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Pumping systems account for almost a fifth of global motor electricity consumption. With 

large consumption, system efficiency becomes increasingly important. Efficiency 

monitoring is typically handled by observing key process variables or machinery and 

performing separate energy audits. By applying methods of automatically identifying pump 

efficiency to gathered process data, savings on expensive auditing due to instrumentation 

costs could be made. 

 

In this Bachelor’s Thesis, methods for automatically identifying centrifugal pump operating 

state are studied. A literature review is performed on the existing research material 

concerning pump efficiency monitoring. Commercially available solutions are examined. 

Studied methods and process monitoring are discussed in the case of motor phase current 

data from industrial pumps. Sample features are extracted from the current data and tested 

with selected machine learning algorithms. Suggestions for further research and 

development are proposed. 

 

Commonly used classification methods for pumping applications were reviewed and their 

basic principles were explained with examples from previous research. Overview of 

commercial applications found existing products insufficient in terms of automatic 

classification and more geared towards upgrading traditional fixed-speed systems. Available 

current data was examined for features and the workflow for doing this was described. 

Extracted features were tested in MATLAB (MathWorks) environment with six supervised 

machine learning algorithms, an artificial neural network and a self-organizing map. The 

reliability of test results is weakened by the lack of sufficient available labelled test data. 

Systematic collection of more pump operating state data for labelling and further feature 

engineering were identified as the key focus areas of possible future research. 

 

Keywords: centrifugal pump, energy efficiency, automatic classification, efficiency 

monitoring 
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Pumppausjärjestelmät käsittävät lähes viidesosan globaalista moottoreiden 

energiankulutuksesta. Suuren kulutuksen myötä järjestelmien tehokkuuden merkitys kasvaa. 

Tehokkuuden valvontaa suoritetaan tyypillisesti tarkkailemalla prosessin tärkeimpiä 

muuttujia tai laitteita ja suorittamalla erillisiä energia-auditointeja. Soveltamalla pumppujen 

tehokkuuden automaattisen tunnistamisen menetelmiä kerättävään prosessidataan voitaisiin 

tulevaisuudessa saavuttaa säästöjä mittalaitteiden ja niiden asennusten vuoksi kalliissa 

auditoinneissa.  

 

Tässä kandidaatintyössä tarkastellaan keskipakopumppujen toimintatilan automaattisen 

tunnistamisen menetelmiä. Työssä suoritetaan kirjallisuuskatsaus olemassa olevalle 

tutkimukselle koskien pumppujen toimintatehokkuuden tarkkailemista. Lisäksi tarkastellaan 

kaupallisesti saatavilla olevia ratkaisuja sekä tutkittuja menetelmiä ja prosessinvalvontaa 

teollisuuspumppujen moottorivirtadatan tapauksessa. Analyysissä erotetaan 

virtamittausdatasta esimerkkipiirteitä, joita testataan valituilla koneoppimisalgoritmeilla. 

Lopuksi annetaan ehdotuksia jatkotutkimusta ja -kehitystä varten. 

 

Tavallisesti pumppausjärjestelmille käytettyjä luokittelumenetelmiä käytiin läpi ja niiden 

perusperiaatteita selitettiin aiemmasta tutkimuskirjallisuudesta poimittujen esimerkkien 

kanssa. Kaupallisten sovellusten katsauksen perusteella voidaan todeta nykyisten tuotteiden 

olevan automaattisen luokittelun osalta riittämättömiä ja suunnattuja pikemminkin 

perinteisten vakionopeusjärjestelmien päivittämiseen. Käytettyä virtadataa tarkasteltiin 

esimerkkipiirteiden löytämiseksi ja tämän työnkulku kuvattiin. Löydettyjä piirteitä testattiin 

MATLAB (MathWorks) ympäristössä kuudella valvotulla koneoppimisalgoritmilla, yhdellä 

neuroverkolla sekä itseorganisoivalla kartalla. Testitulosten luotettavuutta heikentää 

käytettävissä ollut riittämätön määrä luokiteltua testidataa. Jatkotutkimuksen pääkohteiksi 

tunnistettiin piirteiden jatkokehitys ja pumppujen toimintatiladatan systemaattinen 

kerääminen luokittelua varten. 

 

Avainsanat: keskipakopumppu, energiatehokkuus, automaattinen luokittelu, 

energiatehokkuuden seuranta 

 

 

 

 

 



 

CONTENTS 

 

 

Abbreviations and symbols 
 

1. Introduction ................................................................................................................... 6 
2. Available methods and solutions ................................................................................... 7 

2.1 Former research and types of classification .......................................................... 8 
2.1.1 Crisp limit rules ................................................................................................. 8 
2.1.2 Fuzzy rule sets ................................................................................................... 9 
2.1.3 Machine learning algorithms ........................................................................... 10 

2.2 Commercial solutions .......................................................................................... 13 

3. Data and extracted characteristics ............................................................................... 14 

3.1 Pre-processing and features ................................................................................. 16 

3.2 Efficiency monitoring workflow ......................................................................... 18 
4. Test results ................................................................................................................... 20 
5. Conclusions ................................................................................................................. 23 
References ........................................................................................................................... 24 
 

 

 

       

 
 



 

