
LAPPEENRANTA UNIVERSITY OF TECHNOLOGY

School of Engineering Science

Double Degree Master’s Program in Computational Engineering and Mathematics

Ekaterina Sokolova

SOLVING LARGE SPARSE LINEAR SYSTEMS OVER THE FIELD

GF(2)

Examiners: Ass. Prof. Tuomo Kauranne

 Post. Doc. Matylda Jablonska-Sabuka

ABSTRACT

Lappeenranta University of Technology

School of Engineering Science

Faculty of Science and Technology

Double Degree Master’s Program in Computational Engineering and Mathematics

Ekaterina Sokolova

Solving large sparse linear systems over the field GF(2)

Master’s thesis

2016

65 pages, 7 figures, 14 tables

Examiners: Ass. Prof. Tuomo Kauranne

 Post. Doc. Matylda Jablonska-Sabuka

Keywords: large sparse systems of linear equations, Montgomery method, Wiedemann-

Coppersmith method

Nowadays problem of solving sparse linear systems over the field GF(2) remain as a

challenge. The popular approach is to improve existing methods such as the block Lanczos

method (the Montgomery method) and the Wiedemann-Coppersmith method.

Both these methods are considered in the thesis in details: there are their modifications and

computational estimation for each process. It demonstrates the most complicated parts of

these methods and gives the idea how to improve computations in software point of view.

The research provides the implementation of accelerated binary matrix operations

computer library which helps to make the progress steps in the Montgomery and in the

Wiedemann-Coppersmith methods faster.

Acknowledgements

I would first like to thank my thesis supervisor Ass. Prof. Tuomo Kauranne. Without his

advice and help, the study could not have been successfully conducted. I would also like to

thank the Department of Technomathematics for the warmth and friendly atmosphere.

I would like to acknowledge the Lappeenranta University of Technology and the Moscow

Power Engineering Institute for the opportunity to take a part in a double degree program.

It gave me the new experience, skills, friends, and ideas.

Finally, I must express my very profound gratitude to my mother and to my boyfriend

Boris for providing me with unfailing support and continuous encouragement throughout

my years of study and through the process of researching and writing this thesis.

Lappeenranta, April 14, 2016

Ekaterina Sokolova

1

Contents

1 INTRODUCTION .. 3

1.1 The current state of the problem ... 4

1.2 Montgomery method ... 5

1.3 Wiedemann-Coppersmith method .. 8

2 COMPUTATIONAL MODELS .. 12

2.1 Computational model and computational cost for the Montgomery method 12

2.2 A computational model and the computational cost for the Wiedemann-

Coppersmith model .. 15

3 SOFTWARE IMPLEMENTATIONS FOR METHODS .. 18

3.1 Software implementation for the Montgomery algorithm 18

3.2 Software implementation for the Wiedemann-Coppersmith algorithm 22

4 BINARY MATRIX OPERATIONS LIBRARY: THEORY AND

IMPLEMENTATION .. 34

4.1 Matrix multiplication method ... 34

4.1.1 “Naive” method ... 34

4.1.2 Method of Four Russians ... 36

4.1.3 Gustavson method ... 40

4.1.4 Options for polynomial matrices ... 43

4.2 Performance results for abo library ... 45

4.2.1 Testing technique ... 45

4.2.2 Results ... 45

4.3 Performance data for external libraries provided boolean matrix multiplication . 53

4.4 Summary for the developed abo library .. 55

5 CONCLUSION .. 57

References .. 58

List of Tables ... 61

2

List of Figures .. 62

3

1 INTRODUCTION

The problem of solving large sparse linear systems over the field GF(2) has widespread

application but it has high computational complexity and there are few programs capable

of solving the systems of linear equations fast. Among fields of use, there are problems

such as breaking RSA encryption by sieve methods, applied to the problem of factoring a

large natural number into two primes; and information data transfer by a noisy channel.

Presently there are two algorithms widely using for large linear system solving over GF(2):

Montgomery algorithm [1] and Wiedemann-Coppersmith algorithm [2, 3]. Over the last

twenty years there have been attempts to accelerate individual steps of these algorithms.

For example, in the last achievement of breaking the 768-bit RSA-key, it was implemented

by a modified block Coppersmith algorithm [4]. Nevertheless, the two algorithms have

their advantages, disadvantages and limitations. A question of special interest are

implementation details: taking into account computing systems characteristics to choose

data format and development priority. Such information is uncommon in professional

papers, although it is not less important than advancement in general.

The goals of this paper are investigation of Montgomery and Wiedemann-Coppersmith

algorithms, making analytical models for them, giving each a computational complexity

estimate and practical results. Besides that, the goal is suboptimization as a result of

theoretical and practical evidence of this work. To achieve the goals, the paper consider

extended algorithms’ models according to computing systems down to details of the most

computationally heavy operations. The work provides special data format and an

accelerated binary matrix operations computer library.

4

The first chapter presents a theoretical overview of Montgomery and Wiedemann-

Coppersmith methods and their modifications used in this work. The second chapter

considers an analytical model of computation for both algorithms which is used as a base

for detailed theoretical estimates of the computational complexity of each step of both

algorithms. The third chapter describes the software implementation of both algorithms

and practical estimates of programming work. The fourth chapter provides a theoretical

basis and practical results of accelerated operations of addition and multiplication of binary

matrices which play an important role in the implementation of both algorithms.

1.1 The current state of the problem

Both methods, which will be discussed in this paper are iterative methods that use Krylov

space. In the case of the real field there are successful applications of some similar

methods: first of all, the Lanczos algorithm [5], which is the basis for Montgomery’s work,

the methods of Conjugate Gradients[6], the generalized minimum residual algorithm

(GMRES) [7] and others. All listed algorithms in standard form are unsuitable for the finite

fields case. For the GF(2) case, there are several implementations of the so-called block

Lanczos algorithm ([1], [8], [9]). This paper considers only Montgomery’s work because

there is no essential difference between other version block methods. The second algorithm

presented in this work is the Wiedemann-Coppersmith algorithm that was first proposed in

1986 by Wiedemann ([2]). Later in 1995 Coppersmith published a block version of it

([3]). The Wiedemann-Coppersmith method uses the characteristic polynomial of a

matrix. A common way to construct this polynomial is to apply one of the so-called fast

5

methods for it, for example, Berlekamp–Massey algorithm [10], the superfast algorithm

from [11] and Thomé’s modification [12].

