

Lappeenranta University of Technology

School of Business and Management

Degree Program in Computer Science

Ibrahim Olanigan

APPLYING PATTERNS IN WEB-BASED USER INTERFACE FOR

DIMENSIONAL ANALYSIS CONCEPTUAL MODELLING

FRAMEWORK

Supervisor: Professor Ahmed Seffah

Employer: Dynavio

ii

ABSTRACT

Lappeenranta University of Technology

School of Business and Management

Degree Program in Computer Science

Ibrahim Olanigan

Applying Patterns in Web-Based User Interface for Dimensional Analysis Conceptual

Modelling Framework

Master’s Thesis

54 pages, 6 figures, 4 tables

Supervisors: Professor Ahmed Seffah

Keywords: design patterns, user interface, front-end, modelling, conceptual design

Usability and user experience are the cornerstones for building the web and mobile

applications. My thesis research entails the design of a web application for a conceptual

system design. The thesis focuses on the usability requirements, the engineering challenges

encountered and the implementation using selected design patterns. The process of

designing and developing a web interface is detailed.

iii

ACKNOWLEDGEMENTS

I am grateful to my supervisor, Professor Ahmed Seffah and my work superior and

collaborator, Professor Eric Coatanéa for their invaluable support and insightful feedbacks.

I extend a special gratitude to my partner, Nimotalahi King for her consistent

encouragement and support.

I dedicate this work to my mum and my family who have always stood by me. Thanks to

my colleagues at Dynavio and friends, Hossein, Faisal, Shola, Lekan and Larry.

Ibrahim Olanigan

28.11.2016

4

TABLE OF CONTENTS

1 INTRODUCTION ... 7

1.1 BACKGROUND.. 7

1.2 GOALS AND DELIMITATIONS .. 7

1.3 METHODOLOGY ... 8

1.3.1 Case Study as Research Method .. 8
1.3.2 Software Methodology ... 8

1.4 LITERATURE REVIEW ... 9

1.5 STRUCTURE OF THE THESIS .. 10

2 CASE STUDY .. 11

2.1 USABILITY REQUIREMENTS ... 11

2.2 DESIGN PATTERNS ... 14

2.2.1 User Authentication ... 14

2.2.2 Forms ... 17
2.2.3 Rich Internet Applications ... 24

2.2.4 Navigation .. 28

2.3 USER INTERFACE ... 30

2.3.1 DACM Framework .. 30
2.3.2 The Web Interface Representation ... 31

2.3.3 Functional Modelling .. 31
2.3.4 Causal Ordering .. 34

2.4 IMPLEMENTATION .. 36

2.4.1 Development Setup .. 36

2.4.2 Development Environment ... 36
2.4.3 Architectural Pattern ... 37

2.4.4 Core Framework .. 38
2.4.5 System Model ... 42
2.4.6 System View ... 44
2.4.7 Application View and Styling ... 46

3 DISCUSSION ... 47

3.1 CHOICE OF CORE DEVELOPMENT FRAMEWORKS ... 47

3.1.1 Experience of Developer or Team ... 47
3.1.2 Type or Specification of Project .. 48

3.1.3 Compatibility with Existing Resources .. 49

3.2 CHOICE FOR DEVELOPMENT ENVIRONMENT .. 49

3.3 MODELLING TOOL DESIGN .. 50

5

4 CONCLUSION AND FUTURE WORK .. 51

4.1 FUTURE IMPROVEMENTS .. 51

REFERENCES .. 53

6

LIST OF SYMBOLS AND ABBREVIATIONS

CSS Cascading Style Sheets

DA Dimensional Analysis

DACM Dimensional Analysis Conceptual Modelling Framework

DSM Design Structure Matrix

DMM Domain Mapping Matrix

E2E End-to-End

HTML HyperText Markup Language

IEEE Institute of Electrical and Electronics Engineers

IDE Integrated Development Environment

JS JavaScript

JSON JavaScript Object Notation

MVC Model-View-Controller

MVV Model-View-View Model

MVW Model-View-Whatever

SI International System of Units

SSL Secure Sockets Layer

URL Uniform Resource Locator

UI User Interface

WWW World Wide Web

7

1 INTRODUCTION

1.1 Background

This report discusses the process of designing a web-based User Interface (UI) for DACM

(Dimensional Analysis Conceptual Modelling) based on the work of Professor Eric

Coatanéa. I completed this project for Dynavio Cooperative in collaboration with a team

headed by Professor Eric, who also serves as the director of the board of the company.

The design of the system focuses on its usability, the usability requirements, and applicable

design patterns to fulfil the stated requirements.

1.2 Goals and delimitations

The primary objective of this report is to highlight the usability considerations, appropriate

design patterns, the technical implementation as well as the engineering challenges

encountered in developing the DACM web UI.

The system consists of the front-end component, which is visible to the user, and the back-

end component that handles user authentication, content storage and modelling

applications. However, this report focuses only on the design of the front-end part of the

system.

This work aims to tackle the following research questions:

 What are the key design patterns for designing web application?

 What are the technologies and tools for actualising design patterns?

8

1.3 Methodology

This research is a case study of applying patterns to design a web application. The first

research question provides the basis for identifying and documenting design patterns for

the web application. The second research question provides the basis for identifying

available technologies and tools that could be used to actualise the identified patterns to

develop a web application.

1.3.1 Case Study as Research Method

A case study is defined by Yin (1994) as "an empirical inquiry that investigates a

contemporary phenomenon within its real-life context, especially when the boundaries

between phenomenon and context are not clearly evident" (Yin, 1994).

The strength of a case study research lies in the ability to investigate a phenomenon in its

context without the need to replicate the phenomenon to understand it. This type of

research utilises multiple data sources and can be based on a mix of qualitative and

quantitative approaches.

This research follows the three fundamental principles of data collection in case study

research:

1. Triangulation – The evidence acquired from multiple sources are used to

corroborate the same finding.

2. Case Study Database – An organised collection of the pieces of evidence enhances

the transparency of the results and the repeatability of the search.

3. Chain of Evidence – Proper citation of the referenced sections of the case study

databases allows for easy retrieval of evidence. (Rowley, 2002)

1.3.2 Software Methodology

The design of the DACM web application is based on Agile software development which

is characterised by Cho (2010) with:

1. Fast development cycles: Each development cycle lasted for 1-3 weeks depending

on the complexity of the developed feature.

