
Lappeenranta University of Technology

School of Industrial Engineering and Management

Department of Software Engineering and Information Management

Nikolaos Paraschou

DESIGNING A USER INTERFACE FOR GAME DEVELOPERS TO

ENTER GAME SPECIFIC INFORMATION

Supervisors: Adjunct Professor, D.Sc. (Tech.) Jouni Ikonen

Associate Professor, D.Sc. (Tech.) Kari Heikkinen

ii

ABSTRACT

Lappeenranta University of Technology

School of Industrial Engineering and Management

Department of Software Engineering and Information Management

Nikolaos Paraschou

DESIGNING A USER INTERFACE FOR GAME DEVELOPERS TO ENTER

GAME SPECIFIC INFORMATION

Master’s Thesis

2014

72 pages, 26 figures, 7 tables

Supervisors: Adjunct Professor, D.Sc. (Tech.) Jouni Ikonen

Associate Professor, D.Sc. (Tech.) Kari Heikkinen

Keywords: User Centered Design, Usability Testing, User Interface, Games

Designing user interfaces for novel software systems can be challenging since the

usability preferences of the users are not well known. This thesis presents a

usability study conducted for the development of a user interface for game

developers to enter game specific information. By conducting usability testing, the

usability preferences of game developers were explored and the design was

shaped according to their needs. An assessment of the overall usability of the final

design is provided together with the main findings that include the usability

preferences and design recommendations. The results showed that the most

valuable usability preferences are quickness, error tolerance and the ability to

constantly inspect the entered information.

iii

ACKNOWLEDGMENTS

I would like to acknowledge:

• My primary supervisor, Jouni Ikonen, for giving me the opportunity to

work on this project and guiding me throughout the implementation

journey.

• My secondary supervisor, Kari Heikkinen, for his advice and guidance

throughout the implementation journey.

• The lead developer of the Game Cloud, Janne Parkkila, for his invaluable

guidance, advice and assistance whenever those were needed, throughout

the implementation journey.

• Timo Hynninen, one of the core developers of the Game Cloud, for his

guidance, advice and assistance.

• My family, for providing the required spiritual “fuel” to keep the “engines”

running.

• My friends, here at Lappeenranta and down to Greece, for the same reason.

Lappeenranta, 7 May 2014

Nikolaos Paraschou

4

TABLE OF CONTENTS

1 INTRODUCTION...7

1.1 Objectives and research questions...9

1.2 Research methodology...9

1.3 Structure...10

2 USABILITY IN A NUTSHELL..12

2.1 How the usability discipline emerged..12

2.2 Usability engineering...13

2.3 User centered design..13

2.4 Understanding usability...15

2.5 Usability testing...19

2.5.1 Discount usability engineering method..20

2.5.2 Other usability engineering methods...21

2.5.3 Formative and summative usability tests...22

3 CASE STUDY: GAME CLOUD WEB UI...24

3.1 The Game Cloud..24

3.2 The development and testing process..25

3.2.1 Iteration 1...28

3.2.2 Iteration 2...31

3.2.3 Iteration 3...33

3.2.4 Iteration 4...34

3.2.5 Iteration 5...35

3.3 Participant recruitment...41

3.3.1 User profiles...41

3.3.2 Total number of participants..43

3.3.3 Background of selected participants..43

3.3.4 Number of participants per test..46

5

3.4 How the tests were conducted..47

3.4.1 Basic training...47

3.4.2 The testing process...48

3.4.3 Moderator role..50

3.4.4 Observer role..51

3.4.5 Debriefing..51

3.4.6 Test environment..52

4 RESULTS AND DISCUSSION..54

4.1 Overall usability of the UI...54

4.2 Main findings...56

4.2.1 Usability preferences..57

4.2.2 Wizard versus form..59

4.2.3 Design recommendations...63

4.3 Error rate..64

5 CONCLUSION AND FUTURE WORK..66

6 REFERENCES..68

6

LIST OF SYMBOLS AND ABBREVIATIONS

API Application Programming Interface

HCI Human Computer Interaction

HTTP Hypertext Transfer Protocol

LCU Least Competent User

NFL New Functionality List

REST Representational State Transfer

UCD User Centered Design

UI User Interface

UIL Usability Issues List

7

1 INTRODUCTION

An important factor in the success of a software system is the design of its User

Interface (UI) in a way that users will encounter its usage as a gratifying

experience. Software developers have always been challenged by the fundamental

question of what design decisions should be taken to produce a UI that is efficient,

effective, easy to learn, error tolerant and satisfying. In other words, how to

produce a usable UI.

The benefits of usability, as identified in the literature, justify the rationale behind

investing in it. Highly usable systems can have substantial economic and social

benefits for users and employers. Such systems result in increased productivity for

users and operational efficiency for organizations. By being easier to understand

and use, the training and support costs for the organizations are reduced. At the

same time, the overall user experience is improved with less discomfort and stress

for the users. [1]

A remedy that comes to alleviate designers when it is not clear how to incorporate

usability into a product is the User Centered Design (UCD). UCD represents the

processes, methods, techniques and procedures for developing usable products. It

is an iterative design approach that places the user at the center of the development

process and employs various techniques to evaluate and measure the usability of

the product [2].

There have been multiple case studies in the scientific literature, e.g. [3][4],

demonstrating the application of UCD to achieve usability in various types of

software systems. These studies have shown that applying UCD is an established

8

way of working to ensure that the final product will be usable. Presently, UCD is

internationally endorsed as a best practice in systems design and development [5].

The case studied in this thesis is related to the development of the web UI of the

Game Cloud with usability as a driving factor. The Game Cloud is a software

system that allows game developers to store game specific information in order to

achieve links between games. It operates as a service and offers various

programming interfaces to be used by games for the exchange of information.

Before integrating the interfaces to the source code of their games, the game

developers have to enter game specific information into the system (e.g., items,

achievements, events). This is achieved through a web UI.

A significant design problem is derived from the novelty of the Game Cloud

which deprives the developers of the system from knowing what design decisions

would ensure the usability of the UI, in terms of efficiency and effectiveness. The

use case of entering the items, achievements and events of games into a software

system through the use of a UI has not been practiced in the past. Thus, there is

not any prior source to look for design recommendations. A further obstacle that

amplifies the difficulty of the design task is the fact that the usability preferences

of the game developers are not well known.

The use case of entering game specific information to the Game Cloud is

fundamental for the proper functioning of the system. It is a prerequisite that must

be accomplished before the Game Cloud can offer its complete set of services.

Thus, the overall acceptance of the system is tightly coupled to the usability of the

front-end (i.e., the web UI). If the game developers experience an unusable UI

during their first encounter with the Game Cloud, they are very likely to reject the

system.

9

1.1 Objectives and research questions

The research question to be answered in this thesis is the following: “What

usability preferences do game developers have from the web UI of the Game

Cloud?” The research question is supported by the following sub-question: “What

design decisions can improve the usability of the UI in terms of efficiency and

effectiveness?”

The thesis presents a usability study conducted for the development of the web UI

of the Game Cloud. The employed evaluation technique was usability testing, the

mostly renowned UCD technique. The information collected by the usability tests

was analyzed and translated into a collection of main findings that include the

usability preferences game developers have from the UI as well as design

recommendations. The findings of this study can assist UI designers who would

have to design similar products in taking the right design directions.

1.2 Research methodology

The development of the UI followed an iterative approach. After implementing the

first prototype, exploratory usability tests were conducted to receive qualitative

feedback from the users, expressing their preferences and feelings on the design.

That feedback was used to fix potential usability issues and extend the prototype’s

functionality according to the users’ preferences. This led to a new version of the

prototype to be tested to the next iteration.

This cycle (i.e., conduct usability test, fix usability issues, add new functionality,

test again) was repeated until the UI reached its pre-release state. In the pre-release

state a different type of test was conducted that aimed to assess how usable the UI

was at that point. In addition to qualitative data, the final test collected quantitative

10

data. Thus, it was possible to measure the usability of the final product.

Furthermore, the final usability test compared two different design approaches for

one of the most critical and frequently used functions of the application (i.e.,

entering game items). The results of this comparison meant to assist in the

selection of the most suitable UI design for the final product. Additionally, the

feedback of the comparison provided valuable design recommendations directly

from the users on how to further improve the design.

1.3 Structure

The rest of the thesis is structured as shown in figure 1. Chapter 2 reviews the

literature associated to software usability. It discusses the concepts of usability,

usability engineering, user-centered design and usability testing. Chapter 3

presents the case of this study, the Game Cloud. It describes in detail the applied

design and development process of the web UI of the Game Cloud and justifies

the decisions taken concerning the number and type of usability tests as well as the

selection of test participants. Furthermore, it provides procedural details on how

the usability tests were conducted. Chapter 4 presents the results of the study. It

begins by assessing the overall usability achieved by the applied process and

continues by discussing the main findings of the study. Finally, chapter 5

concludes the thesis and provides conceptions for future research.

11

Figure 1: The structure of the thesis

12

2 USABILITY IN A NUTSHELL

This chapter introduces the reader to the concepts of usability, usability

engineering, user-centered design and usability testing. A historical overview of

the usability discipline is provided followed by definitions of the terms and

techniques involved in the incorporation of usability to software projects.

2.1 How the usability discipline emerged

The scientific and industrial field of software usability is not a novel one. Instead,

it has been in the focus of the research community for many decades. Turning

back in time as early as 1959, one can find the concept of ergonomics for the

computer being raised by Brian Shackel for the first time [6]. It is from these

origins that usability started to slowly emerge [7].