LIST OF ABBREVIATIONS AND SYMBOLS 

 

 

ANN   Artificial Neural Network 

ANSI  American National Standard Institute 

BEP  Best Efficiency Point 

BMU  Best Matching Unit  

EFEU  Efficient Energy Use research program  

HI  Hydraulic Institute 

KNN   K-Nearest Neighbors 

MLP  Multi-Layer Perceptron 

PCA  Principal Component Analysis 

POR  Preferred Operating Region 

SVM Support Vector Machine 

VSD  Variable Speed Drive 

 

H  head   

P  power  

Q  flow rate 

 

Es  specific energy consumption  

g   standard gravity value   

η   efficiency 

ρ   fluid density 

    

 

 

 

Subscripts 

d    dynamic 

in    input 

rel   relative to nominal value 

st   static 

tot    total 



6 

 

 

1. INTRODUCTION  

Pumping systems in the industrial sector consume 19 % of global motor electricity demand 

(IEA 2011). Due to the systems being heavy on energy, it is important that they function 

efficiently. However, this is often not the case. Pumps are designed for specific process or 

load conditions, but in reality, their typical operating conditions may vary outside this design 

point or range. Reasons for these variations may include overestimating the expected load, 

change in the process variables or mechanical faults and wear. Operation outside the 

preferred operating range (POR) of the pump can result in a significant drop in the pump’s 

energy efficiency.  

 

Inspection of the pump’s condition is traditionally done via scheduled audits or maintenance 

procedures.  Bigger processes can feature on-line monitoring systems for keeping track of 

the process variables. Audits and monitoring instruments are often expensive and therefore 

are usually only targeted at the most crucial pumps in the system. Simultaneously, a large 

number of smaller pumps can run inefficiently. This leads to hidden losses in efficiency and 

increases the risk of machinery breakdown, when performance degrading faults or wear go 

unnoticed. 

 

The objective of this thesis is to study methods of automatically identifying the efficiency of 

centrifugal pumps in their given operating state. For this purpose, several types of automatic 

decision-making algorithms are studied and evaluated. In the case of energy audits involving 

a large number of pumps, the costs of instrumentation rise. In order to assess this problem, 

the identification process should require a minimum number of sensors for data collection. 

In this thesis, the variables provided to the algorithms are extracted from phase current data 

collected from the motor driving the pump as normal process measurements. Ideally, an 

application utilizing these types of algorithms would use the already existing process data 

and give the user an indication whether pumps are running at good efficiency or not. 

 

This thesis has been conducted under the Efficient Energy Use research program (EFEU), 

in which the author’s university is a partner. The EFEU program, consisting of 11 industrial 

partners and 5 research organizations, aims to develop energy efficient solutions and services 

according to its four main objectives. These objectives include the development of 

measurement, analysis and optimization methods at the system level, applying these methods 

to applications in fluid handling and regional energy systems and assessing possible business 

opportunities, collaborations and future developments related to energy efficiency (CLIC 

Innovation 2016).  

 

The following sections first introduce the studied algorithm types and existing commercial 

solutions regarding pump efficiency monitoring. In section three, available data are analysed 

for input variables to the algorithms. Lastly, the algorithms are tested in section four and 

conclusions are given in section five. 
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2. AVAILABLE METHODS AND SOLUTIONS 

The efficiency of pumping systems is affected by the system layout and device 

characteristics. The system layout includes head losses due to static and dynamic head (Hst, 

Hd), in other words, overcoming of elevation and friction in the surrounding piping. An 

example of a system with static head losses is presented in Fig. 2.1 (Ahonen et al. 2015). 

The pump drive consists of a pump-driving electric motor and the pump itself, each with 

their unique efficiency values. Factors related to the pump itself include mechanical losses 

due to, for example, the bearing frame, stuffing box and mechanical seals as well as hydraulic 

losses occurring through friction and volumetric losses through wear rings (Ferman et al. 

2008). 

 

Hst,s

Hst,e k

LS1

LS2

Supply

reservoir

Destination

reservoir

Fixed-speed 

pump

Fluid level 

switches

 
Fig. 2.1.  A pumping system consisting of two tanks and a fixed-speed pump. Elevation causes static 

head loss Hst in the process. 

 

Pump characteristics are presented with pump curves provided by the manufacturer. Pump 

curves indicate the flow rate that a pump can deliver at certain head levels. Curves typically 

contain total head or power consumption graphed against a range of flows (QH and QP 

curves). Curves are usually provided for multiple different pump rotational speeds and 

impeller diameters. The system requirements are depicted as the total head required to 

overcome elevational changes and hydraulic friction in the system. The system curve shows 

the total head needed to move fluid through the system at a given rate of flow. Exemplary 

pump and system curves are shown in Fig. 2.2 (Grundfos 2017a). 

 

 
Fig. 2.2.  PACO LF centrifugal pump QH curves at six different speeds. Design point is marked with 

an arrow pointing at the intersection of the system and highest speed pump curve.  
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System inefficiencies are a sum of all the components, therefore, pump inefficiencies are 

linked to poor system design. Pumps operate in the intersection of the pump and system 

curves. Ideally, this operating point should be designed and maintained near the best 

efficiency point (BEP) i.e. the flow rate, which produces the highest efficiency (Ferman et 

al. 2008). 

