustion gases in oxy/air-fired combustion systems. 2012. Diss.
502. KUTVONEN, ANTERO. Strategic external deployment of intellectual assets. 2012. Diss.
503. VÄISÄNEN, VESA. Performance and scalability of isolated DC-DC converter topologies in
low voltage, high current applications. 2012. Diss.
504. IKONEN, MIKA. Power cycling lifetime estimation of IGBT power modules based on chip
temperature modeling. 2012. Diss.
505. LEIVO, TIMO. Pricing anomalies in the Finnish stock market. 2012. Diss.
506. NISKANEN, ANTTI. Landfill gas management as engineered landfills – Estimation and
mitigation of environmental aspects. 2012. Diss.
507. QIU, FENG. Surface transformation hardening of carbon steel with high power fiber laser.
2012. Diss.
508. SMIRNOV, ALEXANDER. AMB system for high-speed motors using automatic commis-
sioning. 2012. Diss.
509. ESKELINEN, HARRI, ed. Advanced approaches to analytical and systematic DFMA anal-
ysis. 2013. Diss.
510. RYYNÄNEN, HARRI. From network pictures to network insight in solution business – the
role of internal communication. 2013. Diss.
511. JÄRVI, KATI. Ecosystem architecture design: endogenous and exogenous structural prop-
erties. 2013. Diss.
512. PIILI, HEIDI. Characterisation of laser beam and paper material interaction. 2013. Diss.
513. MONTO, SARI. Towards inter-organizational working capital management. 2013. Diss.
514. PIRINEN, MARKKU. The effects of welding heat input usability of high strength steels in
welded structures. 2013. Diss.
515. SARKKINEN, MINNA. Strategic innovation management based on three dimensions di-
agnosing innovation development needs in a peripheral region. 2013. Diss.
516. MAGLYAS, ANDREY. Overcoming the complexity of software product management. 2013.
Diss.
517. MOISIO, SAMI. A soft contact collision method for real-time simulation of triangularized
geometries in multibody dynamics. 2013. Diss.
518. IMMONEN, PAULA. Energy efficiency of a diesel-electric mobile working machine. 2013.
Diss.
519. ELORANTA, LEENA. Innovation in a non-formal adult education organisation – multi-
case study in four education centres. 2013. Diss.
520. ZAKHARCHUK, IVAN. Manifestation of the pairing symmetry in the vortex core structure
in iron-based superconductors. 2013. Diss.
521. KÄÄRIÄINEN, MARJA-LEENA. Atomic layer deposited titanium and zinc oxides; struc-
ture and doping effects on their photoactivity, photocatalytic activity and bioactivity. 2013.
Diss.
522. KURONEN, JUHANI. Jatkuvan äänitehojakautuman algoritmi pitkien käytävien äänikent-
tien mallintamiseen. 2013. Diss.
523. HÄMÄLÄINEN, HENRY. Identification of some additional loss components in high-power
low-voltage permanent magnet generators. 2013. Diss.
524. SÄRKKÄ, HEIKKI. Electro-oxidation treatment of pulp and paper mill circulating waters
and wastewaters. 2013. Diss.
525. HEIKKINEN, JANI. Virtual technology and haptic interface solutions for design and con-
trol of mobile working machines. 2013. Diss.
526. SOININEN, JUHA. Entrepreneurial orientation in small and medium-sized enterprises dur-
ing economic crisis. 2013. Diss.
527. JÄPPINEN, EERO. The effects of location, feedstock availability, and supply-chain logistics
on the greenhouse gas emissions of forest-biomass energy utilization in Finland. 2013. Diss.
528. SÖDERHOLM, KRISTIINA. Licensing model development for small modular reactors (SMRs)
– focusing on the Finnish regulatory framework. 2013. Diss.
529. LAISI, MILLA. Deregulation’s impact on the railway freight transport sector’s future in the
Baltic Sea region. 2013. Diss.
530. VORONIN, SERGEY. Price spike forecasting in a competitive day-ahead energy market.
2013. Diss.
531. PONOMAREV, PAVEL. Tooth-coil permanent magnet synchronous machine design for
special applications. 2013. Diss.
532. HIETANEN, TOMI. Magnesium hydroxide-based peroxide bleaching of high-brightness
mechanical pulps. 2013. Diss.