9

2. Iterative and incremental development: The development process is iterative and

aimed at improving or modifying available features.

3. Minimal planning: The iterative nature of the development alleviated the need for

advanced planning as the development is structured to adapt to changes in

requirements.

4. Customer collaboration: The customer (Dynavio) plays an active role in the

development process, and is regarded as part of the development team.

5. Frequent delivery: The fast-paced development ensured that features (both new and

updated) are delivered on a regular basis.

1.4 Literature review

The NELLI portal of Lappeenranta University of Technology was queried with the phrase

"web application design patterns" using sources like SpringerLink, IEEE, Emerald Journals

and Web of Science among others. A web-based search was conducted on Google search

to compliment the NELLI portal search.

A total of 148 articles and eight web sources (mostly documentations) were retrieved. My

supervisor provided additional resources, and after careful consideration for the research

scope and relevance of the case study, 20 references were recorded in the research.

10

1.5 Structure of the thesis

The first chapter introduces the topic of the research. Section 1.1 describes the background

for the research, the goals and questions for the research are mentioned in section 1.2, the

methods in section 1.3, the literature review in section 1.4 and the thesis structure in 1.5.

The second chapter presents the case study. Section 2.1 lists the usability requirements of

the web application, the design patterns selected from various sources to guide the UI

design are listed in section 2.1, the Dimensional Analysis Conceptual Modelling (DACM)

framework is described in section 2.2, and the design implementation is detailed in section

2.3. Section 2.4 describes the technical development of the web application

The third chapter discusses the challenges encountered before and during the design of the

application along with the relevant decisions made. The last chapter discusses possible

improvements to the web application.

11

2 CASE STUDY

This chapter discusses the various sets of information gathered and the technical

components employed for the design of the DACM web application. These information

include the requirements for the web application, the selected web-related design patterns

and the DACM framework.

2.1 Usability Requirements

This section describes the key usability concerns and requirements of the application.

1. General

The application should be a graphical User Interface (UI) that is accessible via the web. It

should comply with the requirements of the WWW accessibility standard, and it should be

designed based on Material Design, which is a design language created by Google.

2. Presentation

The application should support the minimum resolution of 800 pixels by 600 pixels

(800x600) on computer devices. It should run efficiently on modern web browsers like

Chrome, Firefox and Edge browsers. It should have excellent readability with clear-to-read

and easy-to-understand labels and titles. It should have clear and accessible navigation

links.

3. Prevent Errors

The application should allow users to select values from a list of valid values when

possible. Use a drop-down list, or an auto-complete text field be used for text and spin

control may be used for numeric values.

4. Help Users Recover from Errors

If an error occurs, the application should clearly describe the source of the error and clear

instructions on how to fix it. If the error is due to data entry, the application should allow

re-entry of the data. The application should allow users to undo or redo recent actions.

12

13

5. Avoid High Mental Workload

The application should have an accessible guide or documentation that provides all the

necessary information needed to use the application. It should use hints when necessary to

provide additional information to the users.

It should allow for multiple views within a window rather than use multiple windows to

complete a general task.

6. Minimize Visual Workload

Display the application in well-organized views that ensure easy visual scanning. It should

only display relevant views to the user.

14

2.2 Design Patterns

Based on the requirements collected, several design patterns were identified and gathered

to realise the needs of the system. These patterns are primarily from the book, “Web

Application Design Patterns” by Pawan Vora and Google Material Design.

 Each section in this chapter begins with the main categories where the patterns are

applied, followed by sub-categories. Each sub-category lists and describes their associated

design patterns.

2.2.1 User Authentication

The system is expected to handle different data and sessions for users, hence the need for

an authentication system to secure user information and to prevent unauthorised access.

The following design principles have been gathered to realise the requirements for user

authentication.

2.2.1.1 Registration

Most applications demand that users register an account before they are granted access.

Registration is done primarily to provide a unique experience for each user and identify

them uniquely. Registration often requires that the users provide their personal information

like name, age and address which the application may use to provide unique user-

experience.

Associated Design Patterns

I. Use CAPTCHA: Captcha enables the designer to keep out web crawlers from

creating pseudo accounts in the system. It is usually placed on the registration page,

sometimes as the last field before the primary action button.

II. State Benefits of Registration: The application must clearly indicate the

advantages of registering an account. Users should be informed about the gains that

await them after registration. In cases where registration is not free, users may be

15

granted a "trial" option to explore and examine the application in more depth.

2.2.1.2 Log In

Secured systems require users to identify themselves with a combination of a unique

identifier (usually username, user ID or e-mail address) and a password or passcode that

the user may provide or generated by the system. These combinations (known only to the

user) should help to restrict access and saved information to the users only.

Associated Design Patterns

I. Echo User's Passwords with Non-characters: Design the password field to hide

the user's password and displays the characters as bullets or asterisks. If the user

enters a wrong password, the system alerts the user of the error as an alert, a hint or

both.

II. Offer Secure Login: Transmission of the user's credentials to the server should be

through a secured connection. The connection is secured by adding a Secure

Sockets Layer (SSL) certificate to the server domain.

III. Offer a Registration Option: New users have the possibility to register to use the

application.

IV. Remember Login Information: Cookies are used to retain the user’s login

credentials on the device used to log in. The credentials may be fully saved (both

the unique identifier and password) or partially saved (just the identifier).

V. Locking User’s Account after Failed Attempts: The user should be prevented

from logging in after a defined number of failed login attempts. The account is

temporarily locked to prevent unauthorised users from gaining access to the system

through guesses and automated password types.

16

2.2.1.3 Log Out

The system must provide an easy option for users to end their session and log out of the

system. “Logging Out” is mandatory for any secured system to prevent unauthorised

access to sensitive information and it is vital to use when users operate multiple accounts

in a system.

Associated Design Patterns

I. Use Labels Consistently: Terms like sign out, sign off, log out, log off and are the

most often used to signify the action of ending user sessions. It is highly

recommended to use equal terms to denote the actions of entering and exiting the

system to maintain consistency. Hence, Log in with Log Out, sign in with Sign Out

to mention a few.

II. Acknowledge Logout: The system must clearly indicate to logged-in users when

their sessions have ended and thereby logged out of the system.

