

Lappeenranta University of Technology

School of Business and Management

Degree Program in Computer Science

Veli-Ensio Heiniluoto

Roadmap for .Maintain Framework

Examiners: Professor Ossi Taipale

Supervisors: Professor Ossi Taipale

ii

TIIVISTELMÄ

Lappeenrannan teknillinen yliopisto

School of Business and Management

Tietotekniikan koulutusohjelma

Veli-Ensio Heiniluoto

Roadmap for .Maintain Framework

Diplomityö

2016

48 sivua, 3 kuvaa, 1 taulukko

Työn tarkastajat: Professori Ossi Taipale

Hakusanat: DevOps, jatkuva toimitus

Tämän työn tarkoituksena on laatia suunnitelma .Maintain-sovelluskehyksen

toteuttamiseksi. Sovelluskehys tulee tukemaan ohjelmistokehityksen käyttöönoton jälkeisiä

toimintoja. Uudet jatkuvan toimituksen kehitysmenetelmät painottavat tätä vaihetta. Tämä

vaihe myös tuottaa suurimman osan ohjelmiston elinkaaren kuluista. Tuottamalla

työkaluja, jotka tukevat näitä toimintoja voidaan saavuttaa suuria kustannussäästöjä.

Sovelluskehys tulee auttamaan uusien ominaisuuksien kehittämisessä, uusien vaatimusten

löytämisessä sekä virheiden etsimisessä ja korjaamisessa. Työssä esitetty sovelluskehys

koostuu kahdesta osasta: analysaattorista, joka tuottaa informaatiota sovelluskehittäjille

yhdistelemällä useita datalähteitä sekä ohjelmointikirjastosta, joka tukee datan keruuta sekä

muita toimintoja. Tämä työ toimii lähtöpisteenä Lappeenrannan teknillisen yliopiston

projektille, jossa tarkoituksena on laatia kyseinen sovelluskehys.

iii

ABSTRACT

Lappeenranta University of Technology

School of Business and Management

Degree Program in Computer Science

Veli-Ensio Heiniluoto

Roadmap for .Maintain Framework

Master’s Thesis

48 pages, 3 figures, 1 table

Examiners: Professor Ossi Taipale

Keywords: DevOps, Continuous Development

The purpose of this thesis was to create a roadmap for a .Maintain framework. The

framework would support in tasks performed after initial deployment of an application.

This phase, which produces majority of total development costs, is emphasized by

emerging continuous development methods. By creating tools that support post initial

deployment phase significant cost reductions can be achieved. The resulting framework is

based on literature review done on relevant subjects. The framework supports in

developing new features, revealing additional requirements, fixing and identification of

defects. It is composed of two key parts: analyzer which provides valuable information for

developers by combining various data sources and a programming library which supports

in various operations including data gathering. The roadmap acts as a starting point for a

project started at Lappeenranta University of technology that aims to create a .Maintain

framework that can be attached directly to an application at the implementation phase.

iv

ACKNOWLEDGEMENTS

This thesis was done for the school of Business and Management at Lappeenranta

University of Technology.

First, I want to thank my supervisor Professor Ossi Taipale for introducing me to this

interesting subject, I learned a lot during the project. Also thanks for motivating me when

the work was stagnated and being patient.

I am grateful for all my friends and family for your support. Especially Isto for advice and

help during the project.

Big up for those who are yet to graduate! Antti and Simo, now you guys at least have your

name in a master’s thesis.

And finally, I want to thank my university, LUT, it was alright after all!

At Lappeenranta on 5.12.2016

Veli-Ensio Heiniluoto

1

TABLE OF CONTENTS

1 INTRODUCTION .. 4

1.1 GOALS AND DELIMITATIONS .. 5

1.2 STRUCTURE OF THE THESIS .. 5

2 LITERATURE REVIEW ... 7

2.1 DEVOPS ... 8

2.2 CONTINUOUS DEPLOYMENT .. 12

2.3 CONTINUOUS INTEGRATION ... 16

2.4 AGILE METHODS AND LEAN PHILOSOPHY ... 17

2.5 MICRO SERVICES .. 19

2.6 SUMMARY .. 20

3 THEORY ... 21

3.1 COSTS OF SOFTWARE DEVELOPMENT ... 21

3.2 SHIFT IN DEVELOPING MODEL ... 22

3.3 DESIGN SCIENCE .. 24

4 RESULTS ... 26

4.1 AUTOMATIC DEPLOYMENT PIPELINE ... 27

4.2 ANALYZER AND TESTING STRATEGIES .. 28

4.3 DATA GATHERING AND PROBES ... 30

4.4 SIMULATOR.. 32

4.5 METHODS FOR CONTROLLING USER ACCESS ... 33

4.6 ARCHITECTURE .. 34

5 DISCUSSION ... 36

5.1 FUNCTIONALITIES AND ARCHITECTURE ... 37

5.2 COMPARISON TO EXISTING SOLUTIONS .. 38

6 SUMMARY .. 40

2

7 REFERENCES .. 41

3

LIST OF SYMBOLS AND ABBREVIATIONS

ARM Application Response Measurement

CI Continuous Integration

CD Continuous Deployment

DevOps Development and Operations

FDD SDK Feature Driven Standard Development Kit

FG Filling-the-Gap (a tool for DevOps)

IaaS Infrastructure-as-a-Service

IDE Integrated Developing Environment

OEC Overall Evaluation Criteria

PaaS Platform-as-a-Service

QA Quality Assurance

TDD Test Driven Development

TOC Total Cost of Ownership

TOSCA Topology and Orchestration Specification for Cloud Application

4

1 INTRODUCTION

The application development methods are in a constant evolution (Olsson, et al., 2014).

Methods that are providing shorter release cycle and faster reaction to customer feedback

are gaining traction. There can be seen a trend where companies are continuously

deploying program code on a frequent basis, if not daily. Another noteworthy phenomenon

is that application testing is increasingly done by utilizing customers as testers. The focus

in development is shifting to actions performed after initial deployment. This notion is

further supported by analyzing costs related to the development of an application.

According to report by Gartner, 92% of the total cost of the application lifecycle is

produced after the initial deployment (Kyte, 2012). For these reasons there appears to be an

increasing need for tools that support this continuous development of applications. By

focusing to the parts of the application lifecycle where most of the costs are produced,

significant cost reductions may be achieved.

In this thesis a roadmap for the implementation of a .Maintain framework is proposed. The

framework will support in actions performed after the initial release of an application.

These tasks include, but are not limited to, development of new features and identification

of defects. This framework will be attached directly to an application that is at

development. The roadmap is based on the studies done on related fields, relevant

standards and technological solutions. Subjects that inspire the roadmap include DevOps,

Continuous deployment and lean philosophy. The roadmap is constructed according to

design science research method. This paradigm emphasizes the use of existing knowledge

and literature in the construction of new artifacts.

Researchers at Lappeenranta University of Technology have started a project called TUTL

that aims to build a .Maintain framework. This thesis acts as one the first steps for the

project.

5

1.1 Goals and delimitations

The goal for the .Maintain framework is to reduce costs associated to application

development. Another important task is to shorten development cycles for the applications

and new features. This is achieved by providing tools for development that happens during

the maintain phase of the application lifecycle. The question this thesis is attempting to

answer is: what would such a framework consist of and how should it be build. During the

research central aspects of the development that takes place after initial deployment are

expected to be identified. The Roadmap should contain recommendations for the

framework, including functionalities it should consist of and technologies that should be

used. Possible architectural solutions should also be considered. In accordance to research

science paradigm the resulting roadmap should be evaluated in the thesis.

The roadmap should act as a guideline for the further research, providing inspiration for

the construction of the framework. Focus is strictly on the actions that are performed

during maintain phase of the development. In depth design decisions and requirement

analyses are out of scope of this thesis. The implementation is left for the following

iterations of the project.

1.2 Structure of the thesis

The thesis starts by reviewing literature from relevant fields. In the review, papers

discussing DevOps, continuous integration, continuous deployment, agile methods and

lean philosophy are included. Purpose of the review is to gain knowledge that can be

utilized in construction of the roadmap for the framework.

The third chapter is about the theory that explains the evolution of the software

development methods phenomenon. This shift is a force that creates the need for the

.Maintain framework.

6

The results chapter introduces the recommendations for the framework. The chapter

discusses about the four main functionalities that are in center of framework’s operation.

Also other design points and architectural options are explored.

