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Recently, results from various computational materials science codes are stored in
databases,  which allow fast search and screening of different  materials by their
properties.  Such  huge  materials  databases  allow a  big-data  driven approach  in
materials discovery, which should significantly accelerate the progress in this field.
The key idea is to apply machine learning on existing calculations for  making
accurate interpolations for physical properties. Therefore, it would be possible to
predict properties for new materials, instead of making explicit calculations for all
of them, thus involving significantly less computational costs, than is required in
DFT, Quantum Monte Carlo, or any other quantum mechanical modeling method.

The main goal of this thesis is to predict band gap values of inorganic crystals and
to classify materials into metals and insulators, using a machine learning approach.
Theoretical part of this thesis includes an overview of the used machine learning
approach and introduces “descriptors” – materials representations in a data set,
which play a key role in prediction accuracy. The main objective of this thesis is to
study, how different descriptors and algorithms affect the learning. Results showed
that with a proper descriptor and learning algorithm it is possible to predict band
gap with mean absolute error of 0.53 eV and classify materials into metals and
insulators with 90% of accuracy.
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Viime  aikoina  tietokantoihin  on  tallennettu  laskennallisen  materiaalifysiikan
tuloksia useista eri lähteistä. Tämä mahdollistaa eri materiaalien nopean etsinnän ja
seulonnan  niiden  ominaisuuksien  perusteella.  Tällaiset  valtavat
materiaalitietokannat  mahdollistavat  suuren  datapohjaisen  lähestymistavan
materiaalien  löytämisessä,  mikä  merkittävästi  nopeuttaa  alan  kehitystä.  Yksi
avainideoista  on  nykyisten  laskelmien  käyttö  tarkkojen  interpolointimallien
luomiseen  koneoppimisen  avulla.  Tämä  mahdollistaa  nopean  ominaisuuksien
ennustaminen uusille materiaaleille sen sijaan, että niille suoritettaisiin varsinaisia
laskelmia,  mikä  merkitseee  huomattavasti  pienempiä  laskentakustannuksia  kuin
mitä  vaaditaan  DFT,  Quantum  Monte  Carlo  -järjestelmässä  tai  missä  tahansa
muussa kvanttimekaanisessa mallintamismenetelmässä.

Tämän  opinnäytetyön  päätavoitteena  on  arvioida  epäorgaanisten  kiteiden
kaistaleveyksiä  ja  luokitella  aineet  metalleihin  ja  eristeisiin  käyttäen
koneoppimista.  Opinnäytetyön  teoreettinen  osa  sisältää  yleiskatsauksen
koneoppimisesta ja esittelee kiderakenteiden geometrian hahmottamiseen luotuja
rakennekuvauksia  joilla  on  keskeinen  rooli  ennustustarkkuudessa.  Tämän
opinnäytetyön  päätavoitteena  on  tutkia,  kuinka  erilaiset  rakennekuvaukset
vaikuttavat  oppimiseen.  Tulokset  osoittivat,  että oikealla  rakennekuvauksella  on
mahdollista  ennustaa  energia-aukon  suuruus  keskimäärin  0.53  eV  virheellä  ja
luokitella materiaalit metalleihin ja eristeisiin 90% tarkkuudella.
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NOMENCLATURE

Variables

O(-) asymptotic notation 
(x i , y i )  ith  training example 
x i  ith  training input
y i  ith  training output
{(x i , y i ) }i=1

n  training set
h ( x )  hypothesis
x j  jt h  feature of  it h  training input
X  matrix of it h  training input
Y  matrix of it h  training output
J (θ )  generalization error as function of θ
k ( x , z )  kernel function of  x  and z
M ij  coulomb matrix entry 
Z i  atomic number of atom i
Z j  atomic number of atom j
Ri  position of atom i
R j  position of atom j
Δ H fusion  fusion enthalpy of chemical element
V molar  molar volume of chemical element
rcov  covalent radius of chemical element

Greek letters

θ j  weight of  jt h  feature
θ  matrix of weights
α  learning rate
λ  regularization parameter
γ  gaussian kernel parameter
λth  thermal conductivity of chemical element

Abbreviations

DFT density functional theory 
ML machine learning 
KRR kernel ridge regression 
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SVM Support vector machine
RF Random forest
ANN artificial neural network 
MSE mean-squared error
MAE mean absolute error 
RMSE root-mean-squared error 
MBTR many-body tensor representation
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1 Introduction

Materials with novel or improved electronic or mechanical properties are one

of  the  key  factors  in  technological  development.  Without  them one  can  forget

about  significant  improvements  in  any  scientific  fields,  in  particular

microelectronics,  energetics,  medicine  etc.  Traditionally,  new  materials  for

technologies  are  created  by  trial  and  error  method,  which  eventually  leads  to

desired results, but the overall process appears to be quite slow and expensive. In

this  case,  computational  methods  of  materials  discovery  began  to  draw  the

attention of  researchers,  due to their  high performance,  low cost  and relatively

small process time. Application of computer modeling in materials design became

possible  due  to  development  of  computational  quantum  mechanical  modeling

methods such as density functional theory (DFT), quantum Monte Carlo method,

coupled cluster, etc. These methods made it possible to calculate not only atomic

structures, but also a wide range of materials properties. To push development in

materials design even further, codes and their outputs of DFT or other quantum

mechanical  calculations  are  now being stored  into  huge  free  access  databases,

allowing users to find there materials with any desired properties. Such sources

accelerate  technological  progress,  since  manufacturers  can  immediately  find  a

desired material for their application in these databases, avoiding time consuming

trial and error method of materials discovery. 

However, even computational approaches of atomistic systems study have its

constraints.  Being  a  many-body  problem,  each  quantum  mechanical  modeling

method  is  limited  by  a  computational  cost  required,  which  is  caused  by  a

significant  increase  of  a  runtime  with  system  size  enlargement.  For  example,

consider doubling a system's size N: for a coupled cluster method with runtime

O (N 7 ) ,  runtime  increases  by  a  factor  of  27
=128  ,  whereas  for  a  density

functional theory method with runtime O (N 3 )  it increases only by a factor of 8.

Even so, after a few doublings one is bound to run out of computing resources.

Therefore,  the  goal  is  to  obtain  high  accuracy  quantum  mechanical  modeling
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methods of atomistic systems, which require significantly less computational costs.

[17]

At this point,  big-data driven repositories of  material  science codes are of

significant importance. Having thousands of reference calculations, the key idea is

to reduce computational costs by making accurate interpolations between them,

and get predictions of properties for new materials instead of running numerical

solution for each of them. Put simply, the idea is to identify patterns in a huge

amount of materials data, and make predictions for properties of new materials

based on this pattern experience. Such approach, known as pattern recognition, is

handled by machine learning (ML). This subfield of artificial intelligence studies

algorithms, which are aimed to find correlation between input and output values

(training data) and predict new outcomes for previously unseen input values (test

data). It has already been applied to quantum mechanics and can give a prediction

for  such systems properties  as  atomization  energies  of  organic  molecules  [17],

cohesive energies and band gap of inorganic crystals, as well as other properties of

solids such as bulk modulus, shear modulus and Debye temperature [10]. Though

ML algorithms offers a promising approach in predicting materials properties with

reduced computational efforts, accuracy of such methods, however, is still below

one of first-principles approaches. In general, approximation accuracy in ML for

quantum mechanics depends not only on the prediction algorithm choice, but on a

way how atomistic system is represented into input variable. Such representations,

or  so-called  «descriptors»,  can  contain  information  about  different  physical

properties  of  a  given  system.  Literature  contains  a  wide  range  of  materials

representation, but in general, they can be divided into structural and elemental.

Structural representations describe geometry of a system (atomic coordinates, unit

cell parameters, Voronoi polyhedron of a central atom in crystal cell [10], etc.),

while elemental refer to any property of chemical elements (fusion enthalpy, molar

volume [10], electronegativity [11], etc.), from which investigated system is build

up. Therefore, the aim of any ML study of atomistic system is to find the best
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combination  descriptor/algorithm,  which  eventually  will  give  the  highest

prediction accuracy.