According to Shackel, the first definition of usability was probably attempted by R

B Miller in 1971 (cited by [8]) and it was based on “ease of use”. Following

Miller’s paper, Shackel contributed a detailed formal definition in 1981 [9] which

was modified by Bennett [10] to be incorporated later on by Shackel to his next

formal definition [11][8]. Shackel’s latest definition was based on effectiveness,

learnability, flexibility and attitude. Since then, multiple researchers and

practitioners in the field have provided their own definitions for usability and

discussed the subject extensively as shown in the official website of the User

Experience Professionals Association [12].

Over the years, usability has earned its place among more traditional software

quality attributes such as performance, reliability, and robustness. It is now

considered a fundamental software quality. This progression was accompanied by

13

the introduction of a new field in the software development ecosystem to promote

and ensure the incorporation of usability into software products. That field is

known as Usability Engineering.

2.2 Usability engineering

Usability engineering was introduced to fill the gap between software engineers

and human-computer interface designers [7]. The term was coined by usability

professionals from Digital Equipment Corporation [13] who discussed concepts

and techniques for planning, achieving, and verifying objectives for system

usability [14]. Their formulation relied heavily on the works of Gilb [15][16],

Shackel [9], Bennett [10], Carroll and Rosson [17], and Butler [18]. Further

development to the subject was contributed by Whiteside and Holtzblatt [19].

The key concept behind usability engineering is the definition of measurable

usability goals early in the development process and the repeated assessment of

the defined goals during development to ensure that they are achieved [10][16].

Tyldesley [20] describes usability engineering as “a process whereby the usability

of a product is specified quantitatively, and in advance. Then as the product itself,

or early ‘baselevels’ or prototypes of the product are built, it is demonstrated that

they do indeed reach the planned levels of usability”.

2.3 User centered design

In the broader world of Human Computer Interaction (HCI), usability engineering

can be found under the name of User Centered Design (UCD) [2]. UCD is a

design approach that represents the processes, methods, techniques, and

procedures for developing usable products [2]. As Rubin and Chisnell point out,

“it (UCD) is the philosophy that places the user at the center of the process” [2].

14

The initial launch of UCD was in 1986 under the name of User Centered System

Design [7], by Norman and Draper [21]. Several definitions and understandings

have been proposed over the years. According to Norman, UCD is “a philosophy

based on the needs and interests of the user, with an emphasis on making products

usable and understandable” [22]. ISO [1] defines UCD as an “approach to

systems design and development that aims to make interactive systems more

usable by focusing on the use of the system and applying human

factors/ergonomics and usability knowledge and techniques”.

The design approach of UCD provides the necessary means for the development

of products that meet the usability requirements of users. The success stories

reported in [3] and [4] indicate its potential. A case that closely resembles the

study of this thesis, is the development of a product called VirtualCenter 2.0 from

VMWare [23]. VMWare introduced a new conceptual design for one of its

virtualization systems. The concept of virtualization was so new that there was no

precedent for how users would interact with such a system. In order to ensure that

the users will be able to learn and use the product, the company applied UCD and

managed to achieve the desired usability. Another successful case is the

application of UCD principles to the development of IBM’s DB2 Universal ®

Database [24].

Since the Game Cloud is considered to be a middleware system similar to the ones

mentioned earlier (i.e., VirtualCenter and DB2), the application of UCD practices

for the development of its web UI would provide the foundation for an easy-to-

use, useful and engaging user experience. As Righi and Clow indicate, UCD can

and should apply to the design of the middleware user experience [25].

15

Rubin and Chisnell emphasize three basic principles of UCD [2]. First, the design

team should set an early focus on users and their tasks. The developers must be in

direct contact with the users throughout the development process in order to

collect information from and about users. The users’ goals, tasks and needs should

guide the development. Second, the usability of the product has to be evaluated

and measured repeatedly throughout the development cycle. By doing so, valuable

feedback will be returned to assist in driving and refining the design. Third, the

process must be iterative. It should allow the shaping of the product through a

repetitive cycle of design, test, redesign, and retest activities. The principles of

UCD are further discussed by Gullisken et al [26] and ISO [1].

2.4 Understanding usability

Having introduced the most widely endorsed design approach that can be

employed to achieve usability in software systems, that is UCD, it is now time to

delve deeper into the notion of usability. The concept of usability is discussed in

the literature with a number of attributes [2], quality components [27], or

dimensions [28] that are used to define and measure it. Among others, some

examples include efficiency, effectiveness, learnability, error tolerance,

satisfaction and usefulness.

According to Rubin and Chisnell, in order for a UI to rightfully claim the title

“usable”, it shall be describable by as many of the following attributes as possible:

useful, efficient, effective, satisfying, learnable, and accessible [2]. These

attributes are defined in [2] as follows:

• Usefulness assesses the user’s desire to use the software at all. It refers to

the extent to which the user is enabled by the software to achieve his or her

16

goals.

• Efficiency refers to the quickness with which the user can accurately and

completely accomplish his or her goals by using the software. As such,

efficiency is usually measured in time.

• Effectiveness concerns the degree to which the software behaves in the

expected by the users ways and the ease with which users can use it to

perform the tasks they intend.

• Satisfaction is an indicator of the user’s feelings, opinions and perceptions

of the software.

• Learnability refers to the user’s ability to use the software to a certain level

of competence after experiencing a predetermined amount and period of

training. It may also refer to the ability of infrequent users to relearn the

software after abstaining from its use for significant periods of time.

• Accessibility is a sibling of usability. It is about having access to the

software which is required to accomplish a goal. Accessibility primarily

concerns people who have disabilities. Nevertheless, making a UI usable

for people with disabilities benefits people who do not have disabilities.

Rubin and Chisnell [2] rely on the following definition of usability: “When a

product or service is truly usable, the user can do what he or she wants to do the

way he or she expects to be able to do it, without hindrance, hesitation, or

questions.” As the authors state to simplify the notion of usability in one sentence,

“in large part, what makes something usable is the absence of frustration in using

it”.

According to Barnum [29], one of the best-known definitions of usability is the

one provided by ISO [1]: “The extent to which a product can be used by specified

17

users to achieve specified goals with effectiveness, efficiency, and satisfaction in a

specified context of use.”

The definition of ISO [1] encompasses the three critical elements of specific users,

specified goals, and specific context of use. What is meant by specific users is that

usability is measured not with any users, but with the specific ones for whom the

product is designed. Specified goals indicate that the users and the product share

the same goals. In other words, the product represents the users’ goals. Finally, the

specific context of use signifies that the product is designed to be operated by

users with certain characteristics, performing certain tasks, in a certain

environment [1].

The same definition also focuses on the critical attributes of effectiveness,

efficiency, and satisfaction which can be used to measure usability. Effectiveness

measures how accurately and completely users can achieve their specified goals

by using the product. Efficiency refers to the resources to be expended so that the

user’s goals can be achieved accurately and completely. Finally, satisfaction

concerns the user’s freedom of discomfort and positive attitudes while using the

product. [1]

Quesenbery [28], a well-known usability consultant, defines software usability

with five easy to remember dimensions which she calls the 5Es (Table 1):

18

Table 1: The five dimensions of software usability

Dimension Description

Effective Addresses whether the software allows the user to reach his or
her goals completely and accurately.

Efficient Concerns the speed with which the user’s work can be done
accurately.

Engaging A software system is engaging when the user is interested in
using it because it provides a pleasant and satisfying
experience.

Error tolerant Involves the software’s ability to prevent errors and assist users
in recovering from any errors that might occur.

Easy to learn Refers to the extent to which the software can provide initial
orientation to the novice user and guidance to deeper learning.

One of the leading specialists in the field, Jacob Nielsen, provides the following

definition for usability [30]: “It is important to realize that usability is not a

single, one-dimensional property of a user interface. Usability has multiple

components and is traditionally associated with these five usability attributes:

learnability, efficiency, memorability, errors, satisfaction.” This is how Nielsen

describes the five quality components which are used in his definition [30][27]:

• Learnability: How easy is it for users to accomplish basic tasks the first

time they encounter the design?

• Efficiency: Once users have learned the design, how quickly can they

perform tasks?

• Memorability: When users return to the design after a period of not using

it, how easily can they reestablish proficiency?

• Errors: How many errors do users make, how severe are these errors, and

how easily can they recover from the errors?

19

• Satisfaction: How pleasant is it to use the design?

To conclude the discussion concerning the meaning of software usability, a

slightly less formal definition is presented: “After all, usability really just means

that making sure that something works well: that a person of average (or even

below average) ability and experience can use the thing - whether it's a Web site,

a fighter jet, or a revolving door - for its intended purpose without getting

hopelessly frustrated.” [31]

For the purpose of this study, the attributes of efficiency and effectiveness as

defined by Rubin and Chisnell [2] will be used. To recapitulate their meaning,

efficiency is the quickness with which the user can accurately and completely

accomplish his or her goals by using the software and it is usually measured in

time. Effectiveness is the degree to which the software behaves as expected by the

users and the ease with which users can use it to perform the tasks they intend.

2.5 Usability testing

There is a wealth of techniques involved in implementing UCD. Each one has its

own characteristics and is meant to be practiced at a different stage of the

development process. Rubin and Chisnell [2] and Barnum [29] present in their

books the major UCD techniques. According to the authors, usability testing is the

mostly renowned one, a fact that is further supported by the Usability

Professionals’ Association 2009 Salary Survey [32].