The fifth chapter evaluates how the roadmap and the proposed framework succeeds in

satisfying the requirements placed on them. Framework’s ability to support in tasks that

take place after initial deployment of the application is evaluated. Also under discussion is

how the roadmap realizes the philosophies that were used to inspire it. Finally challenges

and limitations related to functionalities and architecture are discussed.

7

2 LITERATURE REVIEW

There is no research done on the subject of test and deploy frameworks, but the basis for

the framework can be created by closely studying related fields. There exists a number of

technologies for individual tasks such as automated deployment (Wettinger, et al., 2014).

Some inspiration can be drawn by inspecting the solutions created by companies working

with similar problems. In this chapter research and case studies done on the related fields

are reviewed.

DevOps (Development and Operations) is a software development philosophy which

emphasizes cooperation between software developers and administrators in order to make

development more efficient and to reduce defects in the final product. DevOps philosophy

calls for automation of its processes, including data collection, distilling knowledge from

the data and communications (Cois, et al., 2014).

In continuous integration (CI) development model developers frequently integrate their

code against central repository. CI model removes the lengthy task of integration from the

software development process. All of the developers are working on the same version of

the software (Claps, et al., 2015). Continuous integration requires high degree of tools in

order to create an automated building process. Goal is to produce self-testing code that is

automatically integrated (Fowler, 2006).

Continuous deployment (CD) can be defined as an ability to deploy software at will. In

practice this means that companies are automatically releasing parts of the software into

some production environment as soon as they are finished. As organizations are starting to

release code more often, the number of defects reported by customers seems to be

decreasing. To achieve this CD utilizes a set of tools ranging from build scripts to

automated testing (Fitzgerald, et al., 2014).

Lean philosophy and agile development methods have affected aforementioned practices

(Fitzgerald, et al., 2014). Lean philosophy tries to make development work more efficient

8

by breaking process into individual steps and identifying the ones that bring value,

everything else is disregarded. Then, the goal is to improve the remaining steps. The agile

method Kanban, takes this even further by removing the fixed steps and focusing on

continuous work flow (Corona, et al., 2013).

2.1 DevOps

In an article released at the communications of the ACM, practices inspired by DevOps are

inspected (Roche, et al., 2013). There is no standard definition for DevOps, often it is seen

as a combination of developing and operational skills. Other common definition is that

DevOps is a new criteria for software development, combining areas such as development,

testing, release, support and data gathering. One of the central points in the DevOps

philosophy is the utilization of operational data. Crash reports and user data collection are

examples of this practice. In the essence is capturing client insight (including what

customer sees, when and how often) and turning it into valuable information for software

developing. This insight can be used to guide operations such as bug prioritization, test

planning and release planning.

CloudWave is an “execution analytics cloud infrastructure” which utilizes DevOps

principles in order to provide a developing environment which enables deploying

continuously improving applications and optimization of the operation environment. It is

inspected in depth in a research paper (Bruneo, et al., 2014). Operation of CloudWave is

based on three pillars: execution analytics, coordinated adaptation and feedback-driven

development.

The execution analytics framework integrates real time usage information from various

sources. Resource and sensor information is gathered from data centers. Run time data

from applications is also collected, including operational information and user interaction

patterns. When combined this data forms a complete view of the operation of the

application. It can be used as a basis for decisions regarding future development. To

support data analyzing CloudWave provides two different methods: Programmable

9

monitoring and online data abstraction which utilizes various technologies to reduce the

amount of data. Second important function of CloudWave is the coordinated adaptation,

which enables cloud environment to dynamically adopt to changes. Adaption covers all the

layers of the environment and it is based on a data gathered by execution analytics

framework.

Third innovation by CloudWave is called feedback driven development which lets

developers to exploit application run time data to steer the development of the software

inside agile feedback loops. Tools that are enabling this include: Feature Driven

Development Kit (FDD SDK), feedback reporting services and methods for testing effects

of software transformations on application’s quality and performance.

A scenario demonstrating the effectiveness of CloudWave was provided by the developers,

in which developers were working on a cloud based mobile application at a health care

organization. At one point they noticed that the cloud was struggling to allocate services.

By using run time data received from the feedback mechanisms the root of the problem

was identified to be the encryption algorithm, which was then modified. This is one

example how these techniques together result in shorter development cycles by letting

developers continuously identify modifications that will deliver result on investment.

In a research paper a generalized model for automated DevOps is proposed (Cois, et al.,

2014). Purpose of the model is to help disseminate information more efficiently, while

reducing the number of defects in the code. Model also frees human actors by automation

of the communication tasks. Operations and technologies used for achieving DevOps were

identified to be: source control, issue tracking, code review, build, monitoring and

communications systems, and an integration environment.

One of the central components of the generalized model is an automated build system. The

system monitors the software repositories and acquires the relevant artifacts. Then it builds

and performs tests on the software. Deployment is handled by transferring the code to the

integration environment. The build system also notifies the communications systems when

10

deployment is ready.

Researchers from University of Stuttgart describe how different DevOps artifacts can be

integrated and transformed into TOSCA standard model to realize automated end to end

deployment in the cloud environment (Wettinger, et al., 2014). There exists a number of

technologies for an automated deployment of an application, these packages include all the

necessary scripts and modules. This paper inspects two of them: Juju charms and Chef

cook books. A single technology might not contain all the required functionalities thus

creating a need for integration. However these technologies require their own run time

environments making integration difficult. Researchers developed a solution utilizing

TOSCA (Topology and Orchestration Specification for Cloud Application) standard.

TOSCA creates a unified meta-model, that can be used to integrate different technologies

into cloud infrastructure.

Chef is a configuration management framework. Its operation is based on bundles of

configuration definitions called cookbooks. Cookbooks contain all the necessary

commands needed to deploy an application on a single node, inter node relations are not

supported. Commands can be, for an example, installing a MySQL database or an Apache

server and configuring them. Chef also contains a tool called knife, which is used to

manage components connected into a chef server.

In contrast to Chef, Juju is a tooling dependent solution for deploying applications on a

multi node environment. Juju uses script files called charms. Charms contain a complete

lifecycle of a component. Charms consist of commands such as: starting and stopping a

database server. Juju also contains a management node used to control charms.

11

FG (filling-the-gap) is a tool that implements DevOps by providing methods for collecting

and analyzing operational data (Perez, et al., 2015). FG was developed for two purposes.

First one is to provide data for improvement of quality of service models. Second one is to

provide reports about application’s runtime behavior. FG has a framework that is able to

measure both application and system level metrics. Other important components include a

monitoring history database and a design time component used to update quality of service

models.

FG is able to monitor four different parameters. Measuring tools were designed with the

purpose of evaluating service level objects in mind. First one is the current user population

of the application. The data is based on a total number of requests performed on the

system. To obtain the number of requests a monitor for each of the applications main

methods is needed. Second parameter is resource consumption (CPU). For measuring this,

various methods can be used: CPU throughput, length of queues at the resources and

response times. Third parameter to be monitored is think time meaning the time user

spends inactive using the application. It can be obtained by indirect measurements,

utilizing total and mean number of requests performed on the system. Also, if available,

request arrival rate can be used. Fourth parameter, stage duration is related to deployment

of an application. These stages describe the state of the resources on which the application

is deployed. They can be used for measuring efficiency of the deployment. FG requires a

monitoring platform to function, for an example MODACloud is sufficient.

Logs produced by an application can also be used to implement DevOps practices (Shang,

et al., 2012). In the study researchers analyzed logs produced by varying applications,

findings concluded that logs contain a rich source of information beneficial for both

developers and operators. Researchers also proposed ways to utilize logs more efficiently.

Developers can use logs to identify error-prone components, or classes, in the software. To

achieve this logs that are updated often are identified. Then metrics, including code

complexity and number of pre-release bugs, are included into a statistical model in order to

12

find out classes that are prone to errors. Logs can also be used to evaluate field test

coverage for systems. In practice this means creating two different models from logs, field

execution model and testing execution model, and comparing them to calculate the test

coverage.

Logs can be used to reduce operational complexity, two ways were proposed. Currently

there exists no standardized way to document application logs. Study suggests that by

attaching development history and bug reports to corresponding lines logs can be utilized

more efficiently. Logs are constantly changing during application development, developers

need to inspect these changes in order to figure out their impact. By analyzing source code,

filters can be constructed to bring out the changes to support development.

