
LAPPEENRANTA UNIVERSITY OF TECHNOLOGY 

LUT School of Energy Systems 

LUT Mechanical Engineering 

 

 

 

 

 

 

 

 

 

 

 

 

 

Devika Sasi Ushakumari 

PARAMETRIC TOOL FOR INITIAL ESTIMATION OF THERMAL AND 

MECHANICAL STRESS IN HIGH SPEED ROTORS 

 

 

 

 

 

 

 

 

 

 

Lappeenranta January 19, 2018 

Examiners: Professor Jussi Sopanen 

Dr. Sc. (Tech.) Rafał Piotr Jastrzębski 

Supervisor: M. Sc. (Tech.) Eerik Sikanen  



ABSTRACT 

 

Lappeenranta University of Technology 

LUT School of Energy Systems 

LUT Mechanical Engineering 

 

Devika Sasi Ushakumari 

Parametric tool for initial estimation of thermal and mechanical stress in high speed 

rotors 

 

Master’s thesis 

2018 

86 pages, 26 figures, 37 tables and 4 appendices 

Examiners: Professor Jussi Sopanen 

Dr. Sc. (Tech.) Rafał Piotr Jastrzebski 

Supervisor: M. Sc. (Tech.) Eerik Sikanen 

 

 

Keywords: Bearingless drive, analytical stress calculation, permanent magnet rotor, high 

speed rotor, continuous cylindrical permanent magnet, surface permanent magnet, interior 

permanent magnet, V-shaped  magnet. 

 

Bearingless drives magnetically integrate magnetic bearing and motor function. They offer 

non-contaminating working environment, are maintenance free and generally have long 

lifetime. Bearingless drives is a good choice in high speed applications due to the absence 

of friction losses. Permanent magnets employed at the rotor of bearingless drives suffer from 

mechanical stresses due to high centrifugal forces. Hence, the yield strength of the rotor 

materials is the only limiting factor of speed in permanent magnet rotors. The stress analysis 

in permanent magnet rotors are generally carried out using finite element software such as 

ansys, abaqus etc. This approach is time consuming which limits them in applications where 

rapid testing of varying geometries is a requirement. Therefore, an analytical tool to predict 

the initial mechanical stress in high speed permanent magnet rotors is proposed in this thesis. 

A parametric tool to predict the peak stress for four basic permanent magnet configurations 



like cylindrical permanent magnet, surface permanent manet, interior permanent magnet and 

V-Shaped permanent magnet is developed in matlab 17. The results from matlab code is 

verified with the help of finite element based software ansys 18. The material properties and 

geometrical definitions used in the matlab code input is repeated in the ansys model to make 

a fair comparison of results. Two different test cases like geometry test and speed test were 

framed to do the testing. The test cases are repeated for all four permanent magnet 

configurations studied in this paper. Moreover, a correction factor is also introduced in the 

code from the speed test results to improve the accuracy. The reliability of this factor is 

ensured by using the same factor for different geometries in geometry test. The analytical 

tool developed gave faster and moderately accurate results on testing. 
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ABBREVIATIONS AND SYMBOLS 

 

 

Abbreviations 

AC  Alternating current 

AMB  Active Magnetic Bearing 

CAD  Computer aided design 

CSD  Constructive solid geometry 

CF  Correction factor 

CPM  Cylindrical permanent magnet 

CTE  Coefficient of thermal expansion 

DVD  Digital Video disk 

Dy  Dysprosium 

FEA  Finite element analysis 

HSPM  High speed permanent magnet 

IPM  Interior permanent magnet 

L/D   Length to diameter ratio 

LHS  Left hand side 

Nd  Neodymium 

NdFeB  Neodymium iron boron 

PM  Permanent magnet 

PMB  Passive Magnetic Bearing 

rpm  Rotations per minute 

SCF  Stress concentration factor 

SPM   Surface permanent magnet  

VPM  V-shaped permanent magnet 

 

Symbols 

𝛼  Coefficient of thermal expansion 

𝐴𝑒𝑞  Area of equivalent ring in IPM  

𝐴𝑚  Area of magnet 

𝐴𝐹𝑒  Area of iron bridge 
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𝑏𝑚  Breadth of the magnet in IPM and VPM 

𝛽  Pole shoe angle in IPM and VPM 

∇  Interference fit 

∆𝑇  Thermal gradient 

𝛿𝑟  Infinitely small radial distance 

𝛿𝜃  Infinitely small angle 

E  Elastic modulus 

𝜀𝑟  Radial strain 

𝜀𝑡  Tangential strain 

ℎ𝑒𝑞  Smallest height of the iron bridge above IPM and VPM 

𝑙𝑚  Length of the magnet in IPM and VPM 

𝑃  Contact pressure at the interface of magnet and enclosure 

𝑃𝑝𝑟𝑒−𝑠𝑡𝑟𝑒𝑠𝑠  Contact pressure of enclosure against magnet at no load 

𝑃𝑤𝑒 Reduction in contact pressure at enclosure due to centrifugal 

forces 

𝑃𝑤𝑚  Reduction in contact pressure at magnet due to centrifugal forces 

𝑟𝑓𝑒𝑖  Inner radius of iron core 

𝑟𝑓𝑒𝑜  Outer radius of iron core  

𝑟𝑚𝑖  Inner radius of magnet in CPM and SPM 

𝑟𝑚𝑜  Outer radius of magnet in CPM and SPM 

𝑟𝑒𝑖  Inner radius of enclosure in CPM and SPM 

𝑟𝑒𝑜  Outer radius of enclosure in CPM and SPM 

𝑟𝑒𝑞𝑖  Inner radius of proposed equivalent ring in IPM and VPM 

𝑟𝑒𝑞𝑜  Outer radius of proposed equivalent ring in IPM and VPM 

𝑟𝑐𝑓𝑒  Centroid radius of iron bridge in IPM 

𝑟𝑐𝑚  Centroid radius of magnet in IPM 

𝑟𝑐𝑒𝑞  Centroid radius of equivalent ring in IPM 

ρeq  Density of equivalent ring in IPM and VPM 

ρfe  Density of iron bridge in IPM and VPM 

ρ𝑚  Density of magnet in VPM 

𝜎𝑝𝑟𝑒−𝑠𝑡𝑟𝑒𝑠𝑠  Enclosure pre-stress before applying rotational load 

σ(𝑟𝑓𝑒𝑜)  Radial stress at a radius of 𝑟𝑓𝑒𝑜 
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𝜎𝑟  Radial stress 

𝜎𝑡  Tangential stress 

𝜎𝑡𝑒𝑞  Tangential stress of equivalent ring in IPM 

𝜎𝑡𝑚𝑎𝑥  Maximum tangential stress in VPM 

𝜃  Angle between two magnets of a single pole 

u  Radial displacement 

𝑢(𝑟𝑓𝑒𝑖)  Radial displacement at a radius of 𝑟𝑓𝑒𝑖 

𝑣  Poisson ratio 

𝜔  Angular velocity  
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1 INTRODUCTION 

 

 

In recent years, researchers have been increasingly interested in the study of magnetic 

bearings since smaller drives delivering higher speeds is of great demand in modern 

industrial applications. Periodical maintenance is challenging in applications such as outer 

space, drives installed in inaccessible location and hazardous environment where the use of 

mechanical bearings is irrelevant. Moreover, hygienic standards prevent motor drives with 

mechanical bearings to be used in industries involving pharmaceuticals, food and beverages 

and biochemical reactors in order to prevent contamination of products. Furthermore, 

lubrication oil is not a suitable option in ultra high and low temperature and in high vacuum 

applications. Magnetically suspending the shaft and rotors eliminate the need of lubrication 

and frequent maintenance required by mechanical bearings. [1,2] 

 

Magnetic bearings use passive or active magnets to support the shaft radially and axially. 

Radial magnetic bearing uses an unbalanced radial force produced by difference in magnetic 

field between radially opposite magnetic poles to suspend the shaft. Axial magnetic bearing 

or thrust bearing maintains the axial position of the shaft. A rotating shaft can be positioned 

accurately by five axis magnetic suspension system including two radial units and one axial 

unit. [3] 

 

Bearingless drives is a good choice in high-speed applications due to the absence of friction, 

vibration control, and smaller machine footprint. However, electromagnetic design and 

electromechanical rotor structure optimization are challenging. “Bearingless motor” is a 

term which originated in the 90s for referring brushless AC (alternating current) motor. The 

term bearingless evolved over time in the research community. The most appropriate 

definition for a bearingless motor is given by Chiba as “A magnetic bearing with a 

magnetically integrated motor function”. Figure 1 shows a twin bearingless drive with 5 axis 

magnetic suspension. Each bearingless unit incorporates 3 suspension and 3 motor phases. 

The motor windings in each bearingless unit are series connected and supplied with a 3 phase 

inverter (3∅  INV) which provides varying voltage and frequency for torque generation. The 

torque produced by each unit will be half the total torque requirement. Two independent 

three phase inverters are provided at the suspension windings for producing levitation 
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current. A single phase inverter (1∅  INV) is provided at the thrust bearing for controlling 

the axial position of the rotor. [3] 

 

Figure 1. Bearingless drive with 5 axis magnetic suspension. [3]  

Bearingless motors are a hybrid of electric motors and magnetic bearings which incorporates 

an integrated winding system that can generate torque as well as radial forces [4]. The 

absence of mechanical contact in bearingless drives eliminates friction and wear thereby 

reducing the maintenance cost and increasing the lifetime [5]. Bearingless motors are either 

employed as twin bearingless units or come in combination with other bearings such as 

mechanical or magnetic bearings. Magnetic bearings can be operated either actively as in 

active magnetic bearings (AMBs) or passively as in passive magnetic bearings (PMBs). 

Figure 2 shows the combination of bearingless unit with radial magnetic bearing and 

mechanical bearing. [3]. While AMBs offer the advantage of better control and accurate 

positioning of shaft, PMBs might provide higher efficiency and lower system complexity. 

High-speed permanent magnet (HSPM) synchronous motors uses permanent magnets (PM) 

instead of copper windings eliminating the need of excitation circuit. The absence of copper 

loss in rotor winding increases the efficiency of the motor and they are capable of 

maintaining the efficiency even at large variation of the output power. The use of PMs gives 

this category of machines the highest power density and efficiency. [6]. The major limiting 

factors while designing a rotor for high speed machine are the centrifugal forces and natural 

bending frequencies. Centrifugal forces induce mechanical stress, which limits the radius of 

rotor, and natural bending frequencies sets limitations to the length of the rotor. [7].  
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Figure 2.  Combination of bearingless unit with radial magnetic bearing (left) and 

mechanical bearing (right). [3] 

1.1 Research Problem 

Laboratory of machine dynamics at Lappeenranta University of Technology is currently 

working on the mechanical design aspects for a project which aims at commercializing the 

bearingless technology. The two important functions of the proposed bearingless drive are 

the magnetic levitation of the shaft assembly and providing the shaft with required torque 

and speed. These two functions have to be optimized in the design of the bearingless drive. 

The stress analysis in PM rotors are generally carried out using FEM such as Ansys, Abaqus 

etc. This approach is time consuming which limits them in applications where rapid testing 

of varying geometries is required. Therefore, an analytical tool to predict the initial 

mechanical stress in high-speed PM rotors is proposed in this thesis. The objective of the 

thesis is to develop a parametric tool in Matlab, which predicts the initial mechanical stress 

in four basic configurations like cylindrical permanent magnet (CPM), surface permanent 

magnet (SPM), interior permanent magnet (IPM) and V-shaped permanent magnet (VPM). 

The tool is expected to provide fast and accurate results on initial estimation of mechanical 

and thermal stress in high speed rotors which can replace the time consuming approach of 

building a finite element model for every test being performed. It is worth mentioning here 

that the scope of the developed analytical tool is not limited in predicting the initial stresses 

in bearingless drives, but it can also be used in other technologies involving PM rotors which 

are studied in this thesis work. The four PMs studied here are cylindrical permanent magnet 

(CPM), surface permanent magnet (SPM), interior permanent magnet (IPM) and V-shaped 

permanent magnet (VPM). 
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1.2 Limitations 

Approximations are inevitable for a study involving analytical calculations which on the 

other hand diminishes the accuracy of the results obtained. This section of the thesis clearly 

points out he approximations made and the factors not considered while deducting the results 

and thereby the conclusion of the thesis work. Firstly, thermal stress are included only in the 

first model involving a continuous cylindrical structure and in the remaining three models, 

the effect of thermal analysis is not considered. Moreover, the thermal analysis of the first 

model does not take into account the thermal gradient existing between different parts of the 

rotor assembly. Instead a constant temperature difference between the entire rotor assembly 

and the surroundings is only considered. Furthermore, the coefficient of thermal expansion 

(CTE) is assumed as a constant. But in reality CTE varies with temperature. 

 

The radial, tangential and von Mises stresses are plotted in Matlab only for CPM. The 

remaining four models, only the tangential stress is calculated. For IPM and VPM, only the 

maximum tangential stress is calculated and the developed code does not give information 

on the stress variation at different regions of the rotor assembly. 

 

The anisotropic behaviour of material like carbon fibre is neglected in this study. Instead, a 

constant value is assumed for the material properties in Matlab code and the same value is 

used to build the Ansys model as well. 

 

The transient behaviour of the PM rotor during acceleration and deceleration is not studied 

in this thesis. The maximum stress occurs with changing momentum instead of steady speed.  

The stress analysis in this thesis is primarily based on the maximum rotational speed of the 

rotor. 

 

Fatigue characteristics of the material are neglected in this study because the failure of the 

rotor is not under the focus of this thesis. The study primarily focus on the initial stress values 

and the fatigue life analysis does not come under the scope of this thesis work. 

 

The major limitation of this thesis work is the use of an equivalent ring approach in IPM and 

VPM studies which is adopted due to the complexity in defining mathematical model for 

these structures in Matlab. This will reduce the accuracy of the stress analysis because the 
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most probable regions of peak stress like the fillet corners and iron bridges are not accounted 

in this approach. Therefore, the approach used for IPM and VPM cannot predict the peak 

stress. The developed Matlab code predicts the maximum tangential stress of the proposed 

equivalent ring from which the peak stress is calculated by employing a correction factor. 

Furthermore, the thesis work lacks mathematical formulation to predict the stress 

concentration factor (SCF) in IPM and VPM rotors. Instead, a correction factor is derived 

based on the error analysis of studied data. This approach heavily relies on the test conditions 

used in this thesis and hence cannot be counted as universal. 

 

In VPM structure, the iron core extending outside the magnet is called the bilateral bride and 

that in between a magnet pair is called the central bridge. These two are the weakest regions 

in the structure where the peak stress can be expected. But, the peak stress in bilateral bridge 

appears to be far higher than that at the central bridge. Hence, this thesis does not discuss 

the peak stress occurring at the central bridge of VPM. Instead the study focuses on finding 

the maximum stress in VPM which occurs at the bilateral bridge. 

 

1.3  Structure of Thesis  

The primary objective of the thesis work is to develop a parametric tool in Matlab which can 

predict the maximum stress occurring in PM rotors such as CPM, SPM, IPM and VPM due 

to centrifugal force as a result of high rotational speed. The developed code is used to predict 

different PM rotors which can be adopted in bearingless technology. The first chapter of this 

thesis reviews the basic concepts in bearingless technology, defines the objectives of the 

thesis and outlines the scope or sets out the limitations of the presented thesis. Second chapter 

studies bearingless drives in detail by comparing them with the other bearing technologies 

emphasising the relevance of this thesis in the current scenario. The theory behind four 

different PM rotors are studied in chapter 3 where the works of different authors in similar 

subject are reviewed. The chapter explains the basic theoretical concepts used to formulate 

the Matlab tool and lists out all the equations used in the process of developing the tool. The 

primary step of the adopted methodology for this thesis involves building a tool in Matlab 

purely based on knowledge from literature review. This tool is then verified against a FE 

model built in Ansys which is used as the reference source for error analysis. Chapter 4 

includes 9 test cases comparing the result of Matlab code and Ansys model built using the 

same input parameters used by the code. All the four models are tested for three different 
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geometries and 5 different speeds. In addition, a thermal test is conducted for the CPM which 

totals to 3 test cases for CPM and 2 test cases for each other model. The error analysis of the 

Matlab result is also presented in this chapter. The differences between the expected results 

obtained from FEA and the Matlab results are closely analysed to calculate a correction 

factor (CF) to improve the results. The calculation of CF and the corrected result are 

presented in chapter 5. Chapter 6 discuss the possible reason behind the variation of actual 

result with expected result and comment on the reliability of the approaches adopted on this 

thesis work. A brief summary of the thesis work is presented in chapter 7 which concludes 

this thesis. The developed tool in Matlab is presented as appendix. 

 

The thesis is realized in five consecutive phases. In the first phase, the parametric tool is 

developed in Matlab based on the analytical formulations of four PM rotors studied in 

literature. The second phase involves building Ansys models for the four PM rotors based 

on geometry and material properties already defined in Matlab during the first phase. The 

third phase is the testing phase where Matlab and Ansys results for the same input parameters 

are compared to find out the error in Matlab code by keeping the corresponding Ansys results 

as the reference. A correction factor for the analytical tool is calculated in the fourth stage 

based on the error analysis data from speed test of previous stage. The reliability of this 

correction factor is tested in the final stage where the CF developed form speed test is used 

in the geometry test to verify the universal nature of the calculated CF. It is observed 

 that the analytical tool developed gave faster and moderately accurate results on testing. 
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2 BEARINGLESS DRIVES 

 

 

Bearingless drives magnetically integrate magnetic bearing and motor function. The term 

bearingless does not indicate the absence of bearing forces, instead it implies that 

conventional bearings are absent and the bearing forces are provided by contactless magnetic 

support [8]. This section first reviews conventional bearings for high speed application and 

further discusses the basic configurations, speed limits and application areas of bearingless 

drives. 

 

2.1 Bearing choice for high speed machines 

High speed applications provide the advantage of reducing the volume of the electrical 

machine by compensating the diameter with an increased speed. The bearing choices for a 

typical high-speed application varies depending on the requirement. Conventional ball 

bearings are favored for their small size, robustness and low cost. But they have to be 

lubricated frequently and therefore have a limited lifetime that is dependent on load and 

speed. In addition, they are quite dependent on the operating temperature that narrow down 

their application range. [9] 

 

By using fluid film bearings, which can be static or dynamic in nature, we can eliminate the 

need of lubrication. In case of static bearings, pressure is maintained between the shaft and 

the journal using an external pump whereas the dynamic bearings are self-starting and do 

not require external pumping. The lubricating fluid can be air or some other liquid. In case 

of air bearing, the rotor is levitated by the air pressure generated during the high speed of 

rotation. The contact between the rotor and journal is lost at high speed eliminating the wear 

conditions at high speeds ensuring less friction losses and a longer lifetime. Foil bearing is 

a type of dynamic air bearing which uses spring loaded foil between the shaft and the sleeve. 