 

Operation away from the BEP always reduces the efficiency of the pump. Inefficiencies 

typically occur for three main reasons. Firstly, system designers tend to leave a safety margin 

for estimating the system curve incorrectly or for future process changes, which leads to 

oversizing the motor and the pump. In this scenario, the motor load stays far below optimal, 

and the drive as a whole runs inefficiently. Another side of misdimensioning is that while 

running in its BEP, the pump can produce excess flow to the system. This may, in turn, be 

regulated with throttling, which moves the operating point away from the BEP and decreases 

the pump’s efficiency. Secondly, the system can be poorly operated. This includes throttling, 

unnecessary continuous operation and fluid recirculation. Finally, most issues come down 

to the lack of accurate information about the intended and current operating status. In order 

to make correct decisions in terms of initial design as well as component maintenance, 

accurate and regular measurements are needed.  

 

While improvements to system efficiency can be made by improving system design to better 

meet the requirements of the system and applying appropriate system control methods, this 

thesis focuses on detecting overall pump efficiency through acquiring and analysing 

measurement data. The effects of assessing individual component inefficiencies are 

discussed in papers by Maaranen (2010) and Ahonen (2015).  

 

2.1 Former research and types of classification 

In this section, multiple different types of classification methods are introduced in addition 

to the studied commercial solutions.  

2.1.1 Crisp limit rules 

The simplest and most straightforward way of performing classification is defining a set of 

rules, which dictate the appropriate assignment or action for each input. Defining these rules 

requires detailed knowledge of each process and the variables associated with it.  Rules can 

be presented as crisp IF-THEN statements evaluating each input simply as true or false for 

each step or class border.  

 

For example, rules can be set for process variables and their boundary conditions. A range-

based condition could be set so that operating points outside of the POR of 70-120 % of 

nominal flow would be classified as inefficient. The limits here were acquired from the POR 

definition in Hydraulic Institute’s standard (ANSI/HI 1997). Rules could also be set for a 

variety of other variables, but it can be seen that this approach would require a lot of process-

specific knowledge. Maintaining a large rule-base would also quickly become cumbersome. 

Considering these weaknesses, it can be seen how this method of classifying pump 

performance lacks the generalization ability needed for working with scarcely available data 

and a large set of pumps. 
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2.1.2 Fuzzy rule sets 

Enhancements to a rule-based system can be made by applying fuzzy logic. In contrast to 

binary logical decisions with Boolean operators, fuzzy systems are suited for describing the 

gradual nature of real-life processes. Instead of crisp value limits, fuzzy logic introduces a 

degree of belonging to a class. In a fuzzy system, inputs and outputs are given linguistic 

terms to describe their numerical value. In the case of a pumping system, relative flow rate 

and specific energy consumption could be assigned terms low, medium and high and the 

pump condition would similarly be either highly inefficient, slightly inefficient or efficient. 

Changes from one term to another are defined by the so-called membership functions. 

Membership functions indicate the degree of the variable being described with a specific 

linguistic term with values between [0, 1]. The shape of a membership function has to be 

considered based on the type of data it represents. A simple triangular shape, as shown in 

Fig. 2.3, can be appropriate for variables that have well-defined boundaries between terms. 

More complicated data might use a Gaussian or a highly custom function shape.   

 

 
 

Fig 2.3.  Triangular membership functions for pump efficiency. Exemplary conditions interpreted as 

highly inefficient “HIE”, slightly inefficient “SIE” and efficient “E”. 

 

The output of a fuzzy system is determined based on IF-THEN rules formed via expert 

knowledge of the system. In contrast to rough rule-based systems, fuzzy systems use the 

linguistic terms dictated by the membership functions instead of raw numerical values. Rules 

follow the format “If variable A is of linguistic condition B, then output is of condition C.”. 

After evaluating the rules that were fired, the overall output is determined from the 

combination of affected output memberships and the output condition is defuzzified back to 

a numerical value. A fault detection system using fuzzy logic is presented by Rodriguez and 

Arkkio (2008). 

 

Fuzzy rules are easy for humans to understand, due to their linguistic presentation. This 

makes them viable for use in control systems, where supervisor’s knowledge can be 

translated to control rules in a natural way. A downside to the fuzzy approach is that 

knowledge and deep analysis of the available data is required to form fitting membership 
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functions and rules. Unforeseen patterns in the data may stay unnoticed if they aren’t 

governed by rules explicitly. A combination of rough sets and fuzzy logic for fault diagnosis 

is introduced in Muralidharan and Sugumaran (2013). 

2.1.3 Machine learning algorithms 

In situations, where the exact causalities between process variables are unknown, it can be 

useful to utilize machine learning. Machine learning algorithms can help uncover the 

underlying functions and nonlinear relationships in the data. Machine learning is a broad 

term, but for the purposes of this thesis, it is used to refer to both the field itself and its sub-

field data mining.  

 

For determining pump efficiency, two types of machine learning were studied in particular: 

supervised and unsupervised learning. In supervised learning, the computer is given input 

data and the corresponding target outputs and is trained this way to form a rule to map these 

together. With unsupervised learning, no target values are given, and the computer has to 

find structures in the data by itself. Data mining focuses more on revealing unknown 

properties from the data and can be considered as a form of unsupervised learning. Semi-

supervised learning can be effective on large datasets where only a small number of target 

values/labels are known (Alpaydin 2014). 

