
Master Thesis Report Page 1

Saint Petersburg State University of Information Technologies, Mechanics and Optics

Department of Telecommunication Systems

PERCCOM Master Program

By

Georgiou Stefanos Istvan

Implementing Green IT approach for transferring Big Data over

Parallel Data Link

Examiners: Examiner 1 (to be defined by PERCCOM consortium)

Examiner 2 (to be defined by PERCCOM consortium)

Supervisors: Professor Andrey Y. Shevel

 Professor Eric Rondeau

20 of May 2015

Master Thesis Report Page 2

Saint Petersburg State University of Information Technologies, Mechanics and Optics

Department of Telecommunication Systems

PERCCOM Master Program

By

Georgiou Stefanos Istvan

Implementing Green IT approach for transferring Big Data over

Parallel Data Link

Examiners: Examiner 1 (to be defined by PERCCOM consortium)

Examiner 2 (to be defined by PERCCOM consortium)

Supervisors: Professor Andrey Y. Shevel

 Professor Eric Rondeau

20 of May 2015

Master Thesis Report Page 3

This thesis is prepared as part of an European Erasmus Mundus programme PERCCOM - Pervasive

Computing & COMmunications for sustainable development.

This thesis has been accepted by partner institutions of the consortium (cf. UDL-DAJ, nÁ1524, 2012

PERCCOM agreement).

Successful defense of this thesis is obligatory for graduation with the following national diplomas:

¶ Master in Master in Complex Systems Engineering (University of Lorraine)

¶ Master in Pervasive Computing and Computers for sustainable development (Lulea University of
Technology)

¶ Master of Science in Technology (Lappeenranta University of Technology)

Master Thesis Report Page 4

Abstract

 The whole research of the current Master Thesis project is related to Big Data transfer

over Parallel Data Link and my main objective is to assist the Saint-Petersburg National

Research University ITMO research team to accomplish this project and apply Green IT

methods for the data transfer system. The goal of the team is to transfer Big Data by using

parallel data links with SDN Openflow approach. My task as a team member was to compare

existing data transfer applications in case to verify which results the highest data transfer

speed in which occasions and explain the reasons. In the context of this thesis work a

comparison between 5 different utilities was done, which including Fast Data Transfer (FDT),

BBCP, BBFTP, GridFTP, and FTS3. A number of scripts where developed which consist of

creating random binary data to be incompressible to have fair comparison between utilities,

execute the Utilities with specified parameters, create log files, results, system parameters,

and plot graphs to compare the results.

Transferring such an enormous variety of data can take a long time, and hence, the

necessity appears to reduce the energy consumption to make them greener. In the context of

Green IT approach, our team used Cloud Computing infrastructure called OpenStack. Itôs

more efficient to allocated specific amount of hardware resources to test different scenarios

rather than using the whole resources from our testbed. Testing our implementation with

OpenStack infrastructure results that the virtual channel does not consist of any traffic and we

can achieve the highest possible throughput. After receiving the final results we are in place to

identify which utilities produce faster data transfer in different scenarios with specific TCP

parameters and we can use them in real network data links.

Keywords: Big Data, Linux, Utilities, transfer, network, cloud.

Master Thesis Report Page 5

Acknowledgments

 I would like to express my gratitude to my advisors Professor Andrey Y. Shevel for his

continuous guidance, support, and patience during the whole research. As always he was very

helpful giving me a lot of information with a quick response to all my emails and he always

took time to make every question I had as clear as possible. Special thanks also to Prof. Eric

Rondeau for all the advices about how to keep the topic close to the research field. In addition

, I would like to thank Prof. Jari Porras for his guidance, valuable help and knowledge,

insightful comments and being always present to answer my questions also for my thesis

report he gave me the most crucial steps how to prepare a professional looking Master Thesis

Report. Also about the Big Data team of ITMO State University which was there to help me

and guide me with any question I had.

 Last but not least, I would like to thank my family and all my friends for their support

and significant help during one of the hardest periods in my student life. For all my friends

who motivated me and be by my side for every step I took. Special thanks to Baptiste Louis,

Alexandre De Masi, Iqbal Ahmed, Fisayo Caleb, Rohan Nanda, Ana Kalisnik, Constandinos

Fasoulis, Theodoros Anagnostopoulos, Marat Akhmadeev, Nenad Zoric, and Elena

Shkuratova. During this period also some lectures who inspired me and motivated me to

become better and more professional in my field of study, my deepest gratitude for each one

of them. Many special thanks also to all the members of PERCCOM and to also for those who

organized the whole program, it was a life-time experience that I will never forget. The

knowledge and memories I have acquired though the whole time of 2 years by visiting

different countries as France, Finland, Sweden and Russia will stay always in my mind as the

biggest gain for accomplishing this Master Program. For last I would like to thank Erasmus

Mundus program for giving me this opportunity and unique life experience to study into 4

different countries.

Master Thesis Report Page 6

Table of Contents

LIST OF SYMBOLS AND ABBREVIATIONS .. 8

1 INTRODUCTION ... 10

1.1 BACKGROUND ... 10

1.2 GOALS AND DELIMITATIONS .. 12

1.3 RESEARCH QUESTIONS ... 16

1.4 STRUCTURE OF THE THESIS .. 16

2. THESIS .. 18

2.1 LITERATURE REVIEW ... 18

2.2 REFERENCES SUMMARY ... 26

3. IMPEMENTATION .. 27

3.1 FILE TRANSFER UTILITIES .. 27

3.1.1 Fast Data Transfer (FDT) ..28

3.1.2 BBCP..30

3.1.3 BBFTP ..31

3.1.4 Globus Toolkit - GridFTP ...33

3.1.5 File Transfer Service (FTS3) ...35

3.2 TESTBED IMPLEMENTATION ... 37

3.2.1 Testbed Characteristics ...37

3.3 SCRIPTS IMPLEMENTATION ... 40

3.3.1 Test-data Script ...40

3.3.2 CopyData [utilityName] ..41

3.3.3MultipleExecutionsCopyData [utilityName] ..44

3.3.4 createData [utilityName] ...49

3.3.5 modifyFile [utilityName] ..49

3.3.6 plotGraphs [utilityName] ..50

3.3.7 set-passwordless-ssh ...51

3.4 CLOUD INFRASTRUCTURE .. 52

3.4.1 Virtual Machines...52

Master Thesis Report Page 7

3.4.2 Instances Volumes ..54

3.5 SCENARIOS .. 56

3.5.1 Scenarios Description ...56

3.5.2 Alternative Transferring Data ways ...58

4. RESULTS ... 60

4.1 EXPLANATION ABOUT RESULTS AND GRAPHS ... 60

5. DISCUSSION, CONCLUSION AND FUTURE WORK 72

5.1 DISCUSSION ... 72

5.2 CONCLUSION ... 73

5.3 FUTURE WORK .. 75

REFERENCES.. 77

Master Thesis Report Page 8

List of Symbols and abbreviations

PERCCOM PERvasive Computing and COMmunication for Sustainable Development

TCP Transmission Control Protocol

UDP User Datagram Protocol

FDT Fast Data Transfer

FTS File Transfer Service

VM Virtual Machine

RTT Round Trip Time

MSS Maximum Segment Size

LAN Local Area Network

WAN Wide Area Network

LHC Large Hadron Collider

HDD Hard Disk Drive

K,M,G,T Kilo, Mega, Giga, Terra

IP Internet Protocol

SOA Service Oriented Architecture

OS Operating System

QoS Quality of Service

CERN European Organization for Nuclear Research

I/O Input/Output

SSH Secure Shell

BASH Bourne Again SHell

FTP File Transfer Protocol

CLI Command Line Interface

DTN Data Transfer Node

SDN Software Defined Network

PS Post Script

PDF Portable Document Format

NAT Network Translation Protocol

Master Thesis Report Page 9

RSA Ron Rivest, Adi Shamir and Leonard Adleman

GUI Graphic User Interface

RAM Random Access Memory

NFS Network File System

VCPU Virtual Central Processing Unit

ACK Acknowledgement

RWIN TCP Receiver Window

ARQ Automatic Repeat-Request

RoCE RDMA over Converged Ethernet

RDMA Remote Direct Memory Access

SCP Secure CoPy

Data Link By the term data link, in the related thesis work is meant from one point of the

Internet to another point of the Internet, and not from point to point connation.

ITMO Information Technologies, Mechanics and Optics

PNPI Petersburg Nuclear Physics Institute located 40Km away from ITMO server

TLS Transport Layer Security

ACL Access Control Lists

RTT Round Trip Time

AQM Active Queue Management

http://en.wikipedia.org/wiki/Ron_Rivest
http://en.wikipedia.org/wiki/Adi_Shamir
http://en.wikipedia.org/wiki/Leonard_Adleman

Master Thesis Report Page 10

1 INTRODUCTION

 At this part of the thesis an introduction is given about the topic, motivation and

purpose of the current thesis work. Delimitations are also expressed and have been described

in details and finally a thesis structure is given where brief information can be found what

each part includes.