The foil is pushed away from the journal at high speeds thereby eliminating the contact. This 

bearing can reach up to 70000 rpm. The limitation of these bearings are that, they are only 

suitable for high speeds, cannot be used for different ranges of speed from low to high and 

have small air gaps. However, they are very simple and reliable technology that are 

independent of sophisticated electronics, battery or backup bearings. Because, in case of 
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power failures, the speed of rotating journal drops down bringing contact between the foil 

and journal and this mechanism does not require additional safety bearings for support. [9] 

 

 In the case of magnetic bearings, where the rotor is levitated using magnetic forces, control 

system involving sensors and actuators are required for detecting the position of rotor. This 

makes the technology more complicated than air bearings and also increases the total volume 

occupied by bearing system. Moreover, magnetic bearings uses backup battery as well as 

safety precautions to face the situation of power failure. Even then, safety bearings can fail 

if the journal was rotating at very high speed during the touchdown. Magnetic bearings are 

favored in applications that require good controllability. [10]. Magnetic bearing offers the 

advantages of high power density and efficiency [11]. 

 

Passive permanent magnet bearings are preferred due to their simple structure, high power 

density, efficiency, reduced size, lighter structure and small cost. Two basic rotor structures 

can be made from PMs, integral and block structure. Integral structure constitute solid or 

hollow cylinder, which offer high mechanical strength while block magnets have a greater 

utilization rate. Utilization rate of integral structure is not as good as the block structure. The 

main limitation of block structure is the complexity during manufacturing. [12] 

 

2.2 Basic configurations of bearingless drives 

 A minimum of two bearingless units are required to accurately position the shaft in radial 

direction. Each of these bearingless units has six windings in total, 3 for suspension and 3 

for torque production. The torque produced in each bearingless unit for a twin bearingless 

drive will be half of the total torque requirement. In addition a thrust magnetic bearing is 

also provided in a bearingless drive to control the axial movement of shaft. In total, a 

bearingless drive has control in 5 axis. Figure 3 shows four variations of twin bearingless 

drives in clockwise direction. The first variation in clockwise direction correspond to twin 

bearingless drive with 5 axis position control where rotor assembly rotates inside a stator 

core. This design is mostly used in applications such as pumps and compressors.  The second 

variation represent a rotor rotating inside the stator and this case mostly occurs in 

applications such as Digital Video disk (DVD) and hard disk drives. The third variation is a 

4 axis bearingless assembly in which the thrust bearing is absent. The two bearingless units 

are mechanically assembled to maintain axial centering in case of small axial loads. The 
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fourth variation correspond to 5 axis control of a rotor with hollow shat. This design is mostly 

applicable in case of flow meters where fluid flow is possible through the center. [3] 

 

Figure 3. Twin bearingless drives with 5and 4 axis suspension [3] 

Magnetic suspension in two axis is possible for specific design as seen in Figure 4. In the 

first variation, a pivot bearing controls the radial and magnetic position of one end of a 

vertical shaft. The second variation is a compact design that provides passive axial and radial 

positioning for a shaftless assembly. [3] 

 

Figure 4.  Bearingless drives with 2 axis suspension [3] 

2.3 Bearingless drives in high speed applications 

Researchers working on bearingless technology has shown great interest in achieving high 

rotational speed for bearingless drives. A glance at the history of bearingless drive 

technology shows that there has been a drastic increase in the speed of tested prototype over 

the years. In early 1990s, the speed of tested prototype ranged from 4000 to 6000 rpm 
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[13,14]. However, a record speed of 400000 rpm at a surface speed of 146.6 m/s was 

achieved in 2012 by a group of researchers from ETH Zurich [15]. 

 

2.4 Bearingless drives requirements for high speed applications 

The major concern of designers while developing bearingless drives for high speed 

applications is the mechanical stability of rotors. The rare earth magnets used in bearingless 

rotors have low yield strength and are brittle in nature. It is obvious from test results 

performed by various researches that an additional bandage is required to support the 

magnets from high centrifugal forces due to elevated rotational speed. A speed test was 

conducted by [16] for three different bandage types by keeping all other parameters constant. 

It is observed that a magnet without a bandage fails at 72000 rpm while that with a carbon 

fiber bandage was able to withstand 96000 rpm and 0.5 mm hot worked steel bandage 

crossed a speed limit of 115000 rpm. [1] 

 

Magnetic losses are unavoidable in bearingless drives and they can generally be classified 

into stator iron losses and rotor eddy current losses. Stator is prone to hysteresis and eddy 

current loss due to the oscillating magnetic field produced by rotating rotor. Hysteresis loss 

can be minimized by using a magnetic material which has high relative permeability and low 

coercive field strength. High electrical resistivity of the stator material further limits the eddy 

current loss. Eddy current loss is common in rotors especially if they are provided with 

electrically conducting bandage or if the stator is slotted. The most common practice of 

laminating the rotor reduces the mechanical strength. The optimum solution is to avoid a 

slotted stator. The use of sinusoidal current control instead of square wave current control 

can further reduce the rotor eddy current loss. [16] 

 

The most common choice for magnetic material for high speed application are alnico 

magnets, ferrite magnets and rare earth magnets. Rare earth magnets possess the property of 

high residual magnetic flux density and coercive force. [12]. Rare earth magnets can either 

be made of light rare earth material like Neodymium (Nd) or heavy rare earth material like 

dysprosium (Dy). Dysprosium improves the magnetic coercivity due to which the magnet 

will be able to retain the magnetic properties at elevated temperature. [17].  
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The two common material choice for rotor enclosure are titanium alloy and carbon fiber or 

epoxy glass. Light weighing carbon fiber has the advantages of good strength to weight ratio 

and low electrical conductivity which in turn reduces the heat generation due to eddy current. 

However, carbon fiber has poor thermal conductivity making the cooling process of magnet 

more difficult. Titanium alloys have good tensile strength and better thermal conductivity 

enabling rapid cooling of magnets. The major limitation in using Titanium alloy is its high 

electrical conductivity due to which the heat loss due to eddy current flow is high.[12] 

 

2.5 Bearingless drives applications 

The most obvious application area of bearingless drive are for pumps and compressors that 

are required to work in contamination free environment where lubrication and corrosion 

effects from mechanical bearings are unacceptable. This led many researchers to focus the 

study of bearingless motors to drive pumps used in artificial hearts and blood pumping 

system where even minor contamination leads to most dangerous consequences. 

 

A bearingless disk motor is proposed in [18]  for centrifugal blood pump in artificial hearts 

which uses a C-shaped stator core to make the design thin and compact. The bearingless 

drive in this application prevents blood damage and contamination and makes the 

implantation possible in less space.  Meanwhile Yang and Sheng in [19] comments on the 

requirement of complex hardware and control system in bearingless motors in which 2 sets 

of windings needs to be controlled and synchronized. The authors again propose a magnetic 

suspension which uses two passive magnetic bearings in radial direction and employs an 

electromagnetic actuator in the axial direction to solve this problem. An alternate solution to 

the complexity of separate torque and levitation windings is to couple both the windings into 

a combined winding system. A comparison study of separate windings and combined 

winding system is made by [20] who concludes that for high power input both the windings 

achieve comparable speed whereas in the case of low power output, the speed is reduced 

considerably in combined winding system. Meanwhile, [21] developed a centrifugal blood 

pump of 3.5 W power rating and 5 l/min flowrate which is levitated and rotated by a 

bearingless rotor. 

 

The agitator in bioreactors as well as pharmaceutical mixers require high purity mixing 

conditions. The application of magnetic bearings in these areas are studied in [22] and [23]. 
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In addition to the leakages and corrosion debris from mechanical bearings, the shear force 

developed at the gap of these bearings can damage and contaminate the delicate liquids used 

in pharmaceutical applications. It is a necessity to maintain the cell structure when biological 

fluids are processed. This demand led [23] to develop a bearingless motor for pharmaceutical 

mixing in which an exterior rotor is suspended and rotated by bearingless motor. A hygienic 

and cell friendly environment is required in order to culture cells and perform biological 

reactions in a bioreactor. And hence the agitator equipped for this application needs to be 

supported by a contamination free bearing which is proposed by [22]. 
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3 STRESS ANALYSIS OF ROTATING CYLINDERS AND BASIC MAGNET 

CONFIGURATIONS 

 

 

The basic theory of rotating cylinders under centrifugal load is reviewed in this chapter, 

followed by the application of the theory to find out the maximum stress for the four different 

types of PM rotors. Initially, the equations of radial and tangential stress are derived by 

considering an infinitely small rotating ring element. These equations are consequently used 

to find the radial and tangential stress in CPM by applying boundary conditions of three 

shrink fitted tubes to the derived equations. The same principle is applied for SPM as well. 

In case of IPM, an equivalent ring is considered such that the mass density of the proposed 

ring is equivalent to the combined mass density of the magnet and iron bridge above and on 

both sides of the magnet. A similar approach is used in VPM to transfer the mass density to 

equivalent ring, but centroid radius of all the constituting regions are taken into account 

instead of average radius. 

 

In order to derive the radial and tangential stress acting on a rotating solid cylinder, an 

infinitely small portion of the cylinder is considered which is located at a distance of r from 

the center. The section has a radial length of 𝛿𝑟, axial length of unity and makes an angle of 

𝛿𝜃 at the center of cylinder. Figure 5 depicts the free body diagram of the element due to 

stress created under centrifugal forces. It is observed that horizontal component of forces 

(𝜎𝑡𝛿𝑟. 1 cos
𝛿𝜃

2
) on the both sides of the element cancel out each other due to the symmetry. 

The vertical components are equated to the centrifugal force to express the equilibrium 

condition. [24]  
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Figure 5. Free body diagram of an infinitely small element of a solid cylinder under 

centrifugal forces [9] 

 

From Figure 5, the centrifugal force can be derived as given below. 

The volume of element = 𝑟𝛿𝜃𝛿𝑟. 1 

Mass of the element =  𝜌𝑟𝛿𝜃𝛿𝑟 

Centrifugal force = 𝑚 𝜔2𝑟=𝜌𝑟2𝜔 2𝛿𝜃𝛿𝑟 

 

Where 𝜌 and m are the density of the material and mass of the ring respectively. The area of 

different planes of the section is first calculated in order to convert radial and tangential 

stress to corresponding forces in equilibrium equation. 

 

Area of tangential plane of the element at right and left = 𝛿𝑟. 1 

Area of lower radial plane of the element = 𝑟𝛿𝜃.1 

Area of upper radial plane of the element = ( 𝑟 + 𝛿𝑟)𝛿𝜃.1 
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The equilibrium condition is expressed as below 

 2𝜎𝑡𝛿𝑟 sin
𝛿𝜃

2
+ 𝜎𝑟 𝑟𝛿𝜃 − (𝜎𝑟 + 𝛿𝜎𝑟)( 𝑟 + 𝛿𝑟)𝛿𝜃 = 𝜌𝑟

2𝜔 2𝛿𝜃𝛿𝑟 (1) 

 

The above equation is further expanded after approximating the small angle  sin
𝛿𝜃

2
 

as 
𝛿𝜃

2
 radian. 

 

 2𝜎𝑡
𝛿𝜃

2
𝛿𝑟 + 𝜎𝑟 𝑟𝛿𝜃 − 𝜎𝑟 𝑟𝛿𝜃 − 𝜎𝑟 𝛿𝑟𝛿𝜃 − 𝛿𝜎𝑟 𝑟𝛿𝜃 = 𝜌𝑟

2𝜔 2𝛿𝜃𝛿𝑟 (2) 

   

 
2𝜎𝑡

𝛿𝜃
2 𝛿𝑟 − 𝜎𝑟 𝛿𝑟𝛿𝜃 − 𝛿𝜎𝑟 𝑟𝛿𝜃

𝛿𝜃𝛿𝑟
= 𝜌𝑟2𝜔 2 

(3) 

 

Applying the limit as 𝛿𝑟  0 , 𝛿𝜎𝑟0 in the above equation further reduces the terms to  

 𝜎𝑡 − 𝜎𝑟 − 𝑟
𝜕𝜎𝑟
𝜕𝑟

= 𝜌𝑟2𝜔 2 (4) 

As the cylinder rotates, there is a radial movement in the element which is denoted as u. The 

radial strain is the rate of change of the radial shift with respect to the radius as given below. 

 𝜀𝑟 =
𝛿𝑢𝑟
𝛿𝑟

=
𝜎𝑟 − 𝜈𝜎𝑡

𝐸
 (5) 

The diametrical strain is equal to the tangential strain according to the author referred in [24]  

 

 
𝑢𝑟
𝑟
= (

𝜎𝑡 − 𝜈𝜎𝑟
𝐸

) (6) 

Which implies   

𝑢𝑟 = 𝑟(
𝜎𝑡 − 𝜈𝜎𝑟

𝐸
) 

Differentiating with respect to radius r implies 

 
𝜕𝑢𝑟
𝜕𝑟

=
1

𝐸
[(𝜎𝑡 − 𝜈𝜎𝑟) + 𝑟(

𝜕𝜎𝑡
𝜕𝑟

− 𝑟 
𝜕𝜎𝑡
𝜕𝑟
)] (7) 

Equating equations (5) and (7) gives the relation 
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 (𝜎𝑡 − 𝜎𝑟)(1 + 𝜈) + 𝑟
𝜕𝜎𝑡
𝜕𝑟

− 𝑟𝜈
𝜕𝜎𝑟
𝜕𝑟

= 0 (8) 

Substituting (𝜎𝑡 − 𝜎𝑟) from (4)   implies 

 (𝑟
𝜕𝜎𝑟
𝜕𝑟

+ 𝜌𝑟2𝜔 2) (1 + 𝜈) + 𝑟
𝜕𝜎𝑡
𝜕𝑟

−  𝑟𝜈
𝜕𝜎𝑟
𝜕𝑟

= 0 (9) 

 
𝜕𝜎𝑡
𝜕𝑟

+
𝜕𝜎𝑟
𝜕𝑟

= −𝜌𝑟2𝜔2(1 + 𝜈) (10) 

Integrating the above relation gives 

 𝜎𝑡 + 𝜎𝑟 = −𝜌𝑟
2𝜔 2(1 + 𝜈) + 2𝑎 (11) 

Where 2a is the constant of integration 

Subtracting (4) from above relation gives 

 2𝜎𝑡 + 𝑟
𝜕𝜎𝑡
𝜕𝑟

= −
𝜌𝑟2𝜔 2

2
(3 + 𝜈) + 2𝑎 (12) 

But the LHS of above relation can also be expressed as below 

 2𝜎𝑡 + 𝑟 
𝜕𝜎𝑡
𝜕𝑟

=
𝜕(𝑟2𝜎𝑟)

𝜕𝑟

1

𝑟
 (13) 

Substituting the LHS by the alternative expression gives the below relation 

 
𝜕(𝑟2𝜎𝑟)

𝜕𝑟
= 𝑟 [−

𝜌𝑟2𝜔2

2
(3 + 𝜈) + 2𝑎] (14) 

Integrating the above relation gives 

 𝑟2𝜎𝑟 = −
𝜌𝑟4𝜔 2

8
(3 + 𝜈) +

2𝑎𝑟2

2
− 𝑏 (15) 

   

Where b is the second integration constant 

 𝜎𝑟 = 𝑎 −
𝑏

𝑟2
− (3 + 𝜈)

𝜌𝑟2𝜔 2

8
 (16) 

From equation (8) and (16), we can find the tangential stress as given below. 

 𝜎𝑡 = 𝑎 +
𝑏

𝑟2
− (1 + 3𝜈)

𝜌𝑟2𝜔 2

8
 (17) 

Equations (16) and (17) gives the general equations for radial and tangential stress in a 

rotating cylinder subjected to centrifugal forces. 
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Alternatively, Larsonneur uses a similar approach in which any point in the element of an 

axisymmetric ring is assumed to move only in radial direction. The radial displacement is 

taken as a function of radius which is derived in three steps. In the first step, radial and 

tangential strain are expressed in terms of radial displacement. Next, differential equation 

for radial displacement is derived by combining the equilibrium equations of ring and the 

strain equations using Hooke’s law. Finally, the differential equation is solved to get a 

generalized equation for radial displacement. The general equation of displacement has two 

integration constants which can be solved by applying boundary conditions to the specific 

geometry under consideration. Radial and tangential stress can be solved subsequently from 

displacement equation. [25]  

In general, strain can be defined as the change in length of a specific component per unit 

length of the component when a force is acting in the direction of deformation. The strain in 

radial and tangential directions denoted by 𝜀𝑟  and 𝜀𝑡 can be derived as below. 

 𝜀𝑟 = lim
𝑑𝑟→0

𝑢(𝑟 + 𝑑𝑟) − 𝑢(𝑟)

𝑑𝑟
=
𝛿𝑢𝑟
𝛿𝑟

 (18) 

 𝜀𝑡 =
lim
𝛿𝜃→0

((𝑟 + 𝑢(𝑟))𝛿𝜃 − 𝑟𝛿𝜃)

𝑟𝛿𝜃
=
𝑢𝑟
𝑟

 (19) 

The equilibrium equation is derived and simplified using the same approach followed in the 

previous section and hence equations  (1) and (4) can be referred here.  

 𝑟
𝛿𝜎𝑟
𝛿𝑟

= 𝜎𝑡 − 𝜎𝑟 − 𝜌𝑟
2𝜔 2 (20) 

 

The Hooke’s law can be simplified to form the equations (21) and (22) for radial and 

tangential strain respectively. 

 𝜀𝑟 =
𝜎𝑟 − 𝜈𝜎𝑡

𝐸
 (21) 

 𝜀𝑡 =
𝜎𝑡 − 𝜈𝜎𝑟

𝐸
 (22) 

Where 𝜈  and E denotes the poisson ratio and elastic modulus of the material respectively. 

Finally by solving the equations from (18) to (22), a simple differential equation for the 

displacement ‘u’ can be derived as below. 
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𝐸

1 − 𝜈2
(𝑟2

𝜕2𝑢

𝜕𝑟2
+ 𝑟

𝜕𝑢

𝜕𝑟
− 𝑢) = −𝜌𝑟3𝜔 2 (23) 

General solution for the differential equation (23) can be represented as given below in 

equation (24) which is the displacement equation. 

 𝑢(𝑟) = 𝑎𝑟 +
𝑏

𝑟
−
1 − 𝑣2

8𝐸
𝜌𝑟3𝜔 2 (24) 

Where a and b are the integration constants. Integration constants can be found by applying 

boundary conditions to the specific scenario. For n number of shrink fitted components, 2n 

boundary conditions can be obtained and hence a set of 2n equations can be formed. 

Equations (18),(19),(21),(22) and (24) can be solved simultaneously to find radial and 

tangential stress and radial displacement. 

 

3.1 Continuous Cylindrical Permanent Magnet 

The simplest form of PM rotor is an integral structure involving a hollow cylindrical magnet 

shrink fitted to the iron core. An enclosure made of carbon fiber or non-magnetic alloy is 

shrink fitted to the magnet which aids the magnet against failure under centrifugal forces. 

The shaft is generally made of steel and the permanent magnet is made of a ferromagnetic 

material. The three parts are assembled as shown in Figure 6. 

 

Figure 6. Continuous cylindrical permanent magnet showing the three shrink fitted 

components  

Due to the high speed in rotation of rotor, there will be centrifugal forces acting on it whose 

magnitude is proportional to the material the rotor is made of, its geometry and shape as well 

as the speed of rotation. Radial and tangential stress will be induced in each rotating layer of 
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the rotor. In addition, interference pressure exists in the interface of two shrink fitted 

structures which is equal to the contact pressure at the interface. In order to calculate the 

radial and tangential stress, which varies continuously from the centre of rotation to the 

outermost layer of the outer ring, we use the systematic approach followed by Larsonneur 

discussed previously. [25] 

In order to derive the equations used for stress calculation, the following assumptions are 

considered [25].  

