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Hydraulic head is distributed through a medium with porous aspect. The
analysis of hydraulic head from one point to another is used by the Richard's
equation. This equation is equivalent to the groundwater flow equation that
predicts the volumetric water contents.
COMSOL 3.5 is used for computation applying Richard's equation. A rect-
angle of 100 meters of length and 10 meters of large (depth) with 0,1 m/s
flux of inlet as source of our fluid is simulated. The domain have Richards'
equation model in two dimension (2D). Hydraulic head increases proportional
with moisture content.
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1 INTRODUCTION
The passage of fluid from one distance to another seems interesting specially
through a medium with porous aspect. In this paper, we discuss the fluid flow
underground porous analyzing its hydraulic head distribution using Richard's
equation according to a specific time. Natural ground fluid like ground water
contains some impurities, even if it is unaffected by human activities. The
types and concentrations of natural impurities depend on the nature of the
geological material through which the fluid (groundwater) moves and the qual-
ity of the recharge water. Fluid (Groundwater) moving through sedimentary
rocks and soils may pick up a wide range of compounds such as magnesium,
calcium, and chlorides. Some aquifers have high natural concentration of dis-
solved constituents such as arsenic, boron, and selenium. The effect of these
natural sources of contamination on groundwater quality depends on the type
of contaminant and its concentrations. Apart for those natural impurities,
there are others artificial ones caused by the human activities. At or near the
land surface: municipal waste landspreading, salt for de-icing streets, streets
and parking lots chemicals: storage and spills, fuels: storage and spills, mine
tailing piles, chemical spills, fertilizers, livestock waste storage facilities and
landspreading, pesticides, fertilizers, homes, cleaners, detergents, motor oil,
paints, pesticides or below the land surface (landfills, leaky sewer lines, under-
ground storage, tanks, wells: poorly constructed or abandoned, septic systems,
wells: poorly, constructed or abandoned). For this study we analyze the fluids
coming from the waste disposal or industrial discharge.
Figure 1: Groundwater system
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The theory of ground water was previous discussed by Fowler (1997) where
several mathematical equations were applied to describe the seepage, consol-
idation, solute dispersivity and heterogeneous porous media. However, the
hydraulic head distribution underground was not clarified and it is interesting
especially in the field where there are different layouts with different soil prop-
erties. We will analyze the fluid transport theories and fluid flow underground
water. The mathematical model equations implementation with Comsol soft-
ware will allow us to analyze hydraulic head underground from a point A on
the ground and a point B underground after T time and L distance . The
software COMSOL 3.5a will be used in our computation.
The Richards' equation is the most often used model. This equation is equiva-
lent to the groundwater flow equation, which is in terms of hydraulic head (h),
by substituting h = ψ + z; where h is the hydraulic head, ψ is the pressure
head and z is the elevation, and changing the storage mechanism to dewa-
tering. The reason for writing it in the form above is for convenience with
boundary conditions (often expressed in terms of pressure head, for example
atmospheric conditions are ψ = 0).It has been introduced by Richards (1931)
who has suggested that the Darcy's law originally devised for saturated flow
in porous media is also applicable to unsaturated flow in porous media. For
experiments on water transport in soil horizontal columns, Richards' equation
predicts that volumetric water contents should depend solely on the ratio (dis-
tance)/(time)q where q = 0.5. Substantial experimental evidence shows that
value of q is significantly less than 0.5 in some cases. Donald Nielsen and col-
leagues in 1962 related values of q < 0.5 to 'jerky movements' of the wetting
front, i.e. occurrences of rare large movements. The physical model of such
transport is the transport of particles being randomly trapped and having a
power law distribution of waiting periods. The corresponding mathematical
model is a generalized Richards' equation in which the derivative of water con-
tent on time is a fractional one with the order equal or less than one.
The structure of this study is organized as follows: In Chapter 1 we give
general introduction to the underground water, its pollution and the mathe-
matical equations used by previous researcher to describe fluids flow in porous
media. Mathematical background on fluids flow and porous medium is pre-
sented in Chapter 2, even the software description COMSOL 3.5a will be given
in this chapter. In Chapter 3, we have methodology, discuss and formulate our
particular problem specifying the limits, boundary conditions and properties.
Computation, simulations and different scenarios will be presented in the 4th
chapter. We will conclude and propose some recommendation in the last chap-
ter, Chapter 5.
