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Nowadays problem of solving sparse linear systems over the field GF(2) remain as a
challenge. The popular approach is to improve existing methods such as the block Lanczos
method (the Montgomery method) and the Wiedemann-Coppersmith method.

Both these methods are considered in the thesis in details: there are their modifications and
computational estimation for each process. It demonstrates the most complicated parts of

these methods and gives the idea how to improve computations in software point of view.

The research provides the implementation of accelerated binary matrix operations
computer library which helps to make the progress steps in the Montgomery and in the

Wiedemann-Coppersmith methods faster.
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1 INTRODUCTION

The problem of solving large sparse linear systems over the field GF(2) has widespread
application but it has high computational complexity and there are few programs capable
of solving the systems of linear equations fast. Among fields of use, there are problems
such as breaking RSA encryption by sieve methods, applied to the problem of factoring a
large natural number into two primes; and information data transfer by a noisy channel.
Presently there are two algorithms widely using for large linear system solving over GF(2):
Montgomery algorithm [1] and Wiedemann-Coppersmith algorithm [2, 3]. Over the last
twenty years there have been attempts to accelerate individual steps of these algorithms.
For example, in the last achievement of breaking the 768-bit RSA-key, it was implemented
by a modified block Coppersmith algorithm [4]. Nevertheless, the two algorithms have
their advantages, disadvantages and limitations. A question of special interest are
implementation details: taking into account computing systems characteristics to choose
data format and development priority. Such information is uncommon in professional
papers, although it is not less important than advancement in general.

The goals of this paper are investigation of Montgomery and Wiedemann-Coppersmith
algorithms, making analytical models for them, giving each a computational complexity
estimate and practical results. Besides that, the goal is suboptimization as a result of
theoretical and practical evidence of this work. To achieve the goals, the paper consider
extended algorithms’ models according to computing systems down to details of the most
computationally heavy operations. The work provides special data format and an

accelerated binary matrix operations computer library.



The first chapter presents a theoretical overview of Montgomery and Wiedemann-
Coppersmith methods and their modifications used in this work. The second chapter
considers an analytical model of computation for both algorithms which is used as a base
for detailed theoretical estimates of the computational complexity of each step of both
algorithms. The third chapter describes the software implementation of both algorithms
and practical estimates of programming work. The fourth chapter provides a theoretical
basis and practical results of accelerated operations of addition and multiplication of binary

matrices which play an important role in the implementation of both algorithms.

1.1 The current state of the problem

Both methods, which will be discussed in this paper are iterative methods that use Krylov
space. In the case of the real field there are successful applications of some similar
methods: first of all, the Lanczos algorithm [5], which is the basis for Montgomery’s work,
the methods of Conjugate Gradients[6], the generalized minimum residual algorithm
(GMRES) [7] and others. All listed algorithms in standard form are unsuitable for the finite
fields case. For the GF(2) case, there are several implementations of the so-called block
Lanczos algorithm ([1], [8], [9]). This paper considers only Montgomery’s work because
there is no essential difference between other version block methods. The second algorithm
presented in this work is the Wiedemann-Coppersmith algorithm that was first proposed in
1986 by Wiedemann ([2]). Later in 1995 Coppersmith published a block version of it
([3]). The Wiedemann-Coppersmith method uses the characteristic polynomial of a

matrix. A common way to construct this polynomial is to apply one of the so-called fast



methods for it, for example, Berlekamp—Massey algorithm [10], the superfast algorithm

from [11] and Thomé’s modification [12].

1.2 Montgomery method

Take a system
AX =D,
where A is a large sparse symmetric n-by-n matrix, b and x are a vector of length n. The
Lanczos idea is to construct an approximation to its solution by employing a Krylov space
at every step that can be determined as
K., (b, A)=Span{b, Ab, A’b,..., A" b}.

In the Lanczos algorithm vectors w, should be

o non-zero:w; # 0iIf0 <i <m, w,, = 0;

o orthogonal with respect to the system matrix ijAwi =0ifi#j;

e wlAw; # 0;

. The linear span of the vectors w; defines the Krylov space K,,, =

span{wy, --+, Wy, }.
If these conditions are true, vectors w, will be basis vectors for a sequence of Krylov
spaces.
As an initial approximation, Lanczos proposes the vector b from the right-hand side of the

system. The further process resembles Gram-Schmidt orthogonalization. Following vectors

will be calculated as

-1
w; = Aw;_q — Z wicij, (1)
j=o

T A2

w! A%w, .
where ¢, =———=, while w; #0.
w; Aw;

The approximation formula on the m-iteration is

T T
m w;b w, b

Xn =D T,]A W, =X, + TR :
=W AW, W Aw,



At first glance, it may seem that the computations are complex because all w; are needed in
the composition. In fact, only two of them are non-zero when A is symmetric. The

conclusion of the mentioned conditions for vectors w. is a statement

) T
J
WJT AZWH = (AWj )T Aw, , = (Wjﬂ +2Cj+l,kaJ Aw, , =0,
k=0
if j<i-2.Simplification of expression (1) gives
W= Aw,, —GiiaWi — G Wi,
if i >2. The bottleneck of this approach is in statement w] Aw; # 0. In the case when it is
not true, the method could create some approximation x_, instead of a true solution. Itis a
critical property for finite fields because of high probability for such condition. Lanczos
algorithm in standard form is not suitable for GF(2). Foremost about half of all vectors in a
vector space over the Galois field of two elements are self-orthogonal vectors, so, the
solution will not be found with probability close to one. Secondly, even the smallest

difference is crucial for the solution vector in GF(2) and cannot be tolerated [13].
With respect to GF(2) Montgomery reformulated conditions for Lanczos vectors w, .
Primarily he replaces the condition w' Aw, =0 by A-invertibility. By definition, a vector
space is called A-invertible if it has such a basis that W™ AW is invertible. By Montgomery,
the algorithm is based on subspaces W; instead that comprises vectors such that
e WTAW; is invertible
o WJ-TAWi = 0 is satisfied if j # i, thus W;should be pairwise
orthogonal
e AW € W that means W is an invariant space of matrix A
Let us assume that an n-by-N matrix is called a block vector if N is small compared to n.

We will discuss the value of N in the chapter about algorithm implementation. Then the

solution of the system Ax = b is given by

x = S75 W, (W Aw;) " W b.
To construct the necessary sequence of spaces, a procedure is needed. The first step is to
choose randomly a block vector V,. The next steps assumes using maximum linear

independent vector-columns chosen from V; to satisfy the listed characteristics for W;.

Gauss elimination for VT AV; is suitable in this case. Obviously, the vectors sought are a
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linear basis of subspace W;. Other columns fill the array W;, which will be needed on the
next step. If all leftover columns do not satisfy the conditions stated for Wi.4, the next
iteration will be impossible and the solution will not be found.

The following V, are formed as

Vier = Vier + WiCrory + Wisi Cigimq + WispCigr,ia,

here V;,, is the column-wise concatenation [AW;, W;]; Cit1; = (WjTAVI/]-)_leTAVHl.
Iterations continue until V,,, will be zero. It will happen if the solution has been found.
Comparing to the Lanczos algorithm, in the Montgomery modification one additional

summand is needed as an adaptation to GF(2) characteristics.

Montgomery algorithm steps:

Form basis W;

Construct block vector V;, 4

Calculate coefficients C;, 4




1.3  Wiedemann-Coppersmith method

In the Wiedemann-Coppersmith algorithm the system solution bases on the characteristic

polynomial of the invertible square matrix A:

=1+i fA',
i=1

here 1 is a value of the summand when i =0.

By the Cayley-Hamilton theorem f (A)=0. Thus, if f(A)b=0, then

b= Z fAb= A(ni fmA‘bj
i=1 i=0

is concluded. The solution to the system could be formulated as a linear combination of

Krylov vectors

-1

>

i=0
Coefficients of the characteristic polynomial are computed step-by-step. Initially, the

Wiedemann method suggests a random vector y € F,'. The statement

y' f(A)Ab=y (ZfA']A’b Z( TA"Ip)f, =
is true, if j=0,...,n.

Let o, :yTAibeF2 for all i=0,...,n, then the statement can be reformulated as

Zoc,+J =0, J=0,...,n. Here o, is a Hankel matrix, i.e. by definition it has equal

elements on each ascending skew-diagonal. Krylov spaces also are used to calculate this
matrix as in Montgomery algorithm. A transposed Hankel matrix is a Toeplitz matrix. It is
important because there are fast computational algorithms for these matrices.

Coppersmith proposed ([3]) a modification to the Wiedemann algorithm. He manipulated
with blocks of vectors. Computationally it seems more efficient because computers operate

with machine words, i.e. block of binary vectors.
According to Coppersmith, let us take two random block vectors z e F,"™ and xe F,"",

where n is the size of the system matrix; N, M are random and small in comparison to n.

