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Abstract 
Mazin Al-saedi 
Flexible multibody dynamics and intelligent control of a hydraulically driven 
hybrid redundant robot machine  
Lappeenranta 2014 
144 pages 
Acta Universitatis Lappeenrantaensis 577 
Diss. Lappeenranta University of Technology 
ISBN 978-952-265-594-3, ISBN 978-952-265-595-0 (PDF), ISSN-L 1456-4491, 
ISSN 1456-4491. 
 
The assembly and maintenance of the International Thermonuclear Experimental 
Reactor (ITER) vacuum vessel (VV) is highly challenging since the tasks performed by 
the robot involve welding, material handling, and machine cutting from inside the VV.  
The VV is made of stainless steel, which has poor machinability and tends to work 
harden very rapidly, and all the machining operations need to be carried out from inside 
of the ITER VV. A general industrial robot cannot be used due to its poor stiffness in 
the heavy duty machining process, and this will cause many problems, such as poor 
surface quality, tool damage, low accuracy. Therefore, one of the most suitable options 
should be a light weight mobile robot which is able to move around inside of the VV 
and perform different machining tasks by replacing different cutting tools.  
Reducing the mass of the robot manipulators offers many advantages: reduced material 
costs, reduced power consumption, the possibility of using smaller actuators, and a 
higher payload-to-robot weight ratio. Offsetting these advantages, the lighter weight 
robot is more flexible, which makes it more difficult to control. To achieve good 
machining surface quality, the tracking of the end effector must be accurate, and an 
accurate model for a more flexible robot must be constructed. 
This  thesis  studies  the  dynamics  and  control  of  a  10  degree-of-freedom  (DOF)  
redundant  hybrid  robot (4-DOF serial mechanism and 6-DOF 6-UPS hexapod parallel 
mechanisms) hydraulically driven with flexible rods under the influence of machining 
forces. Firstly, the flexibility of the bodies is described using the floating frame of 
reference method (FFRF). A finite element model (FEM) provided the Craig-Bampton 
(CB) modes needed for the FFRF. A dynamic model of the system of six closed loop 
mechanisms was assembled using the constrained Lagrange equations and the Lagrange 
multiplier method. Subsequently, the reaction forces between the parallel and serial 
parts  were  used  to  study  the  dynamics  of  the  serial  robot.  A  PID  control  based  on  
position predictions was implemented independently to control the hydraulic cylinders 
of the robot.  

Secondly, in machining, to achieve greater end effector trajectory tracking accuracy for 
surface quality, a robust control of the actuators for the flexible link has to be deduced. 
This thesis investigates the intelligent control of a hydraulically driven parallel robot 
part based on the dynamic model and two schemes of intelligent control for a 



hydraulically driven parallel mechanism based on the dynamic model: (1) a  fuzzy-PID 
self-tuning controller composed of the conventional PID control and with fuzzy logic, 
and (2) adaptive neuro-fuzzy inference system-PID (ANFIS-PID) self-tuning of the 
gains of the PID controller, which are implemented independently to control each 
hydraulic cylinder of the parallel mechanism based on rod length predictions. The serial 
component of the hybrid robot can be analyzed using the equilibrium of reaction forces 
at the universal joint connections of the hexa-element. To achieve precise positional 
control of the end effector for maximum precision machining, the hydraulic cylinder 
should be controlled to hold the hexa-element.  

Thirdly, a finite element approach of multibody systems using the Special Euclidean 
group SE(3) framework is presented for a parallel mechanism with flexible piston rods 
under the influence of machining forces. The flexibility of the bodies is described using 
the nonlinear interpolation method with an exponential map. The equations of motion 
take the form of a differential algebraic equation on a Lie group, which is solved using a 
Lie group time integration scheme. The method relies on the local description of 
motions,  so  that  it  provides  a  singularity-free  formulation,  and  no  parameterization  of  
the nodal variables needs to be introduced. The flexible slider constraint is formulated 
using a Lie group and used for modeling a flexible rod sliding inside a cylinder. The 
dynamic model of the system of six closed loop mechanisms was assembled using 
Hamilton’s principle and the Lagrange multiplier method. A linearized hydraulic 
control system based on rod length predictions was implemented independently to 
control the hydraulic cylinders.  

Consequently, the results of the simulations demonstrating the behavior of the robot 
machine are presented for each case study. 

In conclusion, this thesis studies the dynamic analysis of a special hybrid (serial-
parallel) robot for the above-mentioned special task involving the ITER and investigates 
different control algorithms that can significantly improve machining performance. 
These  analyses  and  results  provide  valuable  insight  into  the  design  and  control  of  the  
parallel robot with flexible rods. 

 

Keywords: hybrid robot, flexible multibody dynamics, floating frame of reference, 
hydraulic control, Adaptive Neural Fuzzy control, Lie group, Special Euclidean group.    
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Nomenclature 

Latin alphabet 
0 zero matrix  

iA  the rotation matrix of a body i  
Pi
fA  is a rotation matrix that describes the orientation due to 

deformation at the location of node Pi with respect to the local 
frame 

 

2 1A ,A  the infill and return effective action areas                               m2 
cr
ia  the relative acceleration of rod with respect to cylinder  

Be the water bulk modules  
b the coefficient of friction (impedance coefficient)              N.s/m 
C is the vector of  nonlinear constraint equations of the parallel 

robot 
 

Cq the Jacobian matrix of the nonlinear constraint equations  
Cs basic constraints of spherical constraint on two points  
Cd1 basic constraints of perpendicular constraint type 1  
Cd2 basic constraints of Perpendicular constraint type 2  
Cic  internal leakage  

iC  the Jacobian matrix for generalized coordinates related to the 
orientation 

 

iqf
C  the Jacobian matrix for generalized coordinates related to the 

flexibility 
 

vc  the flow coefficient of the orifice  
ijd  a vector from Pi to Pj defined in the global coordinate system  

d the relative configuration vector  
E Young’s modulus  
e  the error between the predicted ld and presented l lengths  
e  the error derivative between the predicted ld and presented l 

lengths 
 

UIie ,  the displacement parts of the relative motions.  
Iie ,  the rotation parts of the relative motions.  

0 1 2 3, , ,i i i ie e e e  Euler parameters of each cylinder  

(3)expSO  the exponential map of the Special Orthogonal group  

SE 3exp ( )  the exponential map of the Special Orthogonal group.  
f0 deformation gradient in the reference configuration  

i
fF  the vector of the external forces associated with the nodal 

coordinates of the flexible body 
 

G group contains elements  
J  the second moment of inertia  
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H  the group of homogenous transformations combining a rotation 
matrix and a position vector. 

 

HA , HB the nodal homogeneous matrices of respectively node A and B  
HJ,I is a homogeneous matrix that describes the relative motion 

between the two nodes due to the joint I. 
 

0H  nodal material frames at node in the initial state  
Hj , Hj+1 nodal material frames at nodes sj and sj+1 respectively.  
h  the 4×4 matrix h belongs to (3)se , the Lie algebra of SE(3)  

Uh  the position elements of h   
h  the set of skew-symmetric matrices built upon the three 

components of h  
 

I  the 3×3 identity matrix  
gext the external forces vector  
Kp the proportional coefficient gain  
Kd  the derived coefficient gain  
Ki the integral coefficient gain  
KU stiffness matrix contains the axial and shear stiffnesses  
K  stiffness matrix contains the torsional and bending stiffnesses  

i
CBK  The modal stiffness matrix of the flexible body  
i
orthK  the diagonal modal stiffness matrices of the orthonormalized 

CB modes.  
 

f frequency  
Fx the machining force in the x direction  
Fy the machining force in the y direction  
Fz the machining force in the z direction  
Fhi The hydraulic forces inside each cylinder  

(3)logSO  the logarithmic map of the Special Orthogonal group.  
i
CBM  The modal mass matrix of the flexible body  
i
armM  The mass matrix of each arm of the parallel robot  
i
orthM  the diagonal modal mass matrices of the orthonormalized CB 

modes.  
 

Un  the position elements of given six-dimensional vector  
n  the rotation elements of given six-dimensional vector  
nc set of nonlinear algebraic constraint equations  
n generalized coordinates of all bodies of the parallel robot  

0O  a constant rotation matrix built on the unit vectors along the 
neutral axis and the cross-sections that accounts for the 
orientation of the beam in the reference configuration with 
respect to the inertial frame. 

 

LP  the load pressure  

1 2P ,P  the infill and return water cavity pressures                              Pa 
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sp  the pressure of the system sourse  

Q i
e  the vector of generalized external forces associated with 

generalized coordinates of body i 
 

i
fQ  The vector of the elastic force  

Qv a quadratic velocity vector  
Qc the constraint force vector for the system  

iTq  the generalized coordinates defining the position of node Pi  
iq  the generalized coordinates defining the velocity of node Pi  

q1, q2 elements of group  
QL the load flow  

1Q , 2Q  the infill and return flows                                                       m3/s 
R  a rotation matrix  

3  Euclidian vector of three dimension  
cr
ir  The unit vector of the relative position of the coordinate system 

of  a  rod  to  the  coordinate  system  of  a  cylinder  in  the  global  
system 

 

r
ir  the global position of the coordinate system of a rod   
c
ir  the global position of the coordinate system of a cylinder   
ir  the global velocity vector of an arbitrary point on the body  

s the spatial parameter along the neutral axis of a beam  
iT  The kinetic energy of a one beam element  

(3)SOT  tangent operator  
t time  

iP
fu  the vectors describing the translational deformed positions of 

node  Pi with respect to a flexible body i reference coordinate 
system 

 

Vi the volume of body i m3 
V1, V2 the infill and return volumes inside cylinder m3 

i
fv  The vector due to deformation at the location of node Pi within 

the frame of reference 
 

iv  a unit vector defined in the undeformed state emanating from 
node Pi 

 

cr
iv  the relative velocity of rod with respect to cylinder  

,J Iv  a 6×1 vector related to the time derivative of the transformation 
matrix HJ,I   

 

,j Iv  the time derivative coordinates I   
i

sW  the virtual work of the elastic forces resulting from the 
deformation of a rod 

 

i
eW  the virtual work due to externally applied forces  

xv the spool position  
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 x a position vector  
max min,x x  the maximum and minimum of the input values of error  

max min,y y  the maximum and minimum of the input values of error dot  

, ,i i ix y z  the coordinate system  

Greek alphabet 
 

i  the vector joint of the ith cylinder on the fixed plate with respect 
to frame O 

 

, ,  Euler angles  
I  relative velocity  

i  the rotation matrix of the i i ix y z coordinate system with respect 
to global system 

 

i  the  vector  of  the  physical  displacement  of  the  node  (the  nodal  
coordinates) 

 

i  the vector second derivative of the physical displacement of the 
node (the nodal coordinates) 

 

h  the variation of h  
Pi  the vector that represents the rotation of an infinitesimal 

volume at the node Pi with respect to flexible body i  coordinate 
system 

 

Pi  a skew symmetric matrix associated with the vector Pi   
 deformation  
 coordinate for the position of body l along the flexible body  

e i  vector of Euler parameters of each cylinder  
 rotation angle of the rotation table  
 weight coefficient (crisp value)  
 the vector of Lagrange multipliers  
( )z  the membership degree of the output  

 tilting angle of the hexa-element  
iP  The Craig-Bampton modal matrix  
iP
R  the modal matrix whose columns describe only the translational 

mode shapes 
 

iP  the modal matrix that describes the rotational mode shapes  
i  the mass density of body i  
i
C  the matrix of static correction modes  
i
N  A shape matrix that contains only normal modes  
i
CB  the non-orthogonal CB deformation modes  

i
jN  eigenvectors which are called normal modes  
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 the constraint equations  
q  the constraint gradient   
i
jN  a set of the jth eigenvalues or natural frequencies  

ˆ i
j  a set of eigenvalues or natural frequencies associated with the 

selected orthonormalized CB modes 
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1 Introduction  

1.1 The International Thermonuclear Experimental Reactor (ITER) 

To match the requirements of field work specifications, a hybrid redundant robot 
integrates the benefits of both serial and parallel kinematics, for instance, the large 
workspace of serial robots, the good stiffness performance of parallel robots, and high 
accuracy. The assembly and maintenance of International Thermonuclear Experimental 
Reactor (ITER) (Figure 1.1) vacuum vessel (VV) (Figure 1.1) is highly challenging 
since the tasks performed by the robot involve welding, remote material handling, and 
machine cutting from inside the VV (Pessi et al., 2007).  The VV is made of stainless 
steel which have poor machinability compared to regular carbon steel because they are 
tougher, gummier and tend to work harden very rapidly, and all the machining 
operations need to be carried out from inside of ITER VV. Commercially available 
CNC machining center cannot be used for this purpose due to its big size and high 
weight. Furthermore, the general industrial serial robot cannot be used due to its poor 
stiffness in the heavy duty machining process, and this will cause lots of problems: bad 
surface quality, tool damage, bad accuracy and so on. Therefore, one of the most 
suitable options should be a light weight mobile robot which has the ability of moving 
around inside of VV and performing different machining tasks by replacing different 
cutting tools as shown in Figure 1.3 and Figure 1.4. Consequently, a hybrid parallel-
serial robot (Figure 1.2) has been developed that has ten degrees of freedom (DOF). A 
Stewart parallel mechanism contributes six DOF, and the serial mechanism provides the 
remaining four. 

1.2 Main types of hybrid (serial-parallel) robots 

There are two main types of hybrid (serial-parallel) robots: 

1- Serial-parallel configuration. 
2- Parallel-serial configuration. 

The robot under study is considered as hybrid (serial-parallel) robot machine. However, 
the first type is distinguished by: fast end-effector, big volume of working space, high 
local speed and high local acceleration (due to short links), and long trajectories. 
Therefore, this type of hybrid robot is used for machining applications like laser cutting 
and assembling tasks. Conversely, the second type of hybrid robot (parallel-serial) is 
distinguished by: slow speed of the end effector, small volume of working space, and 
local speed is not high. However, this type has stiffer base because the base is the 
parallel mechanism structure. This kind of hybrid robot is able to operate with high 

 1 Chapter 
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performances operations such as surgery applications (Carbone et  al., 2001), also for 
performing a multi-step arc welding process, where this kind of robot is highly capable 
of reducing the actuating energy (Mohammadipanah and Zohoor, 2009). 

 

 

Figure 1.1: International Thermonuclear Experimental Reactor (ITER). 
 

 

Figure 1.2: Hybrid robot and the construction of the parallel robot. 
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Figure 1.3: The hybrid robot movement inside one section of the Vacuum Vessel of (ITER). 
 

 

Figure 1.4: The hybrid robot movement inside one quarter section of the Vacuum Vessel of 
(ITER). 
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1.3 Flexible multibody dynamics 

Reducing the mass of the robot manipulators offers many advantages: reduced material 
costs, reduced power consumption, the possibility of using smaller actuators, and a 
higher payload-to-robot weight ratio. Despite these advantages, the lighter weight robot 
is more flexible, which makes it more difficult to control. To achieve good machining 
surface quality, the tracking of the end effector must be accurate, and an accurate model 
for the more flexible robot must be constructed. 

Because of the reduced structural stiffness, the inertial forces generated from 
acceleration will lead to exaggerated and unwanted displacements and vibration. These 
undesired motions will degrade system performance significantly by decreasing 
positioning accuracy and increasing settling times. Even worse, they will result in 
system instability. Therefore, for accurate control in high performance systems, the 
flexibility of the mechanical components must be taken into account (Wang et al., 
2010). A hybrid redundant robot with flexible piston rods is studied here. 

Several researchers have studied open-loop mechanisms such as flexible serial robots. 
For instance, Sunada and Dubowsky (1983) used constraint modes and fixed-interface 
normal modes to reduce the nodal DOFs in a flexible serial robot component to modal 
DOFs. Nominal motion was obtained from a dynamic independent analysis of a rigid 
body model. Next, they generated linear structural equations of motion for the 
deformation variables with time-varying coefficient matrices. The application of their 
approach is limited, because it ignores coupling between gross motion and small elastic 
deformation. 

Accounting for structural flexibility in the dynamic modeling of parallel mechanisms, 
characterized by multiple spatial closed-loop chains, has not been studied extensively. 
Traditionally, in the rigid link case, parallel platforms are readily modeled with 
independent coordinates with inverse kinematics models, while parallel platforms with 
flexible links are more difficult to model because of the unavailability of closed-form 
solutions to the inverse kinematic model. Consequently, dynamic coupling effects 
among the various kinematic chains of the mechanisms, and coupling between rigid 
body motion and flexible motion are generally more complex to model than in the serial 
mechanism case (Wang and Mills, 2006). Setting up the mathematical model for a 
general flexible parallel manipulator is challenging. The nominal motion of the 
manipulator involves variable geometries resulting in varying system parameters. So, 
the equations of motion are usually configuration dependent and need to be computed 
for each configuration of the manipulator (Zhao et al., 2011). 

Recently, in line with growing interest in the use of parallel kinematics machine tools, 
researchers have been examining the dynamics of flexible parallel robots, which have 
multiple closed-loop chains. Fattah et al. (1995) used the finite element method (FEM) 
and the Euler-Lagrange formulation to model the flexible linkage of a parallel 
manipulator with three degrees of freedom assuming that the influence of flexible 
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motion on the rigid motion is negligible. With the piston being modeled as a mass-
spring-damper, a set of twelve Lagrange equations for the flexible Stewart manipulator 
was derived by Lee and Geng (1993) using a tensor representation. Zhaocai and 
Yueqing (2008) studied the flexible planar parallel robot. This study was limited due to 
its use of the so-called driving force method, which is approximate. Wiens and Hardage 
(2006) presented a methodology and experimental study for modeling the structural 
dynamics of a parallel kinematic machine. They replaced the constraints between the 
links and moving plate with boundary conditions. 

Among studies tackling the subject of the vibration of a hexapod parallel robot, 
considerable effort has been dedicated to application of the finite element method. 
Without considering the effects of nominal motion, Zhou et al. (2006) provided the 
stationary vibration model of the flexible 3PRS parallel kinematic machine where the 
links were modeled as finite elements and the joint as virtual spring/dampers. Then, a 
nonstationary model of the same parallel kinematic machine was developed using the 
elasto-dynamics method by Zhou et al. (2007). Modeling of the 8-PSS flexible 
redundant parallel manipulator was investigated by Zhao et al. (2011), who assumed the 
rigid dynamic model is presented first. Then, the actuating forces could be achieved. 
Finally, the kineto-elastodynamic model of the manipulator was developed using the 
finite element method and substructure synthesis technique. In structural dynamics, 
constraint equations are linear in the elastic coordinates and can be applied using a 
Boolean  matrix  that  has  constant  elements.  Unfortunately,  this  approach  cannot  be  
adopted in the dynamics of elastic mechanical systems because of the inertial properties, 
the eigenspectra vary with time, and because of the nonlinearities in the constraint 
equations (Shabana, 2005). 

Carbone (2011) used the lumped mass approach to analysis flexible parallel robot. In 
his approach, he assumed that the compliance of each component of a multibody robot 
system can be modelled with lumped parameters by using linear and torsional springs. It 
is noteworthy that he assumed that the stiffness matrix is kinematic configuration 
dependent, i.e., the stiffness matrix is a function of time for a given end-effector 
trajectory. 

Zhang et al. (2007) studied the effects of elastic deformation on the rigid body motions 
of 3PRR flexible intermediate links based on the Assumed Mode Method (AMM). 
However, gravitational potential energy is not included in their study, and they 
neglected the Lagrange multiplier when reducing the equations of motion.  

Finite element analysis is usually used to obtain the static and dynamic responses of a 
system loaded by known forces. However, the AMM is used not only to obtain the 
dynamic  responses  of  the  system,  but  also  to  control  unwanted  vibration  and  end  
effector motion. Compared to FEA, the drawbacks of the AMM are as follows (Vakil et 
al., 2008): (i) The mode shapes employed in the AMM are an approximation of the real 
mode shapes of the system. (ii) The nonlinear strain energy terms, which lead to effects 
such as stress stiffening, cannot be addressed properly. (iii) The AMM does not lead to 
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a realistic approximation of the dynamic model for a flexible rod with a varying cross-
section, such as a tapered beam. These drawbacks result in errors when the AMM is 
used to model a flexible rod. Furthermore, when using the AMM to model flexibility as 
the number of links increases, the calculation of the Lagrangian equation and evaluation 
of the derivatives become more lengthy and complex, and thus more prone to error 
(Vakil et al., 2008). 

Recently, more attention has been given to studying the flexibility of mechanisms using 
floating  frame  of  reference  techniques  (FFRF).  With  FFRFs,  the  equations  of  motion  
are expressed in terms of a coupled set of reference and elastic coordinates. The 
reference coordinates define body location and orientation, while the elastic coordinates 
define body deformation with respect to its reference. The elastic coordinates can be 
determined using the finite element method or the experimental identification technique 
(Wang et al., 2010). In the FFRF, deformations are usually expressed using methods 
based on the FEM approach. Thus, the motion of each point on the flexible body is 
regarded as the superposition of the rigid body motions in the global coordinate system 
and local flexible deformations in the floating frame (Wang and Mills, 2004). To 
decrease the number of coordinates related to flexibility, Shabana and Wehage (1983) 
proposed  the  use  of  component  mode  synthesis  (CMS).  In  CMS,  a  set  of  nodal  
coordinates from an FE model can be replaced by a smaller number of modal 
coordinates. As a result, the system size and computational time are considerably 
reduced. In addition, since the high frequency modes are eliminated, larger time steps 
can be used in the simulation. Yoo and Haug (1986) introduced the use of static 
correction modes to account for local deformation due to joint constraints and force 
components. 

Wang and Mills (2004) introduced a CMS procedure for developing a dynamic model 
of a flexible link planar parallel platform with PZT transducers. They used the result of 
the rigid body simulation of actuation forces and joint constraint forces as inputs for the 
flexible multibody simulation. 