1. The rotor material is homogenous and isotropic.  

2. The rotor geometry is axisymmetric. 

3. Length of the rotor is short and the rotor is free to expand in axial direction due to 

which there is no axial stress acting on the rotor. Therefore, the concepts of planar 

stress and strain can be considered. 

4. Shear stress acting on the surface is zero due to symmetry of rotor. 

In this study we are considering 3 shrink fitted components giving n a value of 3. Therefore, 

we can obtain 2n=6 boundary conditions and correspondingly 6 equations to solve 6 

integration constants. 

The boundary conditions are derived based on the following criterion. 

1. For a solid shaft, the displacement at center cannot be infinite and for a hollow shaft, 

stress at inner radius is zero since it is free to expand. 

2. The total sum of radius and radial displacement will be equal for two adjacent layers. 

3. Stress at the outer radius of the outermost component will be zero since it is free to 

expand. 

Boundary conditions for n=3 is listed below as equation set (25) 

 

{
  
 

  
 

𝑢(𝑟𝑓𝑒𝑖) ≠ ∞

σ(𝑟𝑓𝑒𝑜) =  σ(𝑟𝑚𝑖)

𝑟𝑓𝑒𝑜 + u(𝑟𝑓𝑒𝑜) = 𝑟𝑚𝑖 + u(𝑟𝑚𝑖)

𝜎(𝑟𝑚𝑜) =  𝜎(𝑟𝑚𝑖)

𝑟𝑚𝑜 + 𝑢(𝑟𝑚𝑜) = 𝑟𝑒𝑖 + 𝑢(𝑟𝑒𝑖)

𝜎(𝑟𝑒𝑜) = 0

 (25) 

Where 𝑟𝑓𝑒𝑖  and 𝑟𝑓𝑒𝑜 refers to the inside and outside radius respectively of the iron core. 

Similarly, 𝑟𝑚𝑖 𝑎𝑛𝑑 𝑟𝑚𝑜  corresponds to that of magnet and 𝑟𝑒𝑖  and 𝑟𝑒𝑜  refers to that of 

enclosure. 
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Boundary conditions listed in (25) can be solved to get the integration constants a and b in 

the equation (24) for all the three shrink fitted components. The displacement equation is 

differentiated with respect to the radius to get the radial strain equation as given in equation 

(26). It is then combined with the radial strain equation of Hooke’s law to obtain the radial 

stress as given below in equation(27). 

 𝜀𝑟 = 𝑎 −
𝑏

𝑟2
−
(3(1 − 𝑣2)𝜌𝑟2𝜔2)

8𝐸
 (26) 

 𝜎𝑟 =
𝐸(𝜀𝑟 + 𝑣𝜀𝑡)

(1 − 𝑣2)
 (27) 

Similarly, the displacement equation is divided by the radius to get the tangential strain as 

given in equation(28). It is then combined with the tangential strain equation from the 

Hooke’s law to get the tangential stress equation as given in equation(29). 

 𝜀𝑡 = 𝑎 +
𝑏

𝑟2
−
((1 − 𝑣2)𝜌𝑟2𝜔2)

8𝐸
 (28) 

 𝜎𝑡 =
𝐸(𝜀𝑡 + 𝑣𝜎𝑟)

(1 − 𝑣2)
 (29) 

 

Chen and Zhu studied the stress in the PM and enclosure in [12] where the thermal gradient 

is also taken into account. In this approach, the contact pressure at the interface of magnet 

and enclosure is initially assumed as P. The analytical equations for stress and displacement 

is formulated using the differential equation of PM and enclosure.  The equations for radial 

displacement, radial and tangential strain, radial and tangential stress are given by equations 

(30) to (34) respectively.  The effect of temperature rise is accounted while writing the strain 

equations. Boundary conditions involving the contact pressure is used to solve the 

integration constants. Finally, the contact pressure is found using the relationship between 

radial displacement of PM and enclosure at the contact surface.[12] 

 𝑢(𝑟) = 𝑎𝑟 +
𝑏

𝑟
−
1 − 𝑣2

8𝐸
𝜌𝑟3𝜔2 + 𝛼(1 + 𝑣)

1

𝑟
∫∆𝑇𝑟𝑑𝑟

𝑟

𝑟𝑖

 (30) 

 𝜀𝑟 = (
𝜎𝑟 − 𝜈𝜎𝑡

𝐸
) + 𝛼∆𝑇 (31) 

 𝜀𝑡 = (
𝜎𝑡 − 𝜈𝜎𝑟

𝐸
) + 𝛼∆𝑇 (32) 
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 𝜎𝑟 =
𝐸(𝜀𝑟 + 𝑣𝜀𝑡 − 𝛼(1 + 𝑣)∆𝑇)

(1 − 𝑣2)
 (33) 

 𝜎𝑡 =
𝐸(𝜀𝑡 + 𝑣𝜎𝑟 − 𝛼(1 + 𝑣)∆𝑇)

(1 − 𝑣2)
 (34) 

Where 𝛼 represent the material constant representing the rate of thermal expansion, ∆𝑇 is 

the temperature rise in the material, 𝑣 is the Poissons ratio 

 

The boundary conditions in rotor enclosure and PMs are given by equations(35), (36) and 

(37) respectively. The relationship between radial displacement of PM and enclosure at the 

contact surface is used to solve the contact pressure which is given in equation(38). [12] 

 𝜎𝑟𝑒𝑖 = −𝑃 (35) 

 𝜎𝑟𝑒𝑜 = 0 (36) 

 𝜎𝑟𝑚𝑜 = −𝑃 (37) 

 𝑈𝑟𝑒𝑖 − 𝑈𝑟𝑚𝑜 = ∇ (38) 

 

Where 𝜎𝑟𝑒𝑖 , 𝜎𝑟𝑒𝑜 and 𝜎𝑟𝑚𝑜 represent the radial stress at inner surface of enclosure, at the 

outer surface of enclosure and at the outer surface of PM respectively. 𝑈𝑟𝑒𝑖 and 𝑈𝑟𝑚𝑜 

denotes the radial displacement at inner surface of enclosure and the outer surface of 

permanent magnet respectively. ∇ denotes the interference fit between manet and enclosure. 

 

The stress analysis by Chen and Zhu concludes that the radial stress in the PM reduces along 

the radial direction outward and the stress is always negative or compressive in nature. The 

negative stress at the interface of magnet and enclosure makes sure that the contact is not 

lost at high surface velocities. The tangential stress in the magnet also decreases radially 

outward which is also compressive in nature. The von Mises stress, being a root mean square 

value increases radially. The static stress which is generated when the rotor is at rest due to 

the interference fit is a constant value throughout the radius and is compressive in nature. 

The compressive stress in the magnet reduce further with rise in temperature. [12]  

 

The stress analysis in the rotor enclosure done by Chen and Zhu further shows that the radial 

stress increases radially from a negative value and approaches zero at the outermost layer. 
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The compressive stress reduces slightly during rotation when compared to the static state 

because the centrifugal forces produce tensile stress, which will make the compressive stress 

less influential during rotation. Temperature rise will further reduce the radial stress. 

Meanwhile, the tangential stress and the von Mises stress decreases radially from a positive 

value. Rise in temperature further reduces the tensile tangential stress. [12]  

 

3.2 Surface Permanent Magnet 

 Permanent magnets are mounted on the surface of the rotor in various configurations, which 

are classified together as Surface Permanent Magnet (SPM) rotors. The magnets are arranged 

generally as a pair of 2, 4 or that of higher order.  The gap between the poles are either left 

empty or filled using a filler material. The filler choices are carbon fiber, plastics or non-

magnetic metals such as titanium alloy. The magnets in one pole can further be segmented 

to smaller division. However, the segmentation has little effect on reducing the stress level 

in the enclosure.[26]. Figure 7 shows a four pole SPM. 

 

Figure 7. Surface permanent magnet structure 

The filler materials are used to prevent the rotor enclosure from bending at the magnet edges 

and for the safe pressing of enclosure into the magnet. Filler materials also reduce the radial 

and tangential stress in the rotor enclosure significantly. Maximum tangential stress occurs 
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in the enclosure at the pole gap region. Radial stress between the rotor core and PM increase 

with the addition of plastic filler material due to the high thermal expansion coefficient of 

plastic. However, the tangential stress in the PM varies very little with the addition of filler 

material. Plastic filler materials possess relatively low stiffness resulting in greater yielding 

which in turn leads to the highest radial and tangential stress in enclosure as well as the 

highest radial stress in the magnet. Carbon fiber filler produce intermediate stress level and 

metal alloy filler produce the lowest stress. However, carbon fiber has its limitation of high 

cost and difficulty in assembly, while metal alloy limits its usability due to eddy current 

losses.[26] 

 

While the PMs are glued to the surface of rotor structure, an interference fit is used to join 

the magnets and the enclosure. Interference fit increases the tangential stress which is more 

predominant in the enclosure and reduces the tangential stress in the PM. Increasing the 

enclosure thickness will reduce the stress levels at the cost of higher heat dissipation losses 

since the increased thickness requires more permanent magnets to generate the necessary air 

gap flux density. Hence, a balance in the thickness and interference is required for optimizing 

the stress level. Zhang and Fengge studied rotor retaining sleeve design in [26] and found 

that stresses are minimal at 0.2 mm interference fit and 10 mm enclosure thickness.[26]. The 

pre-stress achieved by the interference fit when rotor is at rest is close to the total stress in 

the enclosure at its operating speed. But, it is never equal since the rotor expands slightly at 

high speed releasing some stress and hence compressive stress decreases. Consequently, the 

total stress increases by a small amount from the pre-stress applied. Erik and Bulent has 

proposed a formula to calculate the desired pre-stress required to prevent loss of contact, 

which is presented below in equations (39) and (40).[27] 

 

 𝜎𝑝𝑟𝑒−𝑠𝑡𝑟𝑒𝑠𝑠 =
𝑃𝑝𝑟𝑒−𝑠𝑡𝑟𝑒𝑠𝑠𝑟

𝑡𝑠
 (39) 

 𝑃𝑝𝑟𝑒−𝑠𝑡𝑟𝑒𝑠𝑠 = (𝑃𝑤𝑚 + 𝑃𝑤𝑒)1.2 (40) 

𝜎𝑝𝑟𝑒−𝑠𝑡𝑟𝑒𝑠𝑠 gives the enclosure pre-stress before applying rotational load for a rotor radius 

of r where 𝑃𝑝𝑟𝑒−𝑠𝑡𝑟𝑒𝑠𝑠 is the contact pressure of enclosure against magnet and 𝑃𝑤𝑚 & 𝑃𝑤𝑒 

represents the amount of reduction in contact pressure at magnet and enclosure respectively 

due to the rotational velocity. 
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Temperature and rotational velocity are the major factors deciding the stress levels in a rotor 

structure. The tangential stress in PM increases with increase in velocity as well as with 

temperature. Meanwhile, the tangential stress in enclosure increase considerably with an 

increased temperature. However, it shows only small change with a change in velocity.[26] 

 

Zhang et.al proposes a hybrid structure involving a retaining sleeve with 1 mm thick titanium 

alloy enclosed by a 6 mm thick carbon fiber layer. This structure reduces the high bending 

stress and edge stress generated while using the enclosure made from carbon fiber alone. 

The tangential stress in the enclosure structure reduce by 100 MPa while the radial and 

tangential stress in the permanent magnet increase by 5 MPa.[26] 

 

While enclosure stress and rise in temperature primarily determines the maximum attainable 

velocity of the rotor and consequently the design radius, the length of the rotor is determined 

by the natural bending frequencies. Although the design aspects like the optimum radius, 

velocity and length of the rotor is not considered in this thesis, literature review has shown 

that the enclosure stress reduces sharply with an increase in L/D (length to diameter) ratio 

up to a value of 2 and after which the graph approaches a constant trend with only a slight 

reduction in stress when the impact of enclosure stress is studied at constant values of power 

rating and rpm. [27] 

 

SPM is analogous to CPM when a section including the rotor core, magnet and enclosure is 

considered. Hence, equations (18),(19),(21),(22) and (24) can be reused here as well to find 

the maximum tangential stress above the magnet. The basic difference between CPM and 

SPM is that magnets are not shrink fitted but instead they are glued to the rotor core. The 

major drawback of using this approach to calculate the maximum tangential stress is that, 

the solution is not able to predict the peak stress which occur in the enclosure above the filler 

material. This is because, the boundary conditions are derived based on interactions in radial 

directions and hence the contact between filler material and magnets in tangential direction 

is not accounted. The absence of boundary conditions at the contact surface of PM and filler 

makes it difficult to predict the peak stress. 
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3.3 Interior Permanent Magnet 

Permanent magnets are buried in rectangular or circular slots inside the iron core of the rotor 

in the Interior Permanent Magnet (IPM) structure. This structure is more robust in 

comparison with SPM and hence it does not require enclosure made of carbon or glass fiber 

which will reduce the equivalent air gap length. Flat or rectangular magnets are much 

cheaper and hence more popular than circular magnets. The maximum von Mises stress in 

the rotor structure is greatly dependent on the shape of the magnet slot edge. Therefore, 

providing a circular fillet with bigger radius will considerably reduce the peak stress. The 

major limitation in IPM structure is the flux leakage due to iron surface brace. [28,29] 

 

In practical applications, a small tolerance in dimension is maintained at the magnet and 

magnet slot connection. Magnets are inserted and bonded with an adhesive whose strength 

is time dependent. Therefore, studying the bonded surface connection between magnet and 

slot is not sufficient and hence frictional surface is tested in Ansys model in this thesis. The 

two characteristics which are not accounted in this study of IPM structure are the momentum 

of rotor during acceleration and deceleration and the fatigue analysis of rotor material. [30] 

 

The most important feature to be considered while designing an IPM rotor is the rotor bridge 

which is the rotor extending outside the magnet pole. This region is of great interest in 

electromagnetic as well as mechanical design aspects. The thinner the bridge, the better the 

electromagnetic performance due to reduced flux leakage. Whereas mechanical performance 

is compromised at thinner bridges since centrifugal forces are more prominent in these 

regions. [30] Since electromagnetic aspects are not given much importance in this thesis, a 

simple semicircular magnet slot ends and a 2 mm thick rotor bridge is considered in this 

study. 

 

Due to the complexity in calculating the stress in this structure analytically, an equivalent 

structure is proposed by [29]. Figure 8 shows the comparison of real and proposed equivalent 

structure. 
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Figure 8. Comparison of real (right) and proposed equivalent structure (left) [29]. 

In this approach, the centrifugal forces acting on the iron bridge and the magnet is transferred 

to an equivalent ring. The mass density of magnet as well as that of iron core is used to 

calculate the equivalent mass density of the ring ensuring that the equivalent ring experience 

the same centrifugal force as that of the original rotor structure. The height of the equivalent 

ring ℎ𝑒𝑞 is chosen according to the smallest height of the iron bridge above the magnet. The 

equivalent height can provide the inner and outer radius 𝑟𝑒𝑞𝑖 and 𝑟𝑒𝑞𝑜 of the ring. The area 

of the equivalent ring (𝐴𝑒𝑞) is calculated from both the radius and the angle 𝛽, which is the 

angle included by the magnet as seen from Figure 8. Area of the magnet (𝐴𝑚) is calculated 

using the length and breadth of the magnet given by 𝑙𝑚 and 𝑏𝑚 respectively. Finally, the 

equivalent mass density of ring (ρeq) is calculated using mass density of iron core (ρfe), the 

area of magnet, area of iron bridge (𝐴𝐹𝑒) and equivalent area of ring as given in equation 

(41). [29] [31]  

 

{
 
 
 
 
 

 
 
 
 
 

𝑟𝑒𝑞𝑖 = 𝑟𝑓𝑒𝑜 − ℎ𝑒𝑞
𝑟𝑒𝑞𝑜 = 𝑟𝑓𝑒𝑜

𝐴𝑒𝑞 =
𝛽(𝑟𝑒𝑞𝑜

2 − 𝑟𝑒𝑞𝑖
2)

2
𝐴𝑚 = 𝑙𝑚𝑏𝑚

𝐴𝑓𝑒 = (
𝛽. (𝑟𝑒𝑞𝑜

2 − (𝑟𝑒𝑞𝑖 − 𝑏𝑚)
2
)

2
) − 𝐴𝑚

ρeq = ρfe
 (𝐴𝑚 + 𝐴𝐹𝑒)

𝐴𝑒𝑞 }
 
 
 
 
 

 
 
 
 
 

 (41) 
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Where 𝑟𝑓𝑒𝑜 denotes the outer radius of iron core. The tangential stress experienced by the 

equivalent ring (𝜎𝑡𝑒𝑞) is calculated using the equation(42). 

 𝜎𝑡𝑒𝑞 = (
𝑟𝑒𝑞𝑖 + 𝑟𝑒𝑞𝑜

2
)2𝜔2ρeq (42) 

There are three different possibilities of error in the above mentioned method. Most 

importantly, this relationship does not take into account the peak stress occurring at the 

corners of magnet slots. Moreover, there are small approximations in the calculation of area 

of iron bridge. Finally, the calculation of equivalent density based on equivalent area is a 

naive approach. Hence, the below method is proposed where the centroid of different regions 

is also taken into account to get better accuracy while studying varying geometries. 

 

First of all, a rotor section of angle β is considered which embeds a single magnet pole. 

Angle β can be varied to study different magnetic pole configurations, for example, β=90 

degree correspond to a four pole rotor configuration. Four regions are considered to calculate 

the density of the equivalent ring region. The first region represents the total area of the rotor 

core including the magnet which is subtitled as ‘1’. The second region corresponds to the 

iron bridge above and on the sides of the magnet pole which is denoted by the subtitle ‘2’. 

The third region correspond to the magnet and is denoted by subtitle ‘3’. The fourth region 

under consideration is the area below the inner diameter of equivalent ring denoted by the 

subtitle ‘4’. 

 

Figure 9. The four different regions of an IPM considered to calculate the equivalent density  

 The centroid radius of each region is denoted by ‘R’ and the corresponding area denoted by 

A. [32] 
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 {
𝑟𝑒𝑞𝑜 = 𝑟𝑓𝑒𝑜

𝑟𝑒𝑞𝑖 = 𝑟𝑓𝑒𝑜 − ℎ𝑒𝑞
} (43) 

Where ℎ𝑒𝑞 is the height of iron bridge extending outside the magnet poles. 𝑟𝑒𝑞𝑜 , 𝑟𝑒𝑞𝑖 and 𝑟𝑓𝑒𝑜 

denotes outer and inner radius of equivalent ring and outer radius of iron core respectively. 

