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This thesis researches automatic traffic sign inventory and condition analysis using
machine vision and pattern recognition methods. Automatic traffic sign inventory
and condition analysis can be used to more efficient road maintenance, improving the
maintenance processes, and to enable intelligent driving systems. Automatic traffic
sign detection and classification has been researched before from the viewpoint of
self-driving vehicles, driver assistance systems, and the use of signs in mapping
services. Machine vision based inventory of traffic signs consists of detection, classi-
fication, localization, and condition analysis of traffic signs. The produced machine
vision system performance is estimated with three datasets, from which two of have
been been collected for this thesis. Based on the experiments almost all traffic signs
can be detected, classified, and located and their condition analysed. In future, the
inventory system performance has to be verified in challenging conditions and the
system has to be pilot tested.
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Tämä diplomityö tutkii liikennemerkkien automaattista inventointia sekä kunnon
arviointia käyttäen konenäkö- ja hahmontunnistusmenetelmiä. Automaattista liiken-
nemerkkien inventointia ja kunnon arvioimista voidaan soveltaa tehokkaampaan
liikenneväylien kunnossapitoon, kunnossapitoprosessien kehittämiseen ja älyliiken-
teen tarpeiden täyttämiseen. Automaattista liikennemerkkien havaitsemista ja luo-
kittelua on tutkittu aiemmin itseajavien autojen, kuljettajan apujärjestelmien ja
karttatietopalveluiden tarpeiden näkökulmasta. Konenäköön perustuva liikenne-
merkkien inventointi koostuu liikennemerkin havaitsemisesta, luokittelusta, paikan-
tamisesta sekä kuntoarviosta. Toteutetun järjestelmän toimivuus arvioidaan käyt-
täen kolmea eri testiaineistoa, joista kaksi on kerätty tätä työtä varten. Tulos-
ten perusteella lähes kaikki liikennemerkit voidaan havaita, tunnistaa, paikallistaa
ja niiden kunto arvioida. Tulevaisuudessa inventoinnin toimivuus tulee varmistaa
haastavissa olosuhteissa ja järjestelmälle toteuttaa pilottitestaus.
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1 INTRODUCTION

Section 1 introduces the background, motivation, objectives-, and restrictions and
summarizes the content of the rest of the thesis.

1.1 Background

In Finland the traffic signs are mandated by law to be catalogued manually every
five to seven years [1], including also traffic sign condition information. The relat-
ively long timespan causes problems to intelligent driving systems and maintenance
because the information can be outdated, inaccurate, and there is no guarantee of
its validity. In road maintenance there is also a new trend of being paid not from
contracts but from results. This gives an incentive to shorten the inspection period
and increase the reaction time to changes in roads. Machine vision offers solutions
to automate the inventory and condition analysis of the signs. After the inventory
and condition analysis, the information is stored in the database to be used in road
maintenance. The idea behind this thesis is to automate this process.

Finland’s road sign inventory information is managed by Finnish Transport Agency
(FTA) [2], ”Liikennevirasto” in Finnish. Currently, the inventory is based on a
manually managed knot-based model, where the locations are announced as dis-
tances from the previous road intersections. The knot-based model makes the in-
formation less usable in intelligent driving system scenarios when compared to a
Global Postitioning System (GPS) based location system. In some cases, the knot-
based model does not fulfil the accuracy demands of modern requirements. If the
traffic sign database inventory and maintenance is possible to automate, (for ex-
ample, during normal road maintenance), it would offer cost savings, increase road
security, open possibilities for more efficient information management in intelligent
driving systems, improve competitive bidding processes in road maintenance, and
ease the transition from a knot based database to a more accurate GPS - based
database.

During the road maintenance contracts traffic signs are inventoried and catalogued
using class, direction, position, and condition. The condition of the traffic signs
is determined in FTA’s instructions [1] using three parameters expressed at a cat-
egorical scale of 1 to 5: the condition of the surface, the overall condition, and the
structural integrity. The three parameters include the following:
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1. Structural condition: includes wear, rust marks, deflections, and distortions.
2. Appearance condition: includes colour fading, shade differences, stubborn

stains, graffiti, and surface growth.
3. External damage: contains outside mechanical damage.

The word traffic sign usually includes simple geometric signs and the larger signs that
used to give information about distances and roads. This thesis differentiates these
by the words traffic signs and traffic sign posts. Traffic signs are designed to stand
out from the environment, regardless of the weather and illumination conditions.
Figure 1 shows two example images from the environment and traffic signs.

a) b)

Figure 1. Varying road environments: a) Summer image; b) Winter image.

Pattern recognition studies the regularities and patterns in the data. Machine vision
consists of methods and their applicability for image-based inspection as input data
for pattern recognition. From the machine vision point of view, the automatic Traffic
Sign Inventory (TSI) and condition analysis consist of three parts: Traffic Sign
Recognition (TSR), condition analysis and sign location estimation. The approach
is illustrated in Figure 2. The machine vision research literature divides and defines
TSR using two parts: Traffic Sign Detection (TSD) and Traffic Sign Classification
(TSC). TSD is the problem of finding the traffic sign from an image. The purpose
of TSC is to find out the sign class. Common-use cases for TSR are autonomous
driving, assisted driving, and mobile traffic signs mapping.

1.2 Objectives and restrictions

This research is a part of a goal to develop an automatic system for TSI and condition
analysis. This kind of system can be used assist local and national authorities in
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Figure 2. Simple TSI system overview including condition analysis.

the task of maintaining and updating road and traffic signs automatically. The
task consists of detecting, classifying and analyzing one or more traffic signs from
a complex scene when imaged by a camera mounted on a vehicle. A core idea
is to present an inexpensive option without the need for a complex installation
or an expensive system with high maintenance costs. One possibility to meet the
above goals is to make a mobile application for assessing traffic sign conditions
automatically. This is taken into account in the system design. This thesis is part
of the FTA funded TrafficVision project and provides the documentation displays
some of the results of the project.

The objective of this thesis is to survey, test, and design methods that can be used
for TSI including the analysis of machine-vision-based traffic sign condition. Special
care is taken to select methods that can be used in real-time applications using a
mobile phone as the platform. Traffic sign posts are excluded from the scope of the
research, although almost the same methods could be used for sign posts. Traffic
sign images and models are limited to signs specific to the Nordic countries. The
problem is approached as a generic vision problem with few assumptions pertaining
to road signs, the road as an environment, and a camera mounted on a moving
vehicle.

The specific objectives of the research are the following:

1. Evaluate the robustness TSD and TSC during road maintenance.
2. Study the automatic assessment of traffic sign location.
3. Evaluate the possibilities for condition analysis of traffic signs during TSI.
4. To specify the requirements for the equipment needed for such a system.
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1.3 Structure of the thesis

The rest of the thesis is structured as follows. Section 2 outlines the task and clarifies
the practical requirements this thesis is set to solve. It introduces the reader to the
terminology and provides a literature review of the research subject. Section 3
discusses in general terms the machine vision tasks that are needed to solve the
tasks defined in the previous section. The justification for selecting the methods
used in the thesis are presented. Section 4 presents in detail the algorithms based
on the previous selection. Section 5 contains the data collection, experiments, and
results. Section 6 discusses the methods used, practical problems and the future
directions of the research. Finally, Section 7 summarizes the thesis.



13

2 ROAD MAINTENANCE AND INVENTORY

This section discusses further the background, definitions, and requirements for the
system. A system overview is provided to justify the topics discussed in Section 3.
The purpose of this section is to give an idea about what the TSI and condition
analysis is, what are the open problems, and how the problems have been solved
before by machine vision.

2.1 Automatic traffic sign recognition

The purpose of traffic signs is to warn, control, guide traffic, and give information
to the road users. Machine vision based TSR is an actively researched [3, 4] ma-
chine vision application area [5]. Majority of the research has been driven by the
automobile industry to create support systems, autonomous vehicles, and road sign
inventories for mapping services. When the TSR is coupled with condition ana-
lysis and location assessment, it can be used for semi-automatic assets management
systems. The survey by Mongelmose et al. [5] provides a detailed analysis of the
recent developments, datasets, and terminology. The localization of traffic signs has
no published research available. The only traffic sign condition analysis research
[6] uses the reflectance of special infrared light as measurements; this thesis has a
different approach to the problem. TSR can be used for the following purposes [5]:

1. TSI: Collect and catalogue traffic signs with machine vision.
2. Highway maintenance: Check the presence and condition of signs along the

main roads.
3. Driver assistance systems: Assist the driver by informing about the current

restrictions and warnings.
4. Intelligent autonomous vehicles: An autonomous vehicle must obtain know-

ledge of current traffic regulations from the traffic signs.

An up-to-date inventory of traffic signs is ideally needed to help ensure adequate
updating and maintenance of traffic signs. An automated process of TSI could
also help developing the inventory accurately and consistently. Automatic condition
analysis ensures that the condition of the signs on the road are known, and it is easier
to locate the signs in the worst condition and replace them. TSI algorithms have
to cope with a natural and complex dynamic environment, high accuracy demands,
and real-time operations. These demands are usual in generic machine vision and
do not differ from the methods in generic machine vision uses. The task of this
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thesis is the application of general machine vision object detection, classification
and analysis methods for the specific task of using traffic signs as objects. To make
the task easier, installation locations of traffic signs with respect to the road and
the traffic signs themselves are strictly defined in Finland by the FTA [7].

TSR approaches in literature make use of two prominent features: colour and shape
information. Due to diverse natural lighting conditions the treatment of colour is dif-
ficult and many heuristics have been proposed and applied [8, 9]. Regarding shape,
two paradigms are currently pursued: model (such as circles) based and methods
arising from the Viola-Jones [10] detector. TSD is usually performed with a com-
putationally complex sliding window [3] approach or computationally inexpensive
colour thresholding [11, 12]. There are several approaches to TSC [13].

The survey by Mongelmose et. al [5] highlighted that a direct comparison of the
methods and results of different algorithms is difficult. Studies usually use different
data, either consider the complete task chain of detection [14], classification and
tracking or consider only part of the chain. Commonly the researches focus on
the classification or detection [15] only, and use different comparison metrics. A
major part of the published research concentrates on a certain subclass of signs, for
example, speed limit signs. Three large open traffic sign datasets for detection and
classification have been recently released: Belgian 2011 [16], Swedish 2011 [17], and
two German(2012, 2013) datasets [13, 4]. There exists no datasets related to traffic
sign condition analysis. The German datasets have been used in two benchmarking
competitions in 2012 and 2013. The competition results and papers published based
on them were used as the starting point in developing the system presented in this
thesis.

2.2 Traffic signs as objects

In Europe traffic signs were standardized at the United Nations Vienna convention
on Road Signs and Signals in 1969 [18]. Shapes are used to categorize different types
of signs: circular signs are prohibitions (such as speed limits), triangular signs are
warnings, and rectangular signs are used for recommendations and as sub-signs in
combination with other signs. Additionally, an octagonal sign is used for full stop,
and a downward-pointing triangle is to signal yield responsibility. There are several
signs that do not strictly follow the conventions.



15

The United Nations Vienna convention designates white as the second colour of
prohibitory signs. In Finland and Sweden, white is replaced by yellow [19, 7] for
better visibility in the snowy landscape. The pictograms and the font used differs
from country to country. Signs in Sweden and Finland are very similar. The traffic
signs in Finland come in three standard sizes [7]: small (400 mm), medium (640
mm) and large (900 mm). The normal size for a traffic sign is medium, and other
sizes are rare. Traffic signs are placed consistently along the road. Traffic signs can
be located on both sides of the road, on the middle line of road, and above of the
road. There is a defined maximum of three traffic signs on each pole. Installation
locations of traffic signs and the signs themselves are defined in Finland by the FTA
[7]. Using this information in TSI would require knowledge of the road location
in the image. Detecting the road is a difficult task [20], especially in winter road
maintenance conditions.

Traffic signs are designed with the following features to make them easily recognis-
able and informative to humans with respect to the environment [7]:

1. Road signs are designed, manufactured, and installed according to strict reg-
ulations.

2. Each sign has a certain defined 2D shape such as triangle, circle, octagon, or
rectangle.

3. The colour of the sign is chosen to contrast with the surroundings, to make it
easily recognisable by the driver.

4. The colours are regulated mostly by the category of the sign.
5. The information on the signs is in one colour and rest of the sign is in a

different colour.
6. The sign is located at well-defined locations with respect to the road so that

the driver can anticipate the location of the signs.
7. The signs can contain a pictogram, a string, or both.
8. Traffic signs (and sign posts) use fixed text fonts and character heights.

Unfortunately for machine vision, traffic signs are not designed in an exactly stand-
ardized way. The traffic signs can be divided into five categories. Figure 3 shows
example sign models for each category. The categories are designed as follows:

(a) Mandatory: round, blue inner, white symbols and such.
(b) Danger: triangular (corner up), white (yellow in Sweden and Finland) inner,

red rim. Newer warning signs have a thin yellow edge.
(c) Prohibitory: round, white inner (yellow), red rim.
(d) Priority: signs that do not belong to any of the previous and govern who
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should drive first.
(e) Other: signs not belonging to any of the above.

a)

b)

c)

d)

e)

Figure 3. Traffic sign model examples from different categories: a) Mandatory signs; b)
Warning signs; c) Prohibitory signs; d) Priority signs; e) Other signs [19].

2.3 Traffic sign condition analysis

Traffic sign condition analysis is used to define a proper time for the replacement and
repairing of traffic signs. The conditions of traffic signs are collected during arduous
work taking road maintenance inventories. The known condition of the traffic signs
is used in different maintenance task and when evaluating the maintenance contracts
and calculating costs for these contracts.

Traffic signs condition analysis is done to all constant traffic signs on roads and
pedestrian traffic paths. This includes traffic signs, traffic signposts, and other
equipment used to guide the traffic. The condition analysis includes mechanically
rotatable signs, but not Light Emiting Diode (LED) based signs. Traffic sign con-
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dition analysis is performed just face side of the traffic sign, excluding the pole and
the feet of the sign. The declination of the pole is not evaluated during analysis.
In principle, the daily condition such as snow, dirt, and vegetation is dismissed
in the condition analysis. The traffic signs surface is either painted (older signs) or
made of reflective tape (newer signs). The material and the environmental condition
determine how the signs are affected by corrosive effects.

The condition of traffic signs in Finland is evaluated according to guidance from the
FTA [1]. In the current process, the signs are analysed visually and a verbal analysis
is added with explanatory pictures. The reflectance of traffic signs is evaluated based
only on visual cues, such as the amount of damage a sign has suffered. The overall
condition of a traffic sign is a categorical value between 1 (worst) and 5 (best) based
on to the bottom value of three subcategories. Table 1 summarizes the evaluation
guidelines for the verbal visual condition category. Figure 4 shows examples of
different sign condition categories. If there are multiple signs in one sign pole, the
signs are evaluated separately. The condition analysis of traffic signs is based on the
following three parameters [1]:

• Structural condition: The phase of technical life cycle. The evaluation value
is decreased by weariness, distortions, surface membrane detachment, cracks,
and tears.

• Appearance condition: Visually detectable by discolouring, darkening, ac-
cumulated dirt that cannot be removed, and smudges. Also, colour differences
of the panels should be considered.

• External damage: Correlates to the condition decrease caused by external
force and mechanical damage.

Table 1. The three fuzzy traffic signs condition category parameters [1], used by the
FTA’s subcontractors.

Class Structural Appearance Damage
5 As new Flawless No damage
4 Little weariness Good Little damage
3 Weariness Does not affect recognition Noticeable damage
2 Clear deficiencies Covering errors Clear damage
1 Bad deficiencies Affects the readability Bad damage
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a) b) c) d) e)

Figure 4. Traffic signs in different phases of their technical life cycle. Corresponding
conditions categories are: a) 1; b) 2; c) 3; d) 4; and e) 5. The images are provided and
annotated by the FTA.