 

In terms of desired output from the learning process, two tasks were considered: 

classification and clustering. In classification, the model is trained with inputs labelled to 

different classes for the model to correctly assign completely unseen inputs to their 

corresponding class. This is usually done via supervised learning methods by assigning to 

each training data input their desired output. A feature refers to an attribute identified from 

the input variables. As a result of training, the dataset is organized based on similarity in 

some chosen metric between the input feature values. Using supervised methods, 

classification is viable, when desired groupings are known beforehand. Classification is 

essentially an optimization problem, where the difference between desired output and given 

input is calculated by a loss or error function, which the algorithm then tries to minimize. 

Clustering is structuring input data into groups based on similarity. However, this is usually 

done in an unsupervised manner and the number and qualities of groupings are not initially 

known. When presented with unfamiliar data, it can be useful to first run an unsupervised 

clustering algorithm and use a supervised algorithm, once classes can be identified from 

clusters (Alpaydin 2014).  

 

During the background research for this thesis, some widely used algorithms for 

classification problems were studied. Descriptions of each algorithm’s main principles are 

presented here. Algorithms best applicable for pump classification are discussed in more 

detail in section three.   

 

Artificial Neural Networks (ANN), inspired by the functionality of the human brain, are 

widely used algorithms in classification and fault detection problems. Neural networks 

consist of layers of perceptrons and weights connecting them. Networks with one or more 

additional layers between the input and output layer are called Multi-Layer Perceptrons 

(MLP). MLPs can be used to perform nonlinear discrimination on the data (Alpaydin 2014).  

 

The input layer consists of input perceptrons (dimensions) and a bias perceptron with a value 

of one. Each layer after the input layer takes the preceding layer values as input and passes 

them though a nonlinear or radial basis function such as the sigmoid or hyperbolic tangent 
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(Gaussian). Finally, the outputs are calculated as linear combinations of the nonlinear basis 

function values. The weights are then updated based on the difference to the desired output. 

This is often done via backpropagation algorithm proposed by Rumelhart et al. (1986).  The 

algorithm updates the weights starting from the last hidden layer by minimizing an error 

function. The method is called Gradient Descent and attempts to optimize weights so a 

minimum is reached. Backpropagation can get stuck on local minima, which slows 

convergence. Another parameter to carefully consider is the learning rate, which essentially 

dictates how large the weight updates will be each time. A comparison of logistic regression, 

support vector machines and multi-layer ANNs found MLPs based on principal component 

analysis (PCA) more effective in monitoring oil pump suction strainer health. Although 

computationally more expensive, ANNs proved superior in generalization ability (Raza et 

al. 2010).  

 

Self-organizing map (SOM) is an unsupervised method of learning proposed by Kohonen 

(1990). Self-organizing maps are especially usable in problems where it is necessary to 

process high-dimensional data. They perform a dimensional reduction on the data, usually 

to 2D/3D, making visualization of the data much easier.  

 

The maps are variations of ANNs, which consist of cells, neurons. The variables or attributes 

of a given problem are presented as weight vectors assigned to each neuron at the beginning 

of the algorithm. Weight vectors can be initialized by random or through methods like PCA. 

The map is then trained by inputting data of the system. The learning is achieved by 

determining the neuron that best represents the input data. This neuron is referred to as the 

best matching unit (BMU). An often-used metric is the Euclidean distance. After a BMU has 

been selected, it is then moved closer to the input vector, making it even more similar in 

terms of its attributes. The neurons close to the BMU, in its so-called neighbourhood, are 

also shifted towards the BMU, but to a lesser extent. The functions related to this process 

are the neighbourhood function and the learning rate, which dictates the distance shifted. 

Both of these start larger and decline over time so that through longer series of iterations, 

eventually, only the BMU is affected. Continuing this process maps the input vectors to their 

corresponding neurons on the map while preserving the topology (Kohonen 1990).  

 

Through training the neurons become sensitive to certain types of attributes and start to form 

denser areas of similar neurons, clusters. Now additional input data, test points, can be used 

to identify clusters containing certain attribute combinations i.e. classes. By assigning the 

test vectors appropriate values based on prior knowledge it is possible to approximate the 

class borders. An example of SOMs in industrial process monitoring is presented in 

Dominguez et al. (2007). The application is based on tracking the BMU and detecting 

deviations from normal operation trajectory. A labeling method by Rauber (1999) also seems 

promising. This method called LabelSOM attaches labels to each neuron on the map 

according to the features that contribute most to an input vector landing on that neuron. 