Usability testing is a research tool [2] that involves users to evaluate a system in

order to ensure that it meets usability criteria. It is defined by Dumas and Redish

[33] as “a systematic way of observing actual users trying out a product and

20

collecting information about the specific ways in which the product is easy or

difficult for them”. According to Rubin and Chisnell [2], usability testing aims to

inform the design, eliminate design problems and frustration and eventually

improve profitability.

2.5.1 Discount usability engineering method

Since its beginnings until the 1990s, usability testing was formally conducted

employing the methods of experimental design [29]. Consequently, it tended to be

expensive, time consuming and rigorous. Later research set the foundation for

more informal usability testing studies that can be highly effective. Nielsen

determined that the highest cost-benefit value can be gained by testing no more

than five users and by conducting as many small tests as possible [34]. Similar

findings were published by Virzi [35][36] and Lewis [37]. They both found that

small studies can uncover 80% of the usability issues from a test. According to

Nielsen the number was 85%.

Presently, a widely advocated approach for practicing usability testing is through a

series of quick tests with few participants, beginning early in the development

process and following an iterative approach [2] (i.e., conduct test, list usability

issues, apply fixes, re-test to verify the applied fixes and discover new issues).

This approach to usability testing is known as discount usability engineering and it

has been popularized by Jakob Nielsen [30][38][39]. A representative list of

discount usability engineering practices includes scenarios, simplified thinking

aloud, heuristic evaluation and card sorting.

Scenarios are simplified prototyping approaches that can be used to extract user

feedback. As a usability testing approach, scenarios distill the system to the most

21

essential elements needed for valuable feedback. The system, although not fully

functional or complete, can be used to elicit the users’ opinions for some user-

driven activity, i.e., a scenario. [39]

Simplified thinking aloud is an interview technique that is used to enhance the

user feedback produced in usability tests. Users are prompted to think aloud while

they are evaluating a prototype of the software, expressing what they are doing

and what they expect from the system. [39]

Heuristic evaluation is an approach to improve usability while the design and

development is still in progress and there are not any testable elements to be

presented to the users [39]. With this approach the developers can apply to the

design collections of usability principles that are known to have guaranteed

usability success. Some examples of heuristics include [40]: a) maintain visibility

of system status, b) enable users to rely on recognition instead of recall memory

and c) help and documentation.

Card sorting is a technique that reveals the users’ mental models of certain aspects

of a software system. Each system feature or concept is placed on a card. Users

are asked to group the cards in piles. Each group shall be labeled and it shall

contain cards with features of similar characteristics. This technique is mostly

useful when looking for ways to organize the system’s functions into useful

collections of menus. [41]

2.5.2 Other usability engineering methods

The scientific community and the usability practitioners are constantly trying to

improve the existing usability engineering methodologies and form new ones. The

22

results of this endeavour can be reflected on publications concerning the matter,

for example RITE [42]. RITE is a Rapid Iterative Testing and Evaluation method

that aims to identify and fix as many usability issues as possible and to verify the

effectiveness of the fixes applied to those issues in the shortest possible time [42].

The testing sessions in RITE are conducted with one participant only.

One of the primary concerns of the researchers while studying the usability

engineering methodologies has been the merging of UCD with agile software

engineering processes. Several studies have focused on the challenges involved in

the incorporation of UCD practices into agile methods and have contributed

various solutions. To meet the challenges of agile development, McGinn and

Chang [43] propose the combination of RITE [42] with the approach to usability

testing taken by Steve Krug [31][44]. Kane suggests that the combination of

discount usability engineering methods with agile methods is feasible since they

both share many similarities [45]. He considers the use of discount usability

engineering with Scrum as a feasible strategy. Sy presented the adjustments her

company had to do to the applied UCD methods in order to fit within an agile

framework [46]. Constantine outlines a streamlined and simplified variant of the

user-centered process that is readily integrated with agile methods [47].

2.5.3 Formative and summative usability tests

Rubin and Chisnell [2] and Barnum [29] describe two types of usability tests;

formative and summative. Depending on the point of the development cycle at

which a usability test is conducted, the objective and the methodology of the test

can vary. Both of these types of usability tests were applied in this study and they

are described in the following paragraphs.

23

Formative tests begin early in the development cycle when the product is still

being defined and designed. The main objective of formative tests is to evaluate

the usability of the design and provide feedback that will drive the designers in

forming and refining the product. Typically, these tests require the test participant

to think aloud while performing the tasks in order to capture his or her real

sentiments. The data collected by formative tests are qualitative and express the

users’ preferences and feelings for the product.

Summative tests are targeted towards more complete versions of the design,

typically midway into the product development cycle. The objective of summative

tests is to examine and evaluate the usability of the product by collecting

qualitative and quantitative data. The qualitative data provide similar feedback to

that of the formative tests. The quantitative data act as performance indicators.

With such measures, the designers can assess the usability of the product.

24

3 CASE STUDY: GAME CLOUD WEB UI

This chapter introduces the case studied in this thesis. It starts with a presentation

of the Game Cloud and continues with the development and testing process. The

iterations of the development cycle together with their implementation and testing

activities are discussed with examples and illustrations. The discussion then

evolves around the participants of the usability tests. The required user profile is

presented and a number of issues related to the participants are discussed; for

example, the total number of participants in the study, the background of the

selected participants, and the number of participants per test. The chapter

concludes by presenting procedural information related to the usability tests, such

as the testing process, the roles of the moderator and the observers and the testing

environment.

3.1 The Game Cloud

The Game Cloud is a cloud based platform that provides a set of services for game

developers. From a technical perspective, it is a semantic, scalable, cloud data

storage and analysis service. The services offered by the Game Cloud can be used

to establish links between games for the exchange of game specific information.

The purpose of doing so is to enable cross promotion between games as well as to

provide valuable analytics to the game developers that would assist them in

improving their games according to the players’ needs.

Figure 2 depicts a high level architectural overview of the Game Cloud. Two

different games, GameX and GameY, are connected to the Game Cloud through a

REST API over HTTP. What the Game Cloud does is the establishment of the

green link that connects the two games so that they can exchange game specific

information. Before the Game Cloud can offer its full set of services, the game

25

developers have to model the information of their games into the system. For

example, they have to enter the game’s items, achievements, events and several

other elements of the game. This is achieved through the web UI in the blue box.

This web UI constitutes the main focus of this study.

Given the fact that the Game Cloud is a novel product, the use case of entering

game specific information had not been practiced in the past. As such, it was not

clear what design decisions would ensure the usability of the web UI.

Furthermore, the usability preferences of the game developers were not well

known.

3.2 The development and testing process

Five usability tests were conducted to the web UI of the Game Cloud during the

development cycle. The tests intended to uncover the usability preferences of the

users and ensure that the final product would be shaped according to the users’

needs. Usability testing started early in the development process and continued

Figure 2: High level architectural overview of the Game Cloud

26

until the first beta of the system was released. Figure 3 illustrates the development

and testing process.

As can be seen from Figure 3, the iterations consisted of two main parts: a)

implementation activities on the developer track; b) testing activities on the

designer track. In the beginning of each iteration, implementation tasks were

taking place to develop and refine working prototypes of the UI (i.e., P1-P5). After

the programming work was completed, the prototypes were undergoing usability

testing to uncover potential usability issues. The debriefing session that followed

after each test resulted in a Usability Issues List (UIL) that included the most

critical usability issues discovered during the test. The UILs constituted the

primary implementation work for the next iteration. In two occasions, at the end of

iterations 2 and 4, an additional list was formed called New Functionality List

(NFL). The NFL included implementation tasks that meant to increment the

functionality and enhance the design of the UI during the next iteration.

Table 2 summarizes the implementation and testing activities that occurred during

iterations 1 through 5 together with the outcome of the tests. The iterations and

their activities are described more thoroughly in the following sections.

Figure 3: The development and testing process

27

Table 2: Summary of implementation and testing activities per iteration (It.)

Implementation Testing Testing Outcome

It.1 Design home page.
Implement basic functions
to enter games, items,
achievements, events
using wizards.

Formative test #1.
Objective: Identify usability
issues and collect users'
opinions on the design.

UIL1 with 15 issues.
Example: Absence of summary card
in wizards. The users want to review a
summary of the entered information
before submitting.

It.2 Fix usability issues
in UIL1.

Formative test #2.
Maintain the same testing
tasks as in formative test #1.
Objective: Verify the
effectiveness of the applied
fixes. Discover new usability
issues.

UIL2 with 7 issues.
Example: Users do not understand
the “Description” step in the wizards.
Inappropriate descriptions added.
NFL1 with 6 tasks.
Example: Create the view “My
Games” so that the users can view the
submitted information (i.e., games,
items, etc)

It.3 Fix usability issues
in UIL2.
Implement tasks
in NFL1.

Formative test #3.
Modify testing tasks to
include the new functionality.
Objective: Verify the
effectiveness of the applied
fixes. Discover new usability
issues.

UIL3 with 10 issues.
Example: Users do not understand
the meaning of the API calls returned
by the Game Cloud after submitting
an entry (i.e., item, event).

It.4 Fix usability issues
in UIL3.

Formative test #4.
Maintain the same testing
tasks as in formative test #3.
Objective: Verify the
effectiveness of the applied
fixes. Discover new usability
issues.

UIL4 with 5 issues.
Example: The contents of the UI span
great width. Need to move head left-
right in wide screens.
NFL2 with 15 tasks.
Example #1: Use different coloring
for the controls of different views
(i.e., blue for games, red for items,
etc).
Example #2: Implement alternative
design for the process of entering
game items. Use a form.

