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Nowadays problem of solving sparse linear systems over the field GF(2) remain as a 

challenge. The popular approach is to improve existing methods such as the block Lanczos 

method (the Montgomery method) and the Wiedemann-Coppersmith method. 

Both these methods are considered in the thesis in details: there are their modifications and 

computational estimation for each process. It demonstrates the most complicated parts of 

these methods and gives the idea how to improve computations in software point of view. 

The research provides the implementation of accelerated binary matrix operations 

computer library which helps to make the progress steps in the Montgomery and in the 

Wiedemann-Coppersmith methods faster. 
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1 INTRODUCTION 

 

The problem of solving large sparse linear systems over the field GF(2) has widespread 

application but it has high computational complexity and there are few programs capable 

of solving the systems of linear equations fast. Among fields of use, there are problems 

such as breaking RSA encryption by sieve methods, applied to the problem of factoring a 

large natural number into two primes; and information data transfer by a noisy channel. 

Presently there are two algorithms widely using for large linear system solving over GF(2): 

Montgomery algorithm [1] and Wiedemann-Coppersmith algorithm [2, 3]. Over the last 

twenty years there have been attempts to accelerate individual steps of these algorithms. 

For example, in the last achievement of breaking the 768-bit RSA-key, it was implemented 

by a modified block Coppersmith algorithm [4]. Nevertheless, the two algorithms have 

their advantages, disadvantages and limitations. A question of special interest are 

implementation details: taking into account computing systems characteristics to choose 

data format and development priority. Such information is uncommon in professional 

papers, although it is not less important than advancement in general. 

The goals of this paper are investigation of Montgomery and Wiedemann-Coppersmith 

algorithms, making analytical models for them, giving each a computational complexity 

estimate and practical results. Besides that, the goal is suboptimization as a result of 

theoretical and practical evidence of this work. To achieve the goals, the paper consider 

extended algorithms’ models according to computing systems down to details of the most 

computationally heavy operations. The work provides special data format and an 

accelerated binary matrix operations computer library. 
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The first chapter presents a theoretical overview of Montgomery and Wiedemann-

Coppersmith methods and their modifications used in this work. The second chapter 

considers an analytical model of computation for both algorithms which is used as a base 

for detailed theoretical estimates of the computational complexity of each step of both 

algorithms. The third chapter describes the software  implementation of both algorithms 

and practical estimates of  programming work. The fourth chapter provides a theoretical 

basis and practical results of accelerated operations of addition and multiplication of binary 

matrices which play an important role in the implementation of both algorithms. 

 

1.1 The current state of the problem 

Both methods, which will be discussed in this paper are iterative methods that use Krylov 

space. In the case of the real field there are successful applications of some similar  

methods: first of all, the Lanczos algorithm [5], which is the basis for Montgomery’s work, 

the methods of Conjugate Gradients[6], the generalized minimum residual algorithm 

(GMRES) [7] and others. All listed algorithms in standard form are unsuitable for the finite 

fields case. For the GF(2) case, there are several implementations of the so-called block 

Lanczos algorithm ([1], [8], [9]). This paper considers only Montgomery’s work because 

there is no essential difference between other version block methods. The second algorithm 

presented in this work is the  Wiedemann-Coppersmith algorithm that was first proposed in 

1986 by Wiedemann ([2]). Later in 1995 Coppersmith published a block version of  it 

([3]). The Wiedemann-Coppersmith method uses the characteristic polynomial of  a 

matrix. A common way to construct this polynomial is to apply one of the so-called fast 
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methods for it, for example, Berlekamp–Massey algorithm [10], the superfast algorithm 

from [11] and Thomé’s modification [12]. 

 

1.2 Montgomery method 

Take a system 

,Ax b   

where A is a large sparse symmetric n-by-n matrix, b and x are a vector of  length n. The 

Lanczos idea is to construct an approximation to its solution by employing a Krylov space 

at every step that can be determined as  

   2 1, , , , , .m

mK b A Span b Ab A b A b  

In the Lanczos algorithm vectors iw should be 

 non-zero:      if      ,     ; 

 orthogonal with respect to the system matrix   
       if    ; 

   
      ; 

 The linear span of the vectors    defines the Krylov space    

             . 

If these conditions are true, vectors iw will be basis vectors for a sequence of Krylov 

spaces. 

