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Nykyiset ympäristösuuntaukset vauhdittavat ekologisempien ja vähemmän saastuttavien 

ajoneuvojen kehittämistä. Ajoneuvojen ja lyhyillä työsykleillä toimivien työkoneiden 

hybridisointi on osoittautunut tehokkaaksi tavaksi vähentää polttoaineenkulutusta ja 

päästöjä. Kaupallisessa mielessä uudet teknologiat ottavat vielä ensiaskeleitaan 

valmistajien kehittäessä ja kokeillessa erilaisia teknisiä ratkaisuja. 

Uudenlaisen tekniikan jälkiasentaminen vanhempiin ajoneuvoihin saattaisi jatkaa niiden 

käyttöikää. Lappeenrannan teknillinen yliopisto on rakentanut vanhemmasta 

kaupunkilinja-autosta sarja-rinnakkaishybridin. Meneillään oleva tutkimus pyrkii 

selvittämään, voitaisiinko tämänkaltainen jälkiasennus tehdä kaupallisesti kannattavaksi. 

Tämän työn tarkoituksena oli kehittää hybridin ohjausjärjestelmää varten ohjelmisto, joka 

on riittävän turvallinen julkiseen käyttöön ja pystyy tuottamaan mittaustietoa tutkimusta 

varten. Tämä työ kuvaa kehitysprojektin ydin- ja tukiprosessit sekä esittelee niiden eri 

vaiheisiin liittyviä menetelmiä, muun muassa riskienhallintaa ja testausta. Rajallisista 

henkilöresursseista riippumatta projekti kykeni osoittamaan, että pienemmissäkin 

prototyyppiprojekteissa voidaan saavuttaa tyydyttäviä tuloksia soveltamalla mukautettuja 

teollisuusstandardien mukaisia menetelmiä. Työn johtopäätös on, että aktiivinen 

projektinhallinta ja järjestelmälliset suunnittelumenetelmät ovat avain monitahoisen 

projektin onnistumiseen.  
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Current environmental trends are pushing the development of more ecological and less 

polluting vehicles. Hybridization of vehicles and heavy-duty machinery with short duty 

cycles has already proved to be an effective way to cut down fuel consumption and 

emissions. The new technologies are still taking their first steps commercially, and the 

manufacturers are developing and testing different solutions. 

Retrofitting new technologies into older commercial vehicles could be one solution to 

extend their lifespan. Lappeenranta University of Technology has equipped an older city 

bus with equipment capable of series-parallel hybrid operation. On-going research is 

trying to establish whether this kind of retrofitting could be made commercially viable. 

The aim of this work was to develop hybrid control system software ensuring safe public 

operation and capable of providing measurement data for research purposes. This work 

essentially describes the core management process and its support processes. It explains 

some basic methodology for each phase of this engineering project, covering for example 

risk management and testing. Despite limited human resources, the project demonstrates 

that industrial standards methods can successfully be scaled down, used in a small-size 

prototype project and provide satisfactory results. The work concludes that active project 

management and structured design methods are key factors in successfully completing a 

project with such complexity. 
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1 INTRODUCTION 

While the electrification of vehicle powertrains seems to be a fast growing trend, the slow 

development of rechargeable energy storage systems (RESS) is still holding back the 

rapid spread of electric vehicles (EV). One of the main disadvantages is the RESS 

operational range. To extend the range one would need a bigger battery, which in turn 

brings in more weight and wastes space. In cold environments, the battery power would 

be reduced dramatically without a pre-heating system, which in turns adds to the overall 

energy consumption. 

A hybrid electric vehicle (HEV) can help to combine the best properties of both electric 

drives and the internal combustion engine (ICE). The hybrid is not fully dependent on the 

limited electric power storage. The idea is to combine two power sources to overcome to 

shortcomings of either of these technologies used on their own. (Reif et al. 2014, 724) 

There are common hybrid configurations and new innovative solutions are being tested. In 

a series hybrid, electric power is generated using an internal combustion engine to drive a 

generator and the powertrain itself is operated with an electrical drive. In a parallel hybrid 

configuration, both power sources can be operated simultaneously to drive the powertrain 

and a generator operation of the internal combustion engine is possible. This solution 

requires a transmission or other power line strategy because of the internal combustion 

engine and its limitations. In order to combine these two technologies in one vehicle, all 

components of both systems are required, and they can be linked together by a 

mechanical clutch. This is called the series-parallel hybrid. It enables independent series 

and parallel operation, and combined operation with two electrical machines. A power-split 

hybrid also combines series and parallel operation using a planetary-gear transmission 

instead. The Toyota Prius utilizes this kind of technology. The adverse effect of the 

increased weight in series-parallel hybrid would not always be tolerable in a small vehicle, 

but the concept might be usable in a heavy commercial vehicle. (Reif et al. 2014, 727-732; 

Immonen et al. 2012) 

In designing a hybrid system, it is very important to observe the conditions of use and duty 

cycle of the vehicle. Some vehicles with an internal combustion engine can be rather 

effective, for example, an intercity bus that is driving long distances between stops, whose 

engine runs on high efficiency during travel. However, energy efficiency of a similar 

configuration in city bus use would not be very desirable. Constant stopping and 

accelerating consumes considerable energy, and the internal combustion engine load 
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does not permit the engine to operate within the range of best efficiency. The energy 

efficiency during acceleration from stop with an electric drive generally has more than 

twice the efficiency of a comparable internal combustion engine with a separate 

transmission (Immonen et al. 2012). A fully electrically operated bus would require 

charging from an external network and preferably, the charging should be done rapidly in 

order for the bus to operate without long interruptions. However, the investment costs of 

an opportunity-charging infrastructure may be high and limit the variety of vehicles 

compatible with the chosen charging system. 

Combining series and parallel hybrid technologies would allow boosting the overall 

efficiency of a bus to a new level (Immonen et al. 2012). In spite of discarding the external 

charging equipment and adding more freedom, the use of a more compact battery would 

compensate for the added vehicle weight of the engine and generator, and it would still be 

possible to drive emission-free in selected regions. 

The CAMBUS idea was to create a series-parallel hybrid powertrain, which combines a 

diesel engine with a greatly reduced displacement, and an electric drive capable of 

providing all the propulsion power required. Figure 1 shows a 3D model of the CAMBUS 

powertrain components. According to the simulations run by Paula Immonen, the 

CAMBUS powertrain concept seems very promising for a city bus. The results propose 

that a city bus would benefit from hybridization using a radically smaller diesel engine and 

the estimated results promise significantly less average fuel consumption than in a regular 

city bus driving cycle. To verify the simulation results, LUT decided to build a proof-of-

concept vehicle. (Immonen et al. 2012) 
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Figure 1. A 3D-model of CAMBUS powertrain. (Teemu Sairanen, CAMBUS project) 

LUT has declared itself as a green university, supporting the ideas of recycling and 

pursuing energy efficiency. A retired city bus was chosen as the basis of the new hybrid 

technology. Soon the powertrain technology was being planned. 

1.1 Goals 

This work was an engineering subproject for the CAMBUS main control system 

development project. The aim was to design and implement software for a control system 

and use structured methods of testing to demonstrate that the system is safe enough for 

public driving and taking passengers. During the progress of this work, the user 

requirements had to be assessed several times, as in the beginning it was somewhat 

unclear what would be the final use of the bus. Some stakeholders wanted the bus to 

operate independently in regular commuter traffic; some wanted the bus to remain a 

proof-of-concept operated only by researchers. These decisions, of course, have great 

impact on the design requirements. 

This document will cover the control system, mainly from the perspective of software 

development, and the forming of the main engineering processes that start from the user 

requirements and end with a tested, ready-to-run prototype. The main milestone was to 

get the vehicle registered as a series-parallel hybrid, enabling both the series and parallel 
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modes, and to be able to operate it on public roads, thus allowing us to focus on 

calibrating the hybrid control software and achieve real-life measurement data from the 

use cycles. 

The work will present methods for the design process and the results of this project. It will 

study some industrial design and risk reduction methods to see whether they can be 

scaled down and implemented effectively with a relatively small organization, for example 

a research team. It will also suggest enhancements for the future development of the 

system. 

1.2 Scope 

The writer was not restricted to one specific role in the project but instead was acting at 

almost every level of project organization. The main importance of this work was in 

organizing the control system development project, creating a structured way of 

proceeding in an automotive project and, as the final goal, to ensure the safe operation of 

the bus after its commissioning. The whole CAMBUS project was highly ambitious for the 

first automotive project of this scale at LUT. 

Some of the designed software functions have yet to be implemented and will not be 

completed during the time allocated for this work. This, of course, limits the scope of this 

work. 

The technical system architecture was planned only regarding the automation, but was 

sketched to provide an adequate plan for the later testing phase. The implementation of 

the automation covers the requirements defined by the risk assessment process. As for 

the testing, the final validation testing is not covered by any other means than planning 

some of the test procedures. 

The technical capabilities and suitability of the pre-selected equipment and engineered 

systems were not evaluated, only their basic functionality is covered by the test plans 

created. 

1.3 Terminology 

Automotive terminology can sometimes be problematic. The writer has tried to adhere 

mainly to the terminology of regulation 100 given by the United Nations Economic 

Commission for Europe (UNECE), later referred to as ECE-R100. This text primarily uses 
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the terminology of the ECE-R100 2012, if not mentioned otherwise. However, a careful 

reader would notice that even the original UNECE publications have some contradicting 

terminology and abbreviations. 

The automotive legislation, compared with the European Union Low Voltage Directive, 

has a different approach to defining high voltage. According to ECE-R100 a voltage of 

60…1500 VDC or 30…1000 VAC is declared high voltage (UNECE 1997). Again, in this 

text the ECE-R100 definitions are used exclusively. In this document, the high voltage 

system is referred to as HV, sometimes in conjunction with AC or DC referring to the type 

of current in question. Similarly, the 12 or 24 volt systems are referred to with the 

abbreviation LV, low voltage. In accordance to the terminology of the regulation, the term 

isolation resistance is used instead of insulation resistance. 

1.4 The structure of this document 

The design process will be examined in more detail after the introduction (Chapter 1). The 

text uses actual project-related information as examples to enlighten the meaning of the 

processes. Section 1.6 looks at the process of gathering the design requirements, 

including risk analysis, and the main safety concepts and considerations. Chapter 3 then 

discusses the logical system architecture, from which the technical architecture solution is 

formed. The software design process is then described in more detail.  

When implementation is complete, Chapter 4 will enlighten the reader on the methods of 

testing used during the validation process. Subsequently, in section 3 of chapter 5, we 

shall take a case example of the implementation of the accelerator pedal and the safety 

features related therein. The next section explains the immediate results from the different 

phases of the process. Finally, chapter 6 will express the writer’s subjective thoughts on 

the project in the discussion. 

1.5 The core process 

The nature of this work is systems engineering rather than scientific research. The writer 

chose to follow the structured methods suggested by Jörg Schäuffele and Thomas 

Zurawka as the basic guideline for the project. It is an interpretation of the common V-

model (essentially the same as in ISO/IEC 12207 and ISO 26262), taking into account the 

requirements for an automotive software project, its methods and relevant safety 

standards. Various standards were used for further guidance and they will be introduced 



13 
 

later in the text. Because the project did not design or manufacture any electronic devices, 

the model is used to guide the design and implementation of the software and system 

levels. Figure 2 represents the core process of this project. Each box of the figure 

presents a sub-process explained in more detail in the relevant chapters of this document. 

Analyze requirements 
--------------------------------------

Specification of the logical 
system architecture

Analyze logical system 
architecture

-----------------------------------
Specification of the 

technical system 
architecture

Analyze software 
requirements

--------------------------------- 
Specification of the 

software architecture

Specify software 
components

Design and implement the 
software components

Test of the software 
components

Integration of 
software components

Integration test of the 
software

Integration of the 
system components

Integration test of the 
system 

Calibration

Acceptance test
----------------------------------

 System test

System
development

Software
development

func1

func3

func2

func4

ECU1

ECU3

ECU2

 

Figure 2. Overview of the core process for the development of electronic systems and 

software. (copied according to Schäuffele et al.) (Schäuffele et al. 2013) 

The left half of the V is explained in chapter 3. The first step of this model begins by the 

determination of the user requirements, from which a logical operating plan for the system 

is created. At the next level, the equipment capable of executing and materializing all 

these logical operations are chosen or designed. This level is called the technical system 

architecture. Finally, the software architecture is planned according to the requirements 

set by the technical system architecture and the properties of the chosen equipment. 

(Schäuffele et al. 2013) 

In contrast, testing follows an opposite path, where first the software functions and 

modules are tested. When the individual components work according to the plan, they are 

being integrated and thus the system is tested for the first time as a whole. When 

everything works as expected, the process will move to fine-tuning the system, to 
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thorough use tests in actual environments, and finally to an acceptance test to prove that 

all the requirements have been fulfilled. Chapter 4 presents the testing process. 

(Schäuffele et al. 2013) 

Some new matters could appear during the process, introducing new risks or 

requirements, and then all levels of the plan must be updated accordingly. Thus, it is very 

important to spend some time in the beginning to build a good foundation through 

thorough planning. The more experienced the design team, the more thorough the plan, 

which will minimize unnecessary iterations at a later stage. Safety is one of the main 

concerns, and as for the planning, it would be beneficial to have a safety-oriented way of 

thinking throughout the process. (Schäuffele et al. 2013) 

1.6 About the preselected equipment 

The basis vehicle is a 1997 Volvo B10BLE Säffle city bus. Its engine compartment had a 

small fire hazard, but the original project team came up with an ambitious plan to resurrect 

the vehicle with new high tech equipment. Its engine and transmission were removed and 

the car was acquired almost free-of-charge. The simulations had already given direction to 

the requirements for the engine power, as well as battery capacity and generator power. 