1.1 OBJECTIVES
The objectives of this study are to analyze, evaluate by Richard's equation
the hydraulic head of the underground and its transmission from a point A of
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porous ground to a point B according the time.
For this work, we create the rectangle of 100 meters of length and 10 meters
of large (depth) with 0,1 m of inlet as source of our fluid. The domain will
have Richards' equation model in two dimension (2D)with properties of sand.
We compute and analyze the model with three non homogeneous levels. We
consider the fluid as homogeneous element with exact fixed properties.The
density of used fluid is 1000kg/m3 (water).
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2 LITERATURE REVIEWS
The fluid is flowing underground what we qualified as the porous media and
that is why in the following chapter we will discuss the properties of the
medium and the mathematical equations describing the area and the fluids
in general in the prescribed ground in general. These mathematical descrip-
tions will allow us to determine the aspect of that fluid being infiltrated and
flowing underground.
2.1 The description of fluid flow through a porous medium
The fluid in the porous medium obey the Darcy's law. Darcy's law is a simple
proportional relationship between the instantaneous discharge rate through a
porous medium, the viscosity of the fluid and the pressure drop over a given
distance.
Figure 2: Ground and underground aspect
The rate of flow (= volume of water passing per unit time), Q
Q = KA
h1 − h2
L
(1)
is proportional to the cross-sectional area, A, of the column, proportional to
the difference in water level elevations, h1 and h2, in the inflow and outflow
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reservoirs of the column, respectively, and inversely proportional to the col-
umn length, L. where K is a coefficient of proportionality called hydraulic
conductivity.
Figure 3: Darcy's experiment
In this experiment, h (hydraulic head or head)
h = Z +
P
ρg
(2)
where z is the elevation, p and ρ are the fluid's pressure and mass density,
respectively, and g is the gravity acceleration.
2.1.1 Hydraulic head
Hydraulic head is a measurement of the amount of energy available in ground-
water due to pressures in a water table or the height of the water level in
the ground. Ground water flow occurs because of the difference in energy of
the water from one point to another. Ground water flows from a point of
higher energy to a point of lower energy. The energy of water at a particular
point in the ground water system consists of potential energy, elastic energy
and kinetic energy. The kinetic energy can be ignored in most cases, however,
because the ground water flow velocity is typically very low; kinetic energy is
usually considered negligible compared to the potential and elastic energy. The
permeability of the unsaturated zone varies with moisture content, hydraulic
head increases proportionately with moisture content.
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2.2 A real porosity
Soils are made of particles of different types and sizes. The space between
particles is called pore space that determines the amount of water that a given
volume of soil can hold. Porosity refers to how many pores, or holes, a soil
has. Porosity is the open space in a rock divided by the total rock volume
(solid + space or holes). Mathematically, Porosity is normally expressed as a
percentage of the total rock which is taken up by pore space.
Figure 4: Area porosity
φ =
Vv
V
(3)
where
φ=porosity (percent)
Vv volume of voids
V the total volume
Soil porosity values range from 0 to 1. Soils with a high bulk density have low
total porosity because empty pores do not have any mass
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2.2.1 Unsaturated Flow through Pavements
The unsaturated zone is located above the water table. In this zone, the pore
spaces are usually only partially filled with water, the reminder of the voids are
taken up by air. Therefore, the volumetric water content is lower than the soil
porosity. Due to the fact that water in this zone is held in the soil pores under
surface-tension forces, negative pressures or suction pressures are developed.
Both the volumetric water content and the hydraulic conductivity are , in
soil porosity ,also function of this suction pressure. The soil volumetric water
content is held between the soil grains under surface-tension forces that are
reflected in the radius of curvature of each meniscus. The higher the volumetric
water content, the larger the radii of curvature and the lower the tension heads.
The hydraulic conductivity is not constant because of the change in volumetric
water content. The hydraulic conductivity content increases with increasing
the volumetric water content. (Freeze and Cherry, 1979).