1.1 Background

 The purpose of this Master Thesis Project is to implement green IT approach for the

Big Data Transfer over Parallel data link by using tools and methods that we have learned

during our PERCCOM Master Program from different Universities. As it is widely spread

from most recent results presented by climate scientists alarming, the greenhouse gas (GHG)

in the atmosphere is growing faster than predicted and the need to reduce the emissions is even

more essential. Scientists, economists and policy makers are calling for emissions target of at

least 20% below 1990 levels in 2020 as mentioned in the Smart 2020 report from (The

Climate Group, 2008). To keep the environment saves and healthy is responsibility for all of

us. Thus the necessity to develop Green Pervasive and Sustainable Systems is even more

crucial nowadays.

 The topic main concern is the Big Data (Beal, 2015) which is a huge and complex set

of data which makes it hard to process; analyze it by using on-hand database management

tools (White, 2012). The worldôs technological per-capita capacity to store information has

roughly doubled every 40 months since the 1980s as mentioned (Hilbert, and Lopez, 2011)

and as of 2012, every day 2.5exabytes (2.5*10^18) of data were created (Taylor, 2011). Also

challenging action is to store, maintain, search, share, transfer and visualize these Big Data

sets. Big Data has a variety of usage and huge impact in our lives.

 To achieve our goal we will run our test bed Big Data System and compare it with

different existing Big Data Systems based on multiple parameters and using different utilities

in the context of data transfer. Our main aim of comparison is to transfer as much data volume

Master Thesis Report Page 11

is possible in a short period of time. Generally speaking there are many hi-speed network of

10GBits or 100Gbits/second, but our aim is to transfer Big Data to less conventional

University connectivity for this project, and also testing transfers in Virtual environment as the

cloud which is one of the most evolving topics nowadays. As well known that data transfer

speed over network depends on many parameters but we will focus on specific ones which are

in the Transport Layer and more specifically at the TCP protocol which is responsible to

provide reliability, in-order data and error check delivery as mentioned from (Hunt, 2002).

After using those parameters conclusion is necessary to define which (parameters) and why

are affecting our transfer taking into account the scenarios and the data transfer applications

which we are going to use. Large variety of Linux tools have been used to accomplish this task

by any means. As mentioned above the lowest level tools used in these Master Thesis are the

TCP. Energy consumption has essential impact on this project because Big Data Systems are

running for a long period of time until the "job is done", and sometimes 24/7. The current

project is focused on Green IT which has an aim the sustainable development. In case to

achieve sustainability as explained by (Drouant, Rondeau, Georges, Lepage, 2014) in the

current work experiments will we executed to identify the most optimal parameters for the

data transfer applications since using a large amount of resource will not always transfer

datasets faster but it will consume needlessly system resources.

Master Thesis Report Page 12

1.2 Goals and Delimitations

 Goal of this Master Thesis Project is to test the test bed implementation which is

developed at ITMO Saint-Petersburg State University in order to transfer huge volume of data

as fast as possible from the source to destination (source has 2 servers). Both source and

destination are running Linux Red Had more details about the scenarios and implementation

will be given at chapter 3. As mentioned above in LINUX systems there are numerous

network parameters (watch parameters /sbin/sysctl -a | grep net | wc -l) which can be modified.

The test bed was implemented by a team of researchers here in ITMO State University of

Saint Petersburg and one of my objectives is to work close with the team to offer my

knowledge and my help to achieve the necessary results and conclusion for the above project.

 Main objective is to focus on the transport layer, and because reliability and data in

order which is important for Big Data Systems our target of modification is TCP protocol

(Hunt, 2002). However for Big Data the network link parameters are changing with the

duration of time, and in addition the network link (channel) bandwidth is shared with other

tasks and users. As a result of that link parameters will constantly change through the duration

of time, in that case TCP protocols parameters also need to change to adapt to the new

network (link) specifications.

 A future aim of the current project as mentioned is to transfer Big Data over parallel

data links. For the current implementation we are focus to transfer over single data link of

1Gbps bandwidth, in case to receiver deeper knowledge about the data transfer applications

and their implementation.

Some of the most important TCP parameters for TCP turning as mentioned by (Pillai,

2013) which are taken into account for this thesis are window size, packet loss parameters

which are dependent at throughput and RTT and maximum segment size (MSS). Final

expectation from the whole project is to test different utilities and suggest which work better

for each case/scenario and explain why we have this behavior regarding different scenarios.

 For the Big Data transfer file we are using five different Utilities (More detailed

information about the utilities and how to use them are given in chapter 3):

Master Thesis Report Page 13

i) Fast Data Transfer known as fdt (FDT Team, 2013) which is a written in java

and is capable to read and write at speed of disk in wide area networks.

ii) BBCP (Hanushevsky, 2015) is a utility for point to point network copying

data written from Andy Hanushevsky at Slac as tool for BaBar collaboration. It is capable of

transferring files at approaching line speeds in the WAN.

iii) BBFTP is file transfer software. It implements its own transfer protocol,

which is optimized for large files (larger than 2GB) and secure as it does not read the

password in a file and encrypts the connection information. (IN2P3 group, 2013)

iv) Globus Toolkit is an open source software toolkit used for building grids. It

is being developed by Globus Alliance and many others all over the world. A growing number

of projects and companies are using the Globus Toolkit to unlock of grids for their cause.

(Grid Alliance, 2014)

v) FTS3 is a service responsible for globally distributing the majority of the

LHC data across the WLCG infrastructure. Is a low level data movement service, responsible

for reliable bulk transfer for files from one site to another while allowing participating sites to

control the network resource usage. (Cern IT_SDC group, 2014)

 In case to run all those utilities to transfer data a number of scripts/programs were

created for that purpose. From all the executions data are need in case to compare the different

scenarios that we are going to test, by collection log files and plotting some graphs which

make it more visual for the research.

A large number of tests will be executed in purpose to get results to compare with

different parameters of the utilities, for that reason if would not be efficient to have a normal

server for this research and to execute scenarios one by one.

Cloud is one of the technologies which enter the scene as a main actor nowadays.

Interesting fact is to compare what is going on in the virtual environment by using data

transfer applications for Big Data before to test them in the global network of computers. For

Master Thesis Report Page 14

this case OpenStack which is a free and open-source cloud computing software platform as

said by (Red Hat, 2014) was suggested. (More discussion about OpenStack later chapter) We

have found this specific software easy to manage and handle many VMs, especially for our

purpose. Since we can launch many "Instances" of VMs we can assign different job to

different VMs and at the end extract the different results and compare then. Simultaneously

we complete our tests faster using OpenStack and also using less energy and no infrastructure

is needed. As mention in a PhD publication by (Guazzone, and Anglano, 2015) using Cloud

infrastructure you can maximize the profit by minimizing the amount of violations of the QoS

levels agreed with service providers and at the same time to lower the infrastructure cost, but

taking into account that reducing QoS violations and reducing the energy consumption is a

really challenging problem.

 Delimitation we had during the testing is that not all of the utilities are using

compression algorithms, some of them are using it and some do not. For testing purposed we

would like to have more ñfairnessò between the test subjects and a solution has to be provided.

A script has to be implemented which will create random uncompressible data where the user

can define the destination where the data will created, directory size, file size, desperation and

the block size (more details in Chapter 3.3.1). On the other hand since we cannot compress the

random binary data we have to push on the link the raw data as it is which it would not be

efficient and energy, but it can be considered as a trade-off for the research ñfairnessò.

 Other delimitation we have is the specific number of parameters we can use while

executing the current Utilities. As mentioned above in the current Chapter the number of TCP

parameters in a LINUX system (Scientific Linux 6.5) is 649 but the most of the Utilities are

accepting Number of Parallel Streams, TCP window size, sender and receiver buffer size. In

case we would like to change more parameters we have to change them manually located in

the path /proc/sys/net/ipv4 store them change in /etc/rc.d/init.d/network and restart every time

and then execute again the testing scenarios which will be too much of time consuming

procedure.

 Also another reason which can delimitate our tests is the hardware resources. A

primary thought was to create many senders and receivers to transfer and transfer to each other

data, each sender was going to have one receiver, but having a single server to run all this tests

we realized that this idea would be impossible because there are not many data lines on the

Master Thesis Report Page 15

server to transfer all those data and the results would not be clear to us. That is the reason why

we decide to schedule all the transfer using a single instance at the time.

 Most of the utilities as mentioned will be executed by the usage of scripts. Since itôs

necessary when a user use a large amount of parallel TCP streams and relatively high window

size the allocation of main memory which is needed is an equation of parallel streams

multiplied with the window size. In case the main memory is not sufficient the scripts will

hang there without giving any error message and a user may start a large script which may

need days until itôs finished.

 While testing and running the scripts in Virtual Environment other users can test and

run different executions at the same time. In that case the executions may be affected by each

other. In that case a good communications and scheduling would be really important.

Master Thesis Report Page 16

1.3 Research Questions

Number of different research questions:

¶ Which is the behavior of different data transfer applications inside a overr

virtual and real network channel.

¶ Which are the system parameters which affect the data transfer applications the

most.

¶ Define the data transfer applications parameters which are most optimal and

achieves the highest transfer speed in case to transfer Big Data.

1.4 Structure of the Thesis

This thesis is divided into five parts, which are structured as follows.

Introduction Part. In the first part called "Introduction", we provide the basic information

and purpose of this Master Thesis Implementation and we explain why is an important topic

especially nowadays. Definitions and main concepts are been defined also in this part but

explained later on with more details. A brief description is given which solutions we provide

to achieve the current implementation and what we expect to achieve. We define also the goals

and the delimitations of the thesis, also narrowing the goal to make it more interesting for the

readers.