 

Decision trees split the input space into two or more branches i.e. subsets at each decision 

node until all inputs following each branch belong to the same class. The probability of 

ending up on a specific leaf node, in other words class, is then the ratio of the instances on 

the leaf to the number of instances reaching the preceding decision node. Split decisions are 

made based on an impurity measure. A split is pure if for all the new branches, all the inputs 

choosing the same branch are of the same class (Alpaydin 2014). Splits that decrease 

impurity lead to smaller trees needed to differentiate classes. Univariate trees use only one 

input dimension to make their decisions, whereas multivariate trees can utilize multiple 
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dimensions at each decision node. To avoid noise causing the classifier to overfit, pruning 

can be done to improve the generalization ability of the tree. This can be achieved by 

stopping the tree-growing if too few instances support the decision or by removing redundant 

rules after growing the tree. The advantages of decision trees are interpretability, 

simultaneous feature extraction and simplicity. After the tree has been constructed, it can be 

easily read as rules. Furthermore, by examining the decision nodes one can distinguish 

features in the data that affect classification the most. An example of using a decision tree 

for pump fault detection is presented in Sakthivel et al. (2010). 

 

Support Vector Machines (SVM), proposed by Vapnik (1995), work by fitting a 

hyperplane into the input space in a manner that minimizes the number of incorrect 

classifications. The hyperplane is positioned so that it is a maximum distance away from the 

members of each class at any given point. The hyperplane serves as a decision boundary 

between classes. SVM hyperparameters and kernel functions need to be correctly chosen for 

good results. Vibration and wavelet based fault diagnosis of centrifugal pumps using SVM 

is discussed in Muralidharan et al. (2014). Other discriminant-based methods include for 

example linear, quadratic and cubic discriminants, which have decision boundaries of 

different shapes (Alpaydin 2014).  

 

K-Nearest Neighbors (KNN) algorithm is a simple method for classification. The method 

is based on determining the class of an input vector from known classes of its k nearest 

vectors in the training set. A special case of this is k = 1, where input are assigned to the 

single nearest neighbor’s class. Variations of the algorithm may use weights based on the 

distance of the neighbors, for example, a weight equal to the inverse of the distance to the 

input. The distance metric used needs to be considered depending on the type of data 

(Alpaydin 2014).  
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2.2 Commercial solutions 

For comparison with the scientifically researched classification and decision-making 

methods, available commercial market applications were studied. The amount of supervision 

needed and the ability to apply the solution to a large sample of pumps were the main points 

of investigation. Most relevant applications are listed in Table 2.1. 

 

Table 2.1.  Researched commercial applications for pump monitoring (ABB 2010, ABB 2013, ITT Water 

and Wastewater 2017, Siemens AG 2014, Grundfos 2017b).  

 

Application name Service provider Features and primary use 

PEMS-Pump Efficiency 

Metering System 
ABB 

Thermodynamic measuring 

method: 3 measurements for 

efficiency monitoring, 

predictive maintenance 

recommendation, integration 

with controller handles sets of 

pumps 

PumpFit ABB 

Start/Stop control, pump 

selection for lowest overall 

consumption, limit and 

operating hours monitoring 

Flygt Smart Compact:  

Control Panel 
Flygt 

Integrated VSD, using 

PumpSmart control, 

sensorless flow monitoring 

based on characteristic curve 

information and power and 

torque measurements, multi-

pump load balancing 

PumpMon Siemens 

A part of the SIMATIC PCS 7 

Condition monitoring library, 

5 measurements, limit and 

tolerance monitoring of 

characteristics 

CR Monitor Grundfos 

Control panel for CR pumps, 

self-configuring with 6 

measurements, comparison to 

measured or set reference 

levels 

 

The investigated products focus largely on improving system efficiency via means such as 

variable speed drives (VSDs) and incorporating system level changes. There exists a plethora 

of applications such as the Flygt “Smart Compact Control Panel” that offer extensive 

measurement capability and monitoring system utilities geared toward new installations or 

system upgrades. However, these systems are rarely independent in decision-making and 

need a supervisor to make the conclusions out of the presented data. Another large market 

share is taken by variable speed drive and frequency converter solutions to upgrade 

traditional fixed speed drives. It should be noted that manufacturers provide little 

information about the actual science behind their control methods and most encountered 

material is marketing material. Also, most of the studied “intelligent” monitoring systems 

required several sensors for measuring the operating status, so there seems to be a demand 

for a non-intrusive monitoring method such as the one discussed in this thesis. 
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3. DATA AND EXTRACTED CHARACTERISTICS 

The focus of this thesis was to study methods for determining whether centrifugal pumps are 

functioning efficiently based on process measurements. This thesis uses data from a prior 

master’s thesis by Maaranen (2010). In his thesis, Maaranen discusses the energy efficiency 

of pump drives and how it could be improved using case examples. These examples are 

based on analysing pumps in a cardboard machine system in Kaukopää mill, Imatra, Finland. 

Maaranen utilizes phase current measurements from the pump-driving motors and the 

characteristic curves of the corresponding pumps to provide estimations for motor shaft 

power, pump operating point and efficiency. He then proceeds to evaluate the efficiency of 

the pump drive based on a set of criteria. In total, 37 drives were studied, 18 of which were 

VSDs. 