1.1 Research goal

The goal of this research is to understand how and why machine learning

should be applied in materials science, become familiar with and improve existing

application  of  machine  learning  related  to  the  band  gap  prediction  and

metal/insulator  classification.  The  main  objective  of  this  thesis  is  to  study

performance of ML algorithms with different materials descriptors and choose the

option, which gives the highest prediction and classification accuracy.  

1.2 Thesis structure

The  theoretical  framework  of  this  thesis  consists  of  2  sections.  Section  2

presents  some  examples  of  contemporary  application  of  machine  learning  in

physics,  especially  in  material  science.  The  theory  behind  machine  learning

approach in material science is given as well. Section 3 is devoted to existing and

employed  materials  representations  (descriptors)  in  machine  learning.  Main

features  and  differences  between  each  descriptor  are  discussed.  The  practical

framework includes sections 4 and 5. Section 4 contains the research workflow

with  detailed  comments  and  outcomes  of  each  step.  In  section  5,  results  are

discussed. Suggestions and recommendations about further work are given as well.
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2 Theoretical overview

2.1 Problem background

The problem of detecting patterns in data is a fundamental one and crucial not

only for basic statistics tasks, but for natural sciences as well. For instance, the

extensive astronomical observations of Tycho Brahe in the 16th century allowed

Johannes Kepler to discover the empirical laws of planetary motion, which in turn

provided a springboard for the development of classical mechanics. Similarly, the

discovery of regularities in atomic spectra played a key role in the development

and  verification  of  quantum physics  in  the  early  twentieth  century  [4].  At  the

present time, pattern recognition tasks are highly required in processing satellite

data,  gained  from  observations  over  processes  in  the  atmosphere.  Patterns

identified  by  ML  algorithms  are  used  to  handle  weather  forecasts.  Another

compelling evidence of big-data processing necessity in physics can be observed in

Large Hadron Collider (LHC) at CERN. The amount of data, detected during each

particle collision in LHC, is far beyond the human abilities to handle it, so ML

algorithms are applied to filter and detect meaningful features in obtained data. For

instance, several algorithms are used to perform jet tagging – a method to identify

jets, containing  b hadrons, eventually providing information on type of particles

produced  during  each  collision  [3].  Overall,  ML algorithms  have  shown  their

ability to create meaningful correlations between quantities of physical systems. 

The  same  tendencies  can  now  be  observed  in  materials  science  as  well.

Materials databases, which have appeared quite recently, require efficient ways to

classify  thousands  of  materials  by  their  properties  (metals,  insulators,  binary

compounds, etc.). Processing such huge amount of materials calculations is out of

any human abilities, hence, appliance of machine learning algorithms is the only

way to perform efficient  screening and sorting of  materials  in  these databases.

Finally, such arrangement of materials calculations into databases allowed using



11

machine learning algorithms for materials properties prediction as well, which is a

less computationally expensive method, than DFT and others [15].

To make  a  successful  property  prediction  or  classification,  ML algorithm

should detect patterns in some amount of existing materials data and corresponding

property or class. Once algorithm has built an interpolation model, it would be able

to predict a property or make a classification for previously unseen materials data.

Figure 1 Schematic workflow of materials properties prediction/classification with ML

Prior  to  building  a  predictive  model,  all  materials  in  the  set  should  be

represented with a descriptor in such way, so that learning algorithm would be able

to find a meaningful correlation between them, otherwise prediction accuracy will

be  quite  low.  Therefore,  there  are  two  main  issues  in  problem  of  property

prediction  or  classification  for  materials  with  machine  learning:  creation  of

meaningful descriptors and algorithm choice. 

Studying different articles in the field, one can observe, that in general, the

same algorithm is employed for predictions of a wide range of materials properties,

which  emphasizes  the  fact,  that  the  key  factor  in  performance  control  of  ML

algorithms  lies  in  the  way  how  materials  are  represented  in  the  set,  i.e.  in

descriptors. However, even if accuracy of predictions depends mostly on materials

representations,  ML algorithms  have  so-called  «hyper-parameters»,  which  also

affect the learning. For that reason, the following chapter will briefly describe the
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features of machine learning approach; give an intuition how algorithms work, and

how hyper-parameters can affect their performance. 

2.2 Machine learning

2.2.1 Main features

As described in introduction, ML algorithms build correlation between input

and output variables,  and based on that  learning experience are able to predict

results  for  new  unseen  input  variables.  In  general,  any  ML  problem  can  be

assigned to one of two classifications: supervised and unsupervised learning. For

supervised  learning  all  data  is  already  labeled  and  algorithm learns  to  predict

output data relatively to the input. In unsupervised learning the data is not labeled,

so algorithm learns to find clusters of data points with relatively close values and

separate  them  into  categories.  Metal/insulator  classification  problem  refers  to

supervised  learning,  since  all  input  data  are  initially  labeled  into  two  classes

(metals and insulators), as well as for a problem of band gap prediction, where

algorithm predict  a  real  value for  initially known variable.  Since all  these two

problems related to supervised learning, further  overview will  cover supervised

learning  only.  This  kind  of  ML  learning  problems  contains  two  widely  used

techniques: regression and classification. The aim of regression is to predict the

value of some variable, while classification should categorize the given example,

i.e. refer it to some specific class. To train a ML model simply means to show this

model  a  set  of  input  and output  variables,  based  on which algorithm builds  a

correlation model. A pair of input and output variables (x i , y i )  is called a training

example, where x i  is used to denote the input variable, while y i  – output or

target variable, that should be predicted. The whole training set, consisting of  n

training examples is denoted as {(x i , y i ) }i=1
n . 
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2.2.2 Regression

The  first  practical  part  of  this  work  is  connected  with  band  gap  value

prediction.  A process  of  estimating  numerical  value  relatively  to  some  input

features is known as regression analysis.

For  a  regression  problem,  ML algorithm  builds  a  model  with  the  set  of

variables  x i , that should fit all target variables from the set  y i . Usually, one

training example is represented with more than a single input feature, since such

efforts  contribute  to  model  performance.  This  is  the  case  of  multiple  linear

regression:

h ( x )=∑
j=1

m

θ j x j=⟨θ , X ⟩ , (1)

where  h ( x )  is  called  a  hypothesis  or  fitting  model,  x j  represents  jth input

feature and  θ j  –  weight  of  input  feature  x j .  More  conveniently  multiple

regression is given by vector representation, where θ  – is a row vector of size

1×m , containing weights θ , vector X  – column vector of size m×1  with

input  features  x ,  and  ⟨θ , X ⟩  represents  matrix  multiplication. Eventually,

regression  problem  is  build  up  from  the  following  steps:  given  the  set  of  n

observations  (training  data)  {(x i , y i ) }i=1
n ,  consisting  of  n  inputs  x i  and

corresponding n outputs y i , create a model h ( x ) , which predicts y i  for new

values of  x i .

Model, represented by Eq. 1 performs a good fit only for a linearly distributed

data. However, nonlinear distribution is more common for a data, given to learn,

what  yields a  necessity  for  a  more complex fitting model,  such as  polynomial

regression:

h ( x )=∑
j=1

m

θ j x j
d=⟨θ ,X ⟩ , (2)
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 With  d=2,3 ,  or  higher  degrees,  model  will  fit  a  nonlinear  relationship

between inputs x i  and outputs y i  more precisely. 

The  goal  is  to  find  such  weights  θi  so  that  the  generalization  error,

represented by mean squared error  (MSE) function, i.e.  the average of squared

difference between hypothesis h ( x )  and actual value y i , would be minimized.

MSE of an estimator can be represented as:

J (θ )=
1
n
∑
i=1

n

(∑
j=1

m

θ j x j− y i)
2

, (3)

with a model represented as h(x), the form of generalization error will be: 

J (θ )=
1
n
∑
i=1

n

(h (x i )− y i )
2
, (4)

One way to obtain optimal coefficients is to use gradient descent algorithm.