Thesis Part. For the second part called "Thesis", we are giving explanation about a number

of different citing and references which we found useful because they are giving scientific

proofs and answers for our questions. At the end we provide a quick references summary from

what we consider important to be used in our Implementation.

Master Thesis Report Page 17

Implementation Part. For the third part called "Implementation", we are showing to the

readers how we implemented the whole idea we had, in general the research methodology

which was used. We are giving more in depth scientific, technical definitions and term about

the tools, scenarios, tests. Important to explain is also why we did it using that approach and

what we actually achieve by using different approaches, and why it was helpful.

Results and Discussions Part. For the fourth part of the thesis called "Results and

Discussion", where we summarize the work described in this thesis, comparing the results we

acquired, explain the results and giving answers to unanswered scientific questions, discuss

features about the limitations of our evaluation.

Conclusion and Future Plans Part. For the last part of the thesis called "Conclusion and

Future Plans", we are explain the whole concept of the thesis work, what we did and what we

had achieve by working on this topic and how it can be used for further more research. A

conclusion is given about which reason was that we gather the specific results and what can be

done to improve them. Future plans are also been discussed on this part.

References Part. All the citing and references that was used for this thesis work written in

Harvard style referencing.

Master Thesis Report Page 18

2. THESIS

 For this section of the thesis description is given about important paper which used as

citing and referencing for the current work. At the end of this chapter a summary of the papers

can be found.

2.1 Literature R eview

Big Data: Many companies nowadays are using Big Data, the proper definition of big data is

the data which exceeds the level of Giga Bytes (10^9B) produced daily. Although after a

company produced such amount of data they have to store it, analyze it, search it, transfer it,

visualize it and etc. Day by the day information and data size is increasing and it becomes

challenge to handle all these data. In case to handle Big Data special tools are needed. Also it

cannot be handled by using any of the most "relational database management systems" and

desktop statistics and visualization packages, requiring instead "massive parallel software

running on tens, hundreds, or even thousands of servers" as the author explains in (Beal,

2015). Big Data is also a crucial domain because of its usage fields. Many fields in the world

require Big Data like spot business trends, determine quality research, prevent diseases, link

legal citations, combat crime, determine real-time roadway traffic conditions.

Transport Control Protocol (TCP): For the current Master Thesis implementation TCP

protocol stack will be our lowest level tools. As widely known TCP is one of the core

protocols of the Internet Protocol suite (IP). TCP main advantage is to provide reliable data

transfer through the network, ordered and error-checked delivery. Thus the load on the

networks using TCP protocol the applications is higher than using UDP because of the packet

header that TCP apply, UDP which is rather simple protocol but not reliable. Also TCP has

Master Thesis Report Page 19

numerous parameters which can be changed (/sbin/sysctl -a | grep net | wc -l). At first TCP

protocol establish connection with the host and the server by using the three-way-handshake

which send a connection request message and the receive replay with an acknowledgement

(ACK) message to the sender and the sender replays back with another ACK message and the

data transfer is begin. While receiving data TCP ACKs the data in case to avoid and packet

lose by sending accumulated ACK not to load the link bandwidth further more. In case of

message loss retransmission of the lost data will be done. Before ending the connection end

connection request is send from the host to the server and an ACK message is received to by

the host that the connections has been terminated.

Transport Control Protocol tuning: It's considered as the main mechanism, technique to

adjust the network congestion avoidance parameters of a TCP connection for high-bandwidth,

high-latency networks. As mentioned from (Pillai, 2013) a well-tuned networks can perform

up to 10 times faster in some cases. Main attributes that we need to consider while tuning a

network are: Bandwidth-Delay product (BDP), Buffers, Window size, and Packet Loss:

Bandwidth-Delay Product: term which is used in conjunction with the TCP as the

number of bytes needed to fill a TCP "path". High performance network is equal to

very high BDP. Networks with large BDP are also known as Long Fat Networks

(FTNs). Bandwidth-Delay Product is the product of a data link's capacity (in bits per

second) and its end-to-end delay as said by (Plankers, 2013), and itôs a simple way to

calculate the RWIN size.

Buffers: For high performance network systems large buffers are required to handle

delays in the system, original TCP configurations supported buffers up to 64KiB-1

receive window size. Thus buffer size need to be scalable depending on the amount of

data arrived at the received node.

Window Size: also known as TCP Receive Window (RWIN) is the amount of data

which the receiver can receive without acknowledging to the sender. In case the sender

will not receive ACK for the first packet it stops and waits until a timeout event occurs

and then retransmits. Important fact to mark is that even without packet loss

windowing is a limit for the link throughput. Full network bandwidth sometimes may

Master Thesis Report Page 20

not been used because TCP waits for ACK messages before transmitting new data

packets.

Packet Loss: When packet loss events are occurring in the network congestion

avoidance algorithm is initiated. Depending on the congestion control algorithm the

MSS will be modified and that most probably will cause limitation on the network

performance.

Efficient Data Transfer Protocols for Big Data from : Brian Tierne, Ezra Kissel, Martin

Swany, Eric Pouyoul, Lawrence Berkeley National Laboratory, Berkeley, CA 94270 School

of Informatics and Computing, Indiana University, Bloomington, IN 47405 - As the world

evolves the need of data is growing day by day and its necessary to use more efficient data

movement protocols. Most tools which are used to move data are using TCP over sockets

which gives the data flow limitation at 20Gbps. RMDA over Converged Ethernet (RoCE) is a

high performance network data movement which is using minimum CPU. At the these paper

the authors are comparing performance of TCP, UDP, UDT, and RoCE over high latency

network paths of 10 and 40 Gbps, also shows how the Linux zero-copy system calls is

improving the Transmission Control Protocol(TCP) performance on Intel "Sandy Bridge"

PCI-Express 3.0 hosts. It is known that TCP suffer and have low performance over long-

distance, high-bandwidth networks (Barakat, Altaman, and Dabbous, 2000) (Molnar, Sonkoly,

and Trinh, 2009). Thus the need of proper tuning, an appropriate congestion control algorithm

and the low-loss paths are necessary. Although the link paths we will use for our

implementation are consists of 1Gbps we will try to use the feature with and without the Linux

zero-copy system calls. Expectations are to reduce the energy consumption of our Big Data

System by saving energy from the processor usage.

How to transfer large amount of data via network: Harry Mangalam - This specific

reference talks and explains the difficulties which are currently opposed of transferring large

amount of data through the network. By the meaning of large amount of data we mean TBs

which using simple or every day tools would take as big portion of time. Different tools and

protocols are proposed for this reference where the author explains the pros and cons of each

of the tools. Also a brief description is given about the usage and at the end we can also read

Master Thesis Report Page 21

comparison for the tools and difficulties that the author encountered during the testing. Details

are given about the size of the files which are wished to be transferred through the network as

the required time (real, user, and system time) for the whole procedure for each of the tools

that the author is using. Although we have to take into account that most of these tools are

Linux and Mac OSX compatible. Tools which are mentioned are bbcp, bbftp, Fast Data

Transfer (fdt), Globus Online, netcat, Aspera ascp.

A TCP Socket Buffer Auto-tuning Daemon: Shao Tao, School of Computing National

University of Singapore, Lillykutty Jacob, School of Computing National University of

Singapore, A.L. Ananda, School of Computing National University of Singapore. In the

context of LFN (Long Fat Networks) the paper explains the necessity to have different buffer

size instead of default as is known to be used for the TCP implementation. Well-tuned

networks can perform up to 10 times faster in some cases as said by (Rapier, Stevens, Bennett,

and Tasota, 2012). The implementation of a TCP socket buffer auto-tuning daemon

(Steinberg, and Pants, 2009) which is a computing program(software) running as a

background process seems to be the most convenient and appropriate solution to tackle this

issue. The possibility of the tuning daemon to run on different end devices and communicate

between each other in purpose to send and receive tuning information makes the

communications easy. Tuning Daemon consists of two parts which are the Auto-tuning and

Communicator. By receiving the ICMP Echo Request packets it can calculate, measure the

bandwidth and the delay which depends on the response of the tuning exchange messages and

calculate the Bandwidth Delay Product (BDP) to adjust the probing intervals and the optimal

socket buffer size for each of the TCP connections (connections are located at /proc/net/tcp).

The results clearly shows the increased throughput which is achieved through the daemon

usage.

Transport Protocols for Large Bandwidth-Delay Product networks: Rui Policarpo Duarte,

Instituto Superior Tecnico (IST) explains first of all the reason why the TCP protocol in

general is the main responsible mechanism for under-usage of the available bandwidth for

Large Bandwidth-Delay Product networks. Important to notice is while the BDP (Bandwidth-

Delay Product) continues to grow TCP performance became bottleneck itself as mention by

Master Thesis Report Page 22

(Duarte, 2008). A brief introduction and description is given for the congestions control

algorithms which are available or under development and an explanation about their pros and

cons for each situation. Thus for the BDP limitation for the networks different protocols are

given and compared for different scenarios and conditions. Five categories are classified: 1)

loss based, 2) delay based, 3) loss & delay based, 4) explicit congestion notification and 5)

split connections.