 

The measurement data used were collected during a three-month period between 11/4/2009 

and 4/2/2010. Phase current data are averaged with a time interval of 10 minutes. An 

example of current data is presented in Fig. 3.1. Motor shaft power is approximated with a 

second order polynomial fitted into current and power values given at partial loads by the 

manufacturer. Points from the characteristic curves were digitized and shaft power estimates 

were used to solve flow rate values from the QP curve. Flow rates were in turn used for 

solving head values from the QH curve. Estimated values were used to calculate pump 

efficiency using cold water as the sample fluid. Linear interpolation was used to solve points 

on the characteristic curves. Estimating values based on the characteristic curves introduces 

some uncertainty, considering that the real operation may differ from the published curve, 

as discussed in Ahonen (2011). Furthermore, the estimation algorithm doesn’t correctly 

handle certain cases, where the characteristic curve doesn’t increase linearly, which leads to 

the algorithm linearizing between subsequent points and missing the real curve trace. An 

example of estimation failure is shown in Fig. 3.2. On flow rates relatively close to the BEP, 

however, the estimation works sufficiently. 
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Fig. 3.1.  Relative current data measurements from pump KP-534-052. Zero value spikes indicate 

maintenance     procedures. 

 

 
Fig. 3.2.  Failed estimation results. Manufacturer’s curve is presented in blue, estimated operating 

points in red. Green asterisk represents the mean of operating points. Estimates that produced 

negative flow rates are positioned at zero flow for simplicity. 
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The criteria for pumps set by Maaranen divides studied pumps into three categories or 

classes. The first class consists of pumps functioning near their nominal operating point.  

The POR described in the thesis for relative flow rate is 80-120% of nominal flow rate. The 

Hydraulic Institute (HI) standard is 70-120 % (ANSI/HI 1997). Pumps of the first class are 

considered efficient. The second class includes pumps that operate at relative flow rates of 

under 80% or over 120% of nominal flow. These pumps are operating outside of their POR, 

at partial flows. The third class holds pumps, the utilization rate of which is small or for 

which the estimation method produced erroneous results. The inspection of drive efficiencies 

also considered motor relative load when determining improvement options. Although crisp, 

the criteria set by Maaranen can serve as a reference for evaluating more elaborate 

classification methods. 

3.1 Pre-processing and features 

Classification and clustering are based on finding similarities in attributes of the data. 

Attributes, commonly called features, are characteristics, which contribute to the output and 

are calculated or deduced from the data.  Features need to be descriptive of the target class. 

As such, features should have either high relevance in respect to the target or both high 

relevance and minimum redundancy i.e. correlation between features. This ensures that each 

computed feature gives new information. In the case of efficiency and/or fault detection, 

causalities between a feature value and the output of the classification need to be determined. 

 

Dimensionality reduction methods are employed to reduce the number of features needed to 

compute and input to the monitoring system. Two main methods of doing this are feature 

selection and feature extraction. In the former, a subset of the available features is selected 

so that it contains the most information. This can be accomplished by adding or removing 

features and examining their effect on the classification error. When using the latter method, 

the aim is to derive new variables from the original set. In principal component analysis, the 

data points are projected onto principal directions i.e. the directions in which they have the 

most variance. The number of components that retains the most variance desirable is chosen 

for use in classification. 

 

Used dataset needs to be split into three parts: the training data set, validation set and the test 

set, which is introduced to the model as unseen data to classify. In Selak et al. (2014), 

measured data from a hydropower plant was divided by operating regime to four groups: all 

data, all but system stops and water levels less than a limit, all former and high water flow 

removed and finally transient phases removed. The more specific groups allow for earlier 

detection of abnormalities. It should be noted that the data acquired from the cardboard 

machine system are averaged current data with a time interval of 10 min. Therefore, the data 

in question can’t be used to detect fast fluctuations. For determining short-term faults, the 

sampling rate should be adjusted accordingly. Also, the transient phase data need to be 

filtered in this case so that the 10-min average can be used to recognize normal steady state 

operation abnormalities. 

 

Features to consider in detecting pump efficiency could include, for example, the average 

duty point of the pump (relative flow value Qrel), specific energy consumption Es (kWh/m3), 

average efficiency, average current load and utilization rate.  
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A pump can be run within its POR inefficiently with partial loads. Specific energy 

consumption, decreasing with improving efficiency, is defined by equation  

 

𝐸𝑠 =
𝑃𝑖𝑛

𝑄
=

𝜌𝑔𝐻𝑡𝑜𝑡

𝜂
,             (3.1) 

 

where 𝜌 represents fluid density, g the standard gravity value, H the total head consisting of 

the sum of static and dynamic head values Hst and Hd and 𝜂 the combined efficiency of the 

pump device and drive train (Ahonen 2015).  

 

Pump efficiency at a given operating point should be assessed relative to the maximum 

attainable efficiency for the pump. A pump, which is run with high efficiency but is rarely 

in operation due to its task, is still considered efficient in this thesis. Utilization rate is 

approximated with the ratio of operating points with non-zero current values to the number 

of measurements taken. Average motor current is calculated as the mean of non-zero points. 

Relative values are calculated from flow, head and power estimates by dividing them by 

nominal values. The set of pumps chosen for further study is presented in Table 3.1. 

 

Table 3.1.  Operating characteristics of the chosen pump set. 