2.3 Mathematical equations for the fluids flow under-
ground water
2.3.1 Derivation of Richards' equation
Barari et al.(2009) describe the derivation of Richards' equation in the journal
"Hydrology and Earth System Sciences Discussions". Darcy's law and the
continuity equation are given by
q = −K∂H
∂z
= −K∂ (h+ z)
∂z
= −K
(
∂h
∂z
+ 1
)
(4)
and
∂θ
∂t
= −∂q
∂z
(5)
WhereK is hydraulic conductivity, H is head equivalent of hydraulic potential,
q is flux density and t is time. The mixed form of Richards' equation is obtained
by substituting equation 4 in equation 5
∂θ
∂t
=
∂
∂z
[
K
(
∂h
∂z
+ 1
)]
(6)
Equation 6 has two independent variables: the soil water content(θ) and pore
water pressure head (h). Obtaining solutions to this equation therefore re-
quires constitutive relations to describe the interdependence among pressure,
saturation and hydraulic conductivity. However, it is possible to eliminate ei-
ther θ or h by adopting the concept of differential water capacity, defined as
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the derivative of the soil water retention curve:
C (h)
∂h
∂t
=
∂
∂z
(
K
∂h
∂z
)
+
∂K
∂z
(7)
This equation is used for modeling flow of water through unsaturated soils.
Introducing "pore water diffusivity" D defined as the ration of the hydraulic
conductivity and the differential water capacity, we obtain the θ - based form
of Richards' equation. D can be written as:
D =
K
C
=
K
∂θ
∂h
= K
∂h
∂θ
(8)
For this Equation 8, D and K are highly dependent on water content. Com-
bining equation 8 with equation.6 . We get Richards' equation as:
∂θ
∂t
=
∂
∂z
(
D
∂θ
∂z
)
+
∂K
∂z
(9)
In order to solve equation.9 , we must first properly address the task of estimat-
ing D and K, both of which are dependent on water content. Several models
have been suggested for determining these parameters. The Van Genuchten
model (Van Genuchten, 1980) and Brooks and Corey's model (Brooks and
Corey, 1964, Corey, 1994) are the more commonly used models. The Van
Genuchten model uses mathematical relations to relate soil water pressure
head with water content and unsaturated hydraulic conductivity, through a
concept called "relative saturation rate". This model matches experimental
data but its functional form is rather complicated and it is therefore diffi-
cult to implement it in most solution schemes. Brooks and Corey's model on
the other hand has a more precise definition and is therefore adopted in the
present research. This model uses the following relations to define hydraulic
conductivity and water diffusivity:
D (θ) =
Ks
αλ (θs − θr)
(
θ − θr
θs − θr
)2+ 1
λ
(10)
K (θ) = Ks
(
θ − θr
θs − θr
)3+ 2
λ
(11)
where Ks is saturated conductivity, θr is residual water content, θs is saturated
water content and α and λ are experimentally determined parameters. Brooks
and Corey determined λ as pore-size distribution index (Brooks and Corey,
1964). A soil with uniform pore-size possesses a large λ while a soil with varying
pore-size has small λ value. Theoretically, the former can reach infinity and
the latter can tend towards zero. Further manipulation of Brooks and Corey's
model yields the following equations (Witelski, 1997; Corey, 1986; Witelski,
2005):
D (θ) = D0 (n+ 1) θ
m m ≥ 0 (12)
K (θ) = K0θ
k k ≥ 1 (13)
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where K0, D0 and k are constants representing soil properties such as pore-
size distribution, particle size, etc. In this representation of D and K, θ is
scaled between 0 and 1 and diffusivity is normalized so that for all values of
m,
∫
D(θ)dθ = 1 (after Nasseri et al., 2008). Several analytical and numerical
solutions to Richards' equation exist based on Brooks and Corey's represen-
tation of D and K, replacing n=0 and k=2 in equation 12 and 13 and yields
the classic Burgers' equation extensively studied by many researchers (Basha,
2002; Broadbridge and Rogers, 1990; Whitman, 1974). The generalized Burg-
ers'equation is also obtained for general values of k and m (Grundy, 1983).