8



The value of N and M will be important in term of algorithm implementation. A further

step is calculating y=z- A. The formula

L:£+1+O(1).
N M

displays how many coefficients a, = X" A'Y are in a sequence of Krylov spaces. Then the

L .
polynomial of the matrix will be given as the sum a(/l):Zaiﬂ' . It will be useful as
i=0

initial data in a modification of the Berlekamp—Massey algorithm that obtains

characteristic polynomial f (x) such that

a(4)f(4)=g(A)mod A", degg(A)<degf (1)

In the mentioned work [10] the modification uses a matrix as the set of coefficients of the

characteristic polynomial. The task is to find a linear combination of vectors

{Aiyv, 0<i<n/N, 1<v< N} that are orthogonal to each
{X,A, 0<i<n/M, 1<u<N}.

+N)><N

The i-th iteration of the Berlekamp—Massey algorithm gives the (M matrix-

(i)
coefficient for f (/1) where the power is in GF(2). There should be a condition check for

(i)
the polynomial power upper bound degyon f St. Index ‘nom’ means that the polynomial

power is usually higher than the actual value. Each coefficient by power 4 in

(i)
f (;L)a(l) should satisfy two conditions:
e all coefficients by powers less then t must be zero (C1)

o rank of a matrix-coefficient by power t must be equal to M (C2)

Let us set t, =ceil (M/N) as the initial power and put polynomials with power less then
t, into the first M columns. If C2 is not true, there are two ways to proceed: take another
block of x vectors or increase power t,. The last n rows £ could be taken from the

matrix product: the first operand is the coefficient for power t,, the second one is identity

N-by-N matrix.



pist) . ptse) 26 0

f= ... .. . . .. ..[IN
I:,(tsto) - P(tsto) 0O 0 Ab :
%/—/
Y N
) M+N J

here P““) is a random polynomial with power less then t,. Next iterations will compute

£ from fY. To organize its columns of matrix-coefficients by the current power t

should be ordered and diagonalized. Columns of the identity matrix should be put in the
same order. Zeroing all columns except m linearly independent ones (as C2 say) make C1

true for all other columns. To satisfy C1 for power t+1 these columns need to be

multiplied by x. Iteration matrix could help to do all necessary computations and give a

characteristic polynomial for the next step f™(x)= ' (x)PY (x). The aim of

iterations is to increase the difference between power values until t—38 >n/M | O isa

mean power relative to the numerical order of non-zero columns in matrix-coefficients of
the characteristic polynomial f

1 M+N

S= S

M+N &

increase of O . If the computational process of

. _ M
therefore, t increments yield an
M +N

forming characteristic polynomial breaks under the condition C1 and C2, there are |

columns in f (under the condition t—deg,,, f,(t)>n/M ) such that the vector

(tk) pd—ky, id
Zv,k fi, "AY, s orthogonal to vectors X, AV while 1< <M,  d<j<t.

At this point, the solution is found with high probability. Proof and details are considered
in the work [3].
This chapter uses the Berlekamp—Massey algorithm [10] because it is easy-to-use. There

are optimized version for it in references [11] and [12].
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To sum up the Wiedemann-Coppersmith method:

Generate initial vector x

Compute a sequence of Krylov spaces

)0 =AY,

From the characteristic polynomial f(X)

Find a solution AHWJ- under the condition A'Wj =0 and

A“le =0

11



2 COMPUTATIONAL MODELS

2.1 Computational model and computational cost for the

Montgomery method

In theoretical overview, we say that the column size for a block vector is computationally
important. To take into account the length of machine words, we could optimize algorithm
implementation. Binary operations allow us to compute matrix-by-vector multiplication
simultaneously if the number of vectors is less than the length of the machine word.
Modern machines operate with 64-bit words (32-bit words in other cases). Therefore, the
size of block vectors should be divisible by the length of the machine word. The
Montgomery method manipulates columns of W; simultaneously (it equals the rank of ;).
Rank value has a probabilistic impact onto the computational cost. According to
Montgomery’s evaluation in the case of GF(2) ([1]) rank expectation is
Ery~N — 0.764499780,
if values of N and n are large.

Then, the number of iterations could be estimated as

n
N—-0.764499780

Let us consider arithmetic operations associated with elements of matrices step-by-step.
1.  Gauss elimination determines basis vectors in V;. The number of operations

for this step is

N?(N -1)

N N N
D> > Pr, > 1=Pr, >




here N x N is the V;" AV; matrix size, Pry is the probability for matrix element
a; =1if g e{O,l}.
2. To get the Krylov space and its vector V;,,, we need to multiply our matrix

by the block vector AW;. Sizes of matrices are A [n X n] and W; [n X M]. Hence,

this process has H(n,M,n) operations disregarding vector concatenation

[AWi,I/T/i] . The H(n M, n) means the function which determines how many

operations would be needed to multiply matrices of size [n x m] X [m X k]. This
generalization simplifies the estimation of multiplication count per all operations
depending on the method.

3. Each iteration involves three coefficients C;y1;, Ci+1i-1,Ciy1i-2. The last

two of them are almost computed on the previous steps except the summand V;. ;.

The computational cost for the last two coefficients is two multiplications of
[M x n] x [n x N] matrices or 2] [(M,N,n) operations. The third coefficient
Ci+1; includes

a. W -by- AW; multiplication with H(M M, n) operations

b.  Inverse of (W AW;)™" matrix with Pr,M2(M — 1) as forward and

backward paths of Gauss elimination

c. (wraw)™ by- W] A=AW,  multiplication  with
[ T(M,n,M)operations

d. (W aw,)"'WTA -by- V;,, multiplication with H(N,n, M)

operations.

13



4. Vi, computation is the last step. Two summands W;_,C;.,;—; and
W;_,C;+1,—, are calculated on the previous iterations. To achieve the solution we

compute

a. W;Ciy1, product with [ J(n,M,N) operations
b. Addition ‘71'+1 + WiCi+1,i + (Wi—1Ci+1,i—1 + Wi—ZCi+1,i—2) with

2> (nN)) operations

To summarize, the number of operations for one iteration lets us combine the estimates:

iteration = Pran+H(n, M ,n)+2H(M,N,n)+H(N,n,M)+

+Pr M2 (M =)+ (M, M)+ J(n,n,M)+] J(N,n,M )+
+[[(n<M,N)+2>(nN)

N
Round off M = N and H(M , N’n) zFH(n’ M 1”) give a shorter formula

2 J—
iteration ~ Pr1W+(1+6—N)H(n, M,n)+Pr,M 2 (M-1)+

n
+22(nN ).
The number of iterations is also known

: n-iteration
complexity = ———

It is clear, that the most complex part is the multiplication by a large matrix. Montgomery

iteration has two of them: when Krylov space is computed at the second step and in

14



calculations of the coefficient at the third step. The statement of the problem says that

N> N, M , that allows us to simplify the estimate to

complexity = (%+6jn(n, M,n).

The column number M in matrix W; is a probabilistic value and it makes the above-listed

estimates probabilistic too.

2.2 A computational model and the computational cost for the

Wiedemann-Coppersmith model

There are several steps in the Wiedemann-Coppersmith algorithm:
1.  Generation of random vectors is an initial data process. It is not taken into
account.

2.  Each element in a sequence of Krylov spaces demands two multiplications,

one of them is a y-by-A multiplication. The further step is multiplication of the

result by x. The value of A J was obtained previously. The size of A is

[n X n] X [n x N] and the size of x is [M X n] X [n X N]. Hence, there are L
iterations with complexes | [(n,n,M)+] [(M,n,N).

3. The major part of operations consists of obtaining coefficients for the
characteristic polynomial, Gauss elimination, and polynomial multiplication:

a. Coefficients could be found as a sequence of N X (M + N) matrix

products and sums with M x N matrices &; from a sequence of Krylov

15



spaces. Computations for power t take (t+ 1) multiplications
JTT(M.N,M +N) and tsums D>_(N,N).
b. Gauss elimination for matrices epyxm+n) AN Piay+n)xm+n)]

(M+N)MEN-D) (M+N) (M +N-1)

feature Pr,,M
' 2 ’ 2

operations, respectively.
C. The power of Pjuyn)xm+ny) POlynomial equals to one, therefore,

there are only two coefficients, so 3(t + 1) multiplications containing

JT(N.M+N,M+N) operations and 3t additions containing

> (N,M +N) operations are needed.