It was not possible to fully follow the V-model process as some of the equipment was 

already chosen. With a thorough user-requirements study and a thorough study of the 

available technical solutions, different choices could have been made. The management 

of the automation project had already decided to use ABB AC500 XC series 

programmable logic controller (PLC) devices for the control system prototype. It was later 

understood that they do not fully comply with common automotive design 

recommendations, but they allow flexible prototyping and programming. 

The programming environment consist of the ABB provided Control Builder, which 

combines the PLC configuration utility and Codesys development environment. The 

Control Builder software manages hardware configurations, for example input maps and 

CAN bus communication buffers, and links the relevant variables and ABB software 

libraries directly to the Codesys environment. Codesys implements the languages defined 

in the standard IEC 61131-3, which defines the programming languages for 

programmable controllers. The standard includes both graphical and text-oriented 

programming possibilities. The Codesys software allows online debugging, controlling and 

monitoring of the PLC units over the Ethernet network of the vehicle. 
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It was decided early on, that there would be two controllers because of the long distances 

within the vehicle: one in the front and one in the back of the vehicle. After the first 

sketches, their functionality would be quite obvious already. As the front unit would handle 

all the driver related and most of the chassis related inputs and outputs, it was named the 

“vehicle electrics control unit” or VECU, and as the rear one would handle basically all of 

the hybrid system components, it was named “hybrid control unit” or HCU. The network 

topology of the equipment was planned as an assignment in a system engineering project 

work course. Figure 3 shows an overview of the system topology. As we can see from the 

picture, there are several features related to the vehicle electrics, mainly made by Volvo 

and the body manufacturer Säffle, but also the control units for the Wabco Anti-locking 

Brake System (ABS), including Anti-Slip Regulation (ASR) functionality, and Bosch 

Electronic Controlled Suspension (ECS).  

 

Figure 3. A simplified model of the system topology and the network buses.  

There are automotive control units available that also support IEC 61131-3 programming 

and likely the system programs could be ported to this platform with reasonable effort. The 

current software solutions are explained in detail in section 5 of chapter 3. 

At the time the equipment was selected, inverters designed for automotive applications 

were not easily available. Visedo PowerMASTER inverters were chosen because they 

fulfilled the environmental requirements, they have versatile internal application 

programmability and are capable of driving a six-coil traction motor with two parallel 

inverters. A third inverter of the same product family is used for operating the generator. 

There is also a combined inverter and DC/DC converter to operate the air compressor 

motor (HV) and to supply the 24 V DC (LV) system. These inverters support the user 

applications created in an IEC 61131-3 compliant programming environment. One 

driver interpre-
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additional auxiliary drive inverter for the motor of power steering hydraulic pump is from 

ABB. 

The battery system consists of lithium-titanate cells and a management system 

manufactured by Altairnano. A Bender isolation monitoring device designed for 

automotive applications was chosen to be incorporated into the BMS and control system 

safety functions.  

The main components of the high voltage system are shown in Figure 4. The isolation 

resistance monitoring device was planned to be integrated in the battery unit. 
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Figure 4. The high voltage system components. PMSM stands for permanent magnet 

synchronous machine. The DC-DC inverter is used for supplying the LV DC 

and charging the 24 V lead batteries. 

The internal combustion engine is a Volkswagen diesel engine unmounted from a regular 

van. An industrial diesel engine would have been preferable but was deemed too 

expensive in the initial proof-of-concept phase. The engine came from a 2002 Transporter 

with an intercooled 2.5-liter 111 kW turbo diesel engine, emission category EU3. 
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2 THE DESIGN REQUIREMENTS 

This chapter will deal with the initial function development, which includes the gathering of 

the design requirements for the system. Each section represent a chronological step in 

selecting the final design requirements. 

As the vehicle was destined to road use, we shall first look at the legal requirements that 

will be the foundation for the rest of the user requirements. Then we shall cover the 

process of selecting the user requirements for the design process. These requirements 

require technical solutions that lead us to the risk assessment process. The iterative 

process looks into all solutions in detail and may suggest modifications or safety features 

to be added. These are considered the design requirements for the actual design process 

as well, which will be covered in chapter 3. 

Some user requirements were already decided upon in the first conversations, but in order 

to proceed systematically, these more or less documented requirements were organized. 

This was done by first identifying the user groups and making several user requirements 

surveys in the form of informal conversation and interviews. A map of requirements was 

created and then the final requirements were selected from those suggested. The user 

and the legal requirements would be the basis for designing the logical system 

architecture. In addition, the risk management process and experience gained throughout 

the project would add requirements that are more detailed iteratively. Figure 5 shows the 

requirement categories identified by the team responsible for the functional development. 
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Figure 5. The requirements stem from multiple groups that may each have greatly 

different wishes and requirements. The specification for the system will be 

created from the “selected requirements”. 

2.1 Legal requirements 

Legal requirements are a vitally important part of gathering the design requirements as 

they pose direct and indirect demands on the hardware and control software. Therefore, 

this should be done first. The writer would like to emphasize that this should be the very 

first step to overcome any later surprises and major setbacks in the design process, and 

thus suggests an early cooperation with transport authorities. The vehicle must be 

inspected and re-registered once it has been modified. The legal requirements are there 

for a reason and all the vehicle modifications must be approved by the respective 

authorities. It helps to maintain good documentation practice throughout the project so 

that the inspection authority is able to easily investigate the changes and sign an 

approval. 

Amongst the many regulations related to the CAMBUS project, the following regulations 

were relevant for the software project. The most critical are listed in Table 1. The indicated 

Finnish regulation enforces the ECE-R100, which lists a number of detailed requirements 

for electric vehicles. 
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Table 1. Regulations relevant for the software design process. 

Regulation Description of the regulation 

Finnish Ministry of Transport and 

Communications: Regulations concerning 

the structure and equipment of vehicles 

and trailers 19.12.2002/1248 changed with 

30.9.2011/1064 (Available in Finnish and 

Swedish) 

18 a § (30.9.2011/1064) Regulations for 

vehicles with electric powertrain. 

UNECE R-100 Regulation 100, Uniform provisions 

concerning the approval of vehicles with 

regard to specific requirements for the 

electric powertrain 

 

2.1.1 Electrical safety and electromagnetic compatibility 

When talking about electric vehicles, there is obviously a great concern for electrical 

safety. In Finland, when there is no plug-in charging implemented, the electric safety of an 

EV is mainly regulated by ECE-R100. It sets the guidelines for general electric safety and 

isolation, the rechargeable energy storage system (RESS), functional safety, and crash 

safety (UNECE 1997). Because of its importance in the project, we will discuss the ECE-

R100 requirements in more detail in the next chapter. Within this project, the Low Voltage 

Directive covers only work safety while working on the vehicle. 

For such an old vehicle, the authorities do not require any official EMC test document, but 

the vehicle must still comply with the regulations that were in force when the car was 

registered the first time. For safety reasons in general, it is naturally advisable to make 

such measurements to make sure that the electromagnetic interference from the vehicle 

power systems do not cause any danger to the passengers or people outside the vehicle. 

The final commission is done by a qualified person, who must sign approval that all the 

electrical systems of the vehicle comply with the regulations. 
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2.1.2 Requirements per UNECE R100 

The UNECE has created a regulation concerning the approval of battery electric vehicles. 

This was the most important electric-vehicle-specific regulation for the project vehicle. As 

per the first date of registration of the vehicle, the revision 2 addendum 99 was used as 

the basis. It sets requirements for specification and testing, and for the alteration of this 

older vehicle, the requirements can be divided into two categories: the construction 

requirements and functional safety.  

The construction requirements concern the RESS and all parts of the high voltage bus. 

Naturally, the main concern is the electrical safety: the methods of protection against 

direct or indirect contact with live parts, and demands for the isolation resistance. It also 

explains the methods for testing against the possibility of hazardous contact and the 

measuring of the isolation resistance. (UNECE 1997) 

The functional safety includes a list of obligatory features and functions that must be 

implemented. For example, it states the requirements for how the driving mode is 

activated, the requirements for the instrumentation and warning signals, and the safety 

functions against unwanted acceleration. As a reference for the accelerator safety 

requirements, the ECE-R100 dated 1997 states in section 5.2.2.4 that “a failure (e.g. in 

the powertrain) shall not cause more than 0.1m movement of a standing unbraked 

vehicle” (UNECE 1997). This was used as a design reference for accelerator safety and is 

covered in more detail in section 5.3.4. 

2.1.3 Service brake and steering 

It was decided early on that the original service brake, steering systems and components 

related to either, would be preserved as much as possible and only the power supplies for 

these systems were replaced by electrical equivalents. The functionality of the related 

original control units was preserved and exploited by the new control systems, where 

possible, in order to enhance driving safety. The changes to the steering and brake 

system must be documented, and the functionality of the brake system must be 

demonstrated and proved during the registration inspection, and during the vehicle’s 

annual inspection. 
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2.2 Risk management 

In a project of this magnitude and because the outcome is a product that will be used in 

public transport, a risk management process must be defined. Optimally, this process 

should be active from early on and it may be integrated into the quality management of an 

organization. At the least, the strategy of risk assessment and risk reduction should be 

integrated into the design processes. The identification of use cases and risk was first 

done following the ISO 12100 standard and the guiding document SFS/ISOTR 14121-2. 

In principle, the standard is for machine safety, but was found to be adaptable to this part 

of the project. The design process also takes controller and software-relevant standards 

into account. The relevant standards are listed in Table 2. 

Table 2. The most relevant standards for the software design process. 

Standard Description of the standard/part 

SFS-EN 12100 Safety Of Machinery. General Principles For Design. Risk 

Assessment And Risk Reduction 

SFS-ISO/TR 14121-2 Safety Of Machinery – Risk Assessment – Part 2: Practical 

Guidance And Examples Of Methods 

IEC/TR 61508-0 

Functional safety of electrical/electronic/programmable 

electronic safety-related systems. Part 0: Functional safety 

and IEC 61508 

SFS-EN (IEC) 61508-3 

Functional safety of electrical/electronic/ programmable 

electronic safety-related systems. Part 3: Software 

requirements 

SFS-EN (IEC) 61508-4 

Functional safety of electrical/electronic/ programmable 

electronic safety-related systems. Part 4: Definitions and 

abbreviations 

 

ISO 12100 states: “the risk assessment is a series of logical steps to enable, in a 

systematic way, the analysis and evaluation of the risks associated with machinery” (SFS-

EN ISO 12100 2010).  The main term risk assessment is divided into two subjects. The 

first comprises of risk analysis, which covers the first three steps described in the section 

2.2.1. The fourth one is called risk evaluation. After the risk has been evaluated it is 

assessed by the risk reduction process, which is introduced in more detail in section 2.2.2. 
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To help clarify the functional relationships of these processes, see Figure 6 for a flow 

chart of the risk assessment and reduction processes. 
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Figure 6.  The risk assessment and reduction processes. (Figure copied according to 

ISO 12100) (SFS-EN ISO 12100 2010) 
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2.2.1 Risk analysis 

According to SFS-EN ISO 12100, the risk analysis begins by determining the limits of the 

machinery. This must include the intended use and reasonably foreseeable misuse. In a 

vehicle, this would be analogous to any abnormal way of operating, for example excessive 

pumping of the accelerator pedal while driving, an excessively long time with full power, 

using controls in abnormal way and so forth. The system must always be able to handle 

the requests from the driver controls to operate the vehicle in a safe way, and the 

subsystems must be able to reduce their operation or go into a fail-safe mode to prevent a 

breakdown, and avoid hazards or hazardous situations. (SFS-EN ISO 12100 2010) 

The next procedure is identifying the hazards related to the machinery, and the associated 

hazardous situations (SFS-EN ISO 12100 2010). There are readily available checklists to 

help the assessment process, for example in the standard ISO 12100. These lists help in 

obtaining an overall view of the risks and their root causes and how to eliminate or reduce 

them. 

When the hazards and hazardous events have been identified, the associated risk must 

be estimated. In this case, a method called risk graph was used. The risk graph method 

assess severity, frequency and probability of an event, and the possibility to avoid it. The 

result of this assessment is the risk class, which is given different safety integrity levels. 

When all the risks have been estimated, they must then be evaluated to determine the 

methods required to reduce the risks to an accepted level. (SFS-EN ISO 12100 2010) 

The standard IEC 61508 deals with risk management in conjunction with the electronic 

control equipment. However, the reliability estimates mentioned in the IEC 61508 were not 

available for the majority of the preselected and original vehicle components. The risk 

assessment was thus executed regarding personal estimates of the assessment group. 

Because of limited resources, the failure mode and effects analysis (FMEA) was omitted. 

2.2.2 Risk reduction 

Risk reduction follows risk analysis. The risk reduction process refers to the elimination of 

hazards to an acceptable level by using so-called protective measures. The protective 

measures may be anything from safety covers to instruction manual. It may be necessary 

to repeat this process iteratively in order to reach the predefined level determined as 

acceptable risk. This level is usually referred to as ALARP, which is an abbreviation for 

“as low as reasonably practicable”. ALARP tools observe several factors, for example, 
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codes and standards, cost benefit versus risk assessment, good practices and 

benchmarking. The ALARP assessment was greatly simplified because of the lack of 

resources, and the project team determined the accepted level loosely. (SFS-EN ISO 

12100 2010) 

Protective measures are divided into those implemented by the designer and those 

implemented by the users. According to the standard, the designer is responsible of 

implementing protective measures, which can be further divided into three sub-measures: 

inherently safe design measures, safeguarding and complementary protective measures, 

and information for use (SFS-EN ISO 12100 2010). The first consists of all the regular 

safety aspects of the design, from choosing the technology to ergonomics. In addition, the 

electrical safety is a part of this step. The basic requirements for the electrical safety are 

set by the ECE-R100, so the residual risk should be evaluated after fulfilling its 

requirements. 