2.2.1.4 Automatic Logout

The web application keeps track of user’s activity and inactivity and should end user’s

session after an extended period of inactivity. Implementing automatic log out handles

security concerns that they arise due to user’s distraction or forgetfulness.

Associated Design Patterns

I. Save User’s Information: An efficient implementation of automatic logout should

consider saving users' information before ending their session. It ensures that no

vital information is lost while the application is trying to secure it from

unauthorised access.

For small-scale applications, user’s information may be saved after the user has

made meaningful interactions with the application. These interactions may be

known as trigger point between the user and the system. For instance, when a user

is writing a new message in Google Mail (Gmail), the message is saved and

17

updated as “draft” with every keystroke and the draft can be edited any other time

and stored until the user sends the message to the recipient.

2.2.2 Forms

Forms are essential components of web applications that enable users to interact with the

system or perform certain actions. Some common uses of forms include sending electronic

messages, uploading files, writing a post among others. Therefore, it is important to clearly

state the purpose of the form and make it simple to use.

2.2.2.1 Clear Benefits

The user may not be aware of the benefits of filling a form nor understand how to.

Therefore, the benefits of filling a form must be stated.

Associated Design Patterns

I. Explain the Benefit of Registering on Login Forms: The login form should

describe the benefits of registering into and having access to the web application.

II. Explain the Benefits Before Leading Users to the Form: Describe the benefits of

filling a form before displaying it to the user.

2.2.2.2 Logical Grouping

Users may be reluctant to fill out long forms, yet these forms may be required to

accomplish vital tasks. Hence, divide the form distinct groups or sections that represent

different sets of information that is made known to the users. Filling the form as a

collection of groups makes the form appear manageable and easier to complete.

18

2.2.2.3 Label Alignment

Labels are textual indicators for what their corresponding elements represent. Therefore,

the association between labels and their fields should be clearly stated to reduce user errors

and make the form easier to fill.

Associated Design Patterns

I. Use Embedded Labels Sparingly: Labels that appear in their input fields are

known as Embedded Labels. Often, they are used for searching as most search

application only has one input field (the search bar). An embedded label usually

serves as a hint to the input field and is removed the field is in focus.

These labels should only be used with few input fields and when users are well

conversant with the information required by the form.

2.2.2.4 Required Field Indicators

When filling a form, the users may be asked for certain information that is required by the

application, along with additional information, which may be used to enhance the user

experience. The users cannot identify which information is needed by the application if

they are no indicators or pointers to them.

Associated Design Patterns

I. Show the Required Field Indicator Legend: A well-designed form should not

assume the user’s knowledge of what the required field indicator of that form is as

designers might use different signs or symbols; rather it should be clearly stated in

the form.

II. Provide Instructive Text for Sensitive Information: When the form requests for

sensitive information, the purpose of such information and how it would be used in

the application should be indicated

19

2.2.2.5 Smart Defaults

When forms become lengthier, a longer time is required to complete and increase the

chances of errors. An effective means of reducing the hectic task of filling out a form is to

provide some default values, so long as the field is not for sensitive information.

These default values may be assumed based on the previous choices of the users or

appropriate contextual estimates like providing the current date as the default value in

many time-related tasks (e.g. Date selection for ticket purchases). These defaults may also

enlighten the user about the nature and format of the data expected in the field.

Associated Design Patterns

I. Avoid Default Values for Sensitive Information: Default values should not be

provided for sensitive or personal information like age, race, religion, gender and

so on. Providing defaults for this information may give the impression of bias or

offend many potential users.

2.2.2.6 Keyboard Navigation

Users often use the Tab key or the directional keys on the keyboard to navigate around

when filling a form. When a form does not cater for this navigation, the users would be

required to use their mouse to navigate instead. This mouse-only navigation becomes an

unnecessary burden for the regular users and unusable for users with assistive

technologies.

Therefore, forms must be designed to allow the use of standard keyboard shortcuts like

using the Tab key to navigate between fields and the Enter key to submit the form.

20

2.2.2.7 Input Hints/Prompts

A well-designed form must ensure that the users are well aware of the information

expected from them regarding the format, syntax or nature.

Associated Design Patterns

I. Provide Dynamic Instructions: Additional instructions may be given in the form

of hints or prompts when users select or focus on a form element. In this case, the

chosen of a particular field would only be visible to the user when they interact

with the field.

II. Match Field Sizes to Appropriate Data: Avoid making field sizes more or less

than the expected data. The length of a field may inform the user about the specific

nature of the data expected in that field and thereby, removing the chances of error

while filling the form.

III. Provide validity indicators: An efficient way of informing users that they are

correctly filling the form is to markers or signs that each field entry meets their

requirements. Most commonly used indicators are the green and red colour or

symbols in these colours.

For instance, the appearance of a green symbol beside a field or a green border

around the field may indicate that the field is correctly filled. A red indicator either

as the colour of the filled entry or border colour or as a symbol near the field may

be used to notify the user of an incorrect entry. An incorrect entry should be

accompanied by an explanation of the right format or syntax for the field.

21

2.2.2.8 Action Buttons

Forms require action buttons to continue in its workflow. A simple form may need only

two commands, to submit the form when complete and to cancel if the user does not want

to fill or submit the form. The commands are invoked with action buttons, which are

buttons with the label of the control they invoke like "Submit", "Next", "Cancel” among

others.

 It is important that every form has the appropriate amount of commands/action buttons

needed to achieve a full user experience with the chosen.

Associated Design Patterns

I. Use Clear Labels for Buttons: The button labels must be clear and precisely

denote the specific actions they are intended to perform. The clarity ensures that the

user is not confused about what the buttons do. Therefore, vague terms should be

avoided; instead, the buttons should specify their intended outcome.

II. Use “Enter” Key to Enable Primary Action: The form should enable the” Enter"

key to represent the primary action of the form. This feature is useful for forms

with one input field (like Search bar) or many fields.

III. Align Form Elements with Primacy Action Buttons: Aligning form elements

with action buttons provide a visible path to completing the form. This setup may

enable the user to complete the form faster.

IV. Disable Action Button after First Click: The action button should be disabled

after the first click to avoid repeating the action. This feature is important,

especially when dealing with sensitive activities like making a purchase.

22

2.2.2.9 Error Messages

It should be expected that errors would occur even with the best designs. Users would not

always fill forms correctly for a variety of reasons. The most common errors are:

 Incorrect information: Users may provide the wrong information when the

instruction is ignored or not well understood or due to forgetfulness.