1.2 Montgomery method

Take a system

,Ax b

where A is a large sparse symmetric n-by-n matrix, b and x are a vector of length n. The

Lanczos idea is to construct an approximation to its solution by employing a Krylov space

at every step that can be determined as

   2 1, , , , , .m

mK b A Span b Ab A b A b

In the Lanczos algorithm vectors iw should be

 non-zero: if , ;

 orthogonal with respect to the system matrix
 if ;


 ;

 The linear span of the vectors defines the Krylov space

 .

If these conditions are true, vectors iw will be basis vectors for a sequence of Krylov

spaces.

As an initial approximation, Lanczos proposes the vector b from the right-hand side of the

system. The further process resembles Gram-Schmidt orthogonalization. Following vectors

will be calculated as

where

2

1
,

T

j i

ij T

j j

w A w
с

w Aw


 while 0.iw 

The approximation formula on the m-iteration is

1

0

T Tm
j m

m j mT T
j j j m m

w b w b
x w x

w Aw w Aw




   .

6

At first glance, it may seem that the computations are complex because all are needed in

the composition. In fact, only two of them are non-zero when A is symmetric. The

conclusion of the mentioned conditions for vectors iw is a statement

 2

1 1 1 1, 1

0

0

T
j

T
T

j i j i j j k k i

k

w A w Aw Aw w c w Aw    



 
    

 
 ,

if 2j i  . Simplification of expression (1) gives

1 , 1 1 , 2 2i i i i i i i iw Aw c w c w       ,

if 2i  . The bottleneck of this approach is in statement
 . In the case when it is

not true, the method could create some approximation
1mx 
 instead of a true solution. It is a

critical property for finite fields because of high probability for such condition. Lanczos

algorithm in standard form is not suitable for GF(2). Foremost about half of all vectors in a

vector space over the Galois field of two elements are self-orthogonal vectors, so, the

solution will not be found with probability close to one. Secondly, even the smallest

difference is crucial for the solution vector in GF(2) and cannot be tolerated [13].

With respect to GF(2) Montgomery reformulated conditions for Lanczos vectors iw .

Primarily he replaces the condition 0T

i iw Aw  by A-invertibility. By definition, a vector

space is called A-invertible if it has such a basis that TW AW is invertible. By Montgomery,

the algorithm is based on subspaces Wi instead that comprises vectors such that


 is invertible


 is satisfied if , thus Wi should be pairwise

orthogonal

 that means W is an invariant space of matrix A

Let us assume that an n-by-N matrix is called a block vector if N is small compared to n.

We will discuss the value of N in the chapter about algorithm implementation. Then the

solution of the system is given by

 .

To construct the necessary sequence of spaces, a procedure is needed. The first step is to

choose randomly a block vector 0V . The next steps assumes using maximum linear

independent vector-columns chosen from Vi to satisfy the listed characteristics for Wi.

Gauss elimination for
 is suitable in this case. Obviously, the vectors sought are a

7

linear basis of subspace Wi. Other columns fill the array , which will be needed on the

next step. If all leftover columns do not satisfy the conditions stated for Wi+1, the next

iteration will be impossible and the solution will not be found.

The following iV are formed as

 ,

here is the column-wise concatenation ;

 .

Iterations continue until will be zero. It will happen if the solution has been found.

Comparing to the Lanczos algorithm, in the Montgomery modification one additional

summand is needed as an adaptation to GF(2) characteristics.

Montgomery algorithm steps:

Form basis

Calculate coefficients

Construct block vector

Find

8

1.3 Wiedemann-Coppersmith method

In the Wiedemann-Coppersmith algorithm the system solution bases on the characteristic

polynomial of the invertible square matrix A:

 
1

1
n

i

i

i

f f 


  ,

here 1 is a value of the summand when 0i  .

By the Cayley-Hamilton theorem   0f A  . Thus, if   0f A b  , then

1

1

1 0

n n
i i

i i

i i

b f A b A f A b




 

 
   

 
 

is concluded. The solution to the system could be formulated as a linear combination of

Krylov vectors

1

1

0

n
i

i

i

x f A b






 .

Coefficients of the characteristic polynomial are computed step-by-step. Initially, the

Wiedemann method suggests a random vector 2

ny F . The statement

   
0 0

0,
n n

T j T i j T i j

i i

i i

y f A A b y f A A b y A b f

 

 
   

 
 

is true, if 0, ,j n .

Let 2

T i

i y A b F   for all 0, ,i n , then the statement can be reformulated as

0

0, 0, ,
n

i j i

i

f j n



   . Here i j is a Hankel matrix, i.e. by definition it has equal

elements on each ascending skew-diagonal. Krylov spaces also are used to calculate this

matrix as in Montgomery algorithm. A transposed Hankel matrix is a Toeplitz matrix. It is

important because there are fast computational algorithms for these matrices.

Coppersmith proposed ([3]) a modification to the Wiedemann algorithm. He manipulated

with blocks of vectors. Computationally it seems more efficient because computers operate

with machine words, i.e. block of binary vectors.

According to Coppersmith, let us take two random block vectors 2

n Mz F  and 2

n Nx F  ,

where n is the size of the system matrix; N, M are random and small in comparison to n.

9

The value of N and M will be important in term of algorithm implementation. A further

step is calculating y z A  . The formula

 1
n n

L O
N M

   .

displays how many coefficients
T i

ia X AY are in a sequence of Krylov spaces. Then the

polynomial of the matrix will be given as the sum  
0

L
i

i

i

a a 


 . It will be useful as

initial data in a modification of the Berlekamp–Massey algorithm that obtains

characteristic polynomial  f x such that

         mod , deg degLa f g g f      

In the mentioned work [10] the modification uses a matrix as the set of coefficients of the

characteristic polynomial. The task is to find a linear combination of vectors

 , 0 , 1iA y i n N N     that are orthogonal to each

 , 0 , 1T ix A i n M N     .

