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Symbols and abbreviations

Symbols

0 Zero matrix
a Lower integration limit
A State space matrix
Ab Bordered stiffness matrix
b Upper integration limit
b Vector of non-homogeneous coefficients in Lagrangian multiplier

method
be Basquin exponent or fatigue strength exponent
B Strain matrix
Bd Matrix of shape function derivatives
Bi Strain matrix of ith node
Bε Matrix containing the spatial derivatives of the element shape

functions
c Specific heat capacity
C Heat capacity matrix
Ce Element heat capacity matrix
Cb Bearing damping matrix
Ce Elastic damping matrix
Ctot Total damping matrix
ḋe First time derivative of element displacement vector

˙de,i First time derivative of element displacement vector of node i
de Element displacement vector
di Nodal displacement vector of node i
D Matrix of material constants
Dc Conductivity matrix
eg Constraint error
E Elastic modulus
fx Force components in global X-direction
fy Force components in global Y -direction
fz Force components in global Z-direction
f eb Element nodal body force vector
f es Element nodal surface force vector
F Force vector
F̂ Modified force vector
F ′c Contact force vector in the cylindrical coordinate system
F ′c,trial Trial contact force vector in the cylindrical coordinate system
F e
b Element body force vector

F e
g Element translational acceleration force vector

F e
ext Element total external force vector

F e
p Element pressure force vector

F e
s Element surface force vector



F e
∆T Element thermal expansion force vector

F e
ε Element strain force vector

F e
Ω Element centrifugal force vector

F brg Bearing force vector
F c Contact force vector the Cartesian coordinate system
F c,trial Trial contact force vector in the Cartesian coordinate system
F ext External force vector
F tot Total force vector
F tot,shaft Total force vector of shaft body
F tot,sleeve Total force vector of sleeve body
FUB Unbalance force vector at constant rotational speed
F α,UB Unbalance force vector due to angular
FΩ Centrifugal force vector
g Gap
g Vector of non-homogeneous coefficients
ga Acceleration coefficient vector
gx Acceleration coefficient in global X-direction
gy Acceleration coefficient in global Y -direction
gz Acceleration coefficient in global Z-direction
G Gyroscopic damping matrix
Ge Element gyroscopic damping matrix
h Convection coefficient
i ith
iu Imaginary unit
I Integral
I3 3× 3 identity matrix
j jth
J Jacobian
J Jacobian matrix
k kth
k0 Initial contact stiffness
kf Vector of multipliers for initial contact stiffness
kmax Magnitude of greatest coefficient in stiffness matrix
kx Thermal conductivity coefficient in global X-direction
ky Thermal conductivity coefficient in global Y -direction
kz Thermal conductivity coefficient in global Z-direction
K Stiffness matrix
K̂ Modified stiffness matrix
Ke
C Element heat conduction matrix

Ke
e Element elastic stiffness matrix

Ke
G Element stress-stiffening matrix

Ke
h Element heat convection matrix

Kassembly Stiffness matrix of assembly
Kb Bearing stiffness matrix
Kc Contact stiffness matrix
KC Heat conduction matrix



Ke Elastic stiffness matrix
Ke,CYL Elastic stiffness matrix applied with cylindrical constraints
KG Stress stiffening matrix
Kh Surface convection matrix
Kshaft Stiffness matrix of shaft body
Ksleeve Stiffness matrix of sleeve body
Ktot Total stiffness matrix
l Number of
L Length
L Matrix of partial differential operations
m Number of
M Mass matrix
Me Element mass matrix
n Number of
n Outer normal to the surface of the body
nrpm Rotational speed
nx Outer normal to the surface of the body in global X-direction
ny Outer normal to the surface of the body in global Y -direction
nz Outer normal to the surface of the body in global Z-direction
N Number of stress cycle repetitions in total
N Shape function matrix
N Vector of shape functions
N1 Shape function matrix of node 1
N2 Shape function matrix of node 2
Nf Number of equivalent applied stress cycles
Ni Shape function of node i
Ni Shape function matrix of ith node
Nj Shape function matrix of jth node
Nn Shape function matrix of node n
p pth
p Vector of monomials
pp Pressure vector
pw Working precision
px Pressure normal component in global X-direction
py Pressure normal component in global Y -direction
pz Pressure normal component in global Z-direction
P Power loss
P Moment matrix
q Heat flow vector
qs Boundary heat flow component coefficient
qx Heat flow component through the unit area in global X-direction
qy Heat flow component through the unit area in global Y -direction
qz Heat flow component through the unit area in global Z-direction
Q Internal heat generation rate per unit volume
Re
h Element surface convection vector

Re
q Element boundary heat flow vector



Re
Q Element internal heat generation vector

Re
T Element specified boundary temperature vector

Rh Heat convection vector
Rq Boundary heat flow vector
RQ Internal heat generation vector
RT Specified boundary temperature vector
S Surface area
S0 Initial stress matrix
Se Element surface area
t Time
ti Time of step i
T Temperature
Ti Temperature of node i
T Transformation matrix
ṪN First time derivative of nodal temperature vector
Td Transformation matrix containing diagonal terms
Te Reference temperature for convective heat transfer
Tg Kinetic energy due to gyroscopic effect
Tk Kinetic energy
Tm Kinetic energy of translational motion
TN Nodal temperature vector
Ts Surface temperature
Tref Reference temperature
u Nodal displacement in global X-direction
u Element displacement vector
û Modified displacement vector
u̇ First time derivative of displacement vector
u̇i First time derivative of nodal displacement of node i in global

X-direction
u′0,s Initial displacement vector of source nodes in cylindrical

coordinates
u′0,t Initial displacement vector of target nodes in cylindrical

coordinates
u′s,i Displacement of source node i in cylindrical coordinate system
u′t,i Displacement of target node i in cylindrical coordinate system
utrial Trial displacement vector in global Cartesian coordinate system
u′trial Trial displacement vector in cylindrical coordinate system
u0 Initial displacement vector
ui Nodal displacement of node i in global X-direction
uj Nodal displacement of node j in global X-direction
ur Radial displacement in cylindrical coordinate system
ushaft Displacement vector shaft body
usleeve Displacement vector sleeve body
utot Total displacement vector
uw Axial displacement in cylindrical coordinate system
ux Nodal displacement in global X-direction



uy Nodal displacement in global Y -direction
uz Nodal displacement in global Z-direction
v Nodal displacement in global Y -direction
v̇i First time derivative of nodal displacement of node i in global

Y -direction
vi Nodal displacement of node i in global Y -direction
V Volume
Ve Element volume
w Nodal displacement in global Z-direction
ẇi First time derivative of nodal displacement of node i in global

Z-direction
wi Nodal displacement of node i in global Z-direction
W Penalty weight
Wf Work done by external forces
Wi Weight coefficient i
Wj Weight coefficient j
Wk Weight coefficient k
x Nodal coordinate in global X-direction
x Nodal coordinate vector in fixed coordinate system
ẋ First time derivative of nodal coordinate vector
ẍ Second time derivative of nodal coordinate vector
xi Integration point i
xi Vector of coordinates of node i
xj Nodal coordinate in global X-direction of node j
xj Vector of coordinates of node j
xn Vector of coordinates of node n
X Cartesian coordinate system axis in global X-direction
X ′ Cylindrical coordinate system axis in global radial direction
y Nodal coordinate in global Y -direction
yi Nodal coordinate of node i in global Y -direction
yj Nodal coordinate in global Y -direction of node j
Y Cartesian coordinate system axis in global Y -direction
Y ′ Cylindrical coordinate system axis in global tangential direction
z Nodal coordinate in global Z-direction
zci Number of repetitions in ith stress class
zi Nodal coordinate of node i in global Z-direction
zi Eigenvector of ith eigenmode
zj Nodal coordinate of node j in global Z-direction
Z Cartesian coordinate system axis in global Z-direction
Z ′ Cylindrical coordinate system axis in global axial direction

Greek letters

α Thermal expansion coefficient
α Vector of thermal expansion coefficients



αp Proportional coefficient for stiffness matrix
αx Thermal expansion coefficient in global X-direction
αy Thermal expansion coefficient in global Y -direction
αz Thermal expansion coefficient in global Z-direction
β S-N curve slope
βp Proportional coefficient for mass matrix
γ ′0 Vector of logical multipliers
γxy Shear strain in XY -plane
γxy,0 Initial shear strain in XY -plane
γxz Shear strain in XZ-plane
γyx Shear strain in Y X-plane
γyz Shear strain in Y Z-plane
γyz,0 Initial shear strain in Y Z-plane
γzx Shear strain in ZX-plane
γzx,0 Initial shear strain in ZX-plane
γzy Shear strain in ZY -plane
δrad Radial interference
δui Distance between source and target node i
∆L Change of length
∆T Change of temperature
∆Tn Temperature difference of node n
∆u′0 Vector of initial radial distances between source–target nodes in

cylindrical coordinates
∆u′trial Vector of radial distances between source–target nodes in

cylindrical coordinates after trial force evaluation
∆u′trial,i Radial distances between source and target node i in cylindrical

coordinates after trial force evaluation
∆σ Stress variation
∆σeq Calculated equivalent stress
ε Strain
ε Strain vector
ε0 Initial strain vector
εx Normal strain in X-direction
εx,0 Initial normal strain in X-direction
εy Normal strain in Y -direction
εy,0 Initial normal strain in Y -direction
εz Normal strain in Z-direction
εz,0 Initial normal strain in Z-direction
ζ Natural coordinate
ζi Integration point i
ζk Integration point k
ζl Natural coordinate ζ of node l
η Natural coordinate
ηi Integration point i
ηj Integration point j
ηl Natural coordinate η of node l



θ Rotational degree of freedom
θ̇x First time derivative of nodal rotation around global X-axis
θ̇y First time derivative of nodal rotation around global Y -axis
θ̇z First time derivative of nodal rotation around global Z-axis
θx Nodal rotation around global X-axis
θy Nodal rotation around global Y -axis
θz Nodal rotation around global Z-axis
κ Number of the rainflow stress classes
λ Lagrangian multiplier
λ Vector of Lagrangian multipliers
λii Imaginary part of eigenvalue i
λri Real part of eigenvalue i
λi Eigenvalue of ith eigenmode
ν Poisson’s ratio
ξ Natural coordinate
ξdi Damping ratio of ith eigenmode
ξi Integration point i
ξl Natural coordinate ξ of node l
Π Strain energy
ρ Material density
σ Element stress vector
σ′f Fatigue strength coefficient
σbrg Bearing stress vector
σeq Equivalent stress
σmax Maximum stress
σrotor Rotor stress vector
σx Normal stress in X-direction
σy Normal stress in Y -direction
σz Normal stress in Z-direction
τ Torque
τxy Shear stress in XY -plane
τxy,0 Initial shear stress in XY -plane
τxz Shear stress in XZ-plane
τyx Shear stress in Y X-plane
τyz Shear stress in Y Z-plane
τyz,0 Initial shear stress in Y Z-plane
τzx Shear stress in ZX-plane
τzx,0 Initial shear stress in ZX-plane
τzy Shear stress in ZY -plane
ωd,i Damped natural frequency of ith eigenmode
ωn,i Undamped natural frequency of ith eigenmode
ωx Angular velocity around global X-axis
ωy Angular velocity around global Y -axis
ωz Angular velocity around global Z-axis
Ω Rotational speed
Ω Rotational speed matrix



Ω̇ Angular acceleration

Abbreviations

1D One-dimensional
2D Two-dimensional
3D Three-dimensional
AMB Active magnetic bearing
BM Bending mode
BW Backward whirl
CAD Computer-aided design
CS Critical speed
DOF Degree of freedom
EMA Experimental modal analysis
FE Finite element
FEA Finite element analysis
FEM Finite element method
FW Forward whirl
MPC Multipoint constraint
PMSM Permanent magnet synchronous motor



Chapter 1
Introduction

Rotating machines are used in various processes, such as transforming energy from
one form into another. Commonly, electrical energy is transformed into mechanical
rotational motion or vice versa. As the rotational machines are developed, they
get more optimized and efficient. Traditional industrial electrical motor-driven
blowers use a low-speed electric motor and a transmission to increase the rotational
speed for the blower. By getting rid of the transmission – typically the main
source of unwanted frictional losses – as well as designing the electrical motor for
increased rotational speed applications resulting in a direct-driven system, the
total efficiency of the system can be increased. This type of machine is generally
called a high-speed machine. The benefits of proceeding towards high-speed
technology are generally the smaller size and weight of the rotating machines.
Also, a greater power density and better efficiency of fluid flow process in various
industrial process components such as high-speed electrical fans, blowers and
pumps, are achieved.

Figure 1.1. Cut view illustration of a magnetically levitated high-speed compressor unit
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20 1 Introduction

Modern high-speed rotating machines consist of multiple parts. A cut view of a
magnetically levitated high-speed compressor unit is shown in Figure 1.1. A rotor
of a high-speed motor has typically one main shaft component and a number of
other components, such as impellers and lamination stacks, depending on the
motor-rotor type and bearing solution, attached on the shaft. Quite often, these
parts are attached using a frictional joint. These joints are capable of causing
nonlinearities in the rotating structure dynamics.

A high-speed rotating operation is that which, from the mechanical point of view,
could be regarded as a rotating operation having the peripheral velocity of the
rotation part high enough, typically above 150 m/s [85]. The angular velocity or
revolutions per minute is a relative quantity, and thus should not be considered
as a definition for high-speed. The strength of material is typically the limiting
factor for high-speed machine design. Often, in rotating high-speed machines, the
strength of the material used sets the upper limit for the rotational speed.

In addition to loads induced by high-speed rotation, heat loads induced by
power loss of an electrical machine should be taken into account in the form of
thermal stress. This doctoral dissertation examines high-speed rotating structures,
commonly referred as rotors. The research on these rotors – rotor assemblies as
more detailed in most cases – is a special field and a part of structural dynamics
referred to as rotor dynamics. The main tool used in this dissertation is the three-
dimensional solid finite element method, as part of the finite element method used
within the field of structural engineering.

1.1 Motivation

The interest for programming 3D solid finite element problems arises from the
capability to use customized contact models and solution routines for coupled
analyses, thus extending the capabilities of commercial FE software. Coupled
analysis can be, for example, a combined thermal structural stress analysis: in the
first phase, the temperature state is solved and used as an input for the second
phase. The solved temperature distribution is applied as an initial thermal strain,
thus contributing the total stresses in a form of thermal stress.

Another example of coupled analysis can be a static structural–modal analysis, or
pre-stressed modal analysis, in order to include the effect of external structural
loads in the modal analysis. An eigenvalue problem cannot handle structural
loads directly: thus, a static structural analysis is performed to solve the stress
state of the structure. The solved stress state can be included into the eigenvalue
problem as a pre-stress state by utilizing the stress-stiffening effect; an additional
stiffness matrix to represent the stress-stiffening effect can be formed using the
pre-solved stress state of the structure.

Many commercial FE software can be used to solve coupled field problems as
described above. Even so, performing an analysis using self-programmed solution
routines and finite elements may be required in certain cases if commercial software
does not support a particular analysis routine. For example, a control design for
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active magnetic bearing using a 3D solid element rotor model having multiple
contact and possible contact-induced disturbances.

1.2 Literature survey

Rotor dynamics analysis is an important part of the design process in high-
speed machinery design. The traditional one-dimensional (1D) Timoshenko beam
element approach in rotor dynamics can represent only flexible shafts, while the
disks and impellers are modeled as rigid mass points. [74, 73, 34] Although this
element type can have degrees of freedom (DOFs) in up to three dimensions, it
is commonly referred as 1D element because of the element formulation. Beam
elements are actively used because of their benefits: a low number of degrees of
freedom is required to represent a full rotor model. Because of a low number
of DOFs, transient simulation for solving nonlinear problems is fast and design
optimization is easy to implement. These 1D elements do not normally take
into account the deformation of the shaft cross section. In certain rotating
machinery applications, the effect of deformable shaft cross sections for flexible
disks and turbine blades are required to be included into the simulation model.
These features enable the inclusion of the stress-stiffening effect, meaning that
the total stiffness of the rotor assembly is affected by the internal stress of the
component. [32] These effects can be included when using two-dimensional (2D)
axisymmetric harmonic or three-dimensional (3D) solid finite elements. [35, 69, 80]
The use of a 2D element is typically limited to axisymmetric structures and
axisymmetric loads, whereas 3D elements in practice can be used to describe any
rotating structure. In addition, high-fidelity coupled field analyses become easier
to implement when using the same solid finite element mesh for various analyses.

The use of three-dimensional solid finite elements in rotor dynamic analysis allows
the inclusion of nonlinear contact behavior in the study of a rotor assembly.
Modern complex rotor assemblies used in high-speed rotating machinery can
include multiple parts with various types of joints as shown in Figure 1.1. The
contact modeling and inclusion of frictional joint-based excitations are features that
have been challenging to include in the analysis when using the conventional beam
element approach. The use of axisymmetric elements will limit the capabilities
to model arbitrary external loads and load directions. Therefore, the use of 3D
solid finite element approach is a solution for the detailed modeling of contact-
based phenomena. Additional phenomena, such as centrifugal stiffening or stress
stiffening, will yield further accuracy in the finite element solution. Centrifugal
stiffening is derived from the centrifugal load only; whereas stress stiffening is
derived, not only from centrifugal load, but from all external loads being taken
into consideration.

1.2.1 Rotor dynamics modeling using finite element method

In certain applications, such as turbines, fans and pumps, high-speed motors can be
more suitable due to process-based demands than lower speed motors which rotate
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at the power grid frequency, since high-speed motors can operate without the need
for transmission. In some applications, mechanical bearings are not suitable for
supporting the rotor of high-speed electrical motors, because mechanical bearings
require lubrication, can wear out, and the occurring vibrations, as a result of
rotor-bearing contact, could be critical. Active magnetic bearings (AMBs) are
often seen as the answer to the demand of supporting the high-speed rotor, since
they do not have mechanical contact, and they are also oil-free. In addition, the
efficiency of an AMB-supported rotor is better than that of a conventional rolling
element bearing-supported rotor, as the system lacks contact-induced friction.
Furthermore, the stiffness of AMBs can be adjusted for recovering possible critical
speed or other disturbance, and the rotor lateral position and axial clearances can
be adjusted if so desired.
However, a failure can occur in the AMB system, and for this reason the backup
bearings – typically a set of rolling element bearings – are used to support the
rotor in any eventual abnormal operation. In practice, this means that, due to
the backup bearings, possible contact is avoided between the stator of the electric
motor or stator of the AMBs and the rotating rotor. The AMB-supported rotor
dropdown event has been clarified extensively. For instance, in studied by Ishii
and Kirk [40], Zeng [97] and Cole et al. [19] the dropdown event between the rotor
and bearing is examined, covering the views of modeling the stiffness, damping
and friction. They studied the dynamic behavior of a rolling element backup
bearing after rotor impact and stated that for minimizing the energy dissipation
in the inner ring of the bearing, it should be allowed to accelerate as rapidly as
possible in order to minimize the friction-induced whirling of the rotor.
In previous research, significant research has been performed in the studying
of AMB-supported rotor deflections. Schmied and Pradetto [88] did one of the
first studies in the field of the contact event between AMB-supported rotor and
backup bearings. In the recent years, the rotor deflections have been investigated
in normal runs of the AMB-supported rotor, as in Jalali et al. [42] and Stimac et
al. [93]. In Jalali et al., the theoretical and experimental results from a high-speed
rotor are found to be in good agreement. The rotating system is studied by means
of the Campbell diagram, and critical speeds and operational deflection shapes
are obtained. In Stimac et al., the finite element method based on Bernoulli-Euler
beam element theory is used for the rotor model. Frequency responses of the
system model with amplitudes in rotor lateral displacements are verified by means
of measured results. Zhou et al. [100] investigated cracked shafts supported with
AMBs. The contact region of even a slight crack can open or close due to the
normal rotation of the shaft and can thereby produce an excited dynamic system.
Therefore, it is critical to examine rotor stresses, as the rotor stress state may
initiate the rotor cracks. Nevertheless, the stresses that arise in the rotor itself
have not been examined in the literature.
A limited number of publications can be found that particularly focus on bearing
life and the stress analysis of backup bearings. Stress and life time are important
issues for engineers designing backup bearings, especially since the rolling element
in backup bearing applications undergoes exceptional loading. Sun [94] estimated
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the fatigue life of the backup bearing. He evaluated the Hertzian contact stresses
and implemented Lundberg-Palmgren method to approximate the fatigue life of
the bearing. The Lundberg-Palmgren method is applicable only for steady state
loading conditions, while the loading of backup bearing is varies with regard to the
time period. After a few years, Lee and Palazzolo [55] applied rainflow analysis to
consider the time-dependent stress in evaluating the fatigue life of backup bearing.