Pump 

ID 

Average 

relative 

flow 

rate 

(%) 

Average 

relative 

efficiency 

(%) 

Average 

relative 

motor 

current 

(%) 

Utilization 

rate 

(%) 

Nominal  

point 

flow 

rate 

(l/s) 

Nominal 

point 

head 

(m) 

Nominal 

point 

motor 

shaft 

power 

(kW) 

Nominal 

point 

pump 

efficiency 

(%) 

KP-

534-

052 

99 99 67 99 103 19 23 84 

KP-

534-

112 

81 96 78 75 250 48 137 87 

KP-

534-

213 

103 91 84 85 1150 24 319 86 

KP-

534-

253 

29 46 84 88 458 35 188 83 

KP-

534-

271 

135 91 94 90 110 53 70 82 

KP-

534-

618 

63 84 42 11 834 49 527 77 

KP-

534-

675 

44 66 50 86 194 33 77 81 

 

 

For online implementation, a constant evaluation of sample duty point data is needed. Out 

of the pump data collected by Maaranen, only measurements on which the flow and shaft 

power estimation worked could be studied. A sample number of under 20 pumps isn’t 
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enough for learning models, therefore additional data were needed. Although models may 

work correctly on the training and validation sets, testing set results tend to weigh too much 

toward single feature values (namely Qrel). Alternatively, samples from different pumps 

could be merged, in combination with universally applicable features, to acquire more 

samples. Results obtained with few samples couldn’t make a distinction between pumps 

operating at partial loads. 

3.2 Efficiency monitoring workflow 

Applying an efficiency monitoring system requires certain steps universal to any used 

classifying or prediction method. A 4-step exemplary workflow is illustrated in Fig. 3.3. 

 

 

Fig. 3.3.  Process efficiency monitoring exemplary workflow 

 

Firstly, data are gathered via process measurements. As discussed in section 1, this should 

be achieved with the fewest possible sensors and instruments, in order to reduce 

implementation costs. Frequency converters are capable of providing voltage, current, torque 

and rotational speed estimates for further processing. After logging the data, an inspection 

into the form of the data point distribution is necessary to remove outliers and erroneous 

measurements. If the process type is known, as in the case of tank filling shown in Fig. 2.1, 

knowledge of its distinctive features could be used to, for example, form fuzzy rules as 

mentioned in 2.1.2. 

 

Next, filtered data need to be analysed and pre-processed. The calculations may be 

performed via cloud computing or a system mainframe computer. Once the features are 

chosen, as discussed in 3.1, common practice is to scale, i.e. normalize or standardize their 

values for fair comparison. Normalization rescales numeric values in the range [0, 1], 

whereas standardization gives the dataset zero mean and unit variance. The dataset is then 

divided into three parts for validation and testing purposes. 

 

Data Acquisition

• Log process measurements

• Filter raw measurement data

• Identify process type

Analysis and Preprocessing

• Calculate characteristics (features)

• Scale values

• Divide data set into training, validation and test sets

Training and Testing

• Train classifier

• Test performance offline

On-line Testing

• Real-time samples

• Classifier self-adjustment
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The third step is training and testing the classifier. In this phase, the training dataset and 

validation sets are used to perform the learning and confirm the classification accuracy on 

the trained model. Testing set performance indicates the model’s ability to generalize from 

unseen data, which is crucial for an on-line implementation that requires constant assessment 

of new samples. 

 

Lastly, classifier performance needs to be tested in a real-time environment. Learning 

models need to be configured so that they are less sensitive to outliers and noisy data. An 

example of this is using an adaptive resonance theory (ART) based network 

(Srinivasan&Batur 1994). An ART network won’t outlearn previously learned patterns, 

which is usually the problem with on-line implementations. 
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4. TEST RESULTS 

Testing in this chapter follows a workflow similar to chapter three. For testing purposes, a 

combination of 168 samples representing different operating states was chosen from the 

available measurement data. Samples were chosen so that both efficient and inefficient states 

were adequately present. Characteristics that were used include relative flow rate, specific 

energy consumption (both relative and absolute), efficiency and relative motor current, as 

was discussed in 3.1. Several supervised methods were tested in addition to clustering via a 

self-organizing map. Testing was conducted using the MATLAB Statistics and Machine 

Learning Toolbox. 

 

Six supervised methods were chosen for further inspection. These include a decision tree, 

two K-Nearest Neighbor classifiers, linear and cubic kernel SVMs and a quadratic 

discriminant classifier. A subset of the 168 samples was put aside for testing. All classifiers 

managed a 100 percent score on the testing set, which was to be expected since both the 

training and testing set were from the same hand-picked distribution by the author. In 

addition, a two-layer ANN with a 10-neuron hidden layer and a softmax layer was tested. 

The ANN also scored a 100 on the testing set. The confusion matrices of the ANN exhibiting 

the classification accuracy are presented in Fig. 4.1. 

 

 

Fig. 4.1.  Two-layer ANN confusion matrices for training, validation and test sets. Target classes 

(labels) are marked 1 and 0 for good and inefficient pumps respectively. Output classes are 

predictions made by the network. Overall accuracy at each step is presented in the blue square. 

 

The sample set was then constructed into a 10x10 neuron SOM. After 200 iterations of the 

algorithm, some clusters could be identified. A coloured version of the map is shown in Fig. 

4.2.  
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Fig. 4.2.  SOM sample set hits. Predicted clusters are coloured in terms of pump operating state, green 

representing well-functioning and red very inefficient pumps. Numbers next to clusters 

indicate location IDs of the pumps that contributed most to them. 