The centroid radius of the four distinct regions considered is given in equation(44) 

 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑅1 =
2𝑟𝑒𝑞𝑜 sin

𝛽
2

3
𝛽
2

𝑅2 =
2(𝑟𝑒𝑞𝑖 − 𝑏𝑚) sin

𝛽
2

3
𝛽
2

𝑅3 = 𝑟𝑒𝑞𝑖 −
𝑏𝑚
2

𝑅4 =
2𝑟𝑒𝑞𝑖 sin

𝛽
2

3
𝛽
2 }

 
 
 
 
 
 

 
 
 
 
 
 

 (44) 

 

Where   𝑅1, 𝑅2, 𝑅3  and 𝑅4  denotes the centroid radius of four regions  in 

respective order. Equation (45) gives the area of the four regions considered 

 

{
 
 
 
 
 

 
 
 
 
 𝐴1 =

𝛽

2
𝑟𝑒𝑞𝑜

2

𝐴2 = 𝐴𝑚 =
𝛽

2
(𝑟𝑒𝑞𝑖 − 𝑏𝑚)

2

𝐴3 = 𝑏𝑚𝑙𝑚

𝐴4 =
𝛽

2
𝑟𝑒𝑞𝑖

2

𝐴𝑒𝑞 =
𝛽

2
(𝑟𝑒𝑞𝑜 − 𝑟𝑒𝑞𝑖)

2

𝐴𝑓𝑒 = 𝐴1 − 𝐴2 − 𝐴3 }
 
 
 
 
 

 
 
 
 
 

 

(45) 

Where 𝐴1, 𝐴2, 𝐴3, 𝐴4 represents the area of four regions considered in respective order. 𝐴𝑒𝑞 

and 𝐴𝑓𝑒  denotes the area of equivalent ring and the total area of iron bridge above and on 

both the sides of the magnet. 𝑙𝑚 and 𝑏𝑚  represents the length and width of the magnet.  

Equation (46) calculates the centroid of the iron bridge, magnet and equivalent ring 

respectively. 
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{
  
 

  
 𝑟𝑐𝑓𝑒 =

𝑅1𝐴1 − 𝑅2𝐴2 − 𝑅3𝐴3
𝐴1 − 𝐴2 − 𝐴3

𝑟𝑐𝑚 = 𝑅2 = 𝑟𝑒𝑞𝑖 −
𝑏𝑚
2

𝑟𝑐𝑒𝑞 =
𝑅1𝐴1 − 𝑅4𝐴4
𝐴1 − 𝐴4 }

  
 

  
 

 (46) 

Where 𝑟𝑐𝑓𝑒, 𝑟𝑐𝑚 and 𝑟𝑐𝑒𝑞 denotes centroid radius of iron bridge, magnet and equivalent ring 

respectively. Finally, equation (47) gives the density of equivalent ring ρeq  and also 

calculates the tangential stress acting on the equivalent ring  𝜎𝑡𝑒𝑞. 

 

 {

ρeq = 𝑟𝑐𝑚ρm𝐴𝑚+𝑟𝑐𝑓𝑒ρfe𝐴𝑓𝑒

𝑟𝑐𝑒𝑞

𝜎𝑡𝑒𝑞 = 𝑟𝑐𝑒𝑞
2𝜔2ρeq

} (47) 

 

3.4 V-shaped  Magnet 

High torque, power density and wide speed range makes IPM a good choice for motors in 

electric vehicle. Interior Permanent magnet can be arranged radially, tangentially or at an 

angle between the poles. In additional, W shaped and U shaped configurations are also 

possible. The main design challenge in these type of magnets is to optimize the 

electromagnetic and mechanical performance, which are sometimes conflicting in nature. 

For example, flux leakage can be reduced thereby improving the electromagnetic 

performance by reducing the magnet bridge thickness. However, decreasing the bridge 

thickness negatively affects the mechanical performance. This section studies the theoretical 

calculations of maximum tangential stress developed in a V-shaped  IPM. [33]  

 

As discussed in previous section, equivalent ring calculated based on equivalent mass 

density is not sufficient to predict the stress for complex structures especially when magnets 

are arranged at an angle. Centrifugal force is dependent on both mass density as well as 

radius. Transforming the centrifugal force based on equivalent mass density is not very 

accurate in V-shaped magnets since the centroid radius is dependent on the angle between 

the magnet poles. The centroid radius decreases with small angles. Hence, a similar approach 

to transform centrifugal force based on finding the equivalent radius and equivalent mass 

density is studied in this section. [33]  
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In order to calculate the centroid, the magnets are considered as two sections. The iron bridge 

area is divided into 3 sections based on its geometry as Fe1, Fe2 and Fe3 as shown in Figure 

10. [33] 

 

 

Figure 10. Section view of V-shaped magnet pair [33]  

The size of proposed equivalent ring is defined in equation (48) 

 {
𝑟𝑒𝑞𝑜 = 𝑟𝑓𝑒𝑜

𝑟𝑒𝑞𝑖 = 𝑟𝑓𝑒𝑜 − ℎ𝑒𝑞
} (48) 

Where ℎ𝑒𝑞 is the height of iron bridge extending above the magnet poles. 𝑟𝑒𝑞𝑜, 𝑟𝑒𝑞𝑖 and 𝑟𝑓𝑒𝑜 

denotes outer and inner radius of equivalent ring and outer radius of iron core respectively. 

The centroid radius of magnet and iron bridge, Rm and 𝑅𝑓𝑒   

respectively are given by 

 𝑅𝑚 = 𝑟𝑒𝑞𝑖 cos
𝛽

2
− {𝑟𝑒𝑞𝑖 sin

𝛽

2
cot

𝜃

2
+

𝑙𝑚

2 sin
𝛼
2

− [
𝑙𝑚
2
cot

 𝜃

2
+ 𝑏𝑚 +

𝑙𝑚
2
] cos

 𝜃

2
} (49) 
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 𝑅𝑓𝑒 =
∯ 𝑥𝑑𝑥
 

𝑓𝑒1
+∯ 𝑥𝑑𝑥

 

𝑓𝑒2
+∯ 𝑥𝑑𝑥

 

𝑓𝑒3

𝐴𝑓𝑒1 + 𝐴𝑓𝑒2 + 𝐴𝑓𝑒3
 (50) 

 

Where, 𝜃 is angle between two magnets of a single pole, 𝛽 is the pole shoe angle, 𝑙𝑚 and 𝑏𝑚 

are the length and breadth of a single magnet. The respective centroid and area of three 

sections of iron bridge considered given by ∯ 𝑥𝑑𝑥
 

𝑓𝑒1
,  ∯ 𝑥𝑑𝑥

 

𝑓𝑒3
,  ∯ 𝑥𝑑𝑥

 

𝑓𝑒3
 and 𝐴𝑓𝑒1, 

𝐴𝑓𝑒2, 𝐴𝑓𝑒3 are defined below. 

   ∯ 𝑥𝑑𝑥
 

𝑓𝑒1

=
2

3
(𝑟𝑒𝑞𝑜

3 − 𝑟𝑒𝑞𝑖
3) sin 𝛽 (51) 

 

 ∯ 𝑥𝑑𝑥
 

𝑓𝑒2

=
2

3
𝑟𝑒𝑞𝑖 [sin

𝛽

2
− cos3

𝛽

2

 

tan
𝛽

2
] (52) 

 ∯ 𝑥𝑑𝑥
 

𝑓𝑒3

= 𝑟𝑒𝑞𝑖
3 [sin2

𝛽

2

 

cos
𝛽

2
cot

𝜃

2
] (53) 

 𝐴𝑓𝑒1 = 𝛽(𝑟𝑒𝑞𝑜
2 − 𝑟𝑒𝑞𝑖

2) (54) 

 𝐴𝑓𝑒2 =
1

2
𝑟𝑒𝑞𝑖

2[𝛽 − sin 𝛽] (55) 

 𝐴𝑓𝑒3 = 𝑟𝑒𝑞𝑖
2 sin2

𝛽

2

 

cot
𝜃

2
 (56) 

Where 𝑟𝑒𝑞𝑖 and  𝑟𝑒𝑞𝑜 represents the inner and outer radius of the proposed equivalent ring. 

Equivalent mass density 𝜌𝑒𝑞 is given by 

 𝜌𝑒𝑞 =
(𝑅𝑚𝜌𝑚𝐴𝑚 + 𝑅𝑓𝑒𝜌𝑓𝑒𝐴𝑓𝑒)

1 − cos 𝜃
2

𝑅𝑜𝐴𝑒𝑞
 (57) 

Where 𝜌𝑓𝑒 and 𝜌𝑚 correspond to the respictive densities of iron bridge and magnet. 𝐴𝑚  is 

the total area of two magnets and 𝐴𝑓𝑒  is the total area of iron bridge. 

 𝐴𝑚 = 2𝑙𝑚𝑏𝑚 (58) 

 𝐴𝑓𝑒 = 𝐴𝑓𝑒1 + 𝐴𝑓𝑒2 + 𝐴𝑓𝑒3 (59) 

Area of the equivalent ring 𝐴𝑒𝑞 is given by  

 𝐴𝑒𝑞 = 𝐴𝑓𝑒1 (60) 



41 

 

The centroid radius of equivalent ring 𝑅𝑒𝑞 is given by 

 𝑅𝑒𝑞 =
𝑟𝑒𝑞𝑜 + 𝑟𝑒𝑞𝑖

2
 (61) 

 

Circumferential or tangential stress is given by 

 𝜎𝑡 = 𝑅𝑒𝑞
2𝜔2𝜌𝑒𝑞 (62) 

Maximum tangential stress is given by 

 𝜎𝑡𝑚𝑎𝑥 = 𝑆𝐹𝜎𝑡 (63) 

Where SF is the stress concentration factor which can be deduced from Finite element 

analysis test cases. 
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4 GEOMETRY, THERMAL AND SPEED TEST OF PERMANENT MAGNET 

ROTORS 

 

 

A systematic approach is followed in this study to analytically calculate the mechanical 

stress in high speed permanent magnet rotors and to further verify the results using a tool 

based on finite element method. The simplest and ideal structure consisting of a continuous 

cylindrical permanent magnet is studied first followed in order by more complex magnet 

shapes like SPM, IPM and V-shaped magnets. The mathematical formulas are coded in 

Matlab 2017 and the results are verified in Ansys 18. In the first two methods, radial, 

tangential and Von Mises stress are plotted along the radial length of the rotor assembly, 

whereas only the maximum tangential stress is calculated for the last two methods.  

 

The accuracy of the obtained result is found by an error analysis of the Matlab result by 

comparing the same with corresponding Ansys results. Multiple experiments are conducted 

for the same model to ensure reliability of obtained results. Geometry test, thermal test and 

speed tests are performed for the first model. However, only geometry and speed test are 

performed on the results of the remaining three models. Reliability is ensured by continuing 

the experiments until consistent error percentage is attained under different test data. 

Saturation of test results is also taken care in this study by converging the finite element 

results with multiple test runs. In each test, different type and density of mesh is used till the 

results converge to a fine point. 

 

The geometry, materials and test conditions used for the four different methods 

corresponding to four types of permanent magnets studied are discussed here followed by 

their corresponding test results. In case of CPM and IPM tests, Matlab results are reported 

first as stress plots, followed by Ansys results. It is succeeded by a comparison study which 

expounds the accuracy of the Matlab code by determining the error percentage in the code 

as compared against the Ansys results. Matlab plots are absent in the test results of IPM and 

VPM study since the code for these two methods calculates only the maximum tangential 

stress. In the IPM and VPM test results, Ansys results are reported first followed by an error 

analysis which tabulates Matlab results, Ansys results and their corresponding error 

percentage. 
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4.1 Geometry test on cylindrical permanent magnet 

Matlab code for analytical stress calculation of CPM structure is developed based on the 

theory of rotating cylinders given by Hearn in the book “Mechanics of materials 2” [24]. 

The stress analysis includes two loading conditions, one due to rotational speed and other 

one due to shrink fit between rotor core and magnet as well as that between magnet and the 

enclosure. The code calculates stress variation along a radial line ranging from center of 

rotor core to the outer diameter of the enclosure. Due to the symmetry of the cylindrical 

structure, it is assumed that the stress variation along the radial line does not vary across the 

circumference. Moreover, shear stress is assumed to be zero due to geometric symmetry. 

 

 The reliability of code developed to calculate the radial, tangential and von Mises stress in 

CPM structure is tested by studying three different geometric variations of the rotor 

assembly. The rotor assembly consist of a steel core, cylindrical permanent magnet and an 

enclosure. The shaft as well as lamination is considered as a single entity in this study. 

Geometry is varied by incrementing the diameter of all the components uniformly by 10 mm 

in each test. The material data used for the geometry test is given in Table 1 

 

Table 1. Material data for geometry test of CPM 

Material Property Core (Stainless 

Steel) 

PM 

(NdFeB) 

Enclosure (Carbon 

Fiber) 

Density (Kg/m3) 7850 7400 1800 

Elastic Modulus (GPa) 210 160 228 

Poissons Ratio 0.3 0.24 0.32 

CTE (*10-6) (/℃) 12 8 13 

Yield Strength (MPa) 335 120 NA 

Ultimate strength (MPa) NA NA 600 

 

Stainless steel is the material selected for the rotor core including shaft and lamination. The 

permanent magnet is made of neodymium iron boron (NdFeB) and the enclosure is made of 

carbon fiber. It is to be noted that, carbon fiber is an orthotropic material whose material 

property varies in different directions. But, the orthotropic nature of carbon fiber material is 
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not taken into account in this study. Instead, a constant value is assigned for all the properties 

in the Matlab code as well as in the Ansys material definition table. CTE in the table refers 

to the material property coefficient of thermal expansion. 

 

The continuous cylindrical structure makes it possible to shrink fit the magnet to the core as 

a means of mechanical fastening. Shrink fit is also provided between the magnet and the 

enclosure to resist the high centrifugal forces. General parameters like the rotational speed, 

interference, thermal gradient between rotor and the ambient temperature and the number of 

simulation steps used in Matlab code to divide the radial length equally are listed in Table 

2. 

 

Table 2. General parameters for geometry test of CPM 

Rotational velocity (rpm) 15000 

Interference fit (µm) 100 

Thermal gradient (℃) 0 

Matlab simulation steps 300 

 

Three consecutive tests are done for three different geometries namely geometry test 1, 

geometry test 2 and geometry test 3. The diameter of each component is incremented by 10 

mm in each consecutive test case. Table 3 lists the dimensions of rotor core, magnets and 

the enclosure for geometry test 1 

 

Table 3. Dimensions of components for geometry test 1 of CPM 

Geometry Core (Stainless 

Steel) 

PM (NdFeB) Enclosure 

(Carbon Fiber) 

Inner Radius (mm) 0 35.5 40.5 

Outer Radius (mm) 35.5 40.5 42.5 

 

The Matlab plots for radial, tangential and von Mises stress for the first geometry is shown 

in Figure 11 . 
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Figure 11. Matlab stress plots for CPM geometry test 1. (a)Tangential stress plot, (b) radial 

stress plot, (c) von Mises stress plot 

As seen from Figure 11, radial stress is in the shrink fit assembly is mostly compressive in 

nature, while tangential stress is tensile. The contact between shaft and magnet has to be 

intact in order to transfer the torque to the shaft adequately. The shrink fit provides a negative 

compressive stress in the contact region which mainly accounts for radial stress to be in 

negative region. But the stress induced in the rotating components due to centrifugal action 

is tensile. Moreover, the centrifugal stress is directly proportional to the square of radius. 

Hence, the centrifugal stress reduces the compressive stress by adding up tensile stress 

component. This explains increase in radial stress with the increase in radius. In the 

outermost radius which corresponds to the external diameter of enclosure, radial stress is 

zero due to the absence of physical constrains which prevent free expansion or contraction 

of material. 
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In case of a shrink fitted assembly, the tangential stress induced is compressive for inner 

component while it is tensile for the outer component. Meanwhile, the tangential stress 

induced due to centrifugal forces are always positive. While considering the first contact 

region between the rotor core and the magnet, tangential stress due to shrink fit is positive 

while that due to centrifugal force is negative. These two components cancel out partially in 

case of the inner component which is the rotor core. However, tangential stress due to 

interference as well as due to centrifugal force is positive for the outer component which is 

the magnet. Hence, these two components add up which leads to the tangential stress peak 

in the first contact region between rotor core and magnet. The tangential stress peak in the 

second contact region between magnet and enclosure can also be explained by the same 

reason. 

 

The Matlab results are verified using finite element analysis done in Ansys. Ansys model is 

created with similar geometry and material properties as defined in the code for Matlab. The 

contact between the different components are selected appropriately and the mesh type and 

mesh density is finalized after repeated test runs. The input data used for finite element 

analysis (FEA) is listed in Table 4. The contact type between the contact surface is chosen 

as frictional which better defines the scenario studied here. Frictional surface prevents 

relative sliding between components and develop shear forces between interacting surfaces. 

As already mentioned in the assumptions, the shear force is neglected due to the symmetry 

of the structure which cancel outs the developed shear forces and hence is no accounted in 

analytical calculation. Different coefficient of friction between 0.1 and 0.2 were 

experimented without significant deviation in results and finally friction coefficient of 0.2 is 

chosen and used across all the models studied in this thesis. The geometry and mesh type 

used for the model is clarified in Figure 12, Figure 13 and Figure 14. 

 

Table 4. FEA model details for geometry test of CPM 

Magnet Configuration Continuous cylindrical 

Mesh Type Proximity 

Mesh size Medium 

Core-Magnet contact type Frictional (0.2) 

Enclosure-Magnet contact type Frictional (0.2) 
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Figure 12 shows the radial stress plot in Ansys for the first geometry test. The left side of 

figure illustrates the mesh quality and the stress distribution of the enclosure and magnet at 

top and bottom respectively. The right side of the figure displays an exploded view of entire 

assembly illustrating the mesh size and stress distribution. Stress from the midpoint of both 

the contact regions are taken for comparison with the Matlab results. 

 

Figure 12. Radial stress plot in Ansys for CPM geometry test 1 

As seen from Figure 12, FEA result agrees with the Matlab result for stress variation along 

the radius. The exact values of stress have some error percentage in comparison with FEA, 

which is detailed in Table 5. The tangential stress distribution for the Ansys model is shown 

in Figure 13. As in the previous case, the left side of figure illustrates the mesh and stress 

distribution of enclosure and magnet respectively at top and bottom, while the right hand 

side shows an exploded view of the entire assembly. 

 

 

Figure 13. Tangential stress plot in Ansys for CPM geometry test 1 
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The von Mises stress distribution for the Ansys model is shown in Figure 14. It is obvious 

from Figure 13 and Figure 14 that tangential stress is the most prominent stress in the model. 

The maximum von Mises stress is lower than the maximum tangential stress. 

 

 

Figure 14. Von Mises stress plot in Ansys for CPM geometry test 1 

Table 5 compares the Matlab and FEA results at three points, the contact between rotor core 

and magnet, contact between magnet and enclosure and finally the maximum stress. The 

percentage of error in Matlab result as compared against FEA result is also tabulated. 

 

Table 5. Error analysis of CPM geometry test 1 

Rotor-Magnet 

contact 

 
Fe stress 

(MPa) 

Matlab stress 

(MPa) 

Error (%) 

Radial stress 112 104 7.14 

Tangential stress 396 373 5.81 

Von Mises stress 448 433 3.35 

Magnet-Enclosure 

contact 

Radial stress 56 52 7.14 

Tangential stress 1130 1015 10.18 

Von Mises stress 1043 1040 0.29 

Maximum Stress Radial stress 112 104 7.14 

Tangential stress 1130 1015 10.18 

Von Mises stress 1043 1040 0.29 
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It is observed from Table 5 that while the error in radial stress maintains a constant pattern, 

the tangential and von Mises stress looks slightly inconsistent in their variation at different 

points. A better analysis is possible only by doing more test cases. 