The use of beam element-based modeling for transient problems, such as rotor
dropdown event or other purposes such as solving stress history of backup bearing,
has proven to be useful – and is still in active use, despite its limitations with
regard to the detailed modeling capabilities of the rotor geometry.

General 3D rotor dynamics modeling is discussed in Jalali et al. [42], where
the modal results of beam and 3D modeling approaches are compared against
experimentally measured results. In Kumar et al. [53], an aircraft engine strength
and life time analysis is given, where transient forces including gyroscopic loads
during maneuvers are included. For the life time analysis, a flight cycle profile
is used. In [69] is given a general 3D theory for rotor dynamics modeling using
both the rotating frame of reference approach, which includes the Coriolis and
spin softening effects, and the fixed frame of reference approach.

A multistage rotor system of a high-speed pump is investigated by Jammi [43].
The rotor system consists of three rotors on the same axis of rotation that are
coupled, as well as multiple supports using rolling element bearings. Moreover,
the effect of seals and nonlinear stiffness of the bearings and flexible pump frame
are included in the analysis. In addition, the pressure inside the pump during
operation is studied, and it is shown that the pressure is causing a pre-stress effect
on the frame. Multiple Campbell diagrams are presented showing the simulated
response when the frame is taken into account and when the pre-stress condition
of frame is added.

The sub-synchronous rotor dynamic instability caused by the shrink fit interface
is studied by Jafri [41]. The experimental studies showed that above the first
critical speed of the rotor system, due to the shrink fit interface, a strong unstable
sub-synchronous vibration occurred. In [41] was stated that the unstable sub-
synchronous vibration originate from friction forces which are developed by the
slippage in the shrink fit interface. It was stated that the slippage-induced
friction forces are acting as destabilizing cross coupled moments, while the rotor is
operating above the first critical speed. Transient whirl behavior including stress
stiffening and spin softening effects is studied by Rao [81] in which the unbalance
response and stability of the rotor-bearing system is analyzed during acceleration.

Chen et al. [14] used Ansys to perform a pre-stressed modal study of a hollow shaft
assembly with shrink fit joints. They used the native contact elements TARGE170
and CONTA174. They performed an experimental modal analysis (EMA) in
order to verify the numerical results. A similar study was presented by Chen [13],
where an optimal equivalent direct model was proposed for manipulating the local
stiffness in the contact region, by means of optimizing the elastic modulus of the
material.
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The effect of stress stiffening is shown as an important aspect to take into account
in any finite element-based frequency analysis. Kupnik et al. [54] showed how
significantly the natural frequencies of a gas turbine blade can be affected by
inclusion of the stress-stiffening effect. Donaldson et al. [23] presented the results
of change in harmonic response frequencies of an ultrasonic transducer while the
stress-stiffening effect is included.

An opposite effect to stress stiffening is an effect called spin softening. Rao and
Sreenivas [82] reported spin softening having significant effect on critical speeds
and the unbalance response. Later, Genta and Silvagni in [33] and [34] criticized
the importance of the spin softening effect. It was shown that with speeds high
enough – i.e., well beyond the speed of mechanical integrity – the effect is becoming
visible. Unlike the stress-stiffening effect, the spin-softening effect is not depended
on rotor geometrical interactions, such as contact induced stress. Instead, the
magnitude of this effect is directly dependent on rotor spin speed and the material
properties used. Thus, at speeds achievable before the material strength limit is
met, the spin-softening effect seems negligible.

General finite element contact problems are discussed by Zhang and Wang [98],
in which translational joint contact with friction force is studied in 2D. In Nejati,
Paluszny and Wimmerman [72], an internal friction of contact on a cracked
region is studied. Many publications considering the use of a traditional beam
such as Santos et al. [86] and Chen et al. [15] typically present a case-dependent
solution for a contact problem in shrink-fitted sleeve–shaft contact. The solution
is achieved in most cases by tuning the sleeve material properties based on the
theory developed.

Bolted structures with the impact of the preload effect are studied by Kim et al.
in [47], using the solid finite element method. Their study involved the use of
commercial FE-software (Ansys) and using its contact element methods. Multiple
bolted joint-modeling approaches are studied; use of solid elements, spider mesh
with beam elements, spider mesh with direct degree of freedom coupling and a
custom proposed method that does not use additional finite elements, but the
pressure load is mapped on the washer area in order to provide a preload effect.

Other interesting types of contacts used in rotating machines are studied in
Richardson et al. [84] and Qin et al. [79]. In [84], the bolt-jointed Curvic coupling
is studied, using the 3D FE method. The Curvic coupling is used typically in
aero-engines for transmitting torque between a sectioned rotor using a set of
matching axial teeth having a similar analogy as Hirth coupling. In [79], the joints
of the bolted disk-drum are studied using a formulated analytical model, and the
FE approach using Ansys software.

Sasek [87] studied the sensitivity of eigenvalues in the flexible rotor-disk system.
He proposed a method of using individual subsystems, one for the flexible disk,
and another for the shaft. These subsystems were connected using a global
coupling force vector. Tannous et al. [95] introduced an interesting approach for
transient rotor dynamics analysis using beam and 3D element modeling approaches,
while allowing the switch from beam to 3D during the transient solution. The
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main benefit, besides computational efficiency, is the detailed transient modeling
for events such as rotor-stator contact. The method proposed is proven and
the inertial, velocity and acceleration corrections due to the model switch are
implemented.

Wagner et al. [96] presented a comprehensive review of modal reduction methods
that can be used for rotor dynamics analysis. A discussion of the suitability of
various methods was given. 3D solid element modeling is used as the basis for
the beam element-based rotor model update for the dual rotor system studied by
Miao et al. [68]. The optimization of model updating and performance gained is
discussed.

Inclusion of a flexible frame for a comprehensive dynamic response analysis of a
rotating machinery is beneficial. Mounting of frame to the foundation and the
machine foundation modeling itself are aspects that determine the accuracy of
the harmonic response of machine frame and foundation. Machine foundation
properties are investigated in Prakash and Puri [78], in which a number of
analytical stiffness and damping coefficient equations are provided for various
basic types of machine foundation. Vibration isolation and absorption for machine
foundations is investigated in Öztürk and Öztürk [105].

1.2.2 Thermal stress modeling using finite element method

Study of the thermal condition in a structure can be important for calculating the
stress condition of the structure. Even a small temperature difference over the
structure may yield a moderate initial stress state, due to the thermal expansion-
induced forces inside the structure. Thermal FEM is typically done prior to
structural strength analysis, and used as the loading condition in the structural
analysis. Measured on-board diagnostics data of a vehicle is used for transient
thermal stress studies by Rashid and Strömberg [83], where frictional heating of
disc brakes was studied. The coupled field problem of thermal stress analysis for a
3D cut disk structure is studied by Paramonov and Gonin [77]. Abawi [1] presented
thermal stress-induced bending in a non-homogeneous composite structure. Chen
and Nelson [17] studied thermal stress distribution in bonded joints. Measured
drive cycle data of a vehicle was used as the basis for transient thermal stress
studies in Sikanen et al. [92], where the thermal stress history and life time
calculation is given for a traction motor application.

Combined mechanical and thermal loads were studied in Çallioğlu et al. [7]
where the application studied was functionally graded rotating discs. A similar
approach is studied in Celebi et al. [11], where stress due to a steady-state thermal
condition with mechanical loads was studied for a thick-walled cylinder made
of functionally graded material. Ma and Wang [66] investigated thermal post-
buckling of a functionally graded circular plate under thermal, mechanical and
combined thermal mechanical loads.

An analytical expression for calculating thermal stress in a receiver tube used at
a solar energy plant is formulated in Logie et al. [62]. Thermal stress is also a
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relative issue in electrical engineering and printed circuit board design. In Lu et
al. [65], Lu et al. [64] and Jiang et al. [45], thermal stresses of through-silicon-vias
connectors were studied.
Gabrielson [30] provided multiple approaches for calculating temperature and
material damping-dependent mechanical thermal noise in micromachined acoustic
and vibration sensors. Lin and Lee [57] studied residual stresses in a machined
workpiece using an FEM approach with a large deflection thermal elastic-plastic
method.
Thermal fatigue of a reinforced composite under thermal and mechanical loads is
investigated in Long and Zhou [63], using experimental and numerical analysis.
Zhao et al. [99] studied a composite disk clutch system using a coupled transient
temperature-displacement analysis in order to investigate the thermomechanical
behavior of the system under frictionally induced thermal loads.
Thermal stresses are studied also in the field of electric vehicular technology. There
are many varying traction motor drives and drivetrain architectures that have
been proposed for electric vehicle use [22, 25, 5]. In traction motor applications,
the operating conditions vary significantly: the multidisciplinary analysis should
be conducted over the drive cyclea as was done, for example, in Fatemi et al. [26].
In [21, 6], electromagnetic forces are applied in mechanical analysis to find out
the noise and vibration characteristics.
The calculation of structural stresses and the fatigue life of a permanent magnet
synchronous motor (PMSM) rotor structure in traction applications is often based
on varying analytical and finite element-based numerical approaches. According
to the results found in Chai et al. [12], Knetsch et al. [49], and Lindh et al. [58],
centrifugal force acting on the rotor structure is regarded as the dominant stress
source, but in all the cases studied, the effect of the thermal loads on mechanical
stresses and fatigue life were neglected.
Stress levels are directly coupled with the fatigue life, which can be analyzed by var-
ious methods, as introduced in [56]. According to the published literature, the main
interest in the impacts of thermomechanical stress in electrical machines is limited
to the rotor bar braking mechanisms in squirrel-cage induction machines [18],
or degradation of stator insulation [44]. In the traditional mechanical design of
the rotor structure of a permanent magnet traction motor, thermomechanical
stresses are typically neglected, leading to a situation where the mechanical design
is based mostly on the centrifugal forces affecting the rotor.

1.3 Objectives and scientific contribution

There seems to be a limited number of publications regarding the rotor stresses
occurring from the contact with backup bearings. The stresses occurring in the
rotor from contact between the rotor and backup bearings can be a limiting issue,
especially in flywheel applications, which often use AMBs.
All the results presented in publications regarding contact studies using 3D solid
elements are made using commercial FE software. Typically, Ansys is used with
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native TARGE170 and CONTA174 contact elements. These elements can be
considered to be general purpose contact elements. By default, the constraint
equation method Ansys uses with these elements is augmented Lagrangian. It is
a very practical method, since under normal circumstances the convergence of the
contact is rapid. Based on the publications found related to solid finite element
rotor dynamics modeling, it appears to be that the use of 3D solid elements for
contact modeling without using commercial FE software is a topic that is not
much studied. There also seems to be only a limited number of publications
regarding coupled field static structural–modal analysis studies for rotor dynamics
analysis in the frequency domain.

In literature, coupled field thermal structural stress analyses also lean on the use of
commercial FE software. According to literature, a typical traction motor design
is based on taking only centrifugal forces into account and neglecting the effect of
thermal stresses. A limited number of publications regarding detailed thermal
stress analysis as based on measured loading history in the field of structural
analysis of electric vehicles exists.

The objectives of this doctoral dissertation are as follows:

• To prove how important proper contact modeling for rotor critical speed
analysis is. For a multi-step modal analysis such as making a Campbell
diagram, updating the loading and contact status on every speed step can
be essential.

• To provide new information about the importance of the impact of thermal
stress during rotating machine operation. In addition to a steady state
condition, transient thermal effects should also be analyzed. Although this
work does not focus on fatigue life calculation, an introduction to the theory
is presented and implemented in the results section.

This doctoral dissertation provides the following scientific contribution:

• The effect of contact status-induced nonlinearities affecting rotor eigenfre-
quencies is proven. The forces induced by high-speed operation can partially
open a certain type of contacts in rotor assemblies having multiple parts.
This contact opening is documented and is shown to cause shifting in the
rotor whirling mode frequencies. Operational conditions, such as high spin
speed-induced deformations and uneven temperature distribution, can have
an effect on the rotor critical speeds when an analysis is done using the
three-dimensional solid finite element modeling approach, including custom
contact formulations.

• Taking into account the thermal condition while analyzing the stress state
of components of rotating machines has proven to be indispensable. A
computationally efficient coupled field solution routine is proposed for
thermal stress analysis. A significant reduction of fatigue life in a traction
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motor rotor, while including the transient thermal stress state, is proven.
Besides the analysis of steady-state condition, it is also important to analyze
various transient operational points.

• Analyses of rotor and bearing stress conditions during transient rotor
dropdown on backup bearings are proven to be essential for machine design.
Rotor stress history during dropdown can be crucial information for rotor
design. Similarly, the stress history of backup bearing is essential for bearing
life.
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Chapter 2
Finite element modeling of rotating

structures

Finite element modeling based on the use of beam element approach has been
used for many decades for rotor dynamics modeling and simulations. Various
beam element formulations have been developed. Nowadays, the most commonly
used approach is based on the shear deformable Timoshenko beam theory. Beam
elements for rotor dynamics modeling are typically 3D formulations, and they
describe volumes efficiently with certain symmetry-based limitations. [80]

Use of the beam element approach makes finite element modeling efficient for
various problems, such as transient and eigenvalue analyses. Further simplification
can be achieved by using modal reduction, or other dynamic condensation
method [96]. Modeling of the gyroscopic effect is fairly simple with beam elements,
since these elements typically have shape functions describing the rotational
DOFs [16]. Various rotor-stator contacts, such as a seal rub, are typically handled
using analytical-based contact force expressions.

Normally, beam elements do not take into account the deformation of the shaft
cross section accurately enough. The effect of deformable shaft cross section
for flexible disks and turbine blades are required when analyzing certain types
of applications such steam turbines. In addition, contacts between different
components of the rotor assembly cannot be modeled realistically, although good
approximations can be modeled using, for example, speed or otherwise dependent
spring elements between the shaft and sleeve components. Centrifugal or, in
general, stress-stiffening effects typically cannot be included in beam element-
based modeling. Major limitations in including thermal effects also exist. [80]

Many of these limitations can be fixed when using 2D axisymmetric harmonic
elements. [35, 80] The use of a 2D element is typically limited to geometries of
axisymmetric structures and axisymmetric loads. When introducing 3D solid
element modeling, the geometrical limitations-related cross section and loading
conditions are also excluded.

The need for a switch from the beam element in the 3D solid element approach

31
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arises from the need for more detailed geometric modeling. Perhaps the most
important feature of solid element is the inclusion of contact induced effects in
rotor assemblies having multiple parts. The modeling of body forces such as
centrifugal force becomes important for a rotor assembly having multiple parts,
thus having multiple contacts. The inclusion of a realistic thermal state also
becomes possible to model. Centrifugal force and other forces such as thermal
expansion and contact induced forces can cause stress stiffening, which is known
to have an effect on the eigenfrequencies of the rotating structure.

In this chapter, the fundamentals of the structural and thermal three-dimensional
solid finite element for rotor dynamics modeling are given. Although, the 3D
structural and thermal modeling of rotating structures is the main topic in this
chapter, a brief introduction to beam element-based modeling is given. The
importance of including thermal modeling arises from the typical operational
conditions of rotating machinery. Electrical losses can appear as an internal heat
source in rotors, especially in electric machines. These losses can change the
temperature state of the rotor significantly, and if temperature gradients appear,
the thermal expansion-induced forces should be studied for two reasons. Because
the thermal expansion effect can cause force distributions having significant
magnitude, the stress state of the structure should be studied. Also, the thermal
expansion-induced forces will cause deformations of the structure; thus, the effect
of thermal state on the structure shape should be studied.

Constraint equations as part of rotor modeling having multiple parts are introduced.
The generally used constraint equations introduced represent a fundamental part
of this dissertation, because the same constraint equations can be applied for
both beam element and 3D solid element-based modeling. Common constraint
equation methods are presented, and a custom application-specific constraint
method developed in [91] is introduced. In addition, constraint equations can
be applied essentially in any kind of structural finite element study examining
static, transient, modal and harmonic response. The use of a suitable constraint
equation method for a particular study requires an understanding of the behavior
of various constraint methods. Some constraint methods are not well-suited for
transient studies, and others may yield numerical error due to the excessively high
stiffness coefficients used.

Solution routines for various coupled field analyses are presented. These routines
are used to generate the results presented in this work. Solution routines for
transient simulation for solving the rotor and bearing stresses during the dropdown
event, using the beam element approach and generating a Campbell diagram for a
rotor having multiple parts with contacts using the 3D solid element approach, are
presented. In addition, routines for the modeling of transient effects of thermal
expansion induced stresses in rotating structures as well as the solved transient
stress history, which can be used as an input for fatigue life calculation, are
presented.

Beam element-based rotor dynamics modeling is still common. Regardless of
certain limitations in the beam element approach, it is found to be extremely
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useful in transient analyses. Beam element-based transient analyses are discussed
in [71] and [90]. Because the work done in these publications does form a
significant part of this dissertation, an introduction to the beam element approach
is given here. The general equations of motions are presented especially for beam
element purposes. An illustration of beam element having a circular shaped cross
section is presented in Figure 2.1. Typical beam element used has six nodal
degrees of freedom: {ux uy uz θx θy θz}. Comprehensive theory section of
formulating beam element shape functions and structural matrices is given in [16].
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Figure 2.1. 2-node beam element having a circular shaped cross section

Equations of motion in fixed frame of reference for general finite element modeling
having variable rotation speed is [50]

Mẍ+ (Ce + ΩG) ẋ+
(

Ke + 1
2Ω̇G

)
x = Ω2FUB + Ω̇F α,UB + F ext (2.1)

where
M is the mass matrix
Ce is the elastic damping matrix
Ω is the rotational speed
G is the skew-symmetric gyroscopic matrix
Ke is the elastic stiffness matrix
x is the nodal coordinate vector in a fixed coordinate system
FUB is the unbalance force vector at constant rotational speed
Ω̇ is the angular acceleration
F α,UB is the unbalance force vector due to angular acceleration [16]
F ext is the external force vector

Rotational speed dependent matrix G and vector FUB are formed using reference
speed of 1.0 rad/s. Angular acceleration dependent vector F α,UB is formed using
reference acceleration of 1.0 rad/s2. In Equation (2.1), internal damping of the
rotor is neglected [50].
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2.1 Finite element method for 3D solids

In this section, 3D solid finite element theory focusing on the use of rotor
dynamics applications for structural and thermal modeling is presented. First, an
introduction to solid finite elements is given. Then, the formulation of structural
element matrices and force vectors based on energy principle is presented. Finally,
the heat transfer theory related to the rotor dynamics application is presented,
and element matrices and load vectors based on Galerkin formulation for 3D solid
finite element method are shown.