As an initial approximation, Lanczos proposes the vector b from the right-hand side of the 

system. The further process resembles Gram-Schmidt orthogonalization. Following vectors 

will be calculated as 

               

   

   

           

where 

2

1
,

T

j i

ij T

j j

w A w
с

w Aw


  while 0.iw   

The approximation formula on the m-iteration is 

1

0

T Tm
j m

m j mT T
j j j m m

w b w b
x w x

w Aw w Aw




   . 
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At first glance, it may seem that the computations are complex because all    are needed in 

the composition. In fact, only two of them are non-zero when A is symmetric. The 

conclusion of the mentioned conditions for vectors iw is a statement 

 2

1 1 1 1, 1

0

0

T
j

T
T

j i j i j j k k i

k

w A w Aw Aw w c w Aw    



 
    

 
 , 

if  2j i  . Simplification of expression (1) gives 

1 , 1 1 , 2 2i i i i i i i iw Aw c w c w       , 

if 2i  . The bottleneck of this approach is in statement   
      . In the case when it is 

not true, the method could create some approximation 
1mx 
 instead of a true solution. It is a 

critical property for finite fields because of high probability for such condition. Lanczos 

algorithm in standard form is not suitable for GF(2). Foremost about half of all vectors in a 

vector space over the Galois field of two elements are self-orthogonal vectors, so, the 

solution will not be found with probability close to one. Secondly, even the smallest 

difference is crucial for the solution vector in GF(2) and cannot be tolerated [13]. 

With respect to GF(2) Montgomery reformulated conditions for Lanczos vectors iw .  

Primarily he replaces the condition 0T

i iw Aw   by A-invertibility. By definition, a vector 

space is called A-invertible if it has such a basis that TW AW is invertible. By Montgomery, 

the algorithm is based on subspaces Wi  instead that comprises vectors such that  

   
     is invertible 

   
       is satisfied if    , thus Wi should be pairwise 

orthogonal 

      that means W is an invariant space of matrix A 

Let us assume that an n-by-N matrix is called a block vector if N is small compared to n. 

We will discuss the value of N in the chapter about algorithm implementation. Then the 

solution of the system      is given by  

        
     

  
  

    
    . 

To construct the necessary sequence of spaces, a procedure is needed. The first step is to 

choose randomly a block vector 0V .  The next steps assumes using maximum linear 

independent vector-columns chosen from Vi to satisfy the listed characteristics for Wi. 

Gauss elimination for   
     is suitable in this case.  Obviously, the vectors sought are a 
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linear basis of subspace Wi. Other columns fill the array    , which will be needed on the 

next step.  If all leftover columns do not satisfy the conditions stated for Wi+1, the next 

iteration will be impossible and the solution will not be found. 

The following iV  are formed as 

                                              , 

here       is the column-wise concatenation          ;           
     

  
  

       . 

Iterations continue until    will be zero. It will happen if the solution has been found. 

Comparing to the Lanczos algorithm, in the Montgomery modification one additional 

summand is needed as an adaptation to GF(2) characteristics. 

Montgomery algorithm steps: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Form basis    

Calculate coefficients        

Construct block vector       

Find      
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1.3 Wiedemann-Coppersmith method 

In the Wiedemann-Coppersmith algorithm the system solution bases on the characteristic 

polynomial of the invertible square matrix A: 

 
1

1
n

i

i

i

f f 


  , 

 

here 1 is a value of the summand when 0i  . 

By the Cayley-Hamilton theorem   0f A  . Thus, if   0f A b  , then 

1

1

1 0

n n
i i

i i

i i

b f A b A f A b




 

 
   

 
   

is concluded. The solution to the system could be formulated as a linear combination of 

Krylov vectors 

1

1

0

n
i

i

i

x f A b






 . 

Coefficients of the characteristic polynomial are computed step-by-step. Initially, the 

Wiedemann method  suggests a random vector 2

ny F .  The statement 

   
0 0

0,
n n

T j T i j T i j

i i

i i

y f A A b y f A A b y A b f

 

 
   

 
   

is true, if 0, ,j n . 

Let 2

T i

i y A b F    for all 0, ,i n , then the statement can be reformulated as 

0

0, 0, ,
n

i j i

i

f j n



   . Here i j  is a Hankel matrix, i.e. by definition it has equal 

elements on each ascending skew-diagonal. Krylov spaces also are used to calculate this 

matrix as in Montgomery algorithm.  A transposed Hankel matrix is a Toeplitz matrix. It is 

important because there are fast computational algorithms for these matrices. 

Coppersmith proposed ([3]) a modification to the Wiedemann algorithm. He manipulated 

with blocks of vectors. Computationally it seems more efficient because computers operate 

with machine words, i.e. block of binary vectors. 

According to Coppersmith, let us take two random block vectors 2

n Mz F   and 2

n Nx F  , 

where n is the size of the system matrix; N, M are random and small in comparison to n. 
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The value of N and M will be important in term of algorithm implementation. A further 

step is calculating y z A  . The formula 

 1
n n

L O
N M

   . 

displays how many coefficients 
T i

ia X AY are in a sequence of Krylov spaces. Then the 

polynomial of the matrix will be given as the sum  
0

L
i

i

i

a a 


 . It will be useful as 

initial data in a modification of the Berlekamp–Massey algorithm that obtains 

characteristic polynomial  f x  such that 

         mod , deg degLa f g g f        

 

In the mentioned work [10] the modification uses a matrix as the set of coefficients of the 

characteristic polynomial. The task is to find a linear combination of vectors 

 , 0 , 1iA y i n N N      that are orthogonal to each 

 , 0 , 1T ix A i n M N     . 