2.2 Continuous Deployment

Continuous Deployment (CD) can be defined as a practice that takes continuous

integration even further by automating following tasks: deploying to testing environment,

acceptance testing and deploying to production environment. While continuous integration

only automates code change detection, unit testing and integration testing (Pulkkinen,

2013). The seminar paper also introduces continuous deployment strategies and tools

common in the industry.

To achieve CD an automated build pipeline must be implemented. This pipeline consists of

all the necessary tools needed to deploy a piece of software from commit to production

environment. Essentials tools are described in table 1.

Table 1. Essential tools for an automated deployment pipeline (Pulkkinen 2013)

Application type: Application examples:

Version Control System Git, Mercurial

Continuous Integration Server Jenkins, Hudson

13

Software Configuration Management Chef, Juju

Automated Test Suites Junit, JMeter

Database Change Management DbDeploy, Liquibase

Build Tool and Dependency Management System Apache Maven, Rake

Because the pipeline forces developers to follow good and efficient developing practices, it

is concluded in the Continuous delivery book (Humble, et al., 2010) that:

“Even if it is not possible to apply the continuous deployment as your

software development strategy, you should build your build-pipeline as

such as you could switch to continuously deploying every commit to

production at any time.”

Author of the paper also describes common strategies used to reduce risks related to

deployment. Feature flags are used to dynamically toggle on and off software features if

they are causing issues. They can be implemented on the code level. Dark launches can be

used to hide software features from actual users after deployment, only testers are granted

access to said features. This method should only be used for performance testing, as other

tests should have been performed during deployment pipeline. In blue-green method two

different environments are utilized: first environment contains the original working version

of the software, while second environment has the newly deployed one. If issues occur

system can be restored by falling back to the first environment. Canary releasing is testing

strategy where only a small portion of actual users is exposed into a new feature. It is

related to A/B-testing practices where selected group of users is split into two groups.

These groups are exposed to two variations of the same feature.

Author also introduces various solutions to implement a CD environment. Heroku is a

platform-as-a-service (PaaS) solution that automatically builds and deploys pieces of

software as they are committed to its repository. Continuous integration environment could

14

be used to commit changes to a Heroku repository when the code has passed the automated

tests. Heroku provides this service as an add-on, Tddium. Red Hat OpenShift is another

PaaS solution that implements continuous deployment, its operation is based on a popular

continuous integration server Jenkins. OpenShift functions in a similar way to Heroku.

However, unlike Heroku parallelization of tests is not supported. Finally author proposes

combining a PaaS continuous deployment solution with an integrated developing

environment (IDE) that supports collaborative programming to achieve even faster

development process.

In a survey performed by North Carolina State University most common practices related

to continuous deployment were identified (Rahman, et al., 2015). Most used practices

include: automated deployment, automated testing, code review, dark launching, feature

flags, monitoring, repository use and staging. Survey also included most used testing

practices: unit, integration, A/B, acceptance, regression and functional testing.

Perceptional testing is an emerging practice that tries to identify non-trivial errors invisible

for human eye. These errors are seen as a source for customer dissatisfaction. In perceptual

testing snapshots of two different versions of the user interface are compared pixel by

pixel. Visual difference of the pages is then calculated.

Case study (Neely, et al., 2013) reviews Rally Software’s transition to a continuous

delivery model, and also introduces the rationale for the change. Before transitioning to

CD, the company was using the Scrum development method, with an 8-week cycle. This

cycle was felt as a limiting factor as precious features would have to wait until end of the

cycle. If deadline was missed a feature would have to wait another eight weeks. Smaller

batch sizes were also expected to reduce the number of the defects and make integration

easier. Continuous deployment allowed developers to test new ideas easier. Kanban

methodology was used to replace Scrum, as it allows more continuous workflow.

A number of continuous deployment practices were used including: feature toggles, dark

deployments and canary deployments. To implement dark deployment programming

15

library AKKA was used. Feature toggles were also utilized to grant access to new features

for specific users. Practice of testing code manually had to be changed, however quality

assurance personnel were still needed to prioritize tests at pre-development phase. In

conclusion Rally software saw a significant increase in code throughput and a decrease in a

number of reported defects. Also occurrence of defects was noticed to be more predictable

than before.

The social media company Facebook created a framework to support continuous

development (Feitelson, et al., 2013). Some companies let developers release code straight

for users, but since Facebook operates with highly confidential data, more sophisticated

deployment method is used. One of the most important aspect of the Facebook’s model is a

live testing method, called A/B-testing, which facilitates actual users as testers. In A/B

testing developers select a small subset of users, and release the new functionalities for

those users. By closely monitoring the actual user’s experience, developers can see what

works and what does not. Facebook pushes new pieces of code in small increments to

reduce the risks related to deployment. They have implemented a tool called Gatekeeper

which is used to control user’s access into different versions of the code. It is a tool that

enables A/B testing. Each new piece of code is automatically regression tested in order to

detect any bugs that could emerge at the system. Version control system Git is utilized to

keep track of the code. Stability of each code branch is closely maintained.

The deployment process at Facebook is strictly defined, it consists of three steps, in which

each piece of code is rigorously inspected. At the first step code is released to internal

Facebook servers where final tests are performed. In the second phase code is released for

small fraction of real world users. If any problems are found they will be fixed and the

cycle repeats itself. After code passes these steps the final deployment phase begins.

Facebook uses Bittorrent technology to transfer the final version to various servers around

the world. At the time of the code push all engineers responsible for the code must be

available online, in case issues occur. A system that utilizes IRC-bots is used to achieve

communication between engineers. Facebook closely monitors their systems to detect bugs

and issues, a system health monitoring software is used. Data is gathered from both

16

internal sources and external sources, such as Twitter.

According to case study the step after continuous deployment is seeing research and

development as an experiment system (Olsson, et al., 2014). At this stage the entire system

is able to respond to customer feedback. Key aspect at this stage is using the system to

reveal customer requirements by experimenting and testing. Advanced instrumentation for

data collection is needed. Organization also needs the capability to effectively use the

collected data.

In the study organization’s employees were interviewed about their experiences in moving

towards continuous deployment. Employee in one company highlighted a need for data

about deployment. Developers would benefit from information achieved from the

deployment pipeline including the current quality of features and the number of errors, this

would allow teams to increase the quality of the subsequent builds. One major challenge in

continuous development was the wide variety of configurations that customers had. This

made the deployment of new features a tedious process. Another challenge experienced

was the wide variety of deployment related tools, developers would benefit from well-

defined processes and tools.

2.3 Continuous Integration

Experiences implementing a continuous integration environment are described in (Abdul,

et al. 2012). The process begins by defining a build strategy best suited for the application

at hand. Then appropriate tools are selected, modern IDEs usually include functionalities to

develop build scripts. The actual build is handled by an integration server such as Jenkins

or Hudson. Other tools frequently used in the CI systems include: bug tracking, version

control system and testing tools.

The CI process starts by gathering all the required pieces of code from repositories.

Complexity of this task depends on the amount of repositories. Next step is a build process

that can include tasks such as compilation, unit testing and code obfuscation. Packaging is

https://paperpile.com/c/OoBxdu/k2FL
https://paperpile.com/c/OoBxdu/k2FL

17

the final step of the process. It includes activities related to making the product

distributable to other parties. Depending on the needs such as compatibility requirements

the package can an executable or an archive file.

Central concepts of CI are reviewed in (Fowler, 2006). Continuous integration requires a

high degree of automated tests embedded into code, sometimes called self-testing code.

There exists a discipline studying these practices called Test Driven Development (TDD).

To produce self-testing code a suite of automated tests is needed, and only when tests are

passed the build can begin. A testing framework called xUnit can be used for this purpose,

there are also other tools including FIT, Selenium and FITnesse.

Agile testing techniques can be used together with continuous integration model (Stolberg,

2009). One of the most important tasks is to define the acceptance tests and automate them

to highest possible degree, to guarantee that customer requirements are met. This also

reduces the amount of regression testing required. xUnit framework can be used for

acceptance testing.

2.4 Agile Methods and Lean Philosophy

Lean philosophy can be applied to a design of software to achieve high testability

(Alwardt, et al., 2009). Testability is significantly affected by two factors: cohesion and

coupling. Cohesion measures how well functionalities inside model are related to each

other; high cohesion is desirable. Coupling measures how inter-connected modules are,

low coupling makes testing easier. However with complex systems coupling cannot be

completely avoided, modules with high coupling are not unit tested. With complex systems

regression testing should be preferred. Unit tests and regression testing should be kept

separated.