The equations of motion presented in Equation (2.2) are formulated for a fixed
frame of reference. The equation presented is meant for problems utilizing the
solution of eigenvalue problem, such as making the Campbell diagram, as well as
studying contact behavior in the rotor structure. For this reason, time-dependent
terms, such as centrifugal force, are not present. The equations of motion for
studying rotating structures utilizing 3D solid finite element theory, modified
from [48], can be written as follows:

Mẍ+ (Ce + ΩG) ẋ+ Kex = Ω2FΩ + F ext (2.2)

where
M is the mass matrix
Ce is the elastic damping matrix
Ω is the rotational speed
G is the skew-symmetric gyroscopic matrix
Ke is the elastic stiffness matrix
x is the nodal coordinate vector in fixed coordinate system
FΩ is the centrifugal force vector
F ext is the external force vector

Rotational speed dependent matrix G and vector FΩ are formed using reference
speed of 1.0 rad/s. The pre-stress effect caused by any external forces can be
included into eigenvalue problem by utilizing an additional stiffness matrix, the
stress-stiffening matrix KG, introduced in Equation (2.36).

2.1.1 Introduction to three-dimensional elements

Certain finite elements that are useful for rotor dynamics analysis are introduced
in this subsection. For simplicity, only linear elements are presented. Typical
three-dimensional solid elements are shown in Figure 2.2. The most common 3D
solids used are the tetrahedron and hexahedron. Tetrahedron is a general-purpose
element that can be used to mesh any 3D geometry. It is extremely useful for
volumetric geometries with circular shapes that are very common in the field of
rotor dynamics. Tetrahedron is also the choice when mesh biasing, a relatively
great change in element size over the 3D geometry, is required. Typical mesh
biasing application is structural stress analysis for a body with curved surfaces.
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(a) Tetrahedron (b) Hexahedron (c) Prism (d) Pyramid

Figure 2.2. Linear three-dimensional finite elements

The only drawback for this element is its difficulty to describe volume efficiently;
therefore, a great number of tetrahedron elements are typically required. [60, 103]

Hexahedron element is very efficient for describing volumes, when the 3D body
is prismatic, meaning there are no relative small curved surfaces nor any need
for significant mesh biasing. These requirements limit the use of this element in
rotor dynamics-analysis. It is nevertheless still possible to mesh certain types of
rotors, at least partially, using a hexahedron. In this case the quadratic (or higher
order) hexahedron element can be utilized. Higher than first order elements can
be used to describe curved surfaces. Considering the finite element theory for
solids, this is allowed, although the use of elements with curved surfaces should be
limited, since the element quality suffers [60]. For this reason, a mesh generator
typically uses the curved surface only at the geometry outer boundary if needed,
and the internal elements are mesh as straight surfaces. The element quality is
assessed normally during the mesh generation. The geometric shape of an element
is evaluated using parameters such as aspect ratio and warping [4].

Other less used 3D elements are the prism or wedge and pyramid. Both are
a combination of triangular and rectangular surfaces. The wedge element is,
in certain cases, useful for the rotor dynamic application. When the element
is rotated ideally, it has a triangle surfaces in axial direction, thus making it
useful for meshing shaft like circular surfaced geometries. The pyramid element is
probably the least used 3D element. Typically, it is required only if hexahedrons
are improperly used for mesh they do not fit well. Regardless of the pros and cons
of different elements, all of these elements can be used for mixed mesh: meaning
that they can be used simultaneously for meshing a single solid body.

Two-dimensional elements are presented in Figure 2.3. Although, these elements
are two-dimensional in nature, implementations of three-dimensional use, as
discussed in the end of this subsection, exist. There is a similar analogy between
3D tetrahedron and 2D triangle elements as between 3D hexahedron and 2D
quadrilateral elements. Therefore, there is no need to repeat the same introductions
given with the 3D solid elements. Instead, the different options of how to use the
2D elements are discussed here. The most simple application is the 2D plane with
thin or thick representation. This kind of element has only translational nodal
degrees of freedom in the 2D plane. It is very efficient for plane finite element
problems compared to the use of 3D solid elements, but limited to applications
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that have constant thickness, such as plate geometries. A comparison of the
nodal degrees of freedom of different elements is provided in Table 2.1, where u
represents translational degree of freedom and θ represents rotational degree of
freedom.

(a) Triangle (b) Quadrilateral

Figure 2.3. Linear two-dimensional finite elements

Table 2.1. Nodal degrees of freedom of certain elements

Element type Nodal degrees of freedom
3D solid {ux uy uz}
2D plane {ux uy}
Axisymmetric solid {ur uw} or {ur uw θ}
3D shell {ux uy uz θx θy θz}

Figure 2.4. Applications for 2D elements: on the left, the axisymmetric element, and
on the right, the 3D shell element [4]

Axisymmetric solids are one practical application for considering rotor dynamics
purposes. The axisymmetric model is very efficient compared to the 3D representa-
tion of rotor geometry. The downside of the axisymmetric element is its deficiency
with respect to the description of any complex shapes. The axisymmetric and 3D
shell elements are illustrated in Figure 2.4.

As seen in Figure 2.4, the 3D shell elements can describe 3D surfaces. 3D shell
elements may not be useful for modeling rotor components themselves, perhaps,
for some features such as turbine blades. But they can be very useful for modeling
the frame of the rotating machine. In comparison, 3D elements typically requires
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at least two element layers, even with quadratic elements, in order to to accurately
model 3D walls.
There are even more uses for a 2D element when the structure is modeled using 3D
solids. Surface loads such as structural pressure load and convective or radiating
heat transfer loads require integration over the loading surface; thus, 2D elements
are used for surface loads. Also, certain FE-software use 3D shells for contact
detection in the 3D domain. Common isoparametric 2D and 3D elements are
introduced in Appendix B. The shape functions formulated for these isoparametric
elements as introduced are given in Appendix A and numerical integration schemes
for isoparametric elements are given in Appendix C.

2.1.2 Energy principle for formulating element matrices

Finite element matrices can be formulated using the energy principle, and
dividing it further into kinetic and elastic strain energies. Hamilton’s principle
is introduced in references such as Liu and Quek [60], and Lagrangian principle
in Kirchgäßner [48]. The outcome of full formulation is the equations of motion.
The basic formulations required for mass, gyroscopic and stiffness matrices and
fundamental force vectors are presented here.
The kinetic energy of translational motion and kinetic energy, due to the gyroscopic
effect can be written as follows [60, 35]:

Tk = Tm + Tg (2.3)

where Tm is the kinetic energy of translational motion and TG is the kinetic energy
due to the gyroscopic effect. Based on Tm and TG expressions, element mass and
gyroscopic damping matrices can be formulated, respectively. The kinetic energy
of translational motion can be written as follows:

Tm = 1
2

∫
V
ρu̇Tu̇dV (2.4)

where ρ is the material density. Three-dimensional displacement interpolation
using shape functions can be written as follows [103]:

u = Nde =
n∑
i=1

Nidi (2.5)

The element displacement vector can be written as follows [60]:

u =

uv
w

 (2.6)

The nodal displacement vector can be written as follows:
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di =

uivi
wi

 (2.7)

When substituting Equation (2.5) in Equation (2.4), the kinetic energy of transla-
tional motion can be written as follows:

Tm = 1
2 ḋ

T
e

(∫
V
ρNTNdV

)
ḋe (2.8)

Based on Equation (2.8), symmetric element mass matrix can be written as
follows:

Me =
∫
V
ρNTNdV (2.9)

Element shape function matrix N can be written as follows:

N =
[
N1 N2 · · · Nn

]
(2.10)

where n is the number of element shape functions. Element shape function matrix
of node i Ni can be written as follows:

Ni =

Ni 0 0
0 Ni 0
0 0 Ni

 (2.11)

where Ni is the ith shape function of an element. Shape functions for common
3D solid elements are introduced in Appendix B. Considering the rotation around
the global X-axis, general kinetic energy due to the gyroscopic effect, adopted
from [35, 101], can be written as follows:

Tg = −
∫
V
ρθ̇xu

(
θ̇yy + θ̇zz

)
dV (2.12)

where

θx = Ωt (2.13)

θy = 1
2

(
∂u

∂z
− ∂w

∂x

)
(2.14)

θz = 1
2

(
∂v

∂x
− ∂u

∂y

)
(2.15)
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By substituting Equations (2.13–2.15) into Equation (2.12) and replacing dis-
placements with shape functions and generalized coordinates according to Equa-
tion (2.5), kinetic energy due to the gyroscopic effect for solid elements can be
written as follows:

Tg = Ω
n∑
i=1

n∑
j=1

(
u̇i

(1
2ρ
∫
V

(
∂Ni

∂y
Njzi −

∂Ni

∂z
Njyi

)
dV

)
uj

+v̇i
(
−1

2ρ
∫
V

∂Ni

∂x
NjzidV

)
uj + ẇi

(1
2ρ
∫
V

∂Ni

∂x
NjyidV

)
uj

) (2.16)

Equation (2.16) can be written in matrix form, as follows:

Tg = Ω
n∑
i=1


ḋ

T
e,i

1
2ρ
∫
V



∂Ni

∂y
zi −

∂Ni

∂z
yi 0 0

−∂Ni

∂x
zi 0 0

∂Ni

∂x
yi 0 0


NdV


de = ΩḋT

e Ge
de (2.17)

Based on Equation (2.17), the skew-symmetric element gyroscopic damping matrix
can be written as follows [101]:

Ge = Ge −GeT (2.18)

Based on the strain energy expression, the element elastic stiffness matrix can be
formulated. The strain energy can be written as follows [60]:

Π = 1
2

∫
V
εTσdV (2.19)

The element strain vector can be written as follows:

ε = Lu (2.20)

Strain-displacement relationships for linear isotropic material in 3D domain can
be written as follows [61]:
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εx = ∂u

∂x

εy = ∂v

∂y

εz = ∂w

∂z

γxy = ∂u

∂y
+ ∂v

∂x
= γyx

γyz = ∂v

∂z
+ ∂w

∂y
= γzy

γzx = ∂w

∂x
+ ∂u

∂z
= γxz

(2.21)

The matrix of partial differential operations can be written as follows [61]:

L =



∂/∂x 0 0
0 ∂/∂y 0
0 0 ∂/∂z

∂/∂y ∂/∂x 0
0 ∂/∂z ∂/∂y

∂/∂z 0 ∂/∂x


(2.22)

The element stress vector can be written as follows:

σ = Dε (2.23)

The matrix of material constants D for linear isotropic material is expressed as

D = E

(1 + ν) (1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2


(2.24)

where E is the elastic modulus and ν is the Poisson’s ratio [61]. The element
strain matrix B can be written as follows:

B = LN (2.25)

By substituting Equations (2.20), (2.23) and (2.25) in Equation (2.19), the strain
energy can be written as follows:

Π = 1
2d

T
e

(∫
V

BTDBdV
)
de (2.26)
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Symmetric element elastic stiffness matrix can be written as follows

Ke
e =

∫
V

BTDBdV (2.27)

Elastic damping matrix using proportional damping expression based on stiffness
and mass matrices can be written as follows [3]:

Ce = αpKe + βpM (2.28)

where αp and βp are proportional coefficients for stiffness and mass matrices.

Formulation of external force vectors

Element body and surface force vectors can be formulated from virtual work
principle. Work done by external forces can be written as follows [60]:

Wf =
∫
V
uTf ebdV +

∫
S
uTf esdS (2.29)

By substituting Equation (2.5) into Equation (2.29) the work done by external
force can be written as follows:

Wf = dT
e

(∫
V

NTf ebdV

)
+ dT

e

(∫
S

NTf esdS

)
(2.30)

The element nodal body force vector can be written as follows:

f eb =

fxfy
fz

 (2.31)

The element nodal surface force vector can be written as follows:

f es =

fxfy
fz

 (2.32)

The nodal surface force vector is having same analogy than in Equation (2.31).
Element body force vector can be written as follows:

F e
b =

∫
V

NTf ebdV (2.33)

Element surface force vector can be written as follows:
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F e
s =

∫
S

NTf esdS (2.34)

Total work done by external force is thus given as

Wf = dT
e F

e
b + dT

e F
e
s = dT

e F
e
ext (2.35)

where F e
ext is the element total external force vector.

Stress-stiffening effect

The stress stiffness matrix can be used for eigenvalue analysis of the pre-stressed
structure. Stress stiffening – also known as geometric stiffening – for a single
element can be written as follows [48]:

Ke
G =

∫
V

BT
ε S0BεdV (2.36)

The matrix Bε containing the spatial derivatives of the element shape functions
can be written as follows:

Bε =



I3
∂N1
∂x

I3
∂N2
∂x

· · · I3
∂Nn

∂x

I3
∂N1
∂y

I3
∂N2
∂y

· · · I3
∂Nn

∂y

I3
∂N1
∂z

I3
∂N2
∂z

· · · I3
∂Nn

∂z


(2.37)

and the initial stress matrix S0 is

S0 =

 I3σx I3τxy I3τxz
I3τyx I3σy I3τyz
I3τzx I3τzy I3σz

 (2.38)

where I3 is a 3 × 3 identity matrix. The element stress vector can be written as
follows [61]

{σx σy σz τxy τyz τzx}T = DBu (2.39)

where {σx σy σz} are the element normal stress components and {τxy τyz τzx}
are the element shear stress components. Element-based normal stress and shear
stress components are illustrated in Figure 2.5. Note that for linear isotropic
material, the strain components are equal in the following manner
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τxy = τyx

τyz = τzy

τzx = τxz

(2.40)

Y

Z

X

τzy

σz

τzx

σy

τyz

τyx

τxy

τxz

σx

τzy

σz

τzx

τxy

τxz

σx

σy

τyz

τyx

Figure 2.5. Three-dimensional stress components

Common force vectors for structural analysis

Formulations of 3D solid element force vectors for centrifugal force, translational
acceleration, surface pressure and thermal expansion are presented. The element
centrifugal force vector can be written as follows [48]:

Ω2F e
Ω = Ω2

n∑
i=1

ρ

∫
V

NT
i ΩTΩxidV (2.41)

where xi is the vector of coordinates of node i. The matrix Ω indicating the axis
of rotation can be written as follows:

Ω =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (2.42)
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where ωx, ωy and ωz are the normalized angular velocity components, according
to the global coordinate system, |{ωx ωy ωz}| = 1. Based on Newton’s second
law, the general element translational acceleration force vector can be written as
follows:

F e
g = ρ

∫
V

NTgadV (2.43)

where

ga =

gxgy
gz

 (2.44)

where gx, gy and gz are the translational acceleration components, according to
the Cartesian coordinate system. By applying the standard acceleration of gravity
into Equation (2.44), the gravitational body force can be modeled. Element
pressure force vector can be written as follows:

F e
p =

∫
S

NTppdS (2.45)

where

pp =

pxpy
pz

 (2.46)

where px, py and pz are the pressure normal component according to the Cartesian
coordinate system. The element force vector due to initial strain can be written
as follows [103]:

F e
ε =

∫
V

BTDε0dV (2.47)

where

ε0 =



εx,0
εy,0
εz,0
γxy,0
γyz,0
γzx,0


(2.48)

The linear thermal expansion can be written as follows:

∆L = Lα (T − Tref) (2.49)
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Thus, strain ε can be written as follows:

ε = ∆L
L

= α∆T (2.50)

where α is the thermal expansion coefficient. The nodal temperature can be
non-uniform over the element. Thus, by expanding the Equation (2.50) into
three-dimensional domain and substituting it into Equation (2.47), the element
thermal expansion force vector can be written as follows [28]:

F e
∆T =

n∑
i=1

∫
V

BT
i Dα∆TidV (2.51)

where ∆Ti is the temperature difference of node i. The vector α can be written
as follows:

α =



αx
αy
αz
0
0
0


(2.52)

2.1.3 Heat transfer theory

The heat transfer equation is introduced in this subsection. Heat transfer analysis
can be coupled with structural analysis if a structure is experiencing thermal loads
such as internal heat generation or boundary heat flow from solid into medium. In
this case, the need for solving the thermal state of a structure becomes necessary
for analyzing the effect of thermal expansion-induced stresses. The heat transfer
equation can be written as follows [76]:

−
(
∂qx
∂x

+ ∂qy
∂y

+ ∂qz
∂z

)
+Q = ρc

∂T

∂t
(2.53)

where qx, qy and qz are the components of heat flow through the unit area, Q is
the internal heat generation rate per unit volume, ρ is the material density, c is
the specific heat capacity, T is the temperature and t is the time. The heat flow
components in isotropic case can be written as follows:

qx = −kx
∂T

∂x

qy = −ky
∂T

∂y

qz = −kz
∂T

∂z

(2.54)



46 2 Finite element modeling of rotating structures

where kx, ky and kz are the thermal conductivity coefficients in global X, Y
and Z-directions, respectively. By substituting the heat flow components in
Equation (2.53), the heat transfer equation can be written as follows:

∂

∂x

(
kx
∂T

∂x

)
+ ∂

∂y

(
ky
∂T

∂y

)
+ ∂

∂z

(
kz
∂T

∂z

)
+Q = ρc

∂T

∂t
(2.55)

There are four typical loading types to be used with the heat equation: the
internal volumetric heat generation, boundary surface heat flow according to
Equation (2.56), boundary surface convection heat transfer according to Equa-
tion (2.57), and heat radiation, which is excluded from the heat equation. In
addition, a fixed temperature on surface or on a single node can be used as the
boundary condition.

qxnx + qyny + qznz = −qs (2.56)

qxnx + qyny + qznz = h (Ts − Te) (2.57)

where h is the convection coefficient, Ts is the surface temperature and Te is the
reference temperature for convective heat transfer. This reference temperature
is normally the ambient temperature of the fluid on the boundary surface of a
structural domain.

2.1.4 Finite element method for three-dimensional heat transfer

In this subsection, thermal modeling using the 3D solid finite element method
is introduced. Formulation of heat transfer matrices and loading vectors are
given. Using the Galerkin method, the heat transfer equation can be written as
follows [76]:

∫
V

(
∂qx
∂x

+ ∂qy
∂y

+ ∂qz
∂z
−Q+ ρc

∂T

∂t

)
NidV = 0 (2.58)

∫
V
ρc
∂T

∂t
NidV −

∫
V

[
∂Ni

∂x

∂Ni

∂y

∂Ni

∂z

]
qdV

=
∫
V
QNidV −

∫
S
qTnNidS

+
∫
S
qsNidS −

∫
S
h (Ts − Te)NidS

(2.59)

where

qT = [qx qy qz]
nT = [nx ny nz]

(2.60)
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where n is an outer normal to the surface of the body. The finite element equation
for heat transfer can be written as follows:

CṪN + (KC + Kh)TN = RT +RQ +Rq +Rh (2.61)

where
C is the heat capacity matrix
KC is the heat conduction matrix
Kh is the surface convection matrix
TN is the nodal temperature vector
RT is the specified boundary temperature vector
RQ is the internal heat generation vector
Rq is the boundary heat flow vector
Rh is the surface convection vector

The element heat capacity matrix can be written as follows:

Ce =
∫
V
ρcNTNdV (2.62)

where the vector of element shape functions N can be written as follows [24]:

N =
[
N1 N2 · · · Nn

]
(2.63)

The element heat conduction matrix can be written as follows [76]:

Ke
C =

∫
V

BT
d DcBddV (2.64)

where Bd is the matrix of shape function derivatives and Dc the conductivity
matrix. The matrix of shape function derivatives can be written as follows:

Bd =

∂/∂x∂/∂y
∂/∂z

N (2.65)

The conductivity matrix can be written as follows [24]:

Dc =

kx 0 0
0 ky 0
0 0 kz

 (2.66)

The element surface convection matrix can be written as follows:

Ke
h =

∫
S
hNTNdS (2.67)
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The element specified boundary temperature vector can be written as follows:

Re
T = −

∫
S
qTnNTdS (2.68)

The element internal heat generation vector can be written as follows:

Re
Q =

∫
V
QNTdV (2.69)

The element boundary heat flow vector can be written as follows:

Re
q =

∫
S
qsN

TdS (2.70)

The element surface convection vector can be written as follows:

Re
h =

∫
S
hTeN

TdS (2.71)

2.2 Constraint equations and contact modeling

In this subsection, the concept constraint equation is introduced, and multiple
different methods of applying constrain equations are presented. Constraint
equation is an equation which describes the motion between two or more degrees
of freedom. Boundary condition, such as a DOF displacement, can be defined by
applying the constraint equation to a boundary DOF in the model. In such a
case, the constraint equation is applied between a particular boundary DOF and
the ground; thus, it is referred to as boundary constraint. Similarly, boundary
constraints such as cyclic symmetry can be described. Four different constraint
modeling methods are introduced: master-slave, penalty function, Lagrangian
multiplier method [29, 102, 103, 104], and a novel proposed application specific
constraint method called trial force method developed in [91]. Constraint equations
are implemented inside the stiffness matrix, and they limit the movement of
unconstrained DOFs. Two main types of constraint equations are considered: ho-
mogeneous equations that constraints the DOF movement, and non-homogeneous
equations that describe how a single DOF can move in accordance with one
or more DOFs. In Figure 2.6, the procedure of using constraint equations is
presented.