The second measure mentions safeguarding and complementary protective measures, for 

example the emergency stop switch. In addition, the protection from live contact required 

by ECE-R100 is a part of this design category. This would include all sorts of shields, 

covers and detecting the state of these safety features by an isolation resistance-

monitoring device, similarly as to what ECE-R100 requires from the fuel cell vehicles 

(UNECE 2013). As for the control system, it must include basic diagnostic and protective 

features. (UNECE 1997) 

The third measure relates to instrumentation. For the user, the levels of risk reduction 

include the user organization and its safety culture, training the users (driver, service 

personnel) and training the rescue teams that may have to work on the equipment after an 

accident. 

The results of the ISO 12100 analysis were used during the design process for the logical 

and technical system architectures, as well as for the basis of software architecture 

planning. As most of the hardware components were preselected, and the scope of this 

work was limited to software implementation, the actual technical components and the 

physical implementation of the technical system architecture is covered only as seen 

necessary to help understand the software development process and requirements 

therein. The requirements for the software design were further refined using the principles 

of IEC 61508-3. The standard IEC 61508 will be briefly introduced in section 2.4 

concerning the functional safety of the equipment. 
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It is rather obvious that some new risks and dangerous situations are detected during the 

development processes, at the latest during the actual testing and use, but the majority of 

the risks related to the control system and equipment under control can be thought of 

before proceeding with the actual construction. As the nature of the risk management 

process is iterative, there must be effective means to document the requirements, control 

the development process and maintain a revision history for all the documents involved in 

the development process. This, of course, helps to plan the SRE and safety architecture 

as early as possible. (Schäuffele et al. 2013, 198) 

An example of the risk assessment documents is shown in the Appendix I. It includes a 

part of the forms used in risk identification, risk assessment, risk reduction and risk 

evaluation after the risk reduction process. 

2.3 Typical risks 

In order to begin identifying risks, a literature search was carried out and revealed two 

Finnish reports related to bus fire incidents. The earlier report was published in 2010 by 

the Technical Research Centre of Finland (VTT) and concentrates more on overall safety 

enhancements (Kallberg 2010). The Finnish Traffic Safety Authority (TRAFI) has 

published more detailed statistics and analyzes of bus fire hazards between 2010 and 

2012 (Kokki et al. 2013). These reports were examined to better understand the most 

common causes for bus accidents and what would be the obvious risks to which to pay 

attention. Neither of the reports cover the newer hybrid or fully electric buses. In addition, 

the author consulted a technical specialist at an insurance company and the vehicle 

systems were examined together to find any suspicious implementations and potential 

risks (Makkonen 2015).  

The three major risks categories were identified as fire hazard, road accident and electric 

shock. According to the report by Kokki et al., the main reasons for fire hazards are 

mechanical overheating (brakes, bearings), malfunctions in the electrical systems or 

short-circuiting due to failing electrical insulation and oil or fuel leaks on hot engine 

components (Kokki et al. 2013). According to the specialist, the fire risk in the engine bay 

is amplified especially if the engine bay is not regularly washed and flammable 

substances and dust are allowed to accumulate on the engine. The insulation problems 

can result from abrasion, as there is a lot of vibration present during the use of the vehicle, 

but also chemical and thermal exposure, or aging (Makkonen 2015). The humidity in the 

air affects the isolation resistance, as well, and can easily render the situation even worse. 
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Inevitably, the risk of short-circuit is also a risk of electric shock in the case of high voltage 

equipment in an electric vehicle. Thus, the importance of proper wiring, shielding and 

cable support should be stressed. By the requirements of ECE-R100 and common 

practice, the cables connected to the HV system are color coded orange (UNECE 1997). 

It is also to be noted that the risks of these dangerous situations may accumulate from 

each other. 

The ECE-R100 regulation describes the requirements for protection against contact with a 

part that has dangerous voltage and the appendices describe means to test the 

conformity of the protection (UNECE 1997). However, this is more related to the design of 

the technical system architecture.  

The regulation also describes test methods that must be used to measure the isolation 

resistance of the system (UNECE 1997). The ability of the control system to react to a HV 

insulation problem relies on an isolation resistance-monitoring device that constantly 

monitors the resistance between the HV system and vehicle chassis. Depending on the 

failure mechanism, the inverters may be able to detect a problem with the motor wiring 

and consequently cancel their operation internally. 

The failure mechanisms related to the possible origin of the above-mentioned dangerous 

situations are linked to the software design by means of detecting these situations in order 

to prevent greater problems. This may include the fault messages from the functional 

modules or dealing with the symptoms of a blown fuse or a broken relay. 

2.4 Functional safety of the control equipment 

The IEC 61508 standard is a functional safety standard, which has been applied to 

various industries. According to the definition in IEC-TR 61508-0 the “functional safety is 

part of the overall safety that depends on a system or equipment operating correctly in 

response to its inputs” (IEC/TR 61508-0 2011, 10). It covers hardware failures, operator 

errors and environmental changes. The title of the standard IEC 61508 refers to the 

functional safety of electrical/electronic/programmable electronic safety-related systems in 

general. While this standard was used for the automotive applications as well, the recently 

created ISO 26262 is specifically for the functional safety of road vehicles. Both of these 

standards were observed, but they were discovered too heavy for the project’s needs. The 

methods of IEC 61508 were observed together with Schäuffele at al. (2013) to form a 

semi-formal method suitable for the minimal resources of this project. Specifically, the 
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guidelines for the software design methods of part three were used during the 

specification and verification processes. IEC 61508-3 also gives guidelines on risk 

reduction during the software design process. (SFS-EN 61508-3 2011)  

One key difference in the philosophy of IEC 61508 and ISO 26262 is how they see the 

equipment under control (EUC), the safety related equipment (SRE) and equipment under 

test (EUT). In IEC 61508 they are separate while in ISO 26262 they are more integrated. 

IEC 61508 was not developed for the needs of automotive engineering and usually in the 

control topology, it is sensible to integrate the safety features directly into the control 

system itself. (Reif et al. 2014, 254; Schäuffele et al. 2013) 

The risk level correlates to safety integrity level (SIL) which determines the methods of 

engineering to reduce the risks to a predetermined accepted level. The SIL levels are 

numbered from 1 to 4. For example, usually, in a car with a drive-by-wire system the 

engine control unit reads the signal from accelerator pedal and controls the engine to fulfill 

the driver’s request. Safety is typically approached here by adding diagnostics that utilize 

both hardware and software functions. In more advanced systems, everything is doubled 

so that the system can analyze and determine if either one of the input signals is plausible 

and to continue safe operation. Usually all the hardware from the power supplies of the 

position sensor to the A/D converters are separate. While this sounds already quite safe, 

the equipment itself may not be perfectly stable and the higher SIL2 (or ASIL2) categories 

practically require equipment that monitors the control equipment itself (EUT). These 

systems include a separate RAM memory, a processor that runs identical code, and a 

system that compares the results between the processors. According to the IEC 61508 

part four, its purpose is to detect internal hardware failures and so-called transient soft-

errors occurring “in the memory, digital logic, analog circuits, and on transmission lines, 

etc. and are dominant in semiconductor memory, including registers and latches” (SFS-

EN 61508-4 2010). An industrial PLC complying with the IEC 61508 SIL2 requirements 

would generally be called “a safety-PLC”. Embedded processors capable of internal 

monitoring are also easily available. (Schäuffele et al. 2013) 

The system redundancy architecture is commonly referred to by the term MooN or “M out 

of N”. It describes the level of redundancy involved with number replacing the letters M 

and N (Schäuffele et al. 2013). For example, 1oo1 (1 out of 1) means that there is no 

redundancy involved, as only one input is used. Using a 1oo2 architecture instead, the 

safety fault tolerance can be increased, as there are two input values that can be voted 

upon. However, the availability of the equipment may not be increased if there are no 
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means to continue safe operation while the other input is declared faulty. This can be 

addressed by adding diagnostic functions. The diagnostic capability is marked with a 

trailing letter D. For example, in a 1oo1D architecture, the quality of the input signal could 

be monitored according to a behavior model, and in case the diagnostic system detects a 

fault, it can independently deactivate the module output.  

The risk assessment was done first to collect the obvious design requirements and later 

on as many times as necessary until the risk had been reduced to an accepted level. The 

process in its entirety has been described in its own documentation and the forms 

produced by the process are archived by the CAMBUS project. 
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3 THE SYSTEM AND SOFTWARE DESIGN 

This chapter will examine how the left side of the formerly introduced V-model proceeds 

systematically, and has a detailed look into each step. At the end of this chapter, the 

software is set up to work together and the fourth chapter shall proceed with tests from the 

right side of the V-model. 

Writing the specifications may be time consuming in the case of a complex system with 

nested functional interactions and demands for fault tolerance and diagnostics. The 

legislation is the foundation for the vehicle safety requirements. The user-interface-related 

functionality is mainly derived from traditional solutions in commercial vehicles. 

The user interface consists of the instrumentation and the controls. The driver is supposed 

to receive warnings and fault reports through the instrumentation, and control the system 

via the controls and switches on the dashboard. Because of the high risk involved, a 

diagnostic system monitoring the controls and functionality of the system is required to 

lower the level of risk involved in a drive-by-wire system (Schäuffele et al. 2013, 211-214). 

The visual instrumentation will present statuses, instructions and messages through a 

dash display and signal lights. All the functions related to driving, monitoring and coping 

with fault situations, as well as some functional descriptions, are described in the user 

manual. In addition, troubleshooting tips and service instructions are gathered in the 

manual. Because some of the maintenance and service operations might impose serious 

risks, the manual must give step by step instructions and cover all the related safety 

requirements, description of tools and use of protective equipment (SFS-EN ISO 12100 

2010).  

3.1 Logical system architecture 

The specification of the logical system architecture is the end-result of function 

development. In this phase, all the functionality and interaction of the modules in the 

vehicle must be planned. The logical architecture plan must fulfil the user requirements on 

a logical level. 

The drive system of a HEV requires a far more complex control system compared to the 

system in a plain EV. There are more devices on-board and numerous operating 

conditions for both the series and parallel operation, not forgetting their combined 

operation. The technical functionality must then be coupled by a geographical drive 
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control system (by a GPS or hard-coded route map), multiple-regeneration-related control 

algorithms, as well as crawl, hill hold, anti-jerk and slip control algorithms. To add to the 

complexity, there are also unpredictable changes in traffic situations, weather conditions 

(e.g. temperature management) and driver habits, which may always produce unexpected 

behavior. For example, a rapid change of torque direction will easily cause the slack in the 

powertrain to create noise and a jerking motion, or even damage the powertrain 

components. Despite the sophisticated system control algorithms, the driver should still 

negotiate the traffic in a predictive manner to exploit the potential of the hybrid system. 

(Reif et al. 2014, 773) 

A meticulous planning of the architectures is vitally important. The nested modules and 

systems, their failure mechanisms and the diagnostic functions required to detect the 

failures, create an abundance of software conditions and algorithms that must work 

together flawlessly in order for the driver to feel that the vehicle is safe and operating 

logically at all times. Many of these requirements seem relatively simple when observed 

independently, but in reality, combining them all together to form a working union is quite 

a demanding task. Even when the torque control system is able to operate all the drive 

components properly, the Battery Management System (BMS) conditions for charge and 

discharge must be observed and the torque requests of the drive components may be 

forced to be limited accordingly. This means that in a well-designed and tuned system the 

driver interface (e.g. a simple device like accelerator pedal) masks the complex internal 

functionality of the hybrid control system. The driver does not need to concentrate on 

handling the equipment in any peculiar way, but can drive the vehicle just as any usual 

vehicle and concentrate on the driving and traffic situations. 

In addition to the basic features in normal healthy operation, the logical system 

architecture should already have a plan for the safety logic: fail-safe, fail-operational, fail-

reduced. Only at this stage, however, it was determined that a means of monitoring and 

diagnostics would be required at least for the accelerator pedal, and the internal 

functionality and implementation of the diagnostics were designed first on a general level. 

The safety logic is discussed more thoroughly in section 3.3. 

3.2 Technical system architecture 

The typical order of a design process beginning from scratch would assume that now the 

technical means to accomplish the requirements set by the logical system architecture are 

being selected. This phase is a part of the system development phase. As mentioned in 
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the introduction, some of the equipment was pre-selected and this steered the technical 

architecture towards a specific topology, where there are two main control units. 

Figure 7 presents a brainstorming diagram that demonstrates how the equipment and its 

functionality are interconnected. The designations used are derived from common 

automotive terminology.  
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Figure 7. An overall view of the relationships of the specified equipment required to 

fulfill the specification of the logical system architecture. Abbreviations in the 

figure: ABS Anti-lock Brake System, ASR Anti-Slip Regulation, BMS Battery 

Management System, ECS Electronic Controlled Suspension, ECU 

Electronic Control Unit, EDC Electronic Diesel Control, MCU Motor Control 

Unit, PC for Personal Computer, TCM Traction Control Module, TMS 

Temperature Management System. 