The formulation of kinematic joints composed of simple basic constraints in the case of 
systems of rigid bodies has been formulated by Haug (1989). Bay and Han (2000) 
modeled joint constraints using virtual bodies. In their approach, the constraints were 
developed between massless rigid bodies. However, adding virtual bodies increases 
computational time. Shabana (2005) established an approach based on intermediate 
body fixed joint coordinate systems that are rigidly attached to joint definition points. In 
this approach, by assuming the joint axis can be described as a rigid line, the joint 
coordinate systems are used to derive basic constraint equations including sliding joints.  

Manipulators with prismatic joints are also used widely in industry. However, research 
on this type of manipulator has not received the attention it deserves. Hwang and Haug 
(1990) illustrated basic constraint types used with translational joint models, which 
account for the deformation of the axis line. They used the FFRF approach accounting 
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for multiple contact points, whereas the numerical results are only shown in the case of 
a single contact point.  

Korkealaakso et al. (2009) presented an approach for the modeling of joint constraints 
for flexible multibody systems using three basic constraint primitives. The terms of the 
Jacobian matrix and the terms related to second time differentials of constraint 
equations  are  explicitly  presented.  One  of  the  examples  they  studied  was  the  flexible  
slider mechanism. However, the cylinder of the flexible slider mechanism is fixed to the 
framework using a bracket joint. It cannot move while the rod is sliding inside the 
cylinder. 

 

1.4 ANFIS  and  fuzzy  tuning  of  a  PID  controller  for  trajectory  
tracking of a flexible hydraulically driven parallel robot machine 

Flexible robot manipulators exhibit many advantages over rigid robots: they require 
lighter material, consume less power, require smaller actuators, and have a higher 
payload-to-robot weight ratio. Despite these advantages, the modeling and control of 
flexible manipulators is more difficult than controlling rigid manipulators (Al-saedi et 
al., 2012). Thus, in machining, to achieve better end effector trajectory tracking 
accuracy for surface quality, complex and more accurate control of the actuators for the 
flexible link has to be created. To minimize the tracking errors, dynamic forces need to 
be compensated by the controller.  

However, the closed mechanical chains make the dynamics of the parallel manipulators 
highly complex and their dynamic models highly nonlinear even though some of the 
parameters, such as masses, can be determined; other parameters such as centripetal and 
Coriolis forces, variation in the location of the center of gravity, modeling errors and 
disturbances such as machining forces, cannot be determined exactly. As a result, many 
of the control methods are not sufficiently efficient. The difficulty in the control of the 
parallel robot lies in the need for the simultaneous control of the trajectories of its six 
actuators. This also means that there will be a limitation to the error permitted for each 
actuator (Indrawanta and Santoso, 2009). 

In  recent  years,  significant  efforts  have  been  made  by  researchers  across  the  world  to  
control parallel robots. Various approaches have been proposed; for example, Hopkins 
and Williams (2002) used the PID control method and Indrawanta and Santoso (2009) 
implemented the sliding mode control method. The fuzzy logic method was also used to 
control parallel robots; for example, Yongsheng et al. (2010) formulated the enhanced 
fuzzy sliding mode controller for a 3-DOF parallel manipulator. The method of neural 
networks was also attractive and used by researchers for control actuated parallel robots, 
e.g. by Akbas (2008) and Li et al. (2008). Seifried et al. (2011) analysed the feed 
forward control for flexible multibody system using flexible model inversion. 
Unfortunately, the feed forward control method characterized by phase lagging and the 
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disturbance variables must be measured on-line, in many applications, this is not 
feasible. Furthermore, finding the flexible model inversion is not simply for complex 
mechanism like the flexible parallel robot. Wu et al. (2014) used the feed forward 
method plus the feedback method together to eliminate the disadvantages of each other 
for chatter suppression in robot machines. 

The PID controllers can be described based on their robust performance in a wide range 
of operating conditions and their functional simplicity, which allows operation in a 
simple, straightforward manner. However, the highly nonlinear nature of the parallel 
robot means that a PID controller can perform well only in a particular operating range. 
The PID controllers can basically be divided into two categories. In the first category, 
the PID parameters are fixed in the entire control process after they have been tuned or 
adjusted  in  a  certain  optimal  way.  However,  it  is  difficult  to  obtain  satisfactory  
performance when the control system is highly nonlinear and heavily coupled. The 
second category is self-tuning to the first type. The structure is similar to the first type, 
but the parameters can be manipulated online based on parameter estimation in order to 
make the system more adaptive and robust. However, conventional PID controllers are 
still widely used in robot control, when the system parameters such as mass and inertia 
are not accurately measured. If they vary under different operating conditions, the 
conventional PID controllers may not achieve satisfactory performance (Tian, 2004). In 
order to obtain global results, it is necessary to re-tune the PID controller when the 
operating range is changed, and different techniques from nonlinear control theory are 
required (Ravi et al., 2011). 

Robotic machines, unlike humans, lack the ability to solve problems using imprecise 
information requiring restrictive assumptions for the plant model and for the control to 
be designed (e.g. linearity). To emulate this ability, fuzzy logic and fuzzy sets are 
introduced (Ravi et al., 2011). The fuzzy controller can be designed without knowing 
the mathematical model of the system, and instead by mimicking human operators’ 
thinking processes through linguistic rules. These rules reflect human experience or 
knowledge about how to control the dynamic system. In addition, unlike PIDs, fuzzy 
controllers are nonlinear and adaptive in nature, thereby giving a robust performance 
under parameter variations and a load disturbance effect (Tian, 2004). Fuzzy logic 
control systems, which have the capability of transforming linguistic information and 
expert knowledge into control signals (Melba Mary et al., 2007), are currently being 
used in a wide variety of complex and nonlinear processes in engineering applications. 

Although fuzzy logic systems, which can reason with imprecise information, are good 
at  explaining their  decisions,  they cannot automatically acquire the rules used to make 
those decisions (Aldair, 2010). On the other hand, artificial networks are good at 
recognizing patterns and have the ability to train the parameters of a control system, but 
they are not good at explaining how they reach their decisions. These limitations in both 
systems have stimulated the creation of intelligent hybrid systems (such as neuro-fuzzy 
systems) where the two techniques are combined in such a manner that the limitations 
of the individual techniques are overcome. The neuro-adaptive learning techniques 
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provide a method for the fuzzy modelling procedure to acquire information about a data 
set. This technique gives the fuzzy logic capability to compute the membership function 
parameters that effectively allow the associated fuzzy inference system to track the 
given input and output data (Aldair, 2010). 

In order to achieve accurate trajectory tracking and good control performance, a number 
of control schemes have been developed, amongst these, the adaptive neuro-fuzzy 
inference system (ANFIS). The ANFIS is a fuzzy inference system implemented in the 
framework of adaptive networks. By using a hybrid learning procedure, the ANFIS can 
construct an input-output mapping based on both human knowledge (in the form of 
fuzzy if-then rules) and stipulated input-output data pairs. The hybrid learning 
algorithm identifies the membership function parameters of single-output, Sugeno type 
fuzzy inference systems (FIS) (Adhyaru et al., 2010). A combination of least mean 
squares (LMS) and backprogation gradient descent methods is used for training FIS 
membership function parameters to model a given set of input/output data. The 
parameters associated with the membership functions change through the learning 
process. The training process stops whenever the designated epoch number is reached or 
the training error goal is achieved. Adhyaru et al. (2010), Bachir and Zoubir (2012), and 
Ngo et al. (2012) used the ANFIS to control a serial robot by training the input/output 
PID  control  data.  Under  conditions  of  uncertainty,  the  model  parameters  of  parallel  
manipulators can be identified by using the ANFIS control algorithm. Such an 
algorithm can be performed in a real time control application (Aldair, 2010). 

 

1.5 Special Euclidean group for dynamics and control 

In the floating frame of reference formulation (FFRF) Shabana (2005) employs two sets 
of generalized coordinates; absolute reference and local elastic coordinates. Thus, the 
motion of each point on the flexible body is regarded as the superposition of the rigid 
body motions in the global coordinate system and local flexible deformations in the 
floating frame (Wang and Mills, 2004).  As the result of using the floating frame (body 
coordinate system), this formulation leads to geometric nonlinearities due to the nature 
of  the  generalized  coordinates  used  to  capture  the  change  of  orientation  of  the  body  
coordinate system. Such geometric nonlinearities make the formulation of most joint 
constraints highly nonlinear and complex. Furthermore, the use of the FFRF that often 
employs modal reduction techniques makes the formulation of some joints such as the 
sliding or prismatic joints between two flexible bodies very difficult (Hwang and Haug, 
1990). The difficulties associated with the formulation of the prismatic joints between 
two flexible bodies are the result of the change in boundary conditions due to the 
relative motion of the two bodies connected by this joint. As the result of the continuous 
changes in the boundary conditions, one set of linear vibration modes cannot be used to 
accurately represent the dynamics of the prismatic joint (Sugiyama et al., 2003). 
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The finite element approach of multibody systems has been significantly studied, for 
instance by Geradin and Cardona (2001). Nodal values, measuring positions and 
orientations with respect to a global frame are introduced to describe the configuration 
of rigid and flexible multibody systems. Then inertia properties are assigned to some 
nodes, and kinematic constraints are used to model the physical links between the nodes 
of  the  system.  Based  on  the  finite  element  concept,  this  approach  allows  one  to  write  
systematically the equations of motion by collecting generic expressions which are 
slightly tuned according to a system part of interest. This results in second order 
differential-algebraic equations for which a suitable time integration solver has been 
used. 

The nodal approach has been brought to a new level by exploiting the underlying Lie 
group structure of the configuration space (Brüls et al., 2011). The equations of motion 
are then formulated as a set of differential-algebraic equations on a Lie group, without 
the need to refer to a particular set of coordinates. These equations are then solved using 
recently developed Lie group time integration schemes (Brüls et al., 2012; Brüls and 
Cardona, 2010). A key aspect of the abstract approach is that it systematically avoids 
any parameterization of the total motion, but it naturally leads to local 
parameterizations. In particular, this framework reduces the non-linearity of the 
equations of motion and leads to a naturally singularity-free formulation. 

The description of rigid and flexible bodies in this research relies on kinematic 
assumptions on the position of their material points by introducing rotation variables 
(Geradin and Cardona, 2001). Several methods have been explored to represent rotation 
variables such as the parameterization of rotation (Geradin and Cardona, 2001) or the 
Lie group methods (Simo, 1985; Brüls et al., 2012; Brüls et al., 2011; Brüls and 
Cardona, 2010). In this research examines a Lie group method which is based on the 
differential geometry of the nonlinear configuration space. The Lie group 3 (3)SO  
has been widely used for rigid formulations. This research considers the Lie group

(3)SE which has been applied to rigid body problems, particularly in robotic 

applications (Murray et al., 1994). Compared to 3 (3)SO , SE(3) implies a stronger 
coupling between the position and rotation variables. The mathematics of this group is 
described by Murray et al. (1994) and some practical advantages have already been 
pointed out for the formulation of rigid multibody systems using absolute coordinates 
(Brüls and Cardona, 2010). 

In this research, a straight beam finite element formulation is used to describe flexible 
bodies. In the finite element context, a spatial discretization of the beam is introduced 
by a nonlinear interpolation method of nodal values and the discrete problem is then 
derived from a variation principle. Geradin and Cardona (2001), Brüls et al. (2012) and 
Crisfield and Jelenic (1999) maintain that the positions and the rotations are interpolated 
separately since they are considered to be fundamentally independent. In contrast, the 
SE(3) Lie group framework used in this research introduces a natural coupling of the 
position and rotation variables thanks to an exponential interpolation method which 
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exhibits important theoretical and numerical advantages (Sonneville et al., 2014). The 
equations of motion of the mechanical system take the form of second-order ordinary 
differential equations on the Lie group. The equations are then solved using the 
generalized-  Lie group integrators developed by Brüls et al. (2012), Brüls et al. (2011), 
and Brüls and Cardona (2010). The proposed approach relies on a rigorous 
mathematical frame based on the Lie group theory. Since a Lie group solver is used, it 
is remarkable that the dynamic equation is formulated in a parameterization-free way 
and that no parameterization of the nodal variables needs to be introduced. The theory 
naturally leads to a frame-invariant, compact and elegant formulation of the beam finite 
element (Sonneville et al., 2014).                

 
The formulation of kinematic joints composed of simple basic constraints in the case of 
systems of rigid bodies has been formulated by Haug (1989). Bay and Han (2000) 
modeled joint constraints using virtual bodies. In their approach, the constraints were 
developed between massless rigid bodies. However, adding virtual bodies increases the 
computational time. Shabana (2005) established an approach based on intermediate 
body fixed joint coordinate systems that are rigidly attached to joint definition points. 
Manipulators with prismatic joints are also used widely in industry. However, research 
on this type of manipulator has not received the attention it deserves. Hwang and Haug 
(1990) illustrated basic constraint types used with translational joint models, which 
account for the deformation of the axis line. They used the FFRF approach accounting 
for multiple contact points, whereas the numerical results are only shown in the case of 
a single contact point. Korkealaakso et al. (2009) presented an approach for the 
modeling of joint constraints for flexible multibody systems using three basic constraint 
primitives. One of the examples they studied was the flexible slider mechanism. 
However, the cylinder of the flexible slider mechanism is fixed to the framework using 
a bracket joint. It cannot move while the rod is sliding inside the cylinder. The 
constraint equation of the sliding joint, which allows mass to move along a flexible 
cable, was proposed using the Absolute Nodal Coordinate Formulation (ANCF) by 
Sugiyama and Han (2000). This method assumed the cable would have only one beam 
element. Therefore, if a cable is modeled with two or more beam elements, 
discontinuity at the nodal points makes this method difficult to employ in modeling the 
sliding joint. Lee et al. (2008) state that the three-dimensional sliding joint was 
developed using the ANCF for large deformable beams consisting of several finite 
elements, and the sliding joint crosses a node between the beam elements. This may 
result in problems of numerical discontinuity; therefore, they overcome this issue by 
reconstructing the Jacobian matrix when the sliding joint moves a node (Lee et al., 
2008). 
 

1.6 Objectives of the study 

The main objective of the study is to develop a multibody dynamic simulation of a 
serial-parallel hybrid robot with the interactions of an intelligent hydraulic control 
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system  to  reduce  vibration.  This  improves  the  accuracy  and  performance  of  the  end  
effector during the required tasks, such as machining and welding.    

The main objective of the study is divided into three goals. The first goal is to analyze a 
hybrid robot coordinate system. The rods inside each rigid cylinder are considered 
flexible. By coupling the finite element method, multibody dynamics, the floating frame 
of reference formulation and the Craig-Bampton method to the deformable rods and to 
reduce the size of the system the essential dynamic behavior of the entire structure can 
be modeled with a relatively small number of degrees of freedom (DOF) along with the 
flexible body description. Constraint modelling is described where the translational joint 
between the sliding flexible rod and the rigid cylinder is modelled as two sets of 
constraint vectors to obtain a proper kinematic model of the joint. The dynamic 
equations of the six closed loop parallel robot are studied, as well as the hydraulic 
forces inside each cylinder and the design of the hydraulic control system and control 
law. Later, the dynamics of the serial robot part are analyzed using the reaction forces at 
the universal joints. Finally, robot parameters, an ADAMSTM model of the parallel robot 
built to verify the validity of the simulation, and simulation results are presented. 

For the above-mentioned dynamic model of the hybrid serial-parallel robot, the second 
goal is the application of Fuzzy logic and ANFIS, which are included in the Artificial 
Intelligent (AI) techniques to control a hydraulically driven parallel robot by tuning the 
PID gains. A hydraulic control system is designed and control law is used. 
Consequently, the fuzzy-PD self-tuning of the gains (Kp and Kd) is designed for each 
hydraulic cylinder controller. The ANFIS-PD self-tuning control is also designed for the 
same reason. In addition, the dynamics and control of the serial part are studied using 
the equilibrium of reactions at the universal joints. Finally, using the real robot 
parameters, simulation studies were conducted to demonstrate the performance of the 
proposed controllers.  

The third goal, again, for the same reason, is to introduce a hydraulically driven parallel 
mechanism of flexible rods slide inside each rigid cylinder, the Special Euclidean group 
SE(3) method. Constraints modeling which includes the kinematics of joint description 
and constraint equations is presented. The flexibility of a rod of a robot arm is described 
using the nonlinear interpolation method with an exponential map, which introduces a 
natural coupling between the position and rotation variables. The internal and external 
forces are derived from variational principles. The flexible slider constraint is 
formulated using a Lie group and used for modeling a flexible rod sliding inside a 
cylinder. The hydraulic forces inside each cylinder as well as the design of a hydraulic 
control system and PID control law are studied. The equations of motion of the six 
closed loop parallel robot take the form of a set of differential–algebraic equations on a 
Lie group, which is solved using a Lie group time integration scheme. The method 
relies on a local description of motions, so that it provides a singularity-free 
formulation. No parameterization of the nodal variables needs to be introduced, and the 
method exhibits important advantages regarding numerical implementation. Finally, 
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robot parameters, an ADAMSTM model of the parallel robot built to verify the validity 
of the simulation, and simulation results are presented, respectively. 

The computational environment MATLABTM 8.0.0.783 was the tool selected for the 
multibody simulation implementation in all of the goals.  

 

1.7 Outline of the thesis 

The following section presents the work carried out in this study.  

In chapter 2, the flexibility of the bodies is described using the floating frame of 
reference method. The dynamic model of the system of six closed loop mechanisms was 
assembled using the constrained Lagrange equations and the Lagrange multiplier 
method. The reaction forces between the parallel and serial parts were used to study the 
dynamics  of  the  serial  robot.  A  hydraulic  control  system  of  a  linearized  PID  was  
implemented independently to control the hydraulic cylinders of the parallel and serial 
robots. The results of the simulations demonstrating the behavior of the robot machine 
are presented. 

Chapter 3 investigates the intelligent control of a hydraulically driven parallel robot 
part based on the dynamic model, and two control schemes: (1) a fuzzy-PID self-tuning 
controller and (2) ANFIS-PID self-tuning of the gains of the PID controller, which are 
implemented independently to control each hydraulic cylinder of the parallel robot 
based on rod length predictions. Subsequently, the serial component of the hybrid robot 
can be analyzed using the equilibrium of reaction forces at the universal joint 
connections of the hexa-element. Finally, simulated results that demonstrate the robot 
behaviors are presented. 

Chapter 4 presents the dynamics of a hydraulically driven parallel robot. The rods 
inside each rigid cylinder are considered flexible. The fundamentals of the Special 
Euclidean group SE(3) are introduced. Constraints modeling which includes the 
kinematics of a joint description and constraint equations is presented. The flexibility of 
a rod of a robot arm is described using the nonlinear interpolation method with an 
exponential map. The internal and external forces are derived from variational 
principles. The flexible slider constraint is formulated using a Lie group and used for 
modeling a flexible rod sliding inside a cylinder. The hydraulic forces inside each 
cylinder as well as the design of a hydraulic control system and control law are studied. 
The equations of motion of the six closed loop parallel robot take the form of a set of 
differential–algebraic equations on a Lie group, which is solved using a Lie group time 
integration scheme. Finally, robot parameters, an ADAMSTM model of the parallel robot 
built to verify the validity of the simulation, and simulation results are presented. 

Chapter 5 provides the conclusions and recommendations for future research. 
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1.8 Scientific contributions and publications 

The main scientific contributions of this thesis are the following 

 The thesis presents the dynamic modeling of the 6-UPS parallel robot with 
flexible rods sliding into cylinders using the floating frame of reference method. 

 The thesis analyzes the dynamics and control of the serial robot part of the 
hybrid robot using the reaction forces at the connecting universal joints. 

 The  thesis  presents  two  methods  of  tuning  the  gains  of  a  PID  controller  –  the  
fuzzy-PID and ANFIS-PID – and demonstrates that the ANFIS-PID is the best. 

 The thesis presents the dynamic modeling of the 6-UPS parallel robot with 
flexible rods sliding into cylinders using the Special Euclidean Group SE(3).   
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2 Flexible multibody dynamics using the FFRF technique 
and PID control 

 

 

2.1 Strain Analysis in multibody dynamics 

Generally, the deformations and corresponding strains of a body within a flexible 
multibody system can be studied using four approaches: 

1- The nonlinear finite element approach (Shabana, (2005), De Jalon and Bayo, (1994)). 

2- The linear theory of elastodynamics (Shabana, (2005)). 

3- The lumped mass approach (Shabana, (1996)).  

4- The floating frame of reference formulation FFRF (Shabana, (2005)).  

In the first approach, such as the absolute nodal coordinate formulation ANCF 
(Shabana, (2005)), and is basically devoted for large deformation analysis of flexible 
multibody system. In the formulation, slopes and positions are used as the nodal 
coordinates instead of infinitesimal or finite rotations. The advantages of using the 
ANCF in the dynamic analysis of flexible multibody systems are its simplicity in 
describing some of the joint constraints and formulating the generalized forces. In 
addition this formulation leads to constant mass matrix which simplifies the nonlinear 
equations of motion. However, for a body with a complex geometry, where the 
discretization results in a large number of nodal degrees of freedom, the method may be 
considered computationally expensive (De Jalon and Bayo, (1994)). 

In the second approach, the response of the flexible body is calculated by uncoupling 
rigid body motion and elastic deformation. To this end, the flexible multibody system is 
first assumed to be a collection of rigid bodies. The final response of the system can be 
obtained by superimposing the deformation on the rigid motion of the body. However, 
in this approach, the deformation of the body is assumed to be small and has a 
negligible effect on the rigid body motion. Accordingly, the inertia terms in the 
reference equations are assumed to be independent of the elastic deformation. In this 
approach the deformation and large body motion are not coupled, possibly leading to an 
unnatural solution (Shabana, (2005)).  