The i-th iteration of the Berlekamp–Massey algorithm gives the
 M N N 

 matrix-

coefficient for
   i

f 
 where the power is in GF(2). There should be a condition check for

the polynomial power upper bound
 

deg
i

nom f t
. Index ‘nom’ means that the polynomial

power is usually higher than the actual value. Each coefficient by power j in

     j
f a 

 should satisfy two conditions:

 all coefficients by powers less then t must be zero (C1)

 rank of a matrix-coefficient by power t must be equal to M (C2)

Let us set  0t ceil M N as the initial power and put polynomials with power less then

0t into the first M columns. If C2 is not true, there are two ways to proceed: take another

block of x vectors or increase power
0t . The last n rows

 0tf could be taken from the

matrix product: the first operand is the coefficient for power
0t , the second one is identity

N-by-N matrix.

10

   

   

0 0 0

00 0

0 0

0 0

t t t t t

tt t t t

NM

M N

P P

f N

P P





 

 




 
 
 

  
 
 

 


,

here  0t t
P


 is a random polynomial with power less then

0t . Next iterations will compute

 1t
f


 from

 t
f . To organize its columns of matrix-coefficients by the current power t

should be ordered and diagonalized. Columns of the identity matrix should be put in the

same order. Zeroing all columns except m linearly independent ones (as C2 say) make C1

true for all other columns. To satisfy C1 for power 1t  , these columns need to be

multiplied by x. Iteration matrix could help to do all necessary computations and give a

characteristic polynomial for the next step
           1t t t

f x f x P x


 . The aim of

iterations is to increase the difference between power values until t n M  ,  is a

mean power relative to the numerical order of non-zero columns in matrix-coefficients of

the characteristic polynomial f

1

1 M N

i

iM N
 





 




therefore, t increments yield an
M

M N
 increase of  . If the computational process of

forming characteristic polynomial breaks under the condition C1 and C2, there are l

columns in f (under the condition
 

deg
t

nom lt f n M ) such that the vector

 ,

,,

t k d k

lk
f A y 



is orthogonal to vectors

T j dx A


while 1 ,M d j t    .

At this point, the solution is found with high probability. Proof and details are considered

in the work [3].

This chapter uses the Berlekamp–Massey algorithm [10] because it is easy-to-use. There

are optimized version for it in references [11] and [12].

11

To sum up the Wiedemann-Coppersmith method:

Generate initial vector x

From the characteristic polynomial

Compute a sequence of Krylov spaces

    
00

i T i

i Li L
a x A y


  

Find a solution
1i

jA w
under the condition 0i

jA w  and

1 0i

jA w 

12

2 COMPUTATIONAL MODELS

2.1 Computational model and computational cost for the

Montgomery method

In theoretical overview, we say that the column size for a block vector is computationally

important. To take into account the length of machine words, we could optimize algorithm

implementation. Binary operations allow us to compute matrix-by-vector multiplication

simultaneously if the number of vectors is less than the length of the machine word.

Modern machines operate with 64-bit words (32-bit words in other cases). Therefore, the

size of block vectors should be divisible by the length of the machine word. The

Montgomery method manipulates columns of simultaneously (it equals the rank of).

Rank value has a probabilistic impact onto the computational cost. According to

Montgomery’s evaluation in the case of GF(2) ([1]) rank expectation is

 ,

if values of N and n are large.

Then, the number of iterations could be estimated as

.

Let us consider arithmetic operations associated with elements of matrices step-by-step.

1. Gauss elimination determines basis vectors in . The number of operations

for this step is

 2

1 1

1 1

1
Pr 1 Pr

2

N N N

k i j k

N N

  


  ,

13

here N N is the
 matrix size, is the probability for matrix element

1ija  if  0,1ija  .

2. To get the Krylov space and its vector , we need to multiply our matrix

by the block vector . Sizes of matrices are and . Hence,

this process has  , ,n M n operations disregarding vector concatenation

 . The  , ,n M n means the function which determines how many

operations would be needed to multiply matrices of size . This

generalization simplifies the estimation of multiplication count per all operations

depending on the method.

3. Each iteration involves three coefficients . The last

two of them are almost computed on the previous steps except the summand .

The computational cost for the last two coefficients is two multiplications of

 matrices or  2 , ,M N n operations. The third coefficient

 includes

a.
 -by- multiplication with  , ,M M n operations

b. Inverse of

 matrix with

 as forward and

backward paths of Gauss elimination

c.

-by-

T

j jW A AW multiplication with

 , ,M n M operations

d.

 -by- multiplication with  , ,N n M

operations.

14

4. computation is the last step. Two summands and

 are calculated on the previous iterations. To achieve the solution we

compute

a. product with  , ,n M N operations

b. Addition with

 2 nN operations

To summarize, the number of operations for one iteration lets us combine the estimates:

 
     

       

   

1

2

1

1
Pr , , 2 , , , ,M

2

Pr 1 , , , , , ,

, 2

N N
iteration n n M n M N n N n

M M n M M n n M N n M

n M N nN


    

     

  

  

  



Round off M N and    , , , ,
N

M N n n M n
n

  give a shorter formula

 
   

 

2

2

1 1

1 6
Pr 1 , , Pr 1

2

2 .

N N N
iteration n M n M M

n

nN

  
      

 







The number of iterations is also known

n iteration
complexity

M


 .

It is clear, that the most complex part is the multiplication by a large matrix. Montgomery

iteration has two of them: when Krylov space is computed at the second step and in

15

calculations of the coefficient at the third step. The statement of the problem says that

,n N M , that allows us to simplify the estimate to

 6 , ,
n

complexity n M n
M

 
  
 

 .

The column number M in matrix is a probabilistic value and it makes the above-listed

estimates probabilistic too.

2.2 A computational model and the computational cost for the

Wiedemann-Coppersmith model

There are several steps in the Wiedemann-Coppersmith algorithm:

1. Generation of random vectors is an initial data process. It is not taken into

account.