 

The second geometry test is done by incrementing 10 mm to the dimensions of all 

components from geometry test 1. Table 6 lists the dimensions of the geometry used in 

Matlab code as well as for the Ansys model.  

 

Table 6. Dimensions of components for geometry test 2 of CPM 

Geometry 
Core (Stainless 

Steel) 
PM (NdFeB) 

Enclosure     

(Carbon Fiber) 

Inner Radius (mm) 0 40.5 45.5 

Outer Radius (mm) 40.5 45.5 47.5 

 

All other parameters except the geometry remains unchanged from geometry test 1. Hence, 

the material data and model details from Table 1and Table 2 are used in this experiment as 

well. Moreover, the mesh used for this experiment is similar to that illustrated in Figure 12, 

Figure 13 and Figure 14. The test results for geometry test 2 is presented in Table 7. 

 

 

Table 7. Error analysis of CPM geometry test 2 

Rotor-

Magnet 

contact 

 
Fe stress 

(MPa) 

Matlab stress (MPa) Error (%) 

Radial stress 88 81 7.95 

Tangential stress 356 336 5.62 

von Mises stress 391 383 2.05 

Magnet-

Enclosure 

contact 

Radial stress 45 41 8.89 

Tangential stress 1020 916 10.20 

von Mises stress 939 935 0.43 

Maximum 

Stress 

Radial stress 88 81 7.95 

Tangential stress 1020 916 10.20 

von Mises stress 939 935 0.43 
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A comparison between Table 5 and Table 7 reveals that the error percentage at different 

locations follows a close pattern between different geometries. The radial error percentage 

lies around 7% and 8% percentage, the tangential stress error percentage for the first contact 

region is around 5% while it is around 10% for the second contact region for both the 

geometries. The error percentage for von Mises stress at the contact between rotor core and 

magnet are around 2% and 3% in both the tests, while the maximum von Mises stress which 

occurs at the magnet enclosure contact is less than 1% in both the cases. 

 

The error pattern is finalized by doing one more test in which all the parameters are kept 

same as in the first two test cases except the geometry. The data regarding geometry of the 

different components are listed in Table 8. Material data and model details can be referred 

from Table 1and Table 2 respectively. 

 

Table 8. Dimensions of components for geometry test 3 of CPM 

Geometry Core (Stainless 

Steel) 

PM (NdFeB) Enclosure 

(Carbon Fiber) 

Inner Radius (mm) 0 45.5 50.5 

Outer Radius (mm) 45.5 50.5 52.5 

 

The test results for geometry test 3 is given in Table 9. Matlab results and FEA results are 

successively followed by an error analysis in the table. 
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Table 9. Error analysis of CPM geometry test 3 

Rotor-Magnet 

contact 

 
Fe stress (MPa) Matlab 

stress 

(MPa) 

Error 

(%) 

Radial stress 70 65 7.14 

Tangential stress 324 305 5.86 

von Mises stress 348 337 3.16 

Magnet-

Enclosure contact 

Radial stress 37 34 8.11 

Tangential stress 929 836 10.01 

von Mises stress 852 852 0.00 

Maximum Stress Radial stress 70 65 7.14 

Tangential stress 929 836 10.01 

von Mises stress 852 852 0.00 

 

The error percentage shows a consistent pattern while comparing the corresponding error 

data for three geometry tests as is seen from Table 5, Table 7 and Table 9. 

 

4.2 Thermal test on cylindrical permanent magnet 

Thermal test is done to verify whether the developed Matlab code provides reliable results 

under a thermal gradient between the rotating components and ambient temperature. In 

practical scenario, thermal behavior of materials is nonlinear in nature. But, a constant 

thermal gradient between the entire rotor assembly and ambient temperature is considered 

in this study. Moreover, the CTE is assumed as a constant for all materials and do not vary 

based on temperature. It is to be noted that the basic equation of thermal strain which is the 

product of CTE and thermal gradient is used in this study. The change in diameter due to 

thermal strain is added in the respective diameters while defining the geometry of each 

component in the Matlab code. Apart from this, thermal stress is not considered separately 

in any of the analytical calculations.  

 

Two tests are done in this section, one with zero thermal gradient and the other one with 100 

degree Celsius as the thermal gradient. The dimensions of components used for the thermal 

test is selected based on the geometry test 2 and the corresponding data is listed in Table 6. 

The material data used for the thermal test is same as that listed in Table 1 for both the tests. 
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The general parameters used for thermal test 1 is same as that provided in Table 2. Thermal 

test 2 also uses the same parameters listed in Table 2 except for a change in thermal gradient 

which is 100 degree Celsius. The FEA data used in both the thermal tests are same as listed 

in Table 4.  

 

Since the thermal test 1 performed at zero thermal gradient produces the same result as that 

of geometry test 2, the results are not repeated here again. Thermal test 2 is a repetition of 

thermal test 1 with 100 degree Celsius as thermal gradient. The radial, tangential and von 

Mises stress plots in Ansys for thermal test 2 is given in Figure 15, Figure 16 and Figure 17 

respectively. 

 

 

Figure 15. Radial stress plots for thermal test 2 at a thermal gradient of 100 degree Celsius 

 

The stress values from the mid point of contact surface is chosen for comparison  instead of 

the local maximum. A comparison  of data from Figure 15 to the corresponding FEA data in 

Table 7 gives the change in stress distribution in CPM assembly when the temperature in the 

rotor rises to 100 degree Celsius above the ambient temperature. The FEA trend shows that, 

while the compressive stress between the magnet and rotor core increases with temperature 

rise, the compressive stress between magnet and enclosure almost remains same and drops 

only by 3 MPa. 
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Figure 16. Tangential stress plots for thermal test 2 at a thermal gradient of 100 degree 

Celsius 

Figure 16 is compared with Table 7 for their corresponding FEA stress values at different 

locations. The same trend in radial stress comparison is repeated here as well. The tangential 

stress between rotor magnet contact increases while that between magnet enclosure contact 

increases.  

 

Figure 17. von Mises stress plots for thermal test 2 at a thermal gradient of 100 degree 

Celsius 

von Mises stress values at both contact region seems to increase when stress points from 

Figure 17 is compared against corresponding FEA data listed in Table 7. A detailed 

comparison is provided in Table 10 which compares the FEA stress data from the above 

Ansys plots with the corresponding values obtained from the Matlab test. 
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Table 10. Error analysis of thermal test 2 at a thermal gradient of 100 degree Celsius 

Rotor-Magnet 

contact 

 
Fe stress 

(MPa) 

Matlab stress 

(MPa) 

Error (%) 

Radial stress 96 88 8.33 

Tangential stress 448 404 9.82 

von Mises stress 520 453 12.88 

Magnet-

Enclosure 

contact 

Radial stress 42 40 4.76 

Tangential stress 958 887 7.41 

von Mises stress 982 905 7.84 

Maximum 

Stress 

Radial stress 96 88 8.33 

Tangential stress 958 887 7.41 

von Mises stress 982 905 7.84 

 

 

Table 7 and Table 10  are compared to study the trend followed by Matlab and FEA results 

when a thermal gradient is introduced to the model. It is inferred from the comparison that 

Matlab results follows the same trend of FEA results for radial and tangential stress, even 

though the exact stress values and hence the error percentage varies slightly. But, in the case 

of von Mises stress, the trend in Matlab results contradicts with the corresponding trend in 

FEA results. Despite the fact that all the stress values in FEA results increases with 

introduction of thermal gradient, an increase in the von Mises stress in Matlab results is 

observed only at rotor magnet contact while that at magnet enclosure contact decreases. 

 

4.3 Speed test on cylindrical permanent magnet 

In speed test, one Ansys model is tested under 5 varying rotational speeds from 10000 to 

30000 rpm with an increment of 5000 rpm between each consecutive test. All other 

parameters except the speed are kept constant both in FEA as well as in the Matlab code 

input data. The error percentage is calculated based on the variation with the FEA results 

which is then tabulated to find the mean error percentage. The closeness of error value of 

each test to the mean error determines the reliability of the studied method. Moreover, the 

mean error can be utilized to find a correction factor that can be applied to the Matlab code  
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The material data used in the speed test is same as that listed in Table 1. The general 

parameters used in the geometry test except for the rpm are also used in speed test which is 

referred in Table 2. In addition, the FEA also uses the same data as referred in Table 4. The 

geometry selected for the speed test corresponds to that of second geometry test and the 

dimensions of components are already listed in Table 6. The tangential stress is plotted for 

different speeds in Matlab and is presented in Figure 18.  

 

Figure 18. Tangential stress plotted in Matlab for speed test on CPM. (a) 10000 rpm, (b) 

15000 rpm, (c) 20000 rpm, (d) 25000 rpm, (e) 30000 rpm 
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It is evident from Figure 18 that the stress peak occurs in the magnet enclosure contact 

region. Moreover, the peak stress increases with an increase in speed as is expected. This 

stress peak for each test is compared with stress values taken from similar location in a FEA 

model as shown in Figure 19 

 

 

Figure 19. Tangential stress plots in Ansys for CPM speed test. (a) 10000 rpm, (b) 15000 

rpm, (c) 20000 rpm, (d) 25000 rpm, (e) 30000 rpm 

The stress peaks are taken from the center of the contact region instead of the local stress 

peak for comparison. Moreover, the values obtained are round off to zero decimal places in 

case of both the results. Table 11 compares the Matlab and FEA results for maximum 

tangential stress taken form the contact region between magnet and enclosure. 

 

Table 11. Error analysis of CPM speed test 

RPM Fe Stress (MPa) Matlab Stress (MPa) Error (%) 

10000 1017 911 10.42 

15000 1020 916 10.20 

20000 1026 922 10.14 

25000 1032 930 9.88 

30000 1041 939 9.80 

Mean error 10.09 
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It is apparent from Table 11 that the error percentage shows minimum deviation over the 

range of experiments with a maximum variation of 0.33% from the mean value which occurs 

in the case of minimum speed of 10000 rpm. 

 

4.4 Geometry test on surface permanent magnet 

SPM structure consist of permanent magnets arranged along the surface of the rotor core. 

Laminations are not considered separately in this study. Instead, the lamination is integrated 

with the shaft to form a single entity. Even though, the surface magnets can be arranged in 

two different forms, one being segmented magnets and other being separated by a filler 

material, only one approach is followed in this study. The magnets in the tested Ansys model 

is separated by a filler material made of aluminum alloy. A bandage or enclosure made of 

titanium alloy encloses the surface magnets and prevent them from flying off under high 

surface velocities. 

 

FEA of the model with varying geometry and speeds converged to the conclusion that the 

tangential stress is the most prominent among radial, tangential and von Mises stress in SPM 

structure. Moreover, the maximum tangential stress occurs in the enclosure above the 

separation material, in the space between adjacent magnets. The Matlab code developed for 

this study is an extension of the first method used for cylindrical permanent magnet. 

Tangential stress is plotted along the radius of the rotor assembly at a radial line including 

the rotor core, PM and enclosure. The two loading conditions are rotational speed and 

interference fit between PM and enclosure. The analytical model for the contact surface 

between the magnet and the separation material is not studied here. This limiting factor 

affects the maximum stress above the magnet. In addition, the peak stress above the magnet 

rig cannot be predicted by this approach. Therefore, a correction factor (CF) is included in 

the Matlab code to predict the maximum stress which will subjugate the above mentioned 

limiting factor. Furthermore, a stress concentration factor (SCF) is employed in the Matlab 

code to predict the peak stress above the separation rig. The CF and SCF are determined 

based on the error analysis on comparison with FEA study. The mean error from different 

tests helps to calculate both the factors. 

 

Three different geometries of SPM are studied in this section for analyzing the stress 

variation. The diameter of rotor core is increased by 10 mm in each case which consequently 
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varies the diameter of magnet and enclosure. The thickness of the enclosure and magnets are 

not changed. Magnet thickness is maintained at 5 mm and enclosure thickness is maintained 

at 2 mm for all the three cases. The material data used in the Matlab code and Ansys model 

is listed in Table 12. 

 

Table 12. Material data for geometry test of SPM 

Material Property Core(S350) PM 

(NdFeB) 

Enclosure       

(Ti-6Al-4V) 

Magnet rig 

(7075-T6) 

Density (kg/m3) 7850 7400 4471 2810 

Elastic Modulus (GPa) 210 160 115 210 

Poissons Ratio 0.3 0.24 0.342 0.3 

CTE (*10-6) (/℃) 12 8 9.5 25.5 

Yield Strength (MPa) 350 120 250 350 

Ultimate strength (MPa) NA NA NA 700 

 

Thermal gradient is ignored in this test. The general parameters for geometry test of SPM is 

given in Table 13. 

 

Table 13. General parameters for geometry test of SPM 

Rotational velocity (rpm) 15000 

Interference fit( µm) 100 

Thermal gradient(℃) 0 

Matlab simulation steps 300 

 

A section of SPM structure is modelled in Ansys such that it includes half of two adjacent 

magnets on both the sides of the aluminum test rig used as filler material in this study. While 

the enclosure magnet contact is modelled as frictionless in the Ansys model, the contacts 

between magnet and rotor core and the one between magnet and rig material is modelled as 

frictional with a friction coefficient of 0.2. The FEA parameters are listed in Table 14. 
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Table 14. FEA model details for speed test of SPM 

Magnet Configuration 4 pole Surface permanent magnet 

Mesh Type Curvature 

Mesh size Medium 

Core-Magnet contact type Frictional (0.2) 

Enclosure-Magnet contact type Frictionless 

Magnet Rig-Magnet contact Frictional(0.2) 

 

The mesh density and final stress distribution in Ansys model can be observed from Figure 

20. The left side of figure gives the exploded view of rotor assembly in Ansys for the first 

geometry studied here. The lower portion of exploded assembly included the core, magnets 

and filler mterial which is hard to distinguish due to similar color blue for all the regions. 

This is because the stress in enclosure is very high compared to all other regions and hence 

minor stress variations in other regions are coded in same color in Ansys. The right side of 

figure shows the stress distribution in enclosure for the three geometries arranged in 

ascending order of diameters. The stress point at the middle denotes the stress above filler 

material and on the two sides represents the stress above two adjacent magnets taken from 

their middle region. 

 

Figure 20. Tangential stress plots in Ansys for SPM geometry test. a) Rotor core diameter 

of 71 mm, b) Rotor core diameter of 81 mm, c) Rotor core diameter of 91 mm 
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The results from Matlab code is listed in Table 15 along with a comparison with the FEA 

results in Ansys. An error percentage is calculated in the last column of the table which 

indicates the deviation of Matlab results from the FEA results which is used as the reference 

here. 

 

Table 15. Error analysis of SPM geometry test 

Rotor core 

diameter 

(mm) 

Fe Stress (MPa) Matlab Stress (MPa) Error % 

Stress above 

magnet 

Peak 

stress 

Stress above 

magnet 

Peak 

stress 

Stress above 

magnet 

Peak 

stress 

71 308 327 277 277 10.06 15.29 

81 278 293 248 248 10.79 15.36 

91 253 264 226 226 10.67 14.39 

Mean error percentage 10.51 15.01 

 

Peak stress in Table 15 refers to the stress above the filler material where the maximum 

stress occurs. It is observed that the stress above magnet shows a consistent error percentage 

across the different test cases. The error deviation between the maximum and minimum error 

percentage is 0.73 % with a mean error of 10.51 %. The peak stress also looks reliable with 

not much deviation between the error percentages between different test cases. 

 

4.5 Speed test on surface permanent magnet 

The first geometry in the SPM geometry test is selected to do a speed test where the geometry 

and all other parameters in Matlab code and Ansys model are kept constant by varying the 

rotational velocity from 10000 to 30000 rpm. The material data for speed test of SPM is 

given in Table 12. Table 16 lists the dimensions of the constituting components of SPM 

structure. The axial length is assumed to be unity. The separation material named as magnet 

rig or filler material is a 2mm wide section cut from a disc whose inner and outer diameters 

are same as that of the magnet. Tangential stress variation along the inner radius of rotor 

core to outer radius of enclosure along the region of magnet is considered for the stress 

calculation. As stated previously, the region comprising of magnet rig which separates 

adjacent magnet has different material properties which are not accounted in this experiment. 

The properties of contact region between magnet and rig is also ignored. 
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Table 16. Dimensions of components for speed test of SPM 

Geometry Core(S350) PM 

(NdFeB) 

Enclosure       

(Ti-Alloy) 

Magnet rig 

(7075-T6) 

Inner Radius (mm) 0 35.5 40.5 35.5 

Outer Radius (mm) 35.5 40.5 42.5 40.5 

Width (mm) NA NA NA 2 

 

The Matlab test results are presented in Figure 21.  

 

Figure 21. Tangential stress plots in Matlab for SPM speed test. (a) 10000 rpm, (b) 15000 

rpm, (c) 20000 rpm, (d) 25000 rpm, (e) 30000 rpm 
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The stress plots in Ansys is demonstrated in Figure 22. A 20 degree angular section is studied 

here which comprises of two magnet sections and a magnet rig or filler material separating 

them. Stress values at the inner side of enclosure are taken from three points, mid point of 

two magnets and mid point of the magnet rig. 

 

Figure 22. Tangential stress plots in Ansys for SPM speed test. (a) 10000 rpm, (b) 15000 

rpm, (c) 20000 rpm, (d) 25000 rpm, (e) 30000 rpm 

It is obvious from Figure 22 that the stress peak occurs above the magnet rig whose value is 

greater than that above magnets. The stress above magnets taken from the midpoint of both 

sides coincides which implies that the stress results chosen are reliable enough. Table 17 

makes a comparison between Matlab and Ansys results for tangential stress in the enclosure 

above magnet and also takes into account the peak stress.  
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Table 17. Error analysis of SPM speed test 

RPM 

 

Fe Stress (MPa) Matlab Stress (MPa) Error % 

Stress above 

magnet 

Peak 

stress 

Stress above 

magnet 

Peak 

stress 

Stress above 

magnet 

Peak 

stress 

10000 306 326 275 275 10.13 15.64 

15000 308 325 277 277 10.06 14.77 

20000 311 330 280 280 9.97 15.15 

25000 314 332 284 284 9.55 14.46 

30000 319 335 288 288 9.72 14.03 

Mean error 9.89 14.81 

 

It is observed from Table 17 that the maximum deviation of error percentage for the stress 

above magnet is 0.24 and that for the peak stress is 0.83. This trend implies that even though 

an error percentage above 10 % exist between the Matlab and FEA resulst, the error is 

consistent in nature. This helps to calculate a single correction factor that can be adopted in 

the Matlab code for varying parameters. 

 

4.6 Geometry test on interior permanent magnet 

In IPM structure, magnets are buried inside the iron core. This PM structure requires no 

separate laminations and the obligation of enclosure is also irrelevant here. The complexity 

in constructing an analytical model for stress calculation of this structure leads to the 

adoption of a substitute structure that makes the calculation much easier. An equivalent ring 

replaces the original geometry such that the proposed ring has the same mass density as that 

of the combined mass density of buried magnets, the thin iron bridge above the magnets and 

the iron bridge between adjacent magnets which is described in section 3.3. As in the case 

of SPM, the most prominent stress component in IPM is also the tangential stress. Therefore, 

the Matlab code limits to the calculation of maximum tangential stress. The basic concept of 

equivalent ring proposed in [29] is modified by replacing average radius with centroid radius 

in the calculations of equivalent ring density. The modified equations are used in the Matlab 

code to find the maximum tangential stress. 
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The slots for PMs can be customized to reduce the peak stress. There are two alternate 

methods reviewed in this thesis work to reduce the peak stress. The first one is by providing 

fillets of same radius at four corners of magnets and the magnet slots. The second method is 

to provide a semicircular cut at the end of magnet slot. The diameter of the semicircular cut 

is same as that of the breadth of the magnet slot. This design refrains the geometry from 

having corner points which accumulate stress. The latter method is followed in this study. 