Master-slave and penalty function methods both use direct stiffness matrix
manipulation, which yields the desired displacement vector output, but not
the force vector corresponding to the constrained structure. Direct manipulation
in this instance considers the manipulation of stiffness terms to be directly related
to the DOFs of a particular constraint equation. Both the Lagrangian multiplier
and trial force method do not use direct stiffness matrix manipulation, which
yields the desired displacement vector output and the force vector corresponding
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to the constrained structure. Instead, both methods employ indirect stiffness
matrix manipulation. Lagrangian multiplier method extends the stiffness matrix
by adding a bordered stiffness matrix part. In the trial force method, the boundary
conditions are manipulated by adding constraints to the model boundary.

Unconstrained stiffness equations Ku = F

Applying constraint equations

Constrained stiffness equations K̂û = F̂

Solve constrained displacement vector û

Recover u

Figure 2.6. Scheme for applying constraint equations

In this section, a one-dimensional structure with five degrees of freedom shown
in Figure 2.7 is used as an example. The stiffness equation for the structure in
question can be written as follows:

x
1

u1, F1

2

u2, F2

3

u3, F3

4

u4, F4

5

u5, F5

Figure 2.7. One-dimensional structure discretized to four bar elements

Ku = F (2.72)

which in expanded form can be written as follows:


k11 k12 0 0 0
k21 k22 k23 0 0
0 k32 k33 k34 0
0 0 k43 k44 k45
0 0 0 k54 k55




u1
u2
u3
u4
u5

 =


F1
F2
F3
F4
F5

 (2.73)

2.2.1 Master-slave method

The master-slave constraint method, also known as the multipoint constraint
(MPC) method, is considered the simplest constraint method to be used for
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presenting the use of the homogeneous constraint equation. [29] Let us apply a
constraint to the structure given in Figure 2.7 between DOFs u2 and u4 as follows:

u2 = u4 (2.74)

Based on Equation (2.74), let us propose that DOF u4 is a slave of DOF u2,
thus u4 has to move exactly the same quantity than DOF u2. Let us introduce a
transformation matrix T to apply the constraint equation given in Equation (2.74)
as follows:


u1
u2
u3
u4
u5

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0
0 0 0 1



u1
u2
u3
u5

 (2.75)

where the transformation matrix T is originally a square identity matrix size of
n× n, where n is the number of DOFs. In the transformation matrix T, the row
of the slave DOF is replaced with the row of the master DOF, and the column of
the slave DOF is removed. Using matrix notation, the described transformations
of matrix T can be written as follows:

T = In×n
T k = T i

T j = ∅, i = j

(2.76)

where subscripts n, i, k and j are the number of DOFs, ith row corresponding
to the master DOF, kth row corresponding to the slave DOF and jth column
corresponding to the master DOF, respectively, and ∅ is the symbol for the empty
set representing an empty column vector. This method can be impractical for
handling multiple constraints. Thus, an alternative method for manipulating the
transformation matrix T and introduction of diagonal matrix Td can be written
as follows:

T = In×n
T k = T i

Td = 0n×n
Td,ij = 1, i = j

(2.77)

where subscripts n, i and k are the number of DOFs, ith row corresponding
to the master DOF and kth row corresponding to the slave DOF and Td

is the transformation matrix containing diagonal terms. This method keeps
the original DOF order and thus is practical to be used for a problem having
multiple constraints. Although, some numerical solvers of software such as Matlab
may lack the capability to skipping empty rows and column, and thus requires
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additional diagonal markings, therefore the diagonal matrix Td according to
Equation (2.77) is required. In Equation (2.80), the use of the Td matrix is
introduced. Equation (2.75) can be written as follows:

u = Tû (2.78)

By replacing Equation (2.75) into (2.72) and multiplying by TT yields modified
stiffness equations as follows:

K̂û = F̂ (2.79)

When using the alternative method for generating the transformation matrix as
given in Equation (2.77), the modified stiffness matrix can be written as follows:

K̂ = TTKT + Td (2.80)

F̂ = TTF (2.81)

By expanding Equation (2.79), the result can be written as follows:


k11 k12 0 0
k21 k22 + k44 k23 + k43 k45
0 k32 + k34 k33 0
0 k45 0 k55



u1
u2
u3
u5

 =


F1

F2 + F4
F3
F5

 (2.82)

Recovering the slave DOFs can be performed by using Equation (2.78). A set of
multiple homogeneous constraint equations can be applied. Let us introduce a
second constraint equation as follows:

u1 + 2u3 = 0 (2.83)

Again, selecting the slave DOF, now u3, Equation (2.83) can be written as follows:

u3 = −1
2u1 (2.84)

When applying both constraint equations (2.74) and (2.83), Equation (2.78) can
be rewritten as follows:


u1
u2
u3
u4
u5

 =


1 0 0
0 1 0
−1

2 0 0
0 1 0
0 0 1


u1
u2
u5

 (2.85)
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In addition to homogeneous constraint equations, there are also non-homogeneous
constraint equations that yield differentiating relationship between the constraint
DOFs. An example of a non-homogeneous constraint equation can be written as
follows:

u2 − u4 = 2 (2.86)

Again, DOF u4 is selected as slave DOF. Non-homogeneous constraint equations
can be used to model a gap or overlapping to the meshed geometry. Now,
Equation (2.78) is expanded by adding a vector for non-homogeneous part of the
constraint equations. Equation (2.78) can be written as follows:

u = Tû+ g (2.87)

where g is the vector of non-homogeneous coefficients. Equation (2.87) in expanded
form can be written as follows:


u1
u2
u3
u4
u5

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 0
0 0 0 1



u1
u2
u3
u5

+


0
0
0
−2
0

 (2.88)

By multiplying Equation (2.87) by TTK and substituting Equation (2.72) into
Equation (2.87) and passing all the terms to the right-hand side, the force vector
can be written as follows:

F̂ = TT (F + Kg) (2.89)

Equation (2.89) in expanded form can be written as follows:


k11 k12 0 0
k21 k22 + k44 k23 + k43 k45
0 k32 + k34 k33 0
0 k45 0 k55



u1
u2
u3
u5

 =


F1

F2 + F4 − 2k44
F3 − 2k34
F5 − 2k45

 (2.90)

The master-slave constraint method is exact. This method reduces the total
number of degrees of freedom, if so desired; it can therefore be regarded as a form
of model reduction. Due to the simplicity of the master-slave constraint method,
it was used here to introduce homogeneous and non-homogeneous constraint
equations. The master-slave method can also be used for kinematic model
reduction, when the displacements of the slave DOFs can be expressed using
series kinematic constraint equations, though this is rarely useful. In other
words, the method can be used only if the elastic behavior can be expressed fully
kinematically: meaning the structures must be very simple.
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2.2.2 Penalty function method

The penalty function constraint method is easier to implement than the master-
slave method. This method uses a fictional, massless, penalty element. [29] This
element is elastic, though very stiff, which leads to a situation that the constraint
equation using the penalty method is not exact, unlike the master-slave method,
owing to the elastic nature of the penalty element. The same structure introduced
in Section 2.2 with a penalty element in accordance with constraint equation
(2.74) is illustrated in Figure 2.8.

Penalty element

x
1

u1, F1

2

u2, F2

3

u3, F3

4

u4, F4

5

u5, F5

Figure 2.8. Five-DOF bar element model with penalty element

The local penalty element stiffness equation can be written as follows:

W

[
1 −1
−1 1

] [
u1
u4

]
=
[
0
0

]
(2.91)

where W is the penalty weight or the stiffness coefficient for the penalty ele-
ment. The penalty method uses full matrices, substituting Equation (2.91) in
Equation (2.73) using global DOFs yields


k11 k12 0 0 0
k21 k22 +W k23 −W 0
0 k32 k33 k34 0
0 −W k43 k44 +W k45
0 0 0 k54 k55




u1
u2
u3
u4
u5

 =


F1
F2
F3
F4
F5

 (2.92)

Multiple DOF constraint equations can be applied using the penalty method. Let
us consider a non-homogeneous constraint equation as follows:

u1 + 3u4 − 4u5 = 1 (2.93)

Equation (2.93) expressed in matrix form can be written as follows:

[1 3 − 4]

u1
u4
u5

 = 1 (2.94)
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By multiplying both sides using the coefficient vector and the penalty weight,
Equation (2.94) can be written as follows:

W

 1 3 −4
3 9 −12
−4 −12 16


u1
u4
u5

 = W

 1
3
−4

 (2.95)

By substituting Equation (2.95) in (2.73) using global DOFs, we get


k11 +W k12 0 3W −4W
k21 k22 k23 0 0
0 k32 k33 k34 0

3W 0 k43 k44 + 9W k45 − 12W
−4W 0 0 k54 − 12W k55 + 16W




u1
u2
u3
u4
u5

 =


F1 +W
F2
F3

F4 + 3W
F5 − 4W

 (2.96)

Attention must be paid when selecting the penalty weight. Since the penalty
constraint using penalty element is not exact, owing to the fact that the penalty
element has finite stiffness, the penalty weight selected should be as large as
possible. If the penalty coefficient selected is too large, the stiffness matrix may
become ill-conditioned with respect to inversion.

The constraint error of the penalty method, taking the example non-homogeneous
constraint equation (2.93) into consideration, is eg =| u1 + 3u4 − 4u5 − 1 |. The
magnitude of this constraint error eg is dependent on the penalty weight used.
With sufficiently large penalty weights the constraint error becomes 1/W .

The square root rule is provided as a general guide for selecting the penalty weight
coefficient. The rules states that the penalty weight should be W ≈ 10kmax

√
10pw ,

where kmax is the magnitude of the largest stiffness coefficient in the unconstrained
stiffness matrix, and pw is the working precision of the software used. [29]

2.2.3 Lagrangian multiplier method

Unlike the penalty function method, the Lagrangian multiplier constraint method
can be exact. This method uses additional coefficients, Lagrangian multipliers
λ, thus increasing the size of global matrices. [29] Let us consider a constraint
equation as follows:

u2 = u4 (2.97)

The Lagrangian multiplier constraint, Equation (2.97), can be illustrated as shown
in Figure 2.9, where −λ, λ are the constraint forces.

By applying Equation (2.97) the stiffness equation (2.73) we get
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−λ λ
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Figure 2.9. Five-DOF bar element model with illustration of Lagrangian multipliers


k11 k12 0 0 0
k21 k22 k23 0 0
0 k32 k33 k34 0
0 0 k43 k44 k45
0 0 0 k54 k55




u1
u2
u3
u4
u5

 =


F1

F2 − λ
F3

F4 + λ
F5

 (2.98)

where λ is the Lagrangian multiplier. By moving the unknown λ to the left-hand
side, modifying the stiffness matrix by keeping it square and appending the vector
of displacements, we get a multiplier-augmented system as follows:



k11 k12 0 0 0 0
k21 k22 k23 0 0 1
0 k32 k33 k34 0 0
0 0 k43 k44 k45 −1
0 0 0 k54 k55 0
0 1 0 −1 0 0





u1
u2
u3
u4
u5
λ


=



F1
F2
F3
F4
F5
0


(2.99)

The symmetric, appended stiffness matrix, is called bordered stiffness matrix.
Solving the Equation (2.99) will provide a solution for the constraint forces through
the unknown λ. Let us consider two general constraint equations as follows:

u2 − u4 = 0 and
u1 + 3u4 − 4u5 = 1

(2.100)

Adding these two constraint equations to the unmodified stiffness equation (2.73)
using Lagrangian multiplier method yields as follows:



k11 k12 0 0 0 0 1
k21 k22 k23 0 0 1 0
0 k32 k33 k34 0 0 0
0 0 k43 k44 k45 −1 3
0 0 0 k54 k55 0 −4
0 1 0 −1 0 0 0
1 0 0 3 −4 0 0





u1
u2
u3
u4
u5
λ1
λ2


=



F1
F2
F3
F4
F5
0
1


(2.101)

The general matrix form for Lagrangian multiplier can be written as follows:
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[
K AT

b

Ab 0

] [
u
λ

]
=
[
F
g

]
(2.102)

Solving Equation (2.102) will provide the vectors u and λ. According to the
Equation (2.102), the constraint forces can be calculated as −AT

b λ. The constraint
equations can be removed if these constraint forces are applied.

2.2.4 Trial force method

Trial force method is a custom application specific constraint method developed for
cylindrical shrink fitted joints introduced by Sikanen et al. [91]. This constraint
equation method is one of the main contributions of this dissertation. It is
formulated for use with the cylindrical coordinate system. This method does not
require a transformation nor an extension of the stiffness matrix size, though
it requires proper boundary constraints: for this purpose, cylindrical constraint
description is commonly used. The trial force method has similarities to the
penalty function method, because it is based on the use of stiffness coefficients,
and thus the solution is an approximation with one notable exception: the stiffness
coefficient is updated during the contact evaluation.

Y

Z

X

X ′

Z ′

Y ′

Figure 2.10. Two coordinate systems used; on the left is the right-handed Cartesian
coordinate system, and on the right is the cylindrical coordinate system

Solution of the contact model introduced here requires two evaluation steps. The
deformations are mapped from the Cartesian coordinate system in the cylindrical
coordinate system, in which the contact detection is done. At this point, it is
assumed that the axis of rotation observed the global X-axis. The two coordinate
systems used are presented in Figure 2.10. The coordinate transformations are
given in Equations (2.103) and (2.103).

X ′ =
√
Y 2 + Z2

Y ′ = arctan (Z, Y )
Z ′ = X

(2.103)

X = Z ′

Y = X ′ cosY ′

Z = X ′ sinY ′
(2.104)
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where X ′, Y ′ and Z ′ are the radial, tangential and axial direction of the cylindrical
coordinate system, respectively. After the contact force vector is calculated, the
force vector components are mapped back into the Cartesian coordinate system.
The first evaluation, according to Equation (2.105), takes all the external forces
into account, with the exception of the possible contact forces. The deformation
vector for the first evaluation can be written as follows:

u0 = K−1
e,CYLF ext (2.105)

where Ke,CYL is stiffness matrix applied with cylindrical constraints. The radial
distance between source–target nodes ∆u′0 can be written as follows:

∆u′0 = u′0,s − u′0,t (2.106)

u′t,i

u′s,i

Shaft Sleeve

Figure 2.11. Source and target node i of sleeve and shaft body

where the superscript ′ describes the cylindrical coordinate system and the
subscripts s and t correspond to the source and target as seen in Figure 2.11. The
vector of logical multipliers γ ′0 denotes which contact node pairs are opened and
which are closed. This vector can be written as follows:

γ ′0,ui =
{

1, if ∆u′0,i < δrad

0, if ∆u′0,i > δrad
(2.107)

where γ ′0,ui is the multiplier of radial component of source–target node pair i
and δrad is the radial interference of the shrink fit joint. The second evaluation
step uses the inclusion of external force and trial contact force. Two known
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variables, external force F ext and trial contact force F c,trial, help in determining
the unknown contact stiffness kfk0. The final contact force F ′c can be calculated
by solving the contact stiffness. The deformation vector in global Cartesian
coordinates for the second evaluation can be written as follows:

utrial = K−1
e,CYL (F ext + F c,trial) (2.108)

where F ′c,trial is the vector of trial contact force in the cylindrical coordinate
system written as follows:

F ′c,trial = k0∆u′0 · γ ′0 (2.109)

where k0 is the initial value for the contact stiffness. The final contact force vector
can be written as follows:

F ′c = kf · F ′c,trial (2.110)

where kf is the vector of multipliers for initial contact stiffness. When using the
linear isotropic material model, the multiplier for source–target node pair i is
given as follows:

δrad −∆u′0,i − kf,i
(
∆u′trial,i −∆u′0,i

)
γ′0,ui = 0 (2.111)

If γ′0,ui = 1, then

kf,i =
δrad −∆u′0,i

∆u′trial,i −∆u′0,i
(2.112)

The vector ∆u′trial calculated as based on the trial evaluation can be written as
follows:

∆u′trial = u′trial,s − u′trial,t (2.113)

Since the trial force method does not use cross coupling stiffness terms in the
stiffness matrix, the solution of stiffness equations can be distributed as expressed
in Equation (2.114) by rearranging the equations:

Kassemblyutot = F tot[
Kshaft 0

0 Ksleeve

] [
ushaft
usleeve

]
=
[
F tot,shaft
F tot,sleeve

]
(2.114)
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2.2.5 Use of constraint equations for contact modeling

Constraint equations are used for contact modeling. The contact modeling
description given here refers to static contact problems, and the solution can be
applied for eigenvalue problems. Generally, any contact can be open meaning the
contact bodies do not touch each others, or closed, when the contact bodies are
connected together. Simplification of opened and closed contacts is illustrated in
Figure 2.12, where the gap g represents the normal distance between two bodies.
Let us consider the following cases

1. Contact is opened when the normal distance between two bodies is positive

2. Contact is closed with no reaction forces, when the normal distance between
two bodies is zero

3. Contact is closed and reaction forces are required, when the normal distance
between two bodies is negative

Source body

Target body

g > 0

(a) Opened contact

Source body

Target body

g < 0

(b) Closed contact

Figure 2.12. Simplified expressions of opened and closed contacts

In case 3, the required reaction forces repair the overlapping, ideally returning it
according to case 2 and thus causing initial stress stiffening. It is also possible
to apply a constant numerical gap or overlapping between two bodies by using
non-homogeneous constraint equations.

In addition to solid element mesh, commercial software may use separate surface
elements for contact detection. Regardless of use or non-use of separate contact
elements, the contact treatment is based on employing constraint equations. In
this dissertation, the focus is on elementless contact detection and treatment
done at node points. Certain commercial FE software such as Ansys do also
use integration point-based contact detection [4]. This method can enable more
accurate contact detection since the number of detection points is increased.
Elementless contact detection denotes then non-use of separate contact elements.
Because separate contact elements are not used, contact detection is performed
on a nodal basis. This procedure is referred as node-to-node contact detection,
and for contact treatment for the use of constraint equations, source–target node
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Source body

Target body

Node-to-node source–target node pairs

us,1

us,2 us,3

us,4

ut,1 ut,2 ut,3 ut,4

∆u1

∆u2 ∆u3

∆u4

Figure 2.13. Illustration of elementless node-to-node contact detection

pairs are formed. A simplified illustration of node-to-node contact detection and
source–target node pairs between two bodies is provided in Figure 2.13.