 2 Chapter 
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In the lumped mass approach, the flexible body is idealized into several rigid body mass 
elements.  Spring  elements  are  placed  between  these  masses  to  account  for  flexibility.  
The stiffness of each spring located between each mass element can be usually obtained 
using the finite element method. In the lumped mass approach, the use of deformation 
modes (mode shape functions) to study the flexibility of the body is not possible. 
Therefore, this approach can be considered to be computationally expensive for a 
flexible body with complicated geometry.  

The approach based on the floating frame of reference formulation FFRF can be used in 
the analysis of flexible bodies that undergo large reference displacements; rotational and 
translational, with small deformations (Shabana, (2005)). The configuration of the 
flexible body in the FFRF is described using a mixed set of absolute reference and local 
deformation coordinates. In this approach, classical linear finite element is embedded in 
the multibody formalism. Unlike the first and third approaches, the size of the problem 
can be reduced in the FFRF by using deformation mode shapes. In contrast to the 
approach based on the linear theory of elastodynamics, the rigid body motion and 
deformations are coupled in the FFRF, which makes it suitable for general applications. 

 

 

2.2 Coordinate System of a Hybrid Robot 

2.2.1 Description a hybrid robot 

The hybrid robot has ten degrees of freedom (Figure 2.1(a) and (b)), and it consists of 
two relatively independent sub-structures. The carriage provides four degrees of 
freedom: rotation, linear motion, tilt rotation, and tracking motion that enlarges the 
workspace and offers high mobility. The 6-UPS hexa-parallel mechanism, driven by six 
hydraulic cylinders, contributes six degrees of freedom to the end effector. 
Consequently, the robot is a hybrid redundant manipulator with four degrees of freedom 
provided by the serial kinematic axis. During the process of machining, however, the 
carriage will be locked on the track rail, and the other three actuators in the serial 
mechanism will be in a fixed position. Therefore, only the parallel mechanism 
contributes motion to the machine tool. The 10-DOF prototype is equipped with water 
hydraulic drives since large quantities of oil are not allowed in ITER. 

 

 

 

 



 33

(a) Solid model 

  

 

(b) Wire frame  

 

 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 2.1: Hybrid robot construction (serial 6-UPS parallel) robot (a) Solid model (b) Wire 
frame. 
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2.2.2 Inverse kinematics of 6-UPS parallel robot 

The inverse kinematics for the carriage is defined as to find the values of four actuators 
(two translations and two rotations) for a given position and orientation of hexa-frame 
defined as P4 with respect to frame {O}. The principle of the carriage mechanism is 
described in Figure 2.2(a).  

(a) 

 

(b) 

 

Figure 2.2: Kinematic analysis of the (a) serial mechanism and (b) 6-UPS parallel mechanism. 
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The rotation angle  values are limited into a few constant values, i.e., 0o, ±90o and 
180o. Fixing , for a given position P4(x,y,z) of the center of hexa-frame, we have 

 0 1( cos ) cos ,X r r x  (2.1) 

 0 1( cos )sin ,Y r r y  (2.2) 

 1 sin ,r z  (2.3) 

where the variables: r1, r0, X, Y, and  can be seen in Figure 2.2(a). Then 

 
1arcsin ,z r  (2.4) 

 0 1( cos ) cos ,X x r r  (2.5) 

 0 1( cos )sin ,Y y r r  (2.6) 

The inverse kinematics for a 6-UPS parallel robot is defined as finding the strokes for 
each cylinder for a given position and orientation of the end effector with respect to the 
hexa-frame  (fixed  plate).  Here,  O  in  Figures  2.2(b)  coincides  with  P4 on the carriage 
side in Figures 2.2(a).  Figures 2.2(b) shows the vector analysis of the 6-UPS parallel  
mechanism while Figures 2.3 shows the construction of each arm. Thus a vector loop 
equation for each leg can be written as  

 1, 2,...,6L t ri i i iR  (2.7) 

  where R  is a rotation matrix defined by using Euler angles as 

 c c c s s s c c s c s s
s c s s s c c s s c c s

s c s c c
R  (2.8) 

i is the vector joint of the ith cylinder on the fixed plate with respect to frame O, and ir   
is the vector of the joint of the ith cylinder on the end effector with respect to frame MP.  

Then, the length of each leg can be determined, with a Cartesian coordinate vector t (x, 
y, z) defined with respect to frame MP, by the Euclidean norm 

 ( )( )L t r t ri i i i i il R R  (2.9) 

Equations (2.7) and (2.9) represent the closed-form solution of the inverse kinematic 
problem in the sense that the required actuator lengths can be determined using 
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Equation (2.9) for a given vector q(x,  y,  z, , , ), representing the position and 
orientation of the moving platform.  

 

 
 
Figure 2.3: Scheme of the 6-UPS parallel robot and the Universal joints. 
 

 

2.2.3 Spatial coordinate system of a parallel robot arm 

As previously mentioned, the floating frame of reference formulation was adopted for 
this flexible multi-body system. In the FFRF, there are two coordinate frame types: the 
global frame and the floating frame (Shabana, 2005). The global frame is used to 
describe the motion of the reference frame of individual flexible bodies on which the 
location and orientation of the floating frame are defined. Local deformations of the 
flexible bodies are expressed in the floating frame. 

Thus, the motion of each point on the flexible body is regarded as the superposition of 
rigid body motion in the global coordinate and flexible deformation in the local floating 
frame coordinate (Wang et al., 2010). 

The deformation of a flexible body (rod) with respect to its frame of reference can be 
formulated using the finite element method. In the case of slender members, shear 
deformation can be neglected. Therefore, each rod is modeled as a Euler-Bernoulli 
beam. Longitudinal deformation is neglected since the axial stiffness of intermediate 
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links is much higher than the lateral stiffness (Zhang et al., 2007). Each rod is divided 
into six elements and seven nodes. Figure 2.4 explains the floating frame of reference 
coordinate  systems  used  to  describe  the  change  in  the  position  of  a  point  Pi in a 
deformed body i. XgYgZg is the global coordinate frame, and xiyizi is the floating frame 
attached to element no. 1 of undeformed rod i at node 1, where xi is along the direction 
of the undeformed rod i. The floating frame is body fixed, i.e. moving with the rod i. 

 

 
Figure 2.4: The position of a node Pi in a floating frame coordinate and finite elements of the ith 
flexible rod. 
 

The position of an arbitrary point (node) Pi on  a  flexible  body i  can  be  described  in  a  
global coordinate system as follows. 

 
0( )r R A u R A u u

i i i iP i i P i i P P
f  (2.10) 

where Ri is the translational vector of the FFR (xiyizi) of a body i with respect to the 
global coordinate frame system, 

iPu is the position vector of point (node) Pi within the 
frame of reference, 0

iPu  and 
iP

fu are the vectors describing the translational undeformed 
and deformed positions of node Pi with respect to a flexible body i reference coordinate 
system. Ai is the rotation matrix of a body i (the rotation matrix of each robot arm 
construction “Cylinder-rod”). 

 

 

2.2.4 The rotation matrix and the Euler parameters 

The rotation matrix of the robot arm construction (Cylinder-rod) can be found using the 
following steps. Let the rotation matrix of the i i ix y z coordinate system with respect to 
the global system (3×3) be as follows. 
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 | |i i i ix y z  (2.11) 

 where 

 /x zi i i i i  (2.12) 

 y z xi i i  (2.13) 

 

 

Figure 2.5: Coordinate system of each element in the parallel arm 

 

Following a -90o rotation angle about the iy  axis, a new coordinate system i i ix y z can be 
achieved (Figure 2.5) to align the ix axis with the longitudinal axis of the i flexible rod 
as prescribed by the Przemienicki model (Przemienicki, 1985). Hence, a new directional 
cosine matrix can be written as follows:  

 
90i i y  (2.14) 

This rotation matrix can be written as follows:  
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11 12 13

21 22 23

31 32 33

i i i

i i i
i

i i i

r r r
r r r
r r r

 (2.15) 

To avoid singular conditions, the rotation matrix i is expressed in terms of Euler 

parameters 0 1 2 3
e i i i i ie e e e . These parameters can be found as follows (Jazar, 

2007): 

 
0 11 22 331 / 2r r ri i i ie  (2.16) 

 
1 32 23 0( ) / 4r ri i i ie e  (2.17) 

 
2 13 31 0( ) / 4r ri i i ie e  (2.18) 

 
3 21 12 0( ) / 4r ri i i ie e  (2.19) 

Hence, the rotation matrix Ai
 can be written using Euler parameters as follows:  

 2 2
2 3 1 2 0 3 1 3 0 2

2 2
1 2 0 3 1 3 2 3 0 1

2 2
1 3 0 2 2 3 0 1 1 2

1 2(( ) ( ) ) 2( ) 2( )
2( ) 1 2(( ) ( ) ) 2( )
2( ) 2( ) 1 2(( ) ( ) )

i i i i i i i i i i

i i i i i i i i i i i

i i i i i i i i i i

e e e e e e e e e e
e e e e e e e e e e
e e e e e e e e e e

A  (2.20) 

where these parameters should satisfy the following mathematical constraint: 

 2 2 2 2
0 1 2 3( ) ( ) ( ) ( ) 1i i i ie e e e  (2.21) 

The first time derivative of the vector of Euler parameters e i  and the angular velocity 
vector i  has the following linear connection: 

 i i e i  (2.22) 

Local velocity transformation matrix iG  depends on the selected generalized 
coordinates. Using Euler parameters, the matrix iG can be expressed as 

 
1 0 3 2

2 3 0 1

3 2 1 0

i i i i

i i i i i

i i i i

e e e e
e e e e
e e e e

G  (2.23) 
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2.3 Description of a flexible body 

2.3.1 Component mode synthesis 

Component mode synthesis techniques aim to describe the large number of coordinates 
in the finite element model using a small number of modal coordinates based on 
deformation shape modes. Therefore, the dimensions of the FE model will be reduced. 
The deformation modes in this study were obtained using eigenvalue analysis based on 
the Craig-Bampton (CB) method with the orthonormalization procedure (Craig, and 
Kurdila, 2006 ,and Craig and Bampton, 1968). The equation of motion based on the 
flexible body FE model can be written as follows:  

 M K Fi i i i i
f f f  (2.24) 

where i is the vector of the physical displacement of the node (the nodal coordinates), 
i
fM and i

fK are the mass and stiffness matrices of the element obtained from the FE 

model, respectively, and i
fF is the vector of the external forces associated with the nodal 

coordinates of the flexible body. In the CB method, coordinates of the flexible body FE 
model are partitioned into boundary (B) and interior (I) nodal coordinates. 
Consequently, Equation (2.24) can be expressed in the following form:  

 FM M K K
FM M K K

ii i i i ii
f BBB BI BB BI BB
ii i i i ii
f IIB II IB II II

 (2.25) 

The CB method results in two sets of modes: non-orthogonal static correction modes 
and orthogonal normal modes. The static correction modes are obtained by applying the 
unit  displacement  to  one  boundary  coordinate  at  a  time  while  keeping  the  rest  of  the  
boundary coordinates constrained. The orthogonal normal modes are obtained by 
clamping all boundary nodes. Setting all the interior forces i

f IF to zero and setting 0  
in Equation (2.25) leads to (Craig and Bampton, 1968):  

 1
K Ki i i i i i

I II IB B C B  (2.26) 

where i
C is  the  matrix  of  static  correction  modes,  whose  columns  are  the  non-

orthogonal constraint modes. The normal modes can be achieved by solving the 
following internal eigenvalue problem of the substructure clamped on its boundary.  

 2)K M 0i i i i
II jN II jN  (2.27) 
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This gives a set of the jth eigenvalues or natural frequencies i
jN of the rod i associated 

with eigenvectors i
jN , which are called normal modes. The N superscript signifies the 

normal mode. A shape matrix that contains only normal modes can be constructed as 
follows:  

 
1 2, ,...,i i i i

N N N jN  (2.28) 

The combination of these modes in a matrix gives the non-orthogonal CB deformation 
modes as follows:  

 I 0i
CB i i

C N

 (2.29) 

One of the advantages of using i
CB is that it permits representing both the local 

deformation effects induced by the joints acting on the boundary DOF and the global 
deformation effects induced by the dynamic behavior of the body itself (Geradin et al., 
1994). The modal mass and stiffness matrices of the flexible body can be obtained 
respectively as follows:  

 Mi iT i i
CB CB f CB  (2.30) 

 Ki iT i i
CB CB f CB  (2.31) 

K i
CB is block diagonal, since there is no stiffness coupling between the static correction 

modes and normal modes. Conversely, M i
CB is not block diagonal because there is inertia 

coupling between the static correction modes and the normal modes. The CB modes 
described above cannot be used directly in the FFRF, since they are non-orthogonal. 
However, the modes can be orthogonalized as follows:  

 2ˆ )K M 0i i i i
CB j CB jb  (2.32) 

where ˆ i
j is a set of eigenvalues or natural frequencies associated with the selected sm 

orthonormalized CB modes bj of the flexible body. Assembling the new 
orthonormalized CB modes resulting from the orthonormalization procedure expressed 
in Equation (2.32) in a matrix results in  

 
1 ....

m

i i i
sb b  (2.33) 

where i is the modal transformation matrix whose columns are the selected sm 
orthonormalized CB modes. 
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Normalizing the orthonormalized CB modes with respect to mass and stiffness matrices 
of Equations (2.30) and (2.31), respectively, one can obtain the diagonal modal mass 
and stiffness matrices of the orthonormalized CB modes.  

 M Ii iT i i
orth CB  (2.34) 

 2 2
1ˆ ˆdiag(( ) ,....,( ) )K

m

i iT i i i i
orth CB s  (2.35) 

The resulting orthonormalized CB modes will contain approximate free-free modes (i.e. 
modes of the unconstrained body) and the vibration modes of the boundary DOF. 

The Craig-Bampton modal matrix can be divided into two components as follows:  

 iP
iP R

iP  (2.36) 

where iP
R is the modal matrix whose columns describe only the translational mode 

shapes of the node Pi within the assumed deformation modes of the flexible body i (see 
Shabana, 2005) , and iP is the modal matrix that describes the rotational mode shapes 

of  node  Pi. Therefore, the displacement vector ip
fu can be expressed in modal 

coordinates with a modal matrix.  

 u q
ip iP i

f R f  (2.37) 

where i
fq is a vector of modal coordinates. Consequently, the generalized coordinates 

defining the position of node Pi can be represented as  

 q R q
TiT iT e iT i T

f  (2.38) 

Equation (2.10) can thus be rewritten using the generalized coordinates of the flexible 
body as follows:  

 
0( )r R A u q

i iP i i P iP i
R f  (2.39) 

 

2.3.2 Equation of motion of a multibody system 

The kinetic energy of a one beam element (Shabana, 2005) can be expressed as  
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 1 1
2 2

T r r q M qi i iT i i iT i i

Vi
dV  (2.40) 

where i and  Vi are, respectively, the mass density and volume of body i, ir is the 
global velocity vector of an arbitrary point on the body, and Mi is the mass matrix of the 
jth beam element on the ith rod. Therefore, the kinetic energy of the entire system is:  

 

1

T T
nj

i ij

j

 (2.41) 

The virtual work W of the forces acting on rod i can be written as follows (Shabana, 
2005):  

 i i i
s eW W W  (2.42) 

where i
sW is the virtual work of the elastic forces resulting from the deformation of a 

rod, and i
eW  is the virtual work due to externally applied forces. These forces include 

the gravity effect, machining forces, and control forces. It can be stated that  

 q K qi iT i i
sW  (2.43) 

where Ki is  the  stiffness  matrix  of  the  ith rod and qi is the vector of generalized 
coordinates  of  the  i  rod.  The  stiffness  matrix  related  to  modal  coordinates  iq can be 
computed as i i

orthK K , which is calculated by Equation (2.35). Meanwhile,  

 Q qi iT i
e eW  (2.44) 

where Q i
e  is the vector of generalized external forces associated with generalized 

coordinates of body i. This leads to  

 i iT i i iT i iT i
eW q K q Q q Q q  (2.45) 

Taking into consideration the constraint equations, the Lagrange equations of the entire 
parallel robot, which include the elastic and the rigid bodies, can take the form 
(Shabana, 2005): 

 T Ti i
T i

ii i
d
dt q

T T C Q
q q

 (2.46) 

where Cq is the Jacobian matrix of the nonlinear constraint equations, q is the vector of 
n generalized coordinates of all bodies of the parallel robot, and   is   the  vector  of  
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Lagrange multipliers. Substituting the kinetic energy Ti, iqC , and Qi into the Lagrangian 
Equation (2.46) gives the equations of the constrained motion of the flexible multibody 
system.  

 T
1
2

i i i i iT i i T i i
qi f eiM q M q q M q C Q Q

q
 (2.47) 

The equation can be written in a more compact form as  

 M q C Q Q Qi i T i i i
qi v e f  (2.48) 

where Mi is the mass matrix that can be written as follows: 

  I A u G A

M G u u G G u
T T

i

T

iP i iP
i i R

i i i iP iP i i iP iP i
RV

iP iP
R R

dV

sym

 (2.49) 

and Qv is a quadratic velocity vector that can be defined as follows:  

 2

2

2

i

T T

i

T T

i i iP i iP i
i R f

i i iP i i iP i iP i iP i i i
v R fV

iP i i iP iP i iP i
R R R f

dV

u A q

Q u u G u q G

q

 (2.50) 

Qv results from the differentiation of the kinetic energy with respect to time and with 
respect to the body coordinates. The quadratic velocity vector contains gyroscopic and 
Coriolis force components. The vector of the elastic force can be represented as follows. 

 
i
f

i i

0
Q 0

K q
 (2.51) 

To solve Equation (2.48), which contains n + nc unknowns, an additional set of nc  
nonlinear algebraic constraint equations must be fulfilled:  

 ( , )C q 0t  (2.52) 

where C is  the  vector  of   nonlinear  constraint  equations  of  the  parallel  robot,  and  t is 
time. Equations (2.48) and (2.52) include a system of nonlinear differential algebraic 
equations (DAE). However, to solve the set of equations using ordinary integration 
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methods for differential equation (ODE), Equation (2.52) should be differentiated twice 
with respect to time (Shabana, 2005).  

 C q Q C q qc
q q q

 (2.53) 

where Qc is the constraint force vector for the system. 

 

2.4 Modeling of constraints 

In this section, the constraint equations are derived for three basic constraint 
components, which can be further applied in the modeling of spherical joints, revolute 
joints, and translational joints. The terms within the equations of motion that are related 
to the constraints are formulated so they can be easily coupled to the system equations 
of motion, i.e. Equation (2.70). 

 

2.4.1 Kinematic joint description 

The vector vi
f , due to deformation at the location of node Pi within the frame of 

reference, can be expressed as follows:  

 v A vi Pi i
f f  (2.54) 

where vi is a unit vector defined in the undeformed state emanating from node Pi, and 
Pi
fA is a rotation matrix that describes the orientation due to deformation at the location 

of  node  Pi with  respect  to  the  local  frame.  However,  all  the  components  in  Equation  
(2.54) are described in the reference frame. The rotation matrix Pi

fA can be written as 
follows:  

 A IPi Pi
f  (2.55) 

where I is the 3×3 identity matrix and Pi is a skew symmetric matrix associated with 
the vector Pi that represents the rotation of an infinitesimal volume at the node Pi with 
respect to the flexible body i coordinate system. Rotation changes due to deformation 
can be written as follows (Yoo and Haug, 1986): 

 qPi iP i
f  (2.56) 
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where iP  is the modal transformation matrix whose columns describe rotation 
coordinates  of  point  Pi within the assumed deformation modes of the flexible body i, 
and i

fq is the vector of elastic coordinates. 

 

2.4.2 Basic constraint equations 

Joints in a multibody dynamic system can be described as combinations of three basic 
constraints (Korkealaakso et al., 2009): 

1) Spherical constraint on two points Cs: This prevents translational movements 
between two bodies. The constraint equation can be defined at given points Pi and  Pj. 
The constraint equation associated with points Pi and Pj can be written as follows:  

 C R A u R A u 0j i
s j Pj i Pi  (2.57) 

2) Perpendicular constraint Cd1: This  prevents  the  rotation  of  vectors  with  respect  to  
each other. The constraint equation for a perpendicular constraint of Cd1 can be written 
as:  

 1C v v v A A A A v 0j
d i T j iT PiT T Pj j

f f f i f  (2.58) 

3) Perpendicular constraint Cd2: This differs from Cd1 in  that  one  of  the  vectors  is  
defined as constant with respect to body i, whereas the other is defined between the 
bodies. The constraint equation for a perpendicular constraint of Cd2 can be written as:  

 2
j i

i

j i

d iT ij iT T j Pj i Pi
f

iT PiT T j Pj i Pi
f i

C v d v A R A u R A u

v A A R A u R A u 0
 (2.59) 

where ijd is  a  vector  from  Pi to  Pj defined in the global coordinate system. By 
differentiating Equations (2.57), (2.58), and (2.59) twice with respect to time, the 
following equations can be obtained for each constraint.  

 C C q C q qq q q
 (2.60) 

Based on Equation (2.60), the following terms can be obtained for generalized 
coordinates related to the translation, orientation, and flexibility of the Jacobian matrix:  

 C C C C C C Ci jq Ri Rji jqf qf
 (2.61) 
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Similarly, a vector that includes quadratic velocity terms can be obtained from Equation 
(2.60) as follows:  

 Q C q qc
q q

 (2.62) 

In summary, for modeling the parallel robot, the following constraints are required for 
description: 

• spherical joint: Cs 

• universal joint: Cs and Cd1 

• translational joint: three Cd1 and two Cd2. 