2.4 Operating environment

Roads are complex environments. The colour of traffic sign fades with time as a
result of long exposure to sunlight and the reactions of the paint with the air. The
presence of objects of a similar colour to traffic signs, such as buildings and vehicles
increases the difficulty for machine vision task. There might be illegal advertisements
resembling traffic signs along the sides of the roads. The legal advertisement is
regulated, but only based on location and direct resemble to traffic signs. Colour
information is also strongly related to the type of camera, illumination, and age of
the sign. The visibility of signs is affected by weather conditions such as fog, rain,
clouds, and snow. Appearance of the signs is sensitive to variations in the lighting
conditions, such as shadows, clouds, and the sun. Colour is also affected by the
illumination colour (daylight), illumination geometry, and viewing geometry (angle,
distance). Signs can also be damaged, disoriented, or occluded.

It is possible to use road maintenance vehicles as a platform for the camera. This
would provide several benefits in addition to lowering costs. The vehicle provides the
lighting, no separate lighting is needed. Road maintenance vehicles traverse same
roads several times a week. Therefore, the system could get multiple shots of the
traffic signs for TSI and evaluation. Road maintenance vehicles operate throughout
the year, but winter would be preferable for the system because denser maintenance
period of the roads. A possible problem for machine vision is that in the winter
the maintenance vehicles move in difficult conditions and in the dark. The system
should be tested especially under these conditions. In the data collection of the
TrafficVision project the camera is installed inside the vehicles cabin. Because the
image is acquired from a moving car, it often suffers from motion blur and car
vibration.
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2.5 Camera and the geometry

An important part of the TSI and condition analysis system is the camera and the
set up camera is installed on. Approaches in the literature for TSI use either a single
camera, a dual camera [21, 16], or specialized equipment such as infrared cameras
[6]. The camera and the lenses used asserts the spatial resolution of images, the field
of vision, colour accuracy of images, and the lighting conditions required to capture
images. There are also other variables effecting the imaging and camera, such as
the amount of motion blur, and the amount of vibration, optical stabilization, that
the selection of camera effects. An important factor for TSI is how far the camera
can be from the signs to capture shots accurately enough for the condition analysis.
The amount of information contained inside each patch relative to the distance is
illustrated in Figure 5. Estimating visually from the image the size of the patch
extracted around the traffic sign from the image has to be around 100 × 100 pixels
to distinguish features related to the sign’s condition.

Figure 5. Simulated effect of distance to image quality and spatial resolution with colour
and greyscale images. The image resolutions from left to right are 396 × 383, 190 × 192,
99 × 96, 50 × 48, and 25 × 24. With the camera (Garmin VIRB Elite Black) used in the
experiments the pictures should to be taken at distances of 2.18 m, 4.35 m, 8.70 m, 17.41
m, and 34.81 m respectively. The amount of details disappears as the distance increases.

Figure 6a) illustrates the localization and location assessment situation. The ob-
server moving forward detects traffic signs in relative motion coming towards the
observer. The signs are detected, classified, and localized using the observer’s known
GPS coordinates. Visualization of the camera angles needed for accurate localiza-
tion is shown in Figure 6b). In the localization of this thesis, the third dimension is
also considered, but to simplify the illustration the method is described in 2D. The
camera and GPS are positioned at the observer’s location relative to the road (angle
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𝛽). The observer is moving along the movement vector 𝑉 . As can be seen from
Figure 6b), the camera is not necessarily aligned to point towards the movement
vector. The angle 𝛼 is the angle from the sign positioned at the side of the road to
the centre of the field of vision.

a) b)

Figure 6. Geometry in the road environment: a) Perspective projection; b) Camera
angles, distance and the relation to observer roads, and sign.

2.6 System overview

The combined TSI and condition analysis system is presented in Figure 7. The
modules of the system (marked as grey) work together to perform the condition
analysis and TSI task. Object detection, object classification, and condition analysis
all contain feature extraction, feature post-processing, and classification submodules.
The modules and their purposes are as follows:

1. Camera and GPS: A camera captures video material and corresponding
GPS locations are stored. The camera can be the camera in a mobile phone
with build-in GPS, for example.

2. Image pre-processing: A phase where the images are processed to be more
easily processable later.

3. Object detection: The main task of the detection module is to detect traffic
signs in the 2D image plane. The detection outputs the location of a possible
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signs in the image and the reliability of the detection.
4. Object classification: The located signs (objects) are classified to know

which of the signs they are.
5. Localization When the detection is combined with known camera parameters

it enables the estimation of the distance to the detected signs. The distance
can be further refined using known angles. The refined locations can be pro-
jected to a 3D space and the possible positions in the next and corresponding
positions in the preceding frames are determined (assignment problem).

6. Trajectory prediction: Information about the localized signs is further re-
fined by predicting the space-time trajectories for the signs. This information
is used as a prior for the next detection round. The relationship between tra-
jectories and the detections is asymmetric, new detections can occur while old
ones vanish.

7. Global location assessment: The sign positions have to be accurately
mapped to the world coordinate system using the interpolated/extrapolated
GPS coordinates and the 3D localized signs.

8. Condition evaluation: The condition of the found signs is analyzed. The
sign is first segmented, then sign condition features are extracted, and the
condition category is determined.

Figure 7. Modules of TSI and condition analysis system.
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3 METHODS FOR TRAFFIC SIGNS

This section describes machine vision tools and methods needed for TSI and traffic
sign condition analysis. Section 2 presented modules going to be solved in this sec-
tion with specific machine vision methods. The possible methods are first analyzed
using a general literature review and afterwards a method is going to be chosen for
using requirements of the system. The classification is presented before detection
because the detection is a special case of classification with few specific methods.

3.1 Image pre-processing

The purpose of pre-processing images before any other operation is to normalize and
transform the images to be more suitable for machine vision. For example, a com-
monly used operation in pre-processing is colour and lighting effect normalization.
Selection of low-level transformation/normalization varies amongst methods and the
requirements of the application. Low level details have an important impact on the
final results. The choice is between no normalization, local normalization [22], and
global normalization [3].

3.1.1 Colour constancy

An image is formed usually from three colour channels [23]. When combined, these
channels form a colour space. The simplest way to remove a light’s effect on the
image is to move from the normally used Red, Green, Blue (RGB) colour space to one
that defines the colour channels differently. Common alternative representations are
Lightness and chromaticity coordinates U and V (CIE LUV) and Hue, Saturation,
and Value (HSV) colour spaces. RGB is commonly used in images because it reflects
the way camera sensors and display matrices are constructed. The CIE LUV is used
in machine vision because it normalizes the L2 norm, corresponding to euclidean
distance (L2) between different colours. HSV colour space is intuitive for humans
because it is divided into hue, saturation and value (brightness) channels.

Colour constancy is an important step in many problems and it is a prerequisite
to ensure the perceived colour of the surfaces in the scene does not change under
varying illumination conditions. The observed colour of the surfaces in the scene is
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a combination of the actual colour of the surface, i.e., the surface reflection function
as well as illumination and sensor. Estimation of illumination is the main goal of
the colour constancy task. The colour constancy aims to correct the effect of the
illumination by computing invariant features or by transforming the image to remove
the effects of the colour of the light.

Several surveys [24, 25] have been conducted to compare the performance of colour
constancy algorithms. For the method selection for this thesis, only colour constancy
algorithms for single light source are evaluated, though there are also algorithms for
several light sources [24]. The white patch and max-RGB methods estimates the
maximum response from different channels. Another well-known method is based
on the Grey World hypothesis [26] assuming the average reflectance in the scene is
achromatic. Grey Edge [27] is a version which assumes that the average reflectance
in the scene is achromatic. Shades of grey [25] is another grey-based method using
Minkowski 𝑝-norm instead of regular average averaging. These methods deal with
the image as a bag of pixels and the spatial relationship is not considered.

An example of previous colour constancy algorithms applied to a frame is shown
in Figure 8. It has been shown that global normalization [28, 3] can have a me-
dium impact on TSD and TSC performance. Despite this, the improvements are
marginal and are not really worth the computation time. The colour constancy is
thought to be useful in condition analysis, when the colour correctness really matter.
Grey World algorithm is chosen for the condition analysis systems colour constancy
method because it provides stable results and is fast to compute.

3.2 Feature selection and extraction

In machine learning feature selection is the process of selecting a subset of relevant
features 𝑥 to form feature vectors 𝑥⃗ and to combine them into feature sets 𝑥⃗1, ..., 𝑥⃗𝑁 .
The feature vector sets are used to create statistical model 𝑀 using mathematical
object called classifier. The purpose of the feature vectors is to describe the ob-
ject abstractly. The problem is difficult because objects usually vary greatly in
appearance. Variations are created by changes in illumination, different viewpoints,
non-rigid deformations, intraclass variability in shape, and other visual properties.
Image data contains many redundant and irrelevant parts. Redundant parts provide
no more discriminative information than the previously selected features, and irrel-
evant features provide no useful information in any context. In the case of traffic
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a) b) c)

d) e) f)

Figure 8. Different colour constancy algorithms: a) the original image; b) Grey World;
c) Max-RGB; d) Grey Edge; e) Shades of Grey; f) Weighted Grey Edge.

signs, the relevant information, that the features should contain, is the information
defining traffic signs and separating them from the background and from each other.
Feature selection is a key design choice during the TSR.

In machine vision, a feature vector set 𝑥⃗1, ..., 𝑥⃗𝑁 is an array whose feature entries
are multi-dimensional feature vectors computed from a dense grid of locations in an
image. Intuitively feature vector 𝑥⃗ describes an object inside a local image patch.
The model 𝑀 can be used to compare the similarity of new feature vectors 𝑥⃗𝑛𝑒𝑤
to the feature vector set 𝑥⃗1, ..., 𝑥⃗𝑁 used to create the model. Image features 𝑥 are
divided into two categories: low- and high-level features. Figures 9b) and 9c) show
two pixel level features where individual pixel values are used as features. The
individual pixel values are concatenated to form feature vectors. In higher-level
features the feature is a combination of pixel information from a larger area. An
example of this is presented in Figure 9d).

Edges [29] are low-level features describing edges around an object or on a surface of
an object. Modern edge features and the edge localization accuracy is compared by
Bansal et al. [30]. One possibility for edge detection are Gabor filters, that have been
shown to have many invariant properties [31]. Another low-level feature is colour
either as a pixel-wise feature or an area feature such as average colour. A group
of increasingly popular low-level features are automatically optimized convolution
filters [32]. These features can combine several filters together to form a filter-bank
that is used to extract a feature vector from the image. The filters in a filter-bank
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a)

b)

c)

d)

Figure 9. Illustration of different features: a) Cropped signs; b) Cropped converted to
grey-scale; c) Edge features; d) Histogram of Oriented Gradients (HOG) features.

can be optimized automatically [33].

Common high-level feature extractors, also known as descriptors, used in machine
vision are Scale-Invariant Feature Transform (SIFT) [34] and Histogram of Oriented
Gradients (HOG) [22]. Many modern object detection and semantic segmentation
systems are built on top of one or both of these features. HOG is a good method to
capture dense shape features of rigid objects and SIFT sparse features of non-rigid
objects. The features can be either single-scale, or multi-scale features where the
original image is resized and features are computed several times at different scales
[13]. State-of-the-art methods use multi-layer filters, so that the features of the first
layer are fed to a second layer to get high-level features [35].
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Traffic signs are constructed to be easily detectable by humans. There are well-
defined cues (such as shape and colour) that can be utilized for the use of feature
extraction algorithms. TSD is a classic instance of rigid object detection, and HOG
features have been used on several occasions as features for traffic sign [13, 4, 36]
related problems. The research [3] conducted by Mathias et al. has a comparison
of HOG feature parameters, different scales, and their performance as features for
traffic signs.

In this thesis, colour channel and HOG features are going to be used for TSD
and for TSC HOG features are used. The choice is based on the literature [3, 4,
13]. The systems condition analysis uses edge and colour variance inside regions to
form feature vector 𝑥⃗. The edges were chosen because signs in bad condition begin
to deteriorate and form ridges that can be detected on the surface of the signs.
A Canny [29] edge filter was chosen for the system. Colour variance was chosen
because colours in signs should be constant across the same colour in surface. There
are two different ways that could have been taken, individual feature detection from
a surface (e.g. rust marks or vegetation) or the statistical approach. For this research
the latter was chosen based on the simplification it provides. Vegetation could have
specifically engineered features to extract it from the surface, but for the condition
analysis, it would be enough to tell if there is something wrong with the surface of
the sign.

3.3 Feature post-precessing

There are two commonly used methods in feature post-processing: feature set scal-
ing and dimensionality reduction. The methods are applied after the features are
concatenated to feature vector sets 𝑥⃗1, ..., 𝑥⃗𝑁 . The right method depends on the
circumstances, but the idea is that transformation needs to make the extracted
feature vector set 𝑥⃗1, ..., 𝑥⃗𝑁 more easily processable for machine learning methods.
For example, the feature vectors often contain outliers, datapoints that are dis-
tant from other observations often because of errors in measurement. The feature
post-processing is a good place to remove those outliers if needed.
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3.3.1 Feature scaling

There are currently two simple methods for feature scaling: normalization and stand-
ardization. The methods are straightforward, common knowledge. The basic use
case is to apply them when using multiple feature vectors that are in different units
of measure, in order to make the features comparable to each others. In normaliz-
ation, the range of feature vector values 𝑥⃗ is normalized to be between 0 to 1. The
lowest value 𝑥⃗𝑚𝑖𝑛 is set to 0 and the highest value 𝑥⃗𝑚𝑎𝑥 is set to 1. This is useful
when all features need to have the same positive scale. In normalization the outliers
are lost because they are often the minimum or maximum values. In this case, all
the other data will be scaled according to outlier producing a negative effect on the
data. Normalization is defined as

^⃗𝑥 = (𝑥⃗ − 𝑥⃗𝑚𝑖𝑛)
(𝑥⃗𝑚𝑎𝑥 − 𝑥⃗𝑚𝑖𝑛) (1)

where 𝑥⃗𝑚𝑎𝑥 is the maximum value of the feature vector and 𝑥⃗𝑚𝑖𝑛 is the minimum
value of feature vector. Standardization rescales data to have a mean of 0 and a
standard deviation of 1 (unit variance). For the most applications’ standardization
is recommended as it makes outlier spotting easy and makes the different features
easily comparable with each other. Standardization is defined as

^⃗𝑥 = (𝑥⃗ − mean(𝑥⃗))
std(𝑥⃗) (2)

where mean corresponds to the mean of feature vector and std denotes the standard
deviation of the feature vector. Both of the methods are applied in the experiments
of the thesis. The normalization is used when dealing with image data and the
standardization to process condition analysis data.

3.3.2 Dimensionality reduction

The idea of dimensionality reduction is to refine the feature vector set 𝑥⃗1, ..., 𝑥⃗𝑁 by
removing unneeded features or feature dimensions while maintaining most of the
descriptive power of original feature vector set [37]. Using too big feature space
requires lots of memory and processing time for machine learning algorithms. Using
too small feature space impoverishes the capacity of the machine learning, and lead
to a bad results. A common way to deal with a big feature space is to use dimen-
sionality reduction techniques. Dimension reduction is used to project the data from
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higher feature dimensions to lower, removing unneeded features 𝑥. Figure 10 illus-
trates projecting data from two dimensions to one dimension, making two example
classes more easily separable. In the example illustration Figure 10a) both classes
contain a two dimensional feature vector. After the Linear Discriminant Analysis
(LDA) dimension reduction, the feature vector (as shown in Figure 10b)), is reduced
to one dimension still containing the same discriminative information.
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Figure 10. LDA projection of two features and classes: a) Two dimensions; b) One
dimension.

When using appearance-based features (such as traffic signs), image 𝑚×𝑛 is usually
represented by a feature vector 𝑥⃗ in an 𝑚 × 𝑛 dimensional space. In practice these
spaces are too large to allow robust and fast object classification. A common way
to attempt to resolve this problem is to use dimensionality techniques. Two of the
basic methods are: Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA) [37]. LDA directly deals with the classes, and PCA just tries to find
from the entire data the principal components without taking into account the class
structure. Sparse representation based graph embedding has been found useful in
[38] when using traffic sign features as inputs. LDA is a linear projection technique
and non-linearities 𝑥⃗1, ..., 𝑥⃗𝑁 might be lost in the process. There are non-linear
dimension projection methods, but they are outside the scope of this thesis. In the
classification experiments of this thesis, LDA and PCA are compared.