The idea behind it is to change θi  on each iteration, and compute the derivative

of  MSE  function,  until  it  turns  zero.  Gradient  descent  can  be  given  by  an

expression:

θ j=θ j−α
d

d θ j

J (θ ) , (5)

where  α  is the parameter, which defines the size of each step and is called a

learning rate. Eq. 4 is repeated until convergence. It seems obvious that if α  is

set too large, algorithm can overshoot the minimum leading to divergence, while

setting α  too small will slow down gradient descent, but eventually lead MSE

function to a minimum value. Considering all this, learning rate parameter should

be  chosen  such  that  it  would  allow  relatively  fast  computations  and  prevent

divergence at the same time. 
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Another approach to finding optimal model coefficients is called linear least

squares. It can be given in vectorized form, which is expressed as: 

θ= (XT X )
−1

XTY , (6)

with X  representing vector of input features and Y  – vector with output values

y . Eq. (6) is also known as normal equation.

Even if the training data is fitted exactly, the model may fail to generalize on

previously unseen examples. This can be obtained, for example, by setting a high

degree  to  a  polynomial  model,  which in  this  case  will  fit  also  the  noise  (e.g.,

numerical deviations in the calculated properties due to different implementations

or settings [17])  in the training data.  Such exact  fitting,  which leads to a poor

prediction for new inputs, is called overfitting. On the contrary, another reason for

a bad performance of a model can lie in its bad generalization even for a training

data, which is called underfitting. It can be obtained, for instance, by learning on a

nonlinearly  distributed  data  with  a  linear  model.  However,  in  most  cases,

overfitting is the main reason for a poor performance of a model. Figure 2 gives an

intuition on how different models can underfit (left) and overfit (right) the training

data.  For  instance,  an  attempt  to  fit  nonlinearly  distributed  training  data  (red

points) with a linear model (left) leads to generalization failure for new examples

(blue points) due to missing a significant amount of data points (underfitting). For

a nine order polynomial (right), which captures points, that even don’t represent

the main trend in data (overfitting), the generalization will be poor as well.
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Figure 2 Simple representations of underfitted (left) and overfitted (right) data

2.2.3 Ridge regression

 To  prevent  overfitting,  a  regularization  term  is  introduced  to  a  linear

regression  algorithm.  This  term is  used  to  reduce  the  variance  of  a  model  by

penalizing regression coefficients θi  towards zero. A linear regression, modified

with  regularization  term,  is  called  Ridge  regression.  With  that  penalizing  term

mean squared error of an estimator is represented by an equation:

J (θ )=
1
n
∑
i=1

n

(h (x i )− y i )
2
+λ∑

j=1

m

θ j (7)

where  λ≥0  is  a  regularization  parameter,  which  controls  the  shrinkage  of

coefficients  θ j .  Larger  values  of  λ  lead  to  smoother  and simpler  models.

However, if the value of regularization parameter is set too high, the model can

finally underfit the training data. On practice, to prevent it the whole data set is

divided into subsets with further cross-validation, which will be discussed later in

2.2.12. 

2.2.4 Kernel methods

Thorough study of recent works [9, 17] concerning ML approach in material

science gives a conclusion, that so-called kernel-based ML algorithms are more

convenient for building a correlation model in descriptor/predicted property space.

The  preference  towards  kernelized  ML  algorithms  is  explained  by  a  high-

dimensionality of final descriptor vector X  and nonlinearity of the training data.
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Usually, in  this  case  one  can  fit  a  data  with  polynomial  regression.  However,

significant amount of input features makes it  highly insufficient to compute all

terms  of  the  polynomial.  For  example,  consider  fitting  training  data  {X ,Y } ,

where  each  training  example  is  represented  with  a  set  of  two  input  features

(x1 , x2 ) . Such case requires fitting the data with at least second order polynomial,

where we have to compute all ordered monomials of it, i.e. (x1
2 , x1 x2 , x2 x1 , x2

2 ) . In

case  of  higher  degree  polynomials  the  computational  time  increases  rapidly.

Indeed, with 120 input features and at least third order polynomial, the number of

monomials  to  compute will  be already  1203
=1728000 .  Obviously, polynomial

expansion is out of any use in such cases.

One sufficient  way  to  decrease  computational  efforts  here  is  to  apply  the

kernel trick.  Such approach is based on two observations. At first,  some of the

linear ML algorithms can effectively use inner products between the input features,

which  contain  information  about  relation  between  them  [4].  Secondly,  special

functions, called  kernel functions,  can be used to replace explicit  inner product

computations in transformed space of all  ordered monomials of  degree  d,  by a

relatively cheap function evaluation directly on the input space. In other words,

kernel function applied to the input space yield the same result as inner product

calculation in transformed space. Consequently, kernelized ML algorithms perform

much faster for high-dimensional input features than simple polynomial regression.

2.2.5 Kernel functions

The  linear kernel is the simplest kernel, which can be applied to an input

space and it yields identical result. If x and z are column input vectors, linear kernel

can be defined as:

k ( x , z )=xT z . (8)

It is equivalent to a linear regression algorithm defined in Eq. (1). However,

due to nonlinearity of a descriptor/target value training data, its use is insufficient.
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The popular default choice for nonlinear models is the Gaussian kernel [17].

ML algorithms with  Gaussian  kernel  have  already shown high performance  in

materials properties prediction [10, 17]. The kernel is defined as:

k ( x , z )=exp (−γ‖x−z‖
2 ) , (9)

where γ=
1

2σ2  is a hyperparameter defining the length scale on which the kernel

operates.  

Algorithms, that use input space, transformed with kernels, are called kernel

algorithms.  For  instance,  ridge  regression,  which  takes  input  features  from

transformed space, is called kernel ridge regression (KRR). 

2.2.6 Regression Error Statistics

While MSE is used for optimization of model coefficients in Eq. 4, prediction

accuracy of the model expressed with mean squared error (MAE) and root-mean-

squared error (RMSE). MAE clearly interprets the difference between actual and

predicted value, and for materials properties prediction it can show how much the

model predictions deviate from DFT calculated values. The mean absolute error is

given by:

MAE=
1
n
∑
i=1

n

|y i−h (x i )|. (10)

RMSE represents the standard deviation of predicted value and interprets how

wide the data points are spread along regression line. RMSE is given by:

 

y
1
n
∑
i=1

n

(¿¿ i−h(xi))
2
.

RMSE=√¿

(11)
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2.2.7 Classification

The other practical part of this work is connected with classification. The aim

is to train an algorithm to effectively classify materials into two classes: metals and

insulators. Such problems require algorithms with completely different structure. 

In general, each classification algorithm contains a function, which outputs

one of two possible values connecting the example to one of two corresponding

classes. For instance, setting 0 to denote metals and 1 – insulators, the algorithm

classifies an input example to metals, if its outcome will be 0. Similarly, for an

insulator, the algorithm should output 1. Of course in practice such algorithms are

much more complex than just a single decision function and are able to distinguish

between  multiple  classes.  Three  widely  used  classification  algorithms  were

employed in this work: support vector machine (SVM), artificial neural networks

(ANN) and random forest.

2.2.8 Support vector machine

Support vector machine is a supervised learning algorithm, which can be used

for classification and regression as well. The idea behind it is quite simple: having

some amount of data points of different classes, plotted in input features space,

algorithm  should  construct  a  plane,  which  would  separate  points  of  different

classes.

Figure 3 Separation of data points, referred to different classes, with a plane H
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However, often data points can’t be linearly separable. In this case, they can

be transformed into higher-dimensional space with kernel functions (2.2.5), where

it is possible to linearly separate them.

Figure 4 a) Linear inseparability in input space; b) Data points are linearly separable in
transformed space

2.2.9 Artificial neural networks (ANN)

ANN is a sort of a computational model of the neuronal structure of a human

brain. Performance of neural networks is highly determined by their architecture.

The simple representation of a neural network with one hidden layer is depicted on

Figure 5.

Figure 5. Neural network architecture with one hidden layer
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Here, each circle represents a neuron, the first and the last layers are called

input and output respectively, and the layer in the middle is called the hidden layer.

Neurons  of  the  input  layer  take  input  features,  while  output  neurons  give

predictions. Each neuron contains an activation function which takes outputs from

neurons of a previous layer as function arguments. In that case it is predictably, that

more complex structure, i.e. bigger amount of neurons and hidden layers can cause

a better fitting for the training data, but it might also cause an overfitting and fail to

generalize on a new examples.