The communication network topology consists of one main network and several local 

networks. On the top level, connecting the PLCs and data loggers, there is an Ethernet 

network, where messages are sent via UDP protocol with CRC checking enabled. The 

rear end separated CAN networks are hosted by the HCU control unit. The drive inverters 

communicate via the 29-bit CANopen standard, the diesel control unit via 11-bit CAN 2.0 

according to VW CAN version 3, and the battery management unit communicates with 

CAN via SAE J1939 protocol. The inverter bus operates at 250 kbit/s, while the battery 

and ECU CAN bus operates at 500 bit/s speed. The VECU unit uses one additional CAN 
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bus to communicate with the instrument cluster via SAE J1939 protocol, which operates at 

250 kbit/s. When configuring the CAN bus, the priorities and transmit intervals must be 

carefully considered and the bus load must be checked in a real-life situation. The 

maximum recommended bus load is not unambiguous; depending on the source, values 

between 30% and 80% can be found. The maximum load depends greatly on the baud 

rate and type of load. The message synchronization is based on the higher priority 

messages, and lower  priority messages might start dropping if the bus has high load 

levels (Cook et al. 2008). The three separated CAN buses were all analyzed and 

considered safe and not dropping any packages. Figure 8 shows a network topology 

presentation of all the connected equipment. 
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Figure 8. A representation of the physical communication buses. The black wires 

represent an Ethernet network; the brown wires represent CAN buses. The 

CAN interfaces are internally connected either to the VECU or HCU PLCs. 

The BMU relates to the Altairnano Battery Management Unit device. 

The success of the communication must be actively monitored because of various signals 

related to high risks. The decision how to monitor and the desired results in case of a 

communication error should be based on the risk estimates related to the control 

parameters and values required by the control system. The input and output system was 

designed to be as simple as possible to avoid sharing problems. Each input value is 
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designated to a module handling the input values and writing them to a global register, 

which the other modules may read. The control of the outputs was limited by coding rules 

so that the module controlling the output may only get the input value from a specific 

higher block. 

The next phase included considerable detective work to be able to combine all the old 

body electrics and electronics and integrate them with the new system. This was required 

to comply with the regulations as well. The EDC functionality and ECU CAN bus 

messages were studied from a manual called Bosch EDC 15+ Funktionsrahmen. In order 

to be able to read the ECU CAN bus, the original Volkswagen instrument cluster was 

required. Without the instrument cluster, or some other control unit sending messages, the 

ECU CAN state machine would enter error state and cease to communicate (Bosch 

2002). However, this allowed us to make use of the instrument cluster CAN messages, as 

it is reading some of the sensors and signals and broadcasting their values and states 

over the CAN bus.  

3.3 System safety architecture 

At this point, the functions, all the possibilities and limitations of the equipment should be 

known.  The previous assessments must provide information of the requirements for the 

design of the system safety architecture. Regarding the level of safety built-in to the 

selected equipment, the possibilities of adding safety by software implementation is 

observed. 

Each of the main functions should have a target level of redundancy. The pre-selected 

components allow a 1oo2 safety architecture for the traction motor inverter control, 

although as fail-reduced operation in terms of the maximum generated torque available. 

The torque request signal safety is secured by monitoring the communication pathways 

and safety signal. Each module in the control chain will monitor the signals it is receiving, 

but the transmitted data is not doubled. There are no multi-channel implementations that 

would, for example, allow voting for the inputs in problem situations. 

Another drawback is that at the highest level, the selected control equipment cannot 

analyze its own behavior to ensure flawless operation. The control system would benefit 

from the use of safety PLC units that run the same program code within independent 

processors and memories. They would be able to detect internal control unit failures and, 

depending on the configuration, continue operation to allow continued safe operation or a 
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safe stop for instance. Today’s vehicles typically have dual individual power supplies 

incorporated for the sensors, they read the sensor values with separate ADCs, the signal 

processing is done simultaneously with two separate hardware, and the healthiness of the 

system and its main processes are evaluated internally by dual processor technology. The 

Visedo inverters have an external stop command signal that is specified as SIL2 class 

functionality. Additional safety can be achieved by linking this to the PLC and an 

emergency switch operated by the driver. 

Schäuffele et al. (2013) explains the safety logic planning, which requires determining a 

fail-safe (FS) mode for each unit. For example, from the perspective of the battery 

management system, FS is a state where the RESS is uncoupled from the main HV DC 

bus and the internal pack contactors are uncoupled. For the internal combustion engine, it 

is the state where the ECU is off, and the fuel valve solenoid is de-energized and the 

generator control is shutdown. For the accelerator system, the torque request is reset 

whenever a serious problem with the input signals is detected. The other common failure 

modes are called fail-operational (FO) and fail-reduced (FR). For example, the diagnostic 

functions of the accelerator module include features that allow resetting the fault condition 

if certain amounts of cycles have been fault free. This kind of behavior is called fail-

operational. If the failure is found repeatedly, the error is marked permanent and the 

accelerator will enter the fail-safe mode. Typically, this kind of logic could be described as 

FO/FO/FS, which means to allow resetting twice before entering fail-safe mode. Some 

equipment can utilize the FR mode, for example, the inverter power output may be limited 

due to temperature conditions in either the inverter or the traction motor. (Schäuffele et al. 

2013, 113) 

The more complicated safety measures also add to the price of the equipment so it is 

necessary to determine the requirements and safety category of each unit. For example, 

driving an air compressor is not the most critical task in terms of processing power or 

software complexity. There is not much to do in case of an equipment failure. The 

compressor system consists of an overpressure relief valve in case the inverter decides to 

run continuously, and vice versa, in case of the compressor not running, the regulations 

demand a pressurised air tank that will allow a certain amount of braking with full brake 

power. The driver must get a warning of the low pressure in the system as well. The 

requirements must be determined by the sum of all the safety measures in accordance 

with ALARP. In the end, it is the driver who makes the final decisions while driving the 

vehicle, thus it is crucial to inform the driver of such failures through the instrument cluster 

or with a sound signal. This is demonstrated in a simplified flow chart in Figure 9. 
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Figure 9. A flowchart demonstrating the principles of a fault handling process. The 

yellow color of the fail-reduced state represents the warning color in 

automotive instrument cluster (can still drive) and the red color a major 

failure or emergency. The safety logic can differ from unit to unit, depending 

on the risks involved, and some will allow resetting of the fail-reduced or fail-

safe state, while some enter fail-safe mode permanently. (Schäuffele et al. 

2013, 113) 

The software architecture is typically laid out of modules or units. This, observing from the 

highest level, follows the logic of equipment under control and control system of IEC 

61508. In this case, all these control units are integrated into two main control units and 

the topological relations are mainly dictated by the physical location of the relevant 

equipment. In a satellite topology, where all functional equipment is controlled by its own 

control units, one failing unit will not cause the whole of the system to collapse. In an 

integrated system, there is the danger that in the case of internal failure of the control 

electronics, the whole system can suddenly behave erratically or cease to function. In any 

safety critical system, a dedicated safety controller would be beneficial. A thorough 

estimation and comparison of the reliability of the chosen equipment is however out of the 

scope of this work. 
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A good design rule is to simplify as much as possible. There should be a clear logic to as 

to how the features and functions in the software are controlled, how the data is managed, 

and where the global values are set. When the outcome is minimalistic and unambiguous, 

it is easier to determine whether or not there is danger of loops or if the state controls 

cover all of the possible failure situations. A simple and well-organized structure is also 

easier to debug online. 

3.4 Safety aspects of the software project management  

The software project management refers to methods required in organizing software 

projects and concerns the overall software safety. This aspect of safety does not relate to 

the actual safety functions implemented with software, but the safety achieved by properly 

organizing the software project. (Schäuffele et al. 2013) 

Basic safety thinking in the software process itself includes: 

 documenting (to be done throughout the project), 

 software architecture planning, 

 coding rules / management, 

 software versioning, 

 testing, and 

 validation. 

Documenting the process is vitally important. Proper documenting and access to the 

documents ensures the flow of information within the team or teams. In regard to 

software, the output from the previous processes were used as the input for the software 

process, thus a carefully planned logical and technical structure are the foundation of the 

software development process. The software architecture and planning is explained more 

in detail in section 3.5. The section also describes the programming rules that were 

created after software architecture plan was agreed upon. 

One extremely important factor is software versioning. It is the key to keeping the 

programming process in order. When a software function is complete, it is subjected to 

testing. If the performed tests approve that the functionality is as specified, that it is safe 

(no risk of deadlocks) and that the module fulfills its task, it is marked as verified. The 

compiled stable versions, especially the release or boot versions, should only include 

verified software modules and vice versa, and the test versions should be marked 
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accordingly and only be used temporarily. This is because any thoughtless changes in the 

software can result in unexpected and unknown behavior. (Kasurinen 2013) 

Thoughtful planning can reduce the amount of resources this phase consumes. The 

process of testing and verification is required for each module that has been changed and 

sometimes for modules the changed module may affect.  In a well-planned architecture, 

the verified software modules will not usually require any fundamental changes. In order 

to minimize the risks, the release software version should have only validated modules. 

Versioning will keep track of the development versions of the modules, indicating whether 

it is a beta, verified or validated version. It is also good practice to maintain a version 

history for each module. (Kai 2010, 217) (Schäuffele et al. 2013) 

If problems should be detected in use, the relevant versions should be marked with some 

kind of identifier and determine a priority class for the fixing required. This ensures that a 

stable version may be compiled anytime without the risk of including old and possibly 

faulty code. 

3.5 Software architecture 

It is vital to create a software architecture plan that allows combining all the necessary 

logical operations and keeping the internal communication and control programs simple 

and straightforward. The IEC 61508-3 annex A expresses recommendations for software 

development according to the identified risk classes. It would have required more 

resources to create fully compliant software, so it was mainly consulted for guidance while 

planning the software. Semi-formal methods were used to document the requirements. 

The chosen requirements were modelled as function blocks and their interconnections 

were planned. The functions related to torque control were assessed as SIL2, which 

largely dictated the technical requirements for the software architecture. According to 

Pressman, the design process begins with data, architecture and interface designs, and 

then proceeds to procedural design, which is related more closely to the logical system 

architecture design (Pressman 2001, 423). 

It was decided that the data structures of the modules will keep their own internal 

structures, and the requirement for global level variables is minimized to keep the variable 

accessing in control. A global registry was chosen for collecting the data from the top level 

software modules. A collective data structure was chosen because it could be easily sent 

to the other PLC or another device for debugging purposes. The data structure was 
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divided into categories, for example to a sublevel for input and output signals, to further 

mimic the situation where the modules may be independent equipment with their own 

inputs and outputs. Thus it was important to make a clear decision which levels of 

modules or function blocks have the rights to write the information to this global registry. 

Logically, the top level module that is calling its submodules, writes the inputs and 

observes the outputs of the submodules, while all the relevant information from this top 

level module is made accessible for the other top level modules through the global 

registry. However, between the layers the input and output system would be preferred 

between the layers because of the principle of information hiding. This is a common 

programming principle meaning the module interfaces are designed in a way, that only the 

data absolutely necessary is given through the outputs (Pressman 2001). According to 

Pressman, the greatest benefits are provided in the software editing and testing 

procedures. Some regularly required internal values, for example the state of charge read 

over BMS CAN, could be written as submodule outputs, but the practice was omitted. 

Instead, the submodule is writing all the information received over CAN bus to a specific 

global data structure. Similarly, it is also typical in automotive control units that the unit 

sends a great variety of data over CAN and the data is available to all other control units 

in the network. 

The foundation of the software architecture was laid out as individual modules that in real 

life would most likely be implemented as independent controllers. Each is implemented as 

their own independent program. The module interactions, and their interfaces, are 

designed in a similar fashion. Some of the modules can operate on a run-signal without 

any other input signals and on a higher level, the status may be followed either by 

checking the state of the module or its status outputs. The hierarchy is carefully planned 

with as much exclusivity as possible, preventing random write access to variables and 

parallel or conflicting control commands. It was also noted that this way the program could 

be run sequentially and the use of software semaphores could be avoided. A simplified 

module hierarchy of the VECU and HCU can be seen in the Figure 10. 
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Figure 10. Simplified software module topologies of VECU and HCU. The functionality 

of the sub-controllers (gray boxes) is implemented using individual functions 

with straightforward internal structure. 

Depending on the task scheduling, one may be able to avoid using semaphores. In this 

case, a cyclic running method was preferred. A multitasking environment with multiple 

task priorities and the use of events would require the use of semaphores, but we decided 

to run the whole program in a sequence with a short time interval and to use input polling 

instead, so there was no need for semaphores. 

All the user interface button and switch interpretation was done by associated finite state 

machines (FSM) to ensure proper filtering and that the selections are made in a specified 

order to prevent accidental selection. For example, some switches might be activated 

before turning the ignition key, which acts as a master switch to many functions, and 

some functions might be activated unwillingly. Using edge triggers and state machines will 

help avoid the awkward situations in cases where the interface command buttons are not 

working as expected. To further advance the input handling, there should be another route 
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for the signal through a diagnostic system that evaluates the plausibility of each signal. 

This is discussed in a bit more detail in section 3.6. 

When beginning to translate the design models into operational software, one must 

carefully think through the procedures and requirements for loops and all dynamic 

behavior in the software. The embedded software safety requires that the software is 

implemented in a way that there are no possibilities for a deadlock. There should be no 

dependencies that make the software wait for something; instead, each required input or 

process state is evaluated against a timeout clock and a failing process is then dealt with 

using the rules derived from the logical system architecture. Furthermore, it is also an IEC 

61508 recommendation to avoid dynamic structures (objects) in a safety critical system 

(SFS-EN 61508-3 2011). The creation of dynamic objects and allocating memory during 

the operation could lead to memory leaks or resource pre-emption, which in turn could 

lead to unexpected results. Some dynamic behavior may also affect the processing times 

and cause timing problems for the more critical processes. When the software is designed 

as straightforward as possible and all the code can be run at each cycle with adequate 

remaining processor time, it is ensured that there will be no resource conflicts or 

deadlocks. (Pressman 2001) 

The software algorithms must be well documented so that adequate testing, and later 

development, is possible. In this case, the algorithms were first tested in the 

MATLAB/Simulink environment with relevant simulations before being testing in the real 

environment. 