Obviously, the above-mentioned formulation of a translational joint can be applied to a 
body sliding with respect to the other by only one changing contact point and cannot be 
used directly for a constraint between bodies that have more than one changing contact 
point, for instance, a rod sliding inside a hydraulic cylinder (except when both of them 
are rigid bodies). 

 

 

Figure 2.6: Vectors of hydraulic force inside a cylinder. 
 

Each  cylinder  is  constrained  to  the  fixed  plate  using  a  universal  joint.  The  rod  is  
constrained to slide inside a cylinder using two changing contact points PA and PB (see 
Figure 2.6). This mechanism can be modeled using two Cd2 perpendicular constraints: 
at the location of node at PA and at PB, respectively, to prevent rotation around the two 
axes perpendicular to the sliding axle. The contact point of PA can be found by 
interpolating between the neighboring nodes of each flexible rod for each time step. In 
addition, one Cd1 perpendicular constraint at the location of PA is used to prevent 
rotation around the sliding axle. 
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2.5 Dynamic equation of the six closed loop parallel mechanism 

The variables of Equation (2.48) can be written for the parallel robot studied in this 
chapter in a more compact form as follows:  

 1 6
(7 7 ) (7 7 ) (7 7 ) (7 7 ) _ (7 7)diag( ,..., , )M M M Marm nf nf arm nf nf mov pl  (2.63) 

where nf is the number of selected modes. The mass matrix of each arm of the parallel 
robot can be written as:  

 
_

_

1,...,6
i
flex rodi

arm i
rig cyl

i
M 0

M
0 M

 (2.64) 

where the mass matrix of each flexible rod, according to Equation (2.49), is  

 

_

i i i
RR R Rf

i i i
flex rod f

i
ffsym

m m m
M m m

m
 (2.65) 

and the mass matrix of each rigid cylinder is 

 
_

i i
i RR R
rig cyl isym

m m
M

m
 (2.66) 

Also, 

T

_
, , , , ,..., , 1,...,6q R q R

i ie e e
fcyl rod moving plate

i  (2.67) 

T

_
, , , , ,..., , 1,...,6

ii
R R f Rcyl moving platerod

v v v v v v v v iQ Q Q Q Q Q Q Q  
(2.68) 

T

_
, , , , ,..., , 1,...,6

ii
R R f Rcyl moving platerod

e e e e e e e iQe Q Q Q Q Q Q Q  
(2.69) 

Cq is the Jacobian matrix of the nonlinear constraint equations. Figure 2.7 shows the 
non-zero elements of the Jacobian matrix. The parallel robot is composed of six similar 
arms, each contributes four constraints for the universal joint, five constraints for the 
translational joint, and three constraints for the spherical joint that connects the arm 
with the moving plate, q is the vector of n generalized coordinates of all bodies of the 
parallel robot, and  is the vector of Lagrange multipliers. 
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Figure 2.7: The non-zero elements of the Jacobian matrix of the parallel mechanism. 
 

 

Combining Equations (2.48) and (2.60) into one matrix equation and transforming it 
into a first order descriptor form leads to this expression:  

 

( ) ( ) ( , )
( ) ( , )

T
q

q

e v
c

I 0 0 q q
0 M q C q q Q Q q q Kq
0 C q 0 Q q q

 (2.70) 

This dynamic equation describes the overall rigid body motions of the moving platform 
and six rigid cylinders as well as the six flexible rods. 

In Equation (2.70), the system matrices are non-diagonal, and therefore, there exists a 
coupling effect between the generalized rigid body motion coordinates Ri and i and the 
generalized elastic motion coordinates i

fq . Elastic deformation is observable in the rigid 
body motion and can be suppressed by controlling joint motions. This fact allows 
suppressing unwanted vibration by controlling the joint driving forces implemented 
through designing joint motion controllers (Zhang et al., 2007). 

 

2.6 Forces of a hydraulic cylinder 

2.6.1 Generalized forces of a hydraulic cylinder 

The hydraulic forces Fhi inside each cylinder are considered external forces and can be 
included in the dynamic analysis as follows. The unit vector of the relative position of 
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the coordinate system of a rod to the coordinate system of a cylinder in the global 
system (see Figure 2.6) is given by 

 ˆ cr cr crT cr
i i i ir r r r  (2.71) 

where 

 1,...,6r r rcr r c
i i i i  (2.72) 

Therefore, the vectors of generalized forces associated with the generalized translation, 
orientation, and deformation coordinates are, respectively (Shabana, 2005),  

 ˆ ˆr i cr rT rT cr i iP
hi i hi i i i ReQ F r F G u r A  (2.73) 

 ˆ ˆQ F r F G u rc i cr cT cT cr
hi i hi i i ie  (2.74) 

 

 

 

2.6.2 Derivation of the hydraulic forces 

The parallel robot is driven by water hydraulic servo actuators because the hydraulic 
system offers high power density permitting lightweight construction, and water 
hydraulics is clean and suitable for the environment inside the ITER vacuum vessel. 
However, using water hydraulics for the drive is a challenge because of the limited flow 
rate of the servo valve. Speeds greater than 3 m/min result in greater than acceptable 
speed errors, and the robot will not track accurately (Pessi et al., 2007). 

The water hydraulic system comprises six cylinders for the parallel robot and one 
cylinder for the serial robot. Each is controlled by a Moog Type-30 servo valve. System 
pressures and flow rates in the system can be derived as follows. 
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Figure 2.8: Hydraulic components of the parallel robot. 

 

Assuming that P1 and P2 are the infill and return water cavity pressures in Pa, A1 and A2 
are the corresponding effective action areas in m2, and Q1 and Q2 are the corresponding 
flows in m3/s (see Figure 2.8), then:  

 
L 1 1 2 2 1P = F A = P P (A A )  (2.75) 

 2
L 1 2Q = Q + nQ (1+ n )  (2.76) 

In this formula, LP  is the load pressure, QL is the load flow, n=A2/A1. The modeling of 
the valve openings proportional to the spool position xv with  density and the flow can 
be described by the following:  

 
1 v v s 1Q = c x 2(p p )  (2.77) 

 
2 v v sQ = c x 2 p  (2.78) 

where cv is the flow coefficient. When the piston moves at a constant velocity:  

 
1 1Q = A x                and          2 2Q = A x  (2.79) 

where x is the piston velocity. Using the linearization for Equations (2.77) and (2.78) 
give the following:  

 q L v c L LK = Q x and K = Q p     (2.80) 
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 L q v c LQ = K x K p     (2.81) 

When considering the flow continuity equation, the pressures inside chamber 1 and 
chamber 2 of a cylinder can be solved from the following equations:  

 
1 1 1 ic 1 2

1 1

Bep = (Q A C (p p ))
A + V

x
x

    (2.82) 

 
2 2 2 ic 1 2

2 2

Bep = ( Q + A + C (p p ))
A (L ) + V

x
x

    (2.83) 

where x is the displacement of a piston, L is the stroke, Be is the water bulk modules, 
V1 and V2 are the volumes, and Cic is internal leakage [(m3/s)/Pa]. The relative velocity 
x and the relative acceleration x of a rod sliding inside a cylinder can be found as 
follows. Replacing, for convenience, the relative displacement of the rod with respect to 
cylinder x by cr

ir , the relative velocity x  by cr
iv , and the relative acceleration x by cr

ia , 
then:  

 ( ) 1,...,6cr r c T r c
i i i i i i ir r r A r r  (2.84) 

Driving with respect to time leads to: 

 ( ) ( )cr cr T r c T r c
i i i i i i i iv r A r r A r r  (2.85) 

 ( ) ( )T T r c T r c
i i i i i i iA r r A r r  (2.86) 

Driving again with respect to time leads to: 

     ( ) ( ) ( ) ( )cr cr T r c T r c T r c T r c
i i i i i i i i i i i i i ia v A r r A r r A r r A r r  (2.87) 

 2 ( ) 2 ( ) ( )
TT r c T T r c T r c

i i i i i i i i i i i i iA r r A r r A r r  
(2.88) 

where: 

 
i i i iA G  (2.89) 

The hydraulic force produced inside a cylinder (Fh) can be derived from the pressures 
acting on the piston as follows:  

 1 L 1 1 2 2A p = A p A p     (2.90) 



 53

In addition,  

 h 1 LF = A p m bx x     (2.91) 

where b is the coefficient of friction (or impedance coefficient) (N.s/m). Substitution of 
Equations (2.82) and (2.83) into Equation (2.76) results  

 
L 1 L tc L2

VtQ = A + p + C p
2(1+ n ) Be

x     (2.92) 

where Vt is the total volume, and the total leakage coefficient is Ctc=((1+n)/(1+n3))Cic.  
Applying the Laplace transformation to Equations (2.81), (2.82), (2.83), and (2.91), 
leads to (Dan et al., 2010):  

 L q v c LQ = K x K p     (2.93) 

 
L 1 L tc L2

VtQ = A s + sp + C p
2(1+ n ) Be

x     (2.94) 

 2
1 L hA p = (ms + bs) + Fx     (2.95) 

Equating Equations (2.93) and (2.94) gives the transfer function of the actuating unit of 
the valve controlled cylinder as follows: 

 
q v 1 L tc L c L2

VtK x = A s + sp + C p K p
2(1+ n ) Be

x     (2.96) 

Rearrange the last equation gives 

 
q v 1 tc c L2

VtK x A s+ C K p
2(1+ n ) Be

x     
(2.97) 

Errors between the predicted ld and presented l lengths are used to determine the 
required force of the six actuators separately, using PID control algorithms. The 
controller is proposed as given by the following equation:  

 ( 1) ( 1) ( )de k l k l k     (2.98) 

where ld is the desired local lengths of a rod. 
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2.6.3 PID control of the parallel mechanism 

The popularity of PID controllers can be attributed partly to their robust performance in 
a wide range of operating conditions and partly to their functional simplicity, which 
allows simple and straightforward operation (Dorf and Bishop, 2005). To implement 
such a controller, three parameters must be determined for the given process: the 
proportional coefficient Kp, with integral coefficient Ki=Kp/Ti, and the derived 
coefficient Kd. 

The PID controller has the following transfer function.  

 1( ) (1 )p d
i

W s K K s
T s

    (2.99) 

Figure 2.9 shows the block diagram of the control system for each cylinder. 

 

 
 
Figure 2.9: Block diagram of the control system of the parallel robot. 
 

The traditional PID control is well-known as a discrete expression given by the equation  

 
1

0

t
t t

p t i t j d
j

e eu k e k e T k
T

 
(2.100) 

with Kp being the proportional gain, Ki the integral gain and Kd the derivative gain. The 
control error te  results  from  the  deviation  between  the  real  length  of  the  rod  and  the  
desired length of the rod. The index in the control error denotes the sampling time, 
meaning that 1te  is  the  error  of  the  previous  sampling  to  te . The  length  of  the  time  
sampling period is given by T and finally the resulting control signal to trigger the 
valves is termed u.   
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This control seems to be the most common, but since the control signals are limited, the 
wind-up effects of the integral part can probably be encountered, meaning that the term 

 continues to integrate indefinitely. This might result in high control inputs even 
though the control error is low. Inevitably, the discrete control will lead to inadequate 
results. Consequently, the wind-up problem can be avoided by rewriting Equation 
(2.100) into its differential form:  

 
1 1 1 2( ) ( 2 )d

t t p t t i t t t t
ku u u k e e k Te e e e
T

 (2.101) 

where u is the difference of the control output between 1tu  and tu . 

The present control output is then defined by the sum of the previous control output and 
the differential output of Equation (2.101). This allows for limiting the control output to  

  max
1 mint tu u u  (2.102) 

where max

min
denotes the range of possible control values within the predefined 

boundaries. A possible MATLABTM code for the described differential PID control of 

each cylinder is given in Figure 2.10.  

 

 

 

Figure 2.10: MATLAB code for the described differential PID control of each cylinder. 
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Summary of the proposed method 

The proposed method in this chapter can be epitomized by the flow chart of Figure 2.11 
as following   

  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 2.11: The flow chart of dynamic analysis of flexible 6UPS parallel mechanism. 
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2.7 Analysis of the serial part of the hybrid robot 

The serial component of the hybrid robot can be analyzed using the equilibrium of 
reaction forces at the universal joint connections of the hexa-element (Figures. 2.12, 
2.13, and 2.14).  

 

Figure 2.12: Interfacing between the serial mechanism and the parallel mechanism by the 
universal joints. 

 

 
Figure 2.13: Side view of force components that affect the serial robot due to the universal 
joints and serial cylinder. 
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Figure 2.14: 3D view to the force components that affect the hexa-element due to the universal 
joints and. 

 

The forces on the output side of the hexa-element are the result of the dynamic 
movement of the connected parallel linkages that lead to the end effector. The forces on 
the input side are the controlled driving impulses of the connected hydraulic cylinder. 
To achieve precise positional control of the end effector for maximum precision 
machining, the hydraulic cylinder should be controlled to hold the hexa-element in a 
fixed position with minimal positional error being transmitted to the parallel linkages 
(Al-saedi et al., 2012). Using the multibody dynamics approach, the reaction forces of 
the parallel mechanism at every joint along every arm can be determined with the 
following equation (Shabana, 2005):  

 T
qcQ C     (2.103) 

Therefore, the reaction forces and torques along every arm can be found according to 
the non-zero elements of the sub-matrix of the Jacobian transpose, or:  

 T
..... .... , 1,...,6T T T

q Ai q Armi q mov i iC 0 C 0 C     (2.104) 

Having found the components of the global reaction forces at the universal joints, the 
resultant of the forces in the local coordinate system of the serial robot cylinder can be 
found (Figure 2.14), and a PID control system can be designed to estimate the correct 
value of the effecting force on the serial part. The hydraulic servo valve of the serial 
part control is similar to that used in the parallel robot, i.e. Moog Type-30. 
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Figure 2.15: Block diagram of the control system of the serial robot. 

 

Figure 2.15 illustrates the PID control of the serial robot where the input is the resultant 
reaction forces, and the output is the required locked position of the cylinder (0.5 mm). 

 

2.8 Robot parameters 

The actual values of the parameters of the hybrid robot of each element are tabulated in 
Table  2.1.  The  local  position  of  the  universal  joint  in  the  base  plate  and  the  local  
position  of  the  spherical  joint  in  the  moving  plate  are  given.  Initially,  the  tip  point  of  
each rod is located 0.35 m from the cylinder outlet. Young’s modulus is 2.07 e11 N/m2, 
the rod density  is 7801 kg/m3, the rod radius is 0.015 m, and the length is 0.668 m. All 
six rods are considered as having a uniform mass distribution and cross-section. Each of 
the rods is divided into six elements. 

 

Table 2.1: Mass and inertia properties of the parallel robot’s elements. 
element Mass 

(Kg) 
Izz =Iyy 
(Kg m2) 

Ixx 
(Kg m2) 

Ixy 
(Kg m2) 

cylinder 4.589 0.2160 2.89683e-3 0 
rod_piston 3.683 0.1372 4.14392e-4 0 

moving plate 28.92 0.1867 0.3622 0 
 

Base points (local): [0.1658cos(120(1-i)+(90±14.851)) 0.1658sin(120(1-i) 
+(90±14.851))   0],i =1,2,3. End effector points (local): [0.1296 cos(120(1-i)+(90 
±45.485))    0.1296 sin(120(1-i)+(90±45.485))   0] , i =1,2,3. 

The moving plate (end effector) tracks a trajectory of x = 0, y = -0.1t cos(42.87), and 
z = +0.1t sin(42.87), where t is the time.  
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A fourth order Runge-Kutta method with an integral interval time of 0.01 ms was used 
to solve the equations of motion. The initial values for generalized elastic deformation 
were 2 1

i
fq 0 , velocity 2 1

i
fq 0 . Two non-rigid body modes and simple supports at 

point  PB and  changing  point  PA (Figure 2.6) were assumed. Increasing the number of 
modes used to describe the flexibility of each rod results in increased accuracy. 
However, the computational time also increases (Wang and Mills, 2004). For an actual 
physical system, there is internal material damping in the flexible rods, which is usually 
modeled proportional to stiffness (Vakil et al., 2008). Because of this material damping, 
high frequency vibration damps out more quickly than low frequency vibration. 
Therefore, even if the higher modes are excited, the first few modes of vibration are 
dominant in the dynamic response. 

In the simulations reported here, damping was not modeled, so any effect of high 
frequency vibration would be captured in the FEA. Using only two modes per rod in 
this approach may be seen as a limitation, but it offers the advantage of being fast and 
reasonably accurate.  

 

2.9 Discussion 

To verify the validity of the simulation, an ADAMSTM model of the parallel robot was 
developed, as previously shown in Figure 2.16. All cylinder rods were modeled as 
flexible bodies. The simulation model was loaded by hydraulic forces computed in the 
same way as forces used in the proposed method. In addition, the ADAMSTM model 
was controlled in the same way as the model presented in this chapter (see the Simulink 
model circuit in the Figures 2.21), so a direct comparison could be made between the 
models. The gain coefficients of the PID control (proportional gain only) for the flexible 
parallel robot were Kp = diag[0.25, 0.25, 0.25, 0.25, 0.25, 0.25]. Finally, the parallel 
robot should track the required path without machining forces at the end effector. 

In Figures 2.17 and 2.18, the Y and Z trajectories of the moving plate (end effector) 
have been compared with the same trajectories obtained from the dynamic model 
developed using FFRF method. Furthermore, Figures 2.19 and 2.20 show that the y and 
z accelerations of the moving plate (end effector) obtained by the proposed method have 
been compared with the accelerations of the ADAMSTM model. The method proposed 
by this chapter is apparently comparatively more accurate than ADAMSTM in the 
overshoot and the steady state error values during the simulation, and equally accurate 
(in good agreement) for the remainder of the simulation period with respect to the 
acceleration. This result validates the modeling approach proposed in this chapter. 
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Figure 2.16: ADAMS model of the 6-UPS parallel robot. 
 

Figure 2.17: Y-displacement using the FFRF 
and ADAMS model. 

Figure 2.18: Z-displacement using the FFRF 
and ADAMS model. 
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Figure 2.19: Y-acceleration using the FFRF            
and ADAMS model. 

Figure 2.20: Z-acceleration using the FFRF 
and ADAMS model. 

     

2.10 Simulation results 

Two strategies were adopted to examine the effect of elastic deformation on the 
performance of the hybrid robot machine. First, the required path of the parallel robot 
with  rigid  rods  and  without  machining  forces  was  compared  to  the  path  for  the  same  
machine using flexible rods. In the second strategy, a comparison was made between 
the required path for the parallel robot with flexible rods with and without machining 
forces. The machining forces were, 1000sin(2 )xF ft , 700sin(2 )yF ft , and 

600sin(2 )zF ft , with f = 20 Hz.  

The gain coefficients of the PID control for the flexible parallel  robot with or without 
machining forces ware Kp = diag[3.5, 3.5, 3.5, 3.5, 3.5, 3.5], Kd= diag[2000, 2000, 
2000, 2000, 2000, 2000],  and Ki = diag[0.005, 0.005, 0.005, 0.005, 0.005, 0.005]. 
These coefficients were chosen to optimize the tracking of the end effector with respect 
to the required machining path. For the serial robot PID control, the gain coefficients 
were Kp = 60, Ki = 0.01 and Kd = 1.1. All these gain values were estimates made by trial 
and error separately for each cylinder. There are other methods to tune all these gain 
parameters, for instance, the Ziegler-Nichols method. This method depends on the 
tangent line to the response curve. However, because it is difficult to easily determine 
the tangent response curve for this simulation, the Ziegler-Nichols method could not be 
used here.   
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Figure 2.21 Sim
ulink circuit for controlling the A

D
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M
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m
odel of the parallel robot. 
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The displacements presented in Figures 2.22-2.24 and 2.33-2.35 show that the hydraulic 
6 DOF flexible parallel robot with PID leads the moving plate (end effector) to the 
desired trajectories promptly and steadily in either of the two strategies. Overshoot and 
steady state errors in both the y- and z-displacements were small. Like the examples 
presented by Vakil et al. (2008), end effector vibration was not obviously apparent from 
these displacement figures. However, the components of end effector acceleration in the 
y and z directions, shown in Figures 2.25 and 2.26 as well as Figures 2.36 and 2.37, 
clearly revealed rod vibration. 

Although the influence of machining forces (variable external forces) during the 
simulation can be observed in all of the figures, the results indicate that the evolution of 
the differences in the pressures inside each cylinder (see Figures 2.27-2.32) in the case 
of a flexible robot are higher than the differences in the pressure in the case of a rigid 
robot. Similarly, Figures 2.38-2.43 indicate that the differences in the pressures inside 
each cylinder in the flexible robot with machining forces are higher than the differences 
in the pressure of the flexible robot without machining forces. This helps to select the 
appropriate servo valve properties for the actual robot. 

Figures 2.44-2.49 present elastic deformations of the rods at their tip points. An obvious 
exchange of elastic strain exists between the rods. Flexibility coupling occurs between 
elastic deformations. This in turn indicates that deformation, as expected, is higher 
during machining due to the machining force effect. Moreover, it is clear from the 
relations of the moving plate displacement and Figures 2.44 through 2.49 that elastic 
deformations have a negligible effect on rigid body motion. This is because no 
structural damping is assumed on one side, and the introduction of a prismatic joint 
motion  controller  as  a  linear  spring  and  damper  has  the  potential  to  absorb  the  elastic  
strain energy on the other side (Wang and Mills, 2006, Wang and Mills, 2004). In other 
words, the vibration of the rods is suppressed by the PID controller due to the coupling 
effects of rigid body motions and elastic motions in the equation of motion. 