2.2.10 Random Forest

Another excellent  algorithm for a classification task is  a random forest.  It

simply can be understood as an ensemble of decision trees, where each of them is

classifying  the  given  example.  Thus,  random  forest  algorithm  chooses

classification which have the highest occurrence among decision trees output. 
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Figure 6. Random forest algorithm structure

However, the idea behind it is more complex than it seems at the first glance.

While  training a  decision tree,  it  is  quite hard to find a  right  balance between

variance and bias of a model, and usually decision trees have a high tendency to

overfit [16]. To include risk of overfitting without increasing bias in ensemble of

decision trees, it is important to ensure that all trees are not correlated between

themselves. Indeed, if all the trees are trained with the same features at once, the

algorithm will fail to generalize for examples, which differ from the ones in the

training  set.  This  problem is  effectively  solved  in  random forest  by  randomly

dividing the  training set  into  subsets  of  different  features,  so  that  each tree  in

ensemble is classifying completely random examples. By that, random forest avoid

overfitting without increasing bias.

Such algorithm showed good performance not only in materials classification,

but in prediction of materials properties as well [11].
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2.2.11 Classification error statistics

Classification  accuracy  is  defined  as  percentage  of  correctly  classified

examples.  Once  the  true  class  of  each  example  is  known,  accuracy  can  be

estimated as the ratio of amount of correctly classified examples to total number of

predictions, multiplied by 100.

2.2.12 Cross-validation and hyper-parameter tuning

Cross-validation is a technique, which is used in order to evaluate algorithm

performance. In k-fold cross-validation, the original dataset is randomly partitioned

in k subsets of equal size. One of the k subsets is used as a test set, while algorithm

is trained on the remaining k-1 subsets. The process is then repeated k times, each

time changing the training partition. After, results from each  kth training can be

averaged to produce the single estimation. 

Cross-validation is also useful in tuning hyper-parameters. To evaluate model

performance  with  different  hyper-parameters  one  can  define  a  grid,  containing

different values for each hyper-parameter of a model. Thus, k-fold cross validation

will  be done with all  possible combinations of  hyper-parameters,  finally giving

combination, which produces the best performance of a model.

For  instance,  tuning  of  KRR  hyper-parameters  is  done  by  searching  for

combinations in  (α , γ )  space and testing the algorithm with each of them. The

search stops only after the best combination of  α  and γ  has been obtained.
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3 Representations

Materials representations or descriptors play a key role in prediction accuracy

of an algorithm. Indeed, they should be constructed in such way, so that it will be

easier for an algorithm to detect patterns in descriptor/predicted property space.

Two types of descriptors were employed in this work: structural and elemental.

Descriptors made from structural representations contain information on a crystal

structure (bond lengths,  angles,  unit  cell  parameters,  etc.),  while  descriptors  of

elemental  representations  contains  quantity  of  elements  properties.  However,

structural descriptors are more common, and literature contains various types of

examples, which nicely affect prediction accuracy. This is mostly due to the fact,

that  structural  descriptors contains quite narrow range of  physical  properties of

atomic system (only distances and angles), while for elemental descriptors there is

much wider range of physical properties, so it is harder to find properties, which

are best correlated with the predicted property. 

3.1 Structural descriptors

Structural  descriptors  contain information about materials crystal  structure.

They should meet the following requirements: structural descriptors should be (i)

invariant to transformations such as translations, rotations or nuclear permutations,

so that the properties of atomic systems will be preserved; (ii) unique, i.e. variant

to  other  transformations  that  changes  properties,  so  that  systems with  different

properties will have different representations; (iii) continuous and differentiable;

(iv)  general,  in a sense,  that  descriptor should be able to encode any atomistic

system,  including  both  finite  and  periodic;  (v)  fast  to  compute;  (vi)  efficient,

meaning that it would require few calculations to get the final result [9].

3.1.1 Coulomb Matrix

The simplest  and effective structural  representation is the Coulomb matrix

(CM). CM was successfully used for atomization energy prediction for a set of
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organic molecules in [17]. It  accounts for element types and inner distances in

atomic system. The elements of Coulomb matrix are given as:

M ij={
0 .5Z i

2,4 i= j ,
Z iZ j

‖Ri−R j‖2

i≠ j
(12)

where Zi and Zj are nuclear charges of atoms i and j respectively, and ‖Ri−R j‖  is

the  Euclidean  distance  between  these  atoms.  Each  row  and  column  of  M ij

encodes  how atom interacts  with other  atoms in the system.  To give  a  deeper

understanding  of  coulomb matrix  computation,  let’s consider  BCC unit  cell  of

CsCl represented on Figure 7.

Figure 7. CsCl unit cell

For  such  structure  coulomb matrix  would  encode  interactions  of  chlorine

atom in the center of the cube with the rest of the atoms in the corners, as well as

interactions  of  each  caesium atom with  the  rest  of  the  atoms in  the  structure.

Finally, the interaction between 9 atoms raises a 9⨯9 matrix with entries, given by

Eq. 8:
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Table 3.1 Representation of CsCl coulomb matrix

Cl Cs Cs Cs ⋯ Cs

Cl 0 .5 ZCl
2,4

ZClZCs

‖RCl−RCs‖2

ZClZCs

‖RCl−RCs‖2

ZClZCs

‖RCl−RCs‖2

ZClZCs

‖RCl−RCs‖2

C

s

ZCsZCl

‖RCs−RCl‖2

0 .5 ZCs
2,4

ZCsZCs

‖RCs−RCs‖2

ZCs ZCs

‖RC s−RCs‖2

ZCsZCs

‖RCs−RCs‖2

C

s

ZCsZCl

‖RCs−RCl‖2

ZCsZCs

‖RCs−RCs‖2

0 .5 ZCs
2,4

ZCsZCs

‖RCs−RCs‖2

ZCsZCs

‖RCs−RCs‖2

C

s

ZCsZCl

‖RCs−RCl‖2

ZCsZCs

‖RCs−RCs‖2

ZCsZCs

‖RCs−RCs‖2

0 .5 ZCs
2,4

ZCsZCs

‖RCs−RCs‖2

⋮ ⋮
C

s

ZCsZCl

‖RCs−RCl‖2

ZCsZCs

‖RCs−RCs‖2

ZCsZCs

‖RCs−RCs‖2

ZCsZCs

‖RCs−RCs‖2

⋯ 0 .5 ZCs
2,4

Computation  of  coulomb  matrices  includes  not  only  matrix  elements

calculation,  but  matrix sorting and flattening as well.  Such actions are done in

order to transform matrix in a suitable for a learning algorithm form. 

The first step is to calculate the norm of each row for the matrix. After, it

should be sorted by simultaneously permuting rows and columns so that they are

sorted by norm in descending order. This is done in order to avoid dependence on

atom order in the matrix, so that criteria (i) will be obeyed. As we are giving the

learning algorithm a dataset of matrices for different materials, all of them should

be of the same size. In order to do this, one should determine the size of the biggest

matrix in the dataset and pad all smaller matrices with zeros to the right and the

bottom, so they all have the same size. Final step is to transform all matrices into a

column vector. Thus,  in  a  training example  (x i , y i )  x i  is  a  column vector,

created from coulomb matrix, y i  – target property. 

However, coulomb matrix has drawbacks such as its sorting, which violates

(iii), and the use of nuclear charge  Z , which is not suitable for interpolation,

since it decorrelates atoms from the same column of the periodic table [9]. Also, it

was initially designed to describe finite systems only [17]. For these reasons, it is

expected  that  properties  prediction  for  periodic  crystals,  represented  by  CM,

should be very poor. 
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3.1.2 Many-body tensor representation (MBTR)

Another  descriptor  employed in this  work is  called  the  many-body tensor

representation.  It  reflects  a  completely  different  approach  in  creating  materials

descriptors, and has some improvements, compared to coulomb matrices. 