3.4 Classification

In machine learning and statistics, classification is used to decide a class for a feature
𝑥⃗𝑛𝑒𝑤 with unknown class, based on the previous features of known classes using a
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model 𝑀 . The model 𝑀 is a combination of set of features 𝑥⃗1, ..., 𝑥⃗𝑁 , known class
labels corresponding to feature vectors in the 𝑥⃗1, ..., 𝑥⃗𝑁 , and a statistical method.
Training is the method of creating the model and testing is the testing of a sample
against the model. Classifier is an abstract term for applying a certain model to the
observations.

Classification has been approached with a number of different classification methods
such as K-Nearest Neighbours (KNN) [39], Support Vector Machine (SVM) [40],
different kinds of tree classifiers such as AdaBoost [41], and Random Forests [42].
There are numerous classifiers from which different ones work better for different
kinds of data. The factors to base of the classifier selection are: the number of
feature vectors, number of different classes or categories, the dimensionality of data,
and the distribution of features among dimensions (linear or non-linear). Some
classifiers (such as Gaussian mixture models [43]) return a probability predicting
how probable the correct classification is. This probability (commonly known as
posterior probability) is useful, but not all classifiers can produce this information.

In the problem context of this thesis the purpose of the classifier is to model possible
variations of the environment can have on the traffic sign. TSI and condition analysis
together contain three separate classifications tasks. During the TSD (first task) a
classifier is used to discriminate a set of traffic signs from the background (also
known as detection). The second task uses a classifier on the image patch found in
the previous step (TSD) to determine the class of the sign (TSC). TSC is a multi
class categorization problem with thousands of dimensions to distinguish among
different classes. The third classification task, the condition analysis, is similar to
the second task, but there are only five condition categories (classes) to make the
classification decision.

The first classification task, TSD, is a special case of classification, and will be
discussed in more detail later. TSC has been approached in the literature with
KNN [3] Random Forests [13, 36], Neural Networks (NN) [13, 33], and different
variations of SVMs [3]. In TSC the difference in results caused by the different
selection of a classifier is usually small when dimension reduction techniques are
used and features are reasonable [3]. The biggest differences appear in training and
testing times. In the results, SVM appears to be slow in both testing and training.
Random Forest are slow to train, but fast to test. KNN does not require training,
and the testing time is the fastest of the compared methods. In TSC and condition
analysis experiments, KNN is used as the base-line method. The more complex
Random Forests classifier is also tested.
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3.5 Detection

Detection is a task where different object classes are searched and localized from
images. In detection, the classification (also known as the search for the object in
image) has to be performed on the whole image, not just for a patch of image such
as in the basic classification. There are two ways to perform this search; sliding
window or segmentation based selective search method. The process is similar in
both. First a patch of image is extracted, the patch is pre-processed, a set of
features is calculated for the patch, and lastly the result is compared to a model
(classified) to find out if the patch contained an object being searched. Because of
the large amount of model comparisons the detection method has to be very fast,
the classification accuracy is less important.

The sliding window approach [22] for object detection is currently popular and
provides good results [41, 44, 14, 8]. In the approach, the detection is done by
defining a score from a classification model at different positions and scales in an
image. The highest scores compared to a threshold are considered as detections.
The sliding window detector can be thought of as a classifier that takes as input
an image, a position within image, and a scale. The classification model is usually
simple to make the classification as fast as possible. The model in the sliding win-
dow can also consist of a set of models trained on discovered sub classes (so-called
components) [44]. An alternative to sliding window is recognition using regions [45,
35]. The core idea is to generate category independent region proposals from the
input image, and to classify them. It has been shown that, recognition using regions
method processes two orders of magnitude fewer image windows compared to sliding
window approach [35].

To reach good performance on a sliding window detector, multiple scales’ can be
used improve the quality [46] of detection results. In the multi-scale method, low-
and high-resolution models are used to evaluate a single candidate window. This
increases computational cost- and is a problem. The process can be sped up by
using computational tricks (such as a feature pyramid) which specifies a feature
map for a finite number of scales in a fixed range. In practice this is done [41, 47,
48] by computing the feature pyramid via repeated smoothing and sub-sampling
and then computing a feature map from each level of the image pyramid. This way
the detection is fast to compute [47]. The problem with the selective search is the
highly demanding region proposal, also known as segmentation, process.
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In the TSD phase, the background has to be distinguished from the object model
that has only two classes (background and traffic sign). The AdaBoost [42] classifier
can usually handle such situations well, is fast to train and performs especially
well when the feature set is large. The methods chosen for this research uses the
concept of the sliding window search and AdaBoost model based approach. The
choice was made based on the benchmarks [4, 47]. The regions-based approaches
were discarded because successful segmenting an image usually relies on an advanced
edge detection methods (such as the Berkley Boundary Detector (gPB) [49]) later
becoming object candidates. gPB takes several seconds per image and makes the
regions based approach unfeasible despite progress in faster edges [50]. Another
possibility for would be colour thresholding [51, 9]. The colour segmentations seem
to work only in limited lighting conditions, and is discarded.

3.6 Localization

This subsection presents three different uses and needs for movement analysis and
using prior information to improve the detection times and performance. There
are several ways to improve the methods using priori knowledge, for example using
the car’s trajectory. One example of the use of priori knowledge would be to use
previously appeared signs to predict an area the sign is going to appear in the next
time step. Figure 11 illustrates this by showing the Bounding Boxs (BBs) locations
of 600 annotated sign in images. There is no need to use the sliding window search
to a whole image, when searching small part of image should be enough. The
movement vector is also needed for more accurate object localization, camera angle
calculations, and motion blur removal.

3.6.1 Camera model and orientation

A camera can be approximated by a projective model, often called a pinhole pro-
jection model. The simplest representation of the camera is a light sensitive surface
(sensor): an image plane and a lens (projective projection) at a given position and
orientation in space. It has an infinitesimally small hole through which light enters
before forming an inverted image on the camera surface facing the hole. Usually,
simpler pinhole camera model is used by placing the image plane between the focal
point of the camera and the object so the image is not inverted. This mapping of
three dimensions onto two is called a perspective projection, shown in Figure 12.
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Figure 11. Locations of 600 traffic sign BBs. Figure illustrates that the whole image
does not need not be searched.

Perspective geometry [52] is fundamental to mapping points from 2D to 3D.

A perspective projection is the projection of a three-dimensional object onto a two
dimensional surface by straight lines passing through a single point. Let 𝑓 be the
distance of image plane to the centre of projection. Then the image coordinates
(𝑢𝑖, 𝑣𝑖) are related to the object coordinates (𝑥0, 𝑦0, 𝑧0) as follows:

𝑢𝑖 = 𝑓𝑙
𝑧0

𝑥0 (3)

𝑣𝑖 = 𝑓𝑙
𝑧0

𝑦0 (4)

Equations 3 and 4 are non-linear. They can be made linear by introducing ho-
mogeneous transformations, which is effectively just a matter of placing Euclidean
geometry into the perspective system. The pinhole camera geometry models the pro-
jective camera with two sub-parameterizations, intrinsic and extrinsic parameters.
Intrinsic parameters model the optic component (without distortion), and extrinsic
parameters model the camera position and orientation in space. This projection of
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Figure 12. Perspective projection in the pinhole camera model.

the camera is described as follows:

𝑃3×4 = ⎡⎢⎢
⎣

𝑓 ∗ 𝑘𝑢 0 𝑐𝑢 0
0 𝑓 ∗ 𝑘𝑣 𝑐𝑣 0
0 0 1 0

⎤⎥⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31 𝑟32 𝑟33 𝑡𝑧
0 0 0 1

⎤
⎥
⎥
⎥
⎦

(5)

The equation consists of intrinsic (𝑘𝑢, 𝑘𝑣, 𝑓, 𝑐𝑢, 𝑐𝑣) and extrinsic parameters (𝑅3×3,
𝑡3×1). 𝑘𝑢 and 𝑘𝑣 determine the scale factor relating pixels to distance (usually 1),
the focal length 𝑓 determines the distance between focal and image plane, and
𝑐𝑢, 𝑐𝑣 is used to denote the principal point that ideally is at the centre of the image.
Extrinsic parameters are the rotation parameters 𝑅3×3 and the translation of the
camera 𝑡3×1. The translation of the camera is the origin of the world coordinate
system expressed in coordinates of the camera centred coordinate system. The
position of the camera,𝐶𝑝𝑜𝑠, expressed in world coordinates is 𝐶 = −𝑅3×3

−1𝑡3×1 =
−𝑅3×3

𝑇 𝑡3×1. A 3D point 𝑋𝑖 is projected in an image using homogenous coordinates
as follows:

𝑥𝑖 = 𝑃𝑋𝑖 = 𝐾[𝑅3×3|𝑡3×1]𝑋𝑖 (6)

The estimation of distance from the car to the traffic sign is necessary for accurate
traffic sign location estimation. Two different high level schemes for traffic sign
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localization can be derived. The first uses the detected traffic sign’s height with
camera parameters to estimate projection using the geometric method called triangle
similarity. Another, more constrained (and maybe more accurate) way to do the
localization would be to wait until the sign reaches the camera’s edge and from that
information map the location.

Equation 5 can be used directly to derive the computations needed for the distance
estimation with the triangle similarity. Basically an opposite operation of projecting
a point to a plane has to be computed. Now the point on a plane is projected on
a 3D world using the known size of the traffic sign as a constraint. The simple
camera model in Figure 12 illustrates the problem being solved. The point, 𝑋, is
then changed to a surface (line) denoting a traffic sign. The side of medium-sized
traffic sign 𝑆𝑠𝑖𝑔𝑛 is known to be 640 mm. When it is placed known distance 𝑍 in
front of the camera and its apparent width in pixels is measured to get 𝑑. Focal
length of the camera is 𝑓 = 𝑑×𝑍

𝑆𝑠𝑖𝑔𝑛
. When a traffic sign is seen again with this camera

with a width of 𝑑’ pixels, then by triangle similarity it is known that 𝑓
𝑑′ = 𝑍′

𝑆𝑠𝑖𝑔𝑛
and

the distance 𝑍′ can then be calculated as:

𝑍′ = 𝑆𝑠𝑖𝑔𝑛 × 𝑓
𝑑′ (7)

After the triangle similarity to get the distance, there is still a need to evaluate the
corresponding transforms to get the relative position of the sign compared to the
car. This can be computed by simple geometric transformation because the angles
are known or can be calculated in respect with the image plane.

3.6.2 Motion estimation

Motion estimation is one essential component in video processing. It is often used for
motion-compensated temporal interpolation to reduce motion blur artefacts. The
motion vectors can be obtained by using a predictive block based motion estimator.
To avoid mismatches, additional metadata (such as knowledge of forward movement)
can be used to support the motion estimator. Motion vectors can also be used
to estimate the camera angle. When the observer is moving forward, the motion
vectors seem to be coming from the vanishing point. When the deviation between
the vanishing point and the camera centre point is known, the angle of the camera’s
deviation with respect to the vehicles’ movement direction can be computed.

The perceived motion field of the camera image plane is the sum of translational
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and rotational components. Several methods (such as Lucas-Kanade [53] and Horn-
Schunck [54]) have been proposed to perform the recovery of three-dimensional
motion from image flow fields by applying the model of the pinhole camera and
perspective projection. The use of optical flow has been adapted to road naviga-
tion [55]. In the system implementation, optical flow is used to estimate the camera
angle by estimating the vanishing point from a moving vehicle. Figure 13 illustrates
the optical flow magnitude calculated from frames taken in moving vehicle, 0.3 s
apart in time. The blue corresponds to a low value and red to a high value.

a) b)

c) d)

Figure 13. The optical flow computed from succeeding frames imaged from a forward
moving vehicle, taken 0.3s apart: a) original image; b) Horn-Schunk; c) Lucas-Kanade; d)
Sum of Squared Differences. Only the magnitude information is shown.

3.6.3 Trajectory prediction and assignment

In the standard multi target tracking problem the targets move continuously in
a given region, typically independently according to a known, Markovian process.
Targets arise at random in space and time, persist for a random length of time
and then cease to exist. The sequence of states a target follows is called a track.
Positions of moving targets are measured typically in a periodic scan measuring the
positions of all targets simultaneously. The position measurements are noisy and
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occur with detection probability of less than one. In this scenario there are three
sub-problems: tracking, prediction, and assignment problems.

Recent approaches to tracking pursue tracking by detection strategy [56] where the
targets are detected in a preprocessing step, usually either by background subtrac-
tion or using a discriminative classifier from which trajectories are later estimated.
In the TSI system, the detector can be used directly for this task. The benefits are
improved robustness against drifting and the possibility of recovering from track-
ing failure. In the relatively simple single-target setting, where only one target is
present in the scene, tracking can be approached by searching for the object of
interest within the expected area and forming a plausible trajectory by connect-
ing object’s locations over time. When a higher, often unknown number of targets
are observed simultaneously, the problem becomes much more complicated because
it is no longer obvious which object corresponds to detections. This task of cor-
rectly identifying different objects over time is often referred to as data association.
Motion, appearance (known class of sign), and visibility of objects are affected by
mutual dependencies that have to be taken into account. From a probabilistic point
of view this entails inference, often Maximum A Posteriori Estimation (MAP), in a
posterior distribution over several not independent variables.

Many tracking algorithms utilize recursive methods where the current state is pre-
dicted using information from previous frames. Kalman filter approaches [57] are a
prominent example. Particle filtering (also known as sequential Monte Carlo) was
introduced later. In particle filtering, a set of weighted particles sampled from a
proposal distribution is maintained to represent the current (unknown) state [58].
This allows handling non-linear multi-modal distributions. As the number of targets
grows, a reliable representation of the posterior requires an ever-increasing number
of samples and is hard to handle in practice. The assignment/data association prob-
lem can be solved using Joint Probabilistic Data Association Filter (JPDAF) [59],
Markov Chain Monte Carlo (MCMC) [60] based models, or Hungarian algorithm
[61].

This thesis utilizes tracking by detection approach for the traffic signs. Previously
introduced detector can be used as the detector for the tracker. Kalman filter is
used as the predictor for the detector and the Hungarian algorithm is used to solve
the assignment problem.
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3.7 Global location assessment

After the object has been detected and classified it has to be localized and finally
the location has to be converted to world frame defined by GPS coordinate system.
The task requires an understanding of 3D computer vision [52] and geodesic on an
ellipsoid of revolution [62]. These problems have mathematically proved solutions;
the possible error comes from measurement inaccuracy.

The shortest path between two points on Earth, customarily treated as an ellipsoid,
is called a geodesic. The direct problem is to find the end point of a geodesic, given
the starting point, initial azimuth and length. The inverse problem is to find the
shortest path between two given points. Every geodesic problem is equivalent to
solving the geodesic triangle, given two sides and their included angle (the azimuth
at the first point) in the case of a direct problem, and the longitude difference in the
case of an inverse problem. The mathematical foundation was laid in the beginning
of the 19th century. The modern counterpart algorithms [62] can be computed fast
and accurately. For the problem of this thesis Karney’s implementation is used [62].

3.8 Condition evaluation

The surface condition evaluation can be divided into three steps: defining exactly
where the surface is, extracting the features, and then estimating the condition of
the exact surface. The region proposition has lots of research behind it, but the
requirement of exactness is difficult. An example of a same sign in condition 1 and
condition 5 is presented in Figure 14.

Segmentation is a well-researched subject [63]. For the segmentation of intensity
images, there are four main approaches: thresholding techniques, boundary-based
methods, region-based methods, and hybrid techniques combining boundary and
region criteria. Thresholding techniques are based on a postulate that all pixels
whose value (grey level, colour value, or other) lies within a certain range belong to
one class. Such methods neglect all the spatial information of the image and do not
cope well with noise or blurring at boundaries.