 Missing information: Users may fail to provide all the mandatory information

requested.

 Syntax or formatting errors: This occurs when the user fills information in the

wrong format or type a wrong numerical format for phone numbers.

Associated Design Patterns

I. Provide Clear Instructions to Fix the Error: The error message should be

accompanied by clear and accurate instructions on how to fix the error. The

application must be designed with a dynamic error handling approach to cater for a

variety of mistakes.

II. Display Error Messages on the Same Page as the Form: Showing the error

message(s) on the same page as the incorrectly filled form is a simple yet efficient

approach. It ensures that the user is not only aware of the errors, but it removes the

burden of memorising the errors and corrections.

The error messages and their corrections should be displayed in a non-blocking

way and preferably near the errors.

III. Organize Error Messages: When notifying users of multiple mistakes in a form,

the error prompts, hints or messages should be displayed in an organised manner

that enables the user to see all the errors made. This organisation can be achieved

with the use of lists and standard error indicators (text colour or background

colour).

23

IV. Retain User Input: Whenever error messages are displayed, the form should keep

all the information entered by the user (including the incorrect data). This feature

ensures that the user does not re-fill the entire form, rather corrects the invalid data,

thereby saving the user from frustration and potentially leaving the form.

V. Identify Source of the Error: The application should clearly show the form

elements where the errors occurred. It eases the task of identifying the incorrectly

filled form elements for the users, which is particularly useful for long forms.

(Pawan Vora, 2009)

VI. Show Character Count: The application can display a character count for both the

input and the data limit of a text field. This number may be shown as a hint under

or beside the text field, and it's colour changes when the input exceeds the character

limit. This change informs the user that an error has occurred in the field.

24

2.2.3 Rich Internet Applications

Advancements in web technologies have made it relatively easier to design highly

interactive and responsive web applications. Web applications now offer a complete user

experience while allowing for stateless communications with the back-end/server.

2.2.3.1 Rich Form

The design of the old forms usually requires them to be validated after submission, and

possible errors can only be fixed after the re-submitting and re-validating the form.

However, a form should be designed to be interactive and responsive such that the inputs

are validated while they are entered, and users are shown only valid choices to select.

Associated Design Patterns

I. Design Form to Reduce Error: Use a combination of design patterns like

providing validity indicators and auto-completion to create a form that prevents the

user from making many errors while filling the form.

Validity indicators promptly inform the user if they have met the requirements for

the concerned input fields while auto-complete feature may be added instead to

provide a range of valid choices. These patterns and other related ones can be used

as it best suits the designed form.

25

2.2.3.2 Auto-completion

A partial input may be used to predict a list of possible input choices. This feature is

particularly useful when there is a large dataset of options that it becomes impractical to

use a drop-down list. As user input data in the field, a list of possible alternatives may be

suggested along with the option to select any of these options.

Associated Design Patterns

I. Enable Use of Keyboard/Keypad for Choice Selection: Allow users to use

keyboard/keypad keys to navigate and select an option from the suggested list of

valid choices. The up and down arrow keys can be used to go through the list, and

the “Enter” key can be used to select the preferred choice. While navigating the list,

the text field displays the focused option.

II. Highlight the First Match in the List: The first match in the suggested list could

be emphasised and made selectable with the “Enter” key. This feature ensures that

the user can easily choose the most likely suggestion without any navigation.

Another alternative would be to show the entered text while the remaining part of

the match is displayed as a hint (usually with a coloured background), which is

appended to existing text when the user presses” Enter” key.

26

2.2.1.3 Edit-In-Place

Some web applications may require users to create or edit items with a few properties.

Older designs may direct users to a new page or a view and redirect them to the original

view with the new or updated item shown. However, this disruption may become

frustrating when users have to do this multiple times. A lightweight editor can be used for

creating or editing an item.

Associated Design Patterns

I. Use Text Select for Items with One Editable Property: Allow users to edit a text

property by selecting the text and overwriting it. This feature is a simple yet

efficient approach, and it is becoming a standard feature in many web interface

libraries or frameworks for graphs, tables, forms and others.

II. Use Edit Icon/Button for Items with Multiple Editable Properties: Allow users

to edit multiple properties simultaneously by clicking on “Edit” button, which

could be a button with “Edit” label or one with a Pen icon (which has become a

universal symbol for changing text). These properties become editable when

selecting the edit button, and the label or icon changes to signify the “Save” action,

such that the item is updated when the user clicks the button again.

27

2.2.1.4 Slider

Value entry in forms might present a challenge for users if they are not aware of the valid

range of values required or the correct format expected. While this information can be

shown to the user, it presents a formatting problem in the design if they are many of such

inputs on a particular page. A slider control provides a solution to this issue as it shows the

user the range of expected values along with the correct format.

Associated Design Pattern

I. Display Selected Value: Always inform the user of the value(s) chosen to ensure

that the user selects the right value(s) intended. (Pawan Vora, 2009)

2.2.1.5 Confirmation and Acknowledgement of Action(s)

Informing users about actions performed in the application helps to remove the uncertainty

about any changes made and prevents users from making mistakes with the related task.

Associated Patterns

I. Confirmation: Confirmation is usually in the form of a dialog or prompt asking

the user to verify if they want to proceed with the invoked action. It may be

accompanied with a warning that informs the user of the possible outcome(s) of the

action. The dialog title should clearly state the intent of the invoked action; this

ensures that the user is well informed about the nature and likely consequence(s) of

the action. Confirmation should in for irreversible actions.

28

s

II. Acknowledgement: The user is informed about the system's operation, which may

have been invoked by the user. This feature ensures that there is clarity about what

actions the user had performed or what actions the application had carried out to

support or actualize the user's action. This feature may be accompanied by an

option to reverse the action. (Google Material design guidelines, 2016)

2.2.4 Navigation

The navigation provides users with the means to move through the various aspects of the

UI. Hence, it should be predictable, engaging and accessible. The first step in designing a

good navigation is to identify the class of users in the application along with their roles.

This setup makes it easier to provide a unique and more appropriate navigation for each

user.

2.2.4.1 Tabs

Tabs enable users to transition between views of equal importance easily. It is efficient to

use when the number of these views is small and mostly used for a set of sibling/child

views. It is the best navigation option to use when users have to switch views frequently.