Dependency injection is a technique used to enable unit testing in highly coupled systems.

In this practice mock objects are used to replace external dependencies. After unit tests

have passed the system can be integration tested.

https://paperpile.com/c/OoBxdu/poEH
https://paperpile.com/c/OoBxdu/Clez
https://paperpile.com/c/OoBxdu/Clez
https://paperpile.com/c/OoBxdu/XFPV

18

Setup and teardown methods can be utilized to enable automated testing. Setup method is

used to prepare system for testing by returning it to a known state. Tear down method

returns system back to its original state after tests are run. Usually these methods are

needed when databases or singleton objects are present.

Lean 123 initiative introduces a three point checklist for execution of tasks. It can be used

when designing software testability. The checklist is: Establish clear priorities, eliminate

bad multitasking and limit the release of work in process. Automated regression tests can

be used to enable lean approach in software engineering (Writing software that tests

software). Lean also emphasizes reducing waste, in software testing this can be achieved

by planning a minimum number of tests, just enough to meet the requirements.

The agile method SCRUM, the type-c version, can be modified to be used in the

continuous delivery model (Agarwal, et al., 2011). In type-C SCRUM sprints of varying

lengths are overlapping. Weekly sprints provide bug-fixes, monthly sprints are for features

and quarterly sprints are for major enhancements. Sprints are performed by multiple teams.

In the continuous SCRUM model there are three sprints: planning, development and QA.

A single team performs all the sprints simultaneously. In this model deployment into

production environment will happen weekly.

The key to achieve weekly releases is a build and deployment infrastructure, as proposed

by the authors. The infrastructure consists of following parts: automated build scripts upon

commit, developing server for peer testing, controls for moving work item between

environments and controls for releasing code in different phases. Authors promote the use

of automated testing, including automated user interface testing and user input recording.

Software company IMVU applied lean principles to their development process. Number of

technical artifacts were implemented to achieve this (Widman, et al., 2010). The project

was highly successful, authors conclude that the key element in applying lean principles to

software development is a comprehensive testing environment.

https://paperpile.com/c/OoBxdu/pyT2
https://paperpile.com/c/OoBxdu/ePk9

19

First lean principle IMVU utilized was “Specify Value in the Eyes of the Customer”. By

releasing sub-par product as soon as possible they were able to steer the developing work

according to user feedback, thus reducing waste in work hours. Second principle: “Identify

Value Stream and Eliminate Waste” was realized by implementing a continuous

deployment pipeline. It allowed engineers to identify problems related integration sooner

than using traditional methods. “Make Value Flow at the Pull of the Customer” is the next

principle that benefited IMVU. All the new features were at first tested with a small

number of actual users. Using this method it was possible to identify features that would

not be successful and then cancel development of them. In accordance of “Involve and

Empower Employees” - principle an individual copy of developing environment was

created for each employee. In the sandbox developers were able to test their code using a

set of automated unit, acceptance, functional, and performance tests.

2.5 Micro services

Micro services is a cloud architecture where application is divided to small independent

parts that each provide a service (Savchenko, et al., 2015). These services communicate

with each other using messages. They can be duplicated and moved to any other

computational resource. Services can be complex software systems containing local

storages or web servers for an example. Automated deployment is used in the development

of micro services. Authors describe a set of tests to be used when adding new services to a

micro service architecture. These tests are related to inter service communications. First

one is functional integration validation where inter-communication of services is tested.

Second testing method is load integration validation which checks service’s correctness

during automatic deployment. It includes the task of finding the maximum

communications load a service can handle. Last method is integration security validation

which checks the security and robustness of inter service communication. In addition

micro service communication interface should be validated.

https://paperpile.com/c/OoBxdu/et5Y

20

2.6 Summary

Numerous solutions and tools for testing and deployment were identified from the

literature. There seems to be no significant gap. However there is no solution that would

combine the tools, providing an easy to use solution for developers. Selection of testing

methods is also dependent on the application’s architecture, for an example micro services

model introduces a new set of tests. Following features for testing and development were

identified:

 deployment scripts (Wettinger, et al., 2014) (Pulkkinen, 2013)

 run time and application data collection (Perez, et al. 2015) (Roche, 2013)

 (Bruneo, et al., 2014)

 log analytics (Shang, et al., 2012)

 feature flags, dark launches, blue-green method, canary releasing and A/B-testing

(Pulkkinen, 2013)

 unit, integration, functional, acceptance, perceptual and regression testing

(Rahman, et al., 2015)

 dependency injection, setup and teardown methods (Alwardt, et al., 2009)

 automated user interface testing (Agarwal, et al., 2011)

 functional integration, load integration and integration security validation tests

(Savchenko, et al., 2015).

In (Pulkkinen, 2013) a continuous development environment is proposed. It contains all the

tools needed to push a piece of software from commit to deployment. In the core of its

operation is a PaaS solution for CD, such as RedHat OpenShift, combined to an automated

testing suite that contains tests identified from the literature. However, tools for monitoring

application’s run time activity are not included.

https://paperpile.com/c/OoBxdu/et5Y

21

3 THEORY

There can be seen a constant evolution of software development practices. Methods

become more agile in response to requirements rising from the market situation. The focus

in application development is shifting more and more to actions performed after initial

release. This can also be seen by analyzing the cost of ownership of an application. In this

chapter these phenomena are explored. Last section of this chapter introduces design

science, the research method used at the construction of the roadmap for the framework.

3.1 Costs of Software development

According to a report from research company Gartner application’s total cost of ownership

(TOC) consists of four components (Kyte, 2012):

 cost of initial project

 cost to operate

 cost to support and maintain

 cost to enhance and extent

Cost of the initial project is 8% of the total cost, this includes tasks such as requirement

analysis, design and implementation. Last 92% of costs are produced after the initial

release, actions taken at this phase include: introducing new features and fixing defects.

TCO is determined to be an outcome of design decisions and life cycle management

decisions. Costs are distributed unevenly during the lifecycle and will tend to increase

exponentially over time for large projects. In order to reduce TCO Gartner gives two

recommendations: investments to maintainability should be made and applications should

be designed having the whole lifecycle in mind. This leads to a change of mindset where

instead of thinking maintenance as process of making minor enhancements, it should be

seen as series of corrective, preventive, adaptive and perfective actions (Kyte, 2012).

https://paperpile.com/c/OoBxdu/taja

22

3.2 Shift in Developing Model

The software developing models are constantly changing. Evolution of software

development practices can be seen as a path that gradually leads from traditional

development methods to agile methods and then, finally, to continuous deployment and

beyond. Figure 1 visualizes the evolution of software development (Olsson, et al., 2014).

The reasons for the change in developing model can be traced back to the market situation.

Markets along with customer requirements are unpredictable and fast-changing, they are

affected by complex factors. Increasing competition also demands faster release cycles.

For these reasons development methods with shorter iterations seem appealing. They offer

more flexibility and faster reactions compared to traditional methods (Dzamashvili, et al.,

2010).

Figure 1. Evolution of software development methods

Typically companies have developed software using incremental methods with slow

release cycles (1). The methods move from step to step, from analyzing to implementation

then to testing and finally ending with the deployment of an application. Mechanisms for

reacting to customer feedback are not well integrated to the process (Robillard, et al.,

2003). A next step for organization is to start experimenting with agile methods (2) which

provide shorter development cycles. But time from received customer feedback to change

made to a feature is still relatively long. Method is not considered agile if the release cycle

https://paperpile.com/c/OoBxdu/noXr
https://paperpile.com/c/OoBxdu/royAJ
https://paperpile.com/c/OoBxdu/royAJ
https://paperpile.com/c/OoBxdu/qiut
https://paperpile.com/c/OoBxdu/qiut

23

is longer than six months. Typically length of an iteration ranges between two and six

weeks. Agile methods, such as extreme programming, emphasize improving design of the

application constantly and performing testing as often as possible. Typically at the end of

each iteration customer is given a chance to have an effect to requirements. (Highsmith, et

al., 2001).

Next step forward from agile methods is moving to continuous integration (3) and

deployment (4) (Olsson, et al., 2014). Goal of these methods is that developers can

automatically integrate and deploy code frequently if not daily. This practice acts as an

enabler for shorter customer feedback loops. At this point research, development, product

management and customers are part of same agile development cycle. The final stage of

the evolution is seeing research and development as an experimentation system (5), where

customer feedback is received instantly, and development can be steered according to it.