4.  The final step requires the calculations to compute the w vector. It includes

an 'Afnxn] -by-zp, 7 multiplication and multiplying the result by f(,_;), of size

: L i-1
[N X (M + N)]. Consider that the multiplier A" - Z uses values saved at the

previous step. There are L+1 iterations before we check the result columns for the

condition Ain =0 and AHWJ- # 0 . According to the estimate from [13]

I z2(1+1j_
M

The total computational cost for the Wiedemann-Coppersmith algorithm is provided by

complexity = L(][(n,n, M)+ T(M,n,N))+(t+1)T(M,N,M +N)+t>"(N,N)+

2
Pr., (M +N)(;\/I +N _l)+Pr1,p (M+N) (2M +N-1)

A3t (N,N+M)+T(n N, M+ N)+2(%+1jn(n,n,l).

+3(t+)J [(N.M+N,M +N)+

16



In the Wiedemann-Coppersmith algorithm, the computationally hardest part features a
large matrix A as a multiplier. It occurs three times: in a sequence of Krylov spaces and

twice at the last step, when a vector w, is calculated and checked. The number of iterations
in this method is equal to the length of a sequence of Krylov spaces

n n
L= N + oM +0 (1) . We retain the largest summand and get

complexity = L] [(n,n,N)+(L+1)[ J(n.n,N )+2(%+1}H(n, n1)=
~ Z'n'HN(In’ "N) +2-(%+ljl_[(n, n,1)

n
It is greater than the previous algorithm by Z(M +1JH(H, n,l) .

17



3 SOFTWARE IMPLEMENTATIONS FOR

METHODS

3.1 Software implementation for the Montgomery algorithm

Code implementation for the Montgomery method was produced in Matlab framework.
The system matrix A and the right-hand vector b are input values for this problem. It is
important to create them explicitly in GF(2) for further operations. The problem statement

says that there should be a random, symmetric and positive definite matrix:

out = zeros(sizeAl):

out = gf (out) :;

while (rank(out) < sizeld)

A = randsrc(sizel,sizeld, [0;1;. <31 Y
out = gf(&):

end

out = out'*out;

-

A = out;
To check the result we should firstly set the solution vector x (given_solution in program)

by random generation and then produce the right-hand vector b as a product A-x:

given solution = gf(randsrc(sizea,’,[C,1:.7 .31)):
b = A*given soclution;

Randomizer creates block vector V, under condition to include vector b

V(:,1:(Vsize-1) ,Vind+l) = randsrc(sized, (Vsize-1),[0,1:.7 1)z
V(:,Vsize,Vind+l) = b; % Jg YGIQSMR b JIxeH IRUHALISERTR HERBRS Gagky

There is a special function for Gauss elimination in the case of GF(2) called gfrref. It is
similar to the function rref for real numbers
[R, Wecolumn] = gfrref (VI'*A4A*VT) ;

Wsize (Vind+3) = length(Wcolumn) ;
W(:,l:Wsize(Vind+3) ,Vind+3) = V(: ,Wcolumn,Vind+l) ;

18



This function returns a transformed matrix and a number of linearly independent column,
which is the required result
function [&,jk] = gfrref(A,tol)

[m,n] = size(Rk):

$ Loop over the entire matrix.

i=1%;
5y =ty
jb = [1:

|lwhile (i <= m) && (3 <= n)
% Find value and index of largest element in the remainder of column j.
tmpl = A(i:m,Jj):
[P,k] = max(tmpl.xX); kK = k+i-1;
| if (p <= tol)
$ The column is negligible, zero it out.
A(i:m,j) = zeros(m-i+1,1);
=3+ 1:
| else
Remember column index
jb = [3b 31:
% Swap ji-fth and k-gh rows.
A([1 k],3:n) = A([k 1],j:n):
$ Divide the pivot row by the pivot element.
A(i,j:n) =A(i,j:n)/A(i,3):
% Subtract multipies of the pivot row from all the other rows.
for k = [1:1-1 i+l:m]
E(k,J:n) = B(k,3:n) - B(k,j)*R(1,3:n);

end

o

1. =01 A
Jume Foie 2
end
end

B =gf(R,2):

Remaining columns should be put in the block vector W . Check by their numbers if there
are all columns V , W will be void and the method will break down. This happens mostly

only with a set of matrices of certain special types that have been studied in detail in [14].
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WWcolumn = setxoxr(l:Vsize,Wcolumn) ;
if isequal(length(WWcolumn), Vsize)

emptyW = 1;

disp('W is empty, result may be wrong'):

TYCAQRME QKQEYamus muxaa B2, peHeHME CKORES BREXQ HE HAUASHQ
break;

end

If the method proceeds on without a break, a block vector V could be found as a
concatenation of AW and W

VWV(:,:,Vind+2) = [A*W(:,l:Wsize(Vind+3) ,Vind+3), V(:, WWcolumn,Vind+I)]:
Now all data for the next iteration block vector V,,, are known

V{(:,:,Vind+2) = VW(:,:,Vind+2):
for summand = (Vind+l):(-1):1
WI(:,l:Wsize(summand+2)) = W(:,l:Wsize (summand+2) ,summand+2) ;

V(:,:,Vind+2) = V(:,:,Vind+2) + (WT(:,_:Wsize(summand+2))/(WT(:, :Wsize (summand+2))"'...

*AXWT (:,:Wsize(summand+2))) ) *(WIT(:, :Wsize (summand+2)) "*A*VV(:,:,Vind+2))
end

If the function returns a zero matrix, the method has converged. Otherwise make the next
iteration
if ~any(V(:,:,Vind+2))

enptyV = 1;

end
Vind = Vind + 1;

In case of success, there is a solution

sum = 3;
while (sum <= size(Wsize,2)) && (Wsize(sum))
WI(:,l:Wsize(sum)) = W(:,l:Wsize(sum) , sum):

finding solution = finding solution + (WI(:,.:Wesize(sum))/(WT(:, :Wsize(sum))'...

*A*WT (:, :Wsize(sum))) ) *(WT(:, :Wsize(sum)) ') *b;
sum = sum + 1;
end

Prove the method by comparing it first with a generated solution. An unsuccessful case

could be resolved by generating another initial block vector V,.

20



Running time of the program for test cases are in table 1. P means set probability for non-

zero elements.

Table 1. Execution time for implementation of the Montgomery method.

No n Columns in V P Time, sec
1 48 4 0.1 2.6746
2 64 8 0.1 2.4129
3 96 12 0.1 4.7809
4 128 16 0.1 8.1159
5 192 24 0.1 17.4575
6 256 32 0.1 30.5969

The curve (figure 1) shows the growth of the function to be O(nz). This is attained

without optimization, because this implementation uses only Matlab’s embedded

optimization.
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Figure 1. Execution time dependence of system matrix size, sec.

3.2 Software implementation for the Wiedemann-

Coppersmith algorithm

Code implementation for the Wiedemann-Coppersmith method uses C++.

There are functions for matrix operations in the library abo (accelerated binary operations).
The library has detailed description in chapter 4. In this chapter, we present the
implementation of the method omitting library functions.

The main function carries out a few operations. It generates input data, calls functions to
generate a sequence of Krylov spaces to create the characteristic polynomial and to find

and check the solution
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//Xrylov_sequence_ size
unsigned short L = ceil((N/n) + (N/m) + (2%*n/m) + 1):

Polynomial<bool> A(L + 1, m, n, Storing::by rows):
Polynomial<bool> f;

GenSegKr<bool, scalar::Block multiplicator>(8, x, v, L, &)
vector<unsigned short> vDelta;
min poly<bool>(n, m, A, L, vDelta, f):

Matrix<bool> solution(z.row count(), f.coefficient column count(), Storing::by columns):
Matrix<bool> w(z.row_count(), f.coefficient column count(), Storing::by columns);
find res<bool, scalar::Block multiplicator>(solution, L, w, z, £, B):

if (check res<bool, scalar::Block multiplicator>(solution, B))
cout << "Check finished, solution is true" << endl:

else

false" << endl;

w

cout << "Check finished, solution i

The sequence of Krylov spaces requires the matrix product x” - Bt - y

template <typename Package, typename Operation>
vold GenSegFr (Matrix<Package>& B, Matrix<Package»& x, Matrix<Package>& v,
unsigned short Krylov_size, Polynomial<Package>& 1)

{
Polynomial<Package> Temp (Krylov _size + 1, y.row_count(), v.column count(},
Storing: :by columns) ;
Matrizx<Package> transp x(x.column count(), x.row _count(), Storing::by rows):
Temp [C] = w»
X.transpose (transp_x);
Operation: :multiply(transp =, ¥, &[C]1);
for (unsigned short 1 = 1; i1 <= Krylov_size; i++)
{
Cperation: imultiply{B, Temp[i - 1], Temp[i]):
Operation: multiply(transp =, Temp[i], &A[i]):
}
}