Self-tuning Price-based Congestion Control Supporting TCP Networks: Hao Wang,

Zuohua Tian, Department of Automation Shanghai Jiao Tong University of Shanghai, Qinlong

Zhang, Department of Economics University of Florence Italy. The publication focus a

method called AQM which main responsibility to improve the performance of end-to-end

congestion control on routers. SPC which is our main focus is the proposed self-tuning

congestion control scheme. An enhanced price with proportional-integral-derivative control

property is introduced into SPC to improve its capability of detecting and controlling network

congestion.

Power and Performance Management in Cloud Computing Systems: Marco Guazzone,

Prof Cosimo Anglano ,Armedeo Avogadro University of Eastern Piedmont. Nowadays the

higher ground in the IT industry is taken for the Service Oriented Architecture and to thread

"Everything as a Service". As it's known the aim of the cloud is to maximize the profit by

minimizing the amount of violations of the Quality-of-Service (QoS) levels agreed with

service providers and at the same time to lower the infrastructure cost. Among these costs one

of the most crucial is the energy consumption, and by running the on the cloud it plays a

primal role. In case to minimize the QoS violations and at the same time to reduce the energy

consumption is a conflict and challenging issue. In this thesis is proposed a framework to

automatically manage computing resources of cloud infrastructures. Through simulation, itôs

shown that significantly reduce QoS violations and energy consumption with respect to

traditional static approaches.

Master Thesis Report Page 23

Performance Modeling Power Consumption and Carbon Emissions for Server

Virt ualization of Service Oriented Architectures: Paul Brebner, Liam O'Brien, Jon Gray,

NICTA, Canberra Research Laboratory & Computer Science Laboratory, RSISE, ANU

Canberra, Australia. In this publications the authors main aim to provide information and

metrics how SOA (Linthicum, 2015) and Server Virtualization is more efficient and decreases

the greenhouse gas emissions. On the other hand using SOA combined with Server

Virtualization may significantly increase the risks such as saturation and Service Level

Agreement (Rouse, 2014) violations. A conclusion with an overview about potential problems

and benefits of SOA virtualization like reduction of throughput around 15%, 20-60% increase

of response time, also it lowers the total cost of deployment, enable maintenance of multiple

versions of services, and provides also emissions and power saving.

OpenStack: is a free and open-source cloud computing software platform that's also a reason

why is more suitable to be used for our test purpose. Users are developing their OpenStack

infrastructure as a service known as IaaS solution. OpenStack cloud software composed of a

series of interrelated projects that control pools of processing, storages, and networking

resources through a data center which users manage through a web-based "dashboard",

command line tools or a RESTful API. An OpenStack user can launch simultaneously

numerous different VMs (Virtual Machine) Instances with different OS (Operating Systems).

OS can be uploaded as images or installed on an Instance as .ISO, vmdk, qcow2, raw, VDI,

VHD and etc. Apart from uploading images users can also add a link from where OpenStack

Instance will receive the image to initiate an Instance. For each Instance users can select the

appropriate resource like number of VCPU main memory and HDD. Network can also be

created and it's important to define that the network runs NAT to provide more security from

the incoming traffic of OpenStack Network. Also security groups can be assigning in case to

allow specific incoming or out coming traffic. Snapshot is a feature which you can create

exactly the same needed image in case to launch a same instance more than one time.

OpenFlow: is a feature which enables to remote controllers to set from which part of the

network packets will move through network of switches. The developers are recommending at

Master Thesis Report Page 24

least two main controllers - a primary, and a secondary which will act as a backup. Separating

the control from the forwarding allows more sophisticated traffic management by using the

ACLs and routing protocols. Switches from different suppliers can be managed remotely using

a single open protocol by using the OpenFlow. (Gibilisco, 2012) Its inventors consider

OpenFlow an enabler of SDN. Network Administratiors can remotely access different

switches (in their network) in case to access their packet forwarding tables, for adding,

modifying and removing packet matching rules and actions. These rules/actions which are

being defined by the Network Administrator can be configured with lifespan and that leaves

the forwarding of matched packets to the switch at wire speed for the duration of those rules.

Controller's main responsibility is managed the unmatched packets which rules were not

defined how to handle them. Ability of the controller is also to decide what's going to happen

with those packets, like discard them, create new forwarding flow in the table rules to prevent

a structural flow of traffic between switch and controller. Controller has the feature also to

decide to forward the traffic by itself. OpenFlow protocol is found on the top of the TCP and

prescribes the TLS.

The Practical Obstacles of Data Transfer: Why researchers still love scp: Hai Ah Nam,

Jason Hill, Suzanne Parete-Koon from Oak Ridge National Laboratory focus on transferring

large datasets over network by using parallel streams. Researchers often under-utilize the

network and resort to painfully-slow single stream transfer methods such as scp to avoid the

complexity of using multiple stream tools as GridFTP and bbcp, that is a main reason why

these research focus on showing the difference between using multiple stream tools. Through

this research it was shown that multiple stream tools can achieve higher results in the context

of transfer speed. As a conclusion researchers should not spend countless hours trying to

achieve peak performance, rather, they should optimize their productive hours by allowing for

data transfer to occur seamlessly. Using the available utilities, data transfer can become much

less difficult and partially automated through scripts.

Transfer of large volume data over Internet with parallel data links and SDN:

byKhoruzhnikov S.E., Grudinin V.A., Sadov O.L., Shevel A.Y, Kairkanov A.B. The transfer

Master Thesis Report Page 25

of large volume data over computer network is important and unavoidable operation in the

past, now and in any feasible future. There are a number of methods/tools to transfer the data

over computer global network (Internet). In this paper the transfer of data over Internet is

discussed. Several free of charge utilities to transfer the data are analyzed here. The most

important architecture features are emphasized and suggested idea to add SDN Openflow

protocol technique for fine tuning the data transfer over several parallel data links.

Exploiting Network Parallelism for Improving Data Transfer Performance: by Gunter D,

Kettimuthu R., Kissel E., Swany M. Many scientific applications, including bulk data transfer,

can achieve significantly higher performance from vir- tually loss-free dedicated resources

provisioned on shared links, than from opportunistic network use. Research and Education

(R&E) backbones, including the Energy Sciences Network and Internet2, provide general-

purpose services to allocate dedi- cated bandwidth. However, in order to fully take advantage

of this technology, applications need to move from coarse-grained "reservation" strategies, to

more sophisticated control based on software defined networking (SDN) with technologies

such as OpenFlow. We propose here, as one practical step in this direction, using multiple

paths for the same application transfer session. This can add bandwidth from "best effort" and

dedicated networks, and can also facilitate performance with applications using multiple 10G

NICs over 100G capable paths.

Master Thesis Report Page 26

2.2 References Summary

From all the above research paper concerning the Big Data we can see that there is not

only a single field of research or single solution without "trade-offs". Since we are trying to be

efficient in mater of energy consumption and on the other hand transfer all dataset on the

network as fast as possible it's hard to achieve in the fullest this goal without sacrifice

performance or energy consumption. As well said and mentioned in the publication in

(Brebner, OôBrien, and Gray, 2009) the Server Virtualization may significantly increase the

risk of saturation and Service Level Agreement violations.

 From the research which was done by (The Climate Group, 2008) we realize the

importance of taking into account the sustainable and eco-design developing. That is a reason

why we are taking into account the green parts which makes our development more

sustainable. We believe if we transfer our datasets faster system can enter ideal mode to save

energy. As explained by (Gunter, D., Kettimuthu, R., Kissel, E., Swany, M., Yi, J., and

Zurawski, J., 2012) in they are publications by using data transfer application over multiple

paths for the application layer and SDN OpenFlow approach they could achieve improved

throughput. For the test approach the research team transferred the dataset over WAN.

 Using cloud infrastructure like OpenStack will help to compare different scenarios

with different testbed resources. Since OpenStack is running on the server there are is no need

for any user to have a physical access to the server but can work remotely from any place feels

comfortable.

 By using multiple streams we can increase our transfer speed as mentions by Hai Ah

Nam, Jason Hill, Suzanne Parete-Koon in the research. Some of the multiple streams utilities

are been introduced for that purpose. Important is also to tuned the system parameters to help

achieve higher transfer speed, although there are many in the Linux systems.

Master Thesis Report Page 27

3. IMPEMENTATION

 Implementation is the part of the thesis which is described the research methodology

which has been used to approach the scientific problem. A brief introduction and explanation

is given how to use the file transfer applications and what are their features. Also description

is given about scripts which were implemented and how to use them. The testbed

specifications are given in details about which hardware and software was used. Apart from

that introduction and usage of the cloud infrastructure ñOpenStackò is given.

3.1 File Transfer Utilities

 The amount of time to transfer over global computer network (Internet) depends on the

real data link bandwidth and volume of the data mentioned by (Khoruzhnikov, Grudinin,

Sadov, Shevel, and Kairkanov, 2015). As mentioned from (OôLuanaigh, 2013) in CERN

experiments generating one Petabyte of data every second which said they do not keep all of

them but only the most interesting. CERN is storing 25PB of data every year. Imagine a case

that we would like to transfer all this data from one point to another in case to analyze them or

to store them over a network link of 1 Gbit capacity. It will give us about 100MB/sec, hence

25TB/100MB=250000 secs = 69.4 hours = 2.9 days in case we use a link with no traffic and

either any event will occur which may slow down our transfer. Thus is the reason why is

important to use and test some of the freely available data transfer tools/utilities. In this section

we discuss about those software, the way to use them and their features.