Rotational velocity is the only load applied to the model. The Matlab code calculates the 

maximum tangential stress based on the geometry and rotational velocity. But, the code 

cannot predict the peak stress which occurs at the corner faces of magnet slot. A correction 

factor is adopted to calculate the peak stress from the maximum tangential stress calculated 

by the Matlab code. 

 

Interior permanent magnets buried in a tangential direction inside the rotor core is studied in 

this section for three different geometries. The outer diameter of rotor and the width of the 

magnet is varied in each case keeping the rotational speed constant at 15000 rpm.  It is 

observed from similar studies on IPM structure that the maximum tangential stress occurs at 

the corners of magnet slot in the rotor core [34,35]. This is the peak stress which is impacted 

by the centrifugal forces and the geometry of the structure. The geometrical impact on the 

peak stress is accounted by introducing a correction factor based on the results of FE analysis 

which is discussed in chapter 5. The material data used in the study is given in Table 18. 

NdFeB is used as the magnet material which is found to be very efficient for IPM 

structures.[36]  

 

Table 18. Material data for geometry test of IPM 

Material Property Iron Core PM (NdFeB) 

Density ( kg/m3) 7850 7400 

Elastic Modulus (GPa) 210 160 

Poissons Ratio 0.3 0.24 

CTE (*10-6) (/℃) 12 8 

Yield Strength (MPa) 350 120 
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Even though an 8 pole IPM is studied, it is assumed that it is sufficient to model a single 

pole in FE study due to the symmetry of the structure. The FE model details are given in 

Table 19. 

 

Table 19. FEA model details for geometry test of IPM 

Magnet Configuration 8 pole 

Magnet slot shape Rectangular with semicircular edges on short length 

Mesh Type Proximity and Curvature 

Mesh size Medium 

Core-Magnet contact type Frictional (0.2) 

 

The mesh density and stress distribution can be observed from Figure 23. The figure shows 

three geometrical configurations on the left as listed in Table 20 and the peak stress 

formation on the right. 

 

 

Figure 23. Tangential stress plots in Ansys for IPM geometry test. 

 

The results obtained from Matlab code and the corresponding FE test for similar geometry 

and load are compared in Table 20. The final column of the table lists the error on 

comparison between the two methods. 
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Table 20. Error analysis of IPM geometry test  

Rotor outer 

diameter (mm) 

Length of 

magnet (mm) 

Width of 

magnet (mm) 

FEA Stress 

(MPa) 

Matlab Stress 

(MPa) 

Error 

(%) 

84 20 3 155.23 70.26 54.74 

94 20 4 204.02 104.64 48.71 

104 20 5 289.36 148.44 48.70 

Mean Error percentage 50.72 

 

It can be observed from Table 20 that the error percentage is quite high. It is because of the 

negligence of stress concentration factor in the Matlab code used. A correction factor is 

calculated based on the results of IPM speed test detailed in the next section. The corrected 

results are presented in chapter 5. 

 

4.7 Speed test on interior permanent magnet 

The third geometry from the geometry test is chosen to perform the speed test in IPM. The 

material data used for the speed test of IPM is same as that of geometry test and hence it can 

be referred from Table 18. The dimensions of components for the speed test of IPM is given 

in Table 21. The magnet is modelled as a 20x5 rectangular bar with no fillets at the corners. 

 

Table 21. Dimensions of components for speed test of IPM 

Geometry Iron Core PM (NdFeB) 

Inner Radius (mm) 0 NA 

Outer Radius (mm) 52 NA 

Length (mm) NA 20 

Breadth (mm) NA 5 

Height of iron bridge above magnets (mm) 2 

 

Table 22 lists the general parameters used in the speed test of IPM structure. Rotational 

velocity is varied from 10000 to 30000 rpm with an increment of 5000 rpm at each 

successive test. Thermal gradient between the rotor assembly and the outside environment 

is neglected in this study. 
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Table 22. General parameters for speed test of IPM 

Rotational velocity (rpm) 10000-30000 

Thermal gradient (℃) 0 

 

One segment of the 8 pole IPM is modelled in Ansys to study the peak stress under rotational 

load. The contact between magnet and the iron core is modelled as frictional providing a 

friction coefficient of 0.2. Table 19 lists the FEA data used for the study. 

 

The meshing details can be observed from Figure 24 where fine meshing is provided in the 

corners of the magnet slot where stress peaks are expected. The meshing is refined until a 

point where the results converge such that an increase in mesh density no longer has an 

impact on the results. Figure 24 demonstrates the occurrence of peak stress in the magnet 

slot corners. The maximum stress is selected for comparison with Matlab results. 

 

 

Figure 24. Tangential stress plot in Ansys for IPM speed test 

Table 23 tabulates the Matlab results and compares the corresponding values to the FEA 

peak stress. The comparison is presented in the form of error analysis detailing the deviation 

of Matlab peak stress from FEA peak stress. 
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Table 23. Error analysis of IPM speed test 

RPM Fe Stress (MPa) Matlab Stress (MPa) Error (%) 

10000 91.66 46.5 49.27 

15000 204.02 104.64 48.71 

20000 359.24 186.03 48.22 

25000 561.05 290.68 48.19 

30000 807.61 418.57 48.17 

Mean Error 48.51 

 

It is evident from the error analysis that the error percentage decrease slightly with the 

increase in speed. This might be because the method adopted is based on centrifugal force 

which is directly proportional to the square of velocity and the speed predominates geometry 

at higher rpm. It can be inferred from this analysis that the difference between maximum 

and minimum error percentage is only 1.1%. The method adopted is useful to find the peak 

stress by applying a correction factor but does not guarantee high level of accuracy. Hence, 

further refinement of the equivalent ring approach is advisable for future studies. 

 

4.8 Geometry test on V-shaped permanent magnet 

VPM is an alternate form of IPM where the buried magnets form a magnet pair with V shape. 

The angle between the magnet pair is a variable. V magnets coincide with the IPM structure 

studied in the previous section when the angle between the magnet pair approaches 180 

degree. The angle used in this study is 150 degree. An equivalent ring approach, similar to 

the one used in IPM study is also used here.  Apart from transferring the density of magnet 

and iron bridge to the equivalent ring, the centroid radius of the proposed ring is also 

calculated based on the centroids of different sections of the original VPM structure. The 

transfer of centroid provides more accuracy to stress calculation of VPM since the centroid 

varies with the angle between the magnet pair.  

 

The magnet pair in VPM can be arranged in various fashion. The space between the pair of 

magnets is designed to optimize both the mechanical as well as electromagnetic 

performance. Thinner bridges reduce leakage flux, whereas thick bridge between the 

magnets enhance mechanical performance [34,37]. Different designs are proposed by 

various authors to optimize these contradicting constraints. In this study, mechanical 
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performance is given importance. Hence, the space between magnet pairs is mostly occupied 

by the rotor iron except for a tiny air gap passage connecting the slots of magnet pairs. The 

material data for VPM geometry test is given in Table 24. 

 

Table 24. Material data for VPM geometry test 

Material Property Iron Core (S350) PM (NdFeB) 

Density( kg/m3) 7850 7400 

Elastic Modulus (GPa) 210 160 

Poissons Ratio 0.3 0.24 

CTE (*10-6) (/℃) 12 8 

Yield Strength (MPa) 350 120 

 

Three different geometries studied are listed in Table 25 where the outer diameter of rotor 

core and the width of the magnet are varied while keeping the speed of the rotor constant at 

15000 rpm. Table 25 compares the Matlab and FE analysis results to calculate the error 

percentage of results obtained from Matlab code. 

 

Table 25. Error analysis of VPM geometry test 

Rotor outer 

diameter (mm) 

Length of 

magnet 

(mm) 

Width of 

magnet (mm) 

FEA 

Stress 

(MPa) 

Matlab Stress 

(MPa) 

Error 

(%) 

84 20 3 247.82 74.74 69.84 

94 20 4 320.18 100.58 68.59 

104 20 5 417.57 131.58 68.49 

Mean Error percentage 68.97 

 

It can be concluded from the error analysis of VPM that the error percentage is rather high 

but consistent in nature. It can be inferred from the result that the tangential stress calculation 

failed to calculate the peak stress due to geometric discontinuities. This is accounted in the 

form of a correction factor discussed in chapter 5. 
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4.9 Speed test on V-shaped permanent magnet 

The third geometry from Table 25 is selected to do a speed test with rotational velocities 

ranging from 10000 to 30000 rpm. Thermal gradient is ignored in this study. The material 

used is same as that used in geometry test and hence can be referred from Table 24.The 

dimensions used to model iron core and the magnets is listed in Table 26. 

 

Table 26. Dimensions of components for the speed test of VPM 

Geometria data Iron Core PM (NdFeB) 

Inner Radius (mm) 0 NA 

Outer Radius (mm) 52 NA 

Length(mm) NA 20 

Breadth(mm) NA 5 

Height of iron bridge above magnets(mm) 2 

Angle between magnets of a single pole (deg) 150 

Pole angle (deg) 60 

 

An Ansys model is created using the same material and geometric data as referred from 

Table 24 and Table 26 respectively. In order to reduce the stress peaks, fillets of same radius 

are provided at the four corners of the magnets and the magnet slots. A 60 degree section of 

6 pole VPM structure is modelled in Ansys with 150 degree angle between the magnet pair. 

The data used to create Ansys model for VPM structure is provided in Table 27. 

 

Table 27. FEA model details for the speed test of VPM  

Magnet Configuration 6 pole 

Magnet slot shape Rectangular, fillets at 4 corners 

Mesh Type Proximity and Curvature 

Mesh size Medium 

Core-Magnet contact type Frictional (0.2) 

  

The mesh density and mesh distribution are illustrated in Figure 25 in which a finer mesh is 

provided at the top corners of magnet slots where the peak stress is expected. 
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Figure 25. Tangential stress plot in Ansys for VPM speed test 

 

Stress peaks in VPM can occur at two different points, one at the bilateral iron bridge above 

the magnets and the other one at the central bridge between magnet pair . It is observed under 

repeated experiments that the peak stress occurs always at the central bridge and specifically 

at the corners of the magnet slot. 

 The analytical stress calculation at the central bridge and bilateral bridge of VPM require 

different approaches. Since the peak stress always occurs in the bilateral bridge, the Matlab 

code focus on finding the maximum stress at the bilateral bridge. But, the code calculates 

only the maximum tangential stress which does not coincide with the peak stress. Peak stress 

is dependent on the details of geometry like the ratio of dimensions and radius of fillets used. 

There are different mathematical approaches to find the SCF which can predict the peak 

stress. But the approach used here is to derive a SCF based on successive speed tests on the 

same geometry. The SCF calculation is detailed in analysis section. Table 28 presents the 

error analysis of VPM speed test which compares results from Matlab code with the 

corresponding FEA results. 
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Table 28. Error analysis of VPM speed test 

RPM Fe Stress (MPa) Matlab Stress (MPa) Error 

(%) 

10000 186.7 58.48 68.68 

15000 417.57 131.58 68.49 

20000 739.5 233.92 68.37 

25000 1153.6 365.5 68.32 

30000 1665.3 526.32 68.39 

Mean Error 68.45 

 

It is clearly evident form the error analysis of VPM speed test as seen in Table 28 that the 

error percentage at different speed maintains good consistency such that the maximum 

deviation from mean error is 0.36% which is quite low. Despite the fact that the error 

percentage is quite big, it assures reliability due to small error tolerance across the range of 

experiments. The high percentage in error is explained by the fact that the peak stress in 

Ansys model is compared against the maximum tangential stress in Matlab and not against 

the peak tangential stress. The error percentage from Table 28 is utilized to find the SCF 

which is then used to find the peak stress in Matlab. The comparison between the corrected 

Matlab results and FEA peak stress is presented in the analysis section where the error 

percentage is reduced considerably to obtain fairly accurate result. 
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5 ANALYSIS 

 

 

A detailed analysis of the results is carried out in this section to study the accuracy of the 

obtained result. The results are first reviewed graphically and then a correction factor is 

calculated based on the data of speed test for the four different magnet types. It is important 

to note that even though error percentage in a certain group of experiments is high, it is 

possible to derive a reliable correction factor if the errors are consistent in nature. In case of 

inconsistent errors resulting from scattered data, it is not possible to find a CF that suits entire 

range of data. The CF is first applied in the same speed test results which are used to derive 

the CF to portray the possible reduction in error percentage. Next, the reliability of CF is 

ensured by using the same CF in the geometry test for all the four different methods studied 

in this thesis. Error analysis of the four methods are represented graphically in Figure 26. 

 

Figure 26.  Graphical representation of error analysis of the four methods CPM, SPM, VPM 

and IPM in clockwise direction.  
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 As stated previously, a correction factor is introduced to minimize the error whose 

calculation is presented by equation(64). The speed tests are only considered for this 

calculation.  

 𝐶𝐹 =
∑Fe stress + ∑𝑀𝑎𝑡𝑙𝑎𝑏 𝑠𝑡𝑟𝑒𝑠𝑠

𝑛
 (64) 

Where n denotes the number of experiments taken into account for CF calculation. Here, 5 

experiments are conducted and all of them are considered to calculate the CF which gives n 

a value of 5. The summation of FEA and Matlab stress are obtained from Table 11, Table 

17, Table 23 and Table 28. Table 29 presents the CF calculated for the four different methods 

CPM, SPM, IPM and VPM. 

 

Table 29. Correction factor calculation for four independent methods 

Method ∑Fe Stress (MPa) ∑Matlab Stress (MPa) CF 

CPM 1041 939 1.11 

SPM 1650 1404 1.18 

IPM 2024 1046 1.93 

VPM 3976 1257 3.16 

 

The correction factors from Table 29 are used in the respective Matlab code to get corrected 

Matlab results. Table 30 presents the error analysis of CPM speed test in which a CF of 1.11 

is used to correct the maximum tangential stress. 

 

Table 30. Error analysis of CPM speed test in which Matlab results are corrected with a CF 

of 1.11 

RPM Fe Stress (MPa) Matlab Stress (MPa) Error (%) 

10000 1017 1011 0.59 

15000 1020 1017 0.29 

20000 1026 1023 0.29 

25000 1032 1032 0.00 

30000 1041 1042 0.10 

Mean error 0.25 
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It is evident from Table 11 and Table 30 that the mean error percentage of the 5 experiments 

reduced from 10.09 to 0.25 while applying the CF. The same  CF is applied in the CPM 

geometry test as well to correct the Matlab results of maximum tangential stress. The 

corrected results are presented in Table 31. 

 

Table 31. Error analysis of CPM geometry test in which Matlab results are corrected with 

a CF of 1.11 

Enclosure Diameter (mm) FEA Stress (MPa) Matlab Stress (MPa) Error  (%) 

85 1130 1127 0.27 

95 1020 1017 0.29 

105 929 928 0.11 

Mean Error 0.22 

 

It can be seen from Table 31 that the Matlab results corrected with same CF gives fairly 

accurate results for CPM geometry test as well which ensures the reliability of selected CF 

and the method adopted to calculate the CF. Table 32 presents the error analysis of SPM 

speed test. 

 

Table 32. Error analysis of SPM speed test in which peak stress in Matlab results are 

corrected with a CF of 1.18 

RPM 

 

FEA Corrected Matlab Results Error % 

Stress 

above 

magnet 

(Mpa) 

Peak stress 

(MPa) 

Stress above 

magnet 

(MPa) 

(CF=1.11) 

Peak stress 

(MPa) 

(CF=1.18) 

Stress 

above 

magnet 

(%) 

Peak 

stress 

(%) 

10000 306 326 305.25 324.5 0.25 0.46 

15000 308 327 307.47 326.86 0.17 0.04 

20000 311 330 310.8 330.4 0.06 0.12 

25000 314 332 315.24 335.12 0.39 0.94 

30000 319 335 319.68 339.84 0.21 1.44 

Mean error 0.22 0.60 
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A CF of 1.11 is used in the Matlab code to calculate the stress above magnet. A separate CF 

of 1.18 is used to predict the peak stress which occurs above the separation material. It is 

obvious by comparing Table 17 and Table 32 that the mean error in the calculation of stress 

above magnet reduced from 9.89 to 0.22. Meanwhile, peak stress of 5 successive speed test 

reduced from 14.91 to 0.6 by using the CF. The prediction of stress above magnet looks 

more reliable due to better distribution of individual error percentages around the mean 

value. Now, the same CF used in SPM speed test is applied for SPM geometry test and the 

corrected results are presented in Table 33. 

 

Table 33. Error analysis of SPM geometry test in which peak stress in Matlab results are 

corrected with a CF of 1.18   

Enclosure 

Diameter 

(mm) 

Fe Stress (MPa) Matlab Stress (MPa) Error % 

Stress 

above 

magnet Peak stress 

Stress 

above 

magnet 

(CF=1.11) 

Peak 

stress 

(CF=1.17) 

Stress 

above 

magnet 

Peak 

stress 

85 308 327 307.47 326.86 0.17 0.04 

95 278 293 275.28 292.64 0.98 0.12 

105 253 264 250.86 266.68 0.85 1.02 

Mean error 0.67 0.39 

 

It can be seen from Table 33 that the error percentage does not go above 1% when the CF 

derived from SPM speed test is applied to the geometry test. And hence, this correction 

factor can be used in the Matlab code to correct the calculated tangential stress for different 

geometries as well. 

  

Table 34 presents the error analysis of IPM speed test in which a CF of 1.93 is used in the 

Matlab code to calculate the maximum tangential stress that occurs at the bilateral bridge 

above magnets. 
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Table 34. Error analysis of IPM speed test in which Matlab results are corrected with a CF 

of 1.93 

RPM Fe Stress (MPa) Matlab Stress (MPa) Error 

10000 91.66 89.75 2.08 

15000 204.02 201.96 1.01 

20000 359.24 359.04 0.06 

25000 561.05 561.01 0.01 

30000 807.61 807.84 0.03 

Mean Error 0.64 

 

The mean error percentage of IPM speed test reduced from 48.51 to 0.64 by using a CF. It 

can also be seen from Table 34 that the applied CF well suits higher rotational speed than 

lower ones. Since the error percentage rise above 2% for the first rotational speed of 10000 

rpm, it can be concluded that reliability of CF for the data range of lower speeds is low. 

 

The same CF which was used in SPM speed test is now applied to SPM geometry test and 

the results are presented in Table 35. 