3.6 Monitoring functions and diagnostics 

The monitoring and diagnostic functions are the basis for both safety and reliability of the 

control system. Their purpose is to ensure the safe control of the equipment at all times, 

even after a failure. Obviously, it is important to provide first a safe technical solution, as 

already mentioned in section 3.2. Some solutions cannot be made safe or reliable enough 

by means of mechanical design and in some cases, a higher level of safety or reliability 

through mechanical design would not be cost-efficient. (Schäuffele et al. 2013) 

The overall risk may be decreased by embedding software safety functions. In contrast, a 

poor software design or careless implementation is a risk in itself. To reduce the risks, 

software planning must utilize a sensible, predefined scheme that all the participants 

agree to follow. Software safety must also consider the hardware and the possible 
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problems therein, especially in the safety-critical systems with diagnostic capable 

hardware. (Schäuffele et al. 2013, 212) 

It was decided that all the software modules would have their own means of detecting 

safety issues, most of which rely on the equipment manufacturers’ own management and 

control systems. Thus, the main requirement is to monitor the equipment status and 

handle the fault situations. In a vehicle, it is usually sensible to try recovering the 

functionality before entering a fail-reduced or fail-safe state. Thus, less serious equipment 

failures would at least allow the driver to maneuver the vehicle into a safe spot. 

All the software related to external communications is equipped with several methods of 

safety. The communication layer itself is covered by the hardware and relevant software 

libraries provided by ABB. For instance, all used communication paths use CRC32 or 

CRC16 checksum to verify the received packages, they monitor the transmission intervals 

to detect a communication timeout, and include additional functionality that will require the 

critical commands to reset to a safe state before allowing the system to resume. In this 

system, for example, the module level operation is relatively simple except for the diesel 

generator combination. However, considering the multiple failure possibilities, the software 

must be able to carry all the necessary information to the highest level of the system so 

that it can either reduce or stop operation of a particular module, or command a reset if 

permitted. Establishing a comprehensive fault-handling logic requires meticulous 

assessment of the possible fault situations and their combinations. Naturally, the most 

important software prerequisite is that there are adequate means, for example input 

signals, for detecting faults.  The detection routines and fault-handling logic must be 

tested in real-world situations and the control software must bring the system to the 

predefined safe state if necessary. 

An additional isolation-measuring device was also specified. When it detects a significant 

reduction in the isolation resistance (e.g. in case of short-circuit of one individual AC 

phase), the driver is warned and the vehicle is allowed to continue driving in a reduced 

mode until shutdown. A new start is not permitted if an isolation fault is still detected. 
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4 THE TESTING PROCESS 

This chapter will expand on the testing methods and process used. The foundation for the 

software testing process was simplified from the ISO/IEC 29119 and IEC 61508-3 

suggested practices. As this project had only minimal human resources, there was no 

possibility to create a separate testing organization. To avoid the ethical problems and 

minimize the psychological aspects of a programmer testing his own code, an 

independent testing organization should always be set up. With the minimal resources 

available the test organization is in many cases the person that has created the code, 

which is a highly susceptible method because of a higher possibility of blindness for the 

mistakes. A separate test organization would be more objective, but the organization also 

needs guidelines for the testing. (Kasurinen 2013) 

Because of limited resources, the project’s management decided that automated testing 

would not be implemented. The software testing was thus done separately for the code, 

which was already run in trials and performing in real-life situations. A formal report was 

written for each test and its results. Due to the limited scope of this work, only a selected 

base version was tested. The critical problems were corrected and the relevant modules 

were re-tested accordingly. Other corrections and relevant testing would be done later on 

according to the produced test reports. After corrections or additions, the software must 

undergo all the testing procedures. Sometimes a small fix is required during use, but in 

principle all the changes should start from the design process and thus be documented at 

each level, and then tested and validated in the end. 

The software architecture map describing the modules and their dependencies are listed. 

Each module must have a written description of its functionality. A structural inspection of 

the code is performed. The first check will ensure that the commenting is uniform and the 

module version numbering is up-to-date. If the functionality of the module is not obvious 

from the written description, the modules must have a flow chart describing the process in 

more detail. The software written in graphical continuous function chart (CFC) language is 

easy to understand and debug. Some examples can be seen in section 5.3.3. In this 

project, most of the code is written in structured text (ST) or CFC. The program code, 

clearly stating its version, has to be included with the module information package. Then 

the inputs and outputs are listed and all cases of their expected behavior are listed. From 

here the test cases can be formulated. Each signal should have random noise applied to 

create unexpected behavior as well.  
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4.1 Software test principles 

The software tests must relate to the specified design requirements. In more formal 

development, the test case can thus be planned early in the process. According to 

Pressman, the Pareto principle is applicable, which means that it is common to find most 

of the errors in a certain small part of the software. The testing process begins from 

modules to the higher level software which manages the individual modules. To prevent 

the ethical problems and to be more effective, testing should be performed by another 

organization, possibly a third party organization. 

The first principle of testing is to check the operability of the modules. The modules must 

work flawlessly without bugs that would preventing running the code. The second principle 

deals with the observability. The code must be easy to debug, the source code must 

naturally be available, and all the states and internal variable processing, and the input 

and output processing must be easy to interpret and observe. The third principle is 

controllability, which addresses combinations of inputs and outputs, their 

interdependencies and functional predictability. The fourth principle deals with the 

decomposability, which looks at the modular design of the software. This leads to the 

principle of the simplicity of the code: the simpler the software is, the easier it is to test and 

obviously the less it is prone to bugs. The next principle is testability, which looks at the 

structural simplicity. The last principles deal with the stability of the software, its error 

handling capabilities and stable operation, and the tester’s ability to understand the 

documentation and information. (Pressman 2001, 439) 

4.2 Software test methods 

The software module tests were done using white and black box methods in a simulation 

environment.  During the integration tests the handling of erratic real-life signals will be 

verified. This is done by either interfering with the physical signals or the software by 

adding an interference created by the pseudorandom binary sequence method, or both. 

After this phase, the testing of the highest level control system must be performed. 

The functional testing of the modules, and their relevant control structures and sequence 

controls, mainly consists of checking the normal expected operation and the induction of 

abnormal input values, and verifying the fault handling. The abnormal input values must 

correspond to the expected failure cases in those modules that include fault handling. A 

test plan is made to cover all the preconditions, expected results and postconditions. 
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Sequential operation is tested likewise with attention paid to the expected events at the 

inputs and the cases of unexpected operation representing malfunctioning inputs. The 

functional test plan is written down in checklist form to ease the testing process and must 

include the following scenarios. 

The code is to be observed for obvious bugs, for example variable type mismatches and 

loops. For this purpose, values out of range are induced (e.g. of wrong types of variables), 

to see how the component can handle the situation. The next step would be the boundary 

value analysis. In this check, the input values are given from both sides of the borders of 

the permitted range. This will address the software configured limits and scaling, and the 

internal data structures (e.g. arrays), which have to be checked at their boundaries. In this 

case, the software does not have any dynamic arrays or loops, so this is relevant only 

regarding the inputs and outputs, and the relevant internal calculations. (Pressman 2001) 

The logical functionality must be tested with all the expected combinations. To test the 

logical functionality in unexpected fault situations, the tester intervenes in the operation of 

the system by forcing the internal values and signals in the programming environment. 

This ensures that the coordination of the integrated equipment is tested. This is done by 

verifying the expected behavior of the components with all the input and output 

combinations.  This also correlates to the possible signal diagnostics implemented in the 

module, and correct functionality of the diagnostics can be verified. It requires proper 

planning of the test cases to test the diagnostic functions in a simulation environment 

using noise generators or other means to interfere with the signals. The input value testing 

correlates to the missing input signals (e.g. open circuit or short to 0VDC). Some of the 

digital inputs might have an algorithm to discover erratic signal behavior, and some of the 

analog inputs have model-based behavior or other methods to monitor signal quality. The 

diagnostic functions may also react to constant high signals (e.g. short to >10VDC), or 

static signals within the permissible range. 

Although it was not done here, each module could be monitored for the processor cycles it 

needs to finish in different operating conditions.  This could be documented with the other 

test results and may help to determine if some parts of the software require excessive 

processor time, possibly causing problems after the system integration. The overall 

process timing was checked with Codesys task monitoring. 
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4.3 Module testing 

This phase of testing correlates to the technical system architecture plan. Its aim is to 

verify that the technical implementation of each unit or module works according to the plan 

(Schäuffele et al. 2013). All the measured values are checked and the operation is 

thoroughly verified. Fault handling and entering the fail-safe state must be tested in all of 

the internal states of the module. Depending on the type of the error, the module must 

either recover or enter the fail-safe state permanently. 

A thorough testing of some of the modules would require simultaneous operation of other 

modules. For example, it was not possible to test the diesel engine with a controlled load 

before the whole powertrain was installed in the vehicle, so only the basic functionality of 

each module was tested individually and the mutual operation controlled by the higher-

level software would be tested during the integration tests. 

4.4 Integration tests 

The aim of this phase is to integrate and verify the cooperation between all the completed 

and tested modules. During the process, all the electrical connections and schematics are 

checked and revised, if necessary. It is quite common that some minor changes are made 

and they are not instantly documented. In this case, everything was checked through and 

the input and output systems were tested. 

The checking of the overall timing correlates to the hardware load of the CPU. The 

hardware processing capacity is tested by applying full load with all the possible features 

active. The Codesys cycle time monitor was used to determine whether the hardware load 

stays at a safe level, meaning that the processes have an adequate time window to 

complete and the processes do not overlap and cause priority and other timing problems. 

A list of activities and tests that would cover all the normal operation, and a description of 

sequences required for the testing was compiled. Another checklist was made to deal with 

the most likely failures, which would be tried in order to see whether the higher-level 

control is able to cope with the failure situations of subordinate modules. 

As the modules may or may not be able to reset and deal with the errors, the higher-level 

controller must be able to wait for it to recover or enter the final fail-safe state. The higher-

level controller must also be prepared in a way that its operation is not fully dependent on 

the internal states of the modules; it mainly manages them. This was tested by causing 
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the modules to enter a fail-reduced or fail-safe state in all possible states of the higher 

control. The most obvious dependencies relate to the possible inability of BMS to provide 

power for the consumers. 

The integration tests require verification of the cable connections and a successful 

configuration and I/O signals test. The testing of the actual functionality of the physical 

equipment is a part of behavioral and system testing. If all the tests of the logical system 

are approved, the vehicle must make real-life test cycles during which the control 

parameters are properly calibrated initially and the system is stress tested. As explained in 

the scope of this work, these tests are only being initially planned because the time 

allocated to this project is inadequate. This test should prove that all the user 

requirements have been met, for example, the diesel engine does not overheat and the 

vehicle can be operated safely also in the freezing winter conditions. Thus these tests 

cover also the design and capacity of the cooling system, which was already planned 

before this control system project. 

4.5 Validation tests and commissioning 

An important part of the validation test and commissioning is the vehicle inspection 

required for the registration. However, this will not confirm the proper fulfillment of the 

other user requirements. The other user requirements are checked according to a plan 

constructed to cover all the requirements and specifications. The commissioning test must 

include a plan to cover all the normal use and reasonably expected misuse, including the 

triggering of fault situations to verify that they will be handled as expected. As the goal of 

this project was merely to create the control system, the calibration of the systems and the 

commissioning test go beyond the scope of this work.  

Methods for testing basic functionality was documented and executed. For example, the 

later stress tests will disclose whether the cooling system is adequate and does not cause 

heat-related issues in other systems, or whether all electrical connections can withstand 

the harsh conditions they face in everyday driving conditions throughout the year. From 

the control software point of view, the methods of handling these extreme situations must 

be tested in real-life stress test situations. These parts of the software were not fully ready 

so it was not possible to test the software module or integration. 
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5 RESULTS 

The software environment with the basic functional requirements was completed at the 

end of the project and the vehicle was subject to official inspection and registration. Many 

features of the logical system plan were omitted, but the vehicle fulfilled the legal 

requirements, and from this point road testing would be allowed. Measurements related to 

energy consumption should be carried out to optimize the system and provide research 

data to validate the simulation model parameters. New software features are also 

required. The planning required to properly implement these features should be organized 

in a manner that the modularity is preserved, and unnecessary, laborious iteration rounds 

are avoided. The software architecture was successfully planned in a modular way and it 

proved to be easy to add mode internal modules according to the rules agreed upon. 

The documentation processes produced a number of manuals and other documents. 

These include the original plans, flow and brainstorming charts, user manual with service 

and troubleshooting tips. There is also documentation about the risk assessment strategy 

and the assessment tables, as well as the test strategy and test results. While the risk 

reduction process produced  specifications and design features, some were executed as 

instructions for use. 

The ALARP in the risk processes was determined loosely to lower the probability of risk to 

negligible or rare, and the possibility of avoiding the event was determined as likely or 

possible. The reassessment verified that the system design requirements could match the 

level required by the ALARP process. This concludes that even the SIL2 classified 

functions have been addressed seriously during the development and it is highly unlikely 

that they would be the cause of an accident. There is at least the possibility that the driver 

is always able to intervene and prevent the accident by taking corrective actions. 

5.1 Results of the software process 

The logical architecture and software functionality were sketched as flow charts and state 

diagrams for all the relevant functions. This helped to understand the possible problems in 

module interaction. Also the actual programming benefits from a well-made plan. When 

the code is divided into tangible blocks, or modules, and the programmers obey the plan, 

the risk for dramatic programming errors is reduced. A well-documented plan is crucial 

also in the testing phase. Some examples of these charts and diagrams were already 
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used in the text to help understand the described process. An overview of the actual 

software module names and their call tree relationships can be seen in Appendix II.  