MBTR contains Gaussian distributions of different physical quantities of a

system,  such  as  nuclear  charges,  atomic  distances  and  bonding  angles.  For

convenience,  MBTR vector  is  partitioned  into  3  components,  called  ‘k-terms’.

Thus,  ‘k1’  term  contains  distributions  of  nuclear  charges;  ‘k2’  term  contains

distributions of atomic distances, and ‘k3’ term – distributions of bonding angles.

These  terms  are  just  vectors  with  values  of  probability  density  function  of  a

corresponding quantity, calculated by the equation:

 .

φ (x|μ ,σ2 )= 1

√2π σ2
e

−( x−μ )
2

2σ2

, (13)

where  x  is  a  range of  all  possible  values  for  physical  quantity  (taking into

account the whole dataset, not the single material),  μ  is the exact value of that

quantity and σ  controls the width of Gaussian curve. Finally, vectors of k-terms

are stacked sequentially to form the final MBTR vector.

To give an intuition about how to construct MBTR for an atomic system, let’s

consider  NaCl  unit  cell  (figure  8).  Construction  starts  from choosing  a  cutoff

radius.  Literally,  it  defines  amount  of  translated  unit  cells,  i.e.  this  parameter

strictly determines the periodicity of a given system. If radius is set so that it goes

beyond the unit  cell,  k-term vectors will  be extended, including PDF values of

distances and angles between atoms of the unit cell and outlying atoms. Extension

of a system does not affect the sizes of ‘k1’ term, as number of atoms is already

defined by crystal stoichiometry. 

According to Eq. 12, for ‘k1’ term μ=11  for Na and μ=17  for Cl. PDF of

atomic numbers is plotted separately for sodium and chlorine (Figure 9 (left)). 
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Similarly,  PDF  is  calculated  for  all  atomic  distances  within  a  system.

Frequently  occurred  distances  have  higher  PDF  values  as  it  is  for  distances

between Na and Cl  on cube faces.  With NaCl unit  cell  parameter  a=5.64 Å ,

distances between neighboring Na and Cl atoms on a cube faces will be 2.82 Å .

Thus, it is expected to have a highest PDF peak at value 
1

2.82
=0.35

1
Å . Indeed,

the highest  PDF peak on inverse distances distribution plot  (figure 9 (middle))

corresponds to 0.35
1
Å .

Figure 8. NaCl crystal structure

For “k3” term, which accounts for angles distribution, PDF is calculated for

all  possible  bonding  angles  within  a  system.  Figure  9  (right)  represents

distributions of  cosθ , based on every possible atomic combinations: NaNaNa,

ClClCl, NaNaCl, NaClCl, NaClNa, ClNaCl. 

One important  feature here is  that  in  each term vector  values for  PDF of

distances, angles and element types (such as Na and Cl for “k1”; NaCl and ClNa

for  “k2”;  NaNaNa and  ClClCl  for  “k3”)  are  stored  separately, so  that  learning

algorithm can distinguish the types of interacting atoms.
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Figure 9. Visualization of MBTR  terms: k1 (left), k2 (middle), k3 (right)

Such representation is more convenient for finding meaningful correlations,

than it was in coulomb matrix, where algorithm can “see” only the values encoding

interactions between atoms, but cannot “see” which atoms are exactly interacting. 

3.1.3 Elemental representations

Materials can be represented not only in terms of their structural properties,

but  also in terms of  the properties of  constituent  chemical  elements.  Elemental

representations  contain  information  about  various  physical  properties  such  as

atomic  number,  covalent  radius,  electronegativity,  ionization  energy,  etc.  Such

representations  have  been  successfully  used  in  band  gap  prediction  and

metal/insulator classification as well [10, 11]. Specifically, descriptors, constructed

from electronegativity, molecular weight, atomic fraction and the group number in

periodic table of constituent elements have been used for a band gap prediction

with KRR algorithm, achieving MASE (mean absolute scaled error) of 0.8 eV [11].

However, elemental representations are more common for classification tasks and,

if constructed with physical meaning, they can greatly contribute to classification

accuracy. 

Currently, there are not any universal elemental representations for materials

classification, and each article, related to this field, introduces different descriptors,

achieving  various  classification  or  prediction  accuracies.  In  that  way,  quite
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effective  descriptor  for  binary  compounds  was  constructed  by  the  SISSO

algorithm, where combination of algebraic and functional operations was applied

on  feature  space  of  elemental  properties  [12].  Finally, it  helped  to  achieve  an

almost  perfect  metal/insulator  classification  with  99.2% of  accuracy for  binary

crystals. Other elemental descriptors, introduced by Isayev, O.  et al.  [10], has a

nice  success  in  metal/insulator  classification  of  26674  materials  with  varying

amount of constituting elements. They employed input space with two descriptors

– avg (ΔH fusion λt h
−1 )  and avg (V molar rcov

−1 ) , where the first is a ratio between the fusion

enthalpy ΔH fusion  and thermal conductivity λ, averaged over all atoms in material,

the latter  – ratio between the molar volume  V molar  and covalent  radius  rcov

averaged over all  atoms in material. With that representations  achieved 86% of

classification accuracy. 

It turned out, that dataset they used, plotted in dual-descriptor space, can be

easily separated in areas, where one of them contains mostly metals,  another –

insulators. Figure below reproduces a semi-log plot for another dataset, which will

be used in this work employed (27453 metals and insulators) in dual-descriptor

space. The values for physical quantities have been taken from [5, 6, 7, 19].

Figure 10. Semi-log scatter plot of the dataset 2 in dual-descriptor space
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For  more  convenient  separation,  the  plot  is  split  into  four  quadrants  at

avg (V molar rcov
−1 )=15  and  avg (ΔH fusion λ

−1 )≈0.1 .  Therefore,  materials  can  be

classified  as  insulators,  if  they occur  in  quadrant  I,  and as  metals,  if  they  are

present within quadrant III. 

Such distinct separation of the dataset into metals and insulators in 2D space

of these descriptors inspired to try them in this work as materials representation for

a classification task. They will be employed in two forms: as given in paper [10]

and as an extension of MBTR.
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4 Workflow

The  whole  workflow  is  divided  into  two  parts:  band  gap  prediction  and

metal/insulator  classification.  Each  part  contains  the  description  of  main  steps

made  throughout  research  process.  Each  step  is  supported  with  corresponding

plots, figures and calculation results. 

4.1 Approach

It was decided to organize work in such a way so that it would be possible to

track  how  different  factors  affect  the  learning.  In  case  of  poor  algorithm

performance we start with manipulating the dataset. If prediction accuracy remains

low, the next step is to try another learning algorithm. Finally, the most radical step

is to use other material representations. Such approach allows coming up with a

combination descriptor/algorithm which gives the best performance.

4.2 Datasets

All  datasets,  employed  in  this  work,  were  formed  by  outputs  of  DFT

calculations for different materials, provided by AFLOW repository. Each output

contains  the  following  properties  of  materials:  Bravais  lattice  type,  chemical

formula, lattice parameters and band gap. The full list of calculated properties can

be found on AFLOW website [1]. 

4.2.1 Dataset for band gap prediction

Dataset,  used  for  a  band  gap  prediction,  contains  10481  insulators  (by

insulator  we denote any material,  which band gap is  bigger  than zero)  –  both

elements and compounds. Outputs of materials calculations for this dataset were

downloaded from AFLOW website using aflowlib unique identifier [2]. 

For  further  convenience,  this  dataset  will  be  denoted  as  dataset  1.  One

specific feature of dataset 1 is that it has a high bias towards narrow band gap

materials  (Figure 11).  This  fact  can negatively affect  the learning and result  in

significant underestimating of a real band gap value, since algorithm may consider
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examples of materials with a high band gap as a noise. For that reason, it  was

decided to reform dataset 1 in such way that band gap values would have more

uniform distribution.

Figure 11 Distribution of band gap values in dataset 1

Thus, two datasets were employed for band gap prediction: full dataset 1 and

reformed dataset 1 with uniform distribution of band gaps, which will be denoted

later as subset 1.