 

Table 35. Error analysis of IPM geometry test in which Matlab results are corrected with a 

CF of 1.93 

Rotor outer diameter 

(mm) 

FEA Stress 

(MPa) 

Matlab Stress (MPa) Error (%) 

84 155.23 135.6 12.65 

94 204.02 201.96 1.01 

104 289.36 286.49 0.99 

Mean Error 4.88 

 

It can be seen form Table 35 that the error percentage has reduced considerably for the 

second and third geometry studied. But the error percentage of the first geometry which is 

12.65 is not acceptable. Hence, it can be concluded that the estimated CF is not applicable 

for low diameter rotors. 
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Table 36 presents the error analysis of IPM speed test in which a CF of 3.16 is used in the 

Matlab code to calculate the maximum tangential stress. 

 

Table 36. Error analysis of VPM speed test in which Matlab results are corrected with a CF 

of 3.16 

RPM Fe Stress (MPa) Matlab Stress (MPa) Error (%) 

10000 186.7 184.80 1.02 

15000 417.57 415.79 0.43 

20000 739.5 739.19 0.04 

25000 1153.6 1154.98 0.12 

30000 1665.3 1663.17 0.13 

Mean Error 0.35 

 

Even though the CF used in VPM speed test is quite high, the results obtained looks quite 

reliable. The mean error percentage reduced from 68.45 to 0.35. The use of a large CF is 

reasonable since the Matlab code does not use analytical approach to calculate the SCF. 

Instead this particular method relies on error analysis based on Ansys results to determine 

the CF which is then used as the SCF in this scenario. The same CF is now applied to VPM 

geometry test and the results are tabulated in Table 37. 

 

Table 37. Error analysis of VPM speed test in which Matlab results are corrected with a CF 

of 3.16 

Rotor outer 

diameter (mm) 

FEA Stress (MPa) Matlab Stress (MPa) Error  (%) 

84 247.82 236.18 4.70 

94 320.18 317.83 0.73 

104 417.57 415.79 0.43 

Mean Error 1.95 

 

It can be inferred from Table 37 that the CF applies quite well for larger diameter rotors and 

the error percentage reduces as the size of rotor increases. Even though, the error percentage 

for the first geometry looks quite high, the CF can still be used for different geometries since 

none of the error percentage rise above 5%. 
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6 DISCUSSION 

 

 

The previous section presented the Matlab results based on the code developed in this study 

for four different PM rotors. Afterwards, the same geometry was built in Ansys and it was 

considered as the reference model to compare the Matlab results obtained. The error 

percentage between the two methods were analyzed in the previous section. This chapter 

reviews the reason behind the possible errors and suggest improved methods based on the 

knowledge acquired during the course of this thesis study which would help to continue this 

work in a more effective manner with comparatively less error percentage. Additionally, a 

review on sensitivity, accuracy, reliability and validity analysis of this thesis work is done at 

the end of this section  

 

A brief review of the results and analysis section shows that the error percentage in the first 

two PM rotors CPM and SPM were low and the results were quite consistent. Hence, these 

results can be concluded as reliable ones. Meanwhile, as clearly stated in the limitations of 

the thesis work, certain parameters like the variation of CTE, isotropic behavior of materials, 

momentum considerations of rotor are neglected in the study. The developed code can be 

reused by incorporating all these aspects to obtain a result closer to reality. 

 

It can be observed by reviewing the results and analysis of IPM rotor that the results of speed 

test are consistent while the error percentage is quite high. Even though the calculated CF 

works well for the speed test, it gives an error of 12.65 % for the smallest geometry when 

the same CF is applied to the geometry test. This implies that the proposed equivalent ring 

approach is not quite reliable to be used across varying geometries, especially for rotors with 

small diameters. Two suggestions are proposed here to eliminate this error. The most reliable 

option would be to use the partial differential toolbox for structural mechanics in Matlab to 

define the geometry of the PM rotor with better precision. This tool allows user to create 2D 

or 3D models using a procedure similar to that adopted in finite element based tools like 

Ansys. The procedure followed involves the creation of geometry, meshing of geometry, 

applying constraints or boundary conditions and obtaining the results. This similarity in 

techniques adopted in Matlab can provide results closer to that given by Ansys. But a 

compromise has to be made in terms of computational speed. Firstly, there are two methods 
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by which a geometry can be introduced. It can either be imported from a CAD (computer 

aided design) based software or can be built in Matlab by using a function called CSD 

(constructive solid geometry) which allow user to create 2D geometry using basic building 

blocks such as circle, square, rectangle etc. Creation and importing of 3D model is time 

consuming whereas CSD is not suitable for complex geometries. Even though this approach 

reduces the errors accumulated due to the consideration of equivalent ring, it is more time 

consuming. Hence the choice purely depends on the requirement of accuracy and constraints 

on development time of the model. The second suggestion is to calculate the stress 

concentration factors mathematically in order to accommodate factors such as fillet radius 

ratio. Additionally, the tangential stress formula can be improvised by adding more 

geometrical parameters like bridge thickness ratio, magnet depth ratio, magnet thickness 

ratio and web ratio to get more accurate results. 

 

The stress analysis of VPM rotors looks more reliable than the IPM results despite the fact 

that an equivalent ring approach is used in this case as well. Even though the error percentage 

is quite high, the calculated CF reduces the error percentage considerably in speed test as 

well as in geometry test. Hence, it can be inferred that the calculated CF is applicable to 

different speeds and for varying geometries of VPM. 

 

6.1 Sensitivity analysis 

The sensitivity of the developed Matlab code in predicting the maximum stress under 

varying input parameters is measured by conducting mainly two different types of test runs; 

the speed test and geometry test. The speed of a particular geometry is varied 5 times in 

speed test and the geometry is varied thrice by keeping the speed constant in geometry test. 

This procedure ensures that the changing input parameters doesn’t drastically affect the 

stress prediction made by Matlab code. 

 

6.2 Accuracy analysis 

Accuracy analysis of this thesis coincides with the error analysis where the Matlab results 

are compared against Ansys results to calculate the percentage in error. The accuracy in 

Matlab code prediction is determined by this comparison which is adopted throughout all 

the test runs in this thesis work. 
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6.3 Reliability analysis 

The reliability of the developed code to be used in different type of rotor configurations and 

different speed ranges is ensured by deriving a CF based on speed test and using the same 

CF in geometry test. This ensures that the code and CF are not specific to certain parameters 

used in the code but can be applied across different geometries and speed variations. 

 

6.4 Validity analysis 

Since Ansys models are used as the reference source for accuracy analysis, the validity of 

the adopted procedure is certified by ensuring that the stress pattern obtained concurs with 

the conclusions derived in the literature review. The stress distribution and variation in CPM 

agrees with the works of previous authors for radial and tangential stress. As seen from the 

literature, the peak stress in SPM occurs in the enclosure region above filler material. In case 

of IPM, as reviewed in the literature, the peak stress was observed in the corner faces of 

magnet slots. Similarly, the IPM test results also concur with the literature study where the 

peak stress occurs in the bilateral bridge. 
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7 CONCLUSION 

 

 

This thesis is presented based on the bearingless project at Lappeenranta University of 

Technology which aims at commercializing the bearingless drives. As a part of this project, 

analytical tool to calculate initial mechanical stress in four different PM rotors is developed 

in this study. The four PM rotors studied are CPM, SPM, IPM and VPM. The analytical tool 

is developed in Matlab 17 and verified in Ansys 18.  

 

The thesis is realized in five consecutive phases. In the first phase, the parametric tool is 

developed in Matlab based on the analytical formulations of four PM rotors studied in 

literature. In order to derive the analytical solution, firstly the basic equations for radial and 

tangential stress for a rotating cylinder is derived under centrifugal load. Boundary 

conditions of a three layer shrink fitted structure is applied to these equations to get the 

analytical solution of first and the most basic PM rotor which is CPM. The same principle is 

used in SPM as well since the section of SPM including the iron core, magnet and enclosure 

resembles the section of CPM. However, the peak stress of SPM occurs in the enclosure 

above the filler material separating the two adjacent magnets. This peak stress is found by 

applying a SCF to the maximum tangential stress in the enclosure above the magnet. The 

SCF is determined from the peak stress in the corresponding Ansys models. An equivalent 

ring approach is followed to find the maximum tangential stress in IPM structure. The 

equivalent ring is defined such that its density is equivalent to the combined density of 

magnet and surrounding iron bridge and the centrifugal forces acting on equivalent ring is 

equal to the centrifugal forces acting on original structure. A similar approach is followed to 

find the maximum tangential stress of VPM structure as well. In a VPM, the peak stress 

occurs at the bilateral bridge. Therefore, the equivalent ring density is calculated based on 

the densities and centroid radius of magnet pair and bilateral bridge.  

 

 The second phase involves building Ansys models for the four PM rotors based on geometry 

and material properties already defined in Matlab code during the first phase. The sensitivity 

of Ansys results is very crucial at this stage because it can negatively impact the prediction 

of error since Ansys model is used as the reference for comparison. Hence, the Ansys model 

used for comparison is chosen after multiple trials to converge the solution.  
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The third phase is the testing phase where Matlab and Ansys results for the same input 

parameters are compared to find out the error in Matlab code by keeping the corresponding 

Ansys results as the reference. Three different tests done to compare the results are speed 

test, geometry test and thermal test. Speed test and geometry tests are done for all the four 

PM rotor types, while thermal test is done only for the first PM which is CPM.  Stress 

variation at 5 different speeds from 10000 to 30000 rpm is studied in speed test where all 

other parameters excluding the speed like geometry and material properties are maintained 

constant. Similarly, three different geometries are studied in geometry test. In thermal test, 

the presence and absence of thermal gradient is studied.  

 

A correction factor for the analytical tool is calculated in the fourth stage based on the error 

analysis data from speed test of previous stage. The reliability of this correction factor tested 

in the final stage where the CF developed form speed test is used in the geometry test to 

verify the universal nature of the calculated CF.  

 

Of all the 4 different PM rotors studied, the code developed for CPM and SPM gave 

satisfactory results. The method adopted to calculate maximum tangential stress in IPM 

requires some revision to accommodate geometrical factors such as fillet radius ratio to 

predict the peak stress more accurately. VPM test cases gave reliable results in terms of the 

calculated CF which could reduce the error percentage considerably.  

 

It can thus be concluded that the developed tool is sufficient to calculate the initial stress in 

high speed rotors for the four PM rotors studied. The approximations considered in the 

limitations section of this thesis needs to be eliminated completely in order to achieve higher 

accuracy in results. Moreover, it is suggested to use the partial differential toolbox for 

structural mechanics in Matlab to define the geometry of IPM and VPM more precisely in 

order to get results closer to that obtained from FEA. 
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APPENDIX 

 

 

APPENDIX I : Matlab code that plots radial, tangential and von Mises stress in CPM 

RADIAL AND TANGENTIAL STRESS CALCULATION FOR CYLINDRICAL PERMANENT MAGNET 

%All values are given in SI units 

%lITERATURE-Mechanics of Materials 2: The mechanics of elastic and plastic 

%deformation of solids and structural materials(Hearn, Edwin John) 

%Created by: Devika Sasi 

%Date: 28.11.2017 

  

clear all; 

close all 

clc; 

format long 

tic; 

  

%############CONSTANTS DEFINITION############     

Steps = 300; %  Number of simulation stepss  

FS = 2; % factor of safety 

delta_T = 0; % temperature difference 

delta_r = 100e-6; %radial interference 

rpm_min=0;%Minimum rpm 

rpm_max = 15000;%Maximum rpm 

ohmega = rpm_max/60*2*pi;%Angular velocity 

% #################################################### 

  

%############MATERIAL DATA############           

  

%Material_1-steelS355 

sigma_y1=335e6; %Yield strength(for diameter between 40 and 60 mm) 

E1=210e9;%Elastic modulus 

v1=0.3;%Poisson ratio 

rho1=7850;%Density 

alpha1 = 12.6e-6; %Coefficient of tehrmal expansion 

  

%Material_2-Magnet(Cobalt Iron) 

sigma_y2=220e6;%annealed for optimum magnetic properties 

E2=230e9; 

v2=0.29; 

rho2=8600; 

alpha2 = 12e-6; % Coef. of therm. expansion 

%Material_3-Carbonfiber(general data and not accurate values) 

sigma_y3=600e6; 

E3=228e9; 

v3=0.320;  

rho3=1800; 

alpha3 = 13e-6; % Coef. of therm. expansion 

%####################################### 

  

%############GEOMETRY(in SI units)################## 

  

rfei = 0e-3; 

rfeo = 35.5e-3 + alpha1*delta_T*(35.5e-3); 

  

  

rmi = 35.5e-3 -delta_r + alpha2*delta_T*(35.5e-3); 

rmo =40.5e-3+ alpha2*delta_T*(40.5e-3); 

  

reo = 40.5e-3 -delta_r + alpha3*delta_T*(40.5e-3); 

reo =42.5e-3+ alpha3*delta_T*(42.5e-3); 

%###################################### 

  

%####Integration Constants################ 

  

syms a b  a1_ b1_ a2_ b2_ a3_ b3_ r_ v  rho  E  sigma_r sigma_t  

  

u = (a * r_) + b/r_ - (1 -v^2) * (rho * r_^3 * ohmega^2)/(8*E);%Displacement Equation [REFER 

EQUATION (24)] 

 



epsr = diff(u,'r_')% Radial strain Equation 1 [REFER EQUATION (18)] 

epst = u/r_% Tangential strain Equation 1 [REFER EQUATION (19)] 

  

epsr_ = 1/E * (sigma_r - v * sigma_t);% Radial strain Equation 2 [REFER EQUATION (21)] 

epst_ = 1/E * (sigma_t - v * sigma_r);% Tangential strain Equation 2 [REFER EQUATION (22)] 

  

  

res1 = epsr - epsr_; 

res2 = epst - epst_; 

  

sigma_t_ = solve(res2, sigma_t)%Tangential stress 

  

res3 = subs(res1,sigma_t,sigma_t_); 

  

res4 = res3 == 0 

  

sigma_r_= isolate(res4,sigma_r)%Radial Stress 

  

%#################Stress&Displacement Equations########################### 

  

sigma_rfeo=subs(rhs(sigma_r_),[r_,a,b,E,v,rho],[rfeo,a1_,b1_,E1,v1,rho1]); 

sigma_rmi=subs(rhs(sigma_r_),[r_,a,b,E,v,rho],[rmi,a2_,b2_,E2,v2,rho2]); 

u_rfeo=subs(u,[r_,a,b,E,v,rho],[rfeo,a1_,b1_,E1,v1,rho1]); 

u_rmi= subs(u,[r_,a,b,E,v,rho],[rmi,a2_,b2_,E2,v2,rho2]); 

sigma_rmo=subs(rhs(sigma_r_),[r_,a,b,E,v,rho],[rmo,a2_,b2_,E2,v2,rho2]); 

sigma_reo=subs(rhs(sigma_r_),[r_,a,b,E,v,rho],[reo,a3_,b3_,E3,v3,rho3]); 

u_rmo=subs(u,[r_,a,b,E,v,rho],[rmo,a2_,b2_,E2,v2,rho2]); 

u_reo= subs(u,[r_,a,b,E,v,rho],[reo,a3_,b3_,E3,v3,rho3]) 

sigma_reo=subs(rhs(sigma_r_),[r_,a,b,E,v,rho],[reo,a3_,b3_,E3,v3,rho3]); 

%######################################################################### 

  

%######################BOUNDARY CONDITIONS################################ 

bound_1=b1_==0; 

bound_2=sigma_rfeo==sigma_rmi; 

bound_3=rfeo+u_rfeo==rmi+u_rmi; 

bound_4=sigma_rmo==sigma_reo; 

bound_5=rmo+u_rmo==reo+u_reo; 

bound_6=sigma_reo==0; 

%######################################################################### 

  

%#######################SOLUTION########################################### 

sol=solve([bound_1,bound_2,bound_3,bound_4,bound_5,bound_6],[a1_,a2_,a3_,b1_,b2_,b3_]); 

a1=sol.a1_; 

a2=sol.a2_; 

a3=sol.a3_; 

b1=sol.b1_; 

b2=sol.b2_; 

b3=sol.b3_; 

  

x=double([a1 b1 a2 b2 a3 b3]') 

  

  

%######################################################################### 

r = linspace(rfei+50e-6,reo,Steps);%Radius 

u = zeros(Steps,1);%Dispalcement 

epsilon_r = zeros(Steps,1);%Radial strain 

epsilon_t = zeros(Steps,1);%Tangential strain 

sigma_ref_max = zeros(Steps,1);%Reference stress 

  

   

    for m = 1:Steps % Radius loop 

        if r(m) <= rfeo 

            u(m) = x(1)*r(m) + x(2)/r(m) - (1-v1^2)/8/E1*rho1*r(m)^3*ohmega^2; 

            epsilon_r(m) = x(1) - x(2)/r(m)^2 - 3*(1-v1^2)/8/E1*rho1*r(m)^2*ohmega^2; 

            epsilon_t(m) = x(1) + x(2)/r(m)^2 - (1-v1^2)/8/E1*rho1*r(m)^2*ohmega^2; 

            sigma_r(m) = E1/(1-v1^2)*(epsilon_r(m) + v1*epsilon_t(m)); 

            sigma_t(m) = E1*epsilon_t(m) + v1*sigma_r(m); 

        elseif r(m) <= rmo 

            u(m) = x(3)*r(m) + x(4)/r(m) - (1-v2^2)/8/E2*rho2*r(m)^3*ohmega^2; 

            epsilon_r(m) = x(3) - x(4)/r(m)^2 - 3*(1-v2^2)/8/E2*rho2*r(m)^2*ohmega^2; 

            epsilon_t(m) = x(3) + x(4)/r(m)^2 - (1-v2^2)/8/E2*rho2*r(m)^2*ohmega^2; 

            sigma_r(m) = E2/(1-v2^2)*(epsilon_r(m) + v2*epsilon_t(m)); 

            sigma_t(m) = E2*epsilon_t(m) + v2*sigma_r(m); 

             

        else



 

            u(m) = x(5)*r(m) + x(6)/r(m) - (1-v3^2)/8/E3*rho3*r(m)^3*ohmega^2; 

            epsilon_r(m) = x(5) - x(6)/r(m)^2 - 3*(1-v3^2)/8/E3*rho3*r(m)^2*ohmega^2; 

            epsilon_t(m) = x(5) + x(6)/r(m)^2 - (1-v3^2)/8/E3*rho3*r(m)^2*ohmega^2; 

            sigma_r(m) = E3/(1-v3^2)*(epsilon_r(m) + v3*epsilon_t(m)); 

            sigma_t(m) = E3*epsilon_t(m) + v3*sigma_r(m); 

        end 

        sigma_tresca(m) = max([abs(sigma_t(m) - 

sigma_r(m)),abs(sigma_r(m)),abs(sigma_t(m))]); 

        sigma_von_mises(m) = sqrt(sigma_r(m)^2 - sigma_t(m)*sigma_r(m) + sigma_t(m)^2); 

    end 

  

  

for n = 1:Steps 

    if r(n) <= rfeo 

        sigma_0(n) = sigma_y1/FS; 

    elseif r(n) <= rmo 

        sigma_0(n) = sigma_y2/FS; 

    else 

      sigma_0(n) = sigma_y3/FS;   

    end 

    sigma_0_a(n) = sigma_y3/FS; 

end 

  

toc; 