Master Thesis Report Page 28

3.1.1 Fast Data Transfer (FDT)

 FDT is a Java written Application which is used for Efficient Data Transfers. Since is

written in Java theoretically it can be executed in any platform and it is easy to be used. It can

run as a SCP or a client/server application. FDT is based on an asynchronous, flexible

multithreaded system and is using the capabilities of the Java NIO library as mentioned from

(FDT Team, 2013). NIO library also known as Non-blocking I/O is a collection of Java

programming language APIs that features of intensive I/O operations as said by (Jenkov,

2012).

By using standard I/O APIs you work with byte streams and character streams, but in NIO

you work with channels and buffers. Always the data is read from a channel into a buffer, or

written from a buffer to a channel. Because of the non-blocking IO while the channel reads

data into the buffer, the tread can do something else. Once the data is read into the buffer, the

thread can continue processing it. Same goes for writing data to channel. Thus is reason which

makes the FDT efficient to be used. Some other advantages of FDT are:

¶ Transfer data in parallel on multiple TCP streams, when necessary

¶ Use appropriate-sized buffers for disk I/O and for the network

¶ Restores the files from buffers asynchronously

¶ Resumes a file transfer session without loss, when needed

¶ Uses independent threads to read and write on each physical device

¶ Streams a dataset continuously, using a managed pool of buffers through one or more

TCP sockets

 While FDT is transferring a large amount of different datasets it can send and receive

at full speed, without the network transfer restarting between files.

Master Thesis Report Page 29

Figure 3.1.1: FDT Architecture (FDT Team, 2013)

 We can see that there is a connection control channel with is responsible for

management and authorization. Since we are going to run a lot of test we would not like to

authorize a user each time he is trying to transfer thus is the reason we establish Secure Shell

(ssh) for known host without the need of password (it will be explain on the following Sub

Chapter 3.2). As we see from figure 3.1 FDT keeps a pool with buffers which is going to

assign to specific executions.

FDT can be used in one of these following models.

Server: java -jar fdt.jar [OPTIONS]

Client: java -jar fdt.jar [OPTIONS] -c <host> [file1 ...]|[-fl <fileList>] -d

<destinationDirectory>

SCP: java -jar fdt.jar [OPTIONS] [[[user@][host1:]]file1 [[[user@][host2:]]file2

Master Thesis Report Page 30

 At first to start the transfer from a sender to receiver, receiver will act as a Server node

which is going to receive all the datasets from the client (the sender node). Clients cannot start

transferring data if the server is not running which is not the same for SCP. SCP can start by

itself the Server and transfer the datasets. For the client part you have to declare the -c

parameters which defines the host, the -d which defines the destination of the transmitted

datasets, and also you can add the -fl (file list) and add a list of different files or a single file.

3.1.2 BBCP

 BBCP is a multi-streaming utility an alternative to Gridftp when transferring large

amount of datasets, its capable of breaking up transfers into multiple simultaneous transferring

streams, thereby transferring data much faster than any single streaming utilities such as SCP

or SFTP. This copy dataset application was written by Andy Hanushevsky at SLAC as a tool

for BaBar collaboration. The source code is in C programming language and itôs capable of

transferring files at approaching line speeds in the WAN. BBCP versions are available for

Linux and Solaris platforms. Since BBCP is a peer-to-peer application, no server process is

necessary and transfers can be done with an easy just sending the data to the target machine.

Tuned up parameters for BBCP are mentioned and explained in Chapter 3.2. It is assumed

that bbcp is running on both sides in case to transfer data. Some of BBCP many features which

can include the settings are:

¶ TCP Window size

¶ Multi-stream transfer

¶ I/O buffer size

¶ resuming failed data transfer

¶ ssh authentication

Master Thesis Report Page 31

Way to run bbcp is:

$ bbcp [-options] filename user_name@target_machine_name:filename

 There are also different number of options like -a to continue the previous failed

transfer, -P [seconds number] to print every specific defined (by user) second the progress

report, -r [directory name] to recursive copy a directory which useful for our case, -w [size]

the TCP window size (default one is 64K) and the -s [number of streams] the number of

parallel network streams(default 4). Important to note, BBCP is very slow at copying deep

directory trees of small files. In case we would like to copy such trees, we should first tar up

the trees and then use BBCP to copy the tarball. Use it this method it will increase the data

transfer speed. Also the most recent version of BBCP uses option -N named pipelines to use

external programs or pipes to feed the network stream. By this way it allows to specify an

external program such as tar to provide the data stream for BBCP.

3.1.3 BBFTP

 BBFTP is file transfer software which has dynamically adjustable window sizes and

can also transmit simultaneously multiple numbers of streams of data. This file transfer

software was developed by Gilles Farrache at IN2P3 Computer Center in Lyon, it was written

in C programming language, and is open-source software. It is also compatible with most of

the Linux distribution systems, but not with Windows OS. Since BBFTP is implements its

own transfer protocol, which as mentioned by the developers (IN2P3 group, 2013) it is

optimized for large file (larger than 2GB) and also it does encrypt the username and password

information but on the other hand it does not encrypt the data being transferred. BBFTP is a

Server/Client application which means the receiver node must act as a Server to receive the

data from the Client node. It also implements an automatic retry in case of failure. Two

methods of connection to the remote host are allowed and implemented in BBFTP. First

method, is by starting a BBFTPD daemon on the remote host side and all the user information

Master Thesis Report Page 32

like username, password are encrypted and transmitted safety to the daemon. Second method,

BBFTPD binary has to be accessible from somewhere on the remote host and all control data

are transmitted by using SSH tunnel. Some of the BBFTP main features as mentioned by

(IN2P3 group, 2013) are list below:

¶ Encrypted username and password at connection

¶ SSH and Certificate authentication modules

¶ Multi-stream transfer

¶ Big window as defined in RFC1323

¶ On-the-fly data compression

¶ Automatic retry

¶ Customizable time-outs

¶ Transfer simulation

¶ AFS authentication integration

¶ RFIO interface

Ways to use BBFTP is illustrated below:

$ bbftp [Options] -i ControlFile [-u RemoteUsername] [RemoteHost]

$ bbftp [Options] -e ControlCommands [-u RemoteUsername] [RemoteHost]

 For the first command user can add a Control file which will include a number of

commands to be executed by BBFTP and its defined by using the argument -i. By adding the

argument -e they user defines the need of a single Control Command which can be a cd | get |

lcd | mget | mkdir | mput | put | dir | rm | stat | df which are more or less basic Linux

system commands but it can be done from a remote host by using BBFTP utility. For our

research purpose arguments which are important to be known and used is only put. Also -p is

defined as the number of TCP Parallel Streams and argument -m which is the number of

buffer size per stream.

Master Thesis Report Page 33

3.1.4 Globus Toolkit - GridFTP

 Globus Toolkit is open source software developed and provided by the Globus

Alliance, which is an enabling technology for the "Grid", allowing to user to share their

computing resources, provides securely online across corporations, institutions, and limits the

geographical boundaries without reducing the autonomy of the Grid. This toolkit was

developed both on Java and C programming languages. Globus Toolkit has a variety of

different libraries; some are used for resource monitoring, discovery, resource managements,

data management, communication, fault detection, security, file management, and etc. Taking

into account that different organization has their own mode of operation it could be impossible

to collaborate between multiple organizations due the fact of incompatibility of resources such

as data archives, computers and networks. Thus Globus Toolkit was conceived to remove

obstacles that prevent seamless collaboration as mentioned in (Grid Alliance, 2014).

Figure 3.1.2: Globus Toolkit Version 5 libraries (Grid Alliance, 2014)

 As we can see from Figure 3.1.2 Globus Toolkit provides a variety of different

programs. For example the GRAM5 is the Globus Resource Allocation Manager which

Master Thesis Report Page 34

converts a request for resource into commands that local computes can understand. GSI which

stands for Globus Security Information is responsible to authenticate users and determine their

privileges. GridFTP which is the most important for our consideration and the purpose of our

research stands for Grid File Transfer Protocol and offers high performance, secure, and

robust data transfer across the global network of computers. In fact Globus consist of many

other programs as we can see from the figure 3.1.2 but for our case we will focus only on

GridFTP. Features of Globus Toolkit are mentioned below:

¶ Two security flavors: Globus GSI and SSH

¶ Multi-stream transfer

¶ Ability to tune I/O buffer size

¶ retry failed data transfer

¶ Certificates are needed to authorize users

 In case to transfer file to a GridFTP server SSH authentication need to configured, also

client (globus-url-copy) has to be configured to support authentication. Commands for

transferring file over a Grid using Globus Toolkit:

 $ Globus-url-copy [options] sourceURL destinationURL

 Different number of options is available for globus-url-copy but for our case we are

going to mention only the important and those we used in our research. Starting from -r

[directory name] in case we would like to transfer an amount of different files, -f [file name] in

case we would like to transfer a single file, -p [number of parallel streams] define the number

of needed TCP parallel streams, and the -bs [buffer size] to specify the size of the buffer to be

used by underlying transfer methods. Since for Globus Toolkit certificate is needed to make

file transfers across the global network, we created and used our own simple certificates for

the research purpose.