As seen previously, the two independent variables in equation (7) are time
and depth. By applying the traveling wave technique (Wazwaz, 2005; Abdoul
et al., 2008; Elwakil et al., 2004), instead of time and depth, a new variable
which is a linear combination of them is found. Tangent-hyperbolic function is
commonly applied to solve these transform equations (Soliman, 2006; Abdou,
and Soliman, 2006). Therefore the general form of Burgers' equation in order
of (n, 1) is obtained as (Wazwaz, 2005):
θt + αθ
nθz − θzz = 0 (14)
It's exact solution is
θ (z, t) =
(γ
2
+
γ
2
tanh ((A1 (z − A2t)))
) 1
n
(15)
A1 =
−αn+ n |α|
4 (1 + n)
γ (n 6= (0)) (16)
A2 =
γα
1 + n
(17)
2.3.2 Richards' equation with Green's function
Richard's equation was studied by D. Crevoisier (2006) applying the Green's
function in his paper "Analytical approach predicting water bidirectional trans-
fers: application to micro and furrow irrigation" Water transfers are submitted
to Richards' equation considering the following domain:
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Figure 5: Domain where Green's function method is applied
with ω the angle between gravity force and vertical axis. The Richards's
equation is written
∇ (k∇ (h− sin (ω)x− cos (ω) z)) = ∂tθ + S (18)
where k is the hydraulic conductivity (cm.h−1), h the pressure head (cm), θ
the water content (cm3cm−3),z the vertical coordinate taken positive down-
ward (cm) and S a sink or source term, usually the plant uptake (h−1). This
equation is highly non-linear and it's writing has to be simplified to allow its
resolution using Green's function. The following three equations allow the
linearization of Richards' equation by applying the Kirchhoff transformation
defined in equation 19 and by choosing θ and K relationships suited to the
problem, respectively linear soil model defined in equation 20 and used by
Warrick and Gardner model defined in equation 21.
φ (h) =
∫ h
−∞
k (h) dh (19)
θ (h) = θr +
k (h)
K
with K =
ks
(θs − θr) (20)
k (h) = kse
αh (21)
where ks is the saturated hydraulic conductivity (cm.h
−1),α the inverse of the
capillary length (cm−1), θr and θs, the retention and saturated water con-
tent (cm3cm−3). φ is the flux potential (cm2.h−1). The resulted linear PDE
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is then submitted to two transformations. First, dimensionless variables are
introduced and a function change is used. The Richards' equation become:
∂TΨ = 4Ψ (22)
with the following dimensionless variables
X
x
=
Z
z
=
α
2
;
T
t
=
αk
4
;
Φ
φ
=
α
Ks
(23)
and the following function change
Ψ = e−X sinω−Z cosω+TΦ (24)
The initial condition is
[Ψ]T=0 = e
−X sinω−Z cosωΦi (25)
Green's function method gives analytical solutions to PDE with complex bound-
ary conditions. It involves multiplying the initial PDE by the Green's function
G and integrating the result. The use of Green's function is fully developed by
Greenberg [5]. This function G (Xs, Zs, Ts) is the solution to the initial PDE
submitted to an infinite pulse at the point (Xs, Zs) and time Ts as the initial
condition. Green's function depends on the type of boundary conditions con-
sidered in the PDE but is, in both cases, the linear combination of functions
G1D(X,Xs, T, Ts)G1D(Z,Zs, T, Ts) defined in equation 26
G1D (U,Us, T, Ts) =
1√
4pi (T − Ts)
e
(U−Us)2
4(T−Ts) (26)
Thanks to the Green's function, the solution of the PDE considered in the
eqn(22) can be analytically written
Ψ =
∫ ∞
0
∫ ∞
−∞
[GΨ]Ts=0 dXsdZs +
∫ T
0
∫ ∞
−∞
[Ψ∂zsG−G∂zsΨ]zs=0 dXsdTs (27)
where the first integral accounts for the initial condition and the second for
the boundary condition at the soil surface.
2.4 SOFTWAREDESCRIPTION: COMSOLMultiphysics
3.5a
COMSOL Multiphysics is a powerful interactive environment for modeling and
solving all kinds of scientific and engineering problems based on partial dif-
ferential equations (PDEs). You can easily extend conventional models for
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one type of physics into multiphysics models that solve coupled physics phe-
nomena and do so simultaneously. Using the application modes in COMSOL
Multiphysics, you can perform various types of analysis (stationary and time-
dependent analysis, linear and nonlinear analysis,eigenfrequency and modal
analysis). The software runs the finite element analysis together with adaptive
meshing and error control using a variety of numerical solvers . COMSOL
Multiphysics is used in many application areas: acoustics, bioscience, chemi-
cal reactions, diffusion, electromagnetics, fluid dynamics, fuel cells and electro-
chemistry, geophysics, heat transfer, microelectromechanical systems (MEMS),
microwave engineering, Optics, photonics, porous media flow, quantum me-
chanics, radio-frequency components, semiconductor devices, structural me-
chanics, transport phenomena, wave propagation, etc. The COMSOL 3.5a
product family includes the following modules:
• AC/DC Module
• fuels:Acoustics Module
• Chemical Engineering Module
• Earth Science Module
• Heat Transfer Module
• MEMS Module
• RF Module
• Structural Mechanics Module
With this work, we apply "Earth Science Module".