29

2.2.4.2 Navigation Drawer

Navigation drawer is used to support an extended or expanding list of targets, and mostly

as side navigation. It is usually hidden and shown when invoked by the user. Using this

pattern for parent views with siblings is appropriate.

2.2.4.3 Expanding Navigation Drawer

The navigation drawer can be extended such that each level is accompanied by a sub-

section or level, which is collapsed by default and the user, can transition easily between

the main levels and the sub-levels. These sub-sections or levels can be used for direct

navigation or provide additional functionality to the primary targets. (Google Material

design guidelines, 2016)

30

2.3 User Interface

2.3.1 DACM Framework

The Dimensional Analysis Conceptual Modelling (DACM) framework is a mechanism

developed for the conceptual modelling of lifecycle systems. It is based on Dimensional

Analysis (DA) theory developed by a community of active researchers in the field of

physics and engineering.

The DA theory is a research approach for breaking down complex modelling problems into

simpler forms by deducing possible constraints on the relationship between variables from

the dimensions of these variables.

The DACM process consists of nine (9) steps. This thesis focuses only on three (3) steps,

which are:

I. Indicate the Model’s Objectives

The modeller provides the rationale for the model by creating the functional representation

of the model using appropriate ontology.

II. List the Problem’s Fundamental Variables

The modeller highlights the key variables affecting the functional model. They are three

categories of variables to be identified in the model:

 Overall system variables (Energy and Efficiency rate)

 Power variables (Effort and Flow)

 State variables (Displacement, Momentum and Connecting variables)

Design Structure Matrix (DSM) and Domain Mapping Matrix (DMM) are used to show

the specific properties and interactions within the model. DSM is used to show the

interactions between elements of the same domain, while the DMM is used to map

elements of different domains, in the case, the mapping of the function to variables and the

mapping of the variable with the most popular elementary units of the International System

31

of Units (SI).

III. Develop a Causal Ordering of the Variables

After all the properties of the model problem are clearly defined, the framework uses the

DSM and DMM matrixes to compute the cause-effect relationship between the variables.

The study presents a case of a torpedo's movement in the water. The modeller intends to

increase the speed of the torpedo in water, and to achieve that, an initial set of objectives is

determined:

 Extract the most relevant set of variables and SI units needed to model the torpedo’s

interaction with water

 Define the causality between the defined variables. (Coatanéa E. et al., 2016)

2.3.2 The Web Interface Representation

User input developed in the modelling step, yet the interface is designed to minimise the

amount of input required from the user. The web UI has two main sections:

I. Functional Modelling (where the user defines the properties of the model problem)

II. Causal Ordering (where the user observes the cause-effect relationship)

The sections are presented in both tabular and graphical forms.

2.3.3 Functional Modelling

This section combines step 1 and 2 of the DACM process by enabling the user to define

the functional representation of the system as well as the possible interactions and

properties of the system.

The functional graph allows the user to model a system with graphical nodes and links.

The functions are defined as nodes while the variables are defined as links (for power

variables and system variables) or as node elements (for state variables).

32

As the user updates the functional graph, the interface automatically generates and updates

a series of DSM and DMM matrixes from the graph data showing various mappings of the

modelled system in detail.

Figure 1. A functional representation of the torpedo case study. (Coatanéa E. et al., 2016)

33

Table 1. DSM Matrix shows the Function-Function mapping of the torpedo case study

 Torpedo moved

by acting on the

water

Torpedo and

water interact

together

Water resists

the torpedo

movement

Energy is

dissipated into

the water

Torpedo moved

by acting on the

water

 X

Torpedo and

water interact

together

X X X

Water resists

the torpedo

movement

 X

Energy is

dissipated into

the water

 X

Table 2. DMM shows the mapping between the functions and the variables (state and power)

in the torpedo case study.

Functions\Variables A ρ μ Fd V

Torpedo moved by

acting on the water
X X X X X

Torpedo and water

interact together
 X X

Water resists the

torpedo movement
X X X X X

Energy is dissipated

into the water

34

Table 3. DMM shows the mapping between the variables and the International System of

Units (SI) elementary units in the torpedo case study.

Unit\Variables A ρ μ Fd V

Mass (M) 0 1 1 1 0

Length (L) 2 -3 -1 1 1

Time (T) 0 0 -1 -2 -1

While the structures of all the matrixes are generated, the modeller may be required to

complete some of the matrixes to compute the causal relationship.

2.3.4 Causal Ordering

The DACM framework uses a mathematical algorithm to compute the cause and effect

relationship between the variables using the DSM and DMM matrixes generated in the

functional modelling section of the UI.

The UI enables the user to compute the causality only when all the relevant aspects of the

modelling are complete in both the functional graph and the corresponding matrixes. The

UI converts all the matrixes from HTML format to CSV format, and exports them to the

back-end where the causality is calculated and returned to the UI in JSON format. If the

functional model were done correctly and without conflicts, the response would contain

information about the cause and effect relationships among the variables, along with a

colour grading to distinguish between the types of variables. The UI generates a causal

graph, which shows the visual representation of the causality, and a DSM matrix indicating

the relationships in a tabular format.

35

Figure 2. The causal graph in the torpedo case study. (Coatanéa E. et al., 2016)

Table 4. DSM Matrix shows the causal relationship between the variables in the torpedo case

study

Variables/Variables A ρ μ Fd V

A X X

ρ X X

μ X X

Fd X

V X

The project focused only on the three DACM steps. However, the interface is designed to

be extensible for further implementation of the rest of the DACM process.

36

2.4 Implementation

This chapter describes the various technical concepts, tools and frameworks that were used

to design the system.

2.4.1 Development Setup

The application core is built on the traditional web stack of HTML5, CSS3 and JavaScript.

JavaScript is an interpreted language and thereby, it does not require a compiler to execute

its functions.

2.4.2 Development Environment

Sublime Text (version 3) was the development tool of choice for the following reasons:

 Lightweight: The software has a little memory imprint, as it does not have lots of

processes or threads running in the background, which may have required lots of

memory and CPU usage. This feature ensured that the development is efficient on a

reasonably equipped computer system.

 Multiple Selections: Sublime Text allows users to select multiple texts at a time

and manipulate them simultaneously. This feature is useful for adding, deleting,

changing, copying and pasting multiple texts simultaneously.