However, the elastic motions lead to apparent changes in the velocity and acceleration 
of rigid body motion, illustrated in Figures 2.25 and 2.26 as well as in Figures 2.36 and 
2.37. The changes will further impact the dynamic behaviors of the manipulator system 
(Zhang et al., 2007). 

Figure 2.50 shows the total force at the serial robot due to the reactions at the universal 
joints, which should be controlled by the serial hydraulic control system for the two 
cases with and without machining forces. Finally, Figure 2.51 reveals the required 
(locked) displacement of the rod of the serial robot. This value should be no greater than 
5×10-5 m. Hence, Figure 2.51 indicates the proposed control system works accurately 
due to the correct selection of gains. 
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Figure 2.22:  Y-displacement of a rigid and 
flexible parallel robot. 

Figure 2.23: Z-displacement of a rigid and  
flexible parallel robot. 

                                               
 

 

                  

 

Figure 2.24: Y-Z displacement of a rigid and flexible parallel robot. 
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Figure 2.25:  Y-acceleration of a rigid and 
flexible parallel robot. 

Figure 2.26: Z-acceleration of a rigid and  
flexible parallel robot. 

 

  

Figure 2.27: Difference in pressure in cylinder 
a of a rigid and flexible parallel robot. 

Figure 2.28: Difference in pressure in cylinder 
b of a rigid and flexible parallel robot. 
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Figure 2.29: Difference in pressure in 
cylinder c of a rigid and flexible parallel 
robot. 

Figure 2.30: Difference in pressure in cylinder 
d of a rigid and flexible parallel robot. 

 

 

  

Figure 2.31: Difference in pressure in cylinder 
e of a rigid and flexible parallel robot. 

Figure 2.32: Difference in pressure in cylinder 
f of a rigid and flexible parallel robot. 
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Figure 2.33: Y-displacement of a flexible 
parallel robot with and without machining 
forces. 

Figure 2.34: Z-displacement of flexible 
parallel robot with and without machining 
forces. 

      

 

Figure 2.35: Y-X displacement (path) of a flexible parallel robot with and without machining 
forces. 
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Figure 2.36:  Y-acceleration of a flexible 
parallel robot with and without machining 
forces. 

Figure 2.37:  Z-acceleration of a flexible 
parallel robot with and without machining 
forces. 

 
 
 

  

Figure 2.38: Difference in pressure in cylinder 
a of a flexible parallel robot with and without 
machining forces. 

Figure 2.39: Difference in pressure in cylinder 
b of  a  flexible  parallel  robot  with and without  
machining forces. 
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Figure 2.40: Difference in pressure in cylinder 
c of  a  flexible  parallel  robot  with and without  
machining forces. 

Figure 2.41: Difference in pressure in cylinder 
d of a flexible parallel robot with and without 
machining forces. 

       

 

   

  

Figure 2.42: Difference in pressure in cylinder 
e of a flexible parallel robot with and without 
machining forces. 

Figure 2.43: Difference in pressure in cylinder 
f of a flexible parallel robot with and without 
machining forces. 
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Figure 2.44: Deformation of a flexible rod in 
cylinder a of a flexible parallel robot with and 
without machining forces. 

Figure 2.45: Deformation of a flexible rod in 
cylinder b of a flexible parallel robot with and 
without machining forces. 

 
 

 

  

Figure 2.46: Deformation of a flexible rod in 
cylinder c of a flexible parallel robot with and 
without machining forces. 

Figure 2.47: Deformation of a flexible rod in 
cylinder d of a flexible parallel robot with and 
without machining forces. 
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Figure 2.48: Deformation of a flexible rod in 
cylinder e of a flexible parallel robot with and 
without machining forces. 

Figure 2.49:  Deformation of a flexible rod in 
cylinder f of  flexible  a  parallel  robot  with and 
without machining forces. 

 
 

                               

  

Figure 2.50: Total reaction force in a serial 
robot cylinder from a flexible parallel robot 
with and without machining forces. 

Figure 2.51: Required (locked) displacement 
of  the  rod  of  a  serial  robot  cylinder  from  a  
flexible parallel robot with and without 
machining forces. 
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3 Intelligent methods for tuning the PID controller of a 

hybrid robot 

3.1 Introduction 

Control theory provides tools for designing and evaluating algorithms to realize desired 
motions or force application. The methods of linear control and those of local 
linearization and moving (successive) linearization are not well suited for the control 
problem of robotic manipulators. This is due to the fact that robotic manipulators 
constantly  move  among  widely  separated  regions  of  their  workspace  such  that  no  
linearization valid for all regions can be found (Khoury et al., 2004). On the other hand, 
nonlinear control methods are progressing and different classes can be identified. 
Nonlinear control methods used in robot system applications should however face the 
major  difficulty  resulting  from  the  dynamic  modeling  of  robots,  i.e.  the  
indeterminations of their parameters. The preferred methods are those which reduce or 
eliminate the undesired effects generated by this indetermination (Slotine and Li, 1990).  

The term "fuzzy logic" was first introduced with the 1965 proposal of fuzzy set theory 
by Lotfi A. Zadeh (Zadeh, 1965) In Fuzzy control theory there are two contradictory 
requirements: interpretability versus accuracy. In practice, one of the two properties 
prevails. Fuzzy modeling research field is divided into two areas: linguistic fuzzy 
modeling that is focused on interpretability, mainly the Mamdani model (Mamdani, 
1974); and precise fuzzy modeling that is focused on accuracy, mainly the Takagi-
Sugeno-Kang (TSK) model (Takagi and Sugeno, 1985). Mamdani's method was among 
the first control systems built using fuzzy set theory. It was proposed in 1975 by 
Ebrahim Mamdani (Mamdani, 1974) as an attempt to control a steam engine and boiler 
combination by synthesizing a set of linguistic control rules obtained from experienced 
human operators. The main difference between Mamdani and Sugeno is that the Sugeno 
output membership functions are either linear or constant. 

This  chapter  presents  two  methods  used  to  tune  the  PID  control  gains  of  the  parallel  
robot. The first is the fuzzy inference method and the second is the adaptive neural-
fuzzy inference system (ANFIS). Using the flexible multibody dynamics results and the 
simulations of the hydraulic control system, the input and output to the suggested 
intelligent control systems can be studied as follows. 

 

 3 Chapter 
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3.2 Fuzzy method for tuning the PID gains 

Among the recent nonlinear control methods, current fuzzy control methods have drawn 
the attention of many researchers. In fact, these methods do not require knowledge of 
the dynamic model of the controlled system. This feature becomes of major importance 
when dealing with complex nonlinear systems. Moreover, the dynamic modeling of 
robot arms shows dependency on their dynamical parameters that vary with the 
performed task (e.g., centers of gravity of links affected by tool replacements). These 
considerations also give an advantage to fuzzy control methods over other nonlinear 
methods as a result of their robustness towards perturbations affecting the system 
(Khoury et al., 2004). 

Although control methods, especially nonlinear ones, have greatly evolved, the 
proportional-integral-derivative (PID) control method is still widely used in all domains 
(Khoury et al., 2004). The success of the PID control is attributed to its simplicity (in 
terms of design and tuning) and to its good performance in a wide range of operating 
conditions. However, the necessity of retuning the PID controllers characterizes their 
major disadvantage when the controlled plant is subjected to disturbance or when it 
presents complexities (nonlinearities).        

 

3.2.1 Fuzzy controller and its membership function 

The parallel robot is considered a closed mechanical chain that make the dynamics of 
the parallel manipulators highly complex and their dynamic models highly nonlinear. 
Because of these conditions, a conventional PID controller cannot reach satisfactory 
results. According to Tian (2004) and Feng (2009), a self-tuning parameter fuzzy PID 
controller provides control of the system with excellent reliability, stability, and 
accuracy. The basic approach is to try to detect when the controller is not properly tuned 
and  then  seek  to  adjust  the  PID  gains  to  improve  the  performance.  The  schematic  
structure of the self-tuning-parameter fuzzy-PID controller is given in Figure 3.1.  

The fuzzy controller is composed of the following four elements: 

1. A fuzzification interface, which converts controller inputs into information that the 
inference mechanism can easily use to activate and apply rules. 

2. A rule base or knowledge base (a  set  of  IF-THEN rules), which contains a fuzzy 
logic quantification of the expert’s linguistic description of how to achieve good 
control. 

3. An inference mechanism or decision making mechanism (also called a “fuzzy 
inference” module), which emulates the expert’s decision-making in interpreting and 
applying knowledge about how to best control the plant. 
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4. A defuzzification interface, which converts the conclusions of the inference 
mechanism into actual inputs for the process. 
 
In  this  control  step,  the  error  and  the  change  in  error  are  selected  as  the  inputs  of  the  
fuzzy logic control (FLC). For simplification and convenience, the actual (crisp) 
physical values of the inputs and outputs of the FLC are first mapped onto the 
predetermined normalized domain. This mapping is done by a normalization equation 
for the first set of inputs  
  
 

min
max min

2 ( ) 1x x x
x x

    (3.1) 

and for the second set of inputs  
 
 

min
max min

2 ( ) 1y y y
y y

    (3.2) 

where x is the normalized input, and x is the actual input value which is represented by 
error E and change in error EC, and maxx  and minx  represent the maximum and 
minimum of the input values, respectively. In fuzzy set theory, the characteristic 
function for the crisp set is generalized to a partial membership function that assigns to 
every x X  a value from the unit interval [-1,1]. It is written as: 

 : 1, 1x x     (3.3) 

and 

 : 1, 1y y  (3.4) 

Thus, every element x has a membership degree ( ) 1, 1x . The  advantage  of  this  
operation is that fuzzification, rule firing (decision), and defuzzification can be designed 
independently of the actual physical domains. Usually, the normalized domain is 
defined in the range of [-1,+1]. 

In  Figure  3.1,  the  input  is  the  reference  value  of  the  rod  length  and  the  output  is  the  
actual  rod  length.  Inputs  for  the  fuzzy  block  are  rod  length  error  E  and  the  time  
derivative of a rod length error, EC. The PID controller parameters Kp and Kd are self-
tuned according to the following logic rules by fuzzy inference. It was found that Ki for 
a suggested track has a constant value throughout the simulation period. Therefore, 
there is no need to tune it. 
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Figure 3.1: Self-tuning-parameter fuzzy PD controller structure. 

 

After all of the inputs and outputs are defined for the fuzzy controller, the fuzzy control 
system can be specified. The linguistic description is provided by an expert on PID 
parameter tuning.  

Tian (2004) states:  

Since Kp can speed up the control process, at the beginning of the control 
process, Kp should be larger in order to reduce the rising time and make 
the control process faster. In the middle of the control sequence, Kp 
should be adjusted to its middle value for the consideration of system 
stability and control accuracy. In the final period, Kp should be given a 
smaller value, compared with the beginning of the process, in order to 
reduce the steady-state error. 

Kd can suppress the overshoot of the control system and the change of the 
length error. Thus, when the change of the length error is large, Kd should 
be larger. While when the change of the length error is smaller, Kd should 
be given a smaller value.  

Subsequently,  the  linguistic  quantification  above  specifies  a  set  of  rules  (a  rule  base)  
that captures the expert’s knowledge about how to control the rod length. The 
knowledge of the process, which is a fuzzy model, is always described using simple 
fuzzy linguistic rules instead of precise mathematical functions. The general expression 
of a rule for this control system is as follows: 

            Ri: IF  E is NEm  and  EC is NECn,  THEN  Kp is NK1, Kd is NK2, 

where Kp and  Kd are the adjustment coefficients of the proportional and integral 
parameters, respectively (i.e. the output of the FLC), and if the normalized E, EC, and 
NK are represented by NE, NEC, and NK, respectively, then: NEm NE,  NECn NEC,  
NK1, NK2 NK. 
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The membership function is used to represent the magnitude of participation of each 
input graphically. It associates a weighting with each of the inputs, defines functional 
overlaps between inputs, and ultimately determines an output response. Figures 3.2 and 
3.3 show the membership functions for inputs and outputs, respectively. Figure 3.2 
shows two inputs:  the rod position error E and the derivation of the error EC. Both E 
and EC are divided into the seven values {NB, NM, NS, ZO, PS, PM, PB}, where NB is 
Negative Big, NM is Negative Medium, NS is Negative Small, ZO is Zero, PS is 
Positive Small, PM is Positive Medium, and PB is Positive Big.  
The fuzzy output variable NK is defined as NK={ZE,VS,S,SB,MB, B,VB}, where ZE 
is zero, VS is very small, S is small, SB is small big, MB is medium big, B is big, and 
VB is very big. 
 

 

Figure 3.2: Membership function of inputs.  

 

 

Figure 3.3: Membership function of outputs. 

 

The horizontal axis in Figure 3.2 illustrates the scaling gain for a rod length error E and 
its  time  differential  EC.  Based  on  the  input  information  (E,  EC),  the  triangle  
membership function is chosen as they are the most common and easy to implement in 
an embedded controller. Each of the triangles represents an area of the effect of rules. 
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Similar interpretations of linguistic values were made in the definition of the 
membership functions on the outputs.  

By combining the fuzzy sets of inputs for the rod position error (7) and the differential 
of the rod position error (7), there are a total of 7×7 = 49 rules for tuning one controller 
output. Because we have two outputs (Kp and Kd), there are 49 × 2 = 98 rules for each 
servo controller. The rule base for the tuning of the control system is shown in Table 3.1 

Table 3.1: Fuzzy rule base for the tuning of the PD control system gains. 

 Rod length error E 

NB NM NS ZO PS PM PB 

D
iff

er
en

tia
l o

f r
od

 le
ng

th
 e

rr
or

 E
C 

NB VB/VB B/B SB/MB S/SB SB/SB MB/SB B/B 

NM B/B MB/SB SB/SB S/VS SB/S MB/S MB/MB 

NS MB/SB SB/S S/S VS/VS S/VS SB/VS SB/S 

ZO SB/VS S/S VS/VS ZE/ZE VS/VS S/S SB/VS 

PS SB/S SB/VS S/VS VS/VS S/S SB/S MB/SB 

PM MB/MB MB/S SB/S S/SB SB/SB MB/SB B/B 

PB B/B MB/SB SB/SB S/MB SB/MB B/B VB/VB 

 

Table 3.1 illustrates what rule is effective when a specific combination of the rod 
position error E and its time differential EC is presented. For instance, the rod position 
error  E  is  “located”  in  the  NS  triangle,  and  the  differential  of  error  EC  in  the  ZO  
triangle. The combination of this information tells us that the output for Kp follows the 
NS triangle rule, and Kd follows the PS triangle rule. 

The inference process or decision generally involves two steps: 

(1) The premises of all of the rules are compared with the controller inputs to determine 
that rules apply to the current situation.  

(2)  The  conclusions  (what  control  actions  to  take)  are  determined  using  the  rules  that  
have been determined to apply at the current time. The conclusions are characterized 
with a fuzzy set that represents the certainty that the input to the plant should take for 
various values (Passino and Yurkovich, 1997). 

The “AND” operator is applied, and then the membership degree of the output in a rule 
can be calculated as:  



 79

 ( ) min ( ); ( )z x y     (3.5) 

where ,z z x y   

Figure 3.4 illustrates the process of implementation of the rules and the logical operator 
“AND”. The result ( )z should undergo a defuzzification process.  

 

A defuzzification interface refers to the way a crisp value is extracted from a fuzzy set as 
a representative value by combining the results of the inference process and then 
computing the fuzzy centroid of the area (of the chopped off triangles as can be seen in 
Figure 3.4). The result is the (E;EC) weight coefficient (crisp value) which depends on 
E and EC and is used for calculating Kp and Kd, which can be summarized as follows:  

 
1

1

( ).

( )

N

i i
COG i

N

i
i

z z

z
    (3.6) 

Figure 3.4: Graphical representation of fuzzy controller operations. 
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Now, the tuned parameters of the PID controller can be found as follows (Tian, 2004): 

 , , ,( , )( )p p Min Kp L L p Max p MinK K E EC K K     (3.7) 

 , , ,( , )( )
dd d Min K L L d Max d MinK K E EC K K     (3.8) 

where  is a weight coefficient, and Kp,Max, Kp,Min, Kd,Max,  and Kd,Min are the maximum 
and minimum limits for the proportional gain and the integral gain, respectively. Figure 
3.3  shows  outputs  Kp and  Kd.  The  initial  values  for  the  self-tuning  parameter  of  the  
fuzzy  PD were  chosen  to  be  the  same as  those  for  a  conventional  PID controller.  Six  
fuzzy controllers are used in a parallel structure and embedded into the control system. 
The error vector is computed for each fuzzy controller by using the difference between 
the actual rod length generated by the dynamic model of the manipulator and the desired 
rod length. 

The control surface of fuzzy-PD controller representing the relation between inputs and 
output Kp can be seen in Figure 3.5, while the control surface of fuzzy-PD controller 
representing the relation between inputs and output Kd can be seen in Figure 3.6. 

 

 

Figure 3.5: Control surface of fuzzy-PD controller representing the relation between inputs and 
output Kp.  
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Figure 3.6: Control surface of fuzzy-PD controller representing the relation between inputs and 
output Kd. 

 

3.3 ANFIS controller 

Generally speaking, There are two distinct methods for building controllers: fuzzy and 
neural.  Often  the  choice  of  method  is  dictated  by  the  data  available  on  the  plant  
involved. If the data are pairs of numbers, we may apply the neural method, and if the 
data are rules, fuzzy methods may be appropriate. Neural methods provide learning 
capability, whereas fuzzy methods provide flexible knowledge-representational 
capability (Nguyen et al., 2003).  

One of the limitations of fuzzy systems is the curse of dimensionality (Wesley, 1997). 
Furthermore, in the practical application, fuzzy control lacks an online self-study or 
self-adjustment ability for time-varying parameters and nonlinear systems, in order to 
obtain good control effects to these objectives, they must have better control rules. A 
neural network has a strong self-studying ability in a changing environment, but after 
learning, it cannot express the relationship of input and output data in an acceptable 
way. The Adaptive Neuro-Fuzzy Inference System combines these two theories and can 
achieve better control over complicated objectives (Wang et al., 2009).  

Integrating these two methodologies, in control in particular and in intelligent 
technologies in general, can lead to better technologies that take advantage of the 
strengths of each methodology and at the same time overcome some of the limitations 
of the individual techniques (Nguyen et al., 2003).  

An adaptive network, as the name indicates, is a network structure consisting of a 
number of nodes connected through directional links. Each node represents a process 
unit, and the links between nodes specify the causal relationship between the connected 
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nodes.  All  or  part  of  the  nodes  are  adaptive,  which  means  the  outputs  of  these  nodes  
depend on modifiable parameters pertaining to these nodes (Jang et al., 1997).  

 

3.3.1 Learning and adaptation in fuzzy systems via a neural network 

When experiential data exists, fuzzy systems can be trained to represent an input-output 
relationship. By using gradient descent techniques, fuzzy system parameters, such as 
identifying a rule’s antecedent values (Left hand side) membership functions and 
identifying a rule’s consequent values (right hand side) membership functions, and the 
connectives between layers in an adaptive network, can be optimized. The adaptation of 
fuzzy systems using neural network training methods has been proposed by various 
researchers (Wesley, 1997). Jang et al., (1997) have introduced the adaptive network-
based fuzzy inference system (ANFIS).         

The ANFIS discriminates itself from normal fuzzy logic systems by the adaptive 
parameters, i.e. both the premise parameters and consequent parameters are adjustable. 
The most noteworthy feature of the ANFIS is its hybrid learning algorithm. The 
adaptation  process  of  the  parameters  of  the  ANFIS  is  divided  into  two  steps.  For  the  
first step of the consequent parameters training, the least mean squares (LMS) method 
is used because the output of the ANFIS is a linear combination of the consequent 
parameters. The premise parameters are fixed at this step. After the consequent 
parameters have been adjusted, the approximation error is back-propagated (BP) 
through every layer to update the premise parameters as the second step.  This part  of 
the adaptation procedure is based on the gradient descent principle, which is the same 
as in the training of the back propagation (BP) neural network (the back propagation 
algorithm is an optimization technique design to minimize an objective, e.g., squared 
error function). The consequence parameters identified by the LMS method are optimal 
in the sense of least squares under the condition that the premise parameters are fixed 
(Bachir and Zoubir, 2012). The training process stops whenever the designated epoch 
number is reached or the training error goal is achieved. A combination of such 
intelligent systems as ANFIS provides even better results than just neural networks or 
fuzzy control (Adhyaru et al., 2010).  
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Figure 3.7: A typical architecture ANFIS structure. 

 
To improve the reliability of the controller by the error minimization approach, twelve 
ANFIS networks are used in a parallel structure and embedded into the control system. 
In this implementation, after the off-line training, the output values of the gains Kp and 
Kd generated by the twelve ANFIS are applied to the inputs of the servo valves of each 
cylinder. The error vector is computed for each ANFIS by using the difference between 
the actual rod length generated by the dynamic model of the manipulator and the desired 
rod length. The results are evaluated to select the network generating the best result. The 
network is then assigned as the ANFIS controller for actual time steps, and its output is 
assigned as the servo valve input of the parallel-implemented ANFIS controller output 
driving the dynamic model of the manipulator as shown in Figure 3.8. Before the 
training of the network, the inputs and targets are scaled (normalized) so that they fall 
within a specified range, which can make the ANFIS training more efficient (Arpaci and 
Özgüven, 2011). 

 

 

Figure 3.8: ANFIS PID controller implementation for parallel robot. 
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Figure 3.9: ANFIS structure for each cylinder controller. 