2.4.1 Earth Science Module
The earth and planets are giant laboratories that involve all manner of physics.
The Earth Science Module combines application modes for fundamental pro-
cesses and links to COMSOLMultiphysics and the other modules for structural
mechanics and electromagnetics analyses. New physics represented include
heating from radiogenic decay that produces the geotherm, which is the in-
crease in background temperature with depth. The variably saturated flow
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application modes analyze unsaturated zone processes (important to environ-
mentalists) and two-phase flow (of particular interest in the petroleum industry
as well as steam-liquid systems). Important in earth sciences, the heat transfer
and chemical transport application modes explicitly account for physics in the
liquid, solid, and gas phases. Available application modes are:
• Darcy's law for hydraulic head, pressure head, and pressure. Also part
of a predefined interface for poroelasticity (requires the Structural Me-
chanics Module or the MEMS Module).
• Solute transport in saturated and variably saturated porous media
• Richards' equation including nonlinear material properties using van
Genuchten, Brooks and Carey, or user-defined parameters.
• Heat transfer by conduction and convection in porous media with one
mobile fluid, one immobile fluid, and up to five solids
• livestock waste storage facilities and landspreading
• Brinkman equations
• Incompressible Navier-Stokes equations
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3 METHODOLOGY AND COMPUTATION
3.1 GEOMETRY
We create our geometry using COMSOL software in space dimension of 2D
with 100 meters of length and 10 meters of depth, after we make three layout
of different depth R1, R2, R3. We position 2 point (P1: 30;0 and P2: 30,1;0).
This figure is considered as a portion of soil on a hill where the fluid will be
flowing.
Figure 6: Geometry
Let us fixe our boundary properties;
Our fluid is coming continuously at the position between our fixed 2 point (P1:
30;0 and P2: 30,1;0)what is our inlet (boundary 8). The fluid is free to move
out (outlet) from left and right side of our figure (boundaries 1,2,3,5,10,11
and 12) as it is shown on Figure 7. The bottom of our Figure(boundary 2)
is considered as the impermeable rock, that means that the porous properties
do not allow the passage of our fluid. At the top(boundaries 7 and 9), there
is no other entrance except our fixed Inlet. Next paragraph we fixe physics
subdomain and boundary settings related with our Richard's equation.
Figure 7: Geometry with boundary
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3.2 Application Mode: Richards' Equation
3.2.1 Domain equation
The Richard's equation is applied to our model for each level as following:
∂
∂t
(ρεp) +∇.(ρu) = Qm (28)
εp = p(
Cm
ρg
+ SeS) (29)
∂
∂t
(ρεp) = ρ(
Cm
ρg
+ SeS)
∂p
∂t
(30)
and
u = −k
µ
(∇p+ ρg∇D), with k = kskr(εp) (31)
Where
t is time (s)
ρ is the density (kg/m3)
Qm is Liquid source (1/s)
Cm is Specific moisture capacity (1/Pa)
g is Gravity (m/s2)
Se is Effective saturation(1)
S is Storage (1/m)
p is pressure (Pa)
µ is Dynamic viscosity (Pa.s)
D is Elevation (m)
ks is Saturated hydraulic conductivity (m/s)
kr is Relative permeability (1)
We resume the settings and variables for each layout in the following tables
Richards' Equation Model 1
Figure 8: first level: domain 1
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Table 1: equation settings domain 1
Richards' Equation Model 2
Figure 9: second level: domain 2
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Table 2: equation settings domain 2
Richards' Equation Model 3
Figure 10: third level: domain 3
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Table 3: equation settings domain 3
3.2.2 Boundary equation
We have three boundaries aspect:
No flow This is corresponding to the boundaries 2,7 and 9, they are called
Zero flux/Symmetry. For those boundaries hydraulic head (H0) = 0, pressure
head (Hp0) = 0, pressure (P0) = 0, inward flux (N0) = 0, external head
(Hb) = 0, external pressure (Pb) = 0, external conductance (Rb) = 0 and
elevation (Db) = 0.