Boundary-based methods use a postulate that the pixel values change rapidly at the
boundary between regions of the image. The basic method is to apply a gradient
edge operator such as a [1, 2, 1]𝑇 × [−1, 0, 1] filter. High response value to this filter
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a) b)

Figure 14. Signs with different surface conditions: a) condition 1; b) condition 5.

provide a candidate for region boundaries, which must then be modified to produce
closed curves representing the boundaries of the regions. Converting the edge pixel
candidates to boundaries of regions of interest is a difficult task, but there are good
solutions [49, 50].

The regions-based methods rely on a postulate that neighbouring pixels within one
region have a similar pixel value. The general procedure is to compare one pixel to
neighbouring pixels. If a criterion of homogeneity is satisfied, the pixel is said to
belong to the same class as one or more of its neighbours. The choice of homogeneity
criteria is critical for success, and the results are easily distorted by noise. The
methods include superpixels [63] and region-growing [64].

The fourth type is the hybrid techniques combining boundary and region criteria. An
example of this kind of method is the watershed algorithm. The watershed algorithm
is usually applied to the gradients of the image. The gradient image can be viewed
as a topography with boundaries between the regions as ridges. Segmentation is
equivalent to flooding the topography from the seed points [65].

For the segmentation of traffic signs a region-based method was chosen. Seeded
region growing [64] has been shown to work in traffic sign segmentation [12]. The
algorithm is simple, but has several parameters to be tuned.
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4 ALGORITHMS FOR TRAFFIC SIGNS

This section introduces algorithms chosen in Section 3. Figure 15 illustrates the
algorithms going to be presented (blue boxes) in this section and their relation to
each others.

Figure 15. Algorithms of the TSI and condition analysis system.

4.1 colour space and colour constancy

The HSV model has been widely used in colour segmentation. A RGB image is
converted into the HSV colour space with the following three pixel-wise equations
(each channel is formed separately) [23]:

𝐻 = cos−1{ (𝑅 − 𝐺) + (𝑅 − 𝐵)
2√(𝑅 − 𝐺)2 + (𝑅 − 𝐵)(𝐺 − 𝐵)

} , 𝑅 ≠ 𝐺 and 𝑅 ≠ 𝐵 (8)

𝑆 = max(𝑅, 𝐺, 𝐵) − min(𝑅, 𝐺, 𝐵)
𝑉 (9)

𝑉 = max(𝑅𝐺𝐵) (10)

In general, the goal of computational colour constancy is to estimate the chromati-
city of the light source and then to correct the image to a canonical illumination
using a diagonal model. The grey based methods have been formulated into a uni-
fying framework [66, 24]. The process consists of three steps: reflection model,
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illumination estimation, and diagonal correction model.

Surface reflection model

Image colour 𝐼 = (𝐼𝑅, 𝐼𝐺, 𝐼𝐵)𝑇 for a Lambertian surface at location 𝑥 can be mod-
elled as:

𝐼𝐶(𝑥) = ∫
𝑤

𝐸(𝜆, 𝑥)𝑆(𝜆, 𝑥)𝜌𝑐(𝜆)𝑑𝜆 (11)

where 𝐶 ∈ {𝑅, 𝐺, 𝐵}, 𝐸(𝜆, 𝑥), 𝑆(𝜆, 𝑥) and 𝜌𝑐(𝜆) are the illuminant spectrum
distribution, surface reflectance, and camera sensitivity, respectively. For a given
location of 𝑥, the colour of the light source 𝐿(𝑥) can be computed as follows:

𝐿(𝑥) = ⎛⎜⎜⎜
⎝

𝐿𝑅(𝑥)
𝐿𝐺(𝑥)
𝐿𝐵(𝑥)

⎞⎟⎟⎟
⎠

= ∫
𝜔

𝐸(𝜆, 𝑥)𝜌(𝜆)𝑑𝜆 (12)

Normally colour constancy is involved with estimating the chromaticity of the light
source. Estimating this chromaticity from a single image is an under-constrained
problem (underdetermined system), as both 𝐸(𝜆, 𝑥) and 𝜌(𝜆) = (𝜌𝑅, 𝜌𝐺, 𝜌𝐵)𝑇 are
unknown. Therefore, assumptions are needed to impose on the imaging conditions.
Typically, assumptions are made from the statistical properties of the illuminants
or surface reflection properties. Most colour constancy algorithms are based on the
assumption that illumination is uniform across the scene 𝐸(𝜆, 𝑥) = 𝐸(𝜆).

Illumination estimation

Illumination estimation methods can categorized into two groups: (1) static methods
trying to estimate the illuminant for each image based on the statistical properties,
and (2) learning-based methods trying to estimate the illuminant learned from train-
ing images. For example, the white-patch algorithm is based on an assumption that
the maximum response in a scene is white, and the grey world algorithm is based on
an assumption that average colour in the scene is achromatic. These assumptions
are used to make a global estimate of the light source and to correspondingly correct
the images. The grey-based methods have been formalized into a single framework:

(∫ ||𝜕
𝑛𝐼𝐶,𝜎(𝑥)

𝜕𝑥𝑛 ||𝑝𝑑𝑥) 1𝑝 = 𝑘𝐿𝑛,𝑝,𝜎
𝐶 (13)
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where 𝐿𝑛,𝑝,𝜎 is used to denote different instantiations of the framework, || ⋅ || denotes
Frobenius norm, 𝐶 = {𝑅, 𝐺, 𝐵}, 𝑛 is the order of the derivative, 𝑝 is the Minkowski
norm, and 𝐼𝐶,𝜎 = 𝐼𝐶 ⊗ 𝐺𝜎 is the convolution of the image with a Gaussian filter
with smoothing parameter 𝜎. According to the characteristics of the Gaussian filter
the derivative can be described by

𝜕𝑎+𝑏𝐼𝑐,𝜎
𝜕𝑥𝑎𝑦𝑏 = 𝐼𝐶 ∗ 𝜕𝑎+𝑏𝐺𝜎

𝜕𝑥𝑎𝜕𝑦𝑏 (14)

where ∗ denotes the convolution and 𝑎 + 𝑏 = 𝑛. Using Equation 13, many col-
our constancy algorithms can be derived by varying one or more parameters (i.e.,
𝑛, 𝑝, 𝜎). Pixel based colour constancy algorithms (𝑛 = 0) can be created by vary-
ing Minkowski norm 𝑝 and smoothing parameter 𝜎. The Grey World algorithm
𝑛 = 0, 𝑝 = 1, 𝜎 = 0, i.e., 𝐿0,1,0 and the white-patch algorithm 𝑝 = inf, i.e., 𝐿0,inf,0

are simple first order colour constancy algorithms. Using higher order colour con-
stancy methods (i.e., 𝑛 = 1) and (i.e., 𝑛 = 2) results in the first-order grey-edge
(𝐿1,1,1) and the second order grey edge (𝐿2,1,1).

Diagonal colour correction model

After the colour of the light source is estimated, the aim is to transform the input
images, taken under an unknown light source, into colours as if they appear under
a canonical light source (a theoretical equal energy radiator where equal weights
is given to all wavelengths), into colours as if they appear under a canonical light
source. This is done using a diagonal model described as:

𝐼𝐶 = Λ𝑢,𝐶𝐼𝑢 (15)

where 𝐼𝑢 is the image under an unknown light source while 𝐼𝐶 is the image trans-
formed, appearing as if taken under canonical illuminant. Λ𝑢,𝐶 is the mapping
diagonal matrix described as:

Λ𝑢,𝐶 = ⎛⎜⎜⎜
⎝

𝛼 0 0
0 𝛽 0
0 0 𝛾

⎞⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝐿𝐶
𝑅

𝐿𝑢
𝑅

0 0
0 𝐿𝐶

𝐺
𝐿𝑢

𝐺
0

0 0 𝐿𝐶
𝑉

𝐿𝑢
𝐵

⎞⎟⎟⎟⎟
⎠

(16)

where 𝐿𝑢 is the unknown light source and 𝐿𝐶 is the canonical light source.
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4.2 Histogram of oriented gradients

Algorithm 1 describes the HOG algorithm generally. Let 𝜃(𝑥, 𝑦) and 𝑟(𝑥, 𝑦) be the
orientation and magnitude of the intensity gradient at a pixel (𝑥, 𝑦) in an image. The
gradients are computed using simple 𝑆𝑥 = [−1, 0, 1] and 𝑆𝑦 = [−1, 0, 1]𝑇 filters. The
gradient orientation at each pixel is discretized into one of the orientation 𝑝 values
with contrast insensitive definition:

𝐵(𝑥, 𝑦) = round(𝑝𝜃(𝑥, 𝑦)
𝜋 ) mod 𝑝 (17)

where round means rounding and mod is the modulus. The pixel level feature
map specifying a sparse histogram of gradient magnitudes is then defined. Let
𝑏 ∈ 0, … , 𝑝 − 1 range over orientation bins. The feature vector at pixel (𝑥, 𝑦) is then
defined as:

𝐹(𝑥, 𝑦)𝑏 =
⎧{
⎨{⎩

𝑟(𝑥, 𝑦) if 𝑏 = 𝐵(𝑥, 𝑦)
0 otherwise

(18)

𝐹 can be though of as an oriented edge map with 𝑝 orientation channels. For each
pixel a channel is selected by discretizing the gradient orientation. The gradient
magnitude can be seen as a measure of edge strength.

Let 𝐹 be a pixel level feature map for 𝑤 × ℎ image. Let 𝑘 > 0 be a parameter
specifying the side length of a square of a square image region. A dense grid of
rectangular cells is then defined and pixel level features aggregated to obtain a cell-
based feature map 𝐶, with feature vectors 𝐶(𝑖, 𝑗) for 0 ≤ 𝑖 ≤ [(𝑤 − 1)/𝑘] and
0 ≤ 𝑗 ≤ [(ℎ − 1)/𝑘]. This aggregation provides invariance to small deformations
and reduces the size of the feature map. The simplest approach for aggregation is
to map each pixel (𝑥, 𝑦) into a cell and to define the feature vector 𝑥⃗ at the cell to
be the sum of the pixel level features in the cell. A more complex way is to use soft
binning where each pixel contributes to the feature vectors in the four cells around
it using bilinear interpolation.

Gradients are invariant to changes in bias. Invariance to gain can be achieved via
normalization. Four different normalization factors have been used the new feature
vector 𝐶(𝑖, 𝑗). These factors can be written as 𝑁𝛿,𝛾(𝑖, 𝑗) with 𝛿, 𝛾 ∈ {−1, 1} as:

𝑁𝛿,𝛾(𝑖, 𝑗) = (||𝐶(𝑖, 𝑗)||2 + ||𝐶(𝑖 + 𝛿, 𝑗)||2 + ||𝐶(𝑖, 𝑗 + 𝛾)||2 + ||𝐶(𝑖 + 𝛿, 𝑗 + 𝛾)||2)1
2

(19)
Each factor measures the ”gradient energy” in a square block of four cells containing



43

(𝑖, 𝑗). Let 𝑇𝛼(𝑣) denote the component wise truncation of a vector 𝑣 by 𝛼. The HOG
feature map is obtained by concatenating the result of normalizing the cell based
feature map 𝐶 with respect to each normalization factor followed by truncation
defined as:

𝑥⃗(𝑖, 𝑗) =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑇𝛼(𝐶(𝑖, 𝑗)/𝑁−1,−1(𝑖, 𝑗))
𝑇𝛼(𝐶(𝑖, 𝑗)/𝑁+1,−1(𝑖, 𝑗))
𝑇𝛼(𝐶(𝑖, 𝑗)/𝑁+1,+1(𝑖, 𝑗))
𝑇𝛼(𝐶(𝑖, 𝑗)/𝑁−1,+1(𝑖, 𝑗))

⎞⎟⎟⎟⎟⎟⎟
⎠

(20)

Commonly used HOG features use 𝑝 = 9 contrast insensitive gradient orientations,
a cell size of 𝑘 = 8 and truncation of 𝛼 = 0.2. This leads to a 36 dimensional feature
vector.

Algorithm 1: HOG feature extraction.
input : 𝐼 - greyscale image

𝑘 - cell size
𝑝 - number of orientation angles
𝛼 - truncation factor

output: 𝑥⃗ - feature vector

Create edge filters 𝑆𝑥 = [−1, 0, 1] and 𝑆𝑦 = 𝑆𝑇
𝑥

Get the edges 𝐺𝑥 ← 𝐼 ⊗ 𝑆𝑥 and 𝐺𝑦 ← 𝐼 ⊗ 𝑆𝑦

Compute the gradient magnitude 𝐺 ← √𝐺𝑥
2 + 𝐺𝑦

2

Compute the gradient direction 𝜃 ← arctan(𝐺𝑦
𝐺𝑥

), and round to closest 𝜋𝑝 angle

Create edge based feature map 𝐹
Divide 𝐹 into sub images 𝐶 using 𝑘
Normalize the subimages 𝐶
Truncate orientation channel using 𝛼 to get the feature vector 𝑥⃗

4.3 Aggregated Channel Features detector

The starting point for the detection is the Integrated Channel Features (ICF) de-
tector. In a sense is can be seen as a successor to the classic Viola and Jones work
[10]. ICF [41] is a precursor to the Aggregated Channel Features (ACF) detection
framework introduced in [48]. Both ICF and ACF use the same features and boosted
classifiers. The key difference is that ACF uses pixel lookups in aggregated channels
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as features while ICF uses sums over rectangular channel regions. ICF has been
used to detect the traffic signs [3], and the results are good.

The detection framework and algorithms related are straight-forward. Given input
image 𝐼 , several feature channels 𝐶 = Ω(𝐼) are computed, every block of pixels
is summed in 𝐶, and the resulting lower resolution channels are then smoothed.
Features are single pixel lookups in the aggregated channels. Boosting is used to
train and combine decision trees over these features (pixels) to distinguish object
from background and a multi scale sliding window approach is employed.

In general the detection approach in this thesis can be divided into 3 steps:

1. Channel computation: The detectors feature channels are chosen based on
the literature review [41]. The features are formed from 10 different channels;
6 different orientation HOG features, CIE LUV colour channels, and gradient
magnitude channel.

2. Pyramid construction: The pyramid is constructed using 8 scales.
3. Detector training: For traffic sign detection, AdaBoost is used to train and

combine decision trees over the candidate features (channels pixel lookups) in
each window.

4.3.1 Channel Features

The channel features are a name given to a combination of separate features to
form a single feature vector. The used channels are normalized gradient magnitude,
histogram of oriented gradients in 6 directions (6 channels) and CIE LUV colour
channels separately. Prior to computing the 10 channels, 𝐼 is smoothed with a
Gaussian filter. The channels are divided into 4 × 4 blocks and pixels in each block
are summed. Finally, the channels are smoothed, again with a Gaussian filter.
Figure 16 illustrates the feature channels used to train the ACF detector.

Rectangular regions are then selected and assembled in a set of weak classifiers
using boosting. Final strong classifier is a linear combination of the weak classifiers.
The ACF framework enables the use of multiple kinds of ”channels” (low level pixel
wise features). The ICF and ACF frameworks have been show to perform at the
state-of-the-art level using HOG and CIE LUV features [41, 48].
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a) b) c)

d) e) f) g) h) i) j)

Figure 16. Feature channels to detect traffic signs. a) CIE LUV L, b) CIE LUV U,
c) CIE LUV V, and d) gradient magnitude. The remaining are gradient channels with
different orientations.

4.3.2 Fast feature pyramids

Estimating features at a dense set of scales is computationally expensive for sliding
window search. By decreasing the redundancy in the representation, the compu-
tational costs can be decreased. This can be done by extrapolating computations
carried out expensively, but infrequently, at a coarse sampled set of scales. This
insight can reduce the computational cost considerably [48]. The speed-up in done
in pre-computing image features for feature pyramids.