Master Thesis Report Page 35

3.1.5 File Transfer Service (FTS3)

 FTS3 has been developed by CERN IT-SDC group to address the data transfer needs

across WLCG infrastructure. FTS3 is considered to be one of the new and advanced utility for

transferring data over the global network. It's open source software which is responsible to

transfer data reliably, in a robust way and at large scale between storage systems using

different protocols as HTTPS, WebDav, GridFTP and SRM. Data management is also a

feature of FTS3 since deleting files efficiently; it will optimize the resources usage by

enabling adaptive concurrency, reuse of connections and a retry mechanism in occasion of

failure. Apart from these feature web portal is a web monitoring system of FTS3 which

provides a visualized manner and easy way to use web interface for transfer management and

monitoring. A FTS3 client can use this utility by 3 different ways, Command Line Interface,

Python Bindings, and REST. Each way has different installation and configuration steps that

are necessary to be done.

Figure 3.1.3: FTS3 service architecture from (Ayllon, Salichos, Simon, and Keeble, 2014)

Master Thesis Report Page 36

 The FTS3 interface in general give the opportunity to the user to efficiently schedule

data transfers, gaining the maximum of the network bandwidth, availability and storage

resources policy limitations are ensured and respected. That feature of FTS3 offers a huge

advantage in concept of abstraction and automation.

 About the FTS3 architecture as mentioned in (Ayllon, Salichos, Simon, and Keeble,

2014) the components (shown in Figure 3.1.3) are : CLI clients (Command Line Interface), a

daemon process for transfer submission, other processes as status retrieval and general VO

(Virtual Organization) and service configuration exist, another daemon which exist for bulk

stage-in of file from archive using the SRM (Scalable Reliable Multicast)protocol, and all of

the data and log are store in an Oracle or MySQL database (defined by user during

installation). Some of FTS3 main features are listed below:

¶ Transfer auto-tuning/ adaptive optimization

¶ Endpoint-centric VO configuration

¶ Transfer multi-hop

¶ REST-style interface for transfer submission and status retrieval

¶ retry failed transfer mechanism

¶ staging file for archive

¶ Support for Oracle and MySQL database

¶ TCP Multi-stream transfer

To transfer datasets from a local to a remote host it's done by this way:

Master Thesis Report Page 37

3.2 Testbed Implementation

 At the beginning of the whole research project "Transfer of large volume of data over

Internet with parallel data links and SDN" a testbed was implemented in case to run all the

scripts that ITMO's BigData team prepared. The importance of the testbed is the large amount

of resources that offers to its users to run many test and different scenarios, in case to execute

such amount of test by a simple server it would be hard during the lack of resources and time

consuming. The need for testbed is to measure results which performed by authors in (Ah

Nam, Hill, and Parete-Koon, 2013), where data transfer was performed with Data Transfer

Nodes (DTN). The utilities which were used are rsync, scp, bbcp, GridFTP and concrete files

have been used (11KB, 3.5MB, 158MB, 2.8GB, and 32GB) in each case. During the

experiment it was shown that after the number of 8 streams there were not any changes in the

transfer speed. IMTO's University BigData team aims is the also get information about the

Linux kernel parameters just to have a more clear image in which data speeds and how each

system parameters affect's the data transfer rate. Basically the testbed implementation will

provide more precise and clear answers. The idea of the testbed is to compare a number of

utilities using SDN Openflow mechanism.

3.2.1 Testbed Characteristics

 The current testbed hardware characteristics are illustrated on table 3.2.1 and it consists

of two end nodes. The distances between the two end nodes is around 40 Km and the network

connection is a public Internet link of 1 Gbit maximum bandwidth.. On this testbed cloud

infrastructure OpenStack (version Icehouse) was deployed to manage the VMs. Perfsonar has

also been deployed on both sides. The implementation idea is shown at figure 3.2.1

Master Thesis Report Page 38

Hardware

Type

CPU Main Memory

(RAM)

Hard Disk Drive Operating System

Server 1 (SV) 2 x Intel 6 Core

Xeon E5-2640v2

@2.5GHz

64 GB DDR3 Scientific Linux

CE 6.5

Server 2 (SM) 2 x Intel 4 Core

Xeon E5-2609v2

@2.4GHz

32 GB DDR3 4 x SATA 500GB

raid 5 1000 GB

Scientific Linux

CE 6.5

Storage Area

Network

 HP 16 HDD SAS

ï 450GB

Table 3.2.1 : Testbed hardware characteristics

Figure 3.2.1: Testbed Architecture

 The reason that have implemented a control program which is running perfsonar is to

observe the data link which may experience interruption, control program using perfsonar will

collect data and store them in a database. Network switches are running Openflow open-

source software which implements the SDN part of the network. On the top of the testbed

cloud infrastructure OpenStack is running. Accounts have been created for BigData teams

which providers amount of resources from the server itself. More about OpenStack cloud

Master Thesis Report Page 39

infrastructure on chapter 3.5. For the current research goal we have as aim to transfer Big Data

as faster as possible using the ñVirtual Channelò. By the term ñVirtual Channelò we mean the

network which consists between the VMs we deployed using the OpenStack dashboard.

Master Thesis Report Page 40

3.3 Scripts Implementation

 In case to launch different number of tests to transfer data with different utilities it will

be very slow and too much time consuming by typing one-by-one all the commands changing

the arguments, and then keep track of the system parameters. Thus the reason occurs to create

a number of different scripts for each utility which will launch a data transfer procedure, create

log files for the system variable, information, the network link information, and at the extract

the results in a view of graphs. Also script was implemented which will create the data which

will be transferred through the network. The scripts were written using BASH (Bourne Again

Shell). All scripts implementation can be found in https://github.com/itmo-infocom/BigData,

as a research team we found github a handy tool to transfer and synchronize the team's work.

3.3.1 Test-data Script

 It's responsible to generate directory with files of random sizes with defined size and

standard deviation. The reason is because we would like to have a comparative results with the

utilities, and by using these data utilities which have compression algorithm implantation it

will not allow them to compress their data and send it through the link, but send them as it is.

A user can add a list of different parameters to execute the "create-test-directory.sh", list of

parameters can be viewed below:

" - h"|" -- help" show this text

" - q"|" -- quite" by default false

" - l"|" -- logfile" by default $0\ .log

" - n"|" -- dirname" by default ./test_directory

" - z"|" -- dirsize" by default 1024 KiB

" - f"|" -- filesize" by default 102 KiB

" - d"|" -- dispersion" by default 10 KiB

" - s"|" -- sample" by default /dev/urandom

" - b"|" -- block - size" by default 1K

Master Thesis Report Page 41

 The files name which will created is an linear arithmetic count starting from 1,2,3, etc.

Also it uses normal distribution (gauss). This script before creating the data it will check the

HDD (Hard Disk Drive) free space before creating the random length data (if the user will run

out of HDD space avahi daemon cannot start and GUI will not show to the user after next

login).

3.3.2 CopyData [utilityName]

 This is our main script implementation which will launch a transfer. The CopyData

script is written in BASH and each CopyData script exist for each utility. There are no main

differences between these five scripts apart from some syntax differences to run each utility

with a specific way. The aim of these scripts is not only to launch a dataset transfer but also to

take measurements, create log files, trace route files, in case for the user to see what really

happened in the network during the dataset transfer. In case to launch the scripts a number of

arguments are necessary to be added in the command line of the terminal window as shown

below in table 3.3.1.

 After the execution of this script a directory will created with the following name

"CopyData(UtilityName).LocalHost.RemoteHost.Date.Y.M.D_H:M:S_configFileParameters".

The Utility name it can be fdt | bbcp | bbftp | gridftp | fts3, the symbols after the Date will

symbolize Y the year, M the month, D the current date number, H the hours, M the minutes

and S the current seconds when the directory will be created. Inside the CopyData directory

the script will create the following files: Ping, Traceroute, Comments, Abstract, Log files and

Sosreport.

Master Thesis Report Page 42

Args Description of each argument

$0 Name of the executable file exp. ./CopyData.(fdt|bbcp|bbftp|gridftp|fts3)

$1 Configuration file, can be empty then default parameters will be added or can be

added the parameters "--streams #", "--windowsz #" , "-D[minport:maxport]" (for

BBFTP)

$2 Set the full path were the Log directory with all the log files it will created

$3 Set the full path were the test directory is locate (dataset which will be transferred)

$4 Set the username exp. root

$5 Set the remote host combined with the username should look like exp.

root@192.168.1.50

$6 Set the destination of the dataset , default value is set as /dev/null to save space

$7 Set user comments, optional parameter

Table 3.3.1: CopyData arguments table

Information Value Type

Start Time <date time>

Command Line <utility command line parameters>

Total dataset size to transfer <value in KiBs>

Number of files <value>

Source directory with file <source directory path>

Average file size <value in KiBs>

File size dispersion <value>

Local host name <value of localhost>

Remote host name <value of remotehost>

Data size transferred <value in KiBs>

End time <date time>

Completion <YES/ABNORMAL>

Average transfer speed <value in KiB/sec>

Table 3.3.2 : Abstract file Content

Master Thesis Report Page 43

 The Abstract file has the most essential information about the dataset transfer, they

information is shown in the table 3.3.2. From the abstract file essential information will be

extracted in case to plot graphs with the results we got from each transfer. The calculation of

Average Transfer Speed was done by a simple equation which was capturing the time before

executing the utility to transfer the dataset and after that the utility finishing time was captured

which was subtracted by the start time and then the whole dataset size was divided by the

elapse time of the transfer. The equation can be viewed below. Inside parameter STARTIME

will be stored the current time converted into string so it will be divided by ENDTIME.