Because the focus of the project was somewhat scattered in the beginning, some of the 

plans were actually made later in the project. This mostly happened because of the 

pressure to integrate the system before fully understanding all the equipment and that the 

vehicle was supposed be in driving condition before any of the module tests were fully 

executed and completed. The earliest prototype code used ladder structures, but later on 

they were mostly converted to ST or CFC code. Because of the complex functionality 

required in the system, and the limitations of the ladder implementation, this change made 

the further developing more manageable. 

Each software component has the basic information commented in the header. All the 

documented test results combine this with the design charts, and list the test cases and 

their results. The result form also must include the version identifier as well as the date 

and time of the test. Some space for free commenting of the component functionality was 

also reserved on the test result form. This was used to write down ideas for further 

development or other suggestions. 

As mentioned already in the software testing, the CPU load and process timing were 

checked with the CPU cycle time monitoring of Codesys. The processing capabilities were 

adequate and the hardware load acceptable. The HCU unit has a more powerful CPU, 

and even after adding a rather complex anti-slip algorithm there were no cycle time 

issues. 

Even though the software process did not always proceed as planned, the software was 

surprisingly bug-free. Most of the problems noticed were some minor mistakes caused by 

negligence, creating critical issues mainly when related to variable type mismatches. 

Other problems were usually related to poor initial planning, resulting sometimes in a 

completely rewritten module code. The reason why there was a relatively small amount of 

errors was probably because the code was actively tested in real-life situations, where the 

bugs would be noticed and fixed instantly. Because the vehicle was tested in a closed 

environment, this practice was not seen too risky. One conclusion of the testing process 

was a suggestion to develop variable naming conventions to include the type of the 

variable. This would help both the programmers and the testers. An example of a test 

report can be found from Appendix III. 
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5.2 Validation and real-life tests 

The validation test procedures were designed to compare the resulting software with the 

logical system architecture, in order to verify functionality versus specifications. 

Additionally, the commissioning tests should include prolonged stress testing with full load 

in the worst-case scenarios, for example, driving in extreme weather conditions and harsh 

road conditions, and testing the isolation monitoring in rapidly changing ambient 

conditions. This, however, was not possible to arrange during this project. The author 

would still suggest committing the bus to such tests to see any design flaws that may not 

have been thought of. This would also benefit future projects. 

If all the pre-defined safety, legal and user requirements have been met successfully, and 

the vehicle has passed the test processes, the project is considered completed and the 

resulting product is validated against the design requirements. Because of the nature of 

this research vehicle, new user requirements will arise during the use, and thus to keep 

the vehicle safe for public use, the iterative development processes must always follow 

the systematic approach laid out by this project. 

Most of the equipment was pre-chosen and to verify the adequacy of their specifications in 

prolonged stress tests is yet to be seen. This mostly concerns the calibration and use 

limits set in the software. 

5.3 Case example: The accelerator 

This section explains the practical implementation of the accelerator system. The 

accelerator was chosen because it represents one of the most critical user interface and 

control elements. The electric brake, or regeneration control lever, uses essentially the 

same program as the accelerator, so the described diagnostic procedures and operational 

logic work in a similar fashion. The analysis of the design requirements is described first, 

after which the functional requirements and safety aspects are observed. The later part of 

this section will present the software implementation itself and the diagnostic features 

implemented therein. The overall results of the software processes will be presented in 

section 5.1, therefore the results for the accelerator testing is not be presented here in 

detail. 
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5.3.1 Accelerator design requirements 

The accelerator pedal has very simple functionality from the driver’s point of view. The 

pedal acts as a wish pedal, its output commonly referred to as “the driver request” in 

automotive literature. Depending on the engine management system or motor control, the 

output request value may be torque or fuel quantity or in some cases rotational speed 

(Reif et al. 2014, 669). The HCU drive control system was designed to work as a torque 

controller so that the VECU provides a torque request value depending on the driving 

conditions and the driver input.  

The accelerator pedal of the CAMBUS vehicle is an older VDO E-GAS potentiometer 

implementation providing an analog voltage signal of the pedal position and a 

electromechanical safety switch signal, sometimes referred to as an idle position switch 

(VDO 1996). The risk assessment concluded that a straightforward implementation would 

introduce a very high risk. However, the team determined that this accelerator system is 

able to fulfil the safety requirements after implementing a proper software safety strategy, 

thus meeting the requirements of the risk reduction strategy. Figure 11 shows a 

brainstorming diagram of the main topics related to the design requirements. 

Accelerator pedal

Voltage supply

Wiring

wire type

insulation type

shielding

routing

support

connectors

stability

diagnosabilityPhysical device
properties

position

safety switch

reliability

Software
filtering

set control value

safety features

protection (e.g. fuse)

reliability

look-up table?

torque request vs 
speed?

inhibit if "brake pedal 
depressed"

inhibit if "door open"

inhibit if "driver 
leaving"

expect reset before 
recovering from 

problems

diagnostics

signal types
Inhibit if “safety 

switch”

safety logic

Hardware layer

CPU reliability

I/O reliability

 

Figure 11. A brainstorming diagram of identified factors related to the accelerator pedal. 

Each of the subtopics in the brainstorming diagram would include detailed analysis and 

criteria. For example, the connected equipment and cable locations determine the 
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requirements for heat and chemical resistance and the electrical specifications for the 

individual cables. This work would mainly consider the topics relevant in the software 

design and implementation. 

5.3.2 Functional safety requirements for the accelerator 

The chosen technical architecture provides the PLC I/O and hardware processing, as well 

as some diagnostic features, but the main diagnostic functionality provides several tests 

within the software. 

The VDO accelerator pedal has a static resistance in series with a potentiometer, which 

together produce a known voltage range for a healthy output signal. Thus, the VECU 

software proceeds first with a signal range check. The second check considers the correct 

operation of the safety switch, comparing its state against the fault-free position signal to 

determine whether the switch signal is plausible. The potentiometer signal has slight 

variations constantly, so one check is monitoring for a static signal. The quality of the 

analog signal is verified with a dual linearization and slope comparison, which detects 

excessive noise and severe signal jumps. A check for the potentiometer supply voltage 

was also designed. 

The faults are prioritized according to the risks involved. Some of the detected failures are 

first flagged temporary and the system is allowed to reset them a number of times (fail-

operational). The resetting of an intermittent failure was implemented by counting the 

amount of fault-free cycles. If the failure is detected repeatedly or is otherwise persistent, 

the fault flag is marked permanent and the accelerator functionality is either reduced or 

disabled. After an accelerator related fault is cleared, the pedal is expected to be fully 

released before accepting new input values, as described before. 

There are multiple communication pathways, which are expected to work flawlessly. 

Communication is checked constantly and critical input values are reset to zero if a 

communication error or timeout is detected. If the problem is cleared, the receiving unit 

will require the physical pedal input to reset as described before. The data flow and the 

accelerator functionality are demonstrated in a simplified manner in Figure 12.  
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Figure 12. Simplified command path of the accelerator, including two communication 

links. The red dotted lines represent communication over an external link. 

Each related step is evaluating the request coming from the higher level, 

whether it is reliable or not, and resetting the request in case a problem is 

detected. 

The accelerator request is evaluated only if the pedal’s internal safety switch is enabled by 

depressing the pedal. Thus an accelerator failure of this kind would require two 

simultaneous failures of the pedal system. The communication path errors would cause 

immediate resetting of the accelerator request (within 20ms) and resuming requires a 

zero-position resetting of a faultless system. The final stage of the safety chain is the 

inverter software, which in an emergency can only be controlled by the stop signal 

mentioned before. However, an inverter user application was designed to require similar 

resetting of the input request to maximise the safety and to prevent powertrain jolts. 

5.3.3 Software implementation of the accelerator 

The main accelerator software unit consists of an I/O handler, a logic that determines if a 

torque request is permitted, and a unit that determines how much torque should be 

requested. The I/O units first read the pedal related inputs and filter the signals. It also 
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includes a separate path for the signals to pass a series of diagnostic tests. The block will 

then generate filtered output signals and the current fault status. The following figures will 

demonstrate the accelerator functionality written in the graphical continuous flow chart or 

CFC language of the IEC 61131-3. The first accelerator program block can be seen in 

Figure 13. 

 

Figure 13. A simplified presentation of the accelerator input handler. The diagnostic run 

command is given after a delay, after the voltage from the ignition lock 

switch is detected to ensure that the system is in normal state (i.e. there are 

adequate supply and input signals available). 

Parallel to this, there is a block that controls all the safety related conditions of the 

accelerator. The accelerator idle or safety switch, and the brake pedal switch, are treated 

as the most important driving related interface safety features. The communication 

pathway error handling is also considered one of the highest level safety features. 

Whenever a safety feature is activated, it will set a flag. Any of these conditions will reset 

the accelerator request in the next step. When all the safety conditions are reset, and the 

release of the accelerator pedal is detected, the flag is reset. To prevent a possible 

unwanted immobilisation of the vehicle in a failure of one or more of the second level 

safety features, there is an override button that can be used to re-enable the accelerator. 

This was done to allow the driver to forcedly move the vehicle from a possibly dangerous 

location where it has stalled otherwise. Figure 14 shows how the safety flag is being set 

and reset. 

 

Figure 14. A simplified presentation of the accelerator reset functionality.  

Figure 15 shows the actual conditions which set the enable flag for the accelerator. One of 

the control signals is the reset variable of the previous example. 
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Figure 15. The enabling conditions of the accelerator functionality. The accelerator 

safety switch (IdleSw) and the brake pedal switch are considered to be of 

the highest priority, thus they always disable the operation of the accelerator 

pedal function. 

The final step is to check whether the torque request is allowed and to calculate the 

torque request according to any given parameters, for example vehicle speed or traction 

motor temperature. The block, which is seen in Figure 16, may contain a look-up-table or 

calculate the correct request based on a model. 

 

Figure 16. The final stage that determines the actual torque request to be sent to the 

HCU. All the other input parameters are omitted from the picture. When the 

AccSetRequest block input enable is FALSE, the output Request will 

automatically be reset to zero. Even though the AccSetRequest block 

already controls the Request value and is tested for handling possible illegal 

position values, an additional LIMIT function is used to prevent any out-of-

bounds request values. 

A similar method is used for the electrical brake control lever. The HCU has a voting 

function, which determines the final torque request value sent to the traction motor 

inverter, or the accelerator control signal of the diesel engine in the direct drive mode. 

This functionality determines if a torque request from the accelerator or the electric brake 

control lever has been applied. If not, the system will check if the vehicle accelerates after 

the accelerator pedal has been released and activates a downhill brake control function to 

keep the vehicle velocity below the set value. The set value is registered at the moment of 

pedal release. If instead the speed is within the configured crawl speed limits, the system 

will apply a crawl torque. In addition to the crawl, a “hill hold control” is planned. In any 

other case, the vehicle is allowed to coast. A sensorless anti-slip algorithm tested first on 

an experimental vehicle was adapted to the bus control system to provide further research 

data and verify the operation of the algorithm (Montonen et al. 2014). If the slip control is 
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configured as active, the accelerator torque request must pass through the slip control 

module. Before the final stage, the torque request must also pass through the anti-jerk 

function. A presentation of the command path can be seen in Figure 17. 
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Figure 17. A flowchart demonstrating the principle operation of the final torque control 

system. 

If electrical braking is requested, the torque control function will also request VECU to 

operate the brake light accordingly. Combining the electrical braking fluently with the 

operation of service brakes is complicated and in this case, it would require upgrading the 

old service brake system (Reif et al. 2014, 736). It would be too complicated to pursue 

within this project. 

5.3.4 Accelerator fault diagnosis 

The diagnostics must be able to reliably detect a failing accelerator pedal. The current 

setup utilizes the vehicle’s original VDO pedal, which consists of only one film 

potentiometer, so the methods of the following paragraphs were designed in order to 

ensure the safe operation of the pedal.  

The voltage for the potentiometer is supplied and regulated by a PLC analog output. The 

analog voltage signal is read by a PLC input module equipped with a 16-bit ADC providing 
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a value with a resolution of 0.4 mV. The program accesses the value every 10ms. To 

avoid glitches in the signal, the input signal for the driver request controller is passed 

through a median filter with a window size of five. Though the median filter will add delay 

to the actual driver request, it was considered not to adversely affect pedal response. The 

rates of change of the raw and filtered input signal values are checked. The quality of the 

input signal was done by comparing a linearized slope with sample-per-sample slope. The 

method was simple and proved to work effectively enough. With current parameters the 

system was constantly able to detect noise comparable to 80mV peak-to-peak white noise 

generated using a pseudorandom binary sequence (PRBS) algorithm. 

The diagnostic rules check the unfiltered signal in 10ms intervals for: 

- signal “too fast change” test (2-5 cycles, depending on the test type), 

- signal static: 30 cycles (empirically set time limit), 

- signal range check: too high, too low (from current value) 3 cycle, 

- idle switch error: 3 cycles (empirically set time limit), and 

- supply voltage error: 3 cycle. 

Some of the example values have a three-cycle minimum because the problem has to be 

confirmed to avoid triggering by mistake. A correct value should be tested in real-life 

conditions. For example, with one failure the filtered request value could change from 0% 

to 100% in an instant, but because of the diagnostic functions, the value is not accepted 

and an error flag indicates a too rapid change of signal. Because of the mechanical safety 

switch involved, it would take two simultaneous failures and the proper behavior of the 

position signal to defeat the diagnostic functions, which is why it is highly unlikely that the 

accelerator pedal could cause an uncontrolled acceleration. 