This leads to a mindset where:

“Deployment of software is seen more as a starting point for further

‘tuning’ of functionality rather than delivery of the final product.”

These last steps require not only sophisticated tools to handle automated deployments, but

a support and a full involvement from the organizational units and stakeholders including

customers. Processes need to be fine-tuned and focus needs to be shifted from components

to features.

https://paperpile.com/c/OoBxdu/Y1vL
https://paperpile.com/c/OoBxdu/Y1vL
https://paperpile.com/c/OoBxdu/noXr

24

3.3 Design Science

Design science is a research methodology used in information systems research that:

“Creates and evaluates IT artifacts intended to solve identified organizational problems “.

Such structured artifacts can vary from software and mathematical formulas to informal

descriptions in natural language (Von Alan, et al., 2004). Another important quality to

these artifacts is the relevancy to the previously unsolved problem. According to design

science, development of these artifacts should be a search process that utilizes existing

knowledge (Peffers, et al., 2007). After the artifact is constructed its quality and utility

must be rigorously investigated. Finally the results are communicated to appropriate

audiences.

There exists a guideline for conducting a design science project (Peffers, et al., 2007), it

consists of six steps, or activities. The process begins by carefully defining the problem,

here dividing the problem to smaller sub-problems might prove to be useful. Then the

value of the solution must be justified. This step builds on top of the existing knowledge on

the problem. The next step is to take the problem definition and to start drawing objectives

from it. Objectives can be for an example: In which ways the new solution would be better

than the existing ones or which previously unsolved problems would a new solution solve.

Knowledge about existing solutions can be used as a basis for this step.

After the solution has been defined the next activity is the implementation of the artifact.

Tasks performed during this activity depend greatly on the problem and the artifact. In

general they include: defining artifact’s functionality, determining its architecture and then

actually implementing it. This step of moving from problem definition to solution requires

a strong grasp of the underlying theory. Next activity is to take the artifact and demonstrate

its effectiveness by solving one or more instances of the problem. Methods of

demonstration include, but are not limited, to experimentation, case study and simulation.

This activity requires strong knowledge about the artifact.

25

After artifact has been demonstrated to solve the problem at hand it is evaluated.

Evaluation is based on observed results achieved during demonstration. These results are

then compared to objectives drawn during problem definition phase. Evaluation can be

performed in numerous ways such as customer surveys, simulations or actual metrics about

the artifact’s operation. According to evaluation researchers may decide to iterate back to

design step and make required modifications to the artifact. If the artifact is satisfactory

last step is to communicate the results to appropriate audiences. Relevant information that

should be communicated includes: the problem and its importance, the artifact, its utility

and novelty, the rigor of its design, and its effectiveness.

The design science research process does not have to start from the first activity. The

nature of the problem defines the appropriate starting point. For an example an object

centered project, triggered by a needs of industry, may begin from the second step.

26

4 RESULTS

The framework supports in tasks related to data gathering, analytics and testing. Its

operation can be divided into four parts that each provide an essential functionality:

 probe

 analyzer

 simulator (dependency injection)

 methods to restrict users access to the parts of the application

Probes are implemented as a programming library, they are attached directly to the

application code and are used to gather operational data. This data is fed to an analyzer.

The analyzer combines data from various sources and converts it to information that can be

used to make intelligent decisions considering the development. The framework also

provides other supporting functionalities.

Simulator is here defined as an artifact that is used to replace parts of the application to

make unit testing possible. The technique also known as dependency injection is used

when the application has a complex structure with a number of inter-connected external

resources, such as databases.

One of the important design principles in the framework should be utilizing customer

information in testing and development in order for development to move beyond

continuous deployment, as described in the case study (Olsson, et al., 2014). New features

should be tested with customers, as early as possible, to provide value as most business

decisions seem to fail in having any effect on performance (Kohavi, et al., 2009). In

addition to gathering user information with probes, methods used to control user’s access

to parts of the application should be included to support testing and experimentation with

new features.

https://paperpile.com/c/OoBxdu/noXr
https://paperpile.com/c/OoBxdu/NMTF

27

The deployment pipeline should be kept separated from the framework as tools for its

implementation are readily available. However the framework should be designed in a way

that it can work in cooperation with the pipeline.

4.1 Automatic Deployment Pipeline

Continuous deployment is a practice where the system tries to automatically build a piece

of code as soon as it has been uploaded into a central repository (Pulkkinen, 2013). If all

the tests are passed, the artifact is automatically deployed into the production environment.

If any of the tests fail developer receives instant a feedback. Tests that are usually part of

the continuous deployment process include unit, integration and acceptance tests.

Automatic deployment pipeline is an actual implementation of continuous deployment,

consisting of tools and well defined practices. The process is shown in figure 2.

Figure 2. A Continuous Deployment Pipeline

Continuous deployment pipeline should be implemented in every production environment

because it will help fixing the defects by offering repeatability and traceability, it will also

lower risks related to development by forcing developers to release code in smaller

28

increments. Continuous deployment utilizes customers as part of quality assurance and

development (Pulkkinen, 2013).

Tools for implementing continuous deployment are introduced in chapter 2, these tools

enable a complete implementation of continuous deployment. The pipeline should not be

part of the framework. This separation provides the framework flexibility by reducing

external dependencies. This also enables more lean design. The pipeline can utilize data

from the framework and use it to guide the deployment process. The framework can also

benefit from testing and deployment related data provided by the pipeline.

4.2 Analyzer and Testing Strategies

Analyzer is a piece of software and a part of the framework that is responsible for

transforming data gathered from various sources to valuable information. Inspiration for

the analyzer was taken by studying cloud platforms (Caron, et al., 2011) and adaptive and

analytic solutions for the clouds (Bruneo, et al., 2014) (Perez, et al., 2015). Analyzer

should collect data from:

 probes that are attached to program code

 logs produced by the application

 underlying infrastructure:

o hardware (memory usage, network usage, CPU usage)

o virtual machine and cloud environments

 external resources such as databases

 external internet services

 internet of things around the application.

Only by combining data from various resources can a complete view of the application’s

operation be formed. Depending on the developed application the amount of the data can

prove to be overwhelming, analyzer needs to combat this problem by providing relevant

https://paperpile.com/c/OoBxdu/79lE
https://paperpile.com/c/OoBxdu/JTPp

29

tools. Tools are required for compressing, abstracting and filtering the data. Another

method for reducing the amount of data is making monitoring programmable, which

enables developers to choose appropriate measures depending on the current application

and testing policies.

With faster release cycles due to continuous deployment some parts of testing the

components is allocated to customers. One company that relies to this strategy is Facebook

(Feitelson, et al., 2013.). A/B testing is one example of customer powered testing. In A/B

testing customers are randomly split to two even groups (Kohavi, et al., 2009). One of

these groups is exposed to an original version of the program or a control variant. Other

group is given a modified version, or a treatment variant. Observations are collected and an

overall evaluation criteria (OEC), or a metric, is defined. If experiment is designed

correctly any changes to the OEC must be because of modifications done to application

that is tested. One of the common OECs is a click through ratio, meaning a number of

users that have used the selected functionality. Another way to define OEC is to measure

changes in return of investment, for an example when testing design of advertisements. A

sufficient data collection both server and client side is essential for A/B testing.

At Microsoft the support team wanted to determine whether making the help pages more

personalized would be beneficial. In control variant user were given answers to most

common problems from all the different segments. In treatment variant the answers were

customized according to customer’s browser and operating system version. The click

through ratio for links in both variants was calculated, proving that simple personalization

in variant group provided more clicks and value to customers. In a same way A/B testing

can be used to test new prototypes. The metrics provide accurate real world information

whether customers behaved as expected and whether the added functionality provided any

added value. Analyzer is the part of the framework that acts as an enabler for testing and

experimenting performed with customers, thus it should be designed to support novel

testing strategies that are not included in the deployment pipeline.

https://paperpile.com/c/OoBxdu/NMTF

30

In this chapter design points for the analyzer part of the framework were explored.