Let 𝐼𝑠 denote 𝐼 captured as scale 𝑠 and 𝑅(𝐼, 𝑠) denote image 𝐼 re-sampled by scale
𝑠. The channel image is denoted by Ω and the sampling factor 𝜆, defined at [48].
Suppose 𝐶 = Ω(𝐼) has been computed. It is possible to predict channel image
𝐶𝑠 = Ω(𝐼) at a new scale 𝑠 using only 𝐶. The standard approach is to compute
𝐶𝑠 = Ω(𝑅(𝐼, 𝑠)), ignoring the information contained in already computed 𝐶 = Ω(𝐼).
The following approximation is proposed:

𝐶𝑠 ≈ 𝑅(𝐶, 𝑠) ⋅ 𝑠−𝜆Ω (21)

On per pixel basis, the approximation of 𝐶𝑠 in Equation 21 is noisy. The accuracy
of the approximation for 𝐶𝑠 improves if information is aggregate over multiple pixels
of 𝐶𝑠. A simple strategy for aggregating over multiple pixels and thus improving
the robustness is to downsample and/or smooth 𝐶𝑠 relative to 𝐼𝑠 (each pixel in
the resulting channels will be weighted sum of pixels in the original full resolution
channel). Downsampling 𝐶𝑠 also allows for faster pyramid construction. For object
detection the channels are downsampled by a factor of 4 to 8 (e.g., HOG uses 8 × 8
bins).
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A feature pyramid is a multi-scale representation of an image 𝐼 where channels
𝐶𝑠 = Ω(𝐼𝑠) are computed at every scale 𝑠. Scales are sampled evenly in a log-
space, starting at 𝑠 = 1, with typically 4 to 12 scales per octave. An octave is
the interval between one scale and another with half or double of the value. The
standard approach to constructing a feature pyramid is to compute 𝐶𝑠 = Ω(𝑅(𝐼, 𝑠))
for every scale 𝑠.

The approximation in Equation 21 suggest straightforward method for efficiently
computing feature pyramid. Computing 𝐶𝑠 = Ω(𝑅(𝐼, 𝑠)) at one scale per octave
and estimating the rest provides a good trade off between speed and accuracy. The
cost of evaluating Ω within 33% of computing Ω(𝐼) at the original scale and channels
do not need to be approximated beyond half an octave. While the number of 𝑅 is
constant (evaluations of 𝑅(𝐼, 𝑠) are replaced by 𝑅(𝐶, 𝑠)), if each 𝐶𝑠 is downsampled
relative to 𝐼𝑠, evaluating 𝑅(𝐶, 𝑠) is faster than 𝑅(𝐼, 𝑠). The computational saving
of computing approximate feature pyramids is significant. The total cost is 4

3𝑛2 of
computing single up/downsample scale is only 33% more than the cost if computing
single scale features. Typically, detector is evaluated on 8 to 12 scales per octave,
and so an order of magnitude saving over computing Ω densely, and intermediate
𝐶𝑠 are computed efficiently through resampling afterwards.

4.3.3 AdaBoost

AdaBoost (Adaptive Boosting) [67] is a non-linear binary classification algorithm
that uses several weak learners to learn a strong classifier. In AdaBoost each tree
contains three stumps. Stumps are the simplest weak classifiers. It has been shown
that level 2 decision tree perform well using AdaBoost [28]. Since the introduction
of AdaBoost, the boosting principle has been used in numerous algorithms, each of
them claiming to be superior to others. In the context of image classification it is
unclear method is best in practice. Experiments comparing AdaBoost, Realboost,
and LogitBoost show insignificant performance differences [41].

Algorithm 2 presents AdaBoost training phase. Let 𝑥⃗1, ..., 𝑥⃗𝑁 be a set of training
samples and 𝑦1 … 𝑦𝑁 , 𝑦 ∈ {−1, 1} desired outputs. AdaBoost algorithm learns a
strong classifier 𝐹𝑇 = ∑𝑇

𝑡=1 𝑓𝑡(𝑥𝑖), where 𝑓𝑡 = 𝛼𝑡𝑦𝑖ℎ𝑡 is a weak learner returning
a real valued confidence in the classification of the sample 𝑥𝑖. Each weak learner 𝑡
produces hypothesis ℎ(𝑥𝑖) in combination with a weight 𝛼𝑡. 𝑇 layer classifier will
be positive if the sample is positive and negative otherwise.
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Algorithm 2: Discrete AdaBoost training algorithm
input : 𝑥⃗1, ..., 𝑥⃗𝑁 - samples

𝑦1 … 𝑦𝑁 , 𝑦 ∈ {−1, 1} - desired outputs
𝐸(𝑓(𝑥), 𝑦, 𝑖) = 𝑒−𝑦𝑖𝑓(𝑥𝑖) - error function

output: 𝐻(𝑥) = ∑𝑇
𝑡=1 𝛼𝑡ℎ𝑡(𝑥𝑖) - strong classifier.

Initialise weights 𝑤1,0 …𝑤𝑛,0 to 1
𝑁

for 𝑡 = 1, … , 𝑇 do
Choose weak learner 𝑓𝑡(𝑥):
Find weak learner ℎ𝑡(𝑥) minimizing 𝐸𝑡 = ∑𝑖 𝑤𝑖,𝑡𝑒−𝑦𝑖ℎ(𝑥𝑖)

Choose 𝛼𝑡 = 𝐹𝑡−1(𝑥) + 𝛼𝑡ℎ𝑡(𝑥)
Add to ensemble:
𝐹𝑡(𝑥) = 𝐹𝑡−1(𝑥) + 𝛼𝑡ℎ𝑡(𝑥)
Update weights:
𝑤𝑖,𝑡+1 = 𝑤𝑖,𝑡𝑒−𝑦𝑖𝛼𝑡ℎ+𝑡(𝑥𝑖) for all 𝑖
Re-normalize 𝑤𝑖,𝑡+1 so that ∑𝑖 𝑤𝑖,𝑡+1 = 1

The AdaBoost algorithm minimizes the total error ∑𝑖 𝑒− ∑𝑇
𝑡=1 𝛼𝑡𝑦𝑖ℎ𝑡(𝑥𝑖)), by sequen-

tial selecting ℎ𝑡 and computing 𝛼𝑡 greedily. At each step the goal is to minimize:

𝐸𝑡 = ∑
𝑖

𝐷𝑡(𝑖)𝑒−𝛼𝑡𝑦𝑖ℎ𝑡(𝑥𝑖) (22)

with coordinate descent using two stage algorithm:

1. Select the best weak classifier from the candidate pool minimizing 𝐸𝑡.
2. Compute the 𝛼𝑡 by taking 𝑑𝐸𝑡

𝑑𝛼𝑡
= 0.

An important property of AdaBoost is that after certain number of rounds, the test
error still descends even the training error is not improving. This makes AdaBoost
less prone to overfitting problem than many other classifiers. This is because for
any data (𝑥, 𝑦),

margin(𝑥, 𝑦) = 𝑦 ∑ 𝛼𝑡ℎ𝑡(𝑥)
∑𝑡 𝛼𝑡

(23)

margin(𝑥, 𝑦) essentially gives the confidence of the estimation 𝑦 to 𝑥. The margin
is directly tied to the discriminative probability. There are three direction to reduce
the test error:

1. increase the margin (related to training error).
2. reduce the complexity of the weak classifier.
3. increase the size of training data.
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AdaBoost and the different variations of AdaBoost approach asymptotically the
posterior distribution [67]:

𝑝(𝑦|𝑥) =
𝑒2𝑦 ∑𝑡 𝑎𝑡ℎ𝑡(𝑥)

1 + 𝑒2𝑦 ∑𝑡 𝛼𝑡ℎ𝑡(𝑥) (24)

4.4 Classification

After the detection the areas found from the image, a set of new features are com-
puted and features are classified using a classifier. When using dense image features,
the dimensions are commonly reduced before classification using dimension reduc-
tion techniques (such as PCA or LDA). Finally, the data is classified.

4.4.1 Linear discriminant analysis

It is beneficial to reduce the dimensionality of the features to improve perform-
ance. LDA [37] was chosen for projecting the original feature representation to
lower manifolds. LDA is an embedding technique, maximizing inter class variance
while minimizing the intra class variance. The LDA projection thus tries the best
discriminate among classes. The solution can be obtained by solving an eigenvector
problem. By construction LDA can lead to an embedding space with a number
of dimensions less than the number of classes. For example, in the case of traffic
signs there are less than 100 classes and number of HOG descriptors dimensions
is 1568. By doing LDA on the HOG features, the dimensionality of HOG features
can be reduced to the number of classes without significant loss of discriminative
information.

In other words, LDA [68, 37] searches for vectors 𝑥⃗ in the underlying space that
best discriminate between the classes 𝑦1...𝑦𝑁 corresponding to vectors. Given a
number of independent features relative to which the data is described, LDA creates
a linear combination of these yielding the largest mean differences between the
desired classes. For all the samples of all classes, two measures are defined:

1. Within-class scatter matrix, defined as:

𝑆𝑤 =
𝑐

∑
𝑗=1

𝑁𝑗

∑
𝑖=1

(𝑥𝑗
𝑖 − 𝜇𝑗)(𝑥𝑗

𝑖 − 𝜇𝑗)𝑇 (25)
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where 𝑥𝑗
𝑖 is the sample 𝑖 of class 𝑗, 𝜇𝑗 is the mean of class 𝑗, 𝑐 is the number

of classes, and 𝑁𝑗 the number of samples in class 𝑗.
2. Between class scatter matrix:

𝑆𝑏 =
𝑐

∑
𝑗=1

(𝜇𝑗 − 𝜇)(𝜇𝑗 − 𝜇)𝑇 (26)

where 𝜇 is the mean of all classes.

The goal is to maximize the between-class measure while minimizing the within-class
measure. One way to do this is to maximize the ratio

det(𝑆𝑏)
det(𝑆𝑤) . (27)

where det is the determinant function applied to matrix.

If 𝑆𝑤 is a nonsingular matrix then this ratio is maximized then the column vectors
of the projection matrix 𝑊 , are the eigenvectors of 𝑆−1

𝑤 𝑆𝑏. There are at most 𝑐 − 1
nonzero generalized eigenvectors and therefore an upper bound on 𝑓 is 𝑐−1, and that
at least 𝑡 + 𝑐 samples are required to guarantee that 𝑆𝑤 does not become singular.
To solve the problem intermediate space is often used. A common intermediate
space is PCA space [37]. This, the original 𝑡-dimensional space is projected onto an
intermediate 𝑔-dimensional space using PCA and then onto a final 𝑓-dimensional
space using LDA. LDA is based on a MAP of the class membership.

Algorithm 3: LDA dimension reduction.
input : 𝑥⃗1, ..., 𝑥⃗𝑁 - feature vectors

𝑦1 … 𝑦𝑁 - corresponding classes
output: ^⃗𝑥 - transformed feature vector
Compute class means 𝜇𝑖 = mean 𝑥⃗𝑦𝑖

Compute 𝑤 = 𝑆−1
𝑤 (𝜇𝑖 − 𝜇𝑗)

Project data ^⃗𝑥 = 𝑤𝑇 𝑥⃗

4.4.2 K-nearest neighbour classifier

The nearest neighbor decision rule [69] assigns an un-classified sample 𝑥⃗ to a class
that is the nearest compared to previously classified 𝑦1...𝑦𝑁 samples 𝑥⃗1, ..., 𝑥⃗𝑁 . The
nearest neighbour rule is interesting classification algorithm in the sense that it
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does not require training phase and the results are proven to be good. Algorithm 4
describes the decision (classification) rule.

Algorithm 4: KNN Classification
input : 𝑥⃗1, ..., 𝑥⃗𝑁 - feature vector set.

𝑦1...𝑦𝑁 - vector of classes corresponding to feature set.
𝑘 - number of the nearest neighbours to take into account.
𝑥⃗ - unknown feature vector to be classified.

output: 𝑦𝑐𝑙𝑎𝑠𝑠 ∈ 𝑦1...𝑦𝑁 - class of the sample vector
Calculate the distances ⃗𝑑 from 𝑥⃗ to each vector in 𝑥⃗1, ..., 𝑥⃗𝑁

Sort the ⃗𝑑 and order 𝑦1...𝑦𝑁 indices correspondingly to produce ⃗𝐶.
Pick 𝑘 first labels in ⃗𝐶 and calculate mode to get the 𝑦𝑐𝑙𝑎𝑠𝑠

Various distance measures can be used, for example L1 norm, corresponding to
absolute distance (L1) or L2 distances. In the experiments of this thesis the L2 is
used. When using KNN the best practice for the 𝑘 is to use uneven number. This
ensures there is only a single mode value in the 𝑘 set. The easiest way for selection
𝑘 is cross validation maximizing the performance. As the number of samples grows
the KNN starts to approach Bayes decision rule and is bounded above by twice the
Bayes probability error [69].

4.4.3 Random forest classifier

Trees, a set of simple decision rules, are popular learning and classifying approaches
because they perform well when using unbalanced data sets. They are fast to build
and update. Random forests is an extension of tree classifier introduced by Breinman
and Cutler [42] in 2001, where multiple trees are used in voting scheme. To classify
a sample, the classification of each random tree in the forest is taken into account.
The class label of the sample is the one with majority of votes.

There are various different algorithms used to create decision trees. Hunt’s Al-
gorithm [70] is one of the earliest and serves as a basis for more complex algorithms.
The decision tree is constructed recursively until each path ends in a pure subset
(each path taken must end with a class chosen). There are three steps repeated
until the tree is fully grown:

1. Examine the record data and find the best attribute for the first node.



51

2. Split the record data based on this attribute
3. Recurse on each corresponding child node choosing other attributes

Algorithm 5 describes the tree construction at high level.

Algorithm 5: Top down tree construction
input : 𝑡 - node of the tree.

𝑥⃗1, ..., 𝑥⃗𝑁 - feature vector set.
𝑆 - split decision method (Gini, Entropy or classification error).

output: 𝑡 - trained node of the tree
Apply 𝑆 to 𝑥⃗1, ..., 𝑥⃗𝑁 to find splitting criterion
if 𝑡 ¬ leaf node then

Create children nodes of 𝑡
Partition 𝑥⃗1, ..., 𝑥⃗𝑁 into children partitions
Recurse on each partition

How the tree is split is based on what kind of attributes the tree deals with. If
the trees are dealing with binary attributes binary splits are used and when dealing
with nominal, ordinal and continuous attributes either binary or multi-way splits
are used. Certain attribute is selected based on how successful the split will be.
The measure how pure each split will be can be calculated and then chosen. How
successful these splits is measured using the GINI, Classification Error and Entropy.
Another choice is how deep the tree will be. There is no certain measures to end
splitting, the correct value must be set with cross validation or by pruning the tree
after it has been fully grown. The pruning is the inverse of three growing and means
removing the splits from the tree contributing the least to the validation error.

4.5 Multi-object tracking and trajectory estimation

The object tracking can be used to reduce the computation time of the detection
algorithm. By combining the Hungarian algorithm [61] with Kalman filter [57] it
is possible to estimate the trajectory of the detections and predict next appearance
position, reducing the search area of next detection phase. In this thesis implement-
ation the objects are tracked in 3D with Kalman filter, to make the filter linear.

The camera used in the experiments uses a sampling rate of 30 Frames Per Second
(FPS). For the performance reasons every 10th frame is used. Therefore, the change
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of location and between frames is relatively large in two adjacent frames. The size
of the window and the centre position of moving target is considered. After the
moving objects have been detected, process preparations for subsequent moving
object tracking is needed. The detection search window is made slightly larger than
the object size reducing noise interference and increase processing time. The Kalman
motion tracking model can be divided into three submodules: motion model, feature
matching, and model update.

4.5.1 Kalman filters for trajectory estimation

Mathematically Kalman filter [57] is an estimator that predicts and corrects the
states of wide range of linear processes. It is not only efficient practically but also
theoretically. The optimal state is found with the smallest possible variance error,
recursively. However, an accurate model is essential requirement.

In Kalman filter 𝑥𝑘 is state vector representing the dynamic behaviour of the object,
subscript 𝑘 indicates the discrete time. The objective is to estimate 𝑥𝑘 from the
measurement 𝑧𝑘. 𝐹 is the state transition matrix transforming the last estimation
to the current one and 𝐻 is the measurement matrix. Both 𝐹 and 𝐻 have the
size of [𝑛 × 𝑛] where 𝑛 is the dimension of the state space, and 𝑤𝑘 is the process
noise with covariance 𝑄, and 𝑒𝑘 is the measurement noise with noise covariance 𝑅.
Mathematical description of Kalman filter can be divided into four phases:

1. Process equation:
𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝑤𝑘−1 (28)

where 𝐴 represents the transition matrix and 𝑥𝑘 the state at time 𝑘 − 1 to
k. Vector 𝑤𝑘−1 is the Gaussian process noise 𝑁(⋅) with following normal
probability distribution 𝑝(𝑤).