 

The architecture of the ANFIS used in this chapter is shown in Figure 3.9. For 
simplicity, let us consider a typical architecture of ANFIS (Figure 3.7) with two inputs, 
x and y, and one output f. In the architecture, a circle indicates a fixed node, whereas a 
square indicates an adaptive node. Among the many FIS models, the Sugeno fuzzy 
model is the most widely applied one and the one used in this study due to its high 
interpretability, computational efficiency and built-in optimal and adaptive techniques. 
For  each  model,  a  common  rule  set  with  two  fuzzy  if-then  rules  can  be  expressed  as  
(Jang et al., 1997):  

 1: ( ) ( ) ,i i i i i iRule x e is A y e is B f p x q y rIf and then     (3.9) 

where Ai and  Bi are fuzzy sets in the antecedent and ,z f e e is a crisp function in 
the consequent.  

The ANFIS controller generates continuous changes in the reference PID parameters Kp 
and Kd based on the ith rod length error e and derivate of the error e .  The  error  is  
defined as de l l , where dl and l are the reference and the actual length of the ith rod 
of parallel robot, respectively. Each ANFIS consists of five layers as follows (Jang et 
al., 1997): 

      Layer 1: Every node i, in this layer, is adaptive with a node function:  

 1 1
5( ) , 1,..., 5 ( ) , 6,...,10i Ai i BiO e i or O e i     (3.10) 
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1
iO  is the output of the ith node, i.e. the membership grade of a fuzzy set A(=Ai or Bi-5). 

In this study, the node membership function is a generalized bell function:  

 
2

1( )

1
iAi b

i

i

x e
x c

a

    (3.11) 

where x (or y) is the input to the node i. { , ,i i ia b c }  is the premise parameters set. 

    Layer 2: The total number of rules is 25 in this layer. Each node output represents the 
activation level of a rule:  

 2 ( ) . ( ) , 1,...,5i i Ai BiO w e e i     (3.12) 

    Layer 3: Fixed node i, in this layer, calculates the ratio of the ith rule activation level 
(firing strengths) to the total of all activation levels; this layer is called normalized firing 
strengths:    

 3

1

i
i i n

i
i

wO w
w

    
(3.13) 

     Layer 4: Adaptive node i in this layer calculates the contribution of the ith rule 
towards the overall output, with the following node function:  

 4 ( ) ( )i i i i i i i i i i iO w f w p x q y r w p e q e r     (3.14) 

where iw is the output of layer 3, and { , ,i i ip q r } is the consequent parameters set. 

     Layer 5: The single node in this layer computes the overall output as the summation 
of all incoming signals, which is expressed as: 

 

5 1

1

1

n

i in
i

i i i n
i

i
i

w f
overall output O w f

w
    (3.15) 

 

The learning rule is the back propagation gradient descendent, which calculates the 
error signals recursively from the output layer backward to the input nodes. The task of 
the learning algorithm for this architecture is to tune all the modifiable parameters to 
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make the ANFIS output match the training data. The overall output is a linear 
combination of the modifiable parameters.  

The parameters to be trained are {ai, bi, ci} of the premise parameters and {pi, qi, ri} of 
the consequent parameters. The training algorithm requires a training set defined 
between inputs and outputs (Passino and Yurkovich, 1997). The input and output 
pattern sets have 50000 rows. Figure 3.14 shows the initial membership functions for 
the input error which are the same for each cylinder. Figure 3.15 (a, b, c, d, e and f) 
show final optimized membership functions (MF) for e  and e after training for each 
cylinder controller. Figure 3.9 shows the ANFIS model structure. The number of epochs 
was 100 for training. The number of MFs for both input variables e and e is 5, 
respectively. The number of rules is then 25(5 × 5=25). The generalized bell (Cauchy) 
MF is used for each input variable. It is clear from Equation (3.11) that the bell MF is 
specified by three parameters. Therefore, the ANFIS used here contains a total of 105 
fitting parameters, of which 30 (5×3 + 5×3=30) are the premise parameters and 75 
(3×25=75) are the consequent parameters for each cylinder controller (AL-Saedi et al., 
2014). 

 

3.3.2 ANFIS algorithm and structure: 

In Fuzzy Control Toolbox, a useful command called anfis exists. This provides an 
optimization scheme to find the parameters in the fuzzy system that best fit the data. It 
is explained in the Toolbox manual that since some optimization algorithms require 
computation of the gradient, this is done with a neural network.  

There are twelve data sets for the entire parallel robot, and therefore, we have twelve 
ANFIS networks.  In order to predict  the gains,  the networks have to be trained with a 
set of input-output data. Consequently, there are two sets of training data for each arm. 
In the first set, the inputs are [the error ( e ), the error derivative is ( e )], and the output 
is  the  derivative  gain,  while  in  the  second set,  the  inputs  are  [the  error  ( e ), the error 
derivative is ( e )], and the output is the proportional gain. 

It is not clear at the beginning what the initial fuzzy system should be, that is, the type 
and number of membership functions. In such cases, the command genfis1 can be used. 
This command will go over the data in a crude way and find a good starting system. In 
summary, genfis1 is used to generate an initial fuzzy inference system FIS, and anfis to 
generate the best FIS system. ANFIS uses the result from genfis1 to start optimization, 
as can be seen in Figure 3.10, and the  most  important  MATLABTM commands which 
have been used are shown in Figures 3.11, 3.12, and 3.13. 
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Figure 3.10: Basic flow diagram of computation in ANFIS. 

 

Finally, the output (or the trained data after the checking process) should be sent to the 
PID controller so as to simulate the dynamic model of the parallel robot with these 
optimized gains (KpANFIS-PD and Kd ANFIS-PD) rather than the old gains (Kp and Kd). 
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Figure 3.11: Implementation of the genfis1 function in MATLAB for the ANFIS technique for a 
parallel robot. 

 

 

 

Figure 3.12: Implementation of the anfis function in MATLAB for the ANFIS technique for a 
parallel robot. 
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Figure 3.13: Implementation of the evalfis function in MATLAB for the ANFIS technique for a 
parallel robot. 

 

3.4 Robot parameters, simulation results and discussion 

The actual values of the system parameters of the hybrid robot of each element are 
tabulated in Table 3.2. The local position of the universal joint in the base plate and the 
local  position  of  the  spherical  joint  in  the  moving  plate  are  given.  Initially,  the  tip  of  
each rod is located 0.35 m from the cylinder outlet. Young’s modulus is 2.07 e11 N/m2, 
rod density  is 7801 kg/m3, the rod radius is 0.015 m, and the length is 0.668 m. All six 
rods are considered as having a uniform mass distribution and cross-section. Each of the 
rods is divided into six elements. 

Table 3.2: Mass and Inertia properties of parallel Robot’s elements. 
element Mass 

(Kg) 
Izz =Iyy 
(Kg m2) 

Ixx 
(Kg m2) 

Ixy 
(Kg m2) 

cylinder 4.589 0.2160 2.89683e-3 0 
rod_piston 3.683 0.1372 4.14392e-4 0 

moving plate 28.92 0.1867 0.3622 0 
 

Base points (local): [0.1658cos(120(1-i)+(90±14.851)) 0.1658sin(120(1-i) 
+(90±14.851))   0],i =1,2,3. End effector points (local): [0.1296 cos(120(1-i)+(90 
±45.485))    0.1296 sin(120(1-i)+(90±45.485))   0] , i =1,2,3. 

The moving plate (end effector) tracks a trajectory of x = 0, y = -0.1t cos(42.87), and 
z = +0.1t sin(42.87) with machining forces. The machining forces were

1000sin(2 )xF ft , 700sin(2 )yF ft , and 600sin(2 )zF ft , with f = 20 Hz.  
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Three different controllers are implemented for computer simulation. The first one is the 
PID controller. The second is the fuzzy logic for tuning the gains of the PID controller 
(to find the optimal values) based on the expert’s experience, where KdMax= 
diag(3000,3000,3000,3000,3000,3000), KdMin=diag(1000,1000,1000,1000, 1000, 1000), 
KpMax= diag(2.5,2.5,2.5,2.5,2.5,2.5), and KpMin= diag(0.5,0.5,0.5,0.5, 0.5, 0.5). In the 
third, the parallel-implemented ANFIS technique is used for tuning the PID gains using 
the input-output data from the fuzzy-PID as training data for each actuator for tracking 
the  trajectory.  For  the  simulations,  a  sampling  period  of  0.05  ms  is  chosen.  
Consequently, 50000 steps are included in every control simulation. 

Figure 3.14 represents the initial membership functions for the error e for each cylinder 
by the ANFIS method. Figure 3.15 (a, b, c, d, e and f) represents the final (post-training) 
membership  functions  for  the  error  e  for  cylinders  a,  b,  c,  d,  e  and  f  by  the  ANFIS  
method, respectively. In Figures 3.16, and 3.17, it can be shown that the PID gains (Kp 
and Kd) in both cases of ANFIS and fuzzy tuning are not constant during the simulation, 
as in the case of only the PID controller. The differences in the pressures between the 
two champers of each cylinder, which can be seen in Figure 3.18, are drawn to compare 
the PID controller method and the ANFIS PD tuning method, indicating that the actual 
values for pressure differences both remain within the pressure difference limit. It can 
be inferred from Figures 3.19 and 3.20 that the end effector tracks the desired trajectory 
in both directions y and z comparatively better with the ANFIS-PID controller since the 
control parameters Kp and Kd can be adjusted precisely through the ANFIS network’s 
learning. All of the results demonstrate that the ANFIS-PD control is better than fuzzy-
PD and more effective than the conventional PID controller. 

 

 

Figure 3.14: Initial membership function MFs for the input error for each cylinder.  
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(a) 

 

(b) 

 

 

(c) 

 

(d) 

 
 

(e) 

 

(f) 

 
 
 
Figure 3.15: Final (post-training) membership function MFs for the input error of cylinders (a), 
(b), (c), (d), (e), (f). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
(e) 
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Figure 3.16: Comparison between Kp gains for a PID controller with the fuzzy and ANFIS 
tuning methods: (a) Kp of cylinder a, (b) Kp of cylinder b, (c) Kp of cylinder c, (d) Kp of 
cylinder d, (e) Kp of cylinder e ,and (f) Kp of cylinder f. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 
(e) 

 

(f) 

 
 
Figure 3.17: Comparison between the Kd gain for a PID controller with the fuzzy and ANFIS 
tuning methods: (a) Kd of cylinder a, (b) Kd of cylinder b, (c) Kd of cylinder c, (d) Kd of 
cylinder d, (e) Kd of cylinder e and (f) Kd of cylinder f. 
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(a) 

 

(b)

 

(c) 

 

(d) 

 
(e) 

 

(f) 

 
Figure 3.18: Comparison between the difference in the pressures resulting from a conventional 
PID controller and the ANFIS tuning method in the cylinders (a), (b), (c), (d), (e), and (f). 
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Figure 3.19: Y-displacement of moving plate (end effector) under the effect of machining 
forces. 
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Figure 3.20: Z-displacement of moving plate (end effector) under the effect of machining 
forces. 
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a PID control system can be designed to estimate the correct value of the effecting force 
on the serial part. The hydraulic servo valve of the serial part control is similar to that 
used in the parallel robot, i.e. Moog Type-30. 

Figure 2.15 illustrates the PID control of the serial robot where the input is the resultant 
reaction forces, and the output is the required locked position of the cylinder. 

It can be seen in Figure 3.21 that the serial mechanism can be locked at 5×10-5 m with 
less overshoot and a faster rise time due to resultant forces. This is achieved by ANFIS-
PD self-tuning method instead of the fuzzy-PD self-tuning method. At the same time, 
the displacements with forces which can be achieved by the fuzzy-PD self-tuning 
method are better than the displacement which can be achieved due to the forces by the 
normal PID control method only. Clearly exam to the resultant forces in Figure 3.22 
which is achieved by ANFIS-PD self-tuning method is less comparatively and therefore 
better than the other methods, meanwhile, the resultant forces which is achieved by 
Fuzzy-PD self-tuning method is less comparatively to PID control method therefore it is 
better.     

 

 
Figure 3.21: Required (locked) displacement of the rod of a serial robot cylinder. 
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Figure 3.22: Total force at the serial cylinder of the rod of a serial robot cylinder. 
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4 Special Euclidean group for flexible multibody 

dynamics of a hydraulically driven parallel mechanism 

4.1 Fundamentals of the Special Euclidean group, SE(3) 

The concepts introduced in this work are extensively based on Lie group literature (see 
e.g. Murray et al., 1994, Boothby, 1986, Spivak, 1999, Sonneville and Brüls, 2014, Park 
and Chung, 2008, Arnold, 1989). A group G is a set of elements with a composition rule 
that associates an element of the group to two element of the group: if 1 2q ,q G , then

1 2q q G . In a matrix Lie group, the elements are matrices and the composition rule is 
the matrix product written as 1 2 3q q q , and the identity matrix e ( q G : qe = eq = q, 

and 1qq = 1q q = e). 

The matrix Lie group SE(3) is the group of homogenous transformations ( )H R, xH
combining a rotation matrix R SO(3) (the Special Orthogonal which is defined as the 
set of 3×3 matrices such that T

3 3R R I ,  det  (R) = +1), and a position vector x 3 . 
Considering that x is a position or displacement vector and R that a rotation matrix R 
defines an orientation, SE(3) elements represent frames. Similarly to the Special 
Orthogonal group SO(3), SE(3) is not a vector space. 

Elements of the special Euclidean group SE(3) can be represented by 4×4 matrices  

 

1 3 1
R x

H
0  (4.1) 

The composition rule, namely the matrix product of two such 4×4 matrices, reads 

 3 3 3 1 2 1 2 1 2 1( , ) ( , )H R x H H R R R x xH H  (4.2) 

where it is interesting to notice that 3x  involves 1R as well as 1x and 2x . Geometrically 
speaking, 3H  is thus interpreted as the result of the frame transformation 2H from a 
frame defined by 1H . The neutral element for this matrix product is the 4×4 identity 
matrix 4 4I and the inverse of (3)SEH , 1 (3)SEH , is given by 1 ( , )T TH R R xH , 
i.e. 

 4 Chapter 
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1

1 3 1

T TR R x
H

0
 (4.3) 

Derivatives of SE(3) can be introduced by left invariant vector fields 

 ( )d H Hh  (4.4) 

where the 4×4 matrix h  belongs to (3)se , the Lie algebra of SE(3). (3)se is 6 , which 
means that  is an invertible linear map from 6  to (3)se  such that  

 
U 6h

h
h    and    U

1 3

(3)
0

h hh
0

se  (4.5) 

where 3
Uh and (3)h so , the Lie algebra of the Special Orthogonal group SO(3), 

which is the set of skew-symmetric matrices built upon the three components of 
3h .  

 3 2

3 1

2 1

0
0 (3)

0

h h
h h h

h h
so  (4.6) 

It is clear from the argument whether the tilde operator denotes the mapping to (3)so or 
(3)se . From Equation (4.4), we have 

    U( )d x R h            and               ( )d R R h  (4.7) 

where it is important to notice that both derivatives involve a rotation matrix of the 
frame. Hence, the derivatives are interpreted as taking place in the frame described by
H . 

The exponential map 

The exponential map defines a mapping between the Lie algebra g (the tangent space at 
the identity) and the Lie group G, which induces a valid local parameterization around 
the identity or around any point nq  (see Figure 4.1). Thus, an equivalent update 
procedure is furnished by  

  
n 1 n n 1expq q( ) = ( )  (4.8) 
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Figure 4.1: Geometric interpretation of the exponential map. 
 

Starting from a given six-dimensional vector 
TT T

Un n n , an SE(3) element can be 
built using the so-called exponential map which is defined as  

 
3

0
exp ( )

!( )
nnSE

i

i i
 (4.9) 

The exponential map may be seen as a local parameterization in the sense that the 
argument of the exponential map belongs to a linear space while SE(3) is a non-linear 
space. In practice, this means that standard vector calculus applies to the argument of 
the exponential map, such as the multiplication by a scalar or the addition of another 
six-dimensional vector and that its effect can be projected onto the group. Exploiting the 
Lie algebra structure, it can be expressed in a closed form as  

 T
(3) (3) U

3
3 1

exp ( ) ( )
exp ( )

1( )

n T n n
n

0
SO SO

SE

 
(4.10) 

where, using sina n n and 22 1 cosb n n , 

 2
(3) 3 3exp ( )

2SO
ban I n n  (4.11) 

and 
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   2

(3) 3 3 2

1( )
2SO
b aT n I n n

n
 (4.12) 

where (3)expSO is the exponential map of the Special Orthogonal group, and (3)SOT  is the 
tangent operator of the special Orthogonal group. 

The inverse map of the exponential map is called the logarithmic map. It returns a (3)se  
element from a given SE(3) element. It is explicitly given as 

 T
3

3
1 3

T ( )
log ( ( , ))

0
( )

( )

R x
R x

0
H SO

SE

 
(4.13) 

where the skew-symmetric matrix (3)se is defined as  

 
(3)log ( ) ( )

2sin( )
T

SO R R R=  (4.14) 

with
1acos( (trace 1))
2

R= , . 

The derivative of the exponential map introduces the so-called tangent operator (3)SET . 
Consider the transformation from 0H to H  as  

 0 (3)exp ( )SEH H n=  (4.15) 

The derivative of H leads to 

 1
0 (3)( ) exp( ) ( ) exp ( ) exp( ) ( )SEd D d D dH H n n H n n n  (4.16) 

where Dexp is the derivative of the exponential map, and this can be written as  

 
(3)( ) ( ( ) ( ))SEd dH H T n n  (4.17) 

and TSE(3) can be written as  

 (3)
(3)

3 3 (3)

( ) ( , )
( )

( )
SO U U

SE
SO

T n T n n
T n

0 T n  (4.18) 

where TSO(3),  the  derivative  of  the  exponential  map  on  SO(3), was given in Equation  
(4.12) and ( , )U UT n n  reads 
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 2
2 2 2

1 3(1 )( ) (( ) ( ) )
2 2|| || || || || ||

T
U

U U U
b a b ab a

n n
n n n n n n n

n n n
 (4.19) 

with a and b defined for Equation (4.11). Notice that ( , ) 2U U UT n 0 n .  Using the 

notation ( )d H Hh , one has 

 (3) ( ) ( )SE dh T n n  (4.20) 

which relates the derivatives of H, namely h,  and the derivative of n which is used in 
the representation of H as 0 SE(3)exp ( )H H n= . 

4.2 General description of multibody systems 

In the present formulation, multibody systems are modeled using nodal absolute 
variables and kinematic joint relative transformations. Nodes at the mass center of each 
rigid body of the system are identified as A, A , A  in Figure 4.2. Using the rigid body 
assumption, the inertia forces of each body are expressed as a function of the nodal 
variables located at the mass center of the body. Then, additional nodes are introduced 
to allow the description of the multibody system by specifying further constraints. For 
instance, in Figure 4.2, nodes B and B  are used for boundary conditions and nodes C 
and C  are used to formulate a kinematic joint between the two related bodies. The 
additional nodes are also linked to the mass center of the body by rigid constraints. In 
order to describe the restricted relative motion allowed by the kinematic joints, 
kinematic joint transformations are introduced in addition to the nodal variables 
(Sonneville and Brüls 2014).    

 

 

Figure 4.2: Representation of the nodes and the relationships involved in the finite element 
approach of multibody systems. 
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4.3 Modeling of constraints  

The following constraints are derived in this chapter for the modeling of the parallel 
robot. Each cylinder is constrained to the fixed plate using a universal joint. The flexible 
rod is constrained to slide inside a rigid hydraulic cylinder using two changing contact 
points PA and PB (see Figure 4.3). Consequently, this mechanism can be modeled using 
one flexible sliding joint at the location of each node at PA, and a translational joint at 
the location of each node at PB along the sliding axle. The contact point PA can be found 
by interpolating between the neighboring nodes of each flexible rod for each time step. 
A spherical joint constraint connects the final tip of each flexible rod to the rigid 
moving plate (end effector). 

 
Figure 4.3: Deflection of a flexible rod sliding inside a rigid cylinder 
 

4.3.1 Kinematic of joint description 

In the present work, multibody systems are modeled using nodal absolute variables and 
kinematic joint relative transformations, leading to a mixed coordinate formulation. 
This framework thus relies on redundant variables which are related by algebraic 
constraints. Although the number of variables is higher than in a minimal coordinate 
formulation, the equilibrium equations are obtained straightforwardly due to the 
systematic finite element assembly procedure. 

The nodal variables and the kinematic joint transformations are material frames which 
belong to the Special Euclidean group SE(3) and can be represented as 4×4 homogenous 
transformation matrices H. For the nodal values, denoted as HI for the node of index I, 
the rotation matrix and the position vector describe the orientation and position of the 
node with respect to the inertia frame while for kinematic joint transformations, denoted 
as HJ,I for the joint of index I, they represent the relative rotation and relative 
displacement inside the joint. 
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The derivatives on the Lie group SE(3) are related to the Lie algebra (3)se , which is a 
six-dimensional vector space. Accordingly, velocities can be introduced as (Sonneville 
and Brüls, 2014) 

 ( )I I IH H v  (4.21) 

where •~ is a linear mapping of the six-dimensional vector T T
I I U Iv v v, , as  

 
I I U

I
1 3 0

, ,v v
v

0  (4.22) 

where I,v is the skew-symmetric matrix formed by the three components of I,v . One 
may say that the 3×1vector I U,v  and 3×1 vector I ,v are the translation and the rotation 
part of Iv , respectively.  

Due to the restricted relative motion that the joints impose, the kinematic joint 
transformation usually belongs to a subgroup of SE(3). Hence, for a joint I, its time 
derivative takes the form , , ,( )J I J I J IH H v , where the following relationship holds:  

 , ,v A vJ I I j I  (4.23) 

In these equations, ,J Iv is a 6×1 vector related to the time derivative of the 
transformation matrix HJ,I, while ,j Iv is a kI×1 vector representing the relative degrees of 
freedom. IA  is a 6×kI full-rank matrix whose columns have the 6×1 Iie , with i=1…kI 
and vectors spanning the allowed motions. Each Iie can be seen as ,,

[ ]T T T
Ii IiIi U

e e e , 
where the 3×1 unit vectors UIie , and Iie , are related to the displacement and rotation parts 
of the relative motions, respectively, as follows 

 1, ,

1, ,

...