It.5 Fix usability issues
in UIL4.
Implement tasks
in NFL2.

Summative test.
Modify testing tasks to
include the new functionality.
Objective: Verify the
effectiveness of the applied
fixes. Discover new usability
issues. Measure overall
usability of UI. Compare
wizard and form in terms of
efficiency and effectiveness.

Outcome reported in results and
discussion section.

28

3.2.1 Iteration 1

The first prototype of the UI (P1) was created during iteration one and it contained

the most basic functions to be offered by the system; the options to add games,

game items, game achievements, and game events. Furthermore, a very draft

design of the home page was provided. The home page contained essential

navigation elements to allow access to the basic functions of the system.

The design approach that was followed in the first prototype was to provide UI

elements capable of guiding the users step-by-step in the process of entering game

specific information. The rationale behind this decision was based on the novelty

of the use cases and the fact that they could become long and complicated to

accomplish at later iterations. Novice users would find it hard to understand how

to perform these tasks. To mitigate this problem, the use of wizards was employed.

Figure 4 illustrates a screenshot of the wizard to enter new games in P1.

29

Wizards could effectively simplify the tasks by providing a pre-planned road map

for the novel users to follow, thus sparing them the effort of figuring out the

requirements of the tasks [48]. All users would have to do is follow the

instructions of the wizards trusting that their goals will be achieved without

problems. The wizards are there to provide guidance and support as well as

protection from possible errors (e.g., invalid inputs). Even though the benefits of

wizards to novice users were evident, it was still unknown how expert users would

wish to accomplish the same tasks, if not with the oversimplified approach of the

wizards. This was a question that could be answered through usability testing.

After the first prototype was completed, it was time to conduct the first formative

test (lower left corner in figure 3) to explore the overall ease of use of the UI,

identify potential usability issues and collect the users’ opinions on the design.

Figure 4: Wizard to enter a new game in P1

30

This test, as well as every formative test that followed, was conducted with two

participants and it was observed by the developers (i.e., of the Game Cloud). To

collect the required qualitative data, the users were asked to perform a number of

predefined tasks (e.g., enter a specific game, enter a specific game item, etc) and

think aloud during the process. The tasks were designed in a way that would drive

the users to use the wizards (e.g., enter a new game or a game item). Table 3 lists

the questions the first formative test aimed to answer. These questions remained

the same to all formative tests until the end of the study.

Table 3: Questions the usability tests aimed to answer

How do users feel about the overall look and feel of the UI? Is the UI clean? Which

sections are not clean? Why?

How easily do users grasp the fundamental and distinguishing elements of the UI?

Which functions of the product are "walk up and use" and which will probably require

either help or written documentation?

How easily can users add information about games?

How easily can users learn how to use the system by themselves? Is the provided help

enough? Should the help be improved?

In the debriefing session that followed after the first formative test, the developers

(i.e., of the Game Cloud) and the test moderator formed a Usability Issues List

(UIL) with the most critical usability issues observed during that test (UIL1). They

prioritized the issues by severity and agreed on their fixes. An example issue was

the absence of a summary card in the wizards. A participant complained that it was

not possible to review a summary of the entered information before submitting the

wizard. To review and verify the information before submitting you had to go to

the previous steps sequentially, a rather unpleasant and time consuming process.

Figure 5 illustrates the problem.

31

3.2.2 Iteration 2

UIL1 constituted the main implementation artifact in iteration number two. The

second iteration was entirely devoted to the implementation of fixes to the

usability issues discovered in iteration one. The outcome of iteration two was an

improved prototype (P2) that had to be retested by the second formative test.

The aim of the second formative test was twofold. First, it had to verify the

effectiveness of the applied fixes and second, to discover new usability issues if

any were introduced by the previous fixes. The tasks that the users had to perform

in this test were exactly the same as the ones in the first test. Once again, by the

end of the second formative test a list with prioritized usability issues and their fix

Figure 5: Summary card is missing from the wizard

32

recommendations was formed (UIL2). An example issue was the fact that users

did not understand the exact purpose of the “Description” step in the wizards and,

as a result, they were always adding inappropriate descriptions. The objective of

this step was to describe the entered element (i.e., game, item, achievement, event)

in a way that would assist other game developers in understanding the element’s

purpose. Figure 6 shows the description step in the wizard. As can be seen, there is

not any help to guide the users in entering proper information in the description

field.

At this point, after having conducted two formative tests (i.e., the first one to

discover usability issues and the second one to verify the applied fixes), it was

time to extend the functionality and enhance the design of the UI by implementing

new features. Therefore, an additional list was formed called New Functionality

Figure 6: The description step in the wizard

33

List (NFL) that included implementation tasks for that purpose (NFL1). An

example task was the creation of a view called “My Games” (figure 7) in which

the user would be able to view the submitted information (i.e., games, items,

achievements, events). The two lists, UIL2 and NFL1, provided the

implementation work for the third iteration.

3.2.3 Iteration 3

The development process progressed in a similar fashion. The outcome of the

implementation work in iteration three was the third prototype (P3) which was

tested in the third formative test by participants five and six. The tasks that the

users had to perform in the third formative test were modified accordingly to

allow the extraction of usability feedback related to the updated functionality and

the updated design introduced in iteration three.

The debriefing session of the third formative test resulted in UIL3. One of the

most critical issues in UIL3 was the fact that users did not understand the meaning

Figure 7: The view “My Games” in P3

34

and purpose of the API calls returned by the Game Cloud after successfully

submitting an entry (i.e., item, achievement, event). The API calls are meant to be

used in the source code of the games to interact with the Game Cloud. The way in

which they were presented to the users was not helping them understand their real

purpose. Figure 8 illustrates the post-submission card in the wizard in which the

API calls are presented to the user.

3.2.4 Iteration 4

Once again, the implementation work in iteration four was targeted in fixing the

issues in UIL3. The result was prototype four (P4) which was tested in the fourth

formative test. The tasks that the users had to perform in the fourth test were

exactly the same as the ones in the third test. Similar to the second formative test,

Figure 8: API calls card in P3 wizard

35

the fourth formative test was primarily intended to verify the effectiveness of the

fixes applied to the prototype in iteration four, in addition to discovering new

issues.

3.2.5 Iteration 5

The implementation work of the fifth iteration was included in UIL4 and NFL2.

UIL4 contained only minor issues. For example, a participant indicated that the

contents of the UI span the full width of the screen. Using a wide screen, he had to

move his head left and right to read the contents of the page. Figure 9 showcases

the problem. The proposed fix was to confine the contents in a more suitable

width.

A significant task in NFL2 was the redesign of the view “My Games”. The initial

view included a tabbed pane with four tabs. The tabs were used to list the users’

games, items, achievements and events. To view the items of a specific game the

user had to navigate to the items tab and select the game. The achievements and

events tabs operated in a similar way. The new design proposed the creation of a

Figure 9: Page contents span full screen width

36

view that would list only the games as shown in figure 10. From there, a game

could be selected redirecting the user to another view devoted entirely to the

selected game’s information. This second view would include a tabbed pane with

three tabs for the selected game’s items, achievements and events as shown in

figure 11.

Another worth mentioning enhancement included in NFL2 was the use of different

coloring for the controls (i.e., buttons) of different views. Blue for games, red for

items, green for achievements and orange for events. Figures 12, 13 and 14

illustrate this enhancement.

Figure 10: My Games view in P5 (early implementation phase in iteration 5)

Figure 11: Selected game’s view in P5 (early implementation phase in iteration 5)

37

In an attempt to discover solutions to improve the efficiency of the fifth prototype,

a second version of the UI was created for one of the most critical and frequently

used functions; entering game items. The new version was implemented as a

simple form replacing the wizard. Figure 15 illustrates the form. The input

elements were laid out in two rows and two columns so that they could be visible

without significant scrolling (even in smaller screens). To decrease the time

required to enter great numbers of game items, a second submit button was

Figure 12: Red color for the buttons in the game items tab (later implementation

phase in iteration 5)

Figure 13: Green color for the

achievements

Figure 14: Orange color for the events

38

introduced with the label “Submit and add another”. By clicking this button, the

game item would be submitted and the form would be emptied waiting for the

next item submission.

Prototype five was considered mature enough to be released as the first beta. At

this point, a summative test was conducted in order to measure the usability of the

prototype with quantitative data and compare the two versions (i.e., wizard and

form), in terms of efficiency and effectiveness. Qualitative data were collected as

well in a similar fashion as in the previous formative tests.

Figure 15: Form to enter game items in P5

39

The summative test aimed to answer the following questions:

• How efficiently and effectively can users enter game items in the system?

• How do users feel about how long it takes them to complete the process of

entering games, game items, and game achievements in the system, both in

the perceived amount of time and the number of steps required?

• What obstacles do users encounter on the way to entering games, game

items, and game achievements?

• Do users consult the online help when they encounter obstacles (for

example not being sure what information to enter and how to proceed)?

• How helpful are the help contents?

• How easily can users navigate between different sections of the UI (e.g.

from the dashboard to a specific item of a specific game)?

The quantitative measures collected by the summative test include:

• Number and percentage of tasks completed correctly

• Number and percentage of tasks completed incorrectly

• Number and percentage of tasks that failed to complete

• Count of errors of omission

• Time to complete each task

The tasks that the users had to perform are listed in table 4:

40

Table 4: The tasks of the summative test

Task Description Successful completion criteria

1 Login (credentials given on a sticky
note, unique for each participant).

Login successful, dashboard page shown

2 Add to the Game Cloud the game
Hammerfall501.

Game added. User should be able to see
the game in the games table.