Here, the contact details specified to rotor dynamics use are discussed. Let us
consider a shrink fitted shaft–sleeve contact. The starting point would be a clean
unmodified geometry, and the contact specific geometric modification would be
done only as numerical modifications.

• If external forces are not present, the normal distance between two bodies
must be increased to the required radial shrink fit value by applying non-
homogeneous constraints.

• If external forces are present but the normal distance between two bodies
remains smaller than the required radial shrink fit value, non-homogeneous
constraints must be applied to increase the normal distance to the required
radial shrink fit value.

• If external forces are present and the normal distance between two bodies
is greater than the required radial shrink fit value, no contact treatment is
required.

Certain meshing tools can create a mesh where nodes of the source and target
surface are overlapping, meaning the distance between source and target nodes is
zero, thus enabling node-to-node contact. If the overlapping node discretization
on the contact region of two different bodies is not achieved by the mesh generator,
other methods may be used. One method is node duplication; the contact region
between two bodies must be removed by combining these bodies into a group,
and after meshing the duplication of nodes on this boundary must be done.
Another method is to form node groups and interpolate weight coefficients for
these grouped nodes; in terms of contact force vectors, one source node is selected
and, for example, the three closest corresponding target nodes are selected and
the contact reaction force is divided for these target nodes using proper weight
coefficients. The latter method given here is not used in this dissertation.
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2.2.6 Summary on constraint equations

The master-slave method is exact, but because of the forced displacements used,
the global force vector should be evaluated and inspected for the possible presence
of extremely high amplitude force components. If this method is improperly used
for structural stress analysis, extreme hot spot stress peaks may appear in near
proximity of the constrained surface. The analyst must pay attention to these
evaluated forces and, if needed, use a different constraint method. Also, the use
of the transformation matrix with sparse matrices may cause unwanted excessive
use of the random-access memory.

The penalty function method is a good choice for the general contact problem,
because of the use of the penalty weight. This method is based on the use of
a stiffness coefficient and should reach accurate force equilibrium, though the
convergence of the solution is dependent on the penalty weight used. If too large
weight is used, the stiffness matrix may become ill-conditioned and the solution
inaccurate. The accuracy of this method is proportional to the magnitude penalty
weight used.

Use of the Lagrangian method will extend the stiffness matrix size. Although
the bordered matrix added may be sparse enough, the total number unknowns
is nevertheless increased. On the other hand, the part in the modified stiffness
matrix storing the original stiffness equations remains unchanged, thereby differing
from the master-slave or penalty function method. This method yields an accurate
solution, and the Lagrangian multiplier contains the information about the
constraint forces. Neither, the MPC and Lagrangian method, do not allow
residual penetration in the contact. Because of this, these methods may not well
suited for transient analysis, because the contact may oscillate between opened
and closed status.

The trial force method is a custom application-specific constraint method developed
for the purposes of modeling shrink-fitted joints for rotor dynamics analyses. For
this reason, the formulation is provided in the cylindrical coordinate system. This
method is unique to other constraint methods presented. The trial force method
is used typically with cylindrical constraints applied, and the actual contact
treatment is handled by manipulating the total external force vector.

The augmented Lagrangian method based on the use of Lagrangian multipliers
from the Lagrangian method and penalty weight from penalty function method.
This method is, perhaps, the most complex constraint equation method, but it
also has certain benefits. Many commercial FE software support this method.
The main reasons would be data storage and the fact that the unconstrained
stiffness matrix may be kept unmodified. In addition, contact convergence is
much easier due to the augmented part, because minor residual penetration of
the contact region is allowed. With an exact constraint method, contact can
only be either opened or closed. This can cause unwanted oscillation between
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opened and closed contact status, especially during transient structural analysis.
Stiffness coefficient based methods introduced, the penalty function, trial force
and augmented Lagrangian methods, may be used in transient analysis with
proper contact damping. These method allow residual penetration in the contact,
thus no oscillation of contact status should appear.

Different constraint methods have varying requirements for solving the stiffness
equations. When using Lagrangian based method, the system of linear equations
must be solved directly, which can be computationally more expensive [4]. The
penalty function method and trial force method, on the other hand, do not require
direct solution: the solution of the system of linear equations can be iterative, thus
computationally more effective. This is typically achieved using an iterative solver
obtaining a solution in the system of linear equations [4]. The use of an iterative
solver may, however, results in a minor error in the solution, since the solution is
obtained when the tolerance, or error margin, is passed. The trial force method
does have another beneficial feature. The penalty function method uses cross
coupling terms in the modified stiffness matrix. The trial force method does not
require these cross coupling terms: thus, by rearranging the equations, the stiffness
equations can be distributed as expressed in Equation (2.114). By doing so, the
solution for a smaller system of linear equation – for a single body, for example –
can be obtained using either a full or iterative solver routine. In addition, if so
desired, various DOF reduction methods such as the static condensation method
can be implemented, making the problem solution even more computationally
effective.

2.3 Solution methods

Solution methods for pre-stressed eigenvalue problem with contact non-linearities,
for transient thermal mechanical stress analysis and for the transient rotor
dropdown event simulation, are provided. The theory of undamped and damped
eigenvalue problems is also given. The solution routines are presented in the form
of flowcharts. The results presented in Section 3 are produced using the solution
methods introduced.

2.3.1 Undamped and damped eigenvalue problem

Undamped and damped eigenvalue problems with regard to rotor dynamics
analysis are presented. The solution routine for generating a Campbell diagram
including contact non-linearities and the stress-stiffening effect is proposed.

Undamped eigenvalue problem

The undamped eigenvalue problem is used to study structures without any
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damping, including gyroscopic damping. The equation of motion can be written
as follows

Mẍ+ Ktotx = 0 (2.115)

where Ktot contains all stiffness properties: elastic structural stiffness, possible
bearing stiffness components, possible contact stiffness description and possible
stress-stiffening description. The eigenvalue equation for undamped problem can
be written as follows [60]:

(Ktot − λiM) zi = 0 (2.116)

where zi is the eigenvector and λi is the eigenvalue of the ith eigenmode. If
matrices are not symmetrical, the eigenvalue solution yields complex eigenvalues.

Damped eigenvalue problem

The damped eigenvalue problem, also known as the quadratic eigenvalue problem,
is used to study the rotating structures for such purposes as generating a Campbell
diagram. The equation of motion can be written as follows:

Mẍ+ (Ctot + ΩG) ẋ+ Ktotx = 0 (2.117)

The following non-symmetric state space matrix A can be formed from Equa-
tion (2.117).

A =
[

0 I
−M−1Ktot −M−1 (Ctot + ΩG)

]
(2.118)

where Ktot contains all stiffness properties: elastic structural stiffness, possible
bearing stiffness components, possible contact stiffness description and possible
stress-stiffening description. Similarly, Ctot contains all damping properties:
elastic damping, possible bearing damping components and possible contact
damping description. The eigenvectors and eigenvalues are provided by solving
the eigenvalue problem [38]

Azi = λizi (2.119)

Damped eigenvalues appear in a form of complex conjugate pairs, the ith eigenvalue
pair can be written as follows:

λi = λri ± λiiiu (2.120)
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where λri and λii are the real and imaginary parts of eigenvalue i, correspondingly,
βi is the damped natural frequency of ith eigenmode and iu is the imaginary unit
iu =

√
−1. Equation (2.120) can be written as follows [38]:

λi = −ξdi ωn,i ± ωd,iiu (2.121)

where ξdi is the damping ratio, ωn,i is the undamped natural frequency and ωd,i is
the damped natural frequency of eigenmode i, correspondingly. The correlation
between the damped and undamped natural frequency can be written as follows:

ωd,i = ωn,i

√
1− ξd2

i (2.122)

Solution method for Campbell diagram

The solution routine for Campbell diagram for a rotor having multiple parts is
introduced in Figure 2.14. First, using the rotational speed Ω of the analysis
step n, the deformations due to external forces are calculated. Based on initial
deformations, proper contact treatment is performed. If contact remains fully or
partially closed, contact force vector is generated. The total deformations due to
external forces and contact forces are solved. Based on these deformations, the
stresses of the structure are calculated and the stress stiffness matrix is formulated.
Bearing coefficient matrices Kb and Cb describing the bearing stiffness and
damping, respectively, are introduced. The description of the contact stiffness
matrix Kc is given after the general solution routine description.

The undamped eigenvalue problem is solved using the total stiffness Ktot and the
mass matrix M. A subset of n lowest eigenmode vectors is solved and used to
form the modal structural matrices. The use of modal matrices is justified duo
to the significantly lower memory consumption while solving the eigenvalues of
the state space matrix. The solution of the damped eigenvalue problem yields
the damped complex conjugated pair eigenvalues, and the damped parts of the
conjugated pairs, βi, are stored and plotted with the rotational speed vector, in
order to generate the Campbell diagram.

The contact stiffness matrix Kc describes the connections on the contact region
between the source and target nodes of the contact bodies. These stiff connections
are established by applying the penalty elements between the DOFs of source and
target nodes. As illustrated in Figure 2.14, the vector of logical multipliers γ ′0 is
used to determine which source–target node pairs remain closed and are applied
with the penalty element, and which node pairs are opened and do not require
any attention.
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Rotational speed Ω
of analysis step n

Calculate external
forces F ext

Contact treatment
Information of nodal
contact status γ ′0

Generate contact
stiffness matrix Kc

Contact force
vector F c

Solution of total
displacements utot =
K−1
e,CYL (F ext + F c)

Generate stress
stiffness matrix KG

Solution of undamped
eigenvalue problem
using Ktot = Ke +

Kb + Kc + KG

Subset of n lowest
eigenmode vectors

Bearing stiffness
matrix Kb

Generate
modal matrices

Generate state
space matrix using
modal matrices, and

Ctot = Ce + Cb

Bearing damping
matrix Cb

Solution of damped
eigenvalue problem

Figure 2.14. Process diagram for generating Campbell diagram for a rotor model with
contacts

2.3.2 Coupled thermal mechanical analysis

The indirectly coupled thermal mechanical analysis routine, which can be applied
to various of applications such as electric motor rotors, is introduced here.
Indirectly coupled, also called as weakly coupled, problem is considered more
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memory-efficient than the directly coupled problem, because the systems of linear
equations for heat transfer and static structural problems are solved sequentially.
Directly coupled problem has tendency to use larger system matrices as the two
sets of linear equations, in this case, are directly coupled. The finite element
analysis (FEA) is performed in two steps: first, a transient thermal study is
carried out over the drive cycle to calculate the temperature distribution. Second,
the temperature distribution is applied as an initial thermal condition for every
simulation time step along with other mechanical loads. Figure 2.15 presents
a schematic of thermal mechanical simulation steps describing the inputs and
output.

Rotational speed Torque

Convection Losses

Transient
thermal (FEM)

Temperature
distribution

Mechanical static
structural (FEM)

Stress history

Figure 2.15. Process diagram for the thermomechanical stress analysis

In the transient thermal FEA, the temperature distribution of the rotating
machinery is calculated as a function time. In FE model, the electromagnetic
heat losses, that can be depended on torque and rotation speed, are modeled as
volumetric heat sources in corresponding bodies, such as magnets and lamination
stacks. Convective heat transfer boundaries are applied to the model as boundary
conditions describing the effect of air cooling. The convection coefficients used are
dependent on the speed differences and are thereby dependent on the rotational
speed of the rotor.

In the mechanical static structural FEA, the previously solved temperature history
is used as one of the input loads. In every simulation step, the thermal expansion
effect must be converted into expanding body force distribution in order to provide



2.3 Solution methods 67

superposition of all the mechanical forces. The conversion from temperature into
force is done as a pre-process by first calculating only the strain caused by thermal
expansion, and then the strain state is converted into the body force vector. After
this, the rest of the mechanical forces are applied, the tangential forces generated
by the torque, and the centrifugal forces from the rotational speed. Finally, all
the mechanical forces are combined to solve the total stress history.

2.3.3 Fundamentals of fatigue life calculation

A fatigue life calculation is performed using the calculated stress history calculated.
Rainflow cycle counting as well as Palmgren-Miner linear damage hypothesis
method are applied to evaluate the equivalent stress cycle ∆σeq from a complex
and non-uniform stress history. The equivalent stress is used to identify the
stress reversals and to prepare damage summation for the structure [59, 52]. The
equivalent stress cycle that would cause similar fatigue as cumulative fatigue
damage during the load cycle can be written as follows:

∆σeq =
β

√√√√√ κ∑
i=1

zci∆σβ

N
(2.123)

where κ is the number of the rainflow stress classes, zci is the number of repetitions
in class i, ∆σ is the stress variation in the class, β is the S-N curve slope, and N
is the number of stress repetitions in total. The number of rainflow stress classes
is selected independently for each stress history curve using a suitable binwidth.
A proper binwidth can be defined as suggested in Shimazaki and Shinumoto [89].
The selected binwidth takes the minimum and maximum stresses as well as stress
variation over the used stress history into account. The binwidth should also be
small enough to take the essential stress variation into consideration.

The Basquin equation for the number of applied equivalent stress fluctuations Nf

that the structure can tolerate until fatigue damage is developed, and it can be
solved from the following equation [37]:

Nf = 0.5 ∆σeq
2σ′f

)1/be
(2.124)

where σ′f is the fatigue strength coefficient and be is the Basquin exponent or the
fatigue strength exponent, which varies between -0.05 and -0.12 for most metals.
From Equation (2.124), a smaller be results in a longer fatigue life [8, 27].

2.3.4 Transient analysis of rotor dropdown event

Transient rotor dropdown event on backup bearings is studied in Neisi at al. [71],
Sikanen et al. [90] and Neisi et al. [70]. In these publications, the rotor orbits
and the contact forces on backup bearings are simulated. The backup bearing
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internal stresses and the rotor bending stresses using 1D Timoshenko beam element
approach are also studied. In Figure 2.16, a basic diagram of transient solution
for rotor dropdown event on backup bearings is presented.

Initial equilibrium
at time t = 0

Contact detection

Bearing force
equilibrium

Generating the
total force vector

Solution of
equations of motion

Numerical time
integration

Update initial
condition

Gravity force,
unbalance force

Solution history x (t)

Figure 2.16. Process diagram for the transient solution of a rotor dropdown event on
backup bearings

Time integration using a numerical integrator scheme is applied to solve the
non-linear transient rotor-bearing contact. A detailed description of contact and
bearing models are shown in [71] and [70]. Before the transient integration loop
is initiated, the equilibrium solution of the numerical model should be obtained.
During the integration loop, the system equations of motion are solved and proper
nonlinear forces – such as contact force, bearing reaction force, and other general
forces such as gravitation force and unbalance force – are taken into account. The
solution of the integrated step solution is then inserted as a new initial condition,
and a new time step is solved.
The rotor and bearing stress history can be solved separately after the main
transient problem, because the transient problem is not dependent on the stress
results. The diagram of routine for calculating the rotor and bearing stress is
given in Figure 2.17. During this post-process phase, the solved displacement
history is used to re-evaluate the equations of motion in order to recalculate the
required force components: in this case, the bearing forces. The rotor stresses, on
the other hand, can be calculated without the need to re-evaluate the equations of
motion, because the rotor stresses are dependent only on the nodal displacements
that are already solved. Because the solution of equations of motion does not
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Solution of transient
problem x(t)

Update step
solution x(ti)

Re-evaluate the
equations of motion

Retrieve bearing
forces F brg

Bearing stress
calculation

σbrg = f (F brg)

Rotor stress
calculation

σrotor = f (x (ti))

Store bearing
stress step results

Store rotor stress
step results

Figure 2.17. Process diagram for calculating the rotor and bearing stress history

require evaluation of the rotor stress calculation function, it can be omitted during
transient solution. The equations for rotor stress calculation are provided in [90],
and the equations for bearing stress calculation in [71].
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Chapter 3
Studies of rotating structures

In this chapter, transient beam element-based rotor dropdown simulation and the
results of rotor and bearing stress history are presented. The correction of beam
element-based rotor model properties using experimental modal data is presented.
3D solid element modeling is utilized for studying rotors having contacts. The
numerical results of shrink-fitted joint behavior are verified using the experimental
modal analysis results from manufactured test shafts. The results of transient
thermal mechanical stress and fatigue analysis of a rotor of a traction motor using
measured drive cycle data are presented. As introduced, all the numerical studies
in this chapter utilize measured data. A comprehensive theory of structural
and heat transfer finite element modeling introduced in Chapter 2 is utilized for
generating the results presented in this chapter, including the solution routines
and contact modeling introduced in Sections 2.3 and 2.2.5.

3.1 Rotor dropdown simulation

Rotor dropdown is an event when AMB-supported rotating machinery experiences
a failure in the AMB control system. In the worst case scenario, the magnetic
levitation field collapses and the rotor start to fall free. AMB-supported machinery
is, by default, equipped with backup bearings, which will catch the falling rotor
and prevent possible catastrophic rotor-stator contact from happening. This
secondary bearing system will support the rotor during emergency shutdown. In
this section, the rotor dropdown event on backup bearings is studied. These results
are based on [90]. Rotor models are generated using the Timoshenko beam element
approach for its good compatibility as computational speed for transient analysis
purposes. Angular acceleration dependent effects according to Equation (2.1) are
neglected. The stress state of a flexible rotor during dropdown is calculated, as
based on the previously solved displacement history. In addition, backup bearing
Hertzian stress history is calculated as a post-process by re-evaluating the system
equations of motion. Both of these stress calculation routines are provided in
Section 2.3.4.

71
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3.1.1 Dropdown simulation of an AMB-supported rotor

The schematic of the AMB-supported rotor studied is presented in Figure 3.1.
The finite element model consists of 26 beam elements. The backup bearings are
connected to nodes 2 and 25, while the axial AMB disk is located in node 4. The
dropdown event is studied by performing simulations for the first 0.5 s of the
dropdown event, and the transient data is stored at 10 µs intervals. Simulation is
performed in Matlab using a native ode15s solver with a relative error of 1× 10−4

and maximum step size of 5× 10−6 s.
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Figure 3.1. Rotor model elements and dimensions

The testing of the designed AMB system is performed in custom research code
in Matlab environment. The virtual model of the rotor is verified using the
experimental modal analysis for the rotor. The simulation model is fine-tuned
as based on the measurement results, by modifying the stiffness of the rotor
AMB laminations and other sleeve structures over the main shaft. Figure 3.2
presents the measurement setup where a scanning laser doppler vibrometer was
used. The comparison of natural frequencies of the rotor gathered by experimental
measurements and simulations is presented in Table 3.1. Only the four lowest
bending mode (BM) pairs are observed, because the modes of the lowest orders
contribute mainly in the dynamic performance; even though a total of four
rigid body modes and 16 flexible lateral bending modes are used in simulation
model. Axisymmetric description of the rotor elements is used in the rotor model.
Therefore, the frequencies of the bending modes in both lateral directions in the
model are equal. The actual system is asymmetric which can be seen from the
measured natural frequencies that have deviation between the bending mode
directions. The measured rotor is balanced in grade G2.5, as defined by ISO1940-1
standard [39]. Unbalance masses used in the simulation are assumed to be in
three locations. The first one is assumed to be on the axial disc of the axial AMB
with a value of 1.07 gmm. The second one is in the center of the rotor, with a
value of 2.78 gmm. The last is located at the connection gear with a value of
4.56 gmm.
The dropdown event of the rotor system is simulated by dropping down the
rotor to the backup bearings at the speed of 15,000 rpm. The simulation utilizes
the method introduced by Kärkkäinen et al. [51] including the Hertzian contact
model for rotor-bearing contact, and the bearing model is modified for cageless
bearings by Halminen et al. [36]. The initial condition – the rotor-bearing system
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Figure 3.2. Measurement setup for experimental modal analysis

Table 3.1. Bending frequencies of fine-tuned rotor FE model and measured physical
rotor

Mode Frequency (Hz)
Simulated Measured1)

1. bending 673.5 661 / 670
2. bending 1071 1096 / 1130
3. bending 2363 2406 / 2427
4. bending 2925 2857 / 2895
1) Measurement performed in two planes

equilibrium – is set so that the rotor center point is located in its nominal center
of the backup bearings when no misalignment is introduced. The translational
velocities are also set as zero. During radial AMB levitation, the rotor can circulate
around its nominal center of the AMB, thus having non-zero translational and
tangential velocities. Therefore, this initial condition for the dropdown event
should be taken into account, though the rotor dropdown behavior and the initial
contact forces are highly dependent on the tangential velocity of the rotor right
at the moment when the dropdown is initiated. Thus, the only simple way to set
the initial condition for the dropdown event without including the AMB system
model, is to assume the rotor lateral velocities to be zero. Some literature [9, 10]
exist in which the steady-state condition of the AMB levitated system is described
for use as an initial condition for the rotor dropdown simulation.