The next step is computationally hard. The characteristic polynomial is formed through
several sub-steps. Each of them has its particular function. Firstly we form the initial

polynomial
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while(rank < m)
{
init data(f, n, m, min power pade};
Scalar polynomial multiplicator::compute coefficient(A, f, min power pade, coef t@ Af);
rank = gfrank(coef t@ Af);
count = count + 1;
if (count > 28)
{
min_power pade++;
count = @;
f.expand(min power pade + 1);

Further on, we cycle through a number of iterations which equals the length of the
sequence of Krylov spaces

for (unsigned short power = min power pade; power <= Krylov size; power++) //Krylov size
{
deg colon matr(f, delta);

if (f.coefficient storing() == Storing::by rows)
for (unsigned short 1 = 8; i < f.coefficient count(); i++)

f[i].alter storing(Storing::by columns);

H
Scalar polynomial multiplicator::compute coefficient(A, T, power, e};
ALGO1<Package=(n, m, delta, e, P);
full P.push(P};

for (unsigned short i = 8; 1 < f.coefficient count(); i++)

{
}

f[i].alter storing(Storing::by rows);
res f.expand(f.coefficient count() + 1};
Scalar polynomial multiplicator::multiply(f, P, res f};

f.expand(res f.coefficient count() + 1);
Scalar polynomial multiplicator::multiply(res f, P, f);

for (unsigned short i = 8; 1 < f.coefficient count(); i++)

{
}

f[i].alter storing(Storing::by columns);

An initial characteristic polynomial is created by matrix concatenation. It includes a matrix
of random polynomials as a left operand and identity matrix as a right one. Powers of

polynomials are under condition t < ¢,
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template<typename Package>
void init_data(Polynomial<Package>& polinom, size t n, size t m, unsigned short to)

{
Matrix<Package> rand matr(n, m, Storing::by columns);
double const probability of zero = 0.5;

for (unsigned short i = 8; i == t8; i++)

{
if (i < t8)
{
rand matr.generate(probability of zero);
for (unsigned short j = 8; j = m; j++)
{
for (unsigned short kK = 8; k < n; k++)
{
polinom[i].element(k, j) = rand matr.element(k, j);
}
}
}
else
{
rand matr.generate(probability of zero);
for (unsigned short j = 8; j < m; j++)
{
for (unsigned short kK = 8; k < n; k++)
{
polinom[i].element(k, j) = rand matr.element(k, j);
polinom[i].element(k, k + m) = 1;
}
1
}
}

In case of GF(2) a particular function returns the rank of a binary matrix:
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template<typename Package=
unsigned short gfrank(const Matrix<Package=& Matr)

{
vector<hool=> busy;
size t jO;
static unsigned short count;
count = 8;
static Matrix<Package> temp;
temp = Matr;
for (jO = ©; jO < temp.column count(); jO++)
{
busy.push back(@);
}
for (size t i = 0; 1 < temp.row count(); i++)
{
for (j6 = 0; jO < temp.column count(); jO++)
{
if ((temp.element(i, jO)) && (!(busy[j@])))
{
count++;
busy[j@] = 1;
break;
}
}
for (size t j = j@ + 1; j < temp.column count(); j++)
{
auto lambda = static cast<bool=(temp.element(i, j));
for (size t k = 0; k < temp.row count(); k++)
{
//ecnu naMbpa 1, cTonfeu oCTaeTCcA TakMM ®e, ecnu B - 3aHynaeTCH
temp.element{k, j) = static_cast<bool=(temp.element(k, j})
xor lambda*(static_cast<bool=(temp.element(k, jO)));
}
}
}
return count;
}

While approximation of the characteristic polynomial is going on, the power of columns in

matrix-coefficients should be checked on each step. Call the function:

26



template<typename Package=
void deg colon matr(Polynomial<Package=>& A, vector<unsigned short>& vDelta)

{
if (vDelta.empty())

{
for (unsigned short i = ©; 1 < A.coefficient column count(); i++)
{
vDelta.push back(e);
}
}
else
{
fill(vDelta.begin(), vDelta.end(),8);
}

for (unsigned short i = 0; 1 < A.coefficient count(); i++)

{

for (unsigned short j = ©; j < A.coefficient column count(); j++)

{
for (unsigned short k = 8; k < A.coefficient row count(); k++)
{
if ( A[i].element(k,j))
{
//ecnu B cTonflue eCTh HEHYNEeBOM 3NeMeHT
vDeltal[j] = 1i;
break;
}
}
}

}

ALGOL function creates an iteration matrix according to Thome’s work [12]:
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template<typename Package=
void ALGOl(size t n, size t m, vector<unsigned short=& delta,
Matrix<Package=& mE, Polynomial<Package=& P}

{
vector<pair<unsigned short, unsigned short>> sorted Delta;
unsigned short size;
static Matrix<Package> mE sorted(m, m + n, Storing::by rows);
mE sorted = mE;
static Matrix<Package> P sorted(m + n, m + n, Storing::by columns);
//c030aHHe eMHUYHOW MaTpHLbl
P[O].unity();
//COpTHpPOBKA CTeneHen
sorting delta(delta, sorted Delta);
sorting matrix<Package=(sorted Delta, mE sorted, mE);
sorting matrix<Package=(sorted Delta, P[@], P sorted);
P[1].zerol);
//Metop laycca
Gauss elimination<Package=(mg, P sorted, P[®], P[1]);
}

Sorting_delta is a sorting function that uses a standard procedure stable_sort. It saves the
initial order of so called nominal degree. According to Coppersmith, nominal degree of
column is an upper bound on the degree of the coefficients in this column of the
polynomial [12]:

void sorting delta(vector<unsigned short>& vect,
vector<pair<unsigned short, unsigned short>>& sorted vector)

{
pair<unsigned short, unsigned short= pp;
//COPTUpPOBKA CTEneHen
for (unsigned short i = 8; i < vect.size(); i++)
{
pp = make pair(vect[i],1i);
sorted vector.push back(pp);
}
stable sort(sorted vector.begin(),sorted vector.end(),pairCompare);
}

The sorted vector holds the order to change matrix columns by its powers:
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template<typename Package=
void sorting_matrix(vector<pair<unsigned short, unsigned short>>& sorted vector,
Matrix<Package=& Matr, Matrix<Package>& sorted matr)

{
size t column_number;
//COpPTMPOBKE MaTpUUbl NO CTENEHAM
for (unsigned short j = ©; j < sorted vector.size(); j++)
{
column_number = (size t)sorted vector[j].second;
for (size t i = @; 1 < Matr.row count(); i++)
{
sorted matr.element(i, j) = Matr.element(i, column number);
}
}
}

When matrices are transformed, the program calls particular Gauss elimination for GF(2).

This function is similar to the listed gfrank function:
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template<typename Package=>
void Gauss_elimination(Matrix<Package>& E sorted, Matrix<Package>& P sorted,
Matrix<Package=& P result, Matrix<Package>=& XP result)

{
vector<bool= busy;
size t j@;
for (jo = ©; j® < E sorted.column count(}; jo++)
busy.push back(@);
for (size t 1 = @; 1 < E sorted.row count(); i++)
{
for (j@ = ©; jO < E sorted.column _count(); j@++)
{
if ((E sorted.element(i, j@)) & (!(busy[j8])))
{
busy[je] = 1;
break;
}
}
for (size t j = j8 + 1; j < E sorted.column count(); j++)
{
auto lambda = static_cast<bool>(E sorted.element(i, j));
for (size t k = 8; k < E sorted.row count(); k++)
{
E sorted.element(k, j) = static_cast<bool=(E sorted.element(k, j))
xor lambda*(static_cast<bool=(E sorted.element(k, j@)));
}
for (size t k = 8; k < P _sorted.row count(); k++)
P sorted.element(k, j) = static_cast<bool=(P sorted.element(k, j))
xor lambda*(static_cast<bool>(P sorted.element(k, j@)));
}
}
for (size t j =0; j < P _sorted.column _count(); j++)
{
if (busy[j])
{
for (size t 1 = 8; 1 < P sorted.row count(); i++)
{
XP result.element(i, j) = P sorted.element(i, j);
P result.element(i, j) = 0;
}
}
else
{
for (size t 1 = 8; 1 < P sorted.row count(); i++)
P result.element(i, j) = P sorted.element(i, j);
}
}
1