2. Each element in a sequence of Krylov spaces demands two multiplications,

one of them is a y-by-A multiplication. The further step is multiplication of the

result by x. The value of
1iA g  was obtained previously. The size of A is

 and the size of x is . Hence, there are L

iterations with complexes    , , , ,n n M M n N  .

3. The major part of operations consists of obtaining coefficients for the

characteristic polynomial, Gauss elimination, and polynomial multiplication:

a. Coefficients could be found as a sequence of matrix

products and sums with matrices ia from a sequence of Krylov

16

spaces. Computations for power t take multiplications

 , ,M N M N and t sums  ,N N .

b. Gauss elimination for matrices and

feature
  

1,

1
Pr

2
e

M N M N
M

  
 and

   
2

1,

1
Pr

2
P

M N M N  

operations, respectively.

c. The power of polynomial equals to one, therefore,

there are only two coefficients, so multiplications containing

 , ,N M N M N  operations and 3t additions containing

 ,N M N operations are needed.

4. The final step requires the calculations to compute the vector. It includes

an  
i

n n
A

 -by- multiplication and multiplying the result by , of size

 . Consider that the multiplier
1iA z  uses values saved at the

previous step. There are L+1 iterations before we check the result columns for the

condition 0i

jA w  and
1 0i

jA w  . According to the estimate from [13]

2 1
n

i
M

 
  

 
.

The total computational cost for the Wiedemann-Coppersmith algorithm is provided by

          

      
   

     

2

1, 1,P

, , , , 1 , , ,

1 1
Pr Pr 3 1 , ,

2 2

3 , , , 2 1 , ,1 .

e

complexity L n n M M n N t M N M N t N N

M N M N M N M N
M t N M N M N

n
t N N M n N M N n n

M

      

     
     

 
      

 

  



  

17

In the Wiedemann-Coppersmith algorithm, the computationally hardest part features a

large matrix A as a multiplier. It occurs three times: in a sequence of Krylov spaces and

twice at the last step, when a vector iw is calculated and checked. The number of iterations

in this method is equal to the length of a sequence of Krylov spaces

 1
n n

L O
N M

   . We retain the largest summand and get

       

 
 

, , 1 , , 2 1 , ,1

2 , ,
2 1 , ,1 .

n
complexity L n n N L n n N n n

M

n n n N n
n n

M M

 
      

 

   
    

 

  




It is greater than the previous algorithm by  2 1 , ,1
n

n n
M

 
 

 
 .

18

3 SOFTWARE IMPLEMENTATIONS FOR

METHODS

3.1 Software implementation for the Montgomery algorithm

Code implementation for the Montgomery method was produced in Matlab framework.

The system matrix A and the right-hand vector b are input values for this problem. It is

important to create them explicitly in GF(2) for further operations. The problem statement

says that there should be a random, symmetric and positive definite matrix:

To check the result we should firstly set the solution vector x (given_solution in program)

by random generation and then produce the right-hand vector b as a product A x :

Randomizer creates block vector 0V under condition to include vector b

There is a special function for Gauss elimination in the case of GF(2) called gfrref. It is

similar to the function rref for real numbers

19

This function returns a transformed matrix and a number of linearly independent column,

which is the required result

Remaining columns should be put in the block vector W . Check by their numbers if there

are all columns V , W will be void and the method will break down. This happens mostly

only with a set of matrices of certain special types that have been studied in detail in [14].

20

If the method proceeds on without a break, a block vector V could be found as a

concatenation of AW and W

Now all data for the next iteration block vector
1iV 
 are known

If the function returns a zero matrix, the method has converged. Otherwise make the next

iteration

In case of success, there is a solution

Prove the method by comparing it first with a generated solution. An unsuccessful case

could be resolved by generating another initial block vector 0V .

21

Running time of the program for test cases are in table 1. P means set probability for non-

zero elements.

Table 1. Execution time for implementation of the Montgomery method.

№ n Columns in V P Time, sec

1 48 4 0.1 2.6746

2 64 8 0.1 2.4129

3 96 12 0.1 4.7809

4 128 16 0.1 8.1159

5 192 24 0.1 17.4575

6 256 32 0.1 30.5969

The curve (figure 1) shows the growth of the function to be  2O n . This is attained

without optimization, because this implementation uses only Matlab’s embedded

optimization.

22

Figure 1. Execution time dependence of system matrix size, sec.

3.2 Software implementation for the Wiedemann-

Coppersmith algorithm

Code implementation for the Wiedemann-Coppersmith method uses C++.

There are functions for matrix operations in the library abo (accelerated binary operations).

The library has detailed description in chapter 4. In this chapter, we present the

implementation of the method omitting library functions.

The main function carries out a few operations. It generates input data, calls functions to

generate a sequence of Krylov spaces to create the characteristic polynomial and to find

and check the solution

23

The sequence of Krylov spaces requires the matrix product

The next step is computationally hard. The characteristic polynomial is formed through

several sub-steps. Each of them has its particular function. Firstly we form the initial

polynomial

24

Further on, we cycle through a number of iterations which equals the length of the

sequence of Krylov spaces

An initial characteristic polynomial is created by matrix concatenation. It includes a matrix

of random polynomials as a left operand and identity matrix as a right one. Powers of

polynomials are under condition

25

In case of GF(2) a particular function returns the rank of a binary matrix:

26

While approximation of the characteristic polynomial is going on, the power of columns in

matrix-coefficients should be checked on each step. Call the function:

27

ALGO1 function creates an iteration matrix according to Thome’s work [12]:

28

Sorting_delta is a sorting function that uses a standard procedure stable_sort. It saves the

initial order of so called nominal degree. According to Coppersmith, nominal degree of

column is an upper bound on the degree of the coefficients in this column of the

polynomial [12]:

The sorted vector holds the order to change matrix columns by its powers:

29

When matrices are transformed, the program calls particular Gauss elimination for GF(2).

This function is similar to the listed gfrank function:

30

The solution contains the vector w which can be found as

31

The series of products finally returns a solution if there is a zero value. It means that

the result sought for is the previous product :

32

Function check_res takes given solution and tests if it suits the system:

With the aim of measuring the computational cost, a simulation exercise was conducted.