Analyzer is responsible for:

 gathering and combining data

 enabling programmable data gathering

 compressing, abstracting and filtering the data

 providing methods for novel testing strategies

4.3 Data Gathering and probes

Data gathering is necessary component for many testing strategies such as A/B testing, it

also simplifies bug detection and guides direction of the application development. Data

gathering is the key to realizing DevOps and enabling experimenting with customers. A

number of data sources can be utilized. Most common sources identified from the literature

include data collected from application and virtual machine levels. Also runtime data from

underlying hardware can be exploited. In this chapter various probes and data sources

regarding application’s behavior are introduced. Inspiration for the probes was drawn by

studying self-adapting software and related measurement standards.

Probes should be placed in the application to monitor its state. Probes are implemented as a

programming library, they can be attached directly to application code during

development. There exists a number of standards defining a set of sensors to gather data

from the software entities (Salehie, et al., 2009). Application Response Measurement

(ARM) is a monitoring standard:

“Which enables developers to create a comprehensive end-to-end

management system with the capability of measuring the application’s

availability, performance, usage, and end-to-end response time.”

31

Other relevant standards and techniques include:

 CBE (Common Base Events)

 WBEM (Web-Based Enterprise management)

 JVMTI (Java Virtual Machine Tool Interface)

 JMX (Java Management eXtensions)

 CIM (Common Information Model)

Some of these are designed for specific programming languages, namely ARM which is

bound for JAVA and C languages. In addition sensors can be used with proprietary

software where recompilation is not possible WPI’s AIDE and OBJS’ ProbeMeister are

examples of such solutions. Network monitoring is also useful in gaining information

about state of the application (Parekh, et al., 2006).

As described in previous sections probes can be used to gain other useful attributes such as

user population, think time and response time (Perez, et al., 2015). To achieve these a

probe must be attached to each class’s main method, obtaining data about methods that are

called.

Click through ratio refers a practice of counting number of clicks on a link compared to

total number of users who see the page. It’s an essential metric in A/B testing (Kohavi, et

al., 2009). The click data can be collected at server side, or at client side depending on the

environment. In addition to collecting click through information, the data about user’s

interaction with the page should be gathered, since it can be utilized in various ways to

guide design decisions, as seen in the previous chapter’s example.

Logs generated by the application can be utilized in testing and development. Researchers

proposed a way in which logs can be used to predict error prone classes that could

experience bugs in future (Shang, et al., 2012). Logs offer a promising and commonly used

data source for the analyzer (Salehie, et al., 2009). One commercial example of log

32

utilization is Microsoft’s Azure cloud platform (Caron, et al., 2011).

Probes described in this chapter can be attached directly into code, although there exists

methods to measure already compiled application’s state. Probes should measure:

 user population

 think time

 usage

 availability

 end to end response time

 method calls

 click through ratio and user interaction

Together probes and other data sources including run time data from underlying

infrastructure and external internet services form a complete picture of system’s operation.

Analyzer is used to combine this data.

4.4 Simulator

Dependency injection is a design pattern in which object’s dependencies are substituted

with mock objects (Alwardt, et al., 2009). These mock objects are, in practice, fake

versions of real objects. They simulate the original object’s behavior by sending hard

coded messages or more intelligent responses based on a way they were called. For an

example the object could be a database or a web service. These mock objects are switched

in during unit testing. However integration testing needs to be performed using real objects

in order to test the communication between objects. Dependency injection should be used

because it simplifies and speeds up the testing process especially with complex systems.

33

Certain tasks that a simulator needs to perform are highly prescribed by the programming

environment (Ekstrand, et al., 2016). These tasks include identifying dependencies of each

component and wiring components together ensuring that all the dependencies are

satisfied. There exists a number of tools for each programming language to implement

dependency injection.

Dependency injection or a simulator supports unit testing which is a part of deployment

pipeline and not a part of proposed framework. There exists a number of tools to

implement simulating parts of the software including Picocontainer for Java (Hammant,

2011) and Ninject for .Net environment (Kohari, 2012).

4.5 Methods for Controlling User Access

As testing and prototyping new functionalities is performed more on users, sophisticated

methods to control user’s access to parts of program are needed (Pulkkinen, 2013). They

allow only a selected group to be used as testers. Certain testing strategies also require

capability to split users to groups. As a new prototype is deployed into production

environment there needs to be a method to turn it off in case of unexpected problems.

Feature flags enable developers to turn features on and off, in case any problems occur.

They are the requirement for the A/B-testing family. They can simply be implemented in

code level. Dark Launches are a technique that enables features being tested in production

environment, without customer interaction. Testers interacting with the feature can be

automated tests or humans. This way the systems performance can be tested and data about

the operation gained.

34

4.6 Architecture

The framework is composed of two key parts: the analyzer and the programming library.

Programming library consists of implementations for probes, simulator and user control

mechanisms. In figure 3 an architecture for the framework is proposed.

Figure 3. Architecture for the framework

35

Analyzer is a piece of software that gathers data from deployment pipeline, underlying

infrastructure and probes. Analyzer can also exploit data from other external resources that

are left out of the picture for simplicity, such as databases and application logs. There is a

two way relationship between the pipeline and the analyzer, as the deployment process

may benefit from operational data. An example of this relationship is using test coverage

data derived from application logs to target unit testing in the deployment pipeline. The

pipeline can supply analyzer with data about quality of features and number of errors, for

an example, as suggested in a case study (Olsson, et al., 2014). Simulator and methods to

control user access are functionalities that support development, they have no direct

connection to analyzer.

36

5 DISCUSSION

The goal for the framework is to support in tasks related to the maintain phase of software

development. Central characteristics of this phase were identified from the literature. In the

center of action is adding new functionalities, fixing the defects on existing ones and

revealing additional requirements. The framework attempts to form a complete view of the

application’s operation thus offering a way to identify defects as soon as they appear.

Adding new functionalities and revealing additional customer needs is also supported by

data gathering. This enables developers to identify new requirements and explore which

features bring value for customers and which do not. The framework offers tools that

support experimenting with new features, namely the methods to restrict user access to the

parts of the application. Utilization of data is also a key aspect in turning research and

development to an experiment system.

Reduction of total ownership cost (TOC) of the application was one of the key motivating

factors for the framework. According to report by Gartner (Kyte, 2012) design decisions

have a direct effect on TOC. Using customers for testing new features and receiving real

world usage data supports in making more intelligent decisions that bring more value. As

75% of business decisions fail to provide any value (Kohavi, et al., 2009), there exists a

potential for significant reduction of costs.

Other important goal for the proposed framework is to shorten development cycles of the

application and new features. This is where probes and other data sources utilized by the

analyzer provide value. Developers of FG (Perez et al. 2015), demonstrated the effect of

DevOps strategies in a motivating scenario. These methods are expected to provide

significant speed ups to the development.

One of the inspirational sources for the framework was DevOps. Which is utilizing

operational data in development, and vice versa. The framework provides operational data

by the use of probes. The DevOps principle is further realized by the analyzer which

combines application’s runtime data with the data from the underlying infrastructure.

37

Analyzer also attempts to turn data into a valuable information for developers by offering

various tools related to filtering, abstraction and visualization of data.

Other important aspect in the framework is the support for continuous development of the

software. While the framework does not implement continuous deployment pipeline it

supports deployment by offering data, this data can be used to guide testing for an

example. By keeping the deployment separate the framework maintains its flexibility and

modularity, this is further supported by the lean philosophy. There also exists a range of

tools for a full implementation of continuous deployment pipeline.

The framework can be seen to offer support to all three central tasks of post initial

deployment development that were identified. Additionally it also realizes the two central

philosophies that were used as an inspiration. In this chapter roadmap for the framework is

further evaluated by looking at its functions and architecture. Last section justifies the

roadmap and the framework by explaining the key differences to existing solutions.

5.1 Functionalities and Architecture

Probes collect data about application’s operation. They are implemented as a programming

library. This approach allows a wide range of data to be collected. However this approach

is not all inclusive, data from infrastructure and hardware levels needs to be also collected

in order to get a complete picture. For an example some data such as click through ratio

can be calculated in a multiple ways: in addition to using a programming library solution,

data can be achieved from a server or infrastructure level (Kohavi, et al., 2009). Further

investigation is needed to determine which probes benefit from programming library

implementation. During research the list of probes presented is expected to change.

Certain tasks are heavily dependent on selected programming language. For an example

monitoring standard ARM is bound for C and Java languages. The programming language

dependency must be considered at an early design phase. There are existing solutions for

multiple tasks included at the programming library. One example of this is technique

38

related to controlling user access, dark deployments. Which can be achieved by the use of

programming library called AKKA. It must be evaluated whether new implementation

would provide any value.