3 Add to the Game Cloud the
achievement 501QuestsCompleted of
the game Hammerfall501.

Achievement added. User should be able
to see the achievement in the game’s
achievements table.

4 Copy the gain achievement hash of
the achievement
501QuestsCompleted of the game
Hammerfall501. Paste the hash in
notepad.

Gain achievement hash pasted in
notepad.

5 Add to the Game Cloud 10 game
items (weapons) of the game
Hammerfall501.

All game items added. User should be
able to see the items in the game’s items
table.

6 Add to the Game Cloud another 10
game items (armor) of the game
Hammerfall501 using the alternative
user interface.

All game items added. User should be
able to see the items in the game’s items
table.

The summative test was conducted with eight participants. Since it aimed at

measuring the usability of the UI with quantitative measures, the sample size

should be big enough to ensure statistically valid results. Each one of the 8

participants tested both versions of the prototype (i.e., wizard and form), one after

the other. To account for the potential bias caused by the fact that the participants

may learn to perform the tasks while testing the first version, the order of

presentation of the versions was counterbalanced. For eight participants, some

participants tested version A first (i.e., wizard), and others tested version B first

(i.e., form). To negate the potential biasing effects, each version was performed in

the first position as many times as it was in the last position, as shown in table 5.

41

Table 5: Testing order of the prototype versions per participant

Participant Version

Participant 1 A, B

Participant 2 B, A

Participant 3 A, B

Participant 4 B, A

Participant 5 A, B

Participant 6 B, A

Participant 7 A, B

Participant 8 B, A

3.3 Participant recruitment

Regarding the selection of test participants for the tests, the main target group

included professional and hobbyist game developers since the product is intended

for game developers. Given the difficulty to schedule professional game

developers, the testing sessions were primarily conducted with developers who

create games as a hobby. The source of participants was the software engineering

laboratory in Lappeenranta University of Technology. In addition to computer

science researchers and professors, computer science students participated as well.

3.3.1 User profiles

A written profile of the target users of the system assists the developers and

designers throughout the development cycle. Being able to reference an accurate

picture of the user while designing and developing the system, the development

team can design proper usability tests as well as take beneficial decisions

concerning the design of the product [2]. The user profile of the end users of the

Game Cloud is described by the following two personas.

42

Professional game developer

• Bob is a game developer working in a game development studio. His main

role is that of a software engineer and he is working on the development of

the company's games. Since it is a startup studio with a small number of

employees, Bob participates in all the phases of the development process,

from analysis and design to testing. Thus, he specializes in requirements

engineering, analysis and design, programming and testing.

• The studio decided to use the services offered by the game cloud with one

of its games. Bob was asked to use the UI of the Game Cloud to submit the

game's information.

Hobbyist game developer

• Rob has an academic background in computer science. He is passionate

about games and he is very keen to learn how to develop games. He puts a

lot of effort on practicing and improving his game development skills by

developing small games. He is doing so by participating to code camps and

game development courses at the university and also by working on his

own personal projects at home. He has already managed to publish one of

his games to online game distribution channels.

• Rob wishes to use the game cloud out of pure exploratory interest. He

wants to expand his game development knowledge by unveiling

unexplored game development territories. He also wishes to use the game

cloud in an attempt to promote his most valuable game titles by

incorporating into them top-notch technological advancements.

43

3.3.2 Total number of participants

In total, 15 unique testers participated in 16 testing sessions. This means that one

of the testers participated in two testing sessions. The reason behind this decision

was the difficulty in finding suitable candidate participants with the required

background (i.e., having been involved in the development of games as hobbyist

or professional game developers). Having the same tester participate in more than

one testing session is not a recommended practice and should be avoided. The

tester would be biased, resulting to inaccurate feedback.

Knowing this issue, it was decided to re-test in the last testing session (i.e.,

summative test) with one of the testers who participated in the first testing session

(i.e., first formative test), minimizing the bias likelihood. Given the fact that the

UI had undergone radical changes between the first and the last test, the bias

would be negligible.

Furthermore, the tasks in the summative test, especially those in which

quantitative measures had to be collected, were designed in a way that would

minimize any potential bias. For example, there was a task in which the users had

to enter a number of game items into the system to measure how long it takes to

complete the process of entering game items (i.e., task 5 and task 6 in table 4). The

number of items to be entered was ten. If the participant was biased, then the time

required to enter the first items would be similar to the time required to enter the

last items (i.e., there would be no learning curve). However, no such thing was

observed.

3.3.3 Background of selected participants

The first thing the participants had to do in the beginning of every test was to fill

44

in a background questionnaire. The questionnaire aimed to provide historical

information concerning the background of the participants and their relation to the

game development discipline. It would reveal how experienced the participants

were in the domain of the tested software. Having that knowledge before the test

was conducted would help them understand the behaviour and performance of the

participants during the test.

The vast majority of the selected participants had been involved in the

development of games as hobbyists (figure 16), whereas 4 had been involved in

professional game development projects as well (figure 17). All participants,

except one, stated that they spend time on playing computer games weekly. The

majority of them devote 1 to 10 hours, whereas one declared 11 to 14 hours and

another one more than 20 hours (figure 18). Consequently, the participants were

well familiar with the concepts of games and the notions of game items,

achievements and events.

Figure 16: Hobbyist game developers

45

Three of the participants had never been involved in the development of games in

any way and one of the three declared himself as a non-gamer. Those were the

least competent users (LCUs) among all the participants of the tests. According to

Rubin and Chisnell [2], an LCU is defined as “an end user who represents the

least skilled person who could potentially use your product”. It is a good practice

to include LCUs in usability tests since they are excellent indicators of the overall

ease of learning of the product [2]. If the LCUs can successfully use the system,

then it can be safely assumed that the target user groups are also able to perform

similarly and even better [2].

Figure 17: Professional game developers

Figure 18: Number of hours per week the test participants spend on playing

games

46

3.3.4 Number of participants per test

Concerning the number of participants per formative test, various opinions have

been expressed in the literature. Some studies propose three to five participants

[34], while others only one [42]. The approach followed in this study lies in

between the aforementioned suggestions.

The formative tests were conducted with two participants each. The reason for

using two participants was two-fold. First, since the beginning of the project it was

known that it would be difficult to find test participants with the required

background (i.e., game developers). As a result, a decision was taken to distribute

the limited resources in testers to more tests with fewer participants. Second,

conducting the test with two participants instead of one would minimize the

potential outlier effect. It was possible that a participant could provide false

feedback. Especially in the case of this study where three of the participants did

not much precisely the required user profile. A second testing session per test

could act as a verifier to the findings produced by the first session, thus

minimizing the outlier effect.

The summative test was conducted with eight participants. Due to the fact that the

summative test aimed to collect quantitative measures, the sample size should be

greater to ensure that the produced results will be statistically valid. Once more,

the difficulty to schedule testers with the desired user profile prevented the team

from testing with more than eight participants. However, number eight was a

suitable option since it allowed the formation of two groups of four participants

each, allowing the tests to be conducted in counterbalanced order to minimize the

bias effect.

47

3.4 How the tests were conducted

Before conducting a usability test, a test plan has to be created. The test plan

constitutes the foundation for the entire test [2]. It addresses every detail that can

have an impact on the success of the test, e.g. the how, when, where, who, why,

and what of the test. This section provides information related mostly to the how

and where of the usability tests conducted in this study.

3.4.1 Basic training

Given the fact that the majority of the testers who participated in the tests were not

familiar with the Game Cloud, some basic training had to be conducted before the

tests started to ensure minimum expertise. Without this training the testers would

feel confused since they would be interacting with a completely unknown system.

Not being aware of the exact purpose of the system and the problems it aims to

solve, a participant would most likely feel as the “wrong” person at the “wrong”

place.

To mitigate this issue and ensure minimum expertise for the participants, a single

page training script was created. The information included in the script was meant

to introduce the Game Cloud to the testers and establish a scenario in which they

would play an important role. For example, the scenario was placing the user in

the development team of a game company as a software developer. It continued by

assigning a task (originating from the company’s boss) to use the Game Cloud for

one of the company’s games. It then progressed by introducing the purpose and

the main functions of the system. Extra care had to be taken when preparing the

training script to ensure that it would not reveal any information that could bias

the users.

48

The training script was handed to the participants when they agreed to participate

to the tests, one or two days before the testing sessions. The participants were

instructed to read it and note any questions they might have to be discussed on the

testing day.

3.4.2 The testing process

The testing process involved the following activities:

• Pre-test arrangements

• The tasks

• Post-test arrangements

After the basic training was completed, the pre-test arrangements phase was

commencing. This phase included three actions; 1) the test moderator was reading

the test script to the participant, 2) the participant was asked to review and sign a

recording permission agreement, 3) the participant was asked to fill in a

background questionnaire.

The test script is a communications tool meant to be read verbatim to the

participant. The purpose of the test script is to describe what will happen during

the test session and emphasize the fact that the system, not the participant, is being

tested [2]. The reason for reading it verbatim is to ensure that the moderator will

always read the same information to all the participants, avoiding the disclosure of

potentially biasing information to different testers. The recording permission

agreement meant to guarantee that the participant had no objection in being

recorded in the context of the conducted study. The background questionnaire

aimed to reveal historical information concerning the background of the

participant in the domain of the tested software. That information would provide

49

better understanding of the behaviour and performance of the participant during

the test.