The air gap between the backup bearings and the rotor is 250 µm. The rotor
system uses two individual backup bearing types. The bearing in the non-drive
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end, the left end according to Figures 3.1 and 3.2, is 6014, a ceramic, deep groove,
high-precision ball bearing. In the drive end, the bearing type is 5S-7914UC, a
ceramic, deep groove, ball bearing. The properties of these bearings are shown in
Table 3.2. In addition, the friction coefficients utilized between the rotor and the
inner rings of the bearings are introduced. A total of three cases are studied. In
the first studied case, both bearings are ideally aligned. In the two other cases, the
horizontal misalignment between the bearings are 100 and 200 µm, respectively.
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Figure 3.3. Static deflection and corresponding bending stress of a shaft laying freely
on the bearings
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Figure 3.4. Orbits of the studied dropdown cases. From left to right the misalignments
are 0 µm, 100 µm and 200 µm. The red solid line is the orbit at the free, end and the
blue dashed line is the orbit on the drive side.
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Table 3.2. Backup bearing properties

Property 6014 5S-7914UC
Outer diameter (mm) 110 110
Bore diameter (mm) 70 70
Pitch diameter (mm) 90 85
Width (mm) 20 16
Ball diameter (mm) 12 11.7
Number of balls 11 11
Static load rating (N) 31.0× 103 20.9× 103

Damping coefficient (Ns/mm) 0.30 0.27
Internal clearance (mm) 15× 10−3 9.0× 10−3

Conformity ratio in 0.52 0.52
Conformity ratio out 0.52 0.52
Static friction factor 0.11
Kinetic friction factor 0.05

3.1.2 Rotor stresses during dropdown event

Figure 3.4 shows the orbits of the rotor in dropdown. The orbits of all the
studied cases are presented. As seen in Figure 3.4, the misalignment between the
bearings greatly affect the behavior of the rotor after the dropdown. With the
bearing completely aligned, the rotor bounces after the first contact, but after
that it settles relatively fast at the bottom of the backup bearing inner rings. The
misalignment of the bearings causes high oscillation behavior in the bottom of
the bearing inner rings. The orbits in misaligned cases reach to the initial drop
height in the vertical direction.
Figure 3.3 presents deflection and the bending stresses of the rotor during static
equilibrium on the backup bearings. The mass of the rotor is not distributed
evenly on the bearings at nodes 2 and 25, and the stiffness of the bearing on the
other side is lower. Therefore, the displacement of the shaft at the locations of
the bearing nodes is not equal.

Table 3.3. Comparison of maximum rotor stress components with various
misalignments during dropdown

Misalignment Stress component (MPa)
σy σz τxy τxz

0 µm 6.86 0.73 0.88 0.07
100 µm 8.78 2.25 0.75 0.19
200 µm 7.54 3.58 0.70 0.36

In Figures 3.5–3.8, the bending and shear stress behavior along the rotational axis
by varying the horizontal misalignment of backup bearings is illustrated. The
selection of the simulation results at the particular time is based on the maximum
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Figure 3.5. Rotor bending stress in Y -direction

bending stress at node 4, the axial AMB disk location, in Y -direction. Therefore,
the time when the peak stress occurs in Figures 3.5–3.8 can differ among the
misalignment cases studied. In all cases, the peak stress occurs immediately after
initial contact. All absolute maximum bending and shear stresses are presented
in Table 3.3 for comparison purposes.

3.1.3 Discussion

Rotor stresses during the dropdown event are studied. A Timoshenko beam
element-based rotor model having 26 beam elements was generated. The eigen-
frequencies of the FE model were compared against the results based on the
experimental modal analysis, performed on a physical rotor. Based on the mea-
sured results, the FE model was modified so that the lowest flexible body bending
mode eigenfrequencies of the FE model and physical rotor will match accordingly,
emphasizing the first and second bending mode frequencies. Additional FE model
tuning could include the verification of rotor mass. Also, in the case of non-trivial
geometry, such as a squirrel cage rotor part, a segmented numerical verification
becomes convenient. This means that in the beginning, only the rotor active part
is modeled using beam elements. The mass, stiffness, and polar and diametral
inertial are compared and tuned accordingly, emphasizing the desired parameters,
thus achieving the optimum solution as based on a 3D solid element model. After
this, trivial parts such as shoulders having a circular cross section can be included
in a beam model. By doing so, we have managed to achieve an equivalent beam
element model of complex 3D solid element geometry with significantly lower
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Figure 3.6. Rotor bending stress in Z-direction

computational requirements. In this studied rotor dropdown case, the rotor
geometry modeled is axisymmetric, though, as introduced, the physical rotor is
asymmetric. This asymmetry is due to the squirrel cage part of the rotor assembly.
This is clearly visible in the EMA results in Table 3.1. Including this asymmetric
effect requires the use of beam element formulated with inclusion of asymmetric
cross section of element.
The static equilibrium of the rotor-backup bearing system is presented in Figure 3.3.
The shape of the deflection and corresponding bending stress on the outer
surface of the rotor are included. The absolute maximum rotor bending stress is
approximately 1.6 MPa. This value is less that one-fifth of the maximum stress
peak recorded during the dropdown event. This finding emphasizes how significant
shifting in rotor bending stresses are, occurring after the dropdown has begun.
It can be seen that the difference of the cross section changes the stress distribution
along the length of the rotor. Naturally, by changing the cross section properties,
the stiffness of the rotor sections will change. Also, the change in diameter changes
the distance of the observed point from the centerline, which exerts a direct impact
on the stress results. Bending stresses at both ends of the rotor are zero. The
bending stresses are low, due to the stiff cross section In the mid-section, where
the active part of the electric machine is located.
The bending and shear stress behavior along the rotational axis having varied
horizontal misalignment of the backup bearings is illustrated in Figures 3.5–3.8.
By increasing the horizontal misalignment of the backup bearing, bending stress
in the Y -direction in the vertical, gravitational direction will increase, as shown



78 3 Studies of rotating structures

0 5 10 15 20 25 30

Node

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

xy
 [M

P
a]

0 m
100 m
200 m

Figure 3.7. Rotor shear stress in XY -plane

in Figure 3.5. While using the axial AMB disk node as a reference point, the
impact of increasing bearing misalignment is clearly present; though the highest
bending stresses in Figures 3.5 and 3.6 are located at the drive end, right after the
active part of the rotor. In the Z-direction horizontally, the bending stress also
increases while additional misalignment is introduced. The shear stress variation
in Figure 3.7 in XY -plane is minor, though in Figure 3.8 the stress increment
in the XZ-plane is clearly proportional to the increased misalignment. Again,
the peaks of absolute maximum shear stress are located at the drive end, directly
after the active part of the rotor.

Although the free fall height when misalignment is introduced is less than with
no misalignment and the change in potential energy is therefore less, the rotor
still seems to bounce higher than in the case of no misalignment, according to
Figure 3.4. Also, greater rocking motion is present. In Table 3.3, the maximum
bending and shear stresses are compiled for comparison purposes. The effect
of increased horizontal misalignment is visible. In addition, the time when the
maximum stress peaks are present depends on the amount of misalignment. As
discussed before, the increase in horizontal misalignment will reduce the vertical
free fall height: it is thus expectable that maximum stresses may not occur at the
same time.

The results of the rotor bending stress studies during rotor dropdown on backup
bearings will give a good general understanding about the shifting rotor stress
history during the dropdown event; though, in the physical rotor, there are also
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Figure 3.8. Rotor shear stress in XZ-plane

other stress sources present. The general stress state caused by the centrifugal force
has significantly greater amplitude than the bending stresses, due to rotor contact
on backup bearings as predicted using the beam element method. In addition,
contact between other components, especially if shrink fitted joints are used, will
yield high stress amplitudes. Thus, a physical rotor will experience significantly
greater stresses even during normal use and even greater stresses during dropdown.
When these speed and joint dependent stresses introduced are included in analysis
by using the 3D solid element approach, the stress-stiffening effect should be
taken into account. This effect can stiffen the rotor, and can have an effect on
the rotor bending amplitude during the dropdown event. Regardless, the beam
element approach for the rotor dropdown event is very useful for determining the
rotor deformations. This information is essential for rotor-stator clearance design,
especially in a case of overhung impeller.

3.2 Bearing stress simulation

An AMB-supported rotor system with backup bearing is studied in order to
investigate the backup bearing stress history. The importance of analyzing the
stresses that backup bearing experiences arises from the typical, often chaotic,
nature of the dropdown event. During dropdown of a rotor of a high-speed motor,
the bearing forces can be many times greater than during operation lower speed
operation, when the connection between the rotor and bearing inner ring has
no clearance. Because of the required operational air gap between rotor and
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bearing inner ring, the rotor is allowed to bounce freely within the air gap. These
results are based on [71]. Angular acceleration dependent effects according to
Equation (2.1) are neglected. The main dimensions of the rotor and position of
the AMBs and backup bearings are presented in Figure 3.10. Table 3.4 shows the
parameters that are used in the dropdown event simulation. The FE model of
the rotor is illustrated in Figure 3.9. The model comprises a total of 16 elements.
The AMBs are located at nodes 6 and 12, and deep groove ball bearings used
as backup bearings are located at nodes 4 and 14 in the FE model of the rotor.
The parameters of the backup bearings are presented in Table 3.5. The Hertzian
contact theory applied for the rotor-bearing contact is given in [71].

Table 3.4. Rotor data used for the bearing stress study

Simulation parameter Value
Mass of rotor 97.3 kg
Initial rotation speed of the rotor 20000 rpm
Modulus of elasticity 2.0× 1011 Pa
Material density 7801 kg/m3

Poisson’s ratio 0.3
Support mass 5 kg
Support stiffness 5× 107 N/m
Support damping 5000 Ns/m
Contact stiffness1) 1.25× 109 N/m1.11

Parameter for contact2) 0.08
Air gap 300 µm
Polar moment of inertia of rotor 0.39 kgm2

Diameter moment of inertia of rotor 2.82 kgm2

Inner diameter of sleeve 60.6 mm
Outer diameter of sleeve 80.0 mm
Unbalance mass (node 9) 6× 105 kgm at 0◦
Static contact friction coefficient1) 0.2
Dynamic contact friction coefficient1) 0.1
1) Between rotor and inner race
2) Associated with contact damping
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Figure 3.9. FE-mesh of the rotor used for bearing stress study
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The dropdown event is simulated for 1 s, and the simulation time step is 10 µs.
The equations of motion are time-integrated using Matlab ode45. The relative
error and maximum step size are equal to 1× 10−5 and 10 µs, respectively.
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Figure 3.10. Main dimensions of the rotor model used for bearing stress study

Table 3.5. 6016 deep groove ball bearing properties used for the bearing stress study

Bearing parameter Value
Bearing damping coefficient 0.25 Ns/mm
Bearing diametric clearance 15 µm
Outer diameter 125 mm
Ball diameter 19.05 mm
Pitch diameter 110 mm
Bore diameter 80 mm
Modulus of elasticity of ball 2× 1011 Pa
Modulus of elasticity of inner race 2× 1011 Pa
Poisson’s ratio of ball 0.3
Poisson’s ratio of inner race 0.3
Conformity ratio 0.52
Number of balls 10

3.2.1 Stress in a backup bearing during dropdown

In the simulation, the penetration of the ball in the inner race is calculated
from the relative displacements between the inner and outer races. Figure 3.11
illustrates the orbit of rotor during the dropdown. In this figure, the dashed line
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shows the air gap and the solid line shows the path of the rotor center point at
the bearing location during the dropdown event. After the first contact between
the rotor and bearing, the rotor bounces, after which it settles steadily on the
bottom of the inner race.
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Figure 3.11. Orbit of the rotor during the dropdown event
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Figure 3.14. Maximum Hertzian stress of each ball

Figure 3.13 shows the relative displacement of the rotor and inner race as a
function of time. The first contact of the rotor and backup bearing occurs 8.98 ms
after the dropdown is initiated. Duration of this contact is approximately 2 ms;
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after that, the rotor bounces back. The rotor contacts the inner race for the
second time at 20.5 ms. After the third contact, at 27.06 ms, the rotor and inner
race remain in continuous contact.
Figure 3.14 shows the stress history for the contact of each ball and the inner race.
The theory for calculating the Hertzian contact stress is given in [71]. The stress
history shows that the stresses are not uniformly distributed among the balls.
After the first contact, the backup bearing experiences the highest contact stress
of 2014 MPa. Then, the stresses decline and the differences in the stresses among
the balls gradually decreases as the inner ring starts to rotate. The maximum
Hertzian contact stress is experienced in the ball number 8, which was initially
situated at 252◦ (Figure 3.12).
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Figure 3.15. Distribution of load (a) and stress (b) in the backup bearing during the
first contact

Figure 3.15 depicts the distribution of the load and the stress during the first
contact of the rotor and the backup bearing. The maximum Hertzian stress
distribution in second and third contact of the rotor and inner race is depicted in
Figure 3.16.

3.2.2 Discussion

The backup bearing experiences the highest Hertzian stress directly after the
initial rotor-bearing contact during the dropdown event. The bearing stress is not
uniform during the first contact at the beginning of the simulation. The reason for
this is that only a few balls are at the loaded zone during the first rotor-bearing
contact. The loaded zone is formed by the ball under the horizontal center of the
bearing (balls 7–10 according to Figure 3.12). In addition, the deep groove ball
bearings have minor internal clearance, which contributes to the contact force
distribution between an individual ball and the rings inside the bearing.
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Figure 3.16. Maximum Hertzian stress distribution in the second (a) and third (b)
contact of the rotor with the inner race

The distribution of the load and the stress during the first rotor-bearing contact is
shown in Figure 3.15. During the first contact, the balls numbered 7–10 penetrate
the inner race as in Figure 3.12. The locations of these balls are at phase angles
216◦, 252◦, 288◦ and 324◦. The highest calculated stress is found in the contact
between ball number 8 and the inner race, where the maximum contact force
of 794 N is present, and the maximum Hertzian stress is 2014 MPa. The total
contact force between the rotor and inner race has two components during the
first contact of the rotor with the backup bearing. The vertical force component
is due to gravitational force of the rotor weight. Because of the frictional contact,
the friction force between the rotor and inner race is in the horizontal direction
acting in the opposite direction to the rotation of the rotor. Therefore, the total
contact force vector is pointing to the left towards ball number 8 (Figure 3.12).

Figure 3.16 presents the maximum Hertzian stress distribution of second and
third contact of the rotor and inner race. During the second and third contacts,
ball number 10 moved away from the loaded zone, and was no longer in contact
with the inner race. Also, the location of the balls changed due to the friction
force-induced acceleration of the inner ring. In the second contact, balls 6–9 were
at 185◦, 221◦, 257◦, and 293◦ phase angles, respectively, according to Figure 3.16a;
and ball number 8 experienced the highest stress. In the third contact, balls
6, 7, 8 and 9 moved to 191◦, 227◦, 263◦ and 299◦ phase angles, according to
Figure 3.16b; the highest stress was found in the contact between ball number 7
and the inner race. The simulation reveals that different balls were in contact with
the inner race at various times as the bearing inner ring accelerated, due to the
frictional forces induced by the rotor-bearing contact during the rotor dropdown
event. Furthermore, the stress magnitude and the location of the ball with the
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highest stress changed due to the rotation of inner ring and consequently due to
the rotation of the balls in the bearing.

3.3 Rotors with internal contacts

Studies in this section are based on the use of the 3D solid element modeling
approach for rotors having contacts. These results are based on [91]. The
experimental results of manufactured test shafts having shrink-fitted joints are
compared against the results generated using the proposed contact modeling
method given in Section 2.2.5. The accuracy the constraint equation methods
used for contact modeling between two solid bodies as well as the boundary
constraints are presented and discussed. The solution routine for generating
a Campbell diagram for a rotor having contact introduced in Section 2.3.1 is
utilized for studying a shrink-fitted conical impeller-shaft contact and its dynamic
behavior under centrifugal loads.

3.3.1 Experimental results of test shaft assembly

The test shaft assembly under investigation consists of a steel shaft and shrink-
fitted aluminum sleeve, as shown in Figure 3.17. Certain material properties of
individual components are verified by measuring mass properties and the lowest
free-free natural bending mode frequencies (shafts only). For shrink-fitted joint
testing purposes, three sets of test shaft assemblies are made with varying radial
interferences, and then measured by means of experimental modal analysis. A
scanning laser doppler vibrometer is used for modal analysis, which provides
contactless measurement and does not require sensors that would add mass on
the test pieces. The experimental results are shown in Table 3.6. Based on the
measured first free-free natural bending frequencies, the radial interference in the
shrink fit joint does not exert a significant effect on the natural frequencies of the
test assemblies.

Table 3.6. Experimental results of various radial interferences of test shaft assemblies

Radial
1. BM (Hz) 2. BM (Hz)Test shaft interference

assembly δrad (µm)
1 3.0 1105.9 3084.0
2 9.0 1108.2 3098.4
3 14 1108.6 3095.7
Average 1107.6 3092.7
Difference +0.09 % / +0.18 % /
(max/min)1) -0.15 % -0.28 %
1) Max/min value compared against the corresponding
averaged value
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Figure 3.17. Test shaft assembly during experimental modal analysis

Component level verification of certain material properties was performed before
assembling the shrink-fitted sleeves. Table 3.7 presents the material parameters
as verified and applied in the numerical studies. The density of both materials
used is verified by means of measuring the masses of all test pieces and comparing
the averaged results against known volume. The known volume is taken from the
corresponding computer-aided design (CAD) model. Manufactured bodies will
have marginally different dimensions due to the tolerances; however, the change
in volume between test pieces is considered insignificant. The same conclusion
is made while comparing the volumes of the CAD body and FE mesh. The
elastic modulus of S235 is verified by measuring the first natural bending mode
frequencies of all shaft parts. The averaged results shown in Table 3.6 are set as
a reference. The elastic modulus of S235 is found using the iteration loop in FE
software (Ansys), where the elastic modulus is updated and solved subset lowest
eigenfrequencies are stored. The elastic modulus of 6061-T6 aluminum was not
verified. The elastic modulus used for 6061-T6 is taken from the material data
sheet. Also, Poisson’s ratios are based on material data sheets for both shaft and
sleeve materials.