4.2.2 Dataset for metal/insulator classification

Dataset,  used  for  classification,  contains  27453  materials  (14290  metals,

13163  insulators)  –  both  elements  and  compounds.  Outputs  of  materials

calculations for this dataset were downloaded from AFLOW website using ICSD

number [2]. Further this dataset will be denoted as dataset 2.

4.2.3 Virtual representation of materials

Prior  to  descriptor  creation,  all  materials  in  a  dataset  should  be  virtually

represented, so that it would be convenient to take materials properties and create

descriptors. One way is to represent materials as “Atoms” object (figure 12). It is a
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convenient virtual representation of an atomic system in Python language. Object

contains chemical formula, periodic boundary condition (if  pbc = True, periodic

boundary conditions are valid on each of 3 axes) and unit cell vectors coordinates

in angstrom. 

Figure 12. Representation of a calculated B3N6NaSr4 crystal as “Atoms” object in Python
language

Representations contain atomic positions within a unit cell as well, which can

be called separately and are stored as n⨯3 matrix (figure 13), where n – number of

atoms per unit cell.

Figure 13. Atomic positions within B3N6NaSr4 crystal unit cell

Chemical symbols, atomic positions and other properties, which are stored in

“Atoms” objects, are then taken to create descriptors as it was discussed in part 3.

Thus, the training set is formed from training examples  (x i , y i ) ,  where  x i  –

descriptor vector of a material,  y i  – its band gap or type (metal or insulator).
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4.3 Band gap prediction

4.3.1 Dataset preparation

All datasets, employed for band gap prediction were partitioned into training

and test  subsets,  containing completely different  materials.  All  algorithms were

trained on a training set, while band gap prediction was done for materials from the

test set.

Properties of initial sets and their subsets are presented in the table below:

Table 4.2 Sizes of initial sets and their subsets, used for band gap prediction

Dataset Size Training subset size Test subset size
dataset

1

1048

1
7336 3145

subset 1 1260 882 378

4.3.2 Coulomb matrix + KRR 

.  Performance  of  KRR  algorithm  in  band  gap  prediction  with  coulomb

matrices, used as materials descriptors, is represented on the figure below: 
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Figure 14. Performance of KRR algorithm + coulomb matrix on subset 1 before (top) and
after 5-fold cross-validation

If data points are centered along the dashed line, it means that algorithm has a

good performance and predicted values are close to DFT calculated values of a

band gap.

 Along with visualization of prediction on a test set, it is important to visualize

algorithm performance on the training set. Such efforts make it convenient to track

possible  overfitting  or  underfitting.  If  training  data  points  fit  the  dashed  line

perfectly, there is a risk of overfitting, and algorithm may fail to predict band gap

values for new materials accurately. On the contrary, if training data points miss

the dashed line, it is a clear indication of an underfitting, which also leads to a poor

performance on new examples. Hence, here and further, training and prediction

will be done with a model, which hyper-parameters have been chosen manually,

and  with  one,  which  parameters  were  obtained  during  5-fold  cross-validation

(2.2.12).
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Performance  of  KRR  with  coulomb  matrices  for  subset  1  is  quite  poor,

achieving MAE = 1.31 eV and RMSE = 1.65 eV. Even after 5-fold cross validation

most of the data points miss the dashed line and errors decrease only to MAE = 1.3

eV and RMSE = 1.63 eV.

Table 4.3. KRR + coulomb matrix algorithm performance on a subset 1

KRR
Hyperparameters

MAE RMSE
γ

Non-validated 0.07 3.42∙10-9 1.31 eV 1.65 eV

5-fold cross-validation 0.03 3.16∙10-9 1.3 eV 1.63 eV

Obviously, model underfits the data, which might be caused by a small size of

a subset 1 and limitations of a coulomb matrix representation (3.1.1). 

With the full dataset 1 performance of KRR with coulomb matrices improved,

achieving MAE = 0.95 eV and RMSE = 1.36 eV. After  5-fold cross-validation

performance of the model slightly improved achieving MAE = 0.94 eV and RMSE

= 1.35 eV.
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Figure 15. Performance of KRR algorithm + coulomb matrix on dataset 1 before (top) and
after 5-fold cross-validation (bottom)

Table 4.4. KRR + coulomb matrix performance on dataset1

KRR
Hyperparameters

MAE RMSE
γ

Non-validated 0.07 3.42∙10-9 0.95 eV 1.36 eV

5-fold cross-validation 0.03 3.16∙10-9 0.94 eV 1.35 eV

However, prediction errors are still high. Before employing other materials

representations, it is worth trying to train another algorithm with coulomb matrix,

so that it  would be possible to determine the exact  reason for the performance

limitation.
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4.3.3 Coulomb matrix + random forest

Sure  enough,  KRR  is  not  the  only  algorithm  employed  for  materials

properties prediction. Recent works report on quite accurate predictions of band

gap  values  with  random  forest  [11].  Indeed,  random  forest  can  be  used  for

regression as well [4] and it does not have tendency to overfit when increasing its

main hyper-parameter – number of trees [14]. 

Random forest performed much better on subset 1 and dataset 1 as well. For a

subset  1  prediction accuracy was improved up to MAE = 1.13 eV and RMSE

=1.47 eV. After 5-fold cross-validation and increased number of trees performance

improved slightly, achieving MAE of 1.12 eV and RMSE of 1.42 eV.  

Figure 16. Performance of random forest algorithm + coulomb matrix on subset 1 before
(top) and after 5-fold cross-validation
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 Table 4.3 Random forest + coulomb matrix performance on a subset 1

Random forest
Hyperparameters

MAE RMSE
Number of trees

Without validation 10 1.13 eV 1.47 eV

5-fold cross-validation 50 1.12 eV 1.42 eV

For dataset 1 prediction accuracies improved even more, achieving MAE =

0.74 eV and RSME = 1.08 eV for random forest with manually chosen parameters,

and MAE = 0.72 and RMSE of 1.05 after 5-fold cross-validation. As the learning

improves, data points shift more towards the dashed line (figure 17).

Figure 17 Performance of random forest algorithm + coulomb matrix on dataset 1 before
(top) and after 5-fold cross-validation (bottom)
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Table 4.5 Random forest + coulomb matrix performance on a subset 1 

Random forest
Hyperparameters

MAE RMSE
Number of trees

Non-validated 10 0.74 eV 1.08 eV

5-fold cross-validation 50 0.72 eV 1.05 eV

Prediction  accuracies  of  both  algorithms  learned  on  coulomb  matrix

representations  are  still  quite  low, comparing  to  literature  [11].  Hence,  further

improvement should rely on exploiting other materials representation. 

4.3.4 Elemental representations + KRR

With elemental descriptors avg (ΔH fusion λt h
−1 )  and avg (V molar rcov

−1 )  performance

of KRR for dataset 1 is even better, than with coulomb matrices.

Figure 18 Performance of KRR algorithm + elemental descriptors on dataset 1 before (top)
and after 5-fold cross-validation (bottom)
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Table 4.6 KRR + elemental descriptors performance on dataset 1

KRR
Hyperparameters

MAE RMSE
γ

Non-validated 0.001 5∙10-4 0.91 eV 1.26 eV

5-fold cross-validation 0.014 5∙10-4 0.9 eV 1.25 eV

With 5-fold cross-validation performance of the model improved to MAE =

0.9 eV and RMSE = 1.25 eV.

4.3.5 Elemental representation + random forest

Combination of random forest with elemental descriptors improve prediction

accuracy even more, achieving MAE = 0.68 eV and RMSE = 1.04 eV. After 5-fold

cross validation prediction accuracy improved to MAE = 0.67 eV and RMSE =

1.02 eV.

Figure 19 Performance of random forest algorithm + elemental descriptors on dataset 1
before (top) and after 5-fold cross-validation
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Table 4.7 Random forest + elemental descriptors performance on dataset 1

Random forest
Hyperparameters

MAE RMSE
Number of trees

Non-validated 10 0.68 eV 1.04 eV

5-fold cross-validation 50 0.67 eV 1.02 eV

4.3.6 MBTR + KRR

Literature  contains  examples  of  high-accuracy  predictions  of  properties  of

periodic crystals with many-body tensor representation [9].  As it  was expected,

performance of KRR significantly improved with MBTR, achieving MAE = 0.56

eV and RMSE = 0.86 eV already before any cross-validation was done.