Following the pre-test arrangements phase, the actual testing tasks were

conducted. There is a difference in this phase between the formative and the

summative tests. In the formative tests, the tasks were given in printed form to the

participant by the test moderator who had an active role in the testing session. The

moderator was reading aloud the task scenario to ensure that the participant had a

clear grasp of it before commencing its execution. While performing the task, the

participant was prompted to think aloud to reveal as much of his thoughts and

feelings about the system as possible. The moderator could interact with the

participant, seeking for clarifications or providing assistance where absolutely

needed.

In the summative test, the process was completely automated. The test was

conducted with specialized usability testing software that guided the participant

automatically. It was this software that was providing the tasks to the participant

and it was the participant’s call to decide when a task starts and when it ends. The

role of the moderator was restricted to observation without any interaction to

ensure that the participant would not be slowed down in any way. For the same

reason, the participant did not have to think aloud. One of the primary objectives

of the summative test was the collection of quantitative measures. In order to

ensure the quality of the data, the test participants had to perform the tasks

uninterrupted. At certain times during the test, the participants were presented with

surveys (i.e., post-task surveys) which they had to fill in. This was particularly the

case after tasks 5 and 6 (see table 4) where the users had to evaluate the efficiency

of the wizard and the form.

50

During the post-test arrangements phase the participants had to fill in a post-test

questionnaire. The purpose of the post-test questionnaire was to collect qualitative

data that would reveal the opinions and feelings of the users about the system’s

usability. The same questions were asked of each individual in all the tests.

Following the submission of the post-test questionnaire, there was a final

discussion between the participant, the moderator and the observers (i.e., if the

observers were present). Any particular problems that came up for the participant

during the test or any clarifications needed by the moderator and the observers

were discussed and sorted out.

3.4.3 Moderator role

The test moderator was present in all the testing sessions, both formative and

summative. He was responsible to introduce the session, observe the participant

performing the tasks, take notes and record the participant’s behaviour and

comments. If required, he was assisting the tester in cases where the last one was

not able to proceed. The test moderator had to abide by the golden rules of

moderating as discussed by Dumas and Loring in [49].

In the formative tests, the moderator was responsible to hand the printed tasks to

the participant. Before starting a task, the moderator was reading it through to

ensure that the participant understands it completely. While the tasks were in

progress, the moderator could interact with the participant to extract useful

feedback. Since the formative tests were exploratory, the moderator sometimes

asked unscripted follow-up questions to clarify the participant’s behaviour and

expectations. He was also probing the user to think aloud when that was not

happening.

In the summative tests, the moderator’s role was slightly restricted. Since the main

51

aim of the test was to gather quantitative measures, the moderator had to minimize

the interaction with the participant as much as possible. That would ensure the

quality of the quantitative measures since the participant would be able to

accomplish the tasks without being interrupted.

3.4.4 Observer role

The formative tests were observed by the core developers of the system. The

observation was local with the observers being present in the testing room. They

were situated behind the participant in safe distance that allowed them to observe

and listen to the participant without burdening him with extra stress. The observers

were observing the participant’s actions through their computers. The software

running in the participant’s computer was sharing the audio, video and screen of

the participant’s computer to the observers’ computers. The same software allowed

the observers to mark their observations easily. At the end of the testing session,

the observers were participating in the debriefing session with the moderator. The

observers were not present in the summative testing sessions.

3.4.5 Debriefing

At the end of every formative testing session, the moderator and the observers

participated in a debriefing session. The debriefing session had a double purpose;

a) to create a prioritized list with the most serious usability problems the

participants encountered while using the prototype, b) to decide what fixes shall

be applied to the usability issues. The outcome of the debriefing session was a

UIL.

The debriefing was occurring immediately after the testing session while what had

happened was still fresh in everyone’s mind. After the debriefing, the moderator

52

was forming a final report, a small summary of the testing session. The final report

included: a) what was tested, b) the list of tasks the participants did, c) the UIL.

The summative testing sessions were not followed by debriefing sessions. In the

context of this study, the fifth iteration was the last one in the development cycle.

As such, the primary objective of the final summative test was to measure the

usability of the UI. The formation of a new UIL was not of primary importance.

3.4.6 Test environment

The testing sessions occurred in the usability testing laboratory of the IT

department at Lappeenranta University of Technology. The participants were using

a desktop PC with Windows. The prototypes were loaded in Google Chrome. No

other distracting software was running on the computer. A specialized usability

testing software was employed to monitor the testing process. The software was

MORAE. In addition to MORAE, google forms were employed in the early

formative tests to create questionnaires and collect qualitative data. MORAE was

configured to:

• Record audio and video during the testing sessions and share the

recordings to the observers’ computers.

• Capture and share the participant’s screen to the observers’ computers.

• Allow the observers to mark their observations easily and in real time

while the test was in progress.

• Allow the test moderator and the observers to playback and analyze the test

and the observations in the debriefing session.

• Provide surveys at predefined times during the test to collect qualitative

data (e.g., background, post-task and post-test questionnaires).

53

• Provide all quantitative measures (e.g., time to complete task, error rate,

success rate, etc).

• Specifically in the summative testing sessions, MORAE was configured to

operate in auto-pilot (i.e., unmoderated) mode. The software assumed the

role of the moderator, automatically presenting the tasks and the surveys to

the participant.

• Allow the usability researcher to analyze the quantitative measures and

create reports with the main findings of the study.

54

4 RESULTS AND DISCUSSION

The aim of this chapter is to present the results produced by the usability tests.

First, the overall usability of the UI is examined. Then, the main findings of the

study are discussed, divided into three groups: 1) usability preferences; 2) specific

findings related to the comparison of the wizard and the form; 3) design

recommendations. Finally, the chapter discusses the most critical errors that

happened during the summative test and attempts to investigate their causes.

4.1 Overall usability of the UI

Following the completion of each test, the users had to fill in a post-test

questionnaire which aimed to capture their opinions concerning the overall

usability of the UI. The majority of the questions were in the form of a scale,

inquiring users to evaluate certain aspects of the UI. For example, a statement like

“the process of entering a game is easy” had to be evaluated with a score between

1 (strong disagreement) and 4 (strong agreement). The analysis of the qualitative

data indicates that the users evaluated the overall usability of the UI with better

scores in subsequent tests. Figure 19 depicts the improvement graphically. The

final score assigned to each test was calculated as the average of the scores of all

the test questions. The score of each test question was the average of the scores

assigned to that question by all the participants of the test.

55

Table 6 lists some distinctive questions showcasing how the scores improved in

subsequent tests. The top number in each cell is the average of the scores assigned

to the question by the participants (i.e., numbers in parenthesis at the bottom of

each cell). The overall picture drawn from these results indicates that the product

has gradually improved throughout the development cycle in accordance to the

preferences of the users. However, it can be observed that in some cases the scores

were higher in earlier tests and then dropped notably before increasing again. An

explanation to this development could be the fact that some of the participants did

not match precisely with the required user profile. It might have been harder for

them to understand various concepts of the system. As a consequence, they

provided more strict evaluation.

Figure 19: Average score of the UI per test

56

Table 6: Questions showcasing the improvement of scores in subsequent tests

Formative
Test 1

Formative
Test 2

Formative
Test 3

Formative
Test 4

Summative
Test

The different functionalities
offered by the UI are easily
understood.

3
(4, 2)

2.5
(2, 3)

3
(3, 3)

3.5
(4, 3)

3.625

The process of entering a new
entry (game, item, achievement)
provides enough help and
guidance along the way.

3.5
(4, 3)

2.5
(2, 3)

3.5
(4, 3)

3.5
(3, 4)

3.75

It is easy to learn how to use the
system by myself.

3
(3, 3)

3.5
(4, 3)

3.5
(4, 3)

4
(4, 4)

3.875

I would use the system in the
future.

2.5
(3, 2)

3
(4, 2)

3.5
(3, 4)

3.5
(3, 4)

3.625

4.2 Main findings

The information collected by the usability tests was analyzed and translated into a

collection of main findings which are presented and discussed in this section.

Table 7 summarizes the findings in three columns: a) usability preferences; b)

wizard vs form; c) design recommendations. The usability preferences constitute

basic preferences the game developers have from the UI in terms of usability. The

findings in the second column are related to the comparison between the wizard

and the form, the two design approaches that were the focus of the summative test.

The design recommendations column includes suggestions on how to improve the

UI according to the perspective of the users. The recommendations focus on the

improvement of the process of entering game specific information, in terms of

efficiency and effectiveness.

57

Table 7: The main findings

Usability preferences Wizard vs form Design recommendations

The users appreciate and
demand quickness.

A form is faster than a
wizard in the process of
entering game items.

An automated approach to
the process of entering
game items would be the
best solution (i.e.,
uploading a file that
contains the items or
entering the items directly
through the source code of
the games).

The users favor error
tolerance.

A form is more error prone
and “mentally challenging”
than a wizard in the process
of entering game items.

The efficiency of the form
and the wizard could be
improved by allowing
duplication of similar items.

The users favor panoramic
designs while entering
game specific information
that allow them to
constantly inspect the
entered information before
interacting with the back-
end (i.e., before
submitting). They
appreciate the feeling of
inspection and control.

It is easy to learn how to
use the system to enter
game items using a wizard
or a form.

The wizard could be
improved by removing
unnecessary steps and
reducing the number of
clicks required to enter a
game item.