The i-th iteration of the Berlekamp–Massey algorithm gives the 
 M N N 

 matrix-

coefficient for 
   i

f 
 where the power is in GF(2). There should be a condition check for 

the polynomial power upper bound 
 

deg
i

nom f t
. Index ‘nom’ means that the polynomial 

power is usually higher than the actual value. Each coefficient by power  j in 

     j
f a 

 should satisfy two conditions: 

 all coefficients by powers less then t must be zero (C1) 

 rank of a matrix-coefficient by power t must be equal to M (C2) 

Let us set  0t ceil M N  as the initial power and put polynomials with power less then 

0t  into the first M columns. If C2 is not true, there are two ways to proceed: take another 

block of x vectors or increase power 
0t . The last n rows 

 0tf  could be taken from the 

matrix product: the first operand is the coefficient for power 
0t , the second one is identity 

N-by-N matrix. 
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   

   

0 0 0

00 0

0 0

0 0

t t t t t

tt t t t

NM

M N

P P

f N

P P





 

 




 
 
 

  
 
 

 


, 

here  0t t
P


 is a random polynomial with power less then 

0t . Next iterations will compute 

 1t
f


 from 

 t
f . To organize its columns of matrix-coefficients by the current power t 

should be ordered and diagonalized. Columns of the identity matrix should be put in the 

same order. Zeroing all columns except m linearly independent ones (as C2 say) make C1 

true for all other columns. To satisfy C1 for power 1t  , these columns need to be 

multiplied by x. Iteration matrix could help to do all necessary computations and give a 

characteristic polynomial for the next step 
           1t t t

f x f x P x


 . The aim of 

iterations is to increase the difference between power values until t n M  ,   is a 

mean power relative to the numerical order of non-zero columns in matrix-coefficients of 

the characteristic polynomial f  

1

1 M N

i

iM N
 





 


  

therefore, t increments yield an 
M

M N
 increase of   . If the computational process of 

forming characteristic polynomial breaks under the condition C1 and C2, there are l 

columns in f (under the  condition 
 

deg
t

nom lt f n M  ) such that the vector

 ,

,,

t k d k

lk
f A y 


 
is orthogonal to vectors 

T j dx A


while 1 ,M d j t    . 

At this point, the solution is found with high probability. Proof and details are considered 

in the work [3]. 

This chapter uses the Berlekamp–Massey algorithm [10] because it is easy-to-use. There 

are optimized version for it in references [11] and [12]. 
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To sum up the Wiedemann-Coppersmith method: 

 

 

 

 

 

 

 

 

 

 

 

 

  

Generate initial vector x 

From the characteristic polynomial       

Compute a sequence of Krylov spaces 

    
00

i T i

i Li L
a x A y


    

Find a solution 
1i

jA w
under the condition 0i

jA w   and 

1 0i

jA w   
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2 COMPUTATIONAL MODELS 

2.1 Computational model and computational cost for the 

Montgomery method 

In theoretical overview, we say that the column size for a block vector is computationally 

important. To take into account the length of machine words, we could optimize algorithm 

implementation. Binary operations allow us to compute matrix-by-vector multiplication 

simultaneously if the number of vectors is less than the length of the machine word. 

Modern machines operate with 64-bit words (32-bit words in other cases). Therefore, the 

size of block vectors should be divisible by the length of the machine word. The 

Montgomery method manipulates columns of    simultaneously (it equals the rank of    ). 

Rank value has a probabilistic impact onto the computational cost. According to 

Montgomery’s evaluation in the case of GF(2) ([1])  rank expectation is 

                 , 

if values of N and n are large. 

Then, the number of iterations could be estimated as 

 

             
. 

Let us consider arithmetic operations associated with elements of matrices step-by-step.  

1. Gauss elimination determines basis vectors in   . The number of operations 

for this step is 

 2

1 1

1 1

1
Pr 1 Pr

2

N N N

k i j k

N N

  


  , 
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here N N is the   
     matrix size,     is the probability for matrix element 

1ija   if  0,1ija  . 

2. To get the Krylov space and its vector      , we need to multiply our matrix 

by the block vector    . Sizes of matrices are         and         . Hence, 

this process has  , ,n M n  operations disregarding vector concatenation 

          . The  , ,n M n  means the function which determines how many 

operations would be needed to multiply matrices of size            . This 

generalization simplifies the estimation of multiplication count per all operations 

depending on the method. 

3. Each iteration involves three coefficients                         . The last 

two of them are almost computed on the previous steps except the summand      . 

The computational cost for the last two coefficients is two multiplications of 

            matrices or  2 , ,M N n  operations. The third coefficient 

       includes 

a.   
 -by-     multiplication with  , ,M M n  operations 

b. Inverse of    
     

  
 matrix with     

       as forward and 

backward paths of Gauss elimination 

c.    
     

  
-by-

T

j jW A AW  multiplication with 

 , ,M n M operations 

d.    
     