Figure 20 Performance of KRR algorithm with MBTR on dataset 1 before (top) and after
5-fold cross-validation (bottom) 
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Table 4.7 KRR + MBTR performance on dataset 1

KRR
Hyperparameters

MAE RMSE
γ

Without validation 0.001 5∙10-4 0.56 eV 0.86 eV

5-fold cross-validation 0.01 5∙10-4 0.53 eV 0.81 eV

After  5-fold  cross-validation  prediction  accuracy  improved  even  more,

achieving MAE = 0.53 eV and RMSE = 0.81 eV. 

4.3.7 Extended MBTR + KRR

As it  was  mentioned  in  3.1.2,  elemental  descriptors  avg ( ΔH fusion λt h
−1 )  and

avg (V molar rcov
−1 )  are used in this work not only as independent descriptors, but as a

part of MBTR as well. It was done in order to ensure, if any physical property of

constituent elements, added to MBTR, can improve the learning. 

The idea is to introduce an additive k-term, which should serve as elemental

representation  inside  MBTR.  Vector  of  elemental  k-term  should  contain  PDF

values of elemental descriptors. Relatively to this work, we create an elemental k-

term, containing distributions of ΔH fusion λ t h
−1  and V molar rcov

−1  for each atom inside

material. The approach in creation of k-term vector is the same. At first, the axis

with  range  of  all  possible  values  for  an  each  elemental  descriptor  should  be

defined.  For  that,  ΔH fusion λ t h
−1  and  V molar rcov

−1  are  calculated  for  each  atomic

element, occurred within all materials in the dataset. Thus, the range of values for

ΔH fusion λ t h
−1  is  defined  as  [min (ΔH fus ion λt h

−1 ) ,max ⁡(ΔH fusion λt h
−1 ) ] ;  for  V molar rcov

−1

descriptor  it  is  defined  as  [min (V molar rcov
−1 ) ,max ⁡(V molar rcov

−1 )] .  Further,  PDF  of

descriptors value is calculated with Eq. 12 for each atom in each material. As an

example,  distributions of  ΔH fusion λ t h
−1  and  V molar rcov

−1  are plotted on the graphs

below:
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Figure 21 Sum of Gaussian distributions for ΔH fusion λ t h
−1  and V molar rcov

−1  for Na and Cl

Peaks  on  the  left  plot  correspond  to  ΔH fusion λ t h
−1  values  of  sodium  and

chlorine. On the right plot, peaks correspond to V molar rcov
−1  values of sodium and

chlorine.

At  first,  learning was  done with  MBTR only  with  new elemental  k-term.

Other terms, which accounts for atomic numbers and inverse distances in crystal

lattice were excluded.

Already only with elemental k-term, combination of MBTR and KRR gave

better results, than in case of independent elemental descriptors. Before validation

algorithm was able to predict band gap values with MAE = 0.85 eV and RMSE =

1.63 eV. After 5-fold cross-validation prediction accuracy of KRR improved even

more, achieving MAE = 0.79 eV and RMSE = 1.22 eV.
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Figure 22 Performance of KRR algorithm with MBTR (elemental k-term only) on dataset
1 before (top) and after 5-fold cross-validation (bottom)

Table 4.8 KRR + MBTR (elemental k-term only) performance on dataset 1

KRR
Hyperparameters

MAE RMSE
γ

Without validation 0.001 5∙10-4 0.85 eV 1.63 eV

5-fold cross-validation 0.01 5∙10-4 0.79 eV 1.22 eV

Accuracies of prediction for MBTR with elemental term only + KRR is lower

than for MBTR with k1 and k2 terms + KRR, but better than performance of KRR

with any other descriptor. It was expected, that if used at once, k1, k2 and elemental

term in MBTR would contribute to algorithm’s performance, which would result in

lower  MAE in  RMSE,  than  they  were  for  MBTR with  k1 and  k2 terms  only.

However, it was not the case for a full-term MBTR. Achieved MAE and RMSE
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before validation accounted for 0.59 eV and 0.99 eV, respectively. After  5-fold

cross-validation prediction accuracy improved up to MAE = 0.57 eV and RMSE =

0.91 eV, which is lower than it was for MBTR with k1 and k2 terms.

Figure 23 Performance of KRR algorithm with MBTR (elemental k-term , k1-term, k2-
term) on dataset 1 before (top) and after 5-fold cross-validation (bottom)

Table 4.9 KRR + MBTR (all terms) performance on dataset 1

KRR
Hyperparameters

MAE RMSE
γ

Without validation 0.001 5∙10-4 0.59 eV 0.99 eV

5-fold cross-validation 0.014 5∙10-4 0.57 eV 0.91 eV
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4.3.8 Extended MBTR + random forest

With combination of MBTR (elemental term) and random forest prediction

accuracies improved up to MAE = 0.57 eV and RMSE = 0.86 eV even before

validation. With 5-fold cross-validation prediction accuracy improved up to MAE

= 0.56 eV and RMSE = 0.84 eV.

Figure 24 Performance of random forest algorithm with MBTR (elemental k-term only) on
dataset 1 before (top) and after 5-fold cross-validation (bottom)

Table 4.10 Random forest + MBTR (elemental k-term only) performance on dataset 1

Random forest
Hyperparameters

MAE RMSE
Number of trees

Non-validated 10 0.57 eV 0.86 eV

5-fold cross-validation 50 0.56 eV 0.84 eV
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4.3.9 Discussion

Different combinations have been tried for a band gap prediction. The poorest

result  was  obtained  with  coulomb matrices  and  KRR.  Even  after  5-fold  cross

validation algorithm underfitted the training data, which resulted in poor prediction

of band gap values on a test set, achieving MAE = 0.94 eV and RMSE = 1.35 eV.

This might be caused by discontinuities in coulomb matrix representation, which

appears due to its sorting (3.1.1). Also, poor performance was quite expectable,

since coulomb matrix was not designed to describe periodic systems. However,

with  random forest,  prediction  accuracy  improved up  to  MAE = 0.72  eV and

RMSE =  1.05  eV, which  indicates,  that  random forest  is  able  to  handle  with

discontinuities, caused by matrix sorting.  

 The  best  so  far  was  combination  of  MBTR  (k1,  k2-terms)  with  KRR,

achieving MAE = 0.53 eV and RMSE = 0.81 eV. Since combination of random

forest with any other descriptor performed much better than KRR, it encouraged to

try random forest with MBTR as well. However, with k2 term input vector x i  for

each material usually has more than thousand entries,  which is the reason why

random forest failed with MBTR, and combinations like MBTR (k1, k2-terms) +

random forest  and MBTR (elemental,  k1,  k2-terms)  + random forest  had to  be

excluded. Another limitations with computational power occurred when including

k3 term in MBTR, which accounts for angles. Execution of script, which constructs

vector  of  k3-terms  of  MBTR  has  been  terminated,  raising  a  memory  error.

Therefore,  results  do  not  report  on  performance  of  MBTR (k3-term)  with  any

regression algorithm. 

4.4 Metal/Insulator classification

4.4.1 Dataset preparation

For training and testing, dataset 2 has been partitioned into respective training

and test subsets. Properties of training and test subsets are given in the table below:
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Table 4.11 Properties of training and test subsets of dataset 2

Subset Size Amount of metals Amount of insulators
Training 19217 9997 9220

Test 8236 4293 3943

4.4.2 Coulomb matrix + algorithm

Combination  of  random  forest  and  coulomb  matrix  lead  to  83.2  %  of

classification  accuracy, incorrectly  classifying 656 materials  as  metals  and 690

materials as insulators.

Table  4.12 Performance  of  random  forest  +  coulomb  matrix  in  metal/insulator
classification

Algorithm
Classification

accuracy

Incorrectly classified as

metals

Incorrectly classified as

insulators
Random

forest
83.2 % 656 690

ANN and SVM failed to classify materials due to a long runtime, so finally,

the execution of ANN and SVM learning was terminated. 