2. Measurements equation:
𝑧𝑘 = 𝐻𝑥𝑘 + 𝑒𝑘 (29)

where 𝐻 is the measurement matrix and 𝑧𝑘 is the measurements observed at
time 𝑘 − 1 to 𝑘 respectively. 𝑣𝑘 is the Gaussian measurement noise 𝑁(⋅) with
normal probability distribution 𝑝(𝑣).

3. Time update equations:

Equations 28 and 33 describe a linear model at time 𝑘. As 𝑥𝑘 is not measured
directly, therefore the information provided by measured 𝑧𝑘 is used to update
the unknown states 𝑥𝑘. Apriori estimate of state ̂𝑥−

𝑘 and covariance error 𝑃 −
𝑘
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(𝑒𝑘 = 𝑥𝑘 − ⃗𝑥𝑘) estimate is obtained for next time step 𝑘 by computing:

̂𝑥−
𝑘 = 𝐹 ̂𝑥𝑘−1 + 𝑤𝑘 (30)

𝑃 −
𝑘 = 𝐹𝑃𝑘−1𝐹 𝑇 + 𝑄 (31)

4. Measurement update equations:

These equations are associated with the feedback of the system. The objective
is to estimate aposteriori estimating ̂𝑥𝑘, a linear combination of the apriori
estimate and the new measurement and the new measurement 𝑧𝑘

𝐾𝑘 = 𝑃 −
𝑘 𝐻𝑇 (𝐻𝑃 −

𝑘 𝐻𝑇 + 𝑅)−1 (32)

̂𝑥𝑘 = ̂𝑥−
𝑘 + 𝐾𝑘(𝑧𝑘 − 𝐻 ̂𝑥−

𝑘 ) (33)

𝑃𝑘 = (1 − 𝐾𝑘𝐻)𝑃 −
𝑘 (34)

𝐾𝑘 is the Kalman gain computed by above the measurements update equation.
After the aposterior state estimate ̂𝑥𝑘 and aposterior error estimate 𝑃𝑘 is
computed by the measurement 𝑧𝑘. The time and measurement equations
are calculated recursively with previous aposterior estimates to predict new
aprior estimate. This recursive behaviour of estimating the states is one of the
highlights of the Kalman filter.

4.6 Segmentation

Segmentation is a necessary step in evaluation the condition of the traffic signs.
Segmentation algorithm consist of three parts: Thresholding the colour channels
[11], creating a seed image based on the thresholding results [12], and using the
seed image as a set of starting points for the region growing algorithm [64]. The
approach is not very efficient in sense of time and robustness. The seed image helps
to overcome problems arising from the incomplete thresholding. Algorithms 6 and 7
describes the algorithms used for segmentation. Figure 17 illustrates the steps in
the segmentation using the algorithms.
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a) b) c) d)

Figure 17. Illustration of the segmentation process images step by step: a) original; b)
HSV thresholded; c) seed points from the red segmentation; d) the final mask where both
red and yellow seeds are used with region growing.

4.6.1 Colour thresholding

The colour thresholding starts by converting RGB images to HSV colour space.
HSV values are normalized to a range between 0 ≤ 𝐻𝑆𝑉 ≤ 255. The HSV colour
space is chosen because Hue colour channel is invariant to shadows and highlights,
excluding specular reflections. The normalization of values is done to improve the
speed and to make the values easier to handle.

The hue threshold value is considered priori. Saturation and value channels are used
to specify and avoid the achromatic subspaces in HSV colour space. When the hue
value of colour of the pixel in the input image with the specific colour range and
the value is not in the achromatic area then the corresponding value in the output
image is excluded from evaluation.

4.6.2 Seeded region growing

The output image of HSV segmentation is then divided into subimages to be used as
a seed image for the region growing algorithm [64]. A seed is initiated if the amount
of white pixels in the output image is above certain threshold. Region growing
algorithm removes noise and other small objects.

Seeded region growing [64] performs a final segmentation of an image with respect
to a set of points, known as seeds. The seeds are first grouped into 𝑛 sets. It is
in the choice of seeds that the decision of what is a feature of interest and what is
irrelevant or noise is embedded. Given the seeds, seeded region growing then finds
tessalation of image into regions with the property connecting each component of a
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Algorithm 6: Seed image creation algorithm
input : 𝐼𝑟𝑔𝑏 - RGB image

𝐻𝑚𝑖𝑛, 𝐻𝑚𝑎𝑥 - Hue thresholds
𝑆𝑚𝑖𝑛 - Saturation threshold
𝑉𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥 - Value thresholds
𝑆𝑠 - Seed image area size
𝑇𝑠 - Seed threshold

output: Seed image 𝐼𝑠𝑒𝑒𝑑
𝐼𝑜𝑢𝑡 = 0, 𝐼𝑠𝑒𝑒𝑑 = 0
Convert RGB image 𝐼𝑟𝑔𝑏 into HSV colour space image 𝐼ℎ𝑠𝑣
Normalize all 𝐼ℎ𝑠𝑣 channels between 0 ≤ 𝐻𝑆𝑉 ≤ 255
if (𝐻𝑚𝑖𝑛 ≤ 𝐻(𝑖, 𝑗) ≤ 255) ∨ 0 ≤ 𝐻(𝑖, 𝑗) ≤ 𝐻𝑚𝑎𝑥 then

𝐼𝑜𝑢𝑡(𝑖, 𝑗) = 1
if 𝑆(𝑖, 𝑗) < 𝑆𝑚𝑖𝑛 then

𝐼𝑜𝑢𝑡(𝑖, 𝑗) = 0
if ¬(𝑉𝑚𝑖𝑛 ≤ 𝑉 (𝑖, 𝑗) ≤ 𝑉𝑚𝑎𝑥) then

𝐼𝑜𝑢𝑡(𝑖, 𝑗) = 0
Divide 𝐼𝑜𝑢𝑡 into 𝑆𝑠 × 𝑆𝑠 sub-images 𝐼𝑠𝑢𝑏
for ∀𝐼𝑠𝑢𝑏 do

Calculate number of white pixels 𝑛𝑤ℎ𝑖𝑡𝑒
if 𝑛𝑤ℎ𝑖𝑡𝑒 ≥ 𝑇𝑠 then

Add white pixel into seed image 𝐼𝑠𝑒𝑒𝑑

region to exactly one seed group. The region growing is presented as in Algorithm 7.

The process evolves inductively from seeds, namely, the initial state of the sets
𝐴1, 𝐴2, … , 𝐴𝑛 [64]. Each step of the algorithm involves the addition of one pixel to
one of the above sets at step 𝑚.

Let T be the set of all as-yet unallocated pixels bordering at least one of the regions

𝑇 = {𝑥 ∉
𝑛

⋃
𝑖=1

𝐴𝑖|𝑁(𝑥) ∩
𝑛

⋃
𝑖=1

𝐴𝑖 ≠ ∅} (35)

where 𝑁(𝑥) is the set of immediate neighbours of the pixel 𝑥. It is common to use
rectangular eight connected grids. If 𝑥 ∈ 𝑇 and 𝑁(𝑥) meets just one of the 𝐴𝑖, then
it can be defined 𝑖(𝑥) ∈ {1, 2, … , 𝑛} to be index so that 𝑁(𝑥) ̂𝐴𝑖(𝑥) ≠ ∅ and to define
𝜙(𝑥) to be measure of how different 𝑥 is from the region it adjoins. The simplest
definition of 𝜙(𝑥) is

𝜙(𝑥) = |𝑔(𝑥) − mean
𝑥∈𝑇

[𝑔(𝑥)]| (36)
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where 𝑔(𝑥) is the grey value of the image point x. If 𝑁(𝑥) meets two or more of
the 𝐴𝑖 is taken 𝑖(𝑥) to be value of 𝑖 so that 𝑁(𝑥) meets 𝐴𝑖 and 𝜙(𝑥) is minimized.
Alternatively in this circumstance the pixel 𝑥 can be classified as a border pixel and
append it to the set 𝐵 of already found border pixels.

Then 𝑥 ∈ 𝑇 is taken as
𝜙(𝑥) = min

𝑥∈𝑇
{𝜙(𝑥)} (37)

This completes step 𝑚 + 1. The process is repeated until all pixels have been
allocated. The process commences with each 𝐴𝑖 being just one of the seed sets.
Definitions in Equations 36 and 37 ensuring the final segmentation is into regions
as homogenous as possible given the connectivity constraint.

Algorithm 7: Seeded region growing
input : 𝐼 - Greyscale image

𝑛 - seed point groups 𝐴1, 𝐴2, … , 𝐴𝑛 (or 𝐼𝑠𝑒𝑒𝑑 with labels)
𝜙 - threshold for acceptance

output: 𝐼𝑙𝑎𝑏𝑒𝑙 - Label image
Initialise label image 𝐼𝑙𝑎𝑏𝑒𝑙 = 0
Put neighbours of initial seed points into 𝑃𝑠𝑒𝑒𝑑

while 𝑃𝑠𝑒𝑒𝑑 ≠ ∅ do
𝑦 = 𝑃𝑠𝑒𝑒𝑑

Extract the neighbours 𝑦𝑛ℎ𝑜𝑜𝑑 of 𝑦
if 𝑦𝑛ℎ𝑜𝑜𝑑 higher than 𝜙 then

Add 𝑦𝑛ℎ𝑜𝑜𝑑 to 𝑦𝑔𝑟𝑜𝑤

if 𝑦𝑔𝑟𝑜𝑤 ∉ 𝐼𝑙 then
Add 𝑦𝑔𝑟𝑜𝑤 to 𝐼𝑙𝑎𝑏𝑒𝑙 with label of 𝑦
Update the mean of corresponding region
Add the new points to 𝑃𝑠𝑒𝑒𝑑

4.7 Condition assessment and features

The purpose of condition analysis is to find out condition category the sign belongs
to. The condition is analysed using two features, colour variance via k-means [49]
and amount of edges inside the sign. Algorithm 8 describes the process on high
level. The condition assessment algorithm combines many parts introduced before,
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including colour spaces, colour normalization, standardization, and segmentation.

Algorithm 8: Condition assessment algorithm overview
input : 𝐼𝑟𝑔𝑏 - Image containing traffic sign

𝐵𝐵𝑠 - Bounding Box of traffic sign
𝑆𝑟 - Resize size
𝑀 - Classification model

output: 𝑆𝑐𝑜𝑛𝑑 - Sign condition (1-5)
Apply the Grey world colour constancy algorithm to image 𝐼𝑟𝑔𝑏

Crop the traffic sign 𝐼𝑠𝑖𝑔𝑛 from image using 𝐵𝐵𝑠

Apply segmentation Algorithm 6 to 𝐼𝑠𝑖𝑔𝑛 to extract 𝐼𝑠𝑒𝑒𝑑

Apply region growing Algorithm 7 to 𝐼𝑠𝑖𝑔𝑛 to extract 𝐼𝑚𝑎𝑠𝑘

Resize image 𝐼𝑠𝑖𝑔𝑛 to size 𝑆𝑟

Convert 𝐼𝑠𝑖𝑔𝑛 image to HSV colourspace
Use HSV colour space for edge detection to get feature 𝑓1

Create colour vector from signs 3 dimensional RGB pixels
Cluster colour vector using k-means, k is the number of colours
Calculate means of clusters to get 𝑓2

Standardize the feature 𝑓1 and 𝑓2

Classify using KNN model 𝑀 to get 𝑆𝑐𝑜𝑛𝑑

4.7.1 K-means clustering

K-Means is a simple cluster analysis [71] algorithm. The goal of K-Means algorithm
is to find the best division of 𝑛 features into 𝑘 groups, so that the distance between
the group’s members and the corresponding centroids, representatives of the group,
is minimized. The difference between classification and clustering is that in cluster-
ing the classes of the features is unknown. Formally the goal is to partition the 𝑛
entities into 𝑘 sets in order to minimize the within-cluster sum of squares. K-means
clustering is presented in Algorithm 9. The stopping criteria is normally that if
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during one iteration no feature vector changes group, the execution stops.

Algorithm 9: K-means clustering
input : 𝑥⃗1, ..., 𝑥⃗𝑁 - set of feature vectors

𝑘 - number of clusters the features are divided
output: ⃗𝜔𝑘 - label vector with 𝑘 labels
Select 𝑘 random seed ⃗𝑠𝑘 out of ⃗𝑥1, … , ⃗𝑥𝑁

Set the cluster mean ⃗𝜇𝑘 = ⃗𝑠𝑘

Set the label corresponding to 𝑥⃗1, ..., 𝑥⃗𝑁 as empty 𝜔𝑘 = ∅
while Cluster means ⃗𝜇𝑘 change do

for 𝑛 = 1 … 𝑁 do
𝑗 = arg min𝑗′ | ⃗𝜇𝑗′ − ⃗𝑥𝑛|
Reassign vector to 𝜔𝑗 = 𝜔𝑗 ∪ ⃗𝑥𝑛

Recompute centroids ⃗𝜇𝑘 = 1
|𝜔𝑘| ∑𝑥∈𝜔𝑘

⃗𝑥

4.7.2 Canny edge detection

Canny edge detector is a simple edge detector used for edge detection from grey-scale
images [29]. The algorithm is more complex than just simple filtering. It contains
hysterisis threshold where upper and lower thresholds are compared for uncertain
edges. Canny recommended a upper:lower ratio between 2:1 and 3:1. The algorithm
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itself consists of 5 high level steps as shown in Algorithm 10.

Algorithm 10: Canny edge detection algorithm
input : 𝐼 - image

𝑡𝑚𝑖𝑛 - lower Canny threshold
𝑡𝑚𝑎𝑥 - upper Canny threshold
𝜎 - variance for the Gaussian filter

output: 𝐸 - black and white edge image
Create a Gaussian smoothing filter 𝐺(𝑥, 𝑦) = 1

2𝜋𝜎2 𝑒− 𝑥2+𝑦2
2𝜎2

Create edge filters 𝑆𝑥 = [1, 2, 1]𝑇 × [−1, 0, 1] and 𝑆𝑦 = 𝑆𝑇
𝑥

Smooth the image 𝐼 ← 𝐼 ⊗ 𝐺
Get the edges 𝐺𝑥 ← 𝐼 ⊗ 𝑆𝑥 and 𝐺𝑦 ← 𝐼 ⊗ 𝑆𝑦

Compute the gradient magnitude 𝐺 ← √𝐺𝑥
2 + 𝐺𝑦

2

Compute the gradient direction 𝜃 ← arctan(𝐺𝑦
𝐺𝑥

), and round to closest 𝜋
4 angle

Compute non maximal suppression 𝐸 ← nonmaximal_supression(𝐸)
Apply hysteris threshold 𝐸 ← 𝐸 > 𝑡𝑚𝑎𝑥 ∪ 𝐸 > 𝑡𝑚𝑎𝑥(𝑡𝑚𝑖𝑛 < 𝐸 < 𝑡𝑚𝑎𝑥)
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5 EXPERIMENTS AND RESULTS

In this Section the used datasets, experiments and results are presented. Result
presented for traffic sign distance evaluation, but not for full TSI process, because
of the Ground Truth (GT) data available. The colour segmentation results are not
presented separately, but in combination with condition analysis results.

5.1 Datasets and evaluations

Different kinds of data was used for experiments in TSD, TSC and sign condition
analysis. Three datasets were used: the Swedish summer dataset for sign detection
and classification, the Finnish winter roads dataset collected in the TrafficVision
project for TSR performance assessment, and the Lappeenranta road sign’s dataset
collected also in the project for traffic sign condition analysis.

All performance evaluation are done using a laptop with Intel i5-4200 processor,
with performance intensive code programmed using Streaming Single instruction
stream multiple data Streams Extensions 2 (SSE2) extensions. Algorithms run on
a single thread if not otherwise notified. The testing computer has 8 gigabytes of
memory. The code for the project was written in Matlab and C.