Table 3.7. Material parameters used with numerical studies of the test shaft assembly

Part / Density Elastic modu- Poisson’s
Material (kg/m3) lus (GPa) ratio (-)
Shaft / 78121) 2101) 0.3S235
Sleeve / 27451) 68.9 0.33Al 6061-T6
1) Verified parameter



88 3 Studies of rotating structures

3.3.2 Numerical results of test shaft assembly

Based on the measured results of manufactured test shaft assemblies, the shrink
fit interference seems to have a minor impact on the free-free natural bending
frequencies. Therefore, the case of 3 µm interference is selected for numerical
studies. The FE mesh of the test shaft assembly used in the numerical studies
is presented in Figure 3.18. The mesh generator in Ansys Mechanical is used
for generating the FE mesh. The mesh consists of 36,838 ten-node quadratic
tetrahedron elements. By using a mesh imported from Ansys, possible differences
of model discretization are avoided, and differences between the two modeling
approaches are thereby minimized. The main dimensions of the test shaft assembly
are presented in Figure 3.19. The mesh size at the contact zone is 2.5 mm.

Figure 3.18. FE mesh of test shaft assembly
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Figure 3.19. Main dimensions of test shaft assembly

The numerical results are obtained using the proposed solution routine for solving
the eigenfrequencies for a rotor having contacts and using the developed custom
trial force constraint equation method. For comparison purposes, commercial
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software Ansys Workbench 18 is used to model and solve the same rotor model.
The contact detection used in the Matlab environment is based on the method
introduced in Section 2.2.5. Only frictionless contact treatment is used in the
Matlab environment. The stress-stiffening effect is explored by studying the
system with and without its influence. Thermal effects are not included in any of
the presented studies in this subsection.
A comparison of free-free natural BM frequencies is shown in Table 3.8. An instance
of 3 µm interference is studied. In the case of the proposed solution method,
results with and without the initial stress stiffening, due to shrink fit interference,
are given. Results obtained using both the proposed method and Ansys with
frictional contact are compared against the averaged results of the measured
test shaft assemblies. The proposed method referred to here is a combination of
direct node-to-node contact detection using the developed trial force constraint
equation method for frictionless contact. Averaging of the measured results is
justified, because the effect of radial interference in the shrink fit joint does not
significantly affect the natural free-free bending frequencies of the measured test
shaft assemblies. The proposed method yields fairly accurate results; though Ansys
reference results yield greater error compared to the measured results. Since the
material properties used are the same with both modeling approaches, logically the
contact modeling is the main reason for differing results. The material properties
used in both numerical modeling environments are provided in Table 3.7.
Additionally, test shaft assembly cases two and three according to Table 3.6
are studied. The results of the free-free bending frequency are calculated with
the proposed method and Ansys. Between the different radial interferences, the
numerical results are the same when the stress-stiffening effect was excluded.
When the stress-stiffening effect was included with the proposed method, the
bending frequencies increased only by 0.02%, due to increased joint interference.

Table 3.8. Comparison of free-free bending frequencies of test shaft assembly

1. BM (Hz) / 2. BM (Hz) /
error (%) error (%)

Measured 1107.6 / 3092.7 /
(averaged) - -
Proposed method w/o 1113.4 / 3147.0 /
stress stiffening +0.52 +1.76
Proposed method with 1113.3 / 3147.0 /
stress stiffening +0.51 +1.76

Ansys 1138.3 / 3300.8 /
+2.77 +6.73

3.3.3 Discussion of verification of shrink fit joint modeling

Two sets of experimental modal analyses were made; the first measurements were
made for an individual part in order to identify the used material properties. The
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second measurements were made for assembled shrink fitted test shaft assemblies
to identify the effect of the various radial interferences used. Based on the
measurement results, low radial interferences do not significantly contribute to
the lowest natural bending frequencies of the structures studied. A minor increase
in the first bending mode frequencies was observed, according to Table 3.6. Since
the change in the first bending frequencies was, relatively, fractions of only one
percent, and the frequency increase in second bending modes is inconsistent,
these changes can be related to environment factors or the accuracy of the used
measurement device. Averaged values of the frequencies of the two lowest bending
mode are thus used for comparison with the numerical results.

All three radial interferences of the test shaft assemblies were numerically studied.
When the stress-stiffening effect was excluded, no shifting was observed in the
lowest bending mode frequencies. On the other hand, when pre-stress was included
in the eigenvalue analysis, the greatest relative change in the bending frequencies
was only 0.02%. A pre-stress condition can cause an increase in the natural
frequencies of a structure. However, with these studied test shaft assemblies, the
radial interference level is so low that no visible pre-stressed impact is visible.

3.3.4 Accuracy of contact modeling

In this section, the constraint error at the contact region achieved using the
proposed contact modeling method with the trial force constraint method is
presented. The constraint error magnitude is relevant in order to achieve converged
results. Also, the results of the constraint error at the contact region calculated
with Ansys are presented for comparison purposes. Figure 3.20 introduces the
cylindrical constraints that are used as boundary conditions for the contact
treatment with the proposed method. The displacements of the assembly according
to Figure 3.20 are constrained as follows: radial deformation is allowed while
tangential deformation is restricted. Axial rigid body movement is constrained,
but axial deformations are allowed. In Ansys, a corresponding boundary constraint
set is modeled using the native Cylindrical constraint tools.

For a reference solution for the constraint error analysis, the test shaft assembly
is selected. Rotational speed is set to be zero in order to ensure that no external
loads are present and that the contact region remains fully closed. The error
of constraint equations at the shrink fitted joint contact region is presented in
Figure 3.21. Cylindrical constraints, a set of constraints between the shaft body
and ground, are used to prevent rigid body motion during the solution of the
contact problem. The cylindrical constraint error is presented in Figure 3.22.

For comparison purposes, the multipoint constraint method, also known as the
master-slave constraint method, is utilized [102]. This particular constraint method
is very effective because it uses the master-slave relation and while removing the
slave DOF the solution turn out to be exact. The mean constraint error with
the MPC method at contact region is −7.0304× 10−20 m and the cylindrical
constraint mean error is −1.1979× 10−22 m.
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Z

Y

Figure 3.20. Cylindrical constraints applied to the test shaft assembly model: red dot
TX = 0 (in the origo), green dots TY = 0, blue dots TZ = 0

For further comparison, two sets of constraint errors at the contact region are
calculated using Ansys. In the first case, the contact formulation used is augmented
Lagrangian [103, 104]. The constraint error of this case is presented in Figure 3.23.
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Figure 3.23. Constraint error at the contact region using the augmented Lagrangian
method with Ansys

The other Ansys result set is presented in Figure 3.24. The contact formulation
used is normal Lagrangian, which is the traditional Lagrangian method.
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Figure 3.21. Constraint error at contact region using the method proposed
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Figure 3.24. Constraint error at the contact region using the normal Lagrangian method
with Ansys

3.3.5 Discussion of use of constraint equations

The proposed constraint equation method is based on the use of the contact
stiffness coefficient. Therefore, it resembles the functionality of penalty function
constraint equation method [102]. With this method, it is typical that the solution
is not exact because of the penalty weight used, which is essentially a spring
coefficient. The histogram plot of the constraint error is showing moderate
scattering, though mean error seems to be relatively small. The solution required
two iterations. The cylindrical constraint uses stiff springs that are connected
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Figure 3.22. Cylindrical constraint error at boundary region using the method proposed

from a body to the ground. For this reason, the cylindrical constraint will also
show minor constraint error.
The constraint error with the MPC method at contact region and cylindrical
constraint error are both neglectablem but non-zero due to limited numerical
accuracy. As mentioned before, the MPC method will yield an exact solution. The
solution required only one iteration. Simultaneously, the cylindrical constraint
error is negligible, since the contact forces at contact region are in balance. The
slippage in the contact area in the axial direction is considered to be negligible,
and is consequently not studied, using neither trial force nor MPC method.
The constraint error of the augmented Lagrangian method is presented in Fig-
ure 3.23. As noted, the augmented Lagrangian method is relatively focused,
though it is not very accurate. The solution required four iterations. While using
the Lagrangian method, Figure 3.24, the solution is focused and accurate. The
solution required 124 iterations. When considering the computational time for
obtaining the solution, Matlab can be significantly slower than Ansys. An exact
value for relative speed is hard to determine, since Ansys can have constraint
equation method and mesh density dependent built-in routines for sub-stepping
the solution; thus, a varying number of iterations is introduced. In addition, the
solver type used has its own effect on the number of iterations and computational
time. Although the Lagrangian method is an exact method, the mean constraint
error is significantly greater than in the case of MPC method. This is due to the
fact that the Lagrangian method does not allow penetration; thus, the contact
status may oscillate between closed or open status. The presence of this oscillation
causes a higher number of iterations, as witnessed in this case.
The results presented regarded with to the constraint error will provide some good
general understanding on how various constraint equation methods work and how
accurate they are. The simplest and most accurate method, without requiring to
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increase the number of DOFs is the MPC method. Although this method requires
a separate transformation matrix to be formulated, it can still be considered to be
one of the best constraint methods. In addition, the MPC method yields accurate
results with only one iteration. The Lagrangian method, with and without the
augmented part also requires an additional bordered stiffness matrix. The MPC
method is also available in Ansys, though it can be used only with contacts that
do remain closed, bonded and no separation; thus, it cannot be used for frictional
contact. The most accurate contact option Ansys offers with the least options
for tuning for frictional contact is normal Lagrangian; nevertheless, it requires a
large number of iterations to yield accurate results.

3.3.6 Conical impeller assembly

An assembly of a conical impeller shrink-fitted on a shaft is studied. The FE
mesh of the conical impeller assembly is presented in Figure 3.25. The mesh
consists of 24,766 ten-node quadratic tetrahedron elements. The main dimensions
of the conical impeller assembly are presented in Figure 3.26. The mesh size at
the contact zone is 5.0 mm. The conical impeller of the radial kinetic compressor
wheel is simplified and modeled without the blades. Thus, only the hub of the
impeller is included in the FE mesh. By doing so, the FE-problem size can be
reduced and the lower number of the lowest eigenmodes utilized by neglecting the
low frequency local bending modes of the impeller blades. The material properties
used in this study are presented in Table 3.9.

Figure 3.25. FE mesh of conical impeller assembly

Two simple identical bearings, essentially spring-damper elements, are located
at both ends of the shaft of the conical impeller assembly and connected to the
surfaces of the end planes of the shaft. The stiffness and damping parameters used
are presented in Table 3.10. The studied speed range is from zero to 30,000 rpm,
with an increment of 1000 rpm. The radial interference in the conical impeller-shaft
shrink fit is 50 µm.
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Figure 3.26. Main dimensions of conical impeller assembly

Table 3.9. Material parameters used in numerical studies of the conical impeller
assembly

Part / Density Elastic modu- Poisson’s
Material (kg/m3) lus (GPa) ratio (-)
Shaft / 7850 200 0.3Steel
Impeller / 2810 71.7 0.33Aluminum

Table 3.10. Bearing properties used in the conical impeller assembly

Bearing Stiffness Damping
(N/m) (N/m) (Ns/m) (Ns/m)

1 1× 108 1× 108 1× 103 1× 103

2 1× 108 1× 108 1× 103 1× 103

This particular simplified conical impeller-shaft construction is selected because
the impeller-shaft shrink-fitted joint will partially open as the centrifugal forces
increase due to the increased spin speed. Partially opened contact region is
illustrated in Figure 3.27, the deformations are amplified for visualization purposes.
The contact area will decrease, while operating rotational speed increases. This
will cause a reduction of bending stiffness in this particular assembly.
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Closed contact
region Opened contact region

Figure 3.27. Visualization of contact region partial opening between the conical impeller
and shaft

Table 3.11. First whirling mode frequencies at 30,000 rpm of the conical impeller
assembly

At 30,000 rpm
1. BW (Hz) 1. FW (Hz)

Proposed method w/o 161.1 171.1stress stiffening
Proposed method with 168.6 176.8stress stiffening
Proposed method with 165.5 173.3fixed contact
Ansys 166.4 173.9

Campbell diagram of the conical impeller assembly without the stress-stiffening
effect is presented in Figure 3.28, and the critical speeds of forward whirl (FW)
and backward whirl (BW) modes are given. The effect of partially opened
contact is present in the Campbell diagram, as the overall bending stiffness of
the assembly starts to decline at 15,000 rpm. A Campbell diagram of the conical
impeller assembly with stress-stiffening effect is presented in Figure 3.29. The
stress-stiffening effect will not yield a significant stiffening effect on the bending
modes.

For comparison purposes, the Campbell diagram of the conical impeller assembly
with fixed contact is presented in Figure 3.30. The initial interference in the
shrink fit joint is not present, and the stress-stiffening effect is neglected. Since
the contact is fixed, the effect of bending stiffness reduction due to the reduced
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Figure 3.28. Proposed method: the Campbell diagram without stress stiffening of the
conical impeller assembly

contact area, this resulting from the partially opened contact, is not present in
the Campbell diagram. The Campbell diagram generated in Ansys is presented
in Figure 3.31. Both the fixed joint results in Figure 3.29 and the Ansys results
behave very similarly without having any indication of reduced bending stiffness
due to partially opened contact between the impeller and shaft.

Table 3.12. Second whirling mode frequencies at 30,000 rpm of the conical impeller
assembly

At 30,000 rpm
2. BW (Hz) 2. FW (Hz)

Proposed method w/o 484.7 511.7stress stiffening
Proposed method with 491.4 519.9stress stiffening
Proposed method with 505.0 530.0fixed contact
Ansys 508.0 533.4
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Figure 3.29. Proposed method: the Campbell diagram with stress stiffening of the
conical impeller assembly
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Figure 3.30. Proposed method: the Campbell diagram of the conical impeller assembly
using fixed contact



3.3 Rotors with internal contacts 99

0 0.5 1 1.5 2 2.5 3
·104

0

100

200

300

400

500

600

700

1. BM 170.3 Hz

2. BM 520.9 Hz

1. FW CS 10,300 rpm
1. BW CS 10,140 rpm

Spin speed (RPM)

Fr
eq
ue
nc
y
(H

z)

Figure 3.31. Ansys Campbell diagram of the conical impeller assembly using frictional
contact

3.3.7 Effect of geometric nonlinearities to the critical speeds

With the conical impeller assembly, the first two bending modes are visible in
the Campbell diagrams (Figures 3.28–3.31). The first BW and FW critical speed
of Ansys is consistently 50 rpm greater than the ones with the method being
proposed. In addition, the results obtained using the proposed method with the
stress-stiffening effect are actually the same as the Ansys model frequencies. Since
the contact treatment is applied on every speed step while using the proposed
method, the contact opening is taken into account. The use of any particular
constraint equation method does not contribute to the contact opening: only the
external forces – in this particular case, the centrifugal force – will contribute to
the opening of contact. Constraint equations are utilized after the contact status
is solved, and used for the remaining contact area where the contact remains
closed. Due to reduction in the contact surface area owing to high-speed operation,
a dip in the mode lines in the Campbell diagrams (Figures 3.28–3.29) is present.
Only the models with frictionless contact using the proposed solution routine
experience the second BW mode in the speed range studied. The stress-stiffening
effect increases the second BW critical speed by 360 rpm.

The reason for a rather large reduction in whirl mode frequencies of the second
bending mode using frictionless contact is explicable due to the BM shapes
of the supported structure. The two lowest zero speed bending modes of the
supported conical impeller assembly are illustrated in Figure 3.32 using Paraview
visualization software. The node points of the first bending mode are at bearing
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(a) First BM of the supported conical impeller assembly at zero speed

(b) Second BM of the supported conical impeller assembly at zero speed

Figure 3.32. Lowest BMs of the supported conical impeller assembly at zero speed

locations. In the case of the second bending mode, the third node appears roughly
at the center of the structure. Because the impeller-shaft joint is located roughly
one quarter of the assembly length away from the other end, the joint is roughly
located at the position of highest amplitude of the second bending mode. In
addition, the bending deformation of the shaft is at the highest in the location of
the impeller, and the decreasing bending stiffness exerts a significant effect in this
particular mode.

The frequencies of zero speed-supported conical impeller assembly are all very
consistent. In Tables 3.11 and 3.12, the whirling mode frequencies at 30,000 rpm
are compiled. At 30,000 rpm, the first whirling mode frequencies are roughly
the same, while the proposed contact method with stress-stiffening yields the
highest frequencies. The second whirling modes solved using frictionless contact
method with the proposed solution routine are no longer comparable to the Ansys
results, due to partially opened contact; therefore, we find reduced overall bending
stiffness in the conical impeller assembly. An interesting observation is that the
Ansys model with frictional contact behaves very similarly to the model using the
proposed solution routine with fixed contact.

The partially opened contact between the conical impeller and shaft can reduce the
whirling mode frequencies. When comparing the second bending mode frequencies
the backward mode will decline 18.5 Hz on average, and the forward mode by
15.9 Hz on average. The stress-stiffening effect will increase the stiffness of shaft
and conical impeller in proximity of the contact region. Regardless, the total
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stiffness of this structure is dominated by the robustness of the conical impeller-
shaft joint. Since the contact is partially opened at 30,000 rpm, the total stiffness
of the structure is reduced even when the stress-stiffening effect is included. By
comparing the forward and backward mode frequency difference at full speed,
the gyroscopic effect will also increase due to contact opening by an average of
10.1%.

3.4 Thermal stress studies

A traction motor application is under investigation in this section. Thermal and
mechanical stress history respective to the rotor of the traction motor is calculated
using finite element software (Ansys). These results are based on [92]. The general
solution routine for coupled thermal mechanical analysis used is introduced in
Section 2.3.2. The transient thermal study done in Ansys is based on the heat
transfer theory introduced in Section 2.1.4. The solved temperature distribution is
utilized as an initial thermal expansion force vector in the structural analysis. The
thermal expansion force vector theory 3D solid element approach is formulated
in Section 2.1.2. Finally, the solved thermal mechanical stress history is used to
calculate the fatigue life of the rotating structure studied, based on the theory
suggested in Section 2.3.3.

3.4.1 Thermal stress analysis of traction motor

The thermomechanical solution routine is applied to a three-phase sixteen-pole
double-deck embedded permanent magnet traction motor. This traction motor is
originally designed for a full electric sports car Electric RaceAbout, the details of
which are found in [75]. The main dimensions of the electric machine are provided
in Table 3.13.

Table 3.13. Main parameters of the analyzed PMSM

Parameter Value
Stator tooth width 11.6 mm
Stator slot height 32.5 mm
Stator outer diameter 380 mm
Stator bore diameter 287 mm
Active stator stack length 65 mm
Active rotor stack length 68 mm
Rotor outer diameter 284.2 mm
d-axis air gap length (min) 1.4 mm
q-axis air gap length (max) 5.5 mm
Width of the upper magnet 47.9 mm
Width of the lower magnet 43.9 mm
Thickness of the upper magnet (max value) 8.5 mm
Thickness of the lower magnet 6 mm
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The structure of a single pole of the analyzed PMSM is depicted in Figure 3.33.
As presented in [75], the majority of the electric machine losses occur in the stator
windings. In order to obtain proper cooling for the stator, the cooling of the
PMSMs is carried out by combining force air cooling in the air gap region and
liquid cooling in the stator frame. Most of the Joule and stator iron losses are
removed by liquid cooling, and the rotor surface is cooled by forced air cooling.
Because of this, the machine can be regarded as the open type.

Figure 3.33. Structure of one pole of the analyzed PMSM

The input for the thermomechanical analysis consists of the torque and rotational
speed from the machine drive cycle and the corresponding thermal loads. All
the input variables are entered as a function of time. In the studied case, the
measured data from the Nürburgring Nordschleife race track according to [75]
is used as a drive cycle. The measured rotational speed, torque, voltage and
current on the rear left electric motor during one race track lap are presented in
Figure 3.34.