The solution contains the vector w which can be found asw =z f,)+ Bz f,_1) +

"'+BL'Z'f(0)
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template<typename Package, typename Operation=
void find_res(Matrix<Package>& solution, unsigned short Krylov size, Matrix<Package>& w,
Matrix<Package=& 7z, Polynomial<Package=& f, Matrix<Package=& B)
{
Matrix<Package> temp w(z.row count(), 1, Storing::by columns);
Matrix<Package> temp w2(z.row count(), 1, Storing::by celumns);
Matrix<Package> temp kappa(B.row count(), z.column count(), Storing::by columns);
Matrix<Package> kappa(B.row count(), z.column count(), Storing::by rows);
vector<unsigned short> count deg;
unsigned short jj, ii;
unsigned short L = 0.85*Krylov_size;

solution.zero();
Operation::multiply(B, z, kappa);
z.alter storing(Storing::by rows);
Operation: :multiply(z, f[L], w);
for (unsigned short k = 8; k == L; k++)
{
kappa.alter storing(Storing::by rows);
for (unsigned short i = 8; 1 < f.coefficient row count(); i++)

for (jj = ©; jj < f.coefficient column count(); jj++)
if (f[L - k].element(i, jj))
{
Operation::multiply add(kappa, f[L - k], w);
break;
}
//ecnw BoiXog M3 uMkna Gun no Opedky
if (jj = fT.coefficient column_count())
break;
}
kappa.alter storing(Storing::by columns);
temp kappa = kappa;
Operation::multiply(B, temp kappa, kappa);
}

The series of products B'w; finally returns a solution if there is a zero value. It means that

the result sought for is the previous product Bi‘le:
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for (unsigned short j = 8; j < f.coefficient column count(); j++)

{
count_deg.push back(®);
temp w.column(@) = w.column(j

)
< temp w.row count(); i++)

(
for (unsigned short 1 =8; 1
if (temp w.element(i, @)) //ecnu cTonbeu HeHyneBon
{
while (count deg[j] < L*8.75)
{
Operation::multiply(B, temp w, temp w2);
//NpoBepAeM, eCcnn MaTpWua HyneBad - pelleHWe HaW@eHo
for (ii = @; 1i < temp w2.row count(); 1ii++)
if (temp w2.element(ii, @))
{
temp w = temp w2;
count_deg[j]++;
break;
}
//ecny UMKN Qowen [0 KOHUa, a He npepsancA no OpedKky - MaTpwua Hynesas
if (ii == temp w2.row count(})
{
solution.column(j) = temp w.column(@);
break;
}
}
break;
1

}
Function check_res takes given solution and tests if it suits the system:

template<typename Package, typename Operation=
bool check res(Matrix<Package=& w, Matrix<Package=& B)

{
Matrix<Package> check(B.row count(), w.column count(), Storing::by rows);
Matrix<Package> temp zero(B.row count(), w.column count(), Storing::by rows);
temp zero.zero();
for (unsigned short 1 = 8; 1 < w.row count(); i++)
for (unsigned short j = ©; j < w.column count(); j++)
if (w.element(i,j))
{
cout << "Solution is nonzero!" << endl;
Operation: :multiply(B, w, check);
if (check == temp zero)
return true;
else
return false;
}
return false;
}

With the aim of measuring the computational cost, a simulation exercise was conducted.

Presentation of the results is in table 2. N denotes the column of block vectors x and z, P
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denotes the probability for the case when the matrix element is zero. Figure 2 presents

graphically the data from Table 2.

Table 2. Execution time for implementation of Wiedemann-Coppersmith method.

Ne n N P Total time, 11 step,
| step, sec 1 step, sec
Sec sec
1 96 12 0,995 0,209725 0,018433 0,158559 0,031938
2 128 16 0,996 0,454333 0,042353 0,350721 0,073813
3 192 24 0,9975 1,542 0,138905 1,11645 0,280819
4 256 32 0,998 2,909263 0,294589 2,071512 | 0,530434
5 512 64 0,999 | 21,929575 | 2,332576 15,460627 | 4,038455
6 1024 128 0,9995 | 182,53589 | 18,54862 | 130,29009 | 32,92925
200
180 /
160 /
140 /
120 / =¢—Total time, sec
100 == step, sec
/ Il step, sec
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Figure 2. Execution time dependence of system matrix size.
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4  BINARY MATRIX OPERATIONS LIBRARY::

THEORY AND IMPLEMENTATION

4.1 Matrix multiplication method

Matrix multiplication methods fall into two classes: element-wise processing and block
operations. Element-by-element processes manipulate matrix elements while block
operations use whole columns or rows depending on the format of data storage. The
second group of methods seems to be computationally efficient because block operations
reduce memory access. Element-by-element processes refer to the “naive” method, method
known as the Strassen algorithm, and the method of Four Russians [15]. There is one
interesting method that suits well for row-stored matrices described by Gustavson in [16,
17] for the case of sparse matrices. This method shows good result in practice [18].

Current work considers two ways: a “naive” method involving the method of Four

Russians and a modification of the Gustavson method in case of dense matrices.

4.1.1 “Naive” method
This method has an intuitive implementation. Scalar multiplication applies to row and
column vectors according to the definition of matrix multiplication.
For reasons of optimization, left matrices are stored in memory by rows, right matrices by
columns. From computer representation point of view there are several available
implementations:
o  for different data types (1-bit, 2-bit, 4-bit and 8-bit machine words)
o  for 64-bit, 128-bit and 256-bit blocks of data (using MMX, SSE and
AV X intrinsic-functions by Intel to parallel operations [18])
Bitwise operations for addition and multiplication suit for bitwise matrix storage. The only

challenge is to fill such matrices properly
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/] GRORSAVRE USRREQREY FuEa
template < typename Value >

void Bit _masks :: set ( Value& value, const unsigned char bit_index ) noexcept

{

assert ( bit_index < mask _count ):;

value = value | bit mask[ bit_index ]:;

[/ FRORSAVRE GERRGE BuIa
template < typename Value >

void Bit _masks :: reset ( Value& value, const unsigned char bit_index ) noexcept

{

assert ( bit_index < mask count )

value = value & ~bit mask[ bit_index ]:

A scalar method manipulates boolean type and logic operations.

Data storage for intrinsic functions is also critical. Abo library provides a record to vectors
which form 64-bit, 128-bit or 256-bit blocks in their turn. There are special procedures for
arithmetic operations developed for intrinsic-functions. Its technical specification and

details are described in [19]. In this special case, matrix multiplication is implemented as

1] QVEKRME VREHOESEUE

template < typename Package, typename Package multiplicator,
typename Package summator, typename Element summator>

bool Vector multiplicator<Package, Package multiplicator,

Package summator, Element summator> :: multiply (

const Vector<Package>& left, const Vector<Package>& right) noexcept

{

assert ( lefct.package count() = right.package _count() ):
!/ EMDVATVZVIOVEM YXRIATEAM HR MAGGUEH HaKEIRB

autc left data = left.package_data():

auto right data = right.package data():

rf Q&R&%@&%&% EQUUERRERS %@&@&&;

auto package_count = left.package count():

[/ BRKROTMBASH HQRASMSHTHOS HRQUIBSASHUS

auto product = Package multiplicator::multiply ( left data[?],
right_data[C] ):

for ( size_t package_index = 1; package_ index < package_count;
package_ index++ )

product = Package summator::sum ( Package multiplicator::multiply
( left_data[package_index], right_ data[package_index] ), product );

return Element summator::sum ( product ):
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4.1.2 Method of Four Russians

In 1970 Arlazarov, Dinic, Kronrod and Faradzev public a paper. That included the
algorithm named as the method of Four Russians. The main idea was to use a preset table
for vector multiplication. The size of vectors is bounded.
For example, let us calculate and record scalar multiplication by mod 2 for all possible
pairs of binary vectors of size k. The results are placed in the table on the cross of left and
right operands. (figure 3). Take the first matrix and decompose each row into vectors of
size k. Each of them matches up with one binary vector. The second matrix is decomposed
in the same way, by columns instead of rows. This trick cuts computation by a factor k.
There are three modifications for the method of Four Russians in the abo library:
. Multiplication table for 4-size vectors with results put in bytes
The table has 16x16 elements of logic type. Before multiplication function splits
each operand into 4-element vectors and finds a solution of conjunction from the
table.
o Multiplication table for 8-size vectors with results put in bytes
The table has 256x256 elements of logic type. Before multiplication function
splits each operand into 8-element vectors and finds a solution of conjunction
from the table.
. Multiplication table for 8-size vectors with results put in rows of bits
The table has 32x256 bit elements. Before multiplication function splits each
operand into 8-element vectors and finds a solution of bitwise conjunction from
the table.

36



00 [ 01 [10 [1T;
00 0 |00 |0
010 [T [0 |1t
10-[-0-}-0-d-3-[[1
11| 0 1 1 0

Figure 3. The method of Four Russians [20].