5.1.1 Cross validation

The goal of the classification algorithm is to build a model which makes accurate
predictions on the training set. Because of this, classifiers tend to perform very well
on the data they were trained on, provided they have the power to fit the data.
Training set accuracy is not a good indication how well the classification process
will perform when classifying new data outside of the training set. Other measures
are needed to give an idea of how accurate the classification will be when it will be
deployed.

The cross-validation process provides a much more accurate picture of systems true
accuracy. In cross-validation, the data is divided into a larger training set and a
smaller validation set, then train on the training set and use the validation set to
measure the accuracy. The training set is usually made larger if there is not enough
data available to present all possible feature variations. To be a good measure of
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accuracy, the validation data has to represent the range of inputs the classifier is
likely to encounter. This has two important implications:

1. It is better to randomly select the validation examples from the existing col-
lection of data. The validation set has to be diverse.

2. Accuracy and usefulness of the cross-validation process depends on having a
data set representing the full range of possible inputs. For example, if work is
being done on a machine vision application and samples have been gathered
only under a very specific set of lighting conditions, cross-validation will not
help to determine how well the system will perform under different lighting
conditions.

There are different approaches to selecting the training and validation sets. One
simple approach is to randomly select, e.g., 80% of the existing data is used for
training and 20% to use for validation. There is a risk that by ‘unlucky’ coincid-
ence the validation points contain a disproportionate number of difficult or obscure
examples. To counter this, in the evaluation of the results k-fold cross validation is
performed.

In 𝑘-fold cross validation the data is first randomly sorted and then divided into
𝑘 folds, for example 𝑘 = 10 would mean dividing the data into 10 parts. Then 𝑘
rounds of cross validation is run. In each round, one of the folds is used for validation
and the remaining for training. After training the classifier its accuracy is measured
on the validation data. Mean accuracy over the 𝑘 rounds is the cross validation
accuracy.

5.1.2 Data format for experiments

The experiments were conducted using same data format, extended BB, for all the
datasets. BB is the rectangle drawn around a single traffic sign in image by four
corner points. Each traffic sign bounding box object has the following fields:

• lbl: a string label describing object type (eg: ”mandatory”).
• bb: [l t w h] BB indicating predicted object extent.
• occ: 0/1 value indicating if BB is occluded.
• bbv: [l t w h] BB indicating visible region (can be [0 0 0 0]).
• ign: 0/1 value indicating BB was marked as ignore.
• ang: [0-360] orientation of BB in degrees.
• class: [n] value indicating the signs class.
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• condition: [g s c d] sign condition general, structural, condition, damage.

One text file holds the information of traffic signs of one image. The file ”001.txt”
corresponding to the image ”001.jpg” containing two traffic signs would then contain
two lines after storing:

• special 1630 845 580 559 0 0 0 0 0 0 0 511 3 5 3 5
• mandatory 1613 112 589 532 0 0 0 0 0 0 0 423 2 4 2 4

5.1.3 Dataset 1: Swedish summer dataset

Several public datasets are available for traffic signs detection and classification
including Belgian [16], German [13] and Swedish [17] datasets. In the experiments
the Swedish Summer [17] dataset is used, because of the similarities with Finnish
traffic signs, including similarity in pictograms and colouring of the signs.

The Swedish Summer dataset provides 20 000 images from video sequences of which
20% have been annotated [17]. The dataset consists of continuous video sequences,
recorded on a single tour and at the day. Accordingly, the same traffic sign appear
repeatedly several times in the dataset. Lighting conditions and driving scenarios
(rural, urban highway) have little variance. In the experiments the Swedish summer
dataset is used for both TSD and TSC.

TSD and TSC use traffic sign identification numbers corresponding to the Finnish
traffic signs. The identification 361 is a general identification for every speed limit,
the corresponding speed is added after the number 361. Different identifiers are
presented in Table 2.

For experiments the data is divided into two sets, the train set and the test set.
The division is based on the division introduced by the original authors of the data.
For the evaluation the annotations are converted into BB GT object format for
processing. After removing ”undefined”, ”blurred misc signs”, ”urdbl”, ”other” and
”n/a ” signs statuses and ”urdbl” types there are total 6639 annotations left. Out
of those ”blurred”, ”sideroad”, ”other” and ”occluded” are marked to be ignored
because of the average low quality (the training with these is not meaningful). This
removes 3447 from total signs.

Traffic sign annotations are not necessary squared or frontal. Since the correct
rectification is not available, the annotations are aligned by stretching them into
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Table 2. Different sign classes available in the Swedish summer dataset.

ID Name Sign category Signs in category
211 Priority road Priority 443
231 Give way Priority 134
232 Stop and give way Priority 4
371 No standing or parking Prohibitory 76
372 No parking Prohibitory 93
415 Allowed direction. Turn left or right Mandatory 24
417 Pass this side. Left of right Mandatory 309
36130 Speed limit 30 Prohibitory 20
36150 Speed limit 50 Prohibitory 145
36160 Speed limit 60 Prohibitory 17
36170 Speed limit 70 Prohibitory 196
36180 Speed limit 80 Prohibitory 103
36190 Speed limit 90 Prohibitory 27
361100 Speed limit 100 Prohibitory 91
361110 Speed limit 110 Prohibitory 25
361120 Speed limit 120 Prohibitory 28
Total 1725

squared model window in both TSD and TSC. A big problem with Dataset 1 is a
large amount of the signs in are very small and the number of annotated signs in
classes and overall number of classes is small. For TSD the size of the traffic signs
is limited to 28 × 28 pixels or larger. The relative number of small annotation is
illustrated by the histogram in Figure 18.

5.1.4 Dataset 2: Finnish winter dataset

Approximately 20 hours of video material was collected for system testing in difficult
condition. The dataset contains videos in urban environment recorded from a van
and from main roads collected from a road maintenance vehicle. The camera was
chosen to be Garmin Virb Elite based on its specs and build in GPS. The camera
Charge-Coupled Device (CCD) had a pixel resolution of 1980 × 1080 and framerate
of 30 FPS. The camera has width of view of 151 ∘. The exposure time for the video is
controlled automatically based on average lighting of the view. The camera has also
optical image stabilization. In both vehicles the camera is placed inside the drivers
cabin. The lighting conditions are not selected but for the purpose of testing the
system in different environments including low light conditions. The video material
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Figure 18. Histogram of BB size distribution of the 6639 traffic signs in the Swedish
summer dataset. The size value used is mean of x + y dimensions.

includes GPS location data stored in GPS Exchange Format (GPX) for localization
testing.

5.1.5 Dataset 3: Lappeenranta road signs dataset

The dataset 3, Lappeenranta road signs dataset consists of 325 still images for traffic
sign condition analysis. The dataset contains 399 condition and class annotated
traffic signs. This dataset is collected using an ordinary Canon digital camera from
urban environment in good lighting conditions. The camera used has a CCD with
spatial resolution of 3264 × 2448 pixels. The images are taken by foot and the goal
was to collect traffic signs in as bad condition as can be found. There are also several
excellent quality signs for reference. The condition dataset has been annotated by
an independent expert who has annotated more than 100 000 traffic signs during
his career.

The annotations contain BB around the traffic sign, the condition information based
on three parameters, and sign class information. A single image can contain several
traffic signs. In total the dataset contains 397 annotated traffic signs in different
conditions. Cropped signs of this dataset is presented in Figure 19.



65

Figure 19. Traffic signs condition dataset shown cropped. Figure demonstrates the
amount of variance in lighting conditions and colours as well as reflections.

5.2 Detection tests

To assess TSD performance two different tests are performed:

1. Dataset 1 is split into three categories: mandatory, priority and prohibitory.
One detector was trained on each category. This approach is influenced by the
literature[3].

2. Whole Dataset 1 is used to train one detector.

All four detector models are trained using similar setup and algorithms presented
in Section 4. The training was performed in four rounds, with increasing numbers
of weak learners (32, 128, 512 and 2048). Each round adds 3640 hard negative
windows (images of the background). It is expected that the traffic signs are frontal
in relation to the camera, no other aspect ratios were used. The parameter for HOG
and feature pyramid can be found in Tables 3 and 4 shows the AdaBoost model
parameters. The parameters are chosen based on the literature [3].
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Table 3. HOG, colour features, and feature pyramid parameters for TSD.

Name Explanation Value
modelDs model height+width without padding 50 × 50
modelDsPad model height+width with padding 56 × 56
nPerOct number of scales per octave 8
nOctUp number of upsampled octaves to compute 0
smooth radius for channel smoothing 1
concat if true concatenate channels true
cEnabled if true enable CIE LUV colour channels true
gradMag if true enable gradient magnitude channel true
normRad normalization radius for gradient m 5
normConst normalization constant for gradient m 0.005
HOGEnabled if true enable gradient histogram channels true
nOrients number of orientation channels 6
clipHog value at which to clip hog histogram bins 0.2

Table 4. AdaBoost parameters for the TSD.

Name Explanation Value
X0 negative feature vectors [N0xF]
X1 positive feature vectors [N1xF]
nBins maximum number of quantization bins 256
maxDepth maximum depth of trees 1
minWeight minimum sample weight to allow split 0.01
fracFtrs fraction of features to sample for each node split 1
nWeak number of trees to learn 32, 128, 512, 2048
discrete train Discrete-AdaBoost true

Assessing the performance of traffic signs detection algorithm is not simple. The de-
tectors are limited by near real time constraints needed by the common applications.
Other commonly evaluation criteria include the amount of true positives(successful
detections), number of false negatives (signs not detected at all), false positives
(detections not really signs), and the overlap between the GT BB and detection
BB (also known as Area Under Curve (AUC)). The performance of the detection
is measured using two main indicators False Positives Per Image (FPPI) and miss
rate. FPPI is the amount of detections that are not traffic signs compared to the
total number of images. Miss rate describes what percentage of the real signs are
missed (true negatives) during the detection and is calculated simply by 1 - the true
positive rate. The evaluation of the experiments are performed per image (not per
window). In the tests the detection is considered to be successful when the overlap
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of detection BB is more than 0.8 of the GT BB area. This is standard practice in
detection and 0.8 is considered a high overlap rate [3].

Because there are very few false negatives, as presented in Table 5 the simple detec-
tion performance is not enough. Figure 20 shows Receiver Operating Characteristic
(ROC) curve where false positives are compared to the amount of false negatives.
Because the results are too good to compared on normal scale the Figure 21 shows
ROC curves comparing FPPI to miss rate on a logarithmic scale. The mean miss-
rates reported in the legend of Figure 21 is based on 200 samples of curve (in the
range 0 to 1 FPPI, evenly spaced log space). The false positive and 50 strongest
negative windows for the three category detectors are presented in Figures 22, 23,
and 24.

Table 5. The false negatives in detection using dataset 1 and three separate detectors.

Type Mandatory Priority Prohibitory Total
Train 379 666 1075 2120
Test 515 830 936 2281
False negative 3 12 4 19
Relative error 0.006 0.014 0.0042

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fp

fn

 

 
mandatory
priority
prohibitory
combined

Figure 20. Traditional ROC curve for category detectors and combined detector. Num-
ber of false positives against number of false negatives.

The detector training time for mandatory category was 416 seconds, priority cat-
egory 446 seconds and for prohibitory 416 category seconds. The detector described
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Figure 21. ROC curves for category detectors and combined detector. Logarithmic miss
rate compared to FPPI value computed over category detectors.

above runs on average 15 FPS on whole images from Swedish Summer dataset with
resolution of 1260 × 960 pixels (0.06 seconds per image).

a) b)

Figure 22. Mandatory sign category detector results: a) True negatives; b) False posit-
ives.
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a) b)

Figure 23. Priority sign category detector results: a) True negatives; b) False positives.

a) b)

Figure 24. Prohibitory sign category detector results: a) True negatives; b) False posit-
ives.

5.3 Classification tests

The evaluation of the TSC was done using Dataset 1. The evaluation of the clas-
sification is easy, compare the classification results to the GT and see if there is a
classification error. The dataset a provides 16 different signs classes for classification.
The performance is evaluated using two different features: HOG and grey-scale, two
different dimension reduction techniques: LDA and PCA and two different clas-
sifiers: KNN and Random Forests. The parameters for methods are presented in
Tables 6 and 7. KNN uses 𝑘 = 5 (selected by experimenting) and PCA 300 most
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significant principal components explaining over 95% of the variance. The classi-
fication performance is evaluated by comparing the classifier predictions to ground
truth. When obtaining results the maxDepth parameter of random forest had to be
limited below 64 to be able to fit the models into memory.

Table 6. HOG feature parameters for classification.

Name Explanation Value
I greyscale input image 28 × 28
binSize spatial bin size 8
nOrients number of orientation bins 9
clip value at which to clip histogram bins 0.2
crop crop boundaries false

Table 7. Random Forest parameters for classification.

Name Explanation Value
M Trees to train 30
H Classes amount based on data
N1 Datapoint for training each tree 5*sample number/M
F1 Features to sample for each split sqrt(F)
split Splitting criteria gini
minCount Minimum of data points to allow split 1
minChild Minimum datapoint allowed at child nodes 1
maxDepth Maximum depth of three 64

Using 10-fold cross validation one training fold contains 1̃741 samples and one testing
fold 1̃65 samples. The classification results with different algorithms are presented
in Table 8. Feature column is the feature used, dimension reduction is the dimen-
sion reduction technique, ”Classifier” is the used classifier and the 𝜇 is the mean
classification error from 10-fold cross validation. The errors of the highest ranking
combination HOG+LDA+KNN are shown in Figure 25 as confusion matrix. The
computation times of different algorithms are presented in Table 9.
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Table 8. Classification results for different classifier, features and dimension reduction
techniques.

Feature Dimension reduction Classifier 𝜇 error
HOG LDA KNN 0.0146
HOG PCA KNN 0.0295
HOG LDA Random Forest 0.0493
HOG PCA Random forest 0.1215
HOG none Random Forest 0.0424
Grey Image none Random Forest 0.1387
Grey Image PCA KNN 0.1957
Grey Image LDA KNN 0.1251

Table 9. Dimension reduction times for different dimension reduction techniques and
features. HOG vector contains 1568 dimensions and grey feature contains 784 dimensions.
PCA reduces dimensions to 200 long and the LDA to number of classes - 1.

Feature PCA time LDA time
HOG 3.7397 1.4178
Grey Image 0.5689 0.1269
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Figure 25. Confusion matrix showing correctly classified percentage. The values are
taken from 10-fold cross-validation results over all 10 rounds with the corresponding per-
centages computed. The right side shows the sample amount in each GT class.
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5.4 Distance evaluation

During the collection of data no GT data for the assessment of localization accuracy
was collected. The distance estimation to the sign is one of the error prone parts of
traffic sign localization, and the GT data can be made easily available. The distance
estimation accuracy is evaluated by comparing 6 images with GT measured using
laser distance meter and values obtained using Equation 7. The laser distance meter
is very accurate, but the place where the image is taken is not exactly the same as
lasers. Pictures are taken using the Garmin Virb presented before. The camera
producer does not give exact focal length or width of view parameters for camera,
and they are approximated using calibration. Camera performs lens correction for
images automatically. The BBs for calculating heights are placed by hand and the
average of height and width is computed for projection. All the tested signs are 640
mm wide. The results are presented in Table 10.

Table 10. Distance of signs measured with laser distance meter and approximated with
machine vision. All values are in meters.

Image Laser measurement Machine vision Difference error %
1 23.15 23.68 -0.53 -2.2
2 25.63 26.28 -0.65 -2.5
3 14.27 14.46 -0.18 -0.9
4 08.11 07.99 0.12 1.4
5 09.46 10.06 -1.05 -6.2
6 16.26 16.27 -0.01 -0.1
𝜇 16.15 16.46 -0.31 -1.9

5.5 Condition analysis

Dataset 3 was used for the evaluation of condition analysis. The traffic sign condition
was evaluated using the collected GT conditions. The sign GT condition category
is thought to be a class dividing the signs into five separate classes based on the
condition category. Condition assessment algorithm uses two features: the amount
of variance within a sign colour and the amount of edges in the sign.