  
  

  -by-       multiplication with  , ,N n M  

operations. 
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4.      computation is the last step. Two summands              and 

             are calculated on the previous iterations. To achieve the solution we 

compute 

a.          product with  , ,n M N  operations 

b. Addition                                             with 

 2 nN  operations 

To summarize, the number of operations for one iteration lets us combine the estimates: 

 
     

       

   

1

2

1

1
Pr , , 2 , , , ,M

2

Pr 1 , , , , , ,

, 2

N N
iteration n n M n M N n N n

M M n M M n n M N n M

n M N nN


    

     

  

  

  



 

Round off M N  and    , , , ,
N

M N n n M n
n

   give a shorter formula 

 
   

 

2

2

1 1

1 6
Pr 1 , , Pr 1

2

2 .

N N N
iteration n M n M M

n

nN

  
      

 






 

The number of iterations is also known 

n iteration
complexity

M


 . 

It is clear, that the most complex part is the multiplication by a large matrix.  Montgomery 

iteration has two of them: when Krylov space is computed  at the second step and in 
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calculations of the coefficient at the third step. The statement of the problem says that 

,n N M , that allows us to simplify the estimate to 

 6 , ,
n

complexity n M n
M

 
  
 

 . 

The column number M in matrix    is a probabilistic value and it makes the above-listed 

estimates probabilistic too. 

 

2.2 A computational model and the computational cost for the 

Wiedemann-Coppersmith model 

There are several steps in the Wiedemann-Coppersmith algorithm: 

1. Generation of random vectors is an initial data process. It is not taken into 

account. 

2. Each element in a sequence of Krylov spaces demands two multiplications, 

one of them is a y-by-A multiplication. The further step is multiplication of the 

result by x. The value of 
1iA g   was obtained previously.  The size of A is 

            and the size of x is            . Hence, there are L 

iterations with complexes    , , , ,n n M M n N  . 

3. The major part of operations consists of obtaining coefficients for the 

characteristic polynomial, Gauss elimination, and polynomial multiplication: 

a. Coefficients could be found as a sequence of         matrix 

products and sums with     matrices ia  from a sequence of Krylov 
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spaces. Computations for power t take       multiplications 

 , ,M N M N  and t sums  ,N N . 

b. Gauss elimination for matrices            and                

feature 
  

1,

1
Pr

2
e

M N M N
M

  
 and 

   
2

1,

1
Pr

2
P

M N M N  
 

operations, respectively.  

c. The power of                polynomial equals to one, therefore, 

there are only two coefficients, so        multiplications containing 

 , ,N M N M N   operations and 3t additions containing 

 ,N M N  operations are needed. 

4. The final step requires the calculations to compute the   vector. It includes 

an  
i

n n
A

 -by-       multiplication and multiplying the result by       , of size 

         . Consider that the multiplier 
1iA z  uses values saved at the 

previous step. There are L+1 iterations before we check the result columns for the 

condition 0i

jA w   and 
1 0i

jA w  . According to the estimate from [13]  

2 1
n

i
M

 
  

 
. 

The total computational cost for the Wiedemann-Coppersmith algorithm is provided by  

          

      
   

     

2

1, 1,P

, , , , 1 , , ,

1 1
Pr Pr 3 1 , ,

2 2

3 , , , 2 1 , ,1 .

e

complexity L n n M M n N t M N M N t N N

M N M N M N M N
M t N M N M N

n
t N N M n N M N n n

M
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In the Wiedemann-Coppersmith algorithm, the computationally hardest part features a 

large matrix A as a multiplier. It occurs three times: in a sequence of Krylov spaces and  

twice at the last step, when a vector iw  is calculated and checked. The number of iterations 

in this method is equal to the length of a sequence of Krylov spaces 

 1
n n

L O
N M

   . We retain the largest summand and get 

       
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It is greater than the previous algorithm by  2 1 , ,1
n

n n
M

 
 

 
 . 
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3 SOFTWARE IMPLEMENTATIONS FOR 

METHODS 

3.1 Software implementation for the Montgomery algorithm 

Code implementation for the Montgomery method was produced in Matlab framework.  

The system matrix A and the right-hand vector b are input values for this problem. It is 

important to create them explicitly in GF(2) for further operations. The problem statement 

says that there should be a random, symmetric and positive definite matrix: 

 

To check the result we should firstly set the solution vector x (given_solution in program) 

by random generation and then produce the right-hand vector b as a product A x : 

 

Randomizer creates block vector 0V  under condition to include vector b 

 

There is a special function for Gauss elimination in the case of GF(2) called gfrref. It is 

similar to the function rref for real numbers 
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This function returns a transformed matrix and a number of linearly independent column, 

which is the required result 

 

Remaining columns should be put in the block vector W .  Check by their numbers if there 

are all columns V , W will be void and the method will break down. This happens mostly 

only with a set of matrices of certain special types that have been studied in detail in [14]. 
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If the method proceeds on without a break, a block vector V  could be found as a 

concatenation of AW  and W  

 

Now all data for the next iteration block vector 
1iV 
 are known 

 

If the function returns a zero matrix, the method has converged. Otherwise make the next 

iteration 

 

In case of success, there is a solution 

 

Prove the method by comparing it first with a generated solution. An unsuccessful case 

could be resolved by generating another initial block vector 0V . 
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Running time of the program for test cases are in table 1. P means set probability for non-

zero elements. 