Presentation of the results is in table 2. N denotes the column of block vectors x and z, P

33

denotes the probability for the case when the matrix element is zero. Figure 2 presents

graphically the data from Table 2.

Table 2. Execution time for implementation of Wiedemann-Coppersmith method.

№ n N P Total time,

sec

I step, sec II step, sec

III step,

sec

1 96 12 0,995 0,209725 0,018433 0,158559 0,031938

2 128 16 0,996 0,454333 0,042353 0,350721 0,073813

3 192 24 0,9975 1,542 0,138905 1,11645 0,280819

4 256 32 0,998 2,909263 0,294589 2,071512 0,530434

5 512 64 0,999 21,929575 2,332576 15,460627 4,038455

6 1024 128 0,9995 182,53589 18,54862 130,29009 32,92925

Figure 2. Execution time dependence of system matrix size.

0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000 1200

Total time, sec

I step, sec

II step, sec

III step, sec

34

4 BINARY MATRIX OPERATIONS LIBRARY:

THEORY AND IMPLEMENTATION

4.1 Matrix multiplication method

Matrix multiplication methods fall into two classes: element-wise processing and block

operations. Element-by-element processes manipulate matrix elements while block

operations use whole columns or rows depending on the format of data storage. The

second group of methods seems to be computationally efficient because block operations

reduce memory access. Element-by-element processes refer to the “naive” method, method

known as the Strassen algorithm, and the method of Four Russians [15]. There is one

interesting method that suits well for row-stored matrices described by Gustavson in [16,

17] for the case of sparse matrices. This method shows good result in practice [18].

Current work considers two ways: a “naive” method involving the method of Four

Russians and a modification of the Gustavson method in case of dense matrices.

4.1.1 “Naive” method

This method has an intuitive implementation. Scalar multiplication applies to row and

column vectors according to the definition of matrix multiplication.

For reasons of optimization, left matrices are stored in memory by rows, right matrices by

columns. From computer representation point of view there are several available

implementations:

 for different data types (1-bit, 2-bit, 4-bit and 8-bit machine words)

 for 64-bit, 128-bit and 256-bit blocks of data (using MMX, SSE and

AVX intrinsic-functions by Intel to parallel operations [18])

Bitwise operations for addition and multiplication suit for bitwise matrix storage. The only

challenge is to fill such matrices properly

35

A scalar method manipulates boolean type and logic operations.

Data storage for intrinsic functions is also critical. Abo library provides a record to vectors

which form 64-bit, 128-bit or 256-bit blocks in their turn. There are special procedures for

arithmetic operations developed for intrinsic-functions. Its technical specification and

details are described in [19]. In this special case, matrix multiplication is implemented as

36

4.1.2 Method of Four Russians

In 1970 Arlazarov, Dinic, Kronrod and Faradzev public a paper. That included the

algorithm named as the method of Four Russians. The main idea was to use a preset table

for vector multiplication. The size of vectors is bounded.

For example, let us calculate and record scalar multiplication by mod 2 for all possible

pairs of binary vectors of size k. The results are placed in the table on the cross of left and

right operands. (figure 3). Take the first matrix and decompose each row into vectors of

size k. Each of them matches up with one binary vector. The second matrix is decomposed

in the same way, by columns instead of rows. This trick сuts computation by a factor k.

There are three modifications for the method of Four Russians in the abo library:

 Multiplication table for 4-size vectors with results put in bytes

The table has 16×16 elements of logic type. Before multiplication function splits

each operand into 4-element vectors and finds a solution of conjunction from the

table.

 Multiplication table for 8-size vectors with results put in bytes

The table has 256×256 elements of logic type. Before multiplication function

splits each operand into 8-element vectors and finds a solution of conjunction

from the table.

 Multiplication table for 8-size vectors with results put in rows of bits

The table has 32×256 bit elements. Before multiplication function splits each

operand into 8-element vectors and finds a solution of bitwise conjunction from

the table.

37

Figure 3. The method of Four Russians [20].

Implementation for method of Four Russians calls preset multiplication table:

38

One procedure manipulates bytes and 4-element operands:

39

The other procedure also uses bytes and operate an 8-element operands:

40

The third procedure sets densely packed operands in bits by size 8:

4.1.3 Gustavson method

The Gustavson method suits row-packed matrices. There is an interesting modification for

a dense matrix in [16].

Express an element in a product matrix as

c(i; j) = (a(i; 0) & b(0; j)) xor … xor (a(i; m) & b(m; j)).

The method by definition is really inefficient when two operands are row-packed matrices.

In this case, the standard way is matrix transposition, but it has also high computational

cost. It is obvious that zeros could be canceled for disjunction; therefore, the number of

operations for matrix multiplication could be reduced. It is the main idea according to

Gustavson. The task is to find all non-zero elements in each row by bit masks. If a non-

zero element a(1; j) is found in the first row, relative matrix row B(j) will be put into temp

store for the first row of matrix product C(1). Continue searching all non-zero elements in

41

the first row of matrix A. In case of each suitable element a(1; k) add row B(k) to temp row

C(1). When the row A(1) will be finished, there will be a matrix product sought to in the

row C(1). Make the same for all other rows.

The disadvantage of this method is enumeration in matrix rows to find non-zero elements.

To optimize it there is a simple iterator which allows to operate 4 elements of a row

simultaneously. Switch case provides 16 possible combinations of 0 and 1.

Software implementations:

Bitwise operations are performed

 for different data types (1-bit, 2-bit. 4-bit and 8-bit)

 for data blocks (MMX, SSE, and AVX for 64-bit, 128-bit and 256-bit

relatively).

Execution time and performance are also estimated for optimized search with 4-element

vectors.

Gustavson method is embedded in abo library:

42

Matrix storage provides two storage options: by rows and by columns. It is important to

check what type is used before running the function:

43

4.1.4 Options for polynomial matrices

Functions for matrix addition and multiplication allow us to extend them for the case of

matrix polynomials. The current work has an interest in matrix polynomials because it is

used in the Wiedemann-Coppersmith algorithm. One of the most frequently used

44

operations for the polynomials in this method is searching the matrix-coefficient for a

given degree of the polynomial:

It also applies to the function for matrix convolution:

45

The next necessary step is to implement a polynomial multiplication:

4.2 Performance results for abo library

4.2.1 Testing technique

There are new matrix-operands for each method. Measuring time is called directly before

and after the multiplication function. The timer is monotonic and independent of current

system time. The resulting duration of the multiplication function is added for a given

number of iterations to get a mean value.