 Split Editing: The editor offers tabbing and split-view. This feature enables the

user to edit and compare files side-by-side.

37

 Customization: The editor is very intuitive and allows users to configure the editor

to their preference. It also offers a broad range of extension that enhances the

development experience.

2.4.2.1 Add-on Libraries

I. LiveReload: LiveReload is a simple web server that monitors changes in the

development file system and refreshes the web browser when any file under its

scope changes. It saves the developer the hassle of manually refreshing a web page

every time a change is made to the development files.

2.4.3 Architectural Pattern

The web application is designed based on the Model-View-Controller (MVC) framework.

The MVC is one of the oldest design patterns used for implementing user interfaces; it

divides a web application into three components:

 Model

 View

 Controller

38

The Model encapsulates the data set, logic and related behaviours of the data in the

application domain. It contains the specification of the data along with appropriate

methods needed to retrieve or change the data.

The View represents the visual component of the application. It focuses only on visualising

any number of elements contained in the Model.

The Controller provides an interface by which the user may interact with the application

(both Model and View). The Controller is synchronised with the application's Model to

ensure a smooth and fast workflow between the user and the application. (Ben Smith,

2009)

2.4.4 Core Framework

Due to the increased complexity of web applications, many web application frameworks

have been built to cater for the widening demands of web developers as well as providing a

structured platform to implement any of the software architectural patterns related to web

interface designs like MVC, MVV and others.

The front-end component of the application was developed with AngularJS. AngularJS is a

sophisticated JavaScript MVW (Model-View-Whatever) Framework. The MVW pattern is

a variation of the MVC pattern discussed above.

2.4.4.1 AngularJS Framework

This project is built on the AngularJS version 1.x. AngularJS is a front-end framework that

extends the capability of HTML for designing dynamic web applications. It provides a

higher level of abstraction to the developer and offers many features. Some of these

features include:

39

 Templating: AngularJS allows developers to create custom DOM elements called

templates. Templates are created by combining existing HTML DOM elements

with Angular-specific functionalities that may be used to bind data, format data or

validate input. Angular renders the dynamic view by combining the template with

the controller and model.

 Data binding: In traditional template systems, the template and model components

are merged one-time into view and subsequent changes to the model is not reflected

in the view. However, in AngularJS applications, the model data is automatically

synchronised with the view components such that any changes to the model

immediately reflects in the view. This feature ensures that the view acts as a real-

time projection of the view.

Figure 3. Data binding in Classical Template System (AngularJS: Developer Guide)

Template

Model

View Merge

40

Figure 4. Data binding in AngularJS (AngularJS: Developer Guide)

 Form handling: AngularJS provides a range of functionalities for handling forms.

It allows for user input validation as well as the use of embedded CSS classes to

style form controls based on the appropriate validation. AngularJS triggers an

update to the model when the view changes, however, these triggers can be

customised to define when the model update occurs. This feature is useful when

real-time model updates may not be the best option for the application.

 Routing: AngularJS provides a routing service that connects URLs (Uniform

Resource Locator) to views and controllers. When the user navigates the UI, the

view changes based on the route service configuration.

41

 Testing support

AngularJS was written for easy testing; hence, it provides support and is compatible with a

broad range of third-party testing tools and frameworks. The most common tests conducted

on Angular applications are:

i. Unit Testing

AngularJS recommends the use of angular-mock, Karma and Jasmine for testing the

correct execution of various operations of the application. Unit testing allows the developer

to isolate the function or operation to be tested, and a set of logical tests is executed to

assess the correctness of the function. Unit tests are usually used as the first approach to

identifying bugs in the application and are written in JavaScript.

ii. End-to-End (E2E) Testing

While unit testing is very useful for assessing the correctness of individual features, E2E

testing is used to evaluate the level of successful integration of different features and

components with one another as well as the general health of the application.

AngularJS provides ‘Protractor’, an E2E test runner that simulates users’ interactions with

the application. (AngularJS: Developer Guide)

42

2.4.5 System Model

The data model of the application is in the form of a JSON Array with two elements:

Nodes and Links. The nodes are the data representation of the key elements in a conceptual

system, and these nodes have unique and similar properties that can be extended, while the

links represent the fundamental interactions between the system nodes.

Figure 5. Visual Representation of the System Model

Node 1

Node 2 Node 3

43

Figure 6. JSON Representation of Figure 5.

44

2.4.6 System View

The application should present the system model in a manner that is interactive, responsive

and understandable to the users. The target audience for this application includes engineers

and designers; hence, the model is presented in both graphical and tabular forms.

A graph offers the most visually understandable view of a system. It shows all the

components of a system as well as the relationships (if any) between them. Also, it can be

used to display additional information about the system. Tables are often used to show data

in more details.

2.4.6.1 Graph Visualization

Data visualisation is becoming popular as a part of front-end design as interest in data

processing and analysis has increased. Many open-source libraries offer basic to advanced

data visualisation. However, the project mandated the use of a library that is compatible

with the chosen front-end and UI frameworks and offers advanced functionalities

demanded by the project.

GOJS was chosen for the project. It is a licensed library, which provides graphical

templates and data binding of the graphical objects to model data. (GoJS Introduction) It

also provides support for the AngularJS framework. A trial version of the software was

used for the project.

45

2.4.6.2 Tabular Presentation

In many Engineering disciplines, matrixes are commonly used to represent data, as they

are understandable and appropriate for calculation and analysis. With tables, users observe

a more detailed look at the system such as the various kinds of relationship that exist in the

modelled system along with the metric of all the system elements.

For further processing of the system design, the tables are extracted and sent to the server.

I. Table Design

Despite the enhancements in HTML5 and variety of custom tabular libraries available, the

need for application is quite particular; hence the need for customised DOM elements.

AngularJS framework allows and supports the design of customised HTML elements.

The tables are designed with a combination of the basic HTML table markup and

AngularJS-specific elements and attributes that were used to bind structure and format data

in the table. Multiple data objects were created and maintained (in JSON format) to store

and retrieve system details, and these objects are synchronised with the table such that any

change to the model is immediately reflected in one or more tables.