Figure 26 of the two features against each other and the condition categories. The
parameters for segmentation are in Table 11. The parameters for condition analysis
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itself are presented in the Table 12. For both phases the parameters were selected
by hand, because of there is no GT available for the traffic sign segmentation.

Table 11. Segmentation algorithm parameters.

Name Explanation Value
𝐶𝑠𝑝𝑎𝑐𝑒 colourspace HSV
𝑉𝑡𝑟𝑒𝑠ℎ Value V threshold 𝑉 > 30
𝑆𝑡𝑟𝑒𝑠ℎ Saturation S threshold 𝑆 > 120
𝐻𝑅𝑡𝑟𝑒𝑠ℎ Red H threshold 10 > 𝐻 > 240
𝐻𝑌𝑡𝑟𝑒𝑠ℎ Yellow H threshold 23 < 𝐻 < 35
𝐻𝐵𝑡𝑟𝑒𝑠ℎ Blue H threshold 143 < 𝐻 < 155
SCS Seed image cell size 17
𝐴𝑐𝑐𝑡𝑟𝑒𝑠ℎ Seed image acceptance threshold 60
𝑅𝐺𝑡𝑟𝑒𝑠ℎ Region growing threshold 40

Table 12. Condition analysis parameters.

Name Explanation Value
CCAlg colour constancy algorithm Greyworld
𝐼𝑠𝑖𝑧𝑒 Evaluation image size 400 × 400
𝐶𝑎𝑛𝑛𝑦𝑡𝑟𝑒𝑠ℎ Canny threshold Relative to the highest gradient
𝐺(𝜇, 𝜎) Canny Gaussian sigma and variance 2, 1
𝐾𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 Number of K-means centers Relative to signs
𝐾𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 Number of KNN neighbour 5

The condition evaluation results are evaluated in two ways: correctly classified and
amount of error. The amount of error is used because in the reality the traffic
signs condition are continuous, not discrete as presented by the five categories. This
metrics error is the absolute difference of distances between test and GT vector.
After the difference of absolute distances the mean is calculated to tell the error
relative to each sign. Using this metrics the classification result is better the closer
it is to zero.

The mean error based on 10-fold cross validation based on the mean of absolute
distances is 0.583 when using all the data from the condition analysis dataset. The
error is not deterministic because of the random C-means clustering initiation, but
the results shows consistency. Segmentation computation time for 397 signs was 87.2
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Figure 26. Condition assessment features computed from Dataset 3. Features are stand-
ardized to 𝜇 = 0 and variance 𝜎 = 1. The numbers correspond to the image numbers in
the dataset.

seconds (0.22 second per sign), feature computation time for same signs 98.6 seconds
(0.24 seconds per sign), and K-fold cross validation using KNN in 0.12 seconds for all
the features and folds. The confusion matrix for direct class comparison is presented
in Figure 27. The condition category 1 had to be omitted from the test because
there was only one sample of the class.
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Figure 27. Confusion matrix showing incorrectly classified conditions of traffic signs by
class. The values are taken from 10-fold cross-validation results over all 10 rounds with
the corresponding percentages computed. The right side shows the amount of samples in
each GT class.
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6 DISCUSSION

This chapter discusses the obtained results are discussed. The system implementa-
tion is presented shortly. The limitation and possible problems with the results and
the whole system are discussed. Finally, thoughts for the future research topics and
the future of the system in general are presented.

6.1 System implementation

In a complete system, detection, classification, and condition analysis are expected
to run jointly. Figure 28 shows the performance of the current system results.
The classification, feature extraction times are not shown separately for TSD and
TSC because the times are very small. The performance indicators for the Figure
are presented in Section 5. The classification experiments expected well aligned
detection BB. The detection algorithm localization accuracy is good, compared to
Dataset 1. Unfortunately system performance could not be verified on really difficult
conditions. To evaluate the performance and test difficult conditions (fog, snowfall,
lowlight, and rain) effect on the performance a new dataset is needed.

The system inputs video and GPX files and returns as output the sign location GPS
coordinates and class. Every 10th frame in the 30fps video is processed, because of
performance limitations. This way, the system runs in real time even when com-
puting detection on the full frames. There were difficulties adding the tracking into
the system because the sparsity of the detection results. The similar sign locations
are combined trough non-maximal suppression, but more advanced tracking and
correspondence problem solving would be better solution. The system implement-
ation returns the inventory results in GeoJSON format, the results can be shown
and verified on a map.

6.2 Traffic sign inventory

The low spatial resolution impairs the discrimination of the details such as a single
digit on a speed limit signs or the icons on danger signs. The detection is possible
even when the signs are far away, but the information is not usable because the class
of the sign or sign condition can not be determined. When the work was started,
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Figure 28. The relevant performance indicators of the best performing methods of TSI
system presented in this thesis.

Dataset 1 looked reasonably big. In practice the training consecutive images do not
contribute to diversity of Dataset 1 because they are often very similar to each others
and often cause an undesired imbalance of dependant images. Another problem is
the incorrectly classified samples in the datasets’ GT data.

The localization of BBs in TSD determines the success of the accurate localization
into GPS coordinates. One of the big contributors to localization error, distance
evaluation, was experimented on with a limited dataset. GT data about the real
locations of traffic signs would be needed for a more conclusive experimentation.
The detector gets several hits for one traffic sign was not taken into account. More
accurate localization distance assessment could be derived by combining both meth-
ods, the triangle similarity and the point when a sign reaches edge of the image.

6.2.1 Detection

The results from detection shows peculiarities with Dataset 1. Few detections are
evaluated as false positives because incorrectly labeled, or missing data. When look-
ing at false negatives, it seems that the signs are localized accurately, though set
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contains inaccurately labeled data samples. The priority signs are badly localized,
and it can be inferred that the training has failed. In some cases [3], detection is
performed using different aspect ratios in finding signs, but in the TSI it is unne-
cessary. The signs that are not frontal (such as side roads) are not relevant for TSI
or driver assistance. The AdaBoost is able to learn wider range of values than just
a single sign category. The results are very similar for three separate detectors and
the single detector, even with same number of weak learners.

In the traffic sign inventory, false negatives are worse than missing true positives
detections. As the vehicle passes multiple shots are obtained from a single traffic
sign, and it is not necessary to detect every sign in one image. False positives
could be detected again in classification phase, but the simplest solution would be
to directly get only true positives from the detector. The threshold for acceptance
should be adjusted correctly. In real life situation, as weather and lighting conditions
change, the threshold or even the detector and the classifier has to be adjusted to
the environment. The performance can be improved using more tightly computed
feature pyramid, but in the system of the thesis, the parameters are optimized for
both performance and speed.

6.2.2 Classification

The classification results are good. It would be interesting to compare the pos-
terior probabilities of the incorrect classifications to see how certain the classific-
ation results are compared to correct classifications. This would require use of a
different classification method. From an application point of view, processing time
and memory are important aspect then choosing classifier, and the simple KNN
was selected. The memory requirements were not experimented on. It is notable
how well LDA+KNN combination, a very simple and computationally inexpensive
classifier performs, in comparison to more complex approaches like random forest.

LDA is affected by imbalance, the unequal presentation of classes, in Dataset 1. The
random forest classifier should not theoretically suffer from this unbalance. Each
decision tree in the forest is trained on a different, random sample of the training
data. Therefore, the class distribution in this sample can be very different from
the overall dataset. Unfortunately the experiments were unable to confirm this,
probably due to bad parameters in tree training. The errors are similar using KNN
and random forests. The two priority road signs are miss categorized because of the
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wrong labels in GT data. The results in both TSD and TSC are in line with results
found from literature.

6.3 Condition analysis

Segmentation failed for all the signs in the ”end of speed limit area” class, because
of the grey background colour of the sign. The result of vector distance metric
seem better than they actually are. In Dataset 3, the condition categories are not
balanced evenly and the KNN select the most probable class. The features work as
intended, but the evaluation criteria parameters (such as the exclusion of vegetation
growth) are problematic. This is demonstrated in Figure 29, where signs get high
response from the number of edges, but are categorized as being in good condition.
There are few outliers where the segmentation failed (5 in total using Dataset 3), but
majority is segmented correctly even without dynamic threshold that could improve
thresholding performance. Outliers in the results were studied by hand, and the
clear outliers in features are explainable trough failed segmentation. The 𝑘-means
clustering does not always converge similarly because of the randomized seed, there
is small variance in the results.

a) b) c)

Figure 29. Disparity between the method and condition criteria: a) Image 108, condition
category 4; b) Image 2, condition category 3; c) Image 227, condition category 3. Numbers
correspond with the numbers in Figure 26.
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6.4 Limitations

The system itself would benefit from a more complicated program structure. Para-
meters and methods would be more easy to optimize trough grid search and clearly
defined performance indicators. The current system implementation is not mobile
and the data transfer from the camera to a computer is not straightforward. This
problem can be solved implementing the system on a mobile device. Then the data
can be easily transfered trough network connection.

One of the limiting factors is the size of Dataset 1. Larger, automatically collected
and maybe manually labeled dataset would allow more comprehensive testing and
also provide material for different environmental conditions. It is not perfectly clear
how well the methods could cope with different conditions. Error in distance alone
does not give the exact localization error, but gives an estimate of the amount of
the error. Sign GPS GT location data would be needed to perform exact evaluation
of the localization.

If the sign is in very bad condition, it is harder to detect or classify. The methods
for localization rely on the size of the signs being 640 mm wide or tall. There are
signs on the road sides that do not belong there and currently the implementation
does not contain methods to asses or evaluate them. The sign is always classified
into one of the trained classes. This can be fixed by using a classifier producing a
posterior probability.

6.5 Future research

The whole inventory and condition analysis process could be improved by incorpor-
ating environment specific information. For example, it is possible to add knowledge
of the location of the road to improved scene understanding. For the paradigm of
selective search for object recognition is an alluring option for TSD. The selection of
areas to be searched by the detector could be based on the dynamic colour threshold-
ing. The separability of the problematic blue traffic sign colour could be improved
by creating a model of the scene and the environment. Sky, road, and other areas
could be segmented into different areas. One of the problems in the condition ana-
lysis is the amount of free parameters. Automatic method for parameter validation
should be developed.
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As the signs get closer to the camera, the image becomes more accurate. When the
sign is too close, the relative motion of the sign in the camera view port is too fast,
and the signs gets blurry. There are several methods to evaluate information content
of the image, combine several shots into one higher quality image and reduce motion
blur, if the motion between the frames is known. This information is currently
unused, but in future it can be used to improve accuracy.

As part of the bigger picture the goal of getting the whole inventory and condition
analysis process to work mobile equipment seems oblivious next step. The use of
mobile phones as equipment instead of expensive computation equipment is made
possible with both respect to mobile computation power and camera performance
in the last few years. The use of camera with GPS separate from the computing
equipment has caused unnecessary complication such as the requirement to inter-
polate between GPS coordinates and not be able to control camera exposure time
and refresh rate. If mobile environment would be used, practical optimization is
easier because increased control over the platform, such as camera aperture and
image exposure time.

For road equipment inventory and maintenance, the inventory of the traffic signs
and the condition of the surface of the sign is not the only possibility. For example,
the angle of sign posts and the inventory of the traffic sign posts are problems that
could be studied and have relevance in the context of road maintenance. In addition
to the methods presented here, the problem of signs posts requires text recognition
and the size of the signs is not constrained by the current 640 mm assumption.
Colour segmentation performance for detection would be interesting, and currently
untested approach against the bigger datasets and varying conditions.

Many of the important parts of the system are now in place. The data formats
have been defined, the possible problems with the algorithms identified, methods
for evaluation solidified, and future improvement directions outlined. One of the
important gains for the future is that there is now a baseline that new methods can
be compared to and if there is improvement, the advances can be included into the
system easily. A single currently lacking area is the accurate localization data for
signs. Data could be produced by recording stationary GPS coordinates the signs
in the roads and collecting video of the same signs from a moving vehicle. The
stationary coordinates could then be used as GT for evaluation.

Future research directions can be summarized as follows:
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• Selective search in object detection: The speed and accuracy can be
improved by integrating more case-specific information cues, such as colour,
movement, and visual saliency. The detector could intelligently choose how
fast and from where it would want to get the frames to maximize the efficiency.
This would eventually lead to rejecting the whole feature pyramid idea.

• Better and faster feature extractors: The HOG features are not the
only possibility. Automatically parametrized Gabor filters are a possibility
to improve feature extraction. The feature pyramids could be made faster to
create and compute in Fourier frequency space, and if the feature model can
be tested in frequency space, the speed improvement would be by an order of
magnitude. To distinguish similar classes, better the maximal spread of colour
features could be studied. The current grey conversion in classification is not
optimal in the sense of class separability.

• Traffic sign post condition and content evaluation: Much is shared
between traffic signs and sign post, but there are still unanswered questions,
such as how to recognize letters and compute the distance to object that are
not always the same size. These should be studied to extend the system to
include sign posts location, content, and condition.

• Tighter integration of processes and mobile platform: The overall
process of traffic sign inventory and condition analysis could be tighter coupled
for performance gains. For example, features computed for detection can be
used in recognition and condition analysis. Streamlining the process would
be possible to run the whole process on the fly with mobile phone equipment.
This would require rethinking the data flow inside and between the algorithms.

• Better evaluation metrics and datasets: The evaluation metrics and data-
sets are not perfect, and there are several problems with the existing one, such
as the diversity of the data. Better and reasonable evaluation metrics should
be created to evaluate the results in a standardized way. A good example for
traffic signs inventory would be collection of video material with GPS loca-
tions, that can be used to assess the inventory performance and total location
error.

• More concise condition analysis: The future research to condition analysis
could focus on statistical versus feature based methods comparison. Parameter
values and their effects should be studied for more accurate assessment of traffic
sign condition and additional features should be added to give the model more
descriptive power. The invariance of the features to different condition changes
should also be ensured. The current implementation does not make it possible
to assess the bleaching of the colours, but it can be added easily. The condition
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estimation could be based on physical measurements. This would reduce the
effect of human annotator performance to the results.

• Synthetic data: Currently, the TSD and TSC methods rely on large amount
of traffic sign images in different environmental conditions to model the dy-
namic environment. If the different environment can be modeled on the sign
model images (as shown in Figure 3), it would remove the need for large train-
ing dataset. Therefore, it would be possible to create superior methods that
are not limited by the amount and diversity of labeled training data. It might
be possible to use the same approach for traffic sign condition analysis.
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7 CONCLUSION

The goals of this research was set to evaluate the robustness of TSD and TSC, and
to study automatic location information assessment. The results from these three
modules form a core of a TSI system. First, the problem was reviewed and a picture
of a process with sub-problems were outlined. The sub-problems were studied further
trough the literature and possible solution to each of them were proposed. The
solution studied further, compared, and algorithms were implemented to solve the
problems. Finally, the algorithms were tested against three different datasets. Two
of the datasets were collected during the TrafficVision project, one for condition
analysis and one for the localization assessment.

This research is the first step in automating and combining traffic sign condition
analysis with TSI and in reducing road maintenance costs in Finland. TSD and TSC
are actively researched topics. The methods are not usually optimized for traffic
signs or roads as the environments. This would make further research into topic
interesting. In general, there is no previous research available for the localization of
the traffic signs or global location assessment to GPS coordinates. The condition
analysis of traffic signs has not been researched before, in exception of automatic
reflectance assessment, and in this sense this thesis has novelty value.

The machine vision is ready for implementation a TSI system for automatic asset
management. The TSD phase of this thesis uses rigid, HOG+colour feature de-
tector. The detector reaches performance of 96.00% and runs around 15 FPS. The
best results for TSC were obtained using HOG+LDA+KNN combination classify-
ing 98.55% of the signs correctly. When the TSD and TSC results are combined
with information between multiple frames can be results be further improved. The
automatic condition analysis results look good, but still more research is required to
estimate the robustness of condition analysis, especially against human performance.
The current condition analysis phase per sign mean error of 0.583.

This thesis also evaluated many practical aspects, such as camera, data formats, and
the environments’ effect on the TSI. The process can be further improved by adding
more environment and traffic signs specific information. The proposed system shows
promising results, and the implementation of corresponding machine vision solution
is feasible.
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