Implementation for method of Four Russians calls preset multiplication table:



/] QNERHAE VRERSIAE

template < typename Package, typename Table >

kool Vector multiplicator<Package, Table> ::

multiply ( const Vector<Package>& left, const Vector<Package>& right)
{

assert ( left.package count() == right.package_count() ):

Table multiplication table;
bool r = false;

/] VEMRTMIVRVEY VEARRTSMM Ha MAGCUBH HaKSTIRR

const unsigned char* left data =

reinterpret cast<unsigned char*> ( left.package data() ):
const unsigned char¥ right data =

reinterpret cast<unsigned char*> (right.package data() ):

/] QERGASAASH KQIMASGTIER fauz
auto byte count = left.package count() * sizeof ( Package );

//ZSRSMEQEASH B WUKAS 2Q Radzan

for (decltype(byte_count) i = 0; i < byte_count; i++)
r = r xor Table::multiply(left data[i], right_data[i]):

return xr;

}

One procedure manipulates bytes and 4-element operands:
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/1 GROBSHVRE FZRQUTRSIE TR VAEORSIMAE

void Table_4
{

unsigned ch

if ( _table

£ill ()

ar product, count;

= nullptr )

_table = new bool[2386];
for (unsigned char i = 07 i < 1&; i++)
for (unsigned char j =-'1i; Jj <16; j++)
{
: product = i & j:
count = Bit masks::count_bits ( product,
_table[i*1& + j] = (bool) (count & Ox01);
_table[j*1§ i] = _table[i*1& + j]:
}

}

The other procedure also uses bytes and operate an 8-element operands:

void Table_e

{

i1t ¢7)

unsigned char product, count;

if ( _table = nullptr )

{
_table = new bool[&§5536];
for (unsigned short i = 0; i < 256; i++)
for (unsigned short j = i; j < 256; j++)
{
product = i & j:
count = Bit masks::count bits ( product ):
_table[i*256 + j] = (kool) (count & Ox01):;
_table[j*258 i] = _table[i*25¢6 + 3j]:
}
}
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The third procedure sets densely packed operands in bits by size 8:

void Bit table 8 :: fill ()
{
unsigned char product, count:;
if ( _table = nullptr )
{
_table = new unsigned char[2122]; 32*256
for (unsigned short i = 0; 1 <€ 256; i++)
{
for (unsigned short j = J < ;o J+4)
{
_table[i*32 + j] =
for (unsigned char index = (0; index < 8; index++ )
{
product = i & (j*Z + index):
count = Bit masks::count bits ( product ):
[/ Baxemm: BVEEEY RaUT ¥4, BaIad GIRaBRa,
I/ SRABVRE B BVBERS MeRER O waw 1
_table[i*32 + j] = _table[i¥*32Z + j]
| ((count & O=x01) << index):
}

4.1.3 Gustavson method

The Gustavson method suits row-packed matrices. There is an interesting modification for
a dense matrix in [16].

Express an element in a product matrix as

c(i; J) = (a(i; 0) & b(0; j)) xor ... xor (a(i; m) & b(m; j)).

The method by definition is really inefficient when two operands are row-packed matrices.
In this case, the standard way is matrix transposition, but it has also high computational
cost. It is obvious that zeros could be canceled for disjunction; therefore, the number of
operations for matrix multiplication could be reduced. It is the main idea according to
Gustavson. The task is to find all non-zero elements in each row by bit masks. If a non-
zero element a(1; j) is found in the first row, relative matrix row B(j) will be put into temp

store for the first row of matrix product C(1). Continue searching all non-zero elements in
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the first row of matrix A. In case of each suitable element a(1; k) add row B(k) to temp row
C(1). When the row A(1) will be finished, there will be a matrix product sought to in the
row C(1). Make the same for all other rows.
The disadvantage of this method is enumeration in matrix rows to find non-zero elements.
To optimize it there is a simple iterator which allows to operate 4 elements of a row
simultaneously. Switch case provides 16 possible combinations of 0 and 1.
Software implementations:
Bitwise operations are performed
. for different data types (1-bit, 2-bit. 4-bit and 8-bit)
. for data blocks (MMX, SSE, and AVX for 64-bit, 128-bit and 256-bit
relatively).
Execution time and performance are also estimated for optimized search with 4-element
vectors.

Gustavson method is embedded in abo library:
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template < typename Package, typename Vector summator >
wvold Block xor multiplicator<Package, Vector summator > :@: multiply add
({ const Block<«<Package>& left, const Block<Package>& right, const Block<Package>& result )
{
f// BQMMHECTEL IASMEHTOR B GIDGKS JASROTO QHSRaHIa AOMEHO DaBHATECH EQIMHECTEY GTROK B
//OnaEo QUERaHAS
assert ( left.column count () = right.row count()):
f/ EoIMEecTRO CIDOE JASEORQ QOSRAHAZ HONEHO RABHATRCE EQIMHESCTEY SIDOE REIVARIATa
assert ( left.row count() = result.row count() }:
ff RomrdecTEn GToAfUOR DRABOTO QNERAHA: AQMFHO DABHATRGE EQIMHEeCTEY GTOABUOE DEe3WIRTATa
assert ( right.column count() = result.column count() )/
// peERGY EDAHGHMA OOSDAHNOE M DEIVARTATA Jommsy GuTh omuuaronimo

assert ( left.storing() = result.storing(} }:

assert ( right.storing() = result.storing() ).

// ¥Ea3aTeNR Ha QHSRAHD, 0O EQIoRONY DROMIBOMMICHE MISRALVM 00 BEEIODAM M ASMSHTan
const Block<Package> * iterative operand { nullptr }:;

{f YEAIATEAR HA QNERAHE, REETORH EOTODOTO MRMOARAARICE K RE3WIRTATY
const Block<Package> * summand operand { nmllptr };
// RQIMHeCTED ESETOROR
typename Block<Package>::size type vector count { O }:
f// BQMMHECTEL ZASMEHTOR
typename Block<Package>::size type element count { O }:
{/ eI REIR ZRIHSHMA HR GTROKAM
if ( result.storing() = Storing::by rows )
i

iterative operand = &lefrt:

summand operand = &right;

vector_count = left.row count ()

element count = left.column count ()

else

iterative operand = &right;
summand operand = &left;
vector_count = right.column count ():
element count = right.row count (}:
1
for (decltype(vector_count) vector index = O; vector index < vector count;
vector indext+)
{
/) vEMUMATHIVRVEM REETOR REIVARIATA

auto result wector = result.vector ( vector_index )

A yEMIMATHSVMDVEN UTSRATOR RASMEHTOR TEEVESTR REKTORG UTSDMDVEMOLO QASRaHAS
auto element_iterator = iterative operand->vector ( vector index ) .begin():
/0O BGSM RUSMEHTAM TEEVESRO REETARA
for ( decltype(element count) element _index = 0; element index < element_count;
element index++, element iterator++ )
/7 gomy USMEHT TSEVESTR BEKTORE RARSH SHMEMUS
if ( static_cast<bool> (*element iterator) )
// opMGaBEnAcl BEETOR SISMODVEMOTD QASDAHAZ K DREIWARTATY
Vector summator :: add (summand operand-»vector ( element_index ),
result vector) !

Matrix storage provides two storage options: by rows and by columns. It is important to

check what type is used before running the function:
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/] S5T RRRN WESRURST: YRATURSAE G2 SIRREAM

if ( left.storing() = Storing::by_rows )
{
/! RRAFOUBASH GREWA WHQAMISAR R SIRRKMM,
!/ GRATE MEOBURSAE USHRARIVERGE ARBHASIRR
for ( size_t task index = 0; task index < tasks.size():; task_index++ )
{
/! FRAUAGHASH: RQUVARGRRR BEEIORR B DARKS ASRAIR MHQAURSAA
vector count = ceil ( static_cast<double>(
left.vector_count() - vector_start_index ) / static_cast<double>
( tasks.size() - task index ) );

/] QRHBSH: FRBIHS,

std::get<il> ( tasks[task_index] )->set_operands (
left.vector_block ( wvector_ start_index, vector_count ),
right,
result.vector block ( vector_ start index , vector_count )

) B
/1 GABMRASH OSEVR TRIEMLY
vector_ start_index += vector_count;