The users favor the
adoption of different colors
to distinguish collections of
similar elements.

The users seem to ignore
help even when they need
it.

4.2.1 Usability preferences

The users appreciate and demand quickness. As experienced programmers, the

users are accustomed to performing tasks rather quickly and they expect

58

technology to assist them in that respect. It was obvious that when asked to enter

10 game items (provided in a table in a simple web page), they employed all sorts

of techniques to accomplish the task in the quickest way possible (e.g., using

keyboard shortcuts, splitting the screen to have a concurrent view of the game

items and the Game Cloud UI, copy-pasting). Nonetheless, they were not happy

with the overall quickness. In many occasions, they were exhaling in frustration

for not being able to accomplish the task even more quickly.

The users favor error tolerance. They demand and expect from the system to

capture all errors they might cause while entering data, and in several occasions to

fix the errors as well. They want the errors to be reported swiftly and in the places

where they occur (i.e., to the UI elements that trigger the errors).

The users favor panoramic designs while entering game specific information

that allow them to constantly inspect the entered information before

interacting with the back-end (i.e., before submitting). They appreciate the

feeling of inspection and control. Some observations indicated that one of the

factors that made the users happier while using the form was the fact that it

allowed them to view all the entered data at the same screen, without having to

scroll or switch screens. This was not the case with the wizard where they had to

go back and forth between steps to inspect the entered information. This finding is

further supported by a request made by one of the participants to include a

summary screen in the wizard right before submission. The summary screen

should present the entered data and explain what will be sent to the back-end

precisely.

The users favor the adoption of different colors to distinguish collections of

59

similar elements. Employing a unique color for the main buttons in the views of

games (blue), items (red), achievements (green) and events (orange) makes it

considerably easier for users to mentally classify the basic notions involved in the

system (i.e., games, items, achievements, events) and be able to remember and

distinguish them. It also provides a visually appealing experience.

The users seem to ignore help even when they need it. Although the UI

included a help system with highlighted and clearly visible access points, the users

seemed to ignore it even when they did not know how to proceed or what sort of

information to enter. Moreover, in cases where the help was provided as

instructions or guidelines and it was visible by default near the UI elements the

users were interacting with, even then the users were not consulting it. What they

tended to do was looking for a solution to the problem by trial and error. After

failing a number of times, they slowed down and started inspecting the page more

carefully. Only then they went through the instructions. In some cases they never

consulted help, resulting in wrong information input. Perhaps this behaviour was

due to the fact that game developers are experienced programmers, accustomed to

resolving hindrances by themselves.

4.2.2 Wizard versus form

A form is faster than a wizard in the process of entering game items. This

observation is supported by qualitative and quantitative data. In multiple

occasions, the users expressed their preference to the form over the wizard due to

its quickness. Furthermore, the final summative test in which the wizard and the

form were compared in terms of efficiency, clearly indicates the prevalence of the

second over the first. Figure 20 supports this claim. The users had to spend almost

one minute more to complete the task with the wizard than with the form.

60

A form is more error prone and “mentally challenging” than a wizard in the

process of entering game items. Even though the form was reported to be

considerably faster than the wizard, it was also more “mentally challenging” as

one of the participants indicated. The users had to pay more attention to avoid

error situations using the form. A possible explanation to this issue could be the

way in which the input elements were laid out in the form. Since all the input

elements were constantly at the user’s view, there was the risk that during the

copy-pasting process - which was rapidly recurrent and dull - some data could be

pasted to the wrong input field. The user had to look carefully in the form to locate

the proper input field. This was not the case with the wizard since it was guiding

the users as to what information should be added next.

It is easy to learn how to use the system to enter game items using a wizard or

a form. It did not take the entry of more than two items before the users learned

the process. Figure 21 depicts the average time spent per item when the users had

Figure 20: Average time spent to enter 10 game items with the

wizard and the form.

61

to enter 10 game items using the wizard and the form. It can be seen that after

entering items A and B, the time required to enter more items does not vary

significantly. Figure 21 also supports the statement that the form allows the users

to enter the items faster than the wizard.

The average values for the wizard in figure 21 were calculated only by the four

participants who tested first with the wizard. The time spent by those participants

to enter the game items is presented in figure 22. Similarly, the average values for

the form were calculated only by the four participants who tested first with the

form (figure 23).

Figure 21: Average time spent per item; entering 10 game items with the wizard

and the form.

62

Figure 22: Time spent per item to enter 10 game items using the wizard; by the

four participants who tested first with the wizard

Figure 23: Time spent per item to enter 10 game items using the form; by the four

participants who tested first with the form

63

4.2.3 Design recommendations

An automated approach to the process of entering game items would be the

best solution (i.e., uploading a file that contains the items or entering the

items directly through the source code of the games). Many participants

reported that they would prefer the system to provide import functionality,

allowing the submission of great numbers of game items by uploading a file that

contains the items (e.g., spreadsheet, xml, json). Another widely supported

suggestion was the option to submit the game items programmatically, directly

through the source code of the games. In both cases, participants declared that the

option to review and edit the items after the import operation completes

constitutes a necessity.

The efficiency of the form and the wizard could be improved by allowing

duplication of similar items. Some participants reported that the option to

duplicate a game item was very desirable. Given the fact that the game items the

users had to enter to the system shared many common characteristics, some users

were wondering why a “Duplicate Item” option was not available.

The wizard could be improved by removing unnecessary steps and reducing

the number of clicks required to enter a game item. What irritated the

participants most when they were entering game items with the wizard was the

number of clicks they had to do until the process was completed. Indeed, the

wizard presented many steps some of which were not providing any real value to

the process (e.g., showing the API calls after completing a submission

successfully). Furthermore, the wizard was closing after a successful submission

(i.e., the view with the list of entered items was presented) forcing the users to

reopen it to add a new item, thus demanding more clicks.

64

4.3 Error rate

Altogether, the tasks were performed without significant errors. Figure 24 shows

the error rate per task. As can be seen from the figure, most errors happened in

task 3.

Task 3 was asking the users to add to the Game Cloud the achievement

501QuestsCompleted of the game Hammerfall. What the users had to do was to

navigate to the Achievements tab of the game Hammerfall and click on the green

“Add Achievement” button to add the achievement (figure 25). However, two of

the participants added the achievement as a game item by clicking on the “Add

Item” button in the Items tab (figure 26). A possible explanation to this error could

be the fact that the users did not understand the difference between a game item

and a game achievement. Furthermore, the users did not consult the instructions

provided by the UI in the blue frame (right on top of the items and achievements

tables).

Figure 24: Error rate per task

65

The errors that happened in tasks 5 and 6 were trivial copy-paste errors. Tasks 5

and 6 were asking the users to enter 10 game items using the wizard and another

10 game items using the form. The items were given in a table in a simple web

page. The method employed by the participants to accomplish these tasks was

copy-pasting. In some occasions, the users copied the wrong values. This was

most likely due to the fact that the copy-pasting process was rather dull, it had to

be repeated numerous times and the users wanted to finish it quickly.

Figure 25: How to add a new achievement

Figure 26: Achievement added incorrectly as an item

66

5 CONCLUSION AND FUTURE WORK

This master thesis presented a usability study conducted for the development of a

web UI for game developers to enter game specific information. The employed

evaluation technique was usability testing. The information collected by the tests

was analyzed and translated into a collection of main findings that include the

general usability preferences game developers have from the UI as well as design

recommendations. The outcome of this study could prove useful to UI designers

who would have to design similar products in taking the right design directions.

The results showed that the most valuable usability preferences are quickness and

error tolerance. Game developers favor UI elements that allow them to constantly

inspect the entered information without having to scroll or switch screens. The use

of different colors to categorize and distinguish collections of similar elements is

desirable. The help provided by the system was rarely used since the users were

first trying to resolve any hindrances by themselves.

The comparison of two different design approaches for one of the most critical and

frequently used use cases (i.e., entering game items), a form and a wizard, showed

that the users prefered the form. Their justifications included quickness, fewer

number of clicks and broader inspection and control capabilities of the entered

data from a single screen. On the side of the drawbacks, what was attributed to the

form was the fact that it was more prone to errors and more “mentally

challenging” compared to the wizard.

However, as the majority of participants stated, the best design approach for

entering a great number of game items would be the implementation of import

67

functionality that would allow the game developers to enter the items either

programmatically (i.e., directly through the source code of the games) or by

uploading a file in a predefined format containing all the items (i.e., spreadsheet,

xml, json).

For future research, the usability of the proposed design recommendations could

be examined. Furthermore, the findings of this study could be verified by using

other evaluation techniques (e.g., heuristic evaluation). Finally, it would be of

interest to research the reasons that lead game developers to ignore the provided

help, as well as to search for answers on how to improve the help system to

provide assistance when the users need assistance but they have not yet realized it.

68

6 REFERENCES

[1] “ISO 9241-210:2010 Human-centred design for interactive systems.” 2010.

[2] J. Rubin and D. Chisnell, Handbook of usability testing how to plan, design,
and conduct effective tests. Indianapolis, IN: Wiley Pub., 2008.

[3] C. Righi and J. James, User-centered design stories real-world UCD case
files. Amsterdam; Boston: Elsevier/Morgan Kaufman, 2007.

[4] P. Sherman, Usability Success Stories: How Organizations Improve By
Making Easier-To-Use Software and Web Sites. Gower Publishing, Ltd.,
2012.