To assess the delays in the communication path with the information given by the 

equipment manufacturer, the communications block will provide a new value in average 

time of 4 ms, which is less than the 10 ms cycle time. The interval of sending UDP data 

packages is currently configured as 40 ms. The processing of the block input, assuming 

that the receive buffer is empty, would take a maximum of 10 ms. The powertrain CAN 

message refresh interval is 10 ms. The inverter torque request ramp-up has been 

configured as 0.1 s per 100%, and using the multiplier of four (400%) this would mean 400 

ms for the request to build up linearly to the maximum value. The inverter’s internal 

processing time for the request is expected to be less than 10 ms. According to this 

reasoning, the time it would take for torque request to reach the maximum level would 
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take 470 ms and could be cancelled with a 10-50 ms delay. However, this question is a bit 

trickier, which is demonstrated further in the next section. 

5.3.5 Accelerator safety 

The communication links check that if no error is detected, the request may be relayed to 

the next link in the chain. The errors were divided in three classes: always resettable, 

limited count resettable and permanent failures. If a limited count resettable error reaches 

the maximum count, it is then flagged permanent. In this case, the vehicle is still able to 

move using crawl mode, which is controlled by selecting direction and releasing the brake 

pedal. Depending on the type of fault, a higher limited accelerator value could be used to 

move the vehicle if the accelerator pedal is depressed. It is to be remembered that there 

are risks concerning the accelerator pedal, but there are also risks related to the 

immobility of the vehicle. 

Because almost all of the variables in this review are configurable, only a rough estimation 

is given to demonstrate the problems involved in the processing delays. Evaluating the 

test rules mentioned in section 5.3.4, we can determine that the greatest risk is with a 

static signal that stays within the accepted values. Basically the vehicle would be able to 

accelerate freely for 30 cycles. To calculate the time it would take to detect and cancel the 

torque request, the whole chain of events related to the implementation must be 

observed. The pedal filter delay is 50 ms because of the median filter. The UDP packages 

containing the request are sent in 40 ms intervals. The HCU is processing the request 

with an S-ramp function to prevent powertrain jerks, allowing the value to rise to maximum 

in 1180 ms. Then there is an average of 10 ms taken by the Visedo CANopen transfer 

delay. In the inverter we would also have to calculate the ramp-up time 400 ms. This 

example would equal to a 1280 ms delay to reach full torque, and the torque request 

would be reset to zero at 320 ms. Add again the transfer delays and ramp-downs. 

To put this into perspective, the torque response of the engine was estimated in a Matlab 

simulation. Sufficient delays were added to closer represent the actual behavior of the 

motor. The equations from Bosch Automotive Handbook  were used to calculate the 

vehicle movement by the requested propulsion power (Reif et al. 2014, 774-779). The 

initial delay is mimicking the filter delay and the ramp speed mentioned before is used. 

The transfer delays and processing time are simulated by the cancellation delay, which is 

here at 250 ms after beginning. Figure 18 demonstrates the change in the travelled 

distance when the cancellation method is changed. A slow resetting with ramp-down 
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would cause the vehicle to continue accelerating after the failure has been noticed. If we 

take the kinetic energy and deceleration of an empty bus into account, the vehicle would 

be able to move much more than the 0.1 meters, which was the required by the ECE-

R100. Using the same cancelation time and removing only the ramp-down, the vehicle 

travel can be reduced dramatically. 

 

Figure 18. The simulation results represent the worst case vehicle acceleration from 

stand still during a 1500 ms time period. The accelerator request is 

cancelled at 250 ms. With the blue lines, the request value is using both 

ramp-up and ramp-down and with the red lines, immediate cancellation after 

fault is used instead. 

From the figure we can see that even in the worst case of multi-failure of the pedal, with a 

proper cancellation method the empty vehicle would be allowed to only move slightly. This 

level of safety could be achieved, for example, by all the torque-control-related modules 

checking the actual fault status of the accelerator pedal and cancelling their operation 

immediately, and calibrating the diagnostic functions properly. 

The actual tests proved that in order for the accelerator to provoke an out-of-control 

situation, a multi-failure situation should occur. This would mean both the safety switch 

and the potentiometer failing, and the input signal would have to pass all the software 

checks successfully. It is highly unlikely that this could happen in real life, so the assessed 
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residual risk of this implementation was determined acceptable. In case the monitoring 

application in the drive inverter is somehow not able to reset the inverter functionality, the 

driver still has the regular brake system and an emergency stop switch to disable the 

hybrid system. 

In order to further enhance the system, the hardware should be upgraded first to support 

real dual processing and process monitoring. The algorithms can easily be applied to both 

of the inputs and the failing components can be voted out. This allows continued operation 

while the driver is warned to take the vehicle to service for a closer check-up. 

Of course, in a real emergency, the other cancelling means would be used by the driver, 

but this review is done from the perspective of the worst case scenario per ECE-R100. 

The conditions were interpreted so that the driver must not interfere with the pedal error 

(UNECE 1997). In the case of a failing inverter, the failure may not be detected correctly 

by the inverter control system, in this case, the HCU control system must automatically 

send a stop signal to the inverter. It may not be possible to control any further problems, 

but if for some reason this would not be enough to stop the failing inverter, the driver still 

has an emergency button to stop and shutdown the system. 

The signal test procedures involved an open-circuit or short-to-ground, short-to-plus and 

static signal tests, and an interference tolerance test by adding varied amplitude PRBS on 

top of the measured signal. The results of the tests concluded that with a single failure, 

the ECE-R100 requirements will be fulfilled. Even with two simultaneous problems the 

failures could be detected in most cases. 
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6 DISCUSSION 

Trying to cover all the possible situations and add to the reliability of the system would 

easily become costly. In a prototype vehicle meant mainly for research purposes, the level 

of accepted risk is lower than in a bus meant for independent public use. In case a new 

prototype bus was built for public use, different kind of equipment should be used 

At the end of this project, the powertrain control and optimization of the hybrid system is 

under development. Optimal changing and control of the hybrid modes has not yet been 

fully implemented or automated. The research on fuel efficiency will provide feedback for 

the mode optimization and algorithm design. This work succeeded, however, in providing 

a modular software platform for the future development. 

6.1 Instrumentation 

Good instrumentation proved to be a surprisingly difficult and time consuming task. The 

dash display should be able to present the vehicle status and a variety of messages for 

the driver. The messages may relate to faults or instructions directing the use the vehicle 

and some of them can be displayed with symbols.  If it was possible, the symbols were 

selected amongst the ISO 7000 series. 

Although the nature of the hybrid system is highly complex, the user interface, its visual 

outfit and presentation of the measured data and statuses, must be well thought. At a later 

stage of the project a fully programmable instrument cluster from Enovation Controls was 

acquired. While all the other CAN bus interfaces are predefined by their respective 

manufactures, a custom set of J1939 PGNs were defined in order to send all the required 

data to the instrument cluster. Right now the interface has the information required by the 

regulations, and some additions for the driver to cope with the fault situations. This is also 

a vitally important part of the safety plan. Special care must be taken that the user 

interface logic is uniform with the user manual and that the operators are noted of any 

important change. A commercial version of the instrumentation would require a thorough 

investigation of the user requirements, basically interviewing drivers experienced with 

EVs. 
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6.2 Safety aspects of the chosen equipment 

The planning was not very effective in the beginning of the project. Some of the 

equipment features were not carefully planned, some of the features did not work as 

expected and some of the original equipment was not possible to investigate early enough 

in the project.  This led to improvised wiring on site, sometimes even to a change of 

equipment or additions that were not planned originally. 

Some of the preselected equipment did not fully conform to automotive design standards. 

This was accepted as the vehicle is a prototype after all and the non-conforming 

equipment can be replaced later, if necessary. Investigating these options would be a key 

issue for possible later development. Adding an accelerator unit with dedicated 

diagnostics and data bus communication should be considered. Looking at the system 

architecture again with the presented results in mind, relaying the information with shorter 

intervals would enhance the safety properties and simplify the software implementation. 

A commercial vehicle requires a reliable electrical system. If this particular vehicle was in 

full-time commercial use, some of the existing cabling should be replaced. In addition to 

the regular electrical safety and voltage drop considerations with longer cables, an 

automotive design not only requires chemical resistance and a large-scale heat tolerance 

of the wire insulation, but also resistance to constant vibration and cable abrasion. Thus, a 

premanufactured harness would be beneficial. In harnesses, the wires are banded 

together, routed in conduits and placed in relevant cable supports to cancel the abrasive 

effects of vibration. The project provided basic schematics that could be used to create 

wiring harnesses for a retrofit vehicle. There is harness design software available to help 

select all the necessary components. Currently, when the vehicle itself is 3D modelled, the 

harnesses can be also routed and tried out in the model. A proper premeditation of the 

wiring also helps to minimize the EMI problems that may otherwise create problems with 

the control hardware as well. This should be considered in later developments. 

6.3 Signal diagnostics 

As all the input devices and their signals are subject to the possibility of a failure, care 

should be taken on how to assess the input values. Lack of time and resources prevented 

the use of more advanced methods, but they should be considered in the later revisions or 

projects. 
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It would be advisable to use a diagnostic capable input and output system instead of the 

digital inputs or outputs of the PLC, and diagnostic capable power sourcing. The digital 

input signals could be read as analog signals or assessed by a separate window 

comparator board. If, for example, all the signal states had known resistances, the signals 

may be subjected to similar tests introduced in section 4.1. However, the basic digital 

input system of the AC500 cannot reliably detect all the wiring failures. The inputs must be 

protected with current limiting resistors. The switch inputs should either have a pull-down 

resistor to ensure the input is driven to 0 volts when the switch is open, or to connect to 

the ground though the switch with a pull-up activating the input (Kai 2010, 126). One of 

the peripherals had a problem with unexpected intermittent triggering, but was not helped 

by a pull-down resistor, and was only cured after modifying the firmware and application 

filtering. Throughout the control system design, surge and load dump protection 

requirements must be observed. 

In automotive actuators, the voltage can be fed directly from the battery via a fuse and the 

control unit pulls the voltage down. Nevertheless, the use of safe power sourcing can 

monitor the current consumption and shut down the source in case of overcurrent. In both 

cases the diagnostics can be implemented to the actuator by using current level 

triggering. 

The author suggests the development of a more capable and comprehensive diagnostic 

system. In the beginning of the project, it was decided to completely omit the development 

of a diagnostic system, but the necessity of diagnostics was admitted later. Only a simple 

diagnostic system was designed to patch up critical safety issues. Now the implemented 

signal plausibility checks do not cover the detection of abnormally fluctuating digital 

signals. The author recommends making a separate input signal handling module, to filter 

and process the signals. It should include a diagnostic module that will be constantly 

observing input signal behavior. Each input variable should have an associated fault flag 

that can be triggered in case of a detected signal error, so that any erroneous signal could 

immediately cause the system to enter a safe state instead of potentially causing 

unwanted actuator behavior. 

It is to remember that the amount of diagnostics, safety and reliability required must be 

determined by the risk assessment. The use of correctly rated equipment helps to lower 

the costs involved, especially in production series. 
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6.4 Traction-motor-related problems 

Even though software and hardware safety was ensured to cover all the thinkable 

conditions, the chance that some equipment will fail and start acting erroneously still 

persists. There was one good example of this during the test drives. When traveling at a 

higher velocity requiring a field weakening operation of the PMSM motor, the control 

software was correctly requesting zero torque from the traction motor inverters, but the 

master inverter continued to apply torque. The problem was intermittent and could easily 

be defeated by using the service brakes. 

The operation of the traction motor inverter is possible to cancel using the stop signal 

applied by a software component comparing the requested and applied torqued, or by an 

emergency switch applicable by the driver. However, this might lead to another dangerous 

situation as the voltage generated by the rotating PMSM motor will rise after the inverters 

stop modulating. If in turn, the battery was disconnected from the circuit for whatever 

reason, this would ultimately lead to a situation where the PMSM motor induces a very 

high voltage, possibly damaging or destroying the inverters or other equipment not being 

able to withstand the possibly high voltage. An automatic brake resistor is also installed, 

but the location of the resistor poses another threat. The resistor unit is installed in a 

sealed compartment made out of plywood with no ventilation to open air. 

In a serious, life threatening situation, risking the equipment would be acceptable, as long 

as the physical design of the equipment ensures that all the devices connected to the HV 

can cause no additional danger, and that the insulation of the HV system tolerates high 

enough voltages. Relocation of the brake resistor is advised because of the risk of fire 

involved. 

Although the driver is likely to notice any awkward behavior of the vehicle control system, 

it is also important to give the driver an adequate warning of any detected dangerous 

situation. The legal requirements demand that the driver is always able to use at least the 

service brake to slow down and bring the vehicle to stop safely. The reason for this 

particular problem was not fully confirmed, but could have been caused partly by a 

misconfiguration of the resolver zero angle on the master inverter or an inverter software 

bug. As the symptom is more or less intermittent, it will take time to find out the actual 

cause of the problem. 
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6.5 Project management issues 

When creating something completely new, it is common to just take some parts and 

equipment, improvise and “just start building”. After a great idea, even if the equipment 

and its functions seem to fully exist in one’s mind already, one needs to decide how to go 

about prototyping it. At that point, a more or less abstract logical plan depicting the 

functionality is made. Then the technical or physical plan must be created, telling how the 

logical conditions are matched. These stages may be detected in just about any everyday 

building process, when analyzed thoroughly. In any case, even primitive plans are 

required in building a prototype or a product. 

While the design processes themselves are iterative, many levels of iteration over the 

process and project cycles can also be seen. Many times people refer to the iterative 

nature of a specific development process, but iteration also happens between the 

completed product models, when newer developments further enhance the features of the 

previous models. In addition, prototyping processes may have changed or advanced.  