Table 1. Execution time for implementation of the Montgomery method. 

№ n Columns in V P Time, sec 

1 48 4 0.1 2.6746 

2 64 8 0.1 2.4129 

3 96 12 0.1 4.7809 

4 128 16 0.1 8.1159 

5 192 24 0.1 17.4575 

6 256 32 0.1 30.5969 

 

The curve (figure 1) shows the growth of the function to be  2O n . This is attained 

without optimization, because this implementation uses only Matlab’s embedded 

optimization. 
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Figure 1. Execution time dependence of system matrix size, sec. 

 

3.2 Software implementation for the Wiedemann-

Coppersmith algorithm 

Code implementation for the Wiedemann-Coppersmith method uses C++. 

There are functions for matrix operations in the library abo (accelerated binary operations). 

The library has detailed description in chapter 4. In this chapter, we present the 

implementation of the method omitting library functions. 

The main function  carries out a few operations. It generates input data, calls functions to 

generate a sequence of Krylov spaces to create the characteristic polynomial and to find 

and check the solution 
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The sequence of Krylov spaces requires  the matrix product         

 

The next step is computationally hard. The characteristic polynomial is formed through 

several sub-steps. Each of them has its particular function. Firstly we form the initial 

polynomial 
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Further on, we cycle through a number of iterations which equals the length of the 

sequence of Krylov spaces 

 

An initial characteristic polynomial is created by matrix concatenation. It includes a matrix 

of random polynomials as a left operand and identity matrix as a right one. Powers of 

polynomials are under condition      
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In case of GF(2) a particular function returns the rank of a binary matrix: 



26 
 

 

While approximation of the characteristic polynomial is going on, the power of columns in 

matrix-coefficients should be checked on each step. Call the function: 
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ALGO1 function creates an iteration matrix according to Thome’s work [12]: 
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Sorting_delta is a sorting function  that uses a standard procedure stable_sort. It saves the 

initial order of so called nominal degree. According to Coppersmith, nominal degree of 

column is an upper bound on the degree of the coefficients in this column of the 

polynomial [12]: 

 

The sorted vector holds the order to change matrix columns by its powers: 
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When matrices are transformed, the program calls particular Gauss elimination for GF(2). 

This function is similar to the listed gfrank function: 
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The solution contains the vector w which can be found as                     
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The series of products      finally returns a solution if there is a zero value. It means that 

the result sought for is the previous product        : 



32 
 

 

Function check_res takes given solution and tests if it suits the system: 

 

With the aim of measuring the computational cost, a simulation exercise was conducted.  

Presentation of the results is in table 2. N denotes the column of block vectors x and z, P 
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denotes the probability for the case when the matrix element is zero. Figure 2 presents 

graphically the data from Table 2. 

 

Table 2. Execution time for implementation of Wiedemann-Coppersmith method. 

№ n  N P Total time, 

sec 

I step, sec II step, sec 

III step, 

sec 

1 96 12 0,995 0,209725 0,018433 0,158559 0,031938 

2 128 16 0,996 0,454333 0,042353 0,350721 0,073813 

3 192 24 0,9975 1,542 0,138905 1,11645 0,280819 

4 256 32 0,998 2,909263 0,294589 2,071512 0,530434 

5 512 64 0,999 21,929575 2,332576 15,460627 4,038455 

6 1024 128 0,9995 182,53589 18,54862 130,29009 32,92925 

 

 

Figure 2. Execution time dependence of system matrix size.  
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4 BINARY MATRIX OPERATIONS LIBRARY: 

THEORY AND IMPLEMENTATION 

4.1 Matrix multiplication method 

Matrix multiplication methods fall into two classes: element-wise processing and block 

operations. Element-by-element processes manipulate matrix elements while block 

operations use whole columns or rows depending on the format of data storage. The 

second group of methods seems to be computationally efficient because block operations 

reduce memory access. Element-by-element processes refer to the “naive” method, method 

known as the Strassen algorithm, and the method of Four Russians [15]. There is one 

interesting method that suits well for row-stored matrices described by Gustavson in [16, 

17] for the case of sparse matrices. This method shows good result in practice [18]. 

Current work considers two ways: a “naive” method involving the method of Four 

Russians and a modification of the Gustavson method in case of dense matrices.  

 

4.1.1 “Naive” method 

This method has an intuitive implementation. Scalar multiplication applies to row and 

column vectors according to the definition of matrix multiplication. 