−n.ρu = 0 (32)
Hydraulic Head
p = ρg(H0 −D) (33)
The boundaries 1,3,5,10,11 and 12 correspond to our outlet, this means that
our fluid is free to move out, at initial stage hydraulic head (H0) = 0, pressure
head (Hp0) = 0, pressure (P0) = 0, inward flux (N0) = 0, external head
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(Hb) = 0, external pressure (Pb) = 0, external conductance (Rb) = 0 and
elevation (Db) = 0.
Mass Flux
−n.ρu = N0 (34)
On our Inlet at the boundary 8 there is Flux discontinuity. Hydraulic head
(H0) = 0, pressure head (Hp0) = 0, pressure (P0) = 0, inward flux
(N0) = 0.1, external head (Hb) = 0, external pressure (Pb) = 0, external
conductance (Rb) = 0 and elevation (Db) = 0.
Table 4: Boundary settings
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Table 5: Mesh statistics
Next step we generate mesh for our graph
Figure 11: Mesh
We use time dependent for our model in order to analyze hydraulic head ac-
cording to time t. Our time range are 0; 86400; 86400000, where 86400s cor-
respond to one day. Let us look how the results come out in the following
chapter.
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4 RESULT AND DISCUSSION
The hydraulic head coming from the inlet with 0.1m is distributed its self in
our simulated medium trying to reach output infiltrating the porous soil. The
figures below show us by iso-contours the value of hydraulic head at any place
of the medium and at specific time. We realize that the hydraulic head is
increasing with time because there is a constant continuity from inlet. There
is a small deviation from one level to another because of differences of their
properties.
The hydraulic head is high at a the point close to the inlet and it decreases as
long as receding from the inlet.
Ten hours
Figure 12: After ten hours
The figure above shows us the aspect after ten hours the fluid from inlet started
constantly to flow in.
One day
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Figure 13: After one day
One week
Figure 14: After one week
The shape of our contours is getting modified, as long as the time increase,
trying to become the simple lines even if these three media are different phys-
ical.
One month
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Figure 15: After one month
Let analyze the whole section plotting on the same figure the hydraulic head
for t1 = 86400s = one day, t2 = 6.048e5s = seven days = one week and
t3 = 2.592e6s = thirty days = one month.
Cross-section A
Figure 16: Cross section at A section (30.05,0;30.05,-10)
This section is situated at the perpendicular of our inlet section (30.03)
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Figure 17: Hydraulic Head at point A (30.05,0;30.05,-10)
It is not easy to realise the passage from one level to another at t3 while at t1
there is change in inclination of our curve. This is due to that according to our
inlet, after one month of the process the hydraulic head is trying to become
identic in all levels.
Let us look how the process appear at another section situated at (80,0;80,-10).
Cross-section B
Figure 18: Cross section at B section (80,0;80,-10)
At the section above, after one month, the hydraulic head is identic in all three
levels even if its value in less than the one at the inlet section (0.07 < 0.28).
The big difference of hydraulic head between those two sections depends on
the difference of distance.
We see that, on the figure below, after one day and one week, there is a small
change in inclination of our curve.
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Figure 19: Hydraulic Head at point B (80,0;80,-10)
The curiosity allows us to look how hydraulic head is being distributed from
a point A (30,05) at the top of inlet and a point B (80,-10) at the bottom of
section B
Cross-section A-B
Figure 20: Cross section between the points A and B (30,05;80,-10)
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Figure 21: Hydraulic Head between the points A and B (30,05;80,-10)
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5 CONCLUSION AND RECOMMENDATION
The results from COMSOL software applying Richard' equation allowed us
to analyze the hydraulic head for underground porous medium, the medium
created consisted of three levels with different physical properties.Our liquid
was flowing from inlet passing through porous property from one level to an-
other for reaching the outlet. Hydraulic head was increasing proportional with
moisture content.
The hydraulic head become identic with small value of hydraulic head for all
three level at B cross section after t3, while at A cross section perpendicular
to our inlet the hydraulic head is high but not identic.
I recommend several studies and computations in such domain using three
dimension (3D)and considering fluid as composed mixed material. The values
of soil property should be tested and specific to the area of study. The study
of randomly inlet is interesting in normal life case.