The simulator is used for replacing parts of the program in order to simplify unit testing.

There exists a number of solutions for its implementation. Dependency injection

techniques are also heavily dependent on the programming language, there may exist

programming language independent simulation techniques, but they were not found during

literary review. If included to the framework it would introduce new requirements and

dependencies and complicate design. Unit testing is part of continuous deployment

pipeline, and then outside of the scope of proposed framework. Further research is needed

to determine whether application development would be benefited by the inclusion of

dependency injection techniques to the programming library.

5.2 Comparison to existing solutions

The proposed framework differs from existing solutions in a way that it combines a

number of varying data sources in order to provide a more wholesome view of the

application’s operation. Other solutions such as FG (Perez et al. 2015) provide only limited

hardware data combined to a monitor that is used to record method calls. The need for

combining large variety of data sources was also noted in a study done on the field of self-

adapting software (Salehie, et al., 2009).

 CloudWave (Bruneo, et al., 2014) combines varying data sources with advanced analytic

tools. In comparison the .Maintain framework offers more flexibility to monitoring by

offering probes as a part of programming library. The approach the framework takes was

not found in the literature, existing solutions act as a platform where applications operate.

The framework is attached to application’s program code. This way maintainability is

taken in to consideration from early stages of development, the approach suggested in a

report by Gartner (Kyte, 2012). In addition to probes and analytics, the framework also

offers a range of tools that support continuous application development. According to

https://paperpile.com/c/OoBxdu/taja

39

literature this type of solution offering a wide range of tools does not seem to exist.

Another difference to existing solutions is the integration to continuous deployment

process, which is expected to support development and deployment processes. FG (Perez

et al. 2015) supports developers with data about length of each stage of deployment

process, but more data would provide extra value to developers (Olsson, et al., 2014).

40

6 SUMMARY

The purpose of this thesis was to construct a roadmap for a .Maintain framework. The

framework will support the actions performed after initial deployment of an application.

The goal is to reduce production costs and to speed up deployment of new features. From

the literature the central tasks of this phase were identified to be: developing new features,

fixing and identification defects and revealing additional requirements. Researchers have

developed various methods and philosophies for this phase of development. One of the

central concepts is continuous deployment. In this practice developers deploy program

code to production environment as often as possible using automated tools. Other

significant practice is DevOps which emphasizes cooperation between development and

operation. In the center is the utilization of operational data. The roadmap for the

framework was constructed based on these concepts and ideas using design science

approach.

The proposed Framework consists of two key parts: (1) Analyzer combines data from

multiple sources, the data is then turned to valuable information which can be used to

guide application development. Tools for combatting data deluge are provided. Data

sources are: the deployment pipeline, probes and hardware and infrastructure. (2)

Programming library which has three key components. First part are the probes which can

be attached to application to measure its state. Probes can be used to measure various

parameters including user population, response time and user interaction patterns. Second

part is the simulator which can be used to replace parts of the application with mock

objects, this method simplifies unit testing. Third part of the library are the methods for

controlling user access to parts of application, which will enable testing new features with

live customers.

The framework has potential for reduction of development costs by providing information

that can be used to make more intelligent design decisions. When completed .Maintain

framework would fill a gap, as there are no existing tools that would provide support for all

aspects of development of applications after initial deployment.

41

7 REFERENCES

Abdul, F.A. & Fhang, M.C.S., 2012. Implementing Continuous Integration towards rapid

application development. In 2012 International Conference on Innovation

Management and Technology Research. Available at:

http://dx.doi.org/10.1109/icimtr.2012.6236372.

Agarwal, P. & Puneet, A., 2011. Continuous SCRUM. In Proceedings of the 4th India

Software Engineering Conference on - ISEC ’11. Available at:

http://dx.doi.org/10.1145/1953355.1953362.

Alwardt, A.L. et al., 2009. A lean approach to designing for software testability. In 2009

IEEE AUTOTESTCON. Available at: http://dx.doi.org/10.1109/autest.2009.5314039.

Bruneo, D. et al., 2014. CloudWave: Where adaptive cloud management meets DevOps. In

2014 IEEE Symposium on Computers and Communications (ISCC). Available at:

http://dx.doi.org/10.1109/iscc.2014.6912638.

Caron, E. et al., 2011. Auto-Scaling, Load Balancing and Monitoring in Commercial and

Open-Source Clouds. In Cloud Computing. pp. 301–323.

Claps, G.G., Svensson, R.B. & Aybüke, A., 2015. On the journey to continuous

deployment: Technical and social challenges along the way. Information and

Software Technology, 57, pp.21–31.

Cois, C.A., Joseph, Y. & Anne, C., 2014. Modern DevOps: Optimizing software

development through effective system interactions. In 2014 IEEE International

Professional Communication Conference (IPCC). Available at:

http://dx.doi.org/10.1109/ipcc.2014.7020388.

Corona Erika And Filippo, 2013. A Review of Lean-Kanban Approaches in the Software

Development. WSEAS Transactions on Information Science and Applications, (10.1),

pp.1–13.

http://paperpile.com/b/OoBxdu/k2FL
http://paperpile.com/b/OoBxdu/k2FL
http://paperpile.com/b/OoBxdu/k2FL
http://paperpile.com/b/OoBxdu/k2FL
http://dx.doi.org/10.1109/icimtr.2012.6236372
http://dx.doi.org/10.1109/icimtr.2012.6236372
http://paperpile.com/b/OoBxdu/pyT2
http://paperpile.com/b/OoBxdu/pyT2
http://dx.doi.org/10.1145/1953355.1953362
http://dx.doi.org/10.1145/1953355.1953362
http://paperpile.com/b/OoBxdu/XFPV
http://paperpile.com/b/OoBxdu/XFPV
http://dx.doi.org/10.1109/autest.2009.5314039
http://dx.doi.org/10.1109/autest.2009.5314039
http://paperpile.com/b/OoBxdu/79lE
http://paperpile.com/b/OoBxdu/79lE
http://dx.doi.org/10.1109/iscc.2014.6912638
http://dx.doi.org/10.1109/iscc.2014.6912638
http://paperpile.com/b/OoBxdu/6IeQ
http://paperpile.com/b/OoBxdu/6IeQ
http://paperpile.com/b/OoBxdu/c8TH
http://paperpile.com/b/OoBxdu/c8TH
http://paperpile.com/b/OoBxdu/c8TH
http://paperpile.com/b/OoBxdu/n05i
http://paperpile.com/b/OoBxdu/n05i
http://paperpile.com/b/OoBxdu/n05i
http://paperpile.com/b/OoBxdu/n05i
http://dx.doi.org/10.1109/ipcc.2014.7020388
http://dx.doi.org/10.1109/ipcc.2014.7020388
http://paperpile.com/b/OoBxdu/7aqX
http://paperpile.com/b/OoBxdu/7aqX
http://paperpile.com/b/OoBxdu/7aqX

42

Dzamashvili Fogelström, N. et al., 2010. The impact of agile principles on market-driven

software product development. Journal of Software Maintenance and Evolution:

Research and Practice, 22(1), pp.53–80.

Ekstrand, M.D. & Ludwig, M., 2016. Dependency Injection with Static Analysis and

Context-Aware Policy. The Journal of Object Technology, 15(1), p.1:1.

Feitelson, Dror G., Eitan Frachtenberg, and Kent L. Beck, Development and Deployment

at Facebook.

Fitzgerald, B., Brian, F. & Klaas-Jan, S., 2014. Continuous software engineering and

beyond: trends and challenges. In Proceedings of the 1st International Workshop on

Rapid Continuous Software Engineering - RCoSE 2014. Available at:

http://dx.doi.org/10.1145/2593812.2593813.

Fowler, F., 2006. Continuous Integration. ThoughtWorks.

Hammant, P., Picocontainer. Available at: http://picocontainer.com/introduction.html

[Accessed November 22, 2016].

Highsmith, J. & Cockburn, A., 2001. Agile software development: the business of

innovation. Computer, 34(9), pp.120–127.

Humble, J. & Farley, D., 2010. Continuous Delivery: Reliable Software Releases through

Build, Test, and Deployment Automation (Adobe Reader), Pearson Education.

Jeff Widman, Stella Y. Hua, Steven C. Ross, 2010. APPLYING LEAN PRINCIPLES IN

SOFTWARE DEVELOPMENT PROCESS – A CASE STUDY. Issues in

Information Systems.