System characteristics:

 Platform: Ubuntu 14.04 (core 3.13.0-24-generic)

 Processor: Intel Xeon CPU E5-2690 v2 @ 3.00GHz, 10 cores, 20 threads

 Compiler: g++ 4.8.2

 Optimization flags: –Ofast –march=core-avx-i –mavx

 Number of iterations: 100

 Dataset: matrix sized from 64 to 2048 elements

 Timer: steady_clock

4.2.2 Results

The presented results of the bitwise method are performed for an 8-byte data type. This

method manipulates densely packed operands. The scalar method uses logic data type and

loosely packed vectors element-by-element. The method of Four Russians has three scores

46

in the result table with respect to three different modifications. There is time complexity

for element-wise process in Table 3.

Table 3. Execution time item process methods for matrices sized from 64 to 256 elements

by a row/column, sec ×10
–6

.

Dependence of performance has a visual demonstration in Table 4. Performance is

calculated as a ratio of execution time to the number of arithmetic operations (addition and

multiplication) applied to matrix elements.

0

5000

10000

15000

20000

25000

64×6
4

64×1
28

64×2
56

128×
64

128×
128

128×
256

256×
64

256×
128

256×
256

bitwise 340 344 348 1355 1379 1389 5418 5512 5559

scalar (bool) 136 197 329 547 783 1313 2188 3126 5245

method of Four Russians (4-byte) 110 141 219 437 564 864 1739 2244 3431

method of Four Russian (8-byte) 129 180 287 519 723 1144 2072 2889 4571

method of Four Russian (8-byte) 382 761 1549 1464 2921 5925 5760 11462 23052

MMX 326 330 336 1307 1318 1342 5222 5273 5375

SSE 0 0 0 0 2329 2344 0 9313 9385

AVX 0 0 0 0 0 0 0 0 17534

47

Table 4. Performance for element-wise process methods for matrices sized from 64 to 256

elements by a row/column, operations ×10
6
/sec.

The method of Four Russians with table for 8-element vectors has lower performance

because the table is larger hence the search is harder. If this table has been densely packed,

the modification would have had even lower performance. In this case, bitwise descriptor

slows down processing rate.

Type of dependence for time complexity differs for block multiplication methods. It is

shown in table 5.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

64×6
4

64×1
28

64×2
56

128×
64

128×
128

128×
256

256×
64

256×
128

256×
256

bitwise 1529 3036 6014 1535 3029 6027 1536 3031 6024

scalar (bool) 3824 5301 6361 3803 5335 6376 3803 5346 6384

method of Four Russians (4-byte) 4729 7407 9557 4761 7407 9690 4786 7447 9760

method of Four Russian (8-byte) 4032 5802 7292 4009 5778 7318 4016 5784 7326

method of Four Russian (8-byte) 1361 1372 1351 1421 1430 1413 1444 1458 1452

MMX 1595 3165 6229 1592 3169 6238 1593 3169 6230

SSE 0 0 0 0 1793 3571 0 1794 3568

AVX 0 0 0 0 0 0 0 0 1909

48

Table 5. Execution time for block operations methods for matrices sized from 64 to 256

elements by a row/column, sec ×10
–6

.

Conversion to performance exhibits a slight gap between intrinsic-functions and others

modifications (table 6).

0

1000

2000

3000

4000

5000

6000

7000

64×64 64×128 64×256 128×64 128×12
8

128×25
6

256×64 256×12
8

256×25
6

bitwise 57 113 227 118 233 469 246 491 982

scalar (bool) 165 165 329 659 507 1017 2031 1734 3465 6920

MMX 57 114 228 118 236 474 252 506 1006

SSE 0 0 0 0 226 454 0 468 933

AVX 0 0 0 0 0 0 0 0 923

49

Table 6. Performance for the Gustavson method for matrices sized from 64 to 256

elements by a row/column, operations ×10
6
/sec.

For these methods using iterators to 1-bit or 4-bit elements [21] there are also bars for time

complexity function (table 7) and performance (table 8).

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

64×64 64×128 64×256 128×64 128×12
8

128×25
6

256×64 256×12
8

256×25
6

bitwise 2299.51 2319.86 2309.64 4443.12 4500.33 4471.54 8525.01 8542.37 8542.37

scalar (bool) 794.376 796.79 795.581 1034.1 1031.05 1032.57 1209.43 1210.48 1212.23

MMX 2299.51 2299.51 2299.51 4443.12 4443.12 4424.37 8322.03 8289.14 8338.58

SSE 0 0 0 0 4639.72 4619.28 0 8962.19 8991

AVX 0 0 0 9088.42

50

Table 7. Dependence of time complexity for Gustavson method with iterators, sec ×10
–6

.

Table 8. Performance for Gustavson method with iterations, operations ×10
6
/sec.

Let us consider the dependence between performance and number of zero elements in

matrices sized 256×256 with p as a probability for generated zero elements:

0

200

400

600

800

1000

1200

256×256, no iterator 256×256, iterator 256×256, 4-bit iterator

bitwise 982 744 500

MMX 1006 747 508

SSE 933 678 447

AVX 923 670 431

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

256×256, no iterator 256×256, iterator 256×256, 4-bit iterator

bitwise 8542.37 11275 16777.2

MMX 8338.58 11229.7 16513

SSE 8991 12372.6 18766.5

AVX 9088.42 12520.3 19463.1

51

Figure 4. The performance curve dependence on the number of zero elements.

The character of the performance function is interesting from the cache memory point of

view. There are two levels of cache. When one level is filled, performance has a dramatic

drop (figures 5 – 7). Let us choose storage by rows in such a way that increasing number of

columns.

Figure 5. Performance for a matrix with row size = 64 and column size from 210 = 1024 to

224 = 16777216, operations ×10
6
/sec.