 

From the figure, it can be seen that approximately five different clusterings were formed. 

Known operating points from the sample set were used to identify which neurons on the map 

reacted to them. Clusters were then manually coloured based on the degree of efficiency of 

their subset of pumps. Means of the feature values representing each cluster are shown in 

Table 4.1. On the left side of the map, well-functioning pumps are presented in green. Light 

green represents pumps with relative values slightly over 1, whereas the darker shaded 

cluster has values near ideal with little variation. The yellow cluster represents pumps that 

operate out of their POR, with flows ranging from 60 to 80 percent. The bigger red cluster 

was formed by operating points where flow rates were low (20-50 %) and, consequently, 

specific energy consumption very high. The single red neuron represents flow values of over 

130 %, with relative specific energy consumption dropping under 1.0. The remaining 

uncoloured neurons consisted of value combinations not quite belonging to any of the 

groups, but the likelihood of them belonging to the red and yellow clusters is high. 

 

Table 4.1.  Averages of feature values amidst the training vectors belonging to each cluster. Rows 

represent their respective pumps.  

 

Pump ID 
Relative 

flow rate 

Specific 

energy 

consumption 

Relative 

specific 

energy 

consumption 

Relative 

pump 

efficiency 

Relative 

motor 

current 

KP-534-052 1.11 0.75 0.93 0.97 0.68 
KP-534-112 0.73 2.37 1.20 0.92 0.76 
KP-534-213 1.05 1.04 1.04 0.90 0.85 
KP-534-253 0.37 3.81 2.58 0.56 0.87 
KP-534-271 1.41 2.02 0.88 0.87 0.96 
KP-534-675 0.92 1.53 1.07 0.99 0.72 
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The same procedure was implemented with the whole base set of some 98,000 samples 

collected and filtered for estimation errors. Testing with the labelled samples yielded similar 

results, but with more unexplained variance. The map of the base set is shown in Fig. 4.3. 

The lone red cluster again represents excessive flow rates. Most of the variation is likely 

explained by flow rate and specific energy consumption, as in the lower part of the map flow 

rate decreases from the bottom up. The red cluster is scattered most likely due to high 

variation in specific energy consumption within the group, relative values ranging from 2.5 

to 9. These hypotheses are based on first testing with the known pump operating points and 

then modifying their input parameters to study the activation of neurons along different 

dimensions. 

 
 

Fig. 4.3.  SOM constructed with the base set. Colour coding principles are the same as in Fig. 4.2. 

Uncertain neurons are left white.
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5. CONCLUSIONS 

The objective of this thesis was to study methods of automatically identifying and classifying 

the efficiency of centrifugal pumps. A literature review was performed on the existing 

research material concerning pump efficiency monitoring. Methods applied in the viewed 

papers were taken under inspection and their basic principles were explained. Commercially 

available solutions from well-known companies were also examined. 

 

In chapter 3, available data and its collection and properties were studied. The rough criteria 

for pump efficiency presented by the prior thesis worker were also introduced as a basis for 

further development. Data preparation and pre-processing were discussed in general and 

with examples applied to the examined pumps. The relative values of flow rate, specific 

energy consumption, efficiency and motor current were chosen as features for testing. An 

exemplary efficiency monitoring workflow was presented to summarize the key points. 

 

Testing on the data was performed by taking a sample of operating points from the pumps 

in Table 4.1. This sample consisted of operating points where the efficiency could be 

manually determined based on the pump curves and familiarity with the data. The operating 

points were labelled as well-functioning, slightly inefficient or very inefficient. Six 

supervised algorithms along with an ANN network were tested with this sample. All seven 

of these expectedly classified correctly on the test set, which was the same as the training set 

due to limitations in estimation reliability and only the small sample being labelled data. The 

choices for parameter values require further tuning and  expertise in the field. The selection 

of characteristics, as discussed in previous chapters, should be re-evaluated, in addition to 

gathering fresh data systematically for easier labeling and diversity in operating states. 

Picking samples by hand inevitably introduces some error that is dependent on the author. 

By deliberately driving test pumps in different efficiency areas, it could be possible to verify 

the labeling of data and ensure sufficient coverage of the training samples over possible 

states during real operation.  

 

Unsupervised methods were tested by constructing a 10x10 Kohonen SOM. The sample 

operating points were then used to test which neurons on the map reacted to their type of 

operating state. The map was first trained on the sample set of 168 points and in the second 

test on the whole base set of some 98,000 samples. In both cases, clusters of operating points 

with similar efficiencies could be roughly identified. However, the black box nature of the 

SOM makes it difficult to determine which combinations of features result in a particular 

neuron reacting to the input. 

 

In conclusion, it can be stated that there exists a need for an automatic classification method 

or application addressing the problem of sensorless and continuous efficiency monitoring. 

The subject requires more research as studied commercial products do not satisfy these 

criteria at the moment. Out of the studied methods the SOM and its variants like the one 

proposed by Dominguez et al. (2007) seem the most appealing for their visual representation 

of the operating point trajectory. This kind of representation could be highly informative 

online. Furthermore, fresh labelled data and additional feature engineering are needed to 

further develop models for pump efficiency classification. 
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