}
}
/] gSa% GSBHA VHOIUTSRR FRAEUISA 2R SIRARRa
{
// REINARTAT BOUESH ZRIFUICE 09 STABLam
assert ( result.storing() = Storing::by column
elses )
/] RaaBMBaAsH DRAREY WHOIMISAR AR SIOARMEM, & ASREY USHAARANSIGE AQRHASTER
for ( size_t task _index = C; task index < tasks.size():; task_index++ )
{
/! BEEMGTASH LUMESSRER RRERSROR B RARKS SRZRRIR MHRAUISAA
vector_ count = ceil ( static_ cast<double>( right.vector_count() -
vector start index ) / static cast<doukle> ( tasks.size() - task index ) ):
/! SRV 23RS - B
std::get<l1> ( tasks[task_index] )->set_operands (
left,
right.vector_block ( vector start_ index, vector_count ),
result.vector block ( vector start_index , vector_ count )
):
/] GREUTASH: BSRVR TR
vector start_index += vector_count;
}
}

/] BEBOURASH IZAMHME
perform tasks ( tasks ):

4.1.4 Options for polynomial matrices
Functions for matrix addition and multiplication allow us to extend them for the case of
matrix polynomials. The current work has an interest in matrix polynomials because it is

used in the Wiedemann-Coppersmith algorithm. One of the most frequently used
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operations for the polynomials in this method is searching the matrix-coefficient for a

given degree of the polynomial:

template < typename Package, class Block multiplicator >
void Polynomial multiplicator<Package, Block multiplicator> :: compute coefficient
( const Polynomial coefficients<Package> & left, const Polynomial coefficients<Package>
& right, const typename Polynomial coefficients<Package>::size type & required power,
Block<Package> & coefficient )
{
assert ( left.coefficient count() > C )
agsert ( right.coefficient count() > 0 );
/] QERSASTAESY: RAMSRE ROIMEMAR
auto left maximum power = left.coefficient count():
auto right_maximum power = right.coefficient count():
if ( ( left_maximum power > 0 ) && ( right maximum power > 0 ) )
{
/] QURSASAASY, SRSASHY RUMHOMOR
left maximum power = left maximum power - 1;
right maximum power = right maximum power - I;
if ( required power <= ( left maximum power + right maximum power ) )
{
/] BEMGUASY HAZRURHVR GIeAsH: (QTHQGUTISARHR ASRRRQ DQUMEHGMR)
auto beginning power = ( right maximum power >= required power ) ? O
( required power - right maximum power )};
/] BEMGRASH KQHSUHVE SISNSHE (QTHOCUTSARHO JASRQTQ HQEMHRMA)
auto ending power = ( left maximum power >= required power ) ?
required power : left maximum power;
/] ERFAGRASE: VATRUN - KOROMBHUSHT. TRY SESASHH
compute_convolution (
left.coefficients ( beginning power, ending power -
beginning power + I ),
right.coefficients ( required power - ending power,
ending power - beginning power + 1 ),
coefficient

It also applies to the function for matrix convolution:

template < typename Package, class Block multiplicator >
void Polynomial multiplicator<Package, Block multiplicator> :: compute_convolution
( const Polynomial coefficients<Package> & left, const Polynomial coefficients<Package>
& right, Block<Package> & coefficient )
{
/! EQUMERGERS BRROOMIMSHINR ARARHER SRRNRARTR
assert ( left.coefficient count() = right.coefficient_ count() ):
assexrt ( left.coefficient count() > 0 );
// QERSASAASH VHASKS RAGASAHSIO KezdduimenTa
auto ending coefficient index = left.coefficient count() - 1:
Block _multiplicator :: multiply ( lefc[C], right[ending_coefficient_index], coefficient )
for ( typename Polynomial coefficients<Package>::size_ type current coefficient index = 1;
current_coefficient_index <= ending coefficient_index:;
current coefficient index++ )
Block _multiplicator :: multiply add ( left[current coefficient_ index],
right[ending coefficient index - current coefficient index], coefficient ):
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The next necessary step is to implement a polynomial multiplication:

template < typename Package, class Block multiplicator >

assert ( left.coefficient count() + right.coefficient count() > )=
assert ( result.coefficient count() > 0 );

/ XQUMEECTER GIEnSHSH REIVARTATE RAaBHQ SWIRME GTIERSHEH MHQEUTSHSH
assert ( result.coefficient count() - I = ( left.coefficient count()
- + right.coefficient count() - ) %5 I

for ( typename Polynomial coefficients<Package>::size type coefficient index = 0;
coefficient index < result.coefficient count(): coefficient index++ )
compute_coefficient ( left, right, coefficient index, result[coefficient index] ):

4.2 Performance results for abo library

4.2.1 Testing technique
There are new matrix-operands for each method. Measuring time is called directly before
and after the multiplication function. The timer is monotonic and independent of current
system time. The resulting duration of the multiplication function is added for a given
number of iterations to get a mean value.
System characteristics:

o Platform: Ubuntu 14.04 (core 3.13.0-24-generic)

o Processor: Intel Xeon CPU E5-2690 v2 @ 3.00GHz, 10 cores, 20 threads

. Compiler: g++ 4.8.2

. Optimization flags: —Ofast —march=core-avx-i -mavx

o Number of iterations: 100

o Dataset: matrix sized from 64 to 2048 elements

o Timer: steady_clock

4.2.2 Results

The presented results of the bitwise method are performed for an 8-byte data type. This
method manipulates densely packed operands. The scalar method uses logic data type and

loosely packed vectors element-by-element. The method of Four Russians has three scores
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in the result table with respect to three different modifications. There is time complexity

for element-wise process in Table 3.

Table 3. Execution time item process methods for matrices sized from 64 to 256 elements

by a row/column, sec x107°,

25000 -

20000 -

15000 -

10000 -

5000 -

0 _4_-==...l.==—|==u=i
64x6 | 64x1 | 64x2 | 128x | 128x | 128x | 256x | 256x | 256x%
4 28 56 64 128 256 64 128 256

M bitwise 340 344 348 | 1355 | 1379 | 1389 | 5418 | 5512 | 5559
M scalar (bool) 136 197 329 547 783 1313 | 2188 | 3126 | 5245
m method of Four Russians (4-byte)| 110 141 219 437 564 864 | 1739 | 2244 | 3431
B method of Four Russian (8-byte) 129 180 287 519 723 1144 | 2072 | 2889 | 4571
B method of Four Russian (8-byte) 382 761 | 1549 | 1464 | 2921 | 5925 | 5760 | 11462 | 23052
m MMX 326 330 336 | 1307 | 1318 | 1342 | 5222 | 5273 | 5375
m SSE 0 0 0 0 2329 | 2344 0 9313 | 9385
mAVX 0 0 0 0 0 0 0 0 17534

Dependence of performance has a visual demonstration in Table 4. Performance is

calculated as a ratio of execution time to the number of arithmetic operations (addition and

multiplication) applied to matrix elements.
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Table 4. Performance for element-wise process methods for matrices sized from 64 to 256

elements by a row/column, operations X 10%/sec.

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

H bitwise

M scalar (bool)

m method of Four Russians (4-byte) | 4729 | 7407 | 9557 | 4761 | 7407 | 9690 | 4786 | 7447 | 9760
B method of Four Russian (8-byte) | 4032 | 5802 | 7292 | 4009 | 5778 | 7318 | 4016 | 5784 | 7326
B method of Four Russian (8-byte) | 1361 | 1372 | 1351 | 1421 | 1430 | 1413 | 1444 | 1458 | 1452
m MMX 1595 | 3165 | 6229 | 1592 | 3169 | 6238 | 1593 | 3169 | 6230
W SSE 0 0 0 0 1793 | 3571 0 1794 | 3568
mAVX 0 0 0 0 0 0 0 0 1909

The method of Four Russians with table for 8-element vectors has lower performance

because the table is larger hence the search is harder. If this table has been densely packed,

the modification would have had even lower performance. In this case, bitwise descriptor

slows down processing rate.

Type of dependence for time complexity differs for block multiplication methods. It is

shown in table 5.
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Table 5. Execution time for block operations methods for matrices sized from 64 to 256

elements by a row/column, sec x 10°°.

7000

6000

5000

4000

3000

2000

1000

° 64x64 | 64x128 | 64x256 | 128x64 | 128x12 | 128%25 | 256x64 | 256x12 | 25625
8 6 8 6
H bitwise 57 113 227 118 233 469 246 491 982
M scalar (bool) 165| 165 329 659 507 1017 2031 1734 3465 6920
m MMX 57 114 228 118 236 474 252 506 1006
m SSE 0 0 0 226 454 0 468 933
mAVX 0 0 0 0 0 0 0 923

Conversion to performance exhibits a slight gap between intrinsic-functions and others

modifications (table 6).
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Table 6. Performance for the Gustavson method for matrices sized from 64 to 256

elements by a row/column, operations X 10%/sec.