0

5000

10000

15000

20000

25000

p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

Performance,
operations×10^6/sec

52

Figure 6. Performance for a matrix with row size = 128 and column size from 210 = 1024

to 223 = 8388608, operations ×10
6
/sec.

Figure 7. Performance for a matrix with row size = 256 and column size from 210 = 1024

to 222 = 4194304, operations ×10
6
/sec.

53

4.3 Performance data for external libraries provided boolean

matrix multiplication

There are test results for some platforms (tables 9 – 13) using such libraries as MAGMA,

GAP and NTL [22]. Input data is two random square Boolean matrices. GAP operates the

method of Four Russians, Magma and M4RI use the method of Four Russians applied to

the Strassen-Winograd algorithm. All time results are in seconds.

Table 9. Test results for 64-bit Debian/GNU Linux, 2.33Ghz Intel Core2Duo

(MacbookPro2,2).

Matrix

Dimension

Magma 2.14-17

(64-bit)

GAP 4.4.10

(64-bit)

M4RI-20080821

(64-bit)

10,000 x 10,000 1.892 6.130 1.504

16,384 x 16,384 7 .720 25.048 6.074

20,000 x 20,000 13.209 - 10.721

32,000 x 32,000 53.668 - 43.197

http://magma.maths.usyd.edu.au/magma/
http://www.gap-system.org/
http://www.shoup.net/ntl/

54

Table 10. Test results for 64-bit Debian/GNU Linux, 2.6Ghz Intel i7 (MacbookPro6,2).

Matrix

Dimension

Magma 2.15-10

(64-bit)

GAP 4.4.12

(64-bit)

M4RI-20121224

(64-bit)

10,000 x 10,000 1.200 6.524 0.942

16,384 x 16,384 4.735 20.777 3.672

20,000 x 20,000 8.085 - 6.660

32,000 x 32,000 33.395 - 28.006

Table 11. Test results for 64-bit Debian/GNU Linux, 2.6Ghz AMD Opteron 858 (VMWare

Virtualised).

Matrix

Dimension

Magma 2.14-13

(64-bit)

GAP 4.4.12

(64-bit)

M4RI-200100817

(64-bit)

10,000 x 10,000 2.855 10.256 2.656

16,384 x 16,384 10.865 - 11.470

20,000 x 20,000 19.505 - 18.929

32,000 x 32,000 70.110 - 66.208

55

Table 12. Test results for 64-bit Ubuntu Linux, 2.6Ghz AMD Athlon X2.

Matrix

Dimension

Magma 2.14-13

(64-bit)

GAP 4.4.10

(64-bit)

M4RI-200100817

(64-bit)

10,000 x 10,000 2.005 5.920 2.700

16,384 x 16,384 7.625 24.180 10.100

20,000 x 20,000 13.870 - 19.120

32,000 x 32,000 51.155 - 73.725

Table 13. Test results for 64-bit RHEL 5 Linux, 1.6Ghz Intel Itanium.

Matrix

Dimension

Magma 2.14-16

(64-bit)

GAP 4.4.10

(64-bit)

M4RI-20080909

(64-bit)

10,000 x 10,000 7.941 - 4.200

16,384 x 16,384 31.046 - 16.430

20,000 x 20,000 55.654 - 28.830

32,000 x 32,000 209.483 - 109.414

4.4 Summary for the developed abo library

For small matrices sized 64-256 element Gustavson method is faster and the fastest one is

the modification for a 256×256 matrix with AVX and iterator implementations. Its

performance equals 19463.1 operations in a microsecond.

For large matrices, the optimum number of columns for a given number of rows when

there is no noticeable performance reduction for different row-by-row methods is given in

table 14.

56

Table 14. Cache-optimum number of columns for a given number of rows.

Number of rows MMX SSE AVX

64 < 2
21

 - -

128 < 2
20

 < 2
20

 -

256 < 2
19

 < 2
19

 < 2
19

This tendency is due to the size of the second-level cache in the operating system.

Time result data are given for functions without iterators but even then there is a much

greater processing speed compared with data reported for external libraries. For example,

take a 256×2^19 matrix (what is greater than 10^8) in Gustavson method with

 1n m n p   complexity, where n m is a matrix size and p is a probability for generated

zero elements. Here in the test results, it takes 5.5924 milliseconds. It is the best time result

compared to any of the three external libraries in case of GF(2).

57

5 CONCLUSION

Algorithms in the current work were chosen due to their high practical importance. They

are the most efficient ones and therefore the most popular algorithms in different fields,

mainly in the problem of data decryption. But there are a lot of studies directed at

extending or modifying them for attaining even higher efficiency. Since their publication,

many efficient modifications have appeared. In our current work, we have tried to start

from a theoretical model and came to implementations for the Montgomery and the

Wiedemann-Coppersmith methods. It was done with the aim of efficient development

based on a detailed computational cost analysis for each step of the methods. Original

algorithms, as well as their modern modifications (such as Berlekamp–Massey and Thomé

versions for the Wiedemann-Coppersmith algorithm), were considered. The choice of

method was based on a review in related fields. Computational efficiency and high

probability for result achievement were key parameters for algorithms.

Building a theoretical model included a detailed assessment of the computational

complexity of all the relevant operations. This approach allows educated organization for

method development and test estimation for further optimization.

The most significant contribution to improving the efficiency of software implementations

of the algorithms was the decision through special library operations for the case of binary

vectors and matrices. Theoretical estimation shows that multiplication of large matrices

occupies quite a large share of total execution time. Acceleration of it reduces the time

complexity of the entire algorithm. It should be clarified that for this operation there is a

special data record type of binary matrices and vectors. Also, a computational tool of

elementary operations for it was prepared. Test results for the abo library demonstrate its

advantages compared to existing well-known libraries such as Magma, GAP, M4RI (in the

case of GF(2)).

The current state of research for Montgomery and Wiedemann-Coppersmith algorithms

was discussed, theoretical analysis and estimation for computational cost were provided.

An optimized implementation for two algorithms and a library of computationally

intensive binary operations was developed. Further use will include commercial use and

enhancing derived software solution.

This work may be developed further in the field of parallel architecture for the

Montgomery and Wiedemann-Coppersmith algorithms.