The most used Angular directive for designing the tables in the UI is ngRepeat; it

instantiates a template from a data collection. It provides a tracking function that can be

used to prevent duplicating entries. (AngularJS: API). This directive was used to populate

the table headers (row and column) as well as the individual cells. Many functions were

defined to interpret and convert the graphical data into binary entries (0/1) for the table

cells. An example of this essential is one that checks the graph of connections between

nodes, and the intersecting cell in the table displays “X” if the nodes are connected and are

empty if not connected as shown in Table 1. Table 1-4 above shows some of the matrix

generated by the application.

46

2.4.7 Application View and Styling

The design of the web application has a sturdy with the increased emphasis on usability

and user experience. Consequentially, newer web technologies, regarding concept and

technicalities, have emerged to cater to these new demands.

Some open-source libraries were used in designing and styling the web application. These

libraries are:

 Twitter Bootstrap

 Angular Material

1. Twitter Bootstrap

Bootstrap was created by a team consisting of a developer and a designer at Twitter in

2010 and has grown to become one of the most popular front-end frameworks in the world.

(About Bootstrap).

2. Angular Material

Angular Material is designed as both a reference implementation of Google’s Material

Design Specification and as a companion framework to AngularJS. It provides web

developers and designers with a set of reusable UI components that adopts Google's

Material Design. Google supports this project and it is licensed under the MIT License

(Angular Material – Introduction).

47

3 DISCUSSION

Applying the patterns to the web application development came with a couple of

challenges which were mostly related to making the best technical decisions for realising

the requirements. In this chapter, these challenges are discussed along with the decisions

made to resolve them.

3.1 Choice of Core Development Frameworks

Web developers and designers enjoy a wealth of readily available and well-supported web

development and UI frameworks. Many of these frameworks offer easy-to-follow

beginners’ guides and boilerplates that a mildly experienced developer can get started with

a sample project in a short time.

However, the choice of what frameworks to use in this project was determined by the

following factors:

3.1.1 Experience of Developer or Team

When dealing with time-sensitive web UI projects, the easiest decision-maker of what

tools or frameworks to use in a project is the level of experience or familiarity with a set of

popular choices. In this project, there is hardly any room for sampling or learning a new

tool or framework; hence, the team settled for the most familiar options that got the job

done.

However, web projects are usually fast-paced nowadays as developers adopt Agile or

similar methodologies that ensure quick completion of tasks within projects. Therefore,

web developers are expected to be “fast learners" and quickly learn and adapt new

technologies in the field. As every project is unique, developers are supposed to learn

something new from every project, concerning either theoretical software concepts or

experience with practical tools. The selection of the key development frameworks is

discussed below from the perspective of my familiarity or experience with them.

48

I. Core Web Framework

Before this project, my web development skills were limited to the most traditional web

stack of HTML5, CSS and JavaScript. As I have worked with a couple of JavaScript

frameworks beforehand, I focused my initial list to these frameworks, with AngularJS

being my top choice. I settled with AngularJS as the core web framework to build the

application based on my positive experience with it as well as its compatibility and support

for other famous web libraries and frameworks.

II. Graph Visualization Tool

There are many open-source and commercial JavaScript libraries for visualising data and at

the inception of the project; I was only familiar with Vis.js. I was advised to consider D3.js

as well; hence, I sampled both libraries to assess if they offered adequate features and

support for what the application required.

The tested libraries provided only the basic features that would require additional effort to

make it suitable for the application design. Therefore, the focus changed to licensed

libraries that not only provided the needed functionalities for the UI design but also did not

put too many restrictions on the trial version. This decision led to the eventual selection for

GoJS. GoJS is compatible with AngularJS and offers a broad range of features were useful

for the project.

3.1.2 Type or Specification of Project

The development/implementation stage of a project comes after arguably more important

steps like Requirements and Design. Sometimes during these earlier stages of the software

engineering process, some project technicalities are specified that they become a constraint

in the choice of frameworks to use to actualize the software.

While there are active efforts to make web technologies universally compatible with one

another, they are still many existing proprietary technologies and tools that limit the

choices of compatible frameworks to use.

49

3.1.3 Compatibility with Existing Resources

Arguably, the most important factor when selecting frameworks for web design is the level

of compatibility with the available or existing resources. This element is vital to reduce

avoidable complications that may arise during development or an operational disaster

during release.

Selection of frameworks in these kinds of projects should be primarily based on the

seamless operational compatibility with the existing tools and technologies from all the

related aspects of front-end and back-end. The application back-end was constrained to

work with Java applications. This constraint presented an exciting challenge to identify and

select a list of tools and frameworks that would ensure an efficient workflow between the

front-end and the back-end.

The primary challenge was to choose a back-end development platform or framework that

is compatible with AngularJS from the front-end. The only requirements from the front-

end are to be able to upload files to the server and get the response in JSON format. The

Spring framework was initially selected as it is a Java-based framework and supports

AngularJS. However, the setup was discovered to be too complicated for the project, and

the Common Gateway Interface (CGI) provided a leaner option. CGI provides a protocol

for executable programs on the server and can dynamically render web pages. The

simplicity of CGI ensured there was no need for extended learning to integrate it into the

project.

3.2 Choice for Development Environment

The use of Integrated Development Environments (IDEs) has become common practice

among developers. These IDEs offer a one-stop solution to vital development needs like

code and syntax checking, compilation, versioning, debugging among others. However,

their importance varies depending on the type of project.

50

Using an IDE is recommended practice for any project, yet the choice of the development

environment or tool could be dependent on the preference of the developer or team. For

this project, a lightweight text editor was used in place of an IDE as the project did not

demand the utilisation of the sophisticated features provided by an IDE, rather it provided

more useful and adequate functions that ensured a smooth coding experience.

3.3 Modelling Tool Design

Deciding what to model or not is agreed to be the most difficult yet the least understood

task in simulation modelling. The modeller is expected to have a thorough understanding

of the real system enough to be able to build a simulation model. (Robinson, 2013).

The design of a conceptual modelling tool may not require extensive knowledge of

Systems Engineering and modelling concepts, yet the development of this tool would not

be possible without the collaboration with trained professionals with knowledge of

Systems engineering and mathematical simulation. As the application was designed for

skilled or semi-skilled system modellers, the usability aspects were also determined from

that perspective to ensure that the tool is intuitive and provides support for the most

common modelling tasks.

51

4 CONCLUSION AND FUTURE WORK

Design material and design patterns provide essential guidelines for developing a web

application. Not all the listed patterns have been implemented mostly due to focusing more

on the operational aspect of the application. However, the importance of usability and user

experience was not neglected. The inclusion of Angular Material made it more efficient to

design based on the patterns as it was developed based on Google’s Material Design.