[5] J.-Y. Mao, K. Vredenburg, P. W. Smith, and T. Carey, “The State of User-
centered Design Practice,” Commun ACM, vol. 48, no. 3, pp. 105–109, Mar.
2005.

[6] B. Shackel, “Ergonomics for a computer. Design.,” in Ergonomics for a
computer, 1959.

[7] X. Faulkner, Usability engineering. Houndmills, Basingstoke, Hampshire:
Palgrave, 2000.

[8] B. Shackel, “Human factors and usability,” in Human-computer interaction,
J. Preece, Ed. Upper Saddle River, NJ, USA: Prentice Hall Press, 1990, pp.
27–41.

[9] B. Shackel, “The concept of usability,” in Visual Display Terminals:
Usability Issues and Health Concerns, 1981.

[10] J. Bennett, “Managing to meet usability requirements,” in Visual Display
Terminals: Usability Issues and Health Concerns, 1984.

[11] B. Shackel, “Ergonomics in Design for Usability,” in Proceedings of the
Second Conference of the British Computer Society, Human Computer
Interaction Specialist Group on People and Computers: Designing for
Usability, New York, NY, USA, 1986, pp. 44–64.

69

[12] UXPA, “Definitions of User Experience and Usability.” [Online]. Available:
https://uxpa.org/resources/definitions-user-experience-and-usability.
[Accessed: 04-Mar-2014].

[13] M. Good, T. M. Spine, J. Whiteside, and P. George, “User-derived Impact
Analysis As a Tool for Usability Engineering,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, New York,
NY, USA, 1986, pp. 241–246.

[14] M. B. Rosson and J. M. Carroll, Usability engineering scenario-based
development of human-computer interaction. San Fancisco: Academic Press,
2002.

[15] T. Gilb, “Design by objectives,” Unpublished manuscript. Available from the
author at Box 102, N-1411 Kolbotn, Norway., 1981.

[16] T. Gilb, “The ‘impact analysis table’ applied to human factors design,” in
First IFIP Conference on Human-Computer Interaction, London, 1984, vol.
2, pp. 97–101.

[17] I. B. M. C. R. Division, J. M. Carroll, and M. B. Rosson, Usability
Specifications as a Tool in Iterative Development. Defense Technical
Information Center, 1984.

[18] K. A. Butler, “Connecting Theory and Practice: A Case Study of Achieving
Usability Goals,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, New York, NY, USA, 1985, pp. 85–88.

[19] J. B. Whiteside and K. Holtzblatt, “Usability engineering: our experience
and evolution,” in Human-Computer Interaction, 1988.

[20] D. A. Tyldesley, “Employing Usability Engineering in the Development of
Office Products,” Comput. J., vol. 31, no. 5, pp. 431–436, Jan. 1988.

[21] D. A. Norman and S. W. Draper, User centered system design: new
perspectives on human-computer interaction. Hillsdale, N.J.: Lawrence
Erlbaum Associates, 1986.

[22] D. A. Norman, The design of everyday things. New York: Basic Books,
2002.

70

[23] D. McCusker and K. Guzik, “CASE 12 - User-centered design for
middleware,” in User-Centered Design Stories, C. Righi and J. James, Eds.
San Francisco: Morgan Kaufmann, 2007, pp. 241–267.

[24] R. Sobiesiak, R. J. Jones, and S. M. Lewis, “DB2 Universal Database: A
Case Study of a Successful User-Centered Design Program,” Int. J. Hum.-
Comput. Interact., pp. 279–306, 2002.

[25] C. Righi and A. Clow, “Programmers are People, Too: Applying User-
Centered Design to Middleware.” TaskZ.com article, Feb-2004.

[26] J. Gulliksen, B. Göransson, I. Boivie, J. Persson, S. Blomkvist, and Å.
Cajander, “Key Principles for User-Centred Systems Design,” in Human-
Centered Software Engineering — Integrating Usability in the Software
Development Lifecycle, A. Seffah, J. Gulliksen, and M. C. Desmarais, Eds.
Springer Netherlands, 2005, pp. 17–36.

[27] J. Nielsen, “Usability 101: Introduction to Usability.” [Online]. Available:
http://www.nngroup.com/articles/usability-101-introduction-to-usability/.
[Accessed: 22-Apr-2014].

[28] W. Quesenbery, “Balancing the 5Es: Usability,” Cut. IT J., vol. 17, no. 2,
Feb. 2004.

[29] C. M. Barnum, Usability testing essentials ready, set... test! Amsterdam;
Boston: Morgan Kaufmann Publishers, 2011.

[30] J. Nielsen, Usability engineering. San Francisco, Calif.: Morgan Kaufmann
Publishers, 1994.

[31] S. Krug, Don’t Make Me Think: A Common Sense Approach to Web
Usability, 2nd Edition, 2nd edition. Berkeley, Calif: New Riders, 2005.

[32] UPA, “UPA 2009 Salary Survey Public Version,” 2009.

[33] J. S. Dumas and Redish, A practical guide to usability testing. Exeter,
England; Portland, Or.: Intellect Books, 1999.

[34] J. Nielsen, “Why You Only Need to Test with 5 Users.” [Online]. Available:
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/.
[Accessed: 28-Mar-2014].

71

[35] R. A. Virzi, “Streamlining the Design Process: Running Fewer Subjects,”
Proc. Hum. Factors Ergon. Soc. Annu. Meet., vol. 34, no. 4, pp. 291–294,
Oct. 1990.

[36] R. A. Virzi, “Refining the Test Phase of Usability Evaluation: How Many
Subjects is Enough?,” Hum Factors, vol. 34, no. 4, pp. 457–468, Aug. 1992.

[37] J. R. Lewis, “Sample sizes for usability studies: additional considerations,”
Hum. Factors, vol. 36, no. 2, pp. 368–378, Jun. 1994.

[38] J. Nielsen, “Big Paybacks from ‘Discount’ Usability Engineering,” IEEE
Softw, vol. 7, no. 3, pp. 107–108, May 1990.

[39] J. Nielsen, “Guerrilla HCI: Using Discount Usability Engineering to
Penetrate the Intimidation Barrier,” 01-Jan-1994. [Online]. Available:
http://www.nngroup.com/articles/guerrilla-hci/. [Accessed: 22-Apr-2014].

[40] J. Nielsen, “10 Usability Heuristics for User Interface Design,” 01-Jan-1995.
[Online]. Available: http://www.nngroup.com/articles/ten-usability-
heuristics/. [Accessed: 22-Apr-2014].

[41] J. Nielsen, “Usability Testing for the 1995 Sun Microsystems’ Website.” 25-
May-1995.

[42] M. C. Medlock, D. Wixon, M. Terrano, R. Romero, and B. Fulton, “Using
the RITE method to improve products: A definition and a case study,”
Usability Prof. Assoc., 2002.

[43] J. J. McGinn and A. R. Chang, “RITE+ Krug: A Combination of Usability
Test Methods for Agile Design,” J. Usability Stud., vol. 8, no. 3, pp. 61–68,
2013.

[44] S. Krug, Rocket Surgery Made Easy: The Do-It-Yourself Guide to Finding
and Fixing Usability Problems, 1 edition. Berkeley, CA: New Riders, 2009.

[45] D. Kane, “Finding a place for discount usability engineering in agile
development: throwing down the gauntlet,” in Agile Development
Conference, 2003. ADC 2003. Proceedings of the, 2003, pp. 40–46.

[46] D. Sy, “Adapting usability investigations for agile user-centered design,” J.
Usability Stud., vol. 2, no. 3, pp. 112–132, 2007.

72

[47] L. L. Constantine, “Process Agility and Software Usability - Toward
Lightweight Usage Centered Design,” Repr. Inf. Age AugustSeptember 2002
Revis. Expand. Version Column Manag. Forum Softw. Dev. Vol 9 No 6 June
2001, 2002.

[48] J. Tidwell, Designing interfaces. Sebastopol, CA: O’Reilly, 2011.

[49] J. S. Dumas and Loring, Moderating usability tests principles and practices
for interacting. Amsterdam; Boston: Morgan Kaufmann/Elsevier, 2008.

	1 INTRODUCTION
	1.1 Objectives and research questions
	1.2 Research methodology
	1.3 Structure

	2 USABILITY IN A NUTSHELL
	2.1 How the usability discipline emerged
	2.2 Usability engineering
	2.3 User centered design
	2.4 Understanding usability
	2.5 Usability testing
	2.5.1 Discount usability engineering method
	2.5.2 Other usability engineering methods
	2.5.3 Formative and summative usability tests

	3 CASE STUDY: GAME CLOUD WEB UI
	3.1 The Game Cloud
	3.2 The development and testing process
	3.2.1 Iteration 1
	3.2.2 Iteration 2
	3.2.3 Iteration 3
	3.2.4 Iteration 4
	3.2.5 Iteration 5

	3.3 Participant recruitment
	3.3.1 User profiles
	3.3.2 Total number of participants
	3.3.3 Background of selected participants
	3.3.4 Number of participants per test

	3.4 How the tests were conducted
	3.4.1 Basic training
	3.4.2 The testing process
	3.4.3 Moderator role
	3.4.4 Observer role
	3.4.5 Debriefing
	3.4.6 Test environment

	4 RESULTS AND DISCUSSION
	4.1 Overall usability of the UI
	4.2 Main findings
	4.2.1 Usability preferences
	4.2.2 Wizard versus form
	4.2.3 Design recommendations

	4.3 Error rate

	5 CONCLUSION AND FUTURE WORK
	6 REFERENCES