58

References

[1] P. Montgomery. A block Lanczos algorithm for finding dependencies over

GF(2). // Lecture Notes in Computer Science. 921. Springer-Verlag, 1995. P.

106-120.

[2] D.H. Wiedemann. Solving sparse linear equations over finite fields. // IEEE

Trans. Inform. Theory, 1986, 32, 1. P. 54–62.

[3] Don Coppersmith. Solving Homogeneous Linear Equations over GF(2) via

Block Wiedemann Algorithm. // Mathematics of Computation. 1995. 62, 205.

P. 333–350.

[4] T. Kleinjung, K. Aoki, J. Franke, et al. Factorization of a 768-bit RSA modulus

//CRYPTO-2010. LNCS. 2010. V. 6223. P. 333-350.

[5] Y. Saad. On the Lanczos Method for Solving Symmetric Linear Systems with

Several right-hand Sides. // Mathematics of Computation. 1987. 48, 178.

[6] M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear

systems // Journal of Research of the National Bureau of Standards. 1952. 49,

6.

[7] Y. Saad and M.H.Schultz. GMRES: a generalized minimum residual algorithm

for solving nonsymmetric linear systems. // SIAM J. Sci. Stat. Comput. 1986.

7. 856–857.

[8] Don Coppersmith. Solving Linear Equations over GF(2): Block Lanczos

Algorithm. // Linear Algebra Appl. 1993. v. 193 pp. 33–60.

[9] M. Peterson and C. Monico. F2 Lanzcos revisited. // Linear Algebra Appl.

2008. 428. 1135–1150.

59

[10] J.L. Massey. Shift-Register Synthesis and BCH Decoding. // IEEE Trans.

Inform. Theory, 1969, 15,1.

[11] F.G. Gustavson and D.Y. Yun. Fast Algorithms for Rational Hermite

Approximation and Solution of Toeplitz Systems. // IEEE Trans. Circ. Syst.,

1979, 26, 9.

[12] E. Thomé. Fast computation of linear generators for matrix sequences and

application to the block Wiedemann algorithm // Proc. ISSAC. 2010. P. 323-

331.

[13] Н.Л. Замарашкин. Алгоритмы для разреженных систем линейных

уравнений в GF(2). – М.: Издательство Московского университета. 2013.

[14] B. Hovinen. Blocked Lancsoz-style Algorithms over Small Finite Fields.

University of Waterloo, 2004.

[15] А. Ахо, Дж. Хопкрофт, Дж. Ульман. Построение и анализ

вычислительных алгоритмов. – М.: Мир, 1979.

[16] F. G. Gustavson. Two fast algorithms for sparse matrices: multiplication and

permuted transposition // ACM Trans. Math. Software (TOMS). 1978. Vol. 4.

№ 3. P. 250 – 269.

[17] С. Писсанецки. Технология разреженных матриц. – М.: Мир, 1977.

[18] И.Б. Мееров, А.В. Сысоев. Разреженное матричное умножение. –

Н.Новгород: ННГУ, 2011.

[19] Intel Intrinsic functions. Available online at

https://software.intel.com/sites/landingpage/IntrinsicsGuide/

[20] The method of Four Russians. Available online at

http://neerc.ifmo.ru/wiki/index.php?title=Метод_четырех_русских_для_умн

ожения_матриц

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
http://neerc.ifmo.ru/wiki/index.php?title=Метод_четырех_русских_для_умножения_матриц%20
http://neerc.ifmo.ru/wiki/index.php?title=Метод_четырех_русских_для_умножения_матриц%20

60

[21] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 2013.

[22] Benchmarketing results for M4RI and other systems. Available online at

http://malb.bitbucket.org/m4ri-e-website-2008-2015/performance.html

http://malb.bitbucket.org/m4ri-e-website-2008-2015/performance.html

61

List of Tables

Table 1. Execution time for implementation of the Montgomery method. 21

Table 2. Execution time for implementation of Wiedemann-Coppersmith method. 33

Table 3. Execution time item process methods for matrices sized from 64 to 256 elements

by a row/column, sec ×10
–6

. .. 46

Table 4. Performance for element-wise process methods for matrices sized from 64 to 256

elements by a row/column, operations ×10
6
/sec. ... 47

Table 5. Execution time for block operations methods for matrices sized from 64 to 256

elements by a row/column, sec ×10
–6

. ... 48

Table 6. Performance for the Gustavson method for matrices sized from 64 to 256

elements by a row/column, operations ×10
6
/sec. ... 49

Table 7. Dependence of time complexity for Gustavson method with iterators, sec ×10
–6

. 50

Table 8. Performance for Gustavson method with iterations, operations ×10
6
/sec. 50

Table 9. Test results for 64-bit Debian/GNU Linux, 2.33Ghz Intel Core2Duo

(MacbookPro2,2). .. 53

Table 10. Test results for 64-bit Debian/GNU Linux, 2.6Ghz Intel i7 (MacbookPro6,2). . 54

Table 11. Test results for 64-bit Debian/GNU Linux, 2.6Ghz AMD Opteron 858 (VMWare

Virtualised). ... 54

Table 12. Test results for 64-bit Ubuntu Linux, 2.6Ghz AMD Athlon X2. 55

Table 13. Test results for 64-bit RHEL 5 Linux, 1.6Ghz Intel Itanium. 55

Table 14. Cache-optimum number of columns for a given number of rows. 56

62

List of Figures

Figure 1. Execution time dependence of system matrix size, sec. 22

Figure 2. Execution time dependence of system matrix size. .. 33

Figure 3. The method of Four Russians [20]. .. 37

Figure 4. The performance curve dependence on the number of zero elements. 51

Figure 5. Performance for a matrix with row size = 64 and column size from 210 = 1024 to

224 = 16777216, operations ×10
6
/sec. ... 51

Figure 6. Performance for a matrix with row size = 128 and column size from 210 = 1024

to 223 = 8388608, operations ×10
6
/sec. ... 52

Figure 7. Performance for a matrix with row size = 256 and column size from 210 = 1024

to 222 = 4194304, operations ×10
6
/sec. ... 52