For reasons of optimization, left matrices are stored in memory by rows, right matrices by 

columns. From computer representation point of view there are several available 

implementations: 

 for different data types (1-bit, 2-bit, 4-bit and 8-bit machine words) 

 for 64-bit, 128-bit and 256-bit blocks of data (using MMX, SSE and 

AVX intrinsic-functions by Intel to parallel operations [18]) 

Bitwise operations for addition and multiplication suit for bitwise matrix storage. The only 

challenge is to fill such matrices properly 
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A scalar method manipulates boolean  type and logic operations. 

Data storage for intrinsic functions is also critical. Abo library provides a record to vectors 

which form 64-bit, 128-bit or 256-bit blocks in their turn. There are special procedures for 

arithmetic operations developed for intrinsic-functions. Its technical specification and 

details are described  in [19]. In this special case, matrix multiplication is implemented as 
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4.1.2 Method of Four Russians 

In 1970 Arlazarov, Dinic, Kronrod and Faradzev public a paper. That included the 

algorithm named as the method of Four Russians. The main idea was to use a preset table 

for vector multiplication. The size of vectors is bounded. 

For example, let us calculate and record scalar multiplication by mod 2 for all possible 

pairs of binary vectors of size k. The results are placed in the table on the cross of left and 

right operands. (figure 3). Take the first matrix and decompose each row into vectors of 

size k. Each of them matches up with one binary vector. The second matrix is decomposed 

in the same way, by columns instead of rows. This trick сuts computation by a factor k. 

There are three modifications for the method of Four Russians in the abo library: 

 Multiplication table for 4-size vectors with results put in bytes 

The table has 16×16 elements of logic type. Before multiplication function splits 

each operand into 4-element vectors and finds a solution of conjunction from the 

table. 

 Multiplication table for 8-size vectors with results put in bytes 

The table has 256×256 elements of logic type. Before multiplication function 

splits each operand into 8-element vectors and finds a solution of conjunction 

from the table. 

 Multiplication table for 8-size vectors with results put in rows of bits 

The table has 32×256 bit elements. Before multiplication function splits each 

operand into 8-element vectors and finds a solution of bitwise conjunction from 

the table. 
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Figure 3. The method of Four Russians [20]. 

Implementation for method of Four Russians calls preset multiplication table: 
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One procedure manipulates bytes and 4-element operands: 
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The other procedure also uses bytes and operate an 8-element operands: 
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The third procedure sets densely packed operands in bits by size 8: 

 

 

4.1.3 Gustavson method 

The Gustavson method suits row-packed matrices. There is an interesting modification for 

a dense matrix in [16]. 

Express an element in a product matrix as 

c(i; j) = (a(i; 0) & b(0; j)) xor … xor (a(i; m) & b(m; j)). 

The method by definition is really inefficient when two operands are row-packed matrices. 

In this case, the standard way is matrix transposition, but it has also high computational 

cost. It is obvious that zeros could be canceled for disjunction; therefore, the number of 

operations for matrix multiplication could be reduced. It is the main idea according to 

Gustavson. The task is to find all non-zero elements in each row by bit masks. If a non-

zero element a(1; j) is found in the first row, relative matrix row B(j) will be put into temp 

store for the first row of matrix product C(1). Continue searching all non-zero elements in 
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the first row of matrix A. In case of each suitable element a(1; k) add row B(k) to temp row 

C(1). When the row A(1) will be finished, there will be a matrix product sought to in the 

row C(1). Make the same for all other rows. 

The disadvantage of this method is enumeration in matrix rows to find non-zero elements. 

To optimize it there is a simple iterator which allows to operate 4 elements of a row 

simultaneously. Switch case provides 16 possible combinations of 0 and 1. 

Software implementations: 

Bitwise operations are performed 

 for different data types (1-bit, 2-bit. 4-bit and 8-bit) 

 for data blocks (MMX, SSE, and AVX for 64-bit, 128-bit and 256-bit 

relatively). 

Execution time and performance are also estimated for optimized search with 4-element 

vectors. 

Gustavson method is embedded in abo library:  
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Matrix storage provides two storage options: by rows and by columns. It is important to 

check what type is used before running the function: 
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4.1.4 Options for polynomial matrices 

Functions for matrix addition and multiplication allow us to extend them for the case of 

matrix polynomials. The current work has an interest in matrix polynomials because it is 

used in the Wiedemann-Coppersmith algorithm. One of the most frequently used 
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operations for the polynomials in this method is searching the matrix-coefficient for a 

given degree of the polynomial: 

 

It also applies to the function for matrix convolution: 

 



45 
 

The next necessary step is to implement a polynomial multiplication: 

 

 

4.2 Performance results for abo library 

4.2.1 Testing technique 

There are new matrix-operands for each method. Measuring time is called directly before 

and after the multiplication function. The timer is monotonic and independent of current 

system time. The resulting duration of the multiplication function is added for a given 

number of iterations to get a mean value. 