Besides, some aspect of the project was designed with basic coding. While this did not

create any issue for the project, it is known that using modern frameworks may lead to

better overall performance.

4.1 Future Improvements

 Review and Implement All Relevant Design Solutions

The identified patterns should be evaluated to assess which design patterns may be added

or removed to optimise the usability and performance of the UI. These patterns should be

implemented as best suited to the application.

 Migration from Twitter Bootstrap to Angular Material

The project started with Twitter Bootstrap due to its familiarity, and Angular Material was

discovered later on during the development process. Migrating the Bootstrap coding to

Angular Material should bring it closer to fulfilling the design and usability requirements

as the UI framework is based on Google’s Material Design.

52

 Improve Development Processes

The application has been developed using a simplistic approach that did not require many

vital aspects of modern web development like dependency control and code minification.

Steps should be taken to integrate essential libraries that offer dependency management

and build into the project. These will guarantee a better overall development experience

and enable code safety and security.

 Extensive Testing

A multitude of UI and code testing should be done to expose the fragilities and the limits

of the application. Some of the testing to be done may include:

i. Automated UI Testing: This type of test would focus on identifying the presence of

defects on the interface, most importantly transitions between the state and sections

of the interface. This testing includes unit testing and E2E testing.

ii. Cross-Browser Testing: This type of test would focus on assessing the performance

of the UI on the most popular web browsers like Google Chrome, Mozilla Firefox,

and Microsoft Edge. It will also identify browser-related defects concerning the

support and compatibility with the UI components.

iii. Usability testing: This testing would focus on how easy and intuitive the UI is for

system modellers along with assessing all possible challenges with the user

experience.

53

REFERENCES

About Bootstrap. [Online]. Available at: http://getbootstrap.com/about/. [Accessed

October 14, 2016].

Angular Material. [Online]. Available at: https://material.angularjs.org/latest/. [Accessed

October 14, 2016]

AngularJS API Reference - ngRepeat. [Online]. Available at:

https://docs.angularjs.org/api/ng/directive/ngRepeat [Accessed November 3, 2016]

AngularJS: Developer Guide - Data Binding. [Online]. Available at:

https://docs.angularjs.org/guide/databinding [Accessed November 2, 2016]

AngularJS: Developer Guide - E2E Testing. [Online]. Available at:

https://docs.angularjs.org/guide/e2e-testing [Accessed November 2, 2016]

AngularJS: Developer Guide: Introduction. [Online].

Available at: https://docs.angularjs.org/guide/introduction. [Accessed October 14, 2016]

AngularJS: Developer Guide - Unit Testing. [Online]. Available at:

https://docs.angularjs.org/guide/unit-testing. [Accessed November 2, 2016].

Cho, J, Joey, "An Exploratory Study on Issues and Challenges of Agile Software

Development with Scrum" (2010). All Graduate Theses and Dissertations. Paper 599.

Utah State University.

Coatanéa, E, Roca, R, Mokhtarian, H, Mokammel, F & Ikkala, K 2016, 'A conceptual

modelling and simulation framework for system Design', COMPUTING IN SCIENCE

AND ENGINEERING, Vol 18, no. 4, pp. 42-52.

GoJS Introduction, Northwoods Software. [Online]. Available at:

http://gojs.net/latest/intro/index.html. [Accessed October 14, 2016].

Google, Usability Requirements Template, 2016. [Online] Available at:

https://sites.google.com/site/superuserfriendly/templates/usability-requirements-template.

[Accessed on August 11, 2016].

LiveReload. [Online]. Available at: http://livereload.com/. [Accessed October 14, 2016].

http://getbootstrap.com/about/
https://material.angularjs.org/latest/
https://docs.angularjs.org/api/ng/directive/ngRepeat
https://docs.angularjs.org/guide/databinding
https://docs.angularjs.org/guide/e2e-testing
https://docs.angularjs.org/guide/introduction
https://docs.angularjs.org/guide/unit-testing
https://tutcris.tut.fi/portal/en/persons/eric-coatanea(7bbf3ad4-62bb-4582-83fa-08528c5c9b7b).html
https://tutcris.tut.fi/portal/en/persons/hossein-mokhtarian(8103571f-f232-4cbb-9e44-14788b7946ee).html
https://tutcris.tut.fi/portal/en/persons/kimmo-ikkala(b4050d81-8cb7-41b4-8759-c2de7ed7d1d9).html
https://tutcris.tut.fi/portal/en/publications/a-conceptual-modeling-and-simulation-framework-for-system-design(7659030f-9145-464d-9f43-5cd9cd6d0e03).html
https://tutcris.tut.fi/portal/en/publications/a-conceptual-modeling-and-simulation-framework-for-system-design(7659030f-9145-464d-9f43-5cd9cd6d0e03).html
http://gojs.net/latest/intro/index.html
https://sites.google.com/site/superuserfriendly/templates/usability-requirements-template
http://livereload.com/

54

Material design guidelines, Patterns – Navigation. [Online]. Available at:

https://material.google.com/patterns/navigation.html [Accessed November 1, 2016].

Material design guidelines, Patterns – Confirmation and Acknowledgement. [Online].

Available at:

https://material.google.com/patterns/confirmation-acknowledgement.html [Accessed on

November 1, 2016].

Robinson, S. 2013. Conceptual Modelling for Simulation. Proceedings of the 2013 Winter

Simulation Conference, pp 377 – 388.

Rowley J. 2002. Using Case Studies in Research. Management Research News, Vol. 25

Number 1, pp. 17-27.

Smith, B. 2014. MVC A Compound Pattern. Advanced Action Script 3, pp. 343-356.

Twitter Bootstrap 2.0.2 Documentation. [Online]. Available at:

http://bootstrapdocs.com/v2.0.2/docs/. [Accessed October 14, 2016].

Vora, P. 2009. Web Application Design Patterns, pp. 15-251.

Yin, R.K. 1994. Case study research: design and methods. 2
nd

 edition. Thousand Oaks,

CA: Sage.

https://material.google.com/patterns/navigation.html
https://material.google.com/patterns/confirmation-acknowledgement.html
http://bootstrapdocs.com/v2.0.2/docs/