  

figure 

plot(r*1e3,sigma_r/1e6,'k') 

legend('\sigma_r') 

ylabel('\sigma_r (MPa)') 

xlabel('Radius r (mm)') 

grid on 

  

figure 

plot(r*1e3,sigma_t/1e6,'k') 

legend('\sigma_t') 

ylabel('\sigma_t (MPa)') 

xlabel('Radius r (mm)') 

grid on 

  

figure 

plot(r*1e3,sigma_von_mises/1e6,'k') 

hold on 

plot(r*1e3,sigma_0/1e6,'-.k','linewidth',2) 

legend('\sigma_v_o_n_m_i_s_e_s','\sigma_0') 

ylabel('\sigma_v_o_n_m_i_s_e_s (MPa)') 

xlabel('Radius r (mm)') 

grid on 



APPENDIX II: Matlab code that plots radial, tangential and von Mises stress in SPM 

%RADIAL AND TANGENTIAL STRESS CALCULATION FOR SURFACE PERMANENT MAGNET 
%All values are given in SI units 

%lITERATURE-Mechanics of Materials 2: The mechanics of elastic and plastic 

%deformation of solids and structural materials(Hearn, Edwin John) 

%Created by: Devika Sasi 

%Date: 28.11.2017 

  

clear all; 

close all 

clc; 

format long 

tic; 

  

%############CONSTANTS DEFINITION############     

Steps = 300; %  Number of simulation stepss  

FS = 2; % factor of safety 

delta_T = 0; % temperature difference 

delta_r = 100e-6; %radial interference 

rpm_min=0;%Minimum rpm 

rpm_max = 15000;%Maximum rpm 

ohmega = rpm_max/60*2*pi;%Angular velocity 

CF=1.11 % Correction Fcator 

% #################################################### 

  

%############MATERIAL DATA############           

  

%##########Core(S350)############ 

sigma_yfe=350e6; %Yield strength 

E_fe=210e9;%Elastic modulus 

v_fe=0.3;%Poisson ratio 

rho_fe=7850;%Density 

alpha_fe = 12e-6; %Coefficient of tehrmal expansion 

  

%Material_2-Permanent Magnet(NdFeB)######## 

sigma_ym=120e6;%annealed for optimum magnetic properties 

E_m=160e9; 

v_m=0.24; 

rho_m=7400; 

alpha_m = 8e-6; % Coef. of therm. expansion 

%Material_3-Titanium alloy enclosure(Ti-6Al-4V) 

sigma_ye=250e6; 

E_e=115e9; 

v_e=0.342; 

rho_e=4471; 

alpha_e = 9.5e-6; % Coef. of therm. expansion 

%####################################### 

  

%############GEOMETRY(in SI units)################## 

  

r_fei = 0e-3; 

r_feo = 45.5e-3 + alpha_fe*delta_T*(45.5e-3); 

  

  

r_mi = 45.5e-3+ alpha_m*delta_T*(45.5e-3); 

r_mo =50.5e-3+ alpha_m*delta_T*(50.5e-3); 

  

r_ei = 50.5e-3 -delta_r + alpha_e*delta_T*(50.5e-3); 

r_eo =52.5e-3+ alpha_e*delta_T*(52.5e-3); 

%###################################### 

  

%####Integration Constants################ 

  

syms a b  a1_ b1_ a2_ b2_ a3_ b3_ r_ v  rho  E  sigma_r sigma_t  

  

u = (a * r_) + b/r_ - (1 -v^2) * (rho * r_^3 * ohmega^2)/(8*E);%Displacement Equation [REFER 

EQUATION (24)] 

  

epsr = diff(u,'r_')% Radial strain Equation 1 [REFER EQUATION (18)] 

epst = u/r_% Tangential strain Equation 1 [REFER EQUATION (19)] 

  

epsr_ = 1/E * (sigma_r - v * sigma_t);% Radial strain Equation 2 [REFER EQUATION (21)] 

epst_ = 1/E * (sigma_t - v * sigma_r);% Tangential strain Equation 2 [REFER EQUATION (22)]



res1 = epsr - epsr_; 

res2 = epst - epst_; 

  

sigma_t_ = solve(res2, sigma_t)%Tangential stress 

  

res3 = subs(res1,sigma_t,sigma_t_); 

  

res4 = res3 == 0 

  

sigma_r_= isolate(res4,sigma_r)%Radial Stress 

  

%#################Stress&Displacement Equations########################### 

  

sigma_r_feo=subs(rhs(sigma_r_),[r_,a,b,E,v,rho],[r_feo,a1_,b1_,E_fe,v_fe,rho_fe]); 

sigma_r_mi=subs(rhs(sigma_r_),[r_,a,b,E,v,rho],[r_mi,a2_,b2_,E_m,v_m,rho_m]); 

u_r_feo=subs(u,[r_,a,b,E,v,rho],[r_feo,a1_,b1_,E_fe,v_fe,rho_fe]); 

u_r_mi= subs(u,[r_,a,b,E,v,rho],[r_mi,a2_,b2_,E_m,v_m,rho_m]); 

sigma_r_mo=subs(rhs(sigma_r_),[r_,a,b,E,v,rho],[r_mo,a2_,b2_,E_m,v_m,rho_m]); 

sigma_r_ei=subs(rhs(sigma_r_),[r_,a,b,E,v,rho],[r_ei,a3_,b3_,E_e,v_e,rho_e]); 

u_r_mo=subs(u,[r_,a,b,E,v,rho],[r_mo,a2_,b2_,E_m,v_m,rho_m]); 

u_r_ei= subs(u,[r_,a,b,E,v,rho],[r_ei,a3_,b3_,E_e,v_e,rho_e]) 

sigma_r_eo=subs(rhs(sigma_r_),[r_,a,b,E,v,rho],[r_eo,a3_,b3_,E_e,v_e,rho_e]); 

%######################################################################### 

  

%######################BOUNDARY CONDITIONS################################ 

bound_1=b1_==0; 

bound_2=sigma_r_feo==sigma_r_mi; 

bound_3=r_feo+u_r_feo==r_mi+u_r_mi; 

bound_4=sigma_r_mo==sigma_r_ei; 

bound_5=r_mo+u_r_mo==r_ei+u_r_ei; 

bound_6=sigma_r_eo==0; 

%######################################################################### 

  

%#######################SOLUTION########################################### 

sol=solve([bound_1,bound_2,bound_3,bound_4,bound_5,bound_6],[a1_,a2_,a3_,b1_,b2_,b3_]); 

a1=sol.a1_; 

a2=sol.a2_; 

a3=sol.a3_; 

b1=sol.b1_; 

b2=sol.b2_; 

b3=sol.b3_; 

  

x=double([a1 b1 a2 b2 a3 b3]') 

  

  

%######################################################################### 

r = linspace(r_fei+50e-6,r_eo,Steps);%Radius 

u = zeros(Steps,1);%Dispalcement 

epsilon_r = zeros(Steps,1);%Radial strain 

epsilon_t = zeros(Steps,1);%Tangential strain 

sigma_ref_max = zeros(Steps,1);%Reference stress 

  

  

  

   

    for m = 1:Steps % Radius loop 

        if r(m) <= r_feo 

            u(m) = x(1)*r(m) + x(2)/r(m) - (1-v_fe^2)/8/E_fe*rho_fe*r(m)^3*ohmega^2; 

            epsilon_r(m) = x(1) - x(2)/r(m)^2 - 3*(1-v_fe^2)/8/E_fe*rho_fe*r(m)^2*ohmega^2; 

            epsilon_t(m) = x(1) + x(2)/r(m)^2 - (1-v_fe^2)/8/E_fe*rho_fe*r(m)^2*ohmega^2; 

            sigma_r(m) = E_fe/(1-v_fe^2)*(epsilon_r(m) + v_fe*epsilon_t(m)); 

            sigma_t(m) = E_fe*epsilon_t(m) + v_fe*sigma_r(m); 

        elseif r(m) <= r_mo 

            u(m) = x(3)*r(m) + x(4)/r(m) - (1-v_m^2)/8/E_m*rho_m*r(m)^3*ohmega^2; 

            epsilon_r(m) = x(3) - x(4)/r(m)^2 - 3*(1-v_m^2)/8/E_m*rho_m*r(m)^2*ohmega^2; 

            epsilon_t(m) = x(3) + x(4)/r(m)^2 - (1-v_m^2)/8/E_m*rho_m*r(m)^2*ohmega^2; 

            sigma_r(m) = E_m/(1-v_m^2)*(epsilon_r(m) + v_m*epsilon_t(m)); 

            sigma_t(m) = E_m*epsilon_t(m) + v_m*sigma_r(m); 

             

        else 

            u(m) = x(5)*r(m) + x(6)/r(m) - (1-v_e^2)/8/E_e*rho_e*r(m)^3*ohmega^2; 

            epsilon_r(m) = x(5) - x(6)/r(m)^2 - 3*(1-v_e^2)/8/E_e*rho_e*r(m)^2*ohmega^2; 

            epsilon_t(m) = x(5) + x(6)/r(m)^2 - (1-v_e^2)/8/E_e*rho_e*r(m)^2*ohmega^2; 

            sigma_r(m) = E_e/(1-v_e^2)*(epsilon_r(m) + v_e*epsilon_t(m)); 

            sigma_t(m) = E_e*epsilon_t(m) + v_e*sigma_r(m);



        end 

        sigma_tresca(m) = max([abs(sigma_t(m) - 

sigma_r(m)),abs(sigma_r(m)),abs(sigma_t(m))]); 

        sigma_von_mises(m) = sqrt(sigma_r(m)^2 - sigma_t(m)*sigma_r(m) + sigma_t(m)^2); 

    end 

  

toc 

  

for n = 1:Steps 

    if r(n) <= r_feo 

        sigma_ref(n) = sigma_yfe/FS; 

    elseif r(n) <= r_mo 

        sigma_ref(n) = sigma_ym/FS; 

    else 

      sigma_ref(n) = sigma_ye/FS;   

    end 

    sigma_0_a(n) = sigma_ye/FS; 

end 

  

  

  

figure 

plot(r*1e3,sigma_r/1e6,'k') 

legend('\sigma_r') 

ylabel('\sigma_r (MPa)') 

xlabel('Radius r (mm)') 

grid on 

  

figure 

plot(r*1e3,sigma_t/1e6,'k') 

legend('\sigma_t') 

ylabel('\sigma_t (MPa)') 

xlabel('Radius r (mm)') 

grid on 

  

figure 

plot(r*1e3,sigma_von_mises/1e6,'k') 

hold on 

plot(r*1e3,sigma_ref/1e6,'-.k','linewidth',2) 

legend('\sigma_v_o_n_m_i_s_e_s','\sigma_ref') 

ylabel('\sigma_v_o_n_m_i_s_e_s (MPa)') 

xlabel('Radius r (mm)') 

grid on 

  

format bank 

  

Stress_above_Permannet_magnet=double((max(sigma_t)))*1e-6 %in MPa 

Stress_above_Permannet_magnet_Corrected=CF*(double((max(sigma_t))))*1e-6 %in MPa



APPENDIX III : Matlab code that calculates maximum tangential stress in IPM 

%Literature-Fixation of Buried and Surface-Mounted Magnets in High-Speed 
%Permanent-Magnet Synchronous Machines 

%The shaft and iron core is assumed as a single entity in ths approach 

%An equivalent ring is proposed to replace the magnet and iron bridge at 

%the outer periphery of magnet based on literature 

%6 pole magnet is considered 

%Created by: Devika Sasi 

%Date: 28.11.2017 

  

clear all; 

close all 

clc; 

tic; 

format short 

%##################General parameters############# 

delta_T=0;%temperature difference assume to be constant between rotor structure and ambient 

temperature 

rpmmin=0;%Minimum rpm 

rpmmax = 30000;%Maximum rpm 

ohmega = rpmmax/60*2*pi;%Angular velocity 

CF=1.88 

  

%##########Material Data(in SI Units)############## 

%Material Data 

%############Iron core (S350)####################  

rho_fe=7850;                 %Density 

E_fe=210e9;                  %Elastic Modulus 

v_fe=0.3;                    %Poissons ratio 

alpha_fe=12e-6;              %Coefficient of thermal expansion 

sigma_yfe=350e6;             %yield strength 

%#############Permanet magnet(NdFeB)############### 

rho_m=7400; 

E_m=160e9; 

v_m=0.24; 

alpha_m=8e-6; 

sigma_ym=120e6; 

%############GEOMETRY(in SI units)################## 

  

r_fei = 0e-3; %Inner radius of iron core 

r_feo = (94/2)*1e-3% Outer radius of iron core 

  

l_m=20e-3;% length of a single magnet pole 

b_m=4e-3;% breadth of a single magnet pole 

  

h_eq=2e-3;%Height of the proposed equivalent ring from outermost radius  

beta=pi/4;%Pole anle of a single magnetic pole 

  

%#####Centroid Calculation################## 

 r_eqo=r_feo %equivalent ring outside radius [REFER EQUATION(43)] 

  r_eqi=r_feo-h_eq %equivalent ring inside radius [REFER EQUATION(43)] 

   

   

  R1=2*r_eqo*sin(beta/2)/(3*(beta/2)) % [REFER EQUATION (44)] 

  A1=(beta/2)*(r_eqo)^2 % [REFER EQUATION (45)] 

  R2=2*(r_eqi-b_m)*sin(beta/2)/(3*(beta/2)) % [REFER EQUATION (44)] 

  A2=(beta/2)*(r_eqi-b_m)^2 % [REFER EQUATION (45)] 

  R3=r_eqi-(b_m/2) % [REFER EQUATION (44)] 

  A3=b_m*l_m % [REFER EQUATION (45)] 

 

  r_cm=r_eqi-(b_m/2)%Centroid of magnet [REFER EQUATION (46)] 

  r_cfe=(R1*A1-(R2*A2)-(R3*A3))/(A1-A2-A3)%Centroid of Iron bridge[REFER EQUATION (46)] 

  

  %############################################ 

   

  %#############Equivalent ring calculation####### 

   

% r_ceq=(r_eqi+r_eqo)/2 )%Alternate equation for centroid of equivalent ring 

 R4=2*r_eqi*sin(beta/2)/(3*(beta/2)) [REFER EQUATION (44)] 

  A4=(beta/2)*(r_eqi)^2 [REFER EQUATION (45)] 

r_ceq=(R1*A1-R4*A4)/(A1-A4)%Centroid of equivalent ring [REFER EQUATION (46)] 

   r_ceq=r_feo*sin(beta/2)/(beta/2)%Alternate equation for centroid of equivalent ring 

  A_m=b_m*l_m; %Area of magnet [REFER EQUATION (45)] 
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  A_fe=A1-A2-A3;%Total area of iron bridge above and on sides of magnet [REFER EQUATION (45)

] 

  A_eq=beta/2*(r_eqo^2-r_eqi^2)% area of equivalent ring [REFER EQUATION (45)] 

  rho_eq=(r_cm*rho_m*A_m+r_cfe*rho_fe*A_fe)/(r_ceq*A_eq)%density of equivalent ring [REFER 

EQUATION (47)] 

    

  

%################################################# 

  

%############Tangential stress calculation########## 

sigma_teq=r_ceq^2*ohmega^2*rho_eq*1e-6 %[REFER EQUATION (47)] 

  

sigma_teq_corrected=CF* r_ceq^2*ohmega^2*rho_eq*1e-6



APPENDIX IV: Matlab code that calculates maximum tangential stress in VPM 

% Literature-Calculation of the Maximum Mechanical Stress on the Rotor of 

%Interior Permanent-Magnet Synchronous Motors 

%Created by: Devika Sasi 

%Date: 28.11.2017 

  

  

clear all; 

close all 

clc; 

tic; 

%##################General parameters############# 

%delta_T=100;%temperature difference assume to be constant between rotor structure and ambient 

temperature 

rpmmin=0;%Minimum rpm 

rpmmax = 15000;%Maximum rpm 

ohmega = rpmmax/60*2*pi;%Angular velocity 

SF=3.07%stress concentration factor 

  

%##########Material Data(in SI Units)############## 

%Material Data 

%############Iron core (S350)#################### 

rho_fe=7850;                 %Density 

E_fe=210e9;                  %Elastic Modulus 

v_fe=0.3;                    %Poissons ratio 

alpha_fe=12e-6;              %Coefficient of thermal expansion 

sigma_yfe=350e6;             %yield strength 

%#############Permanet magnet(NdFeB)############### 

rho_m=7400; 

E_m=160e9; 

v_m=0.24; 

alpha_m=8e-6; 

sigma_ym=120e6; 

%############GEOMETRY(in SI units)################## 

  

r_fei = 0e-3; %Inner radius of iron core 

r_feo =(84/2)*1e-3% Outer radius of iron core 

l_m=16e-3;% length of a single magnet pole 

b_m=3e-3;% breadth of a single magnet pole 

h_eq=2e-3;%Height of the proposed equivalent ring from outermost radius  

  

alpha=60/180*3.14; %pole shoe angle 

theta=150/180*3.14;%Angle between a pair of V magnets 

  

r_eqi=r_feo-h_eq %Inner radius of equivalent ring [REFER EQUATION (48)] 

r_eqo=r_feo%Outer radius of equivalent ring [REFER EQUATION (48)] 

%#############EQUATIONS############################# 

  

r_m=r_eqi*cos(alpha/2)-(r_eqi*sin(alpha/2)*cot(theta/2)+b_m/(2*sin(alpha/2))-

(b_m/2*cot(theta/2)+b_m+l_m/2)*cos(theta/2)) %[REFER EQUATION (49)] 

A_m=2*(l_m*b_m);%Total area of magnet assuming both magnets to be of equal area [REFER 

EQUATION (58)] 

  

x_fe_1=2/3*(r_eqo^3-r_eqi^3)*sin(alpha); % Centroid of region 1 [REFER EQUATION (51)] 

x_fe_2=2/3*r_eqi^3*(sin(alpha/2)-cos(alpha/2).^3*tan(alpha/2)); % Centroid of region 2 [REFER 

EQUATION (55)] 

x_fe_3=r_eqi^3*(sin(alpha/2).^2*cos(alpha/2)*cot(theta/2)-

1/3*sin(alpha/2).^3*cot(theta/2).^2) % Centroid of region 3[REFER EQUATION (53)] 

A_fe_1=alpha*(r_eqo^2-r_eqi^2); % Area of region 1 [REFER EQUATION (54)] 

A_fe_2=1/2*r_eqi^2*(alpha-sin(alpha)); % Area of region 2 [REFER EQUATION (55)] 

A_fe_3=r_eqi^2*sin(alpha/2).^2*cot(theta/2); % Area of region 3[REFER EQUATION (56)] 

 

A_fe=A_fe_1+A_fe_2+A_fe_3; % Tota area of iron bridge [REFER EQUATION (59)] 

r_fe=(x_fe_1+x_fe_2+x_fe_3)/(A_fe_1+A_fe_2+A_fe_3); %[REFER EQUATION  (50)] 

  

r_o=(r_eqo+r_eqi)/2; %[REFER EQUATION (61)] 

A_eq=A_fe_1; %[REFER EQUATION (60)] 

rho_eq=(r_m*rho_m*A_m+r_fe*rho_fe*A_fe)*((1-cos(theta))/2)/(r_o*A_eq); %[REFER EQUATION (57)

] 

%###################################################### 

  

%###############STRESS CALCULATION################### 

sigma_t=r_o^2*ohmega^2*rho_eq*1e-6 %MPa %[REFER EQUATION (62)] 

sigma_peak=SF*sigma_t % [REFER EQUATION (63) 