...

e e
A

e e
I U Ik UI

I
I IkI

 (4.24) 

Since they are brought by local frame elements, their components are constant so that 
matrix AI is  also  constant.  In  Table  4.1,  some examples  of  usual  joints  are  given,  but  
others, such as the hinge joint, the planar joint or the screw joint, can be easily 
formulated in this framework, as well (Sonneville and Brüls, 2014). 

Example: kinematics of revolute joint 
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Figure 4.4: Revolute joint and its two set of axis. 
 

rotation axis is the 3rd axis of the body-attached frame (Figure 4.4), then 

 

 

 

then 

,

0 0
0 0

0 0 0
v j I , ,v j I  

 

 

 

 

4.3.2 Kinematics of a multibody system 

It is convenient to introduce a unified matrix notation to treat both the nodal and 
kinematic joints at the same time. Considering M nodes and m kinematic joints at the 
system level, a unified matrix notation can be introduced such that the state of the 
system is described using the invertible block-diagonal square matrix 
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 1 ,1 ,diag( ,..., , ,..., )M J J mH H H H H  (4.25) 

The time derivative of H can be expressed as *( )H Hv , where  

 *
1 ,1 ,diag( ,..., , ,..., )v v v v vM J J m  (4.26) 

The (6M+6m)-dimensional vector v relates to a (6M+k1+…+km)-dimensional vector v 
as  

 *v Av  (4.27) 

where 6 6 6 6 1diag( ,..., , ,..., )mA I I A A  and 1 ,1 ,[ ... ... ]T T T T T
M j j mv v v v v . In the same fashion, 

the variation of H  is given by 
*

H H h , where *
1 ,1 ,[ ... ... ]T T T T T

M J J mh h h h h , and 

the (6M+6m)-dimensional vector *h  relates to a (6M+k1+…+km)-dimensional vector h 
as 

 *h Ah   (4.28) 

This mapping also holds for the variation, that is *h A h , where

1 ,1 ,[ ... ... ]T T T T T
M j j mh h h h h . 

In some cases, such as in the prismatic joint, the formulation enables the use of relative 
coordinates. Indeed, in such a joint I, ,j Iv can be interpreted as the time derivative 
coordinate I , which is thus denoted as ,j I Iv . Therefore, flexibility in the joint 
(local spring-damper elements), control law or actuators in such joints are conveniently 
introduced as functions of relative coordinates I , which are simply obtained by time 
integration of I . 

4.3.3  Constraint equations 

In the SE(3) formalism, the relationship between nodes A and B which are connected by 
a rigid constraint or by a kinematic joint I can be conveniently expressed as  

 ,B A J IH H H   (4.29) 

where HA and HB are the nodal homogeneous matrices of nodes A and B, respectively, 
and HJ,I is a homogeneous matrix that describes the relative motion between the two 
nodes due to the joint I. In order to obtain vector equations from the matrix equations in 
Equation (4.29), a vectorial map is introduced and the constraint equations at system 
level take the form  
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1( ) ... T

m   (4.30) 

where, for each joint I, one has six constraints given by  

 1
I A B J I SE(3) B A J I 6 1( ) vect ( )H H H H H H 0, ,, ,   (4.31) 

where the vectorial map is defined as  

 
SE(3)vect ( ( ))

( )
x

R x
R

H ,   (4.32) 

Table 4.1: AI matrix of rigid constraint and some kinematic joints. 

Joints 

k-th 
column 

of AJ 

eU e  

Rigid constraint 0 - - 

Revolute joint 

 

1 

 

03×1 

 

a 

 

Prismatic joint 

 

1 

 

a 

 

 

03×1 

 

Spherical joint 

 

1 

2 

3 

 

03×1 

03×1 

03×1 

 

a 

b 

c 
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such that T( ) ( ) 2R R R / . This vectorial map introduces systematically six 
constraints for a kinematic joint or a rigid constraint. The vectorial map imposes that the 
relative displacements and relative rotations contained in HJ,I are exactly the relative 
configuration between node A and B by imposing three constraints at the position level 
and three constraints at the rotation level. The systematic use of six constraint equations 
is related to the mixed coordinate formulation. Indeed, for a joint I that has kI degrees of 
freedom, the vectorial map provides kI equations for the degrees of freedom and 6 kI 
equations to prevent some relative motions between nodes A and B. The resulting 
constraint equations are invariant under rigid body motions, making them particularly 
appropriate to catch and enforce restricted relative motions in multibody systems. 

 

4.3.4 Constraint gradient 

Constraint contributions to the equations of motion in Equation (4.80) are achieved 
using the directional derivative as follows (Sonneville and Brüls, 2014):  

 ( ( ). ) ( )D q qH h H h H h  (4.33) 

where ( )q q H A . When the constraint equations in Equation (4.31) are satisfied, 
their directional derivative is given by 

 1
(3)( ) vect ( ),, ,D . A B J II ABI SE J I J I0I

h H h H h h  (4.34) 

where [ ],
T T T T

ABI A B J Ih h h h , J I J I J I( , ), , ,H R xH , and 1 1
BB BH h H . Since the 

vectorial map is linear, each contribution can be considered separately. Hence, the 
constraint gradient can be obtained from ( ) ( )D . .I ABI Iq ABI0 0I I

h . A 

variation of Equation (4.28) is introduced in order to obtain q , namely 

 
1 6 6( )Iq I0 HI J I

I A
,

Ad  (4.35) 

where AI is given in Equation (4.23) and Table 4.1, Ad is the adjoint mapping matrix,  

 
1

3 3

, , ,

, ,

Ad
T T
J I J I J I

THJ I J I

R R x
0 R   (4.36) 

It is remarkable that the constraint gradient at equilibrium only depends on the relative 
configuration (xJ,I and RJ,I), and not on the global motion of nodes A and B. This shows 
that the nonlinearity of the formulation is only related to the local motion.  
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This expression of the gradient can be straightforwardly extended to multiple 
constraints by considering a finite element-like assembly procedure. Every six lines of 
the resulting q matrix refers to corresponding six lines of the constraint in  and the 
columns  corresponding  to  the  nodes  and  the  degrees  of  the  freedom  of  the  kinematic  
joints are properly placed.   

 

4.4 Flexible beam  

In this section, the flexible beam formulation is briefly introduced based on the Special 
Euclidean group SE(3) formalism. Details of the formulation have been presented by 
Sonneville et al. (2014). 

4.4.1 Beam kinematics  

Defining s [0, L] as the spatial parameter along the neutral axis of a beam of length L, 
and t and u as the cross-section parameters. In the SE(3) formalism, a material frame is 
attached to any material point, and any point of the neutral axis of the beam is described 
by the mapping SE(3) : s ( ) ( ( ), ( ))s s sH R xH , that is  

 
1 3

( ) ( )
( )

1
R x

H
0

s s
s  (4.37) 

where x(s) is the position vector of the neutral axis and R(s) characterizes the 
orientation of the cross-section. The description is illustrated in Figure 4.5. 

 

 
Figure 4.5: Description of the beam kinematics. 
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Accordingly, the material frame ( , , ) ( ( ), ( , , ))p p ps t u s s t uH R xH at any beam point p of 
coordinates (s,  t,  u) is related to the material frame attached to the neutral axis by the 
frame transformation  

 
03 3

1 3

( , )
( , , ) ( ) ( ) ( , )

1

I O y
H H H H

0p y

t u
s t u s s t u  (4.38) 

in which ( , ) 0 Tt u t uy and 0 s t uO i i i  is a constant rotation matrix built on the 
unit vectors along the neutral axis and the cross-sections that account for the orientation 
of  the  beam  in  the  reference  configuration  with  respect  to  the  inertial  frame.  The  
assumption that the cross-sections remain straight is made and implies that ( ) ( )p s sR R . 
From Equation (4.38), the position at any point of the beam is thus described as 

 0( , , ) ( ) ( ) ( , )p s t u s s t ux x R O y  (4.39) 

 

4.4.2 Kinetic and strain energies 

According to the present formalism, the spatial and time derivatives of the frames 
representing the neutral axis of the beam can be introduced as 

 0(f ) andH H H Hv  (4.40) 

where f0 is interpreted as a deformation gradient in the reference configuration,  as a 
deformation and v as a velocity. These vectorial fields are interpreted as being measured 
in  the  local  frame,  and  are  thus  invariant  under  rigid  body  motions.  From  these  
deformation and velocity measures, the kinetic energy and the strain energy for a linear 
elastic material can be defined, respectively, as (Sonneville et al., 2014) 

 L

0

1
2

KT dsW  (4.41) 

and 

 L

0

1
2

v M vT
C dsK  (4.42) 

where K and MC are the stiffness and mass matrices of the cross-sections. For simple 
cross-section geometries, the stiffness matrix has the classical form K = diag(KU, K ), 
where KU = diag(EA, GAt, GAu) contains the axial and shear stiffnesses, whereas K  = 
diag(GJ, EIt, EIu) contains the torsional and bending stiffnesses, and the mass matrix 
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has the classical form MC = diag( AI3×3, J), where J is  the  second  moment  of  inertia  
and is diagonal. These matrices are evaluated in the local frame and are therefore 
invariant under rigid body motions. Furthermore, due to the assumption that the cross-
sections do not deform, they do not depend on the deformation state. 

Since the rotation matrices are initially identity matrices, the inertia tensors must be 
provided with respect to the inertial frame in the initial configuration. If we denote as 
R0I the rotation matrix built using the principal axes of the body I in the initial 
configuration, then the inertia tensor IJ  computed in the principal axes leads to 

T
I 0I I 0IJ R J R . 

 

4.4.3 Finite element discretization 

4.4.3.1   Nodal interpolation 

The spatial discretization along the neutral axis of the beam is introduced by an 
interpolation with the variable s [0,L] between two end nodes A at s = 0 and B at s = 
L, where the nodal frames HA and HB are located (Figure 4.6). 

The proposed interpolation formula reads 

 
(3)( ) exp ( )H H dA SE

ss
L

 (4.43) 

where 
TT T

Ud d d is the relative configuration vector and is defined as 

 1
(3)log ( )SE A Bd H H  (4.44) 

 

 
 

Figure 4.6: Flexible beam model. 
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This formula can be seen as a straightforward extension of the classical interpolation 
formula to SE(3), which is a non-linear space. An important feature of the relative 
configuration vector is that it does not depend on the global motion and is thus invariant 
under rigid body motions and is particularly suitable for local deformation 
measurements. 

 

4.4.3.2   Discretized deformation and velocity fields 

The derivative of Equation (4.43) with respect to the spatial coordinate provides the 
definition of the discretized deformation as 

 0d d
L

 (4.45) 

where d0 is the relative configuration vector in the reference configuration. Hence, the 
deformation measure is constant over the element, which appears as an important 
numerical advantage. As an important consequence of the framework, the deformation 
measure depends on the relative configuration vector d only, which means that it is 
invariant under rigid body motions. 

Deriving Equation (4.43) with respect to time leads to a consistent spatial interpolation 
formula for the velocities. Denoting the nodal velocities evaluated in the local frames as 

A A AH H v  and B B BH H v , we have  

 ( , ) ABsv Q d v  (4.46) 

where a 12×1 velocity vector
TT T

AB A Bv v v , and denoting 1
3 3

s s
L LSE SE

*
( ) ( )T T d T d , 

thus it can be derived that 

 
6 6s, s, s,* *Q d I T d T d  (4.47) 

This velocity interpolation formula depends on d only, and exhibits also independence 
with respect to rigid body motions. 

 

4.4.4 Discretized beam equations 

Using the interpolation fields discussed in section 4.4.3.2 in Hamilton's principle, it can 
be shown that dynamic equilibrium equations for a beam element take the form of 
ordinary differential equations on the Lie group (Sonneville et al., 2014) 
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                                                 A A AH H v  (4.48) 

                                                 B B BH H v  (4.49) 

 TLT
0

( ) ( , ) ( ) ( , ) dsM d v C d v v P d K Q d gAB AB AB exts  (4.50) 

where gext are the external forces, 1
(3)(3)

( ) ( ) ( )SESE
P d T d T d , and denoting 

( , )sQ Q d  (see Equation (4.47)), the 12×12 mass matrix is defined as  

 L

0
( ) T dsCM d Q M Q  (4.51) 

where CM matrix has introduced in Equation (4.42), and the 12×12 matrix 

 L

0
( , ) )

TT
AB C AB C dsC d v Q (M Q Qv M Q  (4.52) 

where ( ) ABM d v  are the inertia forces, ( , )AB ABC d v v the gyroscopic forces and 
T( )P d K  the internal forces. Notice how Equation (4.50) only depends on local frame 

information, and therefore does not depend on the global motion of the beam element. 

 

4.5 Flexible sliding joint 

In this section, a flexible sliding joint based on the beam element described in section 
4.4 is developed. Consider two bodies denoted with k and l, respectively, linked 
together by a sliding joint, as depicted in Figure 4.7. 

 

 
 

Figure 4.7: A body sliding along a flexible body with a sliding joint. 
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Body l is a rigid body and body k is a flexible beam which is discretized according to 
the method presented in section 4.4. Body k is described by N nodes. According to the 
longitudinal nature of the flexible beam, the N beam elements are numbered with an 
index 0j ,N  from an origin chosen at an extremity of body k. The nodes related to 
element j are then numbered j and j+1. A coordinate js  is assigned to node j, 
corresponding to a coordinate from an origin chosen at an extremity of the flexible 
beam. Define as a coordinate for the position of body l along the flexible body such 
that =0 at 0s .  When  body  l  slides  along  the  flexible  beam  element  j,  a  non-
dimensional parameter 0 1*s , indicating the location of a body l along a particular 

element of the flexible beam can be expressed as a function of the nodal coordinates js
and j+1s as 

 j

j+1 j

s
s

s s  (4.53) 

According to the beam formulation presented in section 4.4, the material frame at s* is 

given as 

 
(3)exp ( )j SE jsH H d  (4.54) 

where 1
(3)log ( )j SE j j+1d H H , Hj and Hj+1 are nodal material frames at nodes js  and 

j+1s respectively. When modeling a flexible sliding joint, the coincidence of node 0 
associated with body l and the center line of the flexible joint (node *s ), temporarily, 
must be imposed, meaning that this equality is verified: 

 1
0 (3) 0 6 1vect ( )SEH H H H 0  (4.55) 

which stands thus as a constraint equation. When the constraint is satisfied, its 
directional derivative is given by 

 0
q 6 6 6 6D

h
h I I

h
.  (4.56) 

Using the variation of Equation (4.54), and after simplifications, h can be related to 

the variation of s*, hj and hj+1 by  

 
(s ) j, j+1

j j,
s

h
h Q d d  (4.57) 
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where Q was defined in Equation (4.47). Hence, the constraint gradient takes the form 

 
q 6 6 (s )j j,I Q d d  (4.58) 

 

4.6 Hydraulic control 

4.6.1 Derivation of the hydraulic forces 

Similarly to section 2.5.2, the hydraulic system can be analyzed, but with a simple 
difference. There is no need here to derive for relative kinematics at the joint level 
because the formulation of the constraint here is relatively per se. The pressures and 
flow rates in the system can be derived as follows. 

Assuming  that  P1 and  P2 are  the  pressures  of  the  infill  and  return  water  cavity,  
respectively (Pa), A1 and  A2 are the effective action area of the infill and the return 
water, respectively (m2),  and Q1 and Q2 are the flow of the infill and the return water 
(m3/s), respectively (see Figure 2.8), then  

 L 1 1 2 2 1P = F/ A = P P (A / A )  (4.59) 

 2
L 1 2Q = Q + nQ / (1+ n )  (4.60) 

 
In this formula, n=A2/A1. PL is the load pressure (difference in the pressure), QL is the 
load flow rate. The modeling of the valve openings is proportional to the spool position 
xv, with  density, and the flow can be described by the following: 

 
1 v v s 1Q =C x 2(p p )/  (4.61) 

 
2 v v 2Q =C x 2p /  (4.62) 

 
where Cv is the flow rate coefficient. When the piston moves at a constant velocity, it 
can be seen that 

 1 1Q =A    and   2 2Q =A  (4.63) 

 
where  is the relative piston velocity. Using the linearization to Equations (4.61) and 
(4.62) give 
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 LLcvLq p/QKandx/QK  (4.64) 

The linearization of the flow equation is 

 LcvqL pKxKQ  (4.65) 

When considering the flow continuity equation, the pressures inside chamber 1 and 
chamber 2 of the cylinder can be solved from the following equations: 

 
1 1 1 ic 1 2

1 1

Bep = (Q A C (p p ))
A +V  (4.66) 

 
2 2 2 ic 1 2

2 2

Bep = ( Q +A +C (p p ))
A (L )+V

 
(4.67) 

where   is  the  relative  displacement  of  a  piston,  L  is  the  stroke,  Be  is  the  water  bulk  
modules, V1 and  V2 are  the  volumes,  and  Cic is internal leakage ((m3/s)/Pa). The 
hydraulic force produced inside the cylinder (Fh) can be derived from the pressures 
acting on the piston as follows: 

 h 1 LF =A p m b  (4.68) 

 
where b is the coefficient of friction (impedance coefficient, N.s/m). Substitution in 
Equation (4.60) results in Equation (4.69): 

 
L 1 L tc L2

VtQ =A P +C P
2(1+n )Be

 
(4.69) 

 
where  Vt  is  total  volume,  and   Ctc=((1+n)/(1+n3))Cic = 1.5628e-9 (m3/s)Pa. Using the 
Laplace transformation to Equations (4.66), (4.67), (4.68) and (4.69) gives (Dan et al., 
2010, Al-saedi et al., 2012): 

 L q v c LQ =K x K p  (4.70) 

 
L 1 L tc L2

VtQ =A s sP +C P
2(1+n )Be  

(4.71) 

 2
1 L hA p = (m s + b s) + F  (4.72) 
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Using Equations (4.70), (4.71) and (4.72), we obtain the transfer function of the 
actuating unit of the valve controlled cylinder. Errors between the predicted and 
presented lengths are used to determine the required force of the six actuators. The 
controller is proposed as 

 ( 1) ( 1) ( )du k l k l k  (4.73) 

where ld is the desired local displacement of a rod. 

 
 
 
Figure 4.8: Block diagram of the control system of the parallel robot. 

 

4.6.2 PID control of the parallel robot 

The popularity of PID controllers can be attributed partly to their robust performance in 
a wide range of operating conditions and partly to their functional simplicity, which 
allows simple and straightforward operation (Dorf and Bishop, 2005). To implement 
such a controller, three parameters must be determined for the given process: the 
proportional coefficient Kp, with integral coefficient Ki=Kp/Ti, and the derived 
coefficient Kd. 

The PID controller has the following transfer function: 

 1( ) (1 )p d
i

W s K K s
T s

 (4.74) 

Figure 4.8 shows the block diagram of the control system for each cylinder. 
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4.7 Dynamic equations of mechatronic systems  

4.7.1 Dynamic equations 

According to Brüls (2005) and Brüls and Arnold (2008), and considering the present 
Lie group setting (Sonneville and Brüls, 2014), the dynamic equilibrium equations of 
the mechatronic system can be formulated using variational principles as  

                                   *( )H Hv  (4.75) 

    ( ) ( )T
qM v +g H, v = Ly  (4.76) 

                                ( )H = 0  (4.77) 

                                       = f ( , , , , , ,t)z H v v z y  (4.78) 

                                       = h( , , , , , ,t)y H v v z y  (4.79) 

where H is the state of the mechanical system , containing the nodal and kinematic joint 
transformation matrices, and v and v are the velocities and the accelerations. Following 
Equation (4.21) and Equation (4.23), v stands for the collection of the vI's and the vj,I's 
while v* stands for the collection of the vI's and the vJ,I's,  is the Lagrange multipliers, 
z the first-order variables which for the parallel robot case study are the vector of 
pressure differences inside each cylinder, i.e. z=[pL1,…,pL6], and y the control output 
variables. Equations (4.75-4.76) describe the dynamics of the mechanical system, 
Equation (4.77) the kinematic constraints, Equation (4.78) the first-order control state 
dynamics, and Equation (4.79) the control output equation.  

In Equation (4.76), M v are the inertia forces, where the mass matrix M is constant, and 
g represents the external, internal and gyroscopic forces. For instance, the external 
forces  are  the  gravity  forces  acting  on  the  rigid  bodies  and  the  internal  forces  are  the  
elastic and dissipation forces in the kinematic joints. q is the constraint gradient and 

( )T
q are the reaction forces due to the kinematic joints. The controllers, described by 

Equation (4.78), are influenced by input measurements from the mechanical system, 
whereas  the  mechanical  system  is  driven  by  control  forces  Ly, where L is a constant 
Boolean matrix. 