Argument ${DirSize} has the size of the dataset in Bytes.

 STARTTIME=$(date +"%s")

 Starting BBCP

 ENDTIME=$(date +"%s")

 ELAPSEDTIME=$((${ENDTIME}- ${STARTTIME}))

 TransferRate= `expr ${DirSize} / ${ELAPSEDTIME}̀

 The Comments file is created based on the command line arguments the user is going

to add for the execution of the utility (number of streams, window size, etc) of CopyData

script and the comments which will be added as a last argument for CopyData. From

comments file we can see which parameters produced the current dataset transfer results.

 The Log file is filled in with all the output of the utility which was executed.

The Ping file includes the output of the command 'ping -c 10 RemoteHostô to check if the

remote host which will receive our dataset is reachable from the local host.

 The traceroute it has the output of the path which the packets are following to reach the

end node. The Top file is filled with the 'TopRun.sh' output.

 The sosreport is a tar file which includes all the system parameters as directories. Is a

copy of the /proc directory which has all the necessary system information.

 The main reason we are creating all this sosreport, log files, abstract, comments, and

etc which is quite large around 6-7 MB in total is to keep a history about how we obtained this

results, which parameters have been used and under which circumstances.

Master Thesis Report Page 44

3.3.3Multiple ExecutionsCopyData [utilityName]

 The purpose of this script in general is to execute Multiple times the CopyData script

using different configuration files for as the second arguments ($1) for the CopyData script.

Thus the script will create a number of different configuration files which will include the

different number of parallel streams and window sizes. For each utility the configuration files

are different in matter of content. After that the configurations files will be used by the

MultipleExecutionsCopyData to launch CopyData script and results will be stored in a log

directory defined by the user. In table 3.3.3 can be found the number of arguments, which is

pretty similar with the CopyData script apart from the second, third, and forth arguments. For

the second argument user can define what the test should be. User have 2 choices, can write

the letters of ñ-pwlò or ñ-pwrò, where the letter p stands for parallel streams, w stands for

window sizes, l stands for list, and r stands for the range of number which can be given from

the user as the third and the forth argument. List arguments should be separated by commas

and range arguments should stand from 2 numbers separated by semicolon.

Master Thesis Report Page 45

Args Description of each argument

$0 Name of the executable file exp. ./ MultipleExecutionsCopyData.(fdt |bbcp |bbftp |gridftp

|fts3)

$1 Set the full path were the Log directory with all the log files it will created

$2 User can add a parameter like "-pwl" to execute the CopyData with different amounts of

parallel streams window sizes in form of list (ex. 1, 2, 4, 6, 7) or "-pwr" in form of range

numbers (ex.1:10).

$3 Could be a list or range values of parallel streams separated by commas for list or the min

and max of a range of parallel streams separated by semicolons, depends on the second

argument ($2) value if includes r or l

$4 Could be a list or range values of window sizes separated by commas for list or the min and

max of a range of window sizes separated by semicolons, depends on the second argument

($2) value if includes r or l

$5 Set the full path were the test directory is locate (dataset which will be transferred)

$6 Set the username exp. root

$7 Set the remote host combined with the username should look like exp. root@192.168.1.50

$8 Set the destination of the dataset , default value is set as /dev/null to save space

$9 Set user comments, optional parameter

Table 3.3.3: Multiple ExecutionsCopyData arguments

 Apart from the execution of multiple scripts with different configuration files this

script will create its own directory and also add at the end of each of the executions the

configuration form the configuration file so users can identify them easier. Except from

launching the transfers also creating data file and from those data files graphs will be plotted.

The whole procedure is illustrated below:

i. MultipleExecutionsCopyData.[UtilityName] will be executed with the specified

arguments given by the user.

Master Thesis Report Page 46

ii. MultipleExecutionsCopyData.[UtilityName] script will call the

CopyData.[UtilityName] script.

iii. CopyData.[UtilityName] will produce the Log Directory in the path which the user

specified with command line arguments.

iv. MultipleExecutionsCopyData.[UtilityName] script will call the

createData.[UtilityName] script.

v. createData.[UtilityName] script will create the file which will be suitable for gnuplot to

create graphs.

vi. MultipleExecutionsCopyData.[UtilityName] script will call the

plotGraphs.[UtilityName] script.

vii. plotGraphs.[UtilityName] script will plot the graphs from the data file which was

created by the createData.[UtilityN ame].

 User can pass as command line arguments to the Java program a number of file in case

to prepare a file to compare different utilities with different number of parallel scripts. In

general the executions of MultipleExecutionsCopyData should look like:

./MulitpleExecutionsCopyData.[UtilityName] full/path/log/Directory [-p|-w] [-l|-r]

[values1,....,valuesN | Min:Max] full/path/of/Dataset [username]@[hostname]

/path/destination

Master Thesis Report Page 47

 Apart from the execution style it was given above user can also execute the

MultipbeExecutionsCopyData.[UtilityName] by the way which is below:

./MulitpleExecutionsCopyData.[UtilityName] full/path/log/Directory [-pwl\-pwr]

[ParallelStreams: values1,....,valuesN | Min:Max] [WindowSize: values1,....,valuesN |

Min:Max] full/path/of/Dataset [username]@[hostname] /path/destination

Master Thesis Report Page 48

Call 1....N

executions

Produce Log

Files

Call Create Data Call Plot Graphs

Collect Data

Produce Data Plot Graphs

Modify File

CopyData (fdt |

bbcp | bbftp | gridftp

| fts3)

Plot Graphs

Create Data

Multiple Executions

CopyData

Collect Data

Figure 3.3.1: Function call of Multiple Execution of Copy Data

Master Thesis Report Page 49

3.3.4 createData [utilityName]

 The script named createData is rather a simple script but useful for extracting data

like the Average Transfer Speed in KBs from the abstract file of each log file which was

created by the MultipbeExecutionsCopyData script, also grapping the configuration from

each configuration file from each (for this situation the parallel streams). In the end a new

file name plot_data.txt will be created with two columns. The first column which is that

parallel TCP streams is the axis X and the second column is the axis Y. This script will be

launch from script MultipbeExecutionsCopyData.[UtilityName] after the end of the

multiple executions and command line arguments will be added from the script which

could be "streams" for parallel streams and "windowsz" for window size.

3.3.5 modify File [utilityName]

 Is a script which will capture the createData file (filename:plot_data) and modify it

into columns and plotGraphs can used it to plot lines for each column as a different number

of Streams and the results(Average Transfer Speed) we have for each one of them. As

default use we have used 7 number of streams (1,2,4,8,16,32, and 64), 9 specific window

size (131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, and

33554432) The file which will create will have 8 columns the first is for the different

window sizes and the other 7 are the results of Average Transfer Speed for each different

number of TCP parallel streams we used.

Master Thesis Report Page 50

3.3.6 plotGraphs [utilityName]

 The script named plotGraphs is running a script using gnuplot, will have as an input

the file from the modifyFile. [UtilityName] named comperative_datat.xt. From this file it

will get the columns and it will plot the graph and it will give a PostScript (ps) and a

Portable Document Format (PDF). The script plotGraphs.[UtilityName] will be executed

by the script MultipbeExecutionsCopyData.[UtilityName] after it executed the script

createData.[UtilityName] and modifyFile.[UtilityName]. This specific script was created

to compare only specific utility arguments like parallel streams based on the transfer speed

and the window size. Example of the graph view can be seen in figure 3.3.2. From the X

axis are located the window size in Bytes and from axis Y are the results of Average

Transfer Speed in Kilo Bytes. On the left corner of the graph it can be found the streams

with the representative colors. After on each execution of CopyData.[UtilityName] the title

of the graph will change depending on the dataset the user wants to transfer. On the down

left corner a timestamp is added to keep track of the days which the graph was plot.

Figure 3.3.2: plotGraphs Example

Master Thesis Report Page 51

3.3.7 set-passwordless -ssh

 Important to note is that all the scripts implementation are using Secure Shell to

connect to the remote host and transfer their data. Since our script is running multiple times

to complete the task which was assign to execute for each dataset transfer authentication

will be required and thus the reason why is necessary to implement password less ssh

connection. At first this script will check if an RSA (Ron Rivest, Adi Shamir and Leonard

Adleman cryptosystem) key exist in .ssh directory. If not it will create one and will pass the

content of the id_rsa.pub (file which is created after ssh-keygen -t rsa) to the remote host in

case to allow the connection from local host without the need of any root access password.