I recommend that The idea of fluid heterogeneity and theory of transported
harmful material through non regular shape might be discussed in the futures
topics and researches.
REFERENCES 33
References
[1] Ali, S.J., Sizaret, S., Binet. S, Bruand, A., ALBERIC, P. and LEPILLER,
M., 2010. Development of a Darcy-Brinkman model to simulate water flow
and tracer transport in a heterogeneous karstic aquifer (Val d'Orl?ans,
France). Hydrogeology Journal, 18(2).
[2] Alley, W.M., HEALY, R.W., LABAUGH, J.W. and AND, T.E., 2002.
Flow and Storage in Groundwater Systems. Science, 296, 1985.
[3] Babkin, V.A., 2002. Investigation of the Relative Motion of a Viscous
Fluid and a Porous Medium Using the Brinkman Equations. Fluid Dy-
namics, 37(4).
[4] Barari. A, M. Omidvar, A. R. Ghotbi and D. D. Ganji,Assessment of water
penetration problem in unsaturated soils, Hydrology and Earth System
Sciences Discussions., 6, 3811�3833, 2009.
[5] Crevoisier D., 2006, Analytical approach predicting water bidirectional
transfers: application to micro and furrow irrigation, Transactions on
Engineering Sciences, Vol 52, 20 06 WIT Press.
[6] Deborah H. Lee, Linda M. Abriola, 1999, Use of the Richards equation
in land surface parameterizations, JOURNAL OF GEOPHYSICAL RE-
SEARCH, VOL. 104, NO. D22, PAGES 27,519 �27,526, NOVEMBER 27,
1999.
[7] Freeze, R.A. and Cherry. 1979. Groundwater. Prentice-Hall,
Inc.Englewood Cliffs, NJ.
[8] Groundwater Terms and definitions, February 2010, Document Number:
2977263.
[9] Hong, Z., LIU DE-FU, LEE, C.F. and THAM, L.G., 2005. A new vari-
ational inequality formulation for seepage problems with free surfaces.
Applied Mathematics and Mechanics, 26(3).
[10] Kapshivyi, A.A. and YAZKULYEV, M., 1993. Solution of a seepage prob-
lem in a nonhomogeneous medium by the method of p-analytical func-
tions. Journal of Mathematical Sciences, 66(5).
[11] Sean W.F., 1999, Modeling Solute Diffusion in the Presence of Pore-Scale
Heterogeneity,Journal of contaminant Hydrology, August 10, 1999.
[12] Szymkiewicz A., Modelling Water Flow in Unsaturated Porous Media,
Gdansk University of Technology, Polish Academy of Sciences, the journal
published since 1962 (http://pub.igf.edu.pl/index.php).
LIST OF FIGURES 34
List of Figures
1 Groundwater system . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Ground and underground aspect . . . . . . . . . . . . . . . . . . 9
3 Darcy's experiment . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Area porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5 Domain where Green's function method is applied . . . . . . . . 15
6 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7 Geometry with boundary . . . . . . . . . . . . . . . . . . . . . . 19
8 first level: domain 1 . . . . . . . . . . . . . . . . . . . . . . . . . 20
9 second level: domain 2 . . . . . . . . . . . . . . . . . . . . . . . 21
10 third level: domain 3 . . . . . . . . . . . . . . . . . . . . . . . . 22
11 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
12 After ten hours . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
13 After one day . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
14 After one week . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
15 After one month . . . . . . . . . . . . . . . . . . . . . . . . . . 28
16 Cross section at A section (30.05,0;30.05,-10) . . . . . . . . . . . 28
17 Hydraulic Head at point A (30.05,0;30.05,-10) . . . . . . . . . . 29
18 Cross section at B section (80,0;80,-10) . . . . . . . . . . . . . . 29
19 Hydraulic Head at point B (80,0;80,-10) . . . . . . . . . . . . . 30
20 Cross section between the points A and B (30,05;80,-10) . . . . 30
21 Hydraulic Head between the points A and B (30,05;80,-10) . . . 31
LIST OF TABLES 35
List of Tables
1 equation settings domain 1 . . . . . . . . . . . . . . . . . . . . . 21
2 equation settings domain 2 . . . . . . . . . . . . . . . . . . . . . 22
3 equation settings domain 3 . . . . . . . . . . . . . . . . . . . . . 23
4 Boundary settings . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5 Mesh statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