4.4.3 Elemental descriptors + algorithm

In  paper  [10]  authors  achieved  86  %  of  classification  accuracy  with

descriptors avg (ΔH fusion λt h
−1 )  and avg (V molar rcov

−1 ) . Here, classification is done with

the same descriptors achieving even higher accuracy of 88.4 % with random forest.

Table  4.13 Performance of  SVM, ANN and random forest  +  elemental  descriptors  in
metal/insulator classification

Algorithm Accuracy
Incorrectly classified as

metals

Incorrectly classified as

insulators
SVM 84.3 % 497 788
ANN 86.1 % 394 750

Random

forest
88.4 % 377 620
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4.4.4 MBTR + algorithm

For  MBTR  (k1,  k2-terms)  each  algorithm  classified  materials  with  higher

accuracies. As previously, random forest showed the best performance, achieving

accuracy  of  90.3  %,  incorrectly  classifying  530  materials  as  metals  and  303

materials as insulators. 

Table  4.14 Performance  of  SVM  and  random  forest  +  MBTR  (k1,  k2-terms)  in
metal/insulator classification

Algorithm Accuracy
Incorrectly classified as

metals

Incorrectly classified as

insulators
SVM 87.2 % 410 690

Random

forest
90.2 % 303 530

ANN failed to classify materials, due to a long runtime, so finally execution

of ANN learning was terminated.

4.4.5 Extended MBTR + algorithm

As for band gap value prediction, classification was done for MBTR with

elemental term only and for MBTR with all terms (elemental, k1 and k2). 

With elemental term, achieved accuracies turned out to be as high as with

MBTR (k1 and k2). Again, the best accuracy of 90.3 % was achieved with random

forest  algorithm,  which  incorrectly  classified  331  materials  as  metals  and  469

materials as insulators.

Table 4.15. Performance of SVM, ANN and random forest + MBTR (elemental term only)
in metal/insulator classification

Algorithm
Classification

accuracy

Incorrectly classified as

metals

Incorrectly classified as

insulators
SVM 85.1 % 369 850
ANN 87.4 % 381 642

Random

forest
90.3 % 331 469
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With MTBR (all terms) and random forest classification accuracy decreased

to 89.9 % with incorrect classification of 312 materials as metals and 512 materials

as insulators. Performance of SVM decreased to 83 % with incorrect classification

of  501  materials  as  metals  and  882  materials  as  insulators.  As  previously  for

MBTR (k1 and k2), ANN training was terminated due to long runtime.

Table 4.16. Performance of SVM, ANN and random forest + MBTR (all terms) in 
metal/insulator classification

Algorithm
Classification

accuracy

Incorrectly classified as

metals

Incorrectly classified as

insulators
SVM 83 % 501 882

Random

forest
89.9 % 312 512

4.4.6 Discussion

The same descriptors, as for band gap value prediction, were employed for

classification.

As previously, if materials are represented with coulomb matrix, prediction

accuracy will be poorer than for other descriptors, employed in this work. With

random forest algorithm classification accuracy accounted for 83.2 %, where 656

materials were incorrectly classified as metals and 690 – as insulators. According

to results, the best descriptor/algorithm combination is MBTR (elemental term) +

random forest, which gives 90.3 % of accuracy with incorrect classification of 331

materials as metals and 469 as insulators. In general, all algorithms showed better

ability  to  identify metals  than insulators,  since amount  of  incorrectly  classified

metals is less than amount of incorrectly classified insulators. This can be caused

by  a  larger  amount  of  metals  in  the  training  set,  which  simply  means,  that

algorithm “have more experience” in distinguishing metals. 
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5 Conclusions

Different materials descriptors and algorithms were employed throughout this

work. As it was initially stated in 4.1, each materials descriptor has been tried in

combination with various algorithms, but significant improvements occurred only

in case of switching to new materials descriptors.

5.1 Comparison of results

According to achieved results, same descriptors can be effectively used for

band gap value prediction and metal/insulator classification. 

The  lowest  prediction  accuracy  was  obtained  with  coulomb  matrix

representation, achieving MAE = 0.94 eV with KRR and MAE = 0.72 eV with

random forest. As it was for band gap value prediction, the lowest classification

accuracy was obtained, when materials were represented with coulomb matrices.

Specifically, with random forest algorithm, classification accuracy accounted for

83.2 %, where 656 materials out of 8236 were incorrectly classified as metals, and

690 – as insulators. 

Elemental  descriptors  avg (ΔH fusion λt h
−1 )  and  avg (V molar rcov

−1 )  appeared to  be

more accurate materials representations, as prediction accuracies improved up to

MAE = 0.9 eV with KRR and MAE = 0.67 eV with random forest. Better results

with  elemental  representations  were  achieved  for  classification  as  well:  with

random forest, accuracy accounted for 88.4 %, where 377 materials out of 8236

were incorrectly classified as metals, and 620 – as insulators. 

The best results so far were achieved, when MBTR was used as materials

descriptor. With k1 and k2 terms, prediction accuracy improved up to MAE = 0.53

eV with KRR, which is the best result so far in band gap value prediction. With the

same descriptor classification accuracy improved up to 90.2 % with random forest,

where 331 materials out of 8236 were incorrectly classified as metals, and 530 – as

insulators. Slightly lower accuracies for band gap value prediction were achieved

with additional elemental k-term in MBTR. When used isolated out of other terms,
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prediction accuracy accounted for MAE = 0.79 eV with KRR and MAE = 0.56 eV

with random forest. However, for classification, combination of MBTR (elemental

k-term) and random forest gave the best accuracy of 90.3 %, where 331 materials

out of 8236 were incorrectly classified as metals, and 469 – as insulators. When

MBTR is used with all terms (elemental, k1 and k2), accuracies of prediction and

classification are lower: MAE = 0.57 eV with KRR for band gap value prediction,

and 89.9 % with random forest for classification, where 312 materials out of 8236

are incorrectly classified as metals, and 512 – as insulators.

In general, random forest appeared to be the best algorithm for prediction and

classification as well,  which was quite unexpected,  since most  of  the literature

report on KRR as the most appropriate algorithm for properties prediction [9, 11,

17]. For a band gap value prediction, random forest performed much better than

KRR with any descriptors, except for MBTR (k1, k2) and MBTR (all terms), where

it failed to process vectors, created with k2 term. Thus, the best combination for a

band gap prediction is MBTR (k1, k2 - terms) + KRR. For classification, random

forest  performed better  than  SVM and  ANN and  the  best  descriptor/algorithm

combination is MBTR (elemental term) + RF. The plot given below shows the best

prediction  and  classification  accuracies,  achieved  on the  each  step.  Each point

corresponds to descriptor/algorithm combination, which gave the best accuracy at

this step.



55

Figure 25 Accuracies of band gap value prediction and classification for best combinations
descriptor + algorithm

The  point  with  the  lowest  MAE  =  0.53  eV  on  the  plot  corresponds  to

combination of MBTR (k1,  k2-terms) with KRR. However, in combination with

random forest it gives 90.2% of classification accuracy, and it is lower than for

combination of MBTR (elemental term) with random forest, which gives 90.3 %.

However,  due  to  such  insignificant  difference  and  the  fact,  that  with  MBTR

(elemental term) prediction error increases to MAE = 0.56 eV, one can come to a

conclusion that MBTR (k1, k2-terms) is the most efficient descriptor, used in this

work, for materials representation.

5.2 Future work

Results, obtained throughout this research work, can be further improved. As

random forest showed better performance in most of the cases, comparing to KRR,

in further research more attention should be paid to this algorithm. Also, elemental

descriptors, when added as a k-term in MBTR, appeared to be more efficient, than

when they were used independently. When used with random forest, accuracy of

band  gap  prediction  and  classification  were  comparable  to  accuracies,  when

materials were represented with MBTR (k1, k2-terms). This fact gives reasons to
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believe,  that  elemental  descriptors  might  serve  as  a  more  accurate  materials

representation than structural descriptors. Thus, in future work, it would be also

necessary to study, how elemental representations can be formed and what physical

quantities of constituent elements are nicely related to band gap or other materials

properties. 
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