10000 -
9000
8000
7000
6000
5000
4000
3000
2000
1000
0 — - - e - e . - . e - e . —
64x64 | 64x128 | 64x256 | 128x64 | 128x12 | 128x25 | 256x64 | 256x12 | 256x25
8 6 8 6
H bitwise 2299.51 | 2319.86 | 2309.64 | 4443.12 | 4500.33 | 4471.54 | 8525.01 | 8542.37 | 8542.37
W scalar (bool) | 794.376 | 796.79 | 795.581 | 1034.1 | 1031.05 | 1032.57 | 1209.43 | 1210.48 | 1212.23
m MMX 2299.51 | 2299.51 | 2299.51 | 4443.12 | 4443.12 | 4424.37 | 8322.03 | 8289.14 | 8338.58
m SSE 0 0 0 0 4639.72 | 4619.28 0 8962.19 | 8991
mAVX 0 0 0 9088.42

For these methods using iterators to 1-bit or 4-bit elements [21] there are also bars for time

complexity function (table 7) and performance (table 8).
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Table 7. Dependence of time complexity for Gustavson method with iterators, sec x10°°.

1200 -+
1000 Vv
800 -
600 -
400 -
200 -
0
256x256, no iterator 256x256, iterator 256x256, 4-bit iterator
M bitwise 982 744 500
m MMX 1006 747 508
= SSE 933 678 447
mAVX 923 670 431

Table 8. Performance for Gustavson method with iterations, operations x10%/sec.

20000 -
18000 -
16000 -
14000 -~
12000 ~
10000 -
8000 -
6000 -
4000
2000 -~

N\

0

256x256, no iterator

256x256, iterator

256x%256, 4-bit iterator

M bitwise

8542.37

11275

16777.2

m MMX

8338.58

11229.7

16513

W SSE

8991

12372.6

18766.5

mAVX

9088.42

12520.3

19463.1

Let us consider the dependence between performance and number of zero elements in

matrices sized 256x256 with p as a probability for generated zero elements:
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=¢==Performance,
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Figure 4. The performance curve dependence on the number of zero elements.

The character of the performance function is interesting from the cache memory point of
view. There are two levels of cache. When one level is filled, performance has a dramatic

drop (figures 5 — 7). Let us choose storage by rows in such a way that increasing number of

columns.
3165
3160
3155
3150
3145
3140 Wi

3135
3130

- - BT - T V- - LY - T - S -~ B Y - T - =

(o T S = T =L T - = ST = T o' TR e T S+ B N ¥ s T e S e T

S 2 9O = M M~ w O A & o= oMol o~

= ™~ T 0 WO o~ oW o= ™= 0 M~ = D0 =

= M W M W o~ o= o Oy 00 =

L O 5 R o TR e T T - 5 T o

qum-ﬂ

Figure 5. Performance for a matrix with row size = 64 and column size from 210 = 1024 to
224 = 16777216, operations x10°/sec.
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Figure 6. Performance for a matrix with row size = 128 and column size from 210 = 1024
to 223 = 8388608, operations x10°/sec.
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11800 L
11600
s VX
11400 - L oo

11200 - —Y

11000 -

10200 -

Figure 7. Performance for a matrix with row size = 256 and column size from 210 = 1024
to 222 = 4194304, operations x10°/sec.
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4.3 Performance data for external libraries provided boolean

matrix multiplication

There are test results for some platforms (tables 9 — 13) using such libraries as MAGMA,
GAP and NTL [22]. Input data is two random square Boolean matrices. GAP operates the
method of Four Russians, Magma and M4RI use the method of Four Russians applied to

the Strassen-Winograd algorithm. All time results are in seconds.

Table 9. Test results for 64-bit Debian/GNU Linux, 2.33Ghz Intel Core2Duo
(MacbookPro2,2).

Matrix Magma 2.14-17 GAP 4.4.10 M4R1-20080821
Dimension (64-bit) (64-bit) (64-bit)
10,000 x 10,000 1.892 6.130 1.504
16,384 x 16,384 7.720 25.048 6.074
20,000 x 20,000 13.209 - 10.721
32,000 x 32,000 53.668 - 43.197
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http://magma.maths.usyd.edu.au/magma/
http://www.gap-system.org/
http://www.shoup.net/ntl/

Table 10. Test results for 64-bit Debian/GNU Linux, 2.6Ghz Intel i7 (MacbookPro6,2).

Matrix Magma 2.15-10 GAP 4.4.12 M4R1-20121224
Dimension (64-bit) (64-bit) (64-bit)
10,000 x 10,000 1.200 6.524 0.942
16,384 x 16,384 4.735 20.777 3.672
20,000 x 20,000 8.085 - 6.660
32,000 x 32,000 33.395 - 28.006

Table 11. Test results for 64-bit Debian/GNU Linux, 2.6Ghz AMD Opteron 858 (VMWare

Virtualised).
Matrix Magma 2.14-13 GAP 4.4.12 M4R1-200100817
Dimension (64-bit) (64-bit) (64-bit)
10,000 x 10,000 2.855 10.256 2.656
16,384 x 16,384 10.865 - 11.470
20,000 x 20,000 19.505 - 18.929
32,000 x 32,000 70.110 - 66.208
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Table 12. Test results for 64-bit Ubuntu Linux, 2.6Ghz AMD Athlon X2.

Matrix Magma 2.14-13 GAP 4.4.10 M4R1-200100817
Dimension (64-bit) (64-bit) (64-bit)
10,000 x 10,000 2.005 5.920 2.700
16,384 x 16,384 7.625 24.180 10.100
20,000 x 20,000 13.870 - 19.120
32,000 x 32,000 51.155 - 73.725

Table 13. Test results for 64-bit RHEL 5 Linux, 1.6Ghz Intel Itanium.

Matrix Magma 2.14-16 GAP 4.4.10 M4R1-20080909
Dimension (64-bit) (64-bit) (64-bit)
10,000 x 10,000 7.941 - 4.200
16,384 x 16,384 31.046 - 16.430
20,000 x 20,000 55.654 - 28.830
32,000 x 32,000 209.483 - 109.414

4.4  Summary for the developed abo library

For small matrices sized 64-256 element Gustavson method is faster and the fastest one is

the modification for a 256x256 matrix with AVX and iterator implementations. Its

performance equals 19463.1 operations in a microsecond.

For large matrices, the optimum number of columns for a given number of rows when

there is no noticeable performance reduction for different row-by-row methods is given in

table 14.
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Table 14. Cache-optimum number of columns for a given number of rows.

Number of rows MMX SSE AVX
64 <2 - -
128 <2? <2® ;
256 <2¥ <2” <2”

This tendency is due to the size of the second-level cache in the operating system.
Time result data are given for functions without iterators but even then there is a much
greater processing speed compared with data reported for external libraries. For example,

take a 256x2719 matrix (what is greater than 1078) in Gustavson method with

n-m-n( p—1) complexity, where n-m is a matrix size and p is a probability for generated

zero elements. Here in the test results, it takes 5.5924 milliseconds. It is the best time result

compared to any of the three external libraries in case of GF(2).
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5 CONCLUSION

Algorithms in the current work were chosen due to their high practical importance. They
are the most efficient ones and therefore the most popular algorithms in different fields,
mainly in the problem of data decryption. But there are a lot of studies directed at
extending or modifying them for attaining even higher efficiency. Since their publication,
many efficient modifications have appeared. In our current work, we have tried to start
from a theoretical model and came to implementations for the Montgomery and the
Wiedemann-Coppersmith methods. It was done with the aim of efficient development
based on a detailed computational cost analysis for each step of the methods. Original
algorithms, as well as their modern modifications (such as Berlekamp—Massey and Thomé
versions for the Wiedemann-Coppersmith algorithm), were considered. The choice of
method was based on a review in related fields. Computational efficiency and high
probability for result achievement were key parameters for algorithms.

Building a theoretical model included a detailed assessment of the computational
complexity of all the relevant operations. This approach allows educated organization for
method development and test estimation for further optimization.

The most significant contribution to improving the efficiency of software implementations
of the algorithms was the decision through special library operations for the case of binary
vectors and matrices. Theoretical estimation shows that multiplication of large matrices
occupies quite a large share of total execution time. Acceleration of it reduces the time
complexity of the entire algorithm. It should be clarified that for this operation there is a
special data record type of binary matrices and vectors. Also, a computational tool of
elementary operations for it was prepared. Test results for the abo library demonstrate its
advantages compared to existing well-known libraries such as Magma, GAP, M4RI (in the
case of GF(2)).

The current state of research for Montgomery and Wiedemann-Coppersmith algorithms
was discussed, theoretical analysis and estimation for computational cost were provided.
An optimized implementation for two algorithms and a library of computationally
intensive binary operations was developed. Further use will include commercial use and
enhancing derived software solution.

This work may be developed further in the field of parallel architecture for the

Montgomery and Wiedemann-Coppersmith algorithms.
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