Kohari, N., 2012. Ninject. Available at: http://www.ninject.org/ [Accessed November 22,

2016].

Kohavi, Ronny, Thomas Crook, Roger Longbotham, Brian Frasca, Randy Henne, Juan

Lavista Ferres, and Tamir Melamed, 2009. Online experimentation at Microsoft. Data

http://paperpile.com/b/OoBxdu/royAJ
http://paperpile.com/b/OoBxdu/royAJ
http://paperpile.com/b/OoBxdu/royAJ
http://paperpile.com/b/OoBxdu/ai27
http://paperpile.com/b/OoBxdu/ai27
http://paperpile.com/b/OoBxdu/Tl8h
http://paperpile.com/b/OoBxdu/Tl8h
http://paperpile.com/b/OoBxdu/FoDG
http://paperpile.com/b/OoBxdu/FoDG
http://paperpile.com/b/OoBxdu/FoDG
http://paperpile.com/b/OoBxdu/FoDG
http://dx.doi.org/10.1145/2593812.2593813
http://dx.doi.org/10.1145/2593812.2593813
http://paperpile.com/b/OoBxdu/poEH
http://paperpile.com/b/OoBxdu/q7ZA
http://paperpile.com/b/OoBxdu/q7ZA
http://paperpile.com/b/OoBxdu/q7ZA
http://paperpile.com/b/OoBxdu/q7ZA
http://paperpile.com/b/OoBxdu/Y1vL
http://paperpile.com/b/OoBxdu/Y1vL
http://paperpile.com/b/OoBxdu/YjDB
http://paperpile.com/b/OoBxdu/YjDB
http://paperpile.com/b/OoBxdu/ePk9
http://paperpile.com/b/OoBxdu/ePk9
http://paperpile.com/b/OoBxdu/ePk9
http://paperpile.com/b/OoBxdu/Ghlj
http://paperpile.com/b/OoBxdu/Ghlj
http://paperpile.com/b/OoBxdu/Ghlj
http://paperpile.com/b/OoBxdu/Ghlj
http://paperpile.com/b/OoBxdu/NMTF
http://paperpile.com/b/OoBxdu/NMTF

43

Mining Case Studies, 11.

Kyte, A., 2012. Four Laws of Application Total Cost of Ownership. Available at:

www.gartner.com/.

Neely, S., Steve, N. & Steve, S., 2013. Continuous Delivery? Easy! Just Change

Everything (Well, Maybe It Is Not That Easy). In 2013 Agile Conference. Available

at: http://dx.doi.org/10.1109/agile.2013.17.

Olsson, H.H. & Bosch, J., 2014. Climbing the “Stairway to Heaven”: Evolving From Agile

Development to Continuous Deployment of Software. In Continuous Software

Engineering. pp. 15–27.

Parekh, J. et al., 2006. Retrofitting Autonomic Capabilities onto Legacy Systems. Cluster

computing, 9(2), pp.141–159.

Peffers, K. et al., 2007. A Design Science Research Methodology for Information Systems

Research. Journal of Management Information Systems, 24(3), pp.45–77.

Perez, J.F., Weikun, W. & Giuliano, C., 2015. Towards a DevOps Approach for Software

Quality Engineering. In Proceedings of the 2015 Workshop on Challenges in

Performance Methods for Software Development - WOSP ’15. Available at:

http://dx.doi.org/10.1145/2693561.2693564.

Pulkkinen, 2013. Continuous Deployment of Software. Cloud-Based Software

Engineering, 46.

Rahman, A.A.U. et al., 2015. Synthesizing Continuous Deployment Practices Used in

Software Development. In 2015 Agile Conference. Available at:

http://dx.doi.org/10.1109/agile.2015.12.

Robillard, P.N., Kruchten, P. & D’Astous, P., 2003. Software engineering process with the

UPEDU, Addison-Wesley.

Roche, J. & James, R., 2013. Adopting DevOps practices in quality assurance.

http://paperpile.com/b/OoBxdu/NMTF
http://paperpile.com/b/OoBxdu/taja
http://paperpile.com/b/OoBxdu/taja
http://www.gartner.com/
http://www.gartner.com/
http://paperpile.com/b/OoBxdu/4MZE
http://paperpile.com/b/OoBxdu/4MZE
http://paperpile.com/b/OoBxdu/4MZE
http://paperpile.com/b/OoBxdu/4MZE
http://paperpile.com/b/OoBxdu/4MZE
http://paperpile.com/b/OoBxdu/noXr
http://paperpile.com/b/OoBxdu/noXr
http://paperpile.com/b/OoBxdu/noXr
http://paperpile.com/b/OoBxdu/51N5
http://paperpile.com/b/OoBxdu/51N5
http://paperpile.com/b/OoBxdu/C5lp
http://paperpile.com/b/OoBxdu/C5lp
http://paperpile.com/b/OoBxdu/JTPp
http://paperpile.com/b/OoBxdu/JTPp
http://paperpile.com/b/OoBxdu/JTPp
http://paperpile.com/b/OoBxdu/JTPp
http://dx.doi.org/10.1145/2693561.2693564
http://dx.doi.org/10.1145/2693561.2693564
http://paperpile.com/b/OoBxdu/q5k2
http://paperpile.com/b/OoBxdu/q5k2
http://paperpile.com/b/OoBxdu/StE0
http://paperpile.com/b/OoBxdu/StE0
http://dx.doi.org/10.1109/agile.2015.12
http://dx.doi.org/10.1109/agile.2015.12
http://paperpile.com/b/OoBxdu/qiut
http://paperpile.com/b/OoBxdu/qiut
http://paperpile.com/b/OoBxdu/jmfu

44

Communications of the ACM, 56(11), pp.38–43.

Salehie, M. & Tahvildari, L., 2009. Self-adaptive software. ACM Transactions on

Autonomous and Adaptive Systems, 4(2), pp.1–42.

Savchenko, D.I., Radchenko, G.I. & Taipale, O., 2015. Microservices validation: Mjolnirr

platform case study. In 2015 38th International Convention on Information and

Communication Technology, Electronics and Microelectronics (MIPRO). Available

at: http://dx.doi.org/10.1109/mipro.2015.7160271.

Shang, W. & Weiyi, S., 2012. Bridging the divide between software developers and

operators using logs. In 2012 34th International Conference on Software Engineering

(ICSE). Available at: http://dx.doi.org/10.1109/icse.2012.6227031.

Stolberg, S. & Sean, S., 2009. Enabling Agile Testing through Continuous Integration. In

2009 Agile Conference. Available at: http://dx.doi.org/10.1109/agile.2009.16.

Von Alan, R.H. , March, S.T., Park, J. and Ram, S., 2004. Design science in information

systems research. The Mississippi quarterly, 28(1), pp.75–105.

Wettinger, J. et al., 2014. Standards-Based DevOps Automation and Integration Using

TOSCA. In 2014 IEEE/ACM 7th International Conference on Utility and Cloud

Computing. Available at: http://dx.doi.org/10.1109/ucc.2014.14.

http://paperpile.com/b/OoBxdu/jmfu
http://paperpile.com/b/OoBxdu/j8qK
http://paperpile.com/b/OoBxdu/j8qK
http://paperpile.com/b/OoBxdu/et5Y
http://paperpile.com/b/OoBxdu/et5Y
http://paperpile.com/b/OoBxdu/et5Y
http://paperpile.com/b/OoBxdu/et5Y
http://dx.doi.org/10.1109/mipro.2015.7160271
http://dx.doi.org/10.1109/mipro.2015.7160271
http://paperpile.com/b/OoBxdu/rGyX
http://paperpile.com/b/OoBxdu/rGyX
http://paperpile.com/b/OoBxdu/rGyX
http://paperpile.com/b/OoBxdu/rGyX
http://paperpile.com/b/OoBxdu/rGyX
http://paperpile.com/b/OoBxdu/Clez
http://paperpile.com/b/OoBxdu/Clez
http://dx.doi.org/10.1109/agile.2009.16
http://dx.doi.org/10.1109/agile.2009.16
http://paperpile.com/b/OoBxdu/xBxz
http://paperpile.com/b/OoBxdu/xBxz
http://paperpile.com/b/OoBxdu/labv
http://paperpile.com/b/OoBxdu/labv
http://paperpile.com/b/OoBxdu/labv
http://paperpile.com/b/OoBxdu/labv
http://paperpile.com/b/OoBxdu/labv