There is a significant amount of scientific knowledge available today; one can plan 

theoretically and model the system before starting to build it. 

The author wants to bring attention to the fact that a loose higher-level logical or functional 

planning of the equipment can be done any time, even at the beginning of a project. Even 

if the equipment does not work yet, the equipment is in development or the equipment has 

not been chosen. It is the technical architecture phase that must select the technical 

solutions, and the module development phase that must enable the equipment to work as 

it was designed to work in the beginning. The problems should only cause a part of the 

project to slow down, and minor problems should not have any effect on higher-level 

management. 

It was sometimes confusing to discuss the project management-related issues. The same 

people had to work with the lower-level modules, trying to get the technical features to 

work, and they would plan the higher-level system controlling the modules as well. Some 

of them worked with other projects and did not have full-time knowledge of what was 

going on in the vehicle building in the workshop. Many times the module level progress 

was slowed down by unexpected technical problems, which caused the overall progress 

also to stall. 

In the design and implementation phase, the management-emphasized approach favored 

proceeding from the module development towards the main system, while the author tried 



65 
 

to see main system structure and then manage the development process from above. 

This sometimes led to communication problems, which stemmed from the different 

perspectives of the parties. The selection of the programming language is essential in 

creating easily manageable code.  

The author’s opinion is that the automation project work was begun rather late and the 

management processes were inefficiently organized. The aim was first merely to create 

control software for a research vehicle. Later on, the project had to also consider public 

use, and the project planning was from then on processed semi-formally. This meant that 

most of the older software had to be rewritten in favor of better functionality, modularity, 

efficiency and reliability. Some of the changes in the equipment and software were 

opposed for a long time and were discussed on several occasions. The actual changes 

could have been made in less time than what it took to oppose said changes. 

The author’s opinion is that the management and organizational problems caused 

additional difficulties and delayed completion of this thesis. One of the greatest problems 

was the management’s incapability to decide what the ultimate goal would be in terms of 

the intended use of the bus, as this sets very different design requirements for the system. 

Another major flaw was to forget the study of relevant regulations and the vehicle 

technology, and avoid the thorough planning of the control system in the beginning. These 

led to many technical and software related modifications in the later phases of the project. 

One good example was the air compressor, which was selected using the wrong 

specifications. Eventually it was discovered that the compressor output was not sufficient. 

This would cause the air dryer purge function to not operate at all, and the air suspension 

pressure to continuously stay close to the lower pressure limit. The replacement of the 

compressor required a new cradle assembly, new coolant hoses, a new wiring harness 

and new control software. 

To be able to complete the design process in a truly comprehensive manner, it would 

need more time and resources than were allocated for this project Based on experience, 

the author would highly recommend that a project management strategy based on the V-

model be implemented in future development projects at LUT. The methods proposed by 

the standards mentioned earlier in the work were found to be beneficial in the design 

process. In a commercial project, more work resources would be required to properly 

organize the operation in different processes, but following the guidelines is still 

recommended for any smaller group constructing a prototype vehicle, as they help to build 

a solid foundation for the design work.  
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Risk assessment related examples. 

Example of identifying dangerous situations related to accelerator pedal system. 

 

 

Below, an example of the risk assessment related to the dangerous situations 

  

Method/tool

Analyst

Current version

Date

Method

Type

Hazard Equipment Hazardous situation Hazardous event

9 1 Use Driving Outside vehicle Road accident Accelerator Accelerator signal; pedal system malfunction Uncontrolled acceleration of the vehicle 9

9 2 Driving Cabin Passenger gets flung Accelerator Accelerator signal; pedal system malfunction Uncontrolled acceleration of the vehicle 9

9 3 Driving Cockpit Driver gets flung Accelerator Accelerator signal; pedal system malfunction Uncontrolled acceleration of the vehicle 9

risk graph

Ref. 

no.

Ref. 

no.

Risk assessment (hazard identification)

Checklists ISO 12100:2010 annex B, system architecture/functions

Life cycle

Extent

Sources

Machine

Hazard zoneTask Accident scenario

Requirements, specifications, preliminary design

CAMBUS hybrid bus

Use: operation 22.7.2015

1.0

JA

Risk estimation

x Preliminary risk estimation

Product: CAMBUS

Issued by: JA Black area = High risk

Date: 24.2.2015 Grey area = Medium risk

White are = Low risk

Severity

Se 0-4 5-7 8-10 11-13 14-15

Death, losing an eye or arm 4 SIL 2 SIL 2 SIL 2 SIL 3 SIL 3 ≥ 1 h 5 very high 5

Permanent, losing fingers 3 (OM) SIL 1 SIL 2 SIL 3 < 1 h … ≥ 24 h 4 likely 4

Reversible, medical attention 2 (OM) SIL 1 SIL 2 < 24 h … ≥ 2 w 3 possible 3 impossible 5

Reversible, first aid 1 (OM) SIL 1 < 2 w … ≥ 1 y 2 rarely 2 possible 3

< 1 y 1 negligible 1 likely 1

Ref Hazard Se Fr Pr Av Cl (SIL)

nro.

9 4 1 1 3 5 SIL 2

9 4 1 1 1 3 SIL 2

9 2 1 1 1 3 0

accelerator pedal subsystem failure

accelerator pedal subsystem failure

accelerator pedal subsystem failure

Class Cl (Fr+Pr+Av) Avoidance

AvPr

Probability

Fr

FrequencyConsequences

Typ.

Hzd.

No.

1 Road accident, casualties

2 Passenger gets flung

3 Driver gets flung

A
P

P
E

N
D

IX
 I, 1

. 



        
 

An example of the risk estimation before and after the reduction by design. 

 

CAMBUS hybrid bus

ISO 12100:2010 annex B

Ref. 

no.

Risk reduction Ref. 

no.

S F O A Cl Protective/risk reduction measures S F O A Cl

9 4 1 1 3 5
Diagnostic functionality, which prevents uncontrollable acceleration in case of 

one failure . Brake pedal prevents acccelerator operation in all cases. Door 

brake. User's manual: use of hand brake at stops. Malfunction indicator light.

4 1 1 1 3
Suggest developing 

diagnostics further, use 

of safety PLC (1oo2D)

9

Risk assessment (risk estimation and risk evaluation) and risk reduction

Requirements, specifications, preliminary design

Use phase: operation

Method

Extent

Sources

Machine

24.2.2015Date

risk graph

JA

1.0Current version

Analyst

Method/tool

Risk estimation (initial risk) Risk estimation (after risk 

reduction)

Further risk reduction

required

A
P

P
E

N
D

IX
 I, 2

 . 

(c
o

n
tin

u
e

d
) 



APPENDIX II, 1. 
 

Program structure 

VECU program module tree 

PLC_PRG
(VECU MAIN FSM)

IgnitionLock

ACC_IO_MAIN

EBrake_MAIN

DirSelector

DriverDetection

Chassis_IO

KI_MAIN

ICE_TEST

ChangeState

UDP

DirSelectorEval

IgnitionLockEval

AccReadPedalInput

AccSetRequest

AccReadPedalInput

AccSetRequest

ECS_DIAG

UDP_InitFunction

KI_Interface

KI_CANBUS

 

  



APPENDIX II, 2. 

(continued) 

HCU program module tree

PLC_PRG

IO_MAIN

MCU_CANOPEN

UDP

CHANGESTATE

ISRUNNING

BMU_MAIN

MCU_DRIVETORQUECO
NTROLLER

MCU_MOTORRUN

TEMP_MANAGEMENT

ECOMP

HYDR_CFC

SGO_ICE_GEN_CONTRO
L

IO_BMU

IO_DCDC

IO_ECU

IO_HYDR

IO_KOMP

IO_BODY

UDP_INITFUNCTION

BMU_CANBUS

BMU_CONTACTORS

BMU_MAINSWITCH

ICE_TORQCONT

ECU_MAIN

ECU_ACC_P2U2

ECU_CANBUS2

BMU_PRECHARGESW

BMU_DCBREAKER

UDP_LOGGER_PARSER

TRefRempFB



APPENDIX III, 1. 
 

Test case presentation 

Documentation of a test case of VECU/AccReadPedalInput 

 

Device/Program:  VECU 

Component:  AccReadPedalInput 

Type:  Function block 

Description:  Component of accelerator pedal implementation 

Language (IEC 61131-3): ST 

Version:  2016-03-10 

 

Inputs 

inputU  INT (AI) 

inputSK  BOOL (DI) 

inputKD  BOOL (DI) 

diag_run  BOOL 

 

 

Outputs 

PedalPosition  WORD 

IdleSw  BOOL 

KickDown  BOOL 

fault  BYTE 

 

Used functions/function blocks/dependencies 

ChangeState  FUN 

 

Functional description: 

Included in the header of source code 

Design specifications, flow chart 

 

  



APPENDIX III, 2. 

(continued) 

Test date:  2016-03-10 

Test type:   blackbox, codesys 

Test conducted by: JA 

 

Test description: 

 verifying function according to functional description 

 verify operation with invalid inputs & BVS 
 

Target description 

PART 1 

Verify processing of the analog and digital input signals 

1. median filtering, implemented with OSCAT v3.3 library (61131-3, "no quarantees”) 
2. scaling (see limit constants) and conditioning of the output signal (0-1000) 
3. input signal BVS, illegal values (e.g. WORD >> INT) 
4. verify digital signal input filtering and output 

 

PART 2 

Verify the diagnostic functions for determining interface device faults. Cases 

1. toggling operation of diagnostic features 
2. signal too low (AI, self-reseting) 
3. signal too high (AI, self-reseting) 
4. signal static (AI, self-reseting) 
5. signal change rate too high (AI, self-reseting) 
6. idle switch implausible (AI, DI) 

 

  



APPENDIX III, 3. 

(continued) 

Test results 

 

ID Preconditions Expected results Actual results Test 

result 

P1-1 input inputU signal 

variable, random 

peak values. 

diag_run=false, 

others don’t care. 

peaks filtered, signal 

delayed by 5 cycles. 

IdleSw, KickDown, 

fault=false 

peaks filtered, 

signal delayed by 5 

cycles 

pass 

P1-2 input inpuU signal 

variable (low limit-

high limit), 

diag_run=false, 

others don’t care 

output value 

PedalPosition must 

be within limits and 

behave according to 

design. IdleSw, 

KickDown, fault=false 

PedalPosition value 

scales ok 

throughout the 

range 

pass 

P1-3 input inputU around 

configuration value 

boundaries, zero and 

over type range, 

diag_run=false, other 

don’t care 

PedalPosition: inside 

permitted range 

normal operation, 

outside permitted 

range limited to 

configuration values. 

out of type range 

must give 0. 

fault=false 

BVS behavior as 

expected 

pass 

P1-4 inputSK & inputKD: 

toggle low-high with 

changing rate (well 

over configuration 

limit, rapid changes 

below configuration 

limit), diag_run=false, 

inputU don’t care 

IdleSw & KickDown 

must activate and 

deactivate according 

to the design; stable 

setting follows a high 

state, low input and 

short glitching 

produces a low state 

behavior as 

expected 

pass 

 

  



APPENDIX III, 4. 

(continued) 

ID Preconditions Expected results Actual results Test 

result 

P2-1 diag_run; toggle 

diagnostic operation 

on/off, monitor 

operational state 

diagnostic 

functionality must 

activate/deactivate 

according to input 

diag_run. After P2-2, 

3 or 4 toggle off/on 

must not reset fault 

state. 

diagnostic 

functionality 

activates/deactivates 

according to input 

diag_run. fault ok 

pass 

P2-2 diag_run=true; 

permitted inputU -> 

below low limit 

configuration. hold 

permitted value. 

repeat x5 

fault: “signal too low”. 

PedalPosition=0, 

IdleSw=true, 

KickDown=false. 

fault must reset / 

resume normal 

operation after a while 

without error.  

fault reports correct 

error, pedal values 

ok, resets as planned 

pass 

P2-3 diag_run=true; 

permitted inputU -> 

over high limit 

configuration. hold 

permitted  value. 

repeat x5 

fault: “signal too high”. 

PedalPosition=0, 

IdleSw=true, 

KickDown=false. 

fault must reset / 

resume normal 

operation after a while 

without error. 

fault reports correct 

error, pedal values 

ok, resets as planned 

pass 

P2-4 diag_run=true; 

inputU static in 

permitted range with 

inputs according to 

configuration 

fault: “signal static”. 

PedalPosition=0, 

IdleSw=true, 

KickDown=false. 

fault must reset / 

resume normal 

operation after a while 

without error.  

fault reports correct 

error, pedal values 

ok, resets as planned 

pass 

 



APPENDIX III, 5. 

(continued) 

ID Preconditions Expected results Actual results Test 

result 

P2-5 diag_run=true; inputU 

behaves normally 

with added PRBS 

(see configuration 

limits), inputSK as 

per normal inputU 

behavior 

fault: “change rate too 

high/implausible”, 

PedalPosition=0, 

IdleSw=true, 

KickDown=false. 

must reset / resume 

normal operation after 

a while without error.  

fault reports 

correct error, 

resets as planned 

pass 

P2-6 diag_run=true, 

inputSK behavior 

does not match 

inputU (see design & 

configuration 

constants) 

fault: “idle switch 

implausible”, 

PedalPosition=0, 

IdleSw=true, 

KickDown=false. 

fault must not reset / 

resume normal 

operation after a while 

without error. 

fault reports 

correct error, fault 

permanent 

pass 

 

 

Notes for further development 

Calibration of the diagnostic parameters and limits suggested. No memory 

kept for discovered intermittent faults. 

 