The content of the id_rsa.pub will be stored in .ssh directory under the name of

authorized_keys file. Then user has to manually enter the instance and change the

permission of the authorized_keys ($chmod 700 authorized_keys) and the .ssh ($chmod

600 authorized_keys) directory and the user can start the file transmission scripts without

then need to enter manually the password.

http://en.wikipedia.org/wiki/Ron_Rivest
http://en.wikipedia.org/wiki/Adi_Shamir
http://en.wikipedia.org/wiki/Leonard_Adleman
http://en.wikipedia.org/wiki/Leonard_Adleman

Master Thesis Report Page 52

3.4 Cloud Infrastructure

 As a cloud infrastructure we have used OpenStack. OpenStack is open-source cloud

infrastructure software which allows to user to share among them server resources which

are going to deploy VMs for their own usage. An organization which is having a server can

install OpenStack on the top of the server to allow authorized users to manage a specific

portion of resources through the Dashboard. Administrator of the System (OpenStack) can

set the limits of resources to each user. Nowadays a lot of data transfers are done between

the cloud and more and more companies are joining the cloud era, which is the main reason

in ITMO we decided to install cloud infrastructure on the testbed and focus on transferring

Big Data over virtual channel. Also since the testbed we host here is a really powerful

server even if we used the utilities with their maximum resources we will still have enough

left. By using the cloud infrastructure we can divide the testbed resources into many

instances to run different scenarios (each instance is different scenario) and then analyze

our results.

3.4.1 Virtual Machines

 From the figure 3.5.1 we can see the scenario which can be created through the

dashboard and which we run our tests. We can see in table 3.4.1 the instances which are

located in the virtually in the same LAN which both sender and receiver are quite

resourceful in terms of hardware resources. We can see that all the instances are attached

on myNetwork (Address Domain 10.0.0.0/24) . Users can hover on each instance and view

instance information like instance ID, current status like active, shut down, rebooting,

pause, or suspend ; also a possibility is given to open a console and handle the instance

through the installed OS GUI and terminated it if itôs necessary. User has also the feature to

create snapshots of a VM in case to clone it and have it more than once. The instances

Master Thesis Report Page 53

specifications can be viewed from table 3.4.1. Important to mention is that OpenStack used

NAT (Network Address Translation) protocol which makes the outgoing traffic easy for

the network but on the other hand it does not announce to public the sender route address.

Security groups can be defined for each instance restricting or permissions can be added on

ports and protocols allowance for the instance. At table 3.4.2 we can see the instance

specification which was used to run the tests over real network and not virtual

environment.

Instance Name Location VCPUs RAM size HDD size

Sender ITMO 8 16 GB 160 GB

Receiver ITMO 8 16 GB 160 GB

Table 3.4.1: Instances Specifications

Instance Name Location VCPUs RAM size HDD size

Sender ITMO 8 16 GB 160 GB

Receiver PNPI 8 16 GB 160 GB

Table 3.4.2: Instance Specifications

Master Thesis Report Page 54

Figure 3.4.1: OpenStack Network

3.4.2 Instances Volumes

 After the creation of the instances it was necessary to attach volumes on each of the

instances. The reason is to have a large amount of space in case to create the random data

which are going to be used for the transfer purposes. As it has been explained on the

previous subsection dataset will be 25 Giga Bytes and also after each transfer Log Files

will be created where each one of them has size at least 5BM. That is reason why we keep

the instance volumes close to 100GB.

 First thing we have to do after the creation of volume is to manually attach them to

each instance through the dashboard. Second we have to logging and format each volume

manually at each instance. All volumes have been formatted in ext4 File System using the

command $mkfs.ext4 /dev/vdb where /dev/vdb is the volume. The next step is to add a

Master Thesis Report Page 55

directory which will used of the user as the free space of 200GB. Inside the file /etc/fstat

using an editor such as VIM or Nano user can add the location of the mounted device (ex.

/dev/vdb) , the path where can be found (ex. /root/free-space-200GB) and File System

Format (ex. ext4), forth parameter as ñdefaultsò and the next two as ñ0ò and ò1ò as default

values. After rebooting changed may take effect.

Master Thesis Report Page 56

3.5 Scenarios

 Some scenarios which was decided to be used with different number of the

parameters. In general test could be done by using all the number of different parallel

streams but that would consume a huge amount of time that is why decision has been made

to use specific ones.

3.5.1 Scenarios Description

 A number of different scenarios have been defined for the purpose of this project.

The scenarios mostly are defined by the different parameters which are going to be used to

transfer datasets. Starting from the number of different streams we are going to use 7

streams. Parallel Streams number 1, 2, 4, 8, 16, 32, and 64. As number of window size we

are going to use 131072, 262144, 524288, 1048576, 1048576, 2097152, 4194304,

8388608, 16777216, and 33554432 in Bytes. As dataset to be transferred we created from

the create-test-directory script datasets of 25 Giga Bytes.. Apart from that we have 5

different utilities to test all the scenarios. In general all this different combinations will

produce the about of 7(Parallel Streams) * 9(Window Sizes) = 63 different scenarios for

each of the utilities. All the above scenarios were tested in virtual and real network.

 The tests on a real network transfer are taking place from PNPI to ITMO having

the instance which is located on PNPI server as a sender node and the instance which is

located on ITMO server as a receiver node. The reason we decided to implement our

scenario with this way is of the fact that we have higher throughput from PNPI to IMTO

rather the opposite. PNPI server is located 40 km away from ITMO server, and through the

network are located most of the times around 5 to 7 public routes from where our datasets

will pass until reaching the destination. This information (about throughput and trace route)

can be found on http://212.193.96.141/serviceTest/index.cgi?eventType=bwctl using the

Perfsonar web measurement service which is installed on the servers of IMTO and PNPI

and runs as a web service. (See figure 3.5.2) As we can see from the figure 3.5.2 the blue

http://212.193.96.141/serviceTest/index.cgi?eventType=bwctl

Master Thesis Report Page 57

line indicates the available throughput of PNPI, and the green line indicates the available

throughput of ITMO. Itôs clear to us that in case we would like to achieve the highest

transfer rate to compare the utilities we have to use the server which is located at PNPI as

the sender node and the server which is located in ITMO as a receiver node.

Figure 4: PerfSonar throughput Graph

Scenarios that we tests are similar to the scenarios we tested in virtual environment.

Parallel Streams number 1, 2, 4, 8, 16, 32, and 64. As number of window size we are going

to use 131072, 262144, 524288, 1048576, 1048576, 2097152, 4194304, 8388608,

16777216, and 33554432 in Bytes. As datasets to be transferred we created from the

create-test-directory script dataset size of 25Giga Bytes which consists of 244 different

files with average size of 100 MegaBytes .

Master Thesis Report Page 58

 To execute all the above scenarios a large number of time is required. Important to

mention is that all the test data we have are located in the hard disk drive. If we consider

that we need to execute 630 different tests for each utility and the average time needed to

complete a transfer is around 3 to 4 minutes; then the total time is 63*4 = 252 minutes / 60

= 4.2 hours for each utility to finish all the scenarios and that is for a single utility. As we

can see to test and transfer Big Data over virtual channel is a time consuming process. In

case more testing parameters will be added, like more parallel streams and more window

sizes the duration of the execution will increase exponentially.

3.5.2 Alternative Transferring Data ways

 After executing all the tests we said in subchapter 3.5.1 and during the results we

got, we decided to test the utilities with an alternative way

 To transfer data from the memory to the TCP buffer it can be distinguished with

two different ways, transferring datasets from HHD or directly from RAM. By executing in

BASH the command $ dd if=/full/path/of/dataset of=/dev/null which is a data disk cloning

command we are going to receive the transfer speed. During some testes we find out that

the speed was in range of 150 ï 200 Mbps. If the datasets we wish to transfer is located in

the RAM our system will require less time to search for the data since the main memory is

faster rather the HHD.

 In case to have all the necessary data into the main memory NFS had to be installed

and mount the data from a remote host. Mount is a command which allows the user to

mount a shared NFS from another machine.

In figure 3.5.3 it is shown that all the sender instances are mounted with NFS from

vlan2-net which is located in domain 10.10.20.0/24. In our case all the data which we

would like to transmit is located on the memory of a remote host and by mounting the NFS

we can transfer data directly from the RAM instead of the HDD. Since the physical

Master Thesis Report Page 59

memory which is found on the server exited far the amount of data we like to transfer its

possible to have them all on the RAM. Instructions about the whole procedure are given by

(Timme, 2013).

Figure 3.5.3: OpenStack Mount NFS

Master Thesis Report Page 60

4. RESULTS

 In this section of the thesis results which acquired while executing the scripts,

which was mentioned in Chapter 3, are presented and a discussion for the results we have.

Results have been acquired while running scripts for BBCP, FDT,BBFTP and for GridFTP.

FTS3 was the utility which not tested yet in the context of the Master thesis.

4.1 Explanation about results and Graphs

 The graphs sample which plotted can be viewed in figure 4.1.1 with the parameters

and description about each one of them. Axis X represent the average transfer speed in Kilo

Bytes per second, which was calculated after finishing the dataset transfer, about axis Y

there are the number of different TCP window sizes in Bytes, that we used for the tests.

Master Thesis Report Page 61

Figure 4.1.1: Graph Parameters

Utility Name DataSet Size Source - Destination DataSet Type Data Location

Tested PS

Plot Time

Master Thesis Report Page 62

Figure 4.1.2: BBCP ITMO - ITMO from HDD

Master Thesis Report Page 63

Figure 6: FDT ITMO - ITMO using HDD