The equations of motion can be estimated as an index-3 DAE on a Lie group. Following 
Brüls and Arnold (2008), these equations of motion can be solved monolithically using 
a suitable version of the generalized-  scheme. Due to the Lie group setting, the 
mechanical part of the equations of motion must be treated consistently as proposed, for 
instance, by Brüls et al. (2012).   
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4.7.2 Description of the integration algorithm 

The system equations can be solved using the generalized-alpha method presented by 
Sonneville and Brüls (2014), in which the Lie group structure of the equations of 
motion is handled as by Brüls and Cardona (2010). Denoting n as the time step and h as 
the time step size, this method relies on  

 the discretized equations of motions in Equations (4.75 - 4.79) : 

                                                                                 n 1 n n 1exp( )H H n  (4.80) 

T T
n 1 n 1 n 1 ext n 1 int n 1 q n 1 n 1ˆ g ( ) g ( ) ( )Mv v Mv H H H 0  (4.81) 

                                                                           n 1( )H 0  (4.82) 

                 n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1f ( , , , , , , )z H v v z y t 0  (4.83) 

                n 1 n 1 n 1 n 1 n 1 n 1 n 1 n 1h( , , , , , , )y H v v z y t 0  (4.84) 

 the time integration formulae for the motion variables 

 2 2
n 1 n n n 1h (0.5 )h hn v a a  (4.85) 

 n 1 n n n 1(1 )h hv v a a  (4.86) 

 
n 1 f n 1 f n m n

m

1 ((1 ) )
(1 )

a v v a  
(4.87) 

 the time integration formulae for the state variables (Brüls and Arnold, 2008) 

 n 1 n n n 1h(1 ) hz z w w  (4.88) 

 
n 1 f n 1 f n m n

m

1 (1 )
(1 )

w z z w  
(4.89) 

where a and w are auxiliary variables. The seven algorithmic parameters – m , f , , 
, m, f and  – should be selected in order to obtain suitable accuracy and numerical 

stability properties.  

Equations (4.80-4.84) are nonlinear and are solved at each time step for the unknowns 
nn+1, vn+1, n 1v , an+1 , zn+1, n+1z , wn+1 and yn+1 by a Newton iteration procedure.  
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Geometry and properties of 
flexible and rigid bodies  

Pre-processor 
 specifying the mass and inertia matrices 
 specifying the AI matrix which depends on the 

type of joints. 
 specifying the nodal matrices HA and HB of nodes 

A and B, and HJ,I that describe the relative 
motion between the two nodes due to the joint I.  

 specifying the Boundary Condition nodes. 

Alpha_SE(3)_Time Integrator 
 finding – m , f , , , m, f and  

 initializing zero cells and matrices for all the variables. 
 making the initial values for the rotation matrices as a unit I3×3.  

function [ n 1q , n 1q , n 1q , n 1z , n 1z , n 1y ,a,w]=Alpha_SE(3)_Step( nq , nq ,

nq , nz , nz , ny , a,w, , , ,h) 
2

n 1 n nq q hq h (0 5 )a: .  

n 1 nq q h(1 )a:  

n 1 0:  

n 1 nz z h(1 )w:  

n 1y 0:  

m f n ma 1 (1 )( q a): /  

m f n mw 1 (1 )( x w): /  
2

n 1 n 1q q h a:  
2

n 1 n 1q q h a:  

n 1 nq q h(1 )a:  

n 1q 0:  

n 1 n 1z z h w:  

n 1z 0:  
for i=1 to imax 

n 1 n n 1q q exp( ): q  
continue -> 
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Figure 4.9: Flow-chart and algorithm diagram of the Special Euclidean SE(3) method of the 
parallel robot. 

 

 

Eventually, Equations (4.80-4.84) can be denoted as ; ; ; q z yr r r r 0  (i.e. the residuals), 
and the linearized form of Equations (4.80-4.84) is 

 
1 1 1 1; ; ; ; ; ;

T T
q z y T n n n nr r r r S n z y  (4.90) 

where ST is the iteration matrix (Brüls et al., 2012). For small time steps h, the matrix 
ST becomes severely ill conditioned. This difficulty can be eliminated by 
implementation of a suitable scaling strategy (see e.g. Brüls et al., 2011, Geradin, 1993). 

-> continue 

Compute the residuals rq, r , rz, and ry 
if  ||res||< tol 
  break 
end 
Compute tangent St  

1 1 1 1; ; ; ; ; ;
T T

q z y T n n n nr r r r S n z y

 

n 1 n 1q q q:  

n 1 n 1q q q:  

n 1 n 1q q q:  

n 1 n 1:  

n 1 n 1z z z:  

n 1 n 1z z z:  

n 1 n 1y y y:  
end for loop 

n 1 n 1 f m n +1a a (1 ) (1 )q: /  

n 1 n 1 f m n+1w w (1 ) (1 )z: /  

return n 1q , n 1q , n 1q , n 1 , n 1z , n 1z , n 1y  

Residual: 

1-Calculating:     
T

n 1 n 1 n 1ˆMv v Mv  
2-Calculating the residual of constraint 

 n 1( )H  
T
q n 1 n 1( )H  

3-Calculating the residual of: gravity, external forces, 
torques, internal forces, dissipation forces 

ext n 1 int n 1g ( ) g ( )H H  
4-Calculating the residual of the flexible elements: 
Inertia forces: ( ) ( , )M d v C d v vAB AB AB  

Inertia forces: T
o o( )P d K(d d ) / L  

the residual= Inertia forces + Inertia forces 

Tangent: 

1-Calculating: Mass Matrix: Mc 
2-Calculating Tangent matrix of inertia forces.  
3-Calculating Tangent matrix of internal forces. 
4-Calculating Tangent matrix of Stiffness Matrix. 
5-Calculating Tangent matrix of external forces. 
6-Calculating Tangent matrix of Constraint   

Gradient. 
7-Calculating Tangent matrix of flexible 

Elements: T
oP K P/ L  
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Figure 4.9 is the flow-chart and algorithm diagram of the Special Euclidean SE(3) 
method and the Lie group integrator which is implemented to the parallel robot under 
study and also it can be used for dynamic simulation of any mechanism. 

 

4.8 Robot parameters 

The actual values of the system parameters of the parallel robot of each element are 
tabulated in Table 4.2. The local position of the universal joint in the base plate and the 
local position of the spherical joint in the moving plate are given. Initially, the tip point 
of each rod is located 0.35 m from the cylinder outlet. Young’s modulus is 2.07 e11 
N/m2, rod density  is 7801 kg/m3, the rod radius is 0.015 m, and the length is 0.668 m. 
All six rods are considered as having a uniform mass distribution and cross-section. 
Each of the rods is divided into six elements. 

Table 4.2: Mass and inertia properties of parallel robot elements. 
Element Mass 

(Kg) 
Izz =Iyy 
(Kg m2) 

Ixx 
(Kg m2) 

Ixy 
(Kg m2) 

Cylinder 4.589 0.2160 2.89683e-3 0 
Rod_piston 3.683 0.1372 4.14392e-4 0 

Moving plate 28.92 0.1867 0.3622 0 
 

Base points (local): [0.1658*cos(120(1-i)+(90±14.851)) 0.1658*sin(120(1-
i)+(90±14.851))   0] i =1,2,3. End effector points (local): [0.1296*cos(120(1-i)+(90 
±45.485))    0.1296*sin(120(1-i)+(90±45.485))   0] i =1,2,3. 

The moving plate (end effector) tracks a trajectory of x = 0, y = -0.1t cos(42.87), and 
z = +0.1t sin(42.87). In the simulations reported here, damping was not modeled, so any 
effect of high frequency vibration would be captured in the FEA.  

4.9 Discussion 

To verify the validity of the simulation, an ADAMSTM model of the parallel robot was 
developed, as previously shown in Figure 4.10. All cylinder rods were modeled as 
flexible bodies. The simulation model was loaded by hydraulic forces computed in the 
same way as forces used in the proposed method. In addition, the ADAMSTM model 
was controlled in the same hydraulic way as the model presented in this paper, so a 
direct comparison could be made between the models. The gain coefficients of the PID 
control for the flexible parallel robot without machining were Kp =100, and Kd = 10 for 
each cylinder. Finally, the parallel robot should track the required path without 
machining forces at the end effector. 
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In Figures 4.11 and 4.12, the y and z trajectories of the moving plate (end effector) have 
been compared with the same trajectories obtained from the dynamic model developed 
using the SE(3) method. The method proposed by this chapter is apparently more 
accurate than ADAMSTM model because the overshoot and the steady state error values 
during the simulation are reduced over time such that the error with respect to the 
desired path is reduced for the remainder of the simulation period. This result validates 
the modeling approach proposed in this chapter. 

 

Figure 4.10: ADAMS model of the 6-UPS parallel robot. 
         

  

Figure 4.11:  Y-displacement of the end 
effector using the flexible Lie group method 
and ADAMSTM model.  

Figure 4.12: Z-displacement of the end 
effector using the flexible Lie group method 
and ADAMSTM model. 
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4.10 Simulation results 

To examine  the  effect  of  elastic  deformation  on  the  performance  of  the  parallel  robot  
machine, a comparison was made between the required path for the parallel robot with 
flexible rods with and without machining forces. The machining forces were Fx = -
1000 sin(2 ft), Fy = 700 sin(2 ft), and Fz = -600 sin(2 ft), with f = 20 Hz. 

The gain coefficients of the PID control for the flexible parallel  robot with or without 
machining forces were Kp =200, Ki = 200, and Kd = 10 for each cylinder. These 
coefficients were chosen to optimize the tracking of the end effector with respect to the 
required machining path. All these gain values were estimates made by trial and error 
separately for each cylinder.  

The displacements presented in Figures 4.13 and 4.14 show that the hydraulic 6 DOF 
flexible parallel robot with PID controller leads the moving plate (end effector) to the 
desired trajectories promptly and steadily in either of the two strategies. Overshoot and 
steady state errors in both the y- and z-displacements were small. Like the examples 
presented by Vakil et al. (2008), end effector vibration was not obviously apparent from 
these displacements figures. However, the components of end effector velocity and 
acceleration in the y and z directions, shown in Figures 4.15 and 4.16 as well as 
Figures 4.17 and 4.18, clearly revealed rod vibration. 

Although the influence of machining forces (variable external forces) during the 
simulation can be observed in all of the figures, the results indicate that the evolution of 
the differences in the pressures inside each cylinder (see Figures 4.19-4.24) in the 
flexible robot with machining forces are higher than the differences in the pressure of 
the flexible robot without machining forces. This helps to select the appropriate servo 
valve properties for the actual robot. 

Figures 4.25-4.30 present elastic deformations of the rods at their tip points. An obvious 
exchange of elastic strain exists between the rods. Flexibility coupling occurs between 
elastic deformations. This in turn indicates that deformation, as expected, is higher 
during machining due to the machining force effect. Moreover, it is clear from the 
relations of the moving plate displacement and Figures 4.25 through 4.30 that elastic 
deformations have a negligible effect on rigid body motion. This is because there is no 
structural damping assumed on one side, and the introduction of a prismatic joint 
motion  controller  as  a  linear  spring  and  damper  has  the  potential  to  absorb  the  elastic  
strain energy on the other side (Wang and Mills, 2006). In other words, the vibration of 
the rods is suppressed by the PID controller due to the mixed nodal coordinate 
formulation effects of rigid body motions and elastic motions in the SE(3) formulation 
for the equation of motion. 

However, the elastic motions lead to apparent changes in the velocity and acceleration 
of rigid body motion, which is illustrated in Figures 4.15 and 4.16 as well as in 
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Figures 4.17 and 4.18. The changes will further impact the dynamic behaviors of the 
manipulator system (Zhang et al., 2007). 

 

  

Figure 4.13:  Y-displacement of the end 
effector  of  a  flexible  parallel  robot  using  the  
flexible Lie group method with and without 
machining forces. 

Figure 4.14:  Z-displacement of the end 
effector of flexible parallel robot using the 
flexible Lie group method with and without 
machining forces. 

        

  
Figure 4.15:  Y-velocity of the end effector of 
a flexible parallel robot using the flexible Lie 
group method with and without machining 
forces. 
 

Figure 4.16: Z-velocity of the end effector of a 
flexible parallel robot using the flexible Lie 
group method with and without machining 
forces. 
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Figure 4.17: Y-acceleration of the end effector 
of a flexible parallel robot using the flexible 
Lie group method with and without machining 
forces. 
 

Figure 4.18: Z-acceleration of the end effector 
of a flexible parallel robot using the flexible 
Lie group method with and without machining 
forces. 
 

      

  
Figure 4.19: Difference in pressure in cylinder 
a of a flexible parallel robot using the flexible 
Lie group method with and without machining 
forces. 
 

Figure 4.20: Difference in pressure in cylinder 
b of a flexible parallel robot using the flexible 
Lie group method with and without machining 
forces. 
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Figure 4.21: Difference in pressure in 
cylinder c of a flexible parallel robot using 
the flexible Lie group method with and 
without machining forces. 
 

Figure 4.22: Difference in pressure in cylinder 
d of  a  flexible  parallel  robot  using  the  flexible  
Lie group method with and without machining 
forces. 
 

 

  
Figure 4.23: Difference in pressure in cylinder 
e of a flexible parallel robot using the flexible 
Lie group method with and without machining 
forces. 
 

Figure 4.24: Difference in pressure in cylinder 
f of  a  flexible  parallel  robot  using the flexible  
Lie group method with and without machining 
forces. 
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Figure 4.25: X component of deformation of 
the tip node of a flexible rod in cylinder a 
using the flexible Lie group method with and 
without machining forces. 
 

Figure 4.26: Y component of deformation of 
the tip node of a flexible rod in cylinder a 
using the flexible Lie group method with and 
without machining forces. 
 

 

  
Figure 4.27: Z component of deformation of 
the tip node of a flexible rod in cylinder a 
using the flexible Lie group method with and 
without machining forces. 
 

Figure 4.28: X component of deformation of 
the tip node of a flexible rod in cylinder f using 
the flexible Lie group method with and 
without machining forces. 
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Figure 4.29: Y component of deformation of 
the tip node of a flexible rod in cylinder f 
using the flexible Lie group method with and 
without machining forces. 
 

Figure 4.30: Z component of deformation of 
the tip node of a flexible rod in cylinder f using 
the flexible Lie group method with and 
without machining forces. 
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5 Conclusions  

5.1 Key results of the work 

A modular formulation has been presented for the dynamic analysis of a hybrid robot 
composed of a hybrid (serial 6-UPS parallel) robot with flexible rods and a control 
system. The coupled differential and algebraic equations are constructed numerically, 
and their time–integration is performed according to a strongly coupled approach. 

Conclusion 1 

The dynamic response to 3D machining forces was studied for a hydraulically driven 
hybrid (serial 6-UPS parallel) mechanism with flexible rods and joints. Cylinder rod 
flexibility was described using the Craig-Bampton method to reduce the order of the 
model. Applying the method, the rods were modeled using six beam elements. The 
coupling of rigid body motion and flexible motion was modeled using the floating 
frame of reference formulation. The components for the 6-closed-loop flexible rod 
mechanism were assembled using constrained Lagrange equations. The Lagrange 
multiplier method enables defining the overall system dynamic behavior. A linearized 
PID hydraulic control system was used to drive each arm and the serial robot during a 
typical machining process. The simulation results illustrate that the flexible rods and the 
moving plate undergo considerable vibration. Furthermore, due to the coupling effects 
of rigid body motions and elastic motions in the equation of motion, it is feasible to 
suppress the unwanted vibration of the flexible components using appropriate PID 
control  gains  for  each  rod  sliding  inside  a  cylinder.  The  PID  control  is  stable  and  
appropriate for machining operations. 

Simulation results illustrate that achieving precise position control of the end effector in 
the hybrid robot for maximum precision machining can be accomplished by using the 
serial  robot  to  hold  the  parallel  robot  in  a  fixed  position.  This  results  in  minimal  
positional error being transmitted to the parallel part. 

Conclusion 2 

In chapter two, a hydraulically actuated hybrid robot was investigated. Thus far, the PID 
controller has been used to operate under difficult conditions in this system. However, 
since the gains of a manual PID controller have to be tuned by trial and error, obtaining 
optimal PID gains is very difficult without control design experience and time. 

 5 Chapter 
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In order to improve the trajectory tracking performance of the parallel robot, which is 
part of the hybrid robot, fuzzy control and an ANFIS algorithm were proposed to adjust 
the parameters of the PID control. To evaluate the performance of the proposed control 
algorithms, the algorithms were compared with the simple PID control. The two 
controllers were used to control the end effector along a desired path. Both the fuzzy-
PID and ANFIS-PID controllers are numerically simulated and the simulation results 
confirm  the  success  of  these  controllers  in  trajectory  tracking.  The  simulation  results  
show that the two methods for tuning the PID controller have better performance than 
the PID controller in terms of the reduction in position tracking errors of the end 
effector. Amongst the control schemes developed, ANFIS tuning has provided the best 
results for the control of parallel robotic manipulators compared to the conventional 
control strategies. The neuro-adaptive learning techniques provide a method for fuzzy 
modeling procedures to learn information about data sets. This technique makes the 
fuzzy logic capable of computing the membership function parameters that best allow 
the associated fuzzy inference system to track the given input and output data. The 
result  of the ANFIS PID tuning controller shows outstanding performance in terms of 
achieving the desired value with evident reductions in settling time and steady state 
errors. In conclusion, the ANFIS for tuning PID control represents a practical and valid 
alternative  to  parallel  robot  control.  This  has  been  proved  with  a  MATLABTM 
simulation of a parallel robotic manipulator. 

A PID hydraulic control system was used to hold the serial robot in a fixed position to 
minimize the error being transmitted to the parallel robot using the equilibrium of the 
reaction forces at the hexa-element. 

The tuning method used in this system by the ANFIS method has a good response 
without prior knowledge of the process. Also, this method enables better responses than 
the fuzzy-PID or only PID controllers. This control method is very useful for the 
process control system and helpful in the selection of the most appropriate range for 
servo valves operation. 

Conclusion 3  

The dynamics  of  the  hydraulically  driven  6-UPS parallel  robot  with  flexible  rods  and  
joints under the effect of 3D machining forces was studied. The mechanical part of the 
robot, which includes rigid bodies, kinematic joints, flexible rods and flexible sliding 
joints, is modeled using a formulation on the Special Euclidean group SE(3). The 
flexibility of the rods was described using the formulation of a beam finite element in 
the Lie group framework, namely SE(3). Applying the method, the rods were modeled 
using six beam elements. Based on this rigorous and systematic formalism, a nonlinear 
interpolation formula using an exponential map is introduced. The internal and inertial 
forces are derived from variational principles. The inertia forces are obtained from 
Hamilton’s principle. Using the consistent interpolation formula for the velocity in the 
reference frame, a simplified formulation of the inertia forces is presented. It leads to a 
constant mass matrix and simplified gyroscopic forces. The equations of motion take 
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the form of a differential algebraic equation on a Lie group, which is solved using a Lie 
group time integration scheme.  

The deformations and the forces are computed from the nodal values. The method relies 
on the local description of motions, so that it provides a singularity-free formulation, 
and no parameterization of the nodal variables needs to be introduced as in the method 
of FFRF. For the method, the rods were modeled using six beam elements. This 
method, unlike FFRF, depends on the nodal coordinates and does not depend on modal 
coordinates, making the numerical solution of the equation of motion more efficient. In 
addition, this method relies on a non-linear interpolation method using the exponential 
map, which introduces a natural coupling between position and rotation variables and 
exhibits important theoretical and numerical advantages. The flexible slider constraint is 
formulated with a Lie group and used for modeling a flexible rod sliding inside a 
cylinder, where an arc length parameter is introduced in order to define the exact 
location of the joint. 

Assembling component models using Hamilton’s principle and the Lagrange multiplier 
method for the six closed loop chains leads to the system dynamic model. The method 
allows writing systematically the equations of motion of the parallel robot by collecting 
generic expressions which are slightly tuned according to the system part of interest. 
The resulting equations of motion involve mixed nodal coordinates and kinematic joint 
transformation, and can be solved efficiently using the appropriate Lie group time 
integration scheme. 

The proposed formulation exhibits some important advantages. The velocity of a rigid 
body is expressed in the local frame so that the mass matrix is constant. Since no 
parameterization of the global motion is introduced, the gyroscopic forces only depend 
on the velocity and the dependency is quadratic. Regarding the kinematic joints, a 
vectorial map is proposed to impose the constraints. Then, the constraint gradient at 
equilibrium only depends on the relative motion, but it does not depend on the global 
motion of the nodes it constrains, which reduces the non-linearity in the kinematic 
joints. 

A linearized PID hydraulic control system was used to drive each arm. Simulation 
results illustrate that it is feasible to suppress the unwanted vibration of flexible 
components using appropriate PID control gains for each rod sliding inside a cylinder. 
Moreover, the PID control is stable and appropriate for machining operations. The 
resulting mechatronic model is monolithically solved in an efficient manner. 

To examine the application of the SE(3) method to the modeling of the parallel robot 
machine affects the robot's ultimate performance, a comparison was made between the 
required path for the end effector of the parallel robot with and without machining 
forces. The results of the evolution of the differences in the pressures inside each 
cylinder helps to select the appropriate servo valve properties for the actual robot. 
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Finally, the simulation results indicate that the method of SE(3) is appropriate for a 
complex dynamic system like the 6-UPS parallel robot whose performances result from 
a specific control strategy. 

 

5.2 Suggestions for improving performance of the hybrid robot and 
for the future work 

The performance of the hybrid robot under study can be improved by the following 
suggestions: 

 To obtain more accurate results, experimental tests should be implemented at 
different configurations when the manipulator is moving, considering the effect 
of nonlinear dynamics on modal shapes and frequencies. 

 In order to make the model more realistic, the friction at the joint should be 
taken into consideration. 

 The hydraulic model should be as realistic as possible.   

 Although water hydraulics is clean and suitable for the environment inside the 
ITER vacuum vessel, using water hydraulics for the drive is a challenge because 
of its limited servo valve flow rate. High speeds result in greater than acceptable 
speed errors, and the robot will not track accurately. The performance and the 
speed of the hybrid robot could be further improved by, for example, replacing 
the hydraulic system by motorized roller screw actuators.  

 From the deformation relations of the flexible rods, it was found that the 
machining forces are sustained majorly by the rods (d) and (e) (see Figure 2.5), 
moderately by the rods (c) and (f), and a little by the rods (a) and (b). 
Consequently, the rods (d) and (e) and each ball joint connected it to the end 
effector should be designed to have stiffness higher than that of rods (a) and (b). 
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