System characteristics: 

 Platform: Ubuntu 14.04 (core 3.13.0-24-generic) 

 Processor: Intel Xeon CPU E5-2690 v2 @ 3.00GHz, 10 cores, 20 threads 

 Compiler: g++ 4.8.2 

 Optimization flags: –Ofast –march=core-avx-i –mavx 

 Number of iterations: 100 

 Dataset: matrix sized from 64 to 2048 elements 

 Timer: steady_clock 

 

4.2.2 Results 

The presented results of the bitwise method are performed for an 8-byte data type. This 

method manipulates densely packed operands. The scalar method uses logic data type and 

loosely packed vectors element-by-element. The method of Four Russians has three scores 
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in the result table with respect to three different modifications. There is time complexity 

for element-wise process in Table 3. 

 

Table 3. Execution time item process methods for matrices sized from 64 to 256 elements 

by a row/column, sec ×10
–6

. 

 

Dependence of performance has a visual demonstration in Table 4. Performance is 

calculated as a ratio of execution time to the number of arithmetic operations (addition and 

multiplication) applied to matrix elements. 
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bitwise 340 344 348 1355 1379 1389 5418 5512 5559 

scalar (bool) 136 197 329 547 783 1313 2188 3126 5245 

method of Four Russians (4-byte) 110 141 219 437 564 864 1739 2244 3431 

method of Four Russian (8-byte) 129 180 287 519 723 1144 2072 2889 4571 

method of Four Russian (8-byte) 382 761 1549 1464 2921 5925 5760 11462 23052 

MMX 326 330 336 1307 1318 1342 5222 5273 5375 

SSE 0 0 0 0 2329 2344 0 9313 9385 

AVX 0 0 0 0 0 0 0 0 17534 
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Table 4. Performance for element-wise process methods for matrices sized from 64 to 256 

elements by a row/column, operations ×10
6
/sec. 

 

The method of Four Russians with table for 8-element vectors has lower performance 

because the table is larger hence the search is harder. If this table has been densely packed, 

the modification would have had even lower performance. In this case, bitwise descriptor 

slows down processing rate. 

Type of dependence for time complexity differs for block multiplication methods. It is 

shown in table 5. 
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method of Four Russian (8-byte) 4032 5802 7292 4009 5778 7318 4016 5784 7326 
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MMX 1595 3165 6229 1592 3169 6238 1593 3169 6230 

SSE 0 0 0 0 1793 3571 0 1794 3568 

AVX 0 0 0 0 0 0 0 0 1909 
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Table 5. Execution time for block operations methods for matrices sized from 64 to 256 

elements by a row/column, sec ×10
–6

. 

 

Conversion to performance exhibits a slight gap between intrinsic-functions and others 

modifications (table 6). 
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Table 6. Performance for the Gustavson method for matrices sized from 64 to 256 

elements by a row/column, operations ×10
6
/sec. 

 

For these methods using iterators to 1-bit or 4-bit elements [21] there are also bars for time 

complexity function (table 7) and performance (table 8). 
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Table 7. Dependence of time complexity for Gustavson method with iterators, sec ×10
–6

. 

 

Table 8. Performance for Gustavson method with iterations, operations ×10
6
/sec. 

 

Let us consider the dependence between performance and number of zero elements in 

matrices sized 256×256 with p as a probability for generated  zero elements: 
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Figure 4. The performance curve dependence on the number of zero elements. 

The character of the performance function is interesting from the cache memory point of 

view. There are two levels of cache. When one level is filled, performance has a dramatic 

drop (figures 5 – 7). Let us choose storage by rows in such a way that increasing number of 

columns. 

 

Figure 5. Performance for a matrix with row size = 64 and column size from 210 = 1024 to 

224 = 16777216, operations ×10
6
/sec. 
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Figure 6. Performance for a matrix with row size = 128 and column size from 210 = 1024 

to 223 = 8388608, operations ×10
6
/sec. 

 

Figure 7. Performance for a matrix with row size = 256 and column size from 210 = 1024 

to 222 = 4194304, operations ×10
6
/sec. 
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4.3 Performance data for external libraries provided boolean 

matrix multiplication 

There are test results for some platforms (tables 9 – 13) using such libraries as MAGMA, 

GAP and NTL [22]. Input data is two random square Boolean matrices. GAP operates the 

method of Four Russians, Magma and M4RI use the method of Four Russians applied to 

the Strassen-Winograd algorithm. All time results are in seconds. 

 

Table 9. Test results for 64-bit Debian/GNU Linux, 2.33Ghz Intel Core2Duo 

(MacbookPro2,2). 

Matrix 

Dimension 

Magma 2.14-17 

(64-bit) 

GAP 4.4.10 

(64-bit) 

M4RI-20080821 

(64-bit) 

10,000 x 10,000 1.892 6.130 1.504 

16,384 x 16,384 7 .720 25.048 6.074 

20,000 x 20,000 13.209 - 10.721 

32,000 x 32,000 53.668 - 43.197 

 

  

http://magma.maths.usyd.edu.au/magma/
http://www.gap-system.org/
http://www.shoup.net/ntl/
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Table 10. Test results for 64-bit Debian/GNU Linux, 2.6Ghz Intel i7 (MacbookPro6,2). 

Matrix 

Dimension 

Magma 2.15-10 

(64-bit) 

GAP 4.4.12 

(64-bit) 

M4RI-20121224 

(64-bit) 

10,000 x 10,000 1.200 6.524 0.942 

16,384 x 16,384 4.735 20.777 3.672 

20,000 x 20,000 8.085 - 6.660 

32,000 x 32,000 33.395 - 28.006 

 

Table 11. Test results for 64-bit Debian/GNU Linux, 2.6Ghz AMD Opteron 858 (VMWare 

Virtualised). 

Matrix 

Dimension 

Magma 2.14-13 

(64-bit) 

GAP 4.4.12 

(64-bit) 

M4RI-200100817 

(64-bit) 

10,000 x 10,000 2.855 10.256 2.656 

16,384 x 16,384 10.865 - 11.470 

20,000 x 20,000 19.505 - 18.929 

32,000 x 32,000 70.110 - 66.208 
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Table 12. Test results for 64-bit Ubuntu Linux, 2.6Ghz AMD Athlon X2. 

Matrix 

Dimension 

Magma 2.14-13 

(64-bit) 

GAP 4.4.10 

(64-bit) 

M4RI-200100817 

(64-bit) 

10,000 x 10,000 2.005 5.920 2.700 

16,384 x 16,384 7.625 24.180 10.100 

20,000 x 20,000 13.870 - 19.120 

32,000 x 32,000 51.155 - 73.725 

 

Table 13. Test results for 64-bit RHEL 5 Linux, 1.6Ghz Intel Itanium. 

Matrix 

Dimension 

Magma 2.14-16 

(64-bit) 

GAP 4.4.10 

(64-bit) 

M4RI-20080909 

(64-bit) 

10,000 x 10,000 7.941 - 4.200 

16,384 x 16,384 31.046 - 16.430 

20,000 x 20,000 55.654 - 28.830 

32,000 x 32,000 209.483 - 109.414 

 

4.4 Summary for the developed abo library 

For small matrices sized 64-256 element Gustavson method is faster and the fastest one is 

the modification for a 256×256 matrix with AVX and iterator implementations. Its 

performance equals 19463.1 operations in a microsecond. 

For large matrices, the optimum number of columns for a given number of rows when 

there is no noticeable performance reduction for different row-by-row methods is given in 

table 14. 
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Table 14. Cache-optimum number of columns for a given number of rows. 

Number of rows MMX SSE AVX 

64 < 2
21

 - - 

128 < 2
20

 < 2
20

 - 

256 < 2
19

 < 2
19

 < 2
19

 

 

This tendency is due to the size of the second-level cache in the operating system. 

Time result data are given for functions without iterators but even then there is a much 

greater processing speed compared with data reported for external libraries. For example, 

take a 256×2^19 matrix (what is greater than 10^8) in Gustavson method with 

 1n m n p    complexity, where n m  is a matrix size and p is a probability for generated  

zero elements. Here in the test results, it takes 5.5924 milliseconds. It is the best time result 

compared to any of the three external libraries in case of GF(2). 
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5 CONCLUSION 

Algorithms in the current work were chosen due to their high practical importance. They 

are the most efficient ones and therefore the most popular algorithms in different fields, 

mainly in the problem of data decryption. But there are a lot of studies directed at 

extending or modifying them for attaining even higher efficiency. Since their publication, 

many efficient modifications have appeared. In our current work, we have tried to start 

from a theoretical model and came to implementations for the Montgomery and the 

Wiedemann-Coppersmith methods. It was done with the aim of efficient development 

based on a detailed computational cost analysis for each step of the methods. Original 

algorithms, as well as their modern modifications (such as Berlekamp–Massey and Thomé 

versions for the Wiedemann-Coppersmith algorithm), were considered. The choice of 

method was based on a review in related fields. Computational efficiency and high 

probability for result achievement were key parameters for algorithms.  

Building a theoretical model included a detailed assessment of the computational 

complexity of all the relevant operations. This approach allows educated organization for 

method development and test estimation for further optimization.  

The most significant contribution to improving the efficiency of software implementations 

of the algorithms was the decision through special library operations for the case of binary 

vectors and matrices. Theoretical estimation shows that multiplication of large matrices 

occupies quite a large share of total execution time. Acceleration of it reduces the time 

complexity of the entire algorithm. It should be clarified that for this operation there is a 

special data record type of binary matrices and vectors. Also, a computational tool of 

elementary operations for it was prepared. Test results for the abo library demonstrate its 

advantages compared to existing well-known libraries such as Magma, GAP, M4RI (in the 

case of GF(2)). 

The current state of research for Montgomery and Wiedemann-Coppersmith algorithms 

was discussed, theoretical analysis and estimation for computational cost were provided. 

An optimized implementation for two algorithms and a library of computationally 

intensive binary operations was developed. Further use will include commercial use and 

enhancing derived software solution. 

This work may be developed further in the field of parallel architecture for the 

Montgomery and Wiedemann-Coppersmith algorithms.   
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