The thermal loads within the drive cycle – that is, the iron losses in the rotor
laminations and the eddy current losses in the permanent magnets – were calculated
by 2D FEM. The eddy current losses in the permanent magnets were calculated by
treating them as short-circuited solid conductors in the transient FEA. Rotor iron
loss calculation was performed using a loss-surface model, which was implemented
in the Flux2D software package by Cedrat. The loss calculation was performed at
1000 rpm by applying transient FEM for a whole useful torque region, from zero
to break-down torque. Temperature effects on the electromagnetic performance
were not taken into account. Because eddy current losses are proportional to
frequency squared, the losses at any measured rotational speed and torque point
can be calculated as based on the previous loss calculation performed at 1000 rpm,
using the following relation:
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Figure 3.34. Measured track data: a) rotational speed (rpm), b) torque (Nm), c) voltage
(V), and d) current (A) [75]

P (nrpm, τ) =
(

nrpm
1000rpm

)2
P (1000rpm, τ) (3.1)

where P (nrpm, τ) is the eddy current loss at a rotational speed of nrpm rpm and
a torque of τ , and P (1000rpm, τ) is the calculated eddy current loss at 1000 rpm
with τ . The rotor iron losses remain at a very low level in the studied rotational
speed range because of the synchronous operation. At the nominal point, at a
speed of 1000 rpm and torque 240 Nm, the rotor iron losses are 5.3 W and the
permanent magnet eddy current losses are 84.4 W, respectively. At 2000 rpm
and 240 Nm, the rotor iron losses 7.3 W and the permanent magnet eddy current
losses are 337.6 W. The major share of permanent magnet eddy current losses
occur in the upper magnet.
The coupled thermomechanical analysis was performed using 3D FEM in Ansys
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software. The 3D model is limited exclusively to the rotor structure because of
the computational effort required for a coupled transient thermal and mechanical
study of this size. This is justified for the following reasons. The stator losses are
removed effectively by combined forced air and liquid cooling, and thus the effect
of the stator losses to the thermal state of the rotor can be neglected. The rotor
losses are removed by convection to the air flow in the rotor-stator air gap, which
is modeled using convection boundary constraint set to the outer surfaces and the
ends of the rotor structure. Because of the relatively low rotor losses and the short
active rotor stack length, the cooling air heating in the air gap can be neglected
in order to simplify the analysis. Therefore, the ambient temperature of the
cooling air applied to simulation is constant. The model can be further reduced
by taking advantage of the axial and circular symmetry. There is a periodicity at
the edges of the rotor poles due to of the equal power loss density and identical
cooling conditions. Therefore, only one rotor pole needs to be modeled. In the
axial direction of the rotor structure, the thermal loads and cooling conditions
are identical, making it possible to simplify the model also in the axial direction.
Based on the symmetry used, the 3D model shown in Figure 3.35 comprises 1/32
of the full rotor stack.

Figure 3.35. A 3D model of the rotor of a traction motor used in thermomechanical
analysis, including utilized loads and boundary conditions

The loads and boundary conditions applied to the model are illustrated in
Figure 3.35. In the transient thermal model, the electrical losses as thermal
loads are inserted into volumes B1, B2, and B3, as volumetric heat generation
as a function of time. The convective heat transfer boundary condition from the
outer surface of the rotor to the air gap flow is inserted to surfaces marked as C1.
The convection film coefficient is dependent on the medium velocity; it is thus
dependent on the rotational speed. Similarly, the boundary condition describing
axial convection heat transfer set to surfaces marked as C2 is rotational speed
dependent. The air temperature of the air gap cooling air is set to correspond to
the ambient temperature of 22°C, and it is assumed to be constant throughout the
drive cycle. In the thermal model, magnets and rotor iron are modeled using their
thermal conductivity, specific heat, and density. Adhesive layers typically applied



3.4 Thermal stress studies 105

between the magnet and lamination are ignored in the model geometry, but the
effect of the adhesive layer is included in a form of thermal contact resistance
between contact surfaces R1 and R2. The result from the transient thermal study
is the nodal temperature distribution within the rotor structure, which is utilized
as an initial thermal strain in static structural analysis in Ansys.

In the mechanical analysis the centrifugal force due to the rotational speed is
applied to all solid bodies (B1, B2 and B3) using the measured rotational speed of
the race track. The axis of rotation in the model is located at the center point of
surface S. The contact between the permanent magnet and rotor iron is modeled
as mechanical body-to-body contacts, set to surfaces R1 and R2. In Ansys, the no
separation contact model was applied, because it allows a minor slip but, at the
same time, will ensure that the contact between magnet and the rotor iron remains
closed. This particular contact type was considered because it is known that the
contact must remain closed all the time: thus, solving the contact status can be
faster than with the frictional contact model. Circular symmetry constraints are
applied to the surfaces marked as D1 in order to prevent tangential displacement,
but at the same time it allows radial and axial displacement. Axial displacement
constraint for the axial symmetry condition is applied to axial boundary surfaces
C2.

Alongside the geometrical symmetry used, the finite element mesh is optimized
in order to minimize the computational time. In the thermal model, a coarser
mesh was acknowledged as yielding essentially the same converged results as
the denser mesh. Because of the transient nature of the study, the coarse mesh
was utilized. In the mechanical study, denser mesh is a standard requirement.
Therefore, denser mesh was utilized in the mechanical model. Additional mesh
biasing was implemented in the highest stress locations shown in Figure 3.37.

Because the biased FE mesh and circular symmetry constraints are used, the
effect of torque is modeled as a tangential force set to surface T. The axis of
axial direction in the cylindrical coordinate system used is aligned in accordance
with the same axis of rotation as in the case of centrifugal force. The material
properties used in the thermomechanical analysis are shown in Table 3.14. The
data is obtained from supplier online material.

3.4.2 Thermal stress results

Figure 3.36 shows the calculated highest temperature in the rotor model located
in the upper magnet and the measured temperature from the stator windings.
The scales of the temperatures are clearly different, because the temperature rises
up to 145°C in the windings and the rotor temperature to only 47°C.

The relative temperature increase is compared against the measurements shown
in Figure 3.36. Overview of the maximum stress areas found in the stress analysis
are located in the magnet pocket upper fillet, as seen in Figure 3.37. Besides the
combined thermal mechanical stresses, the stresses induced by individual loads
are studied. In Table 3.15, the maximum stress during the drive cycle history of
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Table 3.14. Material parameters of the rotor components

Material property Magnets Steel Adhesive
(Neorem753A) (M270-50A)

Density (kg/m3) 7600 7650 1207
Young’s modulus (MPa) 150,000 200,000 -
Poisson’s ratio 0.24 0.3 -
Yield strength (MPa) 75 470 -
Ultimate strength (MPa) 290 585 -
Specific heat (J/(kg C)) 450 460 1173
Thermal expansion (1/K) 6e−6 1.2e−5 -
Thermal conductivity (W/(m K)) 8.5 39 0.3
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Figure 3.36. Measured stator winding temperature vs. calculated rotor temperature

each loading case studied is presented, along with the corresponding design safety
factor. The safety factors are calculated against the lamination material yield
strength shown in Table 3.14.

The maximum von Mises stress caused by mechanical, thermal, and combined
loads during the studied load cycle are presented in Figure 3.38. The curves are
sketched with a black dotted line, red dashed line and blue solid line, respectively.
The mechanical stress consistently follows the rotational speed of the rotor. The
tangential forces caused by the torque play a minor role, whereas the centrifugal
force is the main contributor to the mechanical stress. During the drive cycle, the
maximum mechanical stress does not exceed 43 MPa. The maximum temperature
difference over the simulated time is presented in Figure 3.39.

For better visualization, the stress and temperature distributions in the FE model
during the load cycle are presented in Figures 3.40–3.42 at time steps 100 s, 280 s
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Figure 3.37. Rotor von Mises stress distribution: a) thermal stress only and b) centrifugal
stress only

Table 3.15. Maximum stress and safety factor in cases A–F having different load
conditions: A – centrifugal forces, B – thermal loads, C – electromagnetic torque, D –
electromagnetic radial force, E – angular acceleration, F – all loads combined

Load type A B C D E F
Max stress (MPa) 43 56 4.2 2.8 0.013 80
Safety factor 11 8.5 110 170 36,000 5.9

and 500 s. The contour limits for both temperature and the von Mises stress
figures are selected in a way that makes the comparison of results easy. As time
increases, the temperature growth is clearly visible; though the growth in stress is
not that visible due to the local peak stress located in the upper magnet pocket
fillet and the generally low stress level.

When considering the behavior of separate mechanical and the thermal stresses,
it can be seen that the loading condition of the motors increases the level of both
stress types. However, this is not the whole truth if the stresses are observed
separately and the total stress level is considered by adding these stress components
together using the superposition principle. In general, as shown in Figure 3.38,
the thermal stresses increase the base level of the combined stresses. The stress
variation in the combined stress curve is caused by the mechanical stresses. When
comparing the fluctuation of the mechanical stress and combined stress curves,
it is shown that, during the drive cycle, the mechanical stresses experience more
drastic changes. The residual thermal stresses clearly elevate the combined stress
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Figure 3.38. Von Mises stress history in magnet pocket upper fillet with different
loading conditions: pure mechanical load, pure thermal load and combined load

peaks. Thermal and mechanical stresses have different dominating multiaxial
stress components. For this reason, within a certain period over the stress history,
these stresses combined are actually less than the thermal stresses alone.

According to Figure 3.37, the critical area where the maximum stress occurs is
the uppermost corner. Using Equations (2.123) and (2.124) the equivalent stress
∆σeq and the number of cycles Nf are calculated and shown in Table 3.16. A
comparison between the equivalent stresses σeq calculated for the fatigue study
and maximum von Mises stresses in the drive cycle σmax caused by mechanical,
thermal and combined loads is illustrated in Figure 3.43. Based on the published
fatigue test results for a similar rotor laminate material in [31], the following
fatigue strength coefficient, fatigue strength exponent and S-N curve slope for the
machine cut edges are adopted in this study: σ′f = 673.25 MPa, be = -0.09559
and β = 3.

Table 3.16. Fatigue analysis results of three different load conditions

Stress type Mechanical Thermal Combined
∆σeq (MPa) 100 76.4 256
Nf (1× 106 cycles) 3.2× 105 5.5× 106 17

3.4.3 Discussion

The calculated highest temperature point in the rotor model located in the upper
magnet as well as the measured temperature from the stator windings are shown
in Figure 3.36. The trends of the curves can be compared with each other, even
though the temperatures are obtained from different locations. The calculated
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Figure 3.39. The maximum temperature difference of the FE model during the
simulation

(a) Temperature distribution at 100 s (b) Stress distribution at 100 s

Figure 3.40. Rotor temperature and stress distribution at 100 s

temperature increases rapidly between 70 and 100 s. The temperature in the rotor
model increases more slowly than in the windings after 100 s. After the time point
of 240 s, the rotor temperature starts to increase faster than the temperature in
the windings. At the time point 280 s, the rate of temperature increase becomes
slower again, until the final rapid increase directly before the end of the cycle.

The relative temperature increase is compared against the measured temperature
data in Figure 3.36. Based on the comparison, the faster temperature increase
in the rotor is related to driving at full throttle, which can be obtained from the
rotational speed curve in Figure 3.34. Based on this finding, the temperature
increase in the rotor lamination is highly dependent on the loading of the motor.
The windings are indirectly cooled by liquid cooling. Because of this, the
temperature change in the windings is steadier along the drive cycle than in
the rotor. Based on the general trend of constantly increasing temperature from
beginning till the end of the drive cycle, it appears that the motor has not
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(a) Temperature distribution at 280 s (b) Stress distribution at 280 s

Figure 3.41. Rotor temperature and stress distribution at 280 s

(a) Temperature distribution at 500 s (b) Stress distribution at 500 s

Figure 3.42. Rotor temperature and stress distribution at 500 s

yet achieved the steady state condition. Due to the short single drive cycle,
multiple repeated drive cycles may be required in order to achieve roughly the
thermal steady state condition; though performing a single drive cycle with full
performance of the vehicle consumes most of the energy storage capacity and thus
performing multiple drive cycles repeatedly is not possible. For this reason, the
temperature curves start from the ambient temperature, and this single drive
cycle data is justified for use in fatigue analysis.

A general overview of the maximum stress areas found in the stress analysis is
presented in Figure 3.37. The highest stress concentration is found in the magnet
pocket upper fillet. Furthermore, the magnetic flux is denser around the air
barriers in the magnet housing of the lamination bod; thus, more eddy currents
are induced in regions where the high levels of stress are found in the structure [67].
This stress parallax emphasizes the importance of including the thermal effects
in structural analysis. The equivalent stress is calculated in order to observe the
stress fluctuation.

In Table 3.15, the stress proportions of the different load types are compiled.
The stress results are calculated using the full drive cycle data as the basis
and applying one particular load component at a time. The dominating force
components are mechanical and thermal forces, as expected. In this traction
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Figure 3.43. Comparison of the stress levels caused by different load conditions

motor case, the mechanical design is very conservative and the highest stress
caused by centrifugal force is unexpectedly low for a traction motor application
– only 43 MPa. When evaluating the magnitudes of different force types, the
electromagnetic forces clearly have a minor role. In addition, the stress caused by
angular acceleration is remarkably low, and in comparison to other loads, it is
negligible. In Table 3.15, the safety factors against the lamination material yield
strength of 470 MPa are calculated, which is shown in Table 3.14. The safety
factor of angular acceleration becomes excessive because of the extremely low
level stress caused by this particular load. The combined thermomechanical stress
is obviously greatest. Because of the appearance of different multiaxial stress
components – mainly due to mechanical and thermal loads – the evaluated von
Mises stress is lower than the sum of the individual stress components.

In general, the thermal stresses presented in Figure 3.36 follow the temperature
curve. Because of the temperature gradient along the structure, thermal stresses
appear. Losses of magnets increase when the load of the motors is increased, which
causes a higher temperature gradient. The thermal stresses increase faster during
the time spans when the structure experiences a faster temperature increase
(70–100, 240–280 and 475–500 s). Temperature increase becomes steadier at
higher temperatures. This is because the structure heats up more uniformly,
which results in a lower temperature gradient and minor increase in the thermal
stress levels.

The maximum temperature difference over the simulated time is pretested as
showns in Figure 3.39. The maximum temperature increases fast during these
previously discussed time spans 70–100, 240–280 and 475–500 s. During these
time spans the maximum temperature difference is also increasing rapidly, and
the heat generation inside the structure is fast; though the heat conduction to
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the outer surface of the structure occurs more slowly. Therefore, when losses are
increased quickly, the temperature difference rises.

Both the thermal stress alone and the combined stress are basically constantly
increasing, according to Figure 3.38. Even so, Figure 3.39 shows that the
temperature difference at time step 450 s is actually as low as it was at 100 s.
This can be explained by slow distribution of the heat in solid bodies due to
transient heat conduction. The heat energy is constantly flowing to the structure
due to electrical losses. After some time, the difference between the minimum and
maximum temperature of the structure will decline, due to heat conduction. In
addition, the forced air cooling in the rotor airgap becomes more efficient when
the surface temperature is increased.

The equivalent stresses σeq and maximum stresses in the drive cycle σmax caused
by mechanical, thermal, and combined loads calculated for the fatigue study are
illustrated in Figure 3.43 for comparison purposes. The mechanical stresses were
calculated using the centrifugal force and electromagnetic torque as loads in the
FE model, whereas the thermal stresses were calculated using only the initial
thermal strain condition as the input load. The combined stresses were calculated
using all the aforementioned loads in the same model. When the maximum stress
peaks are observed according to Figure 3.43, the thermal stresses are higher than
the mechanical stresses. The thermal stress levels are lower than the equivalent
stress levels of the mechanical stresses because the fluctuation of mechanical
stresses is much more aggressive, due to the rapidly and constantly changing
rotational speed. The results show a considerably high equivalent stress level,
when the rapidly changing mechanical stresses and relatively high though slowly
changing thermal stresses are combined. Based on these results, it is important
to take both the mechanical and thermal loads into account. In addition, the
lifetime calculation becomes important, when the loads are highly cyclic and
loading conditions are constantly changing.



Chapter 4
Conclusions

Comprehensive theory of both 3D solid element based structural and heat transfer
finite element modeling is given, with a number of solution routines for various
analyses of rotating structures. This work contains an extensive set of results of
rotating structures made using both the beam and 3D solid element-based finite
element methods. The beam element approach is utilized to study the rotor and
bearing stress history during the rotor dropdown event. The 3D solid element
approach is used for studying rotors having multiple parts, thus having contacts,
and the contact-based nonlinear behavior under centrifugal load. In addition,
thermal mechanical stress history of a rotor in the traction motor and the fatigue
life results are presented and discussed in detail. Custom programmed 3D solid
finite elements and solution routines, including a proposed contact detection and
constraint equation methods in the 3D domain, are utilized in order to generate
the presented results. In addition, commercial finite element software Ansys is
used for coupled thermal mechanical stress study. Experimental results are used
as basis for all the numerical studies of rotating structures presented.

4.1 Summary of solution methods

Multiple solution methods developed for studying various rotating machinery
aspect are presented and utilized. A discussion of benefits and limitations of
different constraint equation methods is presented. The custom, application
specific, developed trial force constraint method is presented and tested extensively.
In addition, the constraint error aspects are studied and discussed using this custom
develop trial force method against the augmented Lagrangian method commonly
used in commercial FE software. For proof, an exact method, multipoint constraint
method, is applied and benefits and limitations of using this particular method
are discussed.
Aspects of obtaining the solution are also discussed. Constraint equation methods
that do not require the cross coupling description in the stiffness matrix can
be distributed and solved separately. This becomes handy if the problem size
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exceeds the computational memory limitations. When utilizing the 3D solid finite
element approach, the use of DOF reduction methods may become necessary.
Thus, the 3D solid element based models can be reduced by applying, for example,
the modal reduction method, which is commonly used also with beam elements.
This method is relatively easy to use and very practical for transient and modal
problems. Although, this method can typically yield error, if it is applied for
solving contact problems, or in general static structural problems. For static
problems, a static condensation, also known as Guyan reduction, can be applied.

4.2 Rotor dropdown studies

The sudden contact of active magnetic bearings supported rotor during dropdown
event was studied. The study introduces the rotor stress behavior during dropdown
and the effect of backup bearing misalignment to the rotor dropdown behavior.
The backup bearing alignment is a relevant issue for designing the rotor-bearing
system. The rotor transient response was studied using the finite element method
and the problem was simplified by using modal reduction method for computational
reasons. The first moments after the beginning of the dropdown event is typically
the most chaotic, thus it was considered that simulation time of 0.5 seconds is
long enough to reveal the dynamic performance of the rotor. The measurement
results of the experimental modal analysis performed to physical rotor were used
for fine-tuning the rotor FE model. Three different horizontal alignment cases
were studied. The results observed were the orbits of during rotor-bearing contact
and the bending and shear stresses of the rotor during the dropdown event.
Based on the rotor orbit and stress results the backup bearing misalignment has
a great effect on the dynamic behavior of the rotor. When no misalignment was
introduced, the rotor orbits are smooth and the rotor settles in a short period on
the bottom of the bearing inner ring. Rotor oscillation increases as introduced
bearing misalignment increases. Even when the maximum bearing misalignment
was introduced the rotor did not get into the whirling motion.
The introduced bearing misalignment has an impact the rotor bending stress
results. When additional misalignment is introduced, the rotor stresses are
increasing in the gravitational direction. The misalignment of backup bearings
in horizontal direction yields also proportionally increased bending stress in
corresponding direction. In general, the increase of shear stress in direction
normal to gravitational force is nominal, although the impact is more observable
in horizontal direction (in perpendicular direction to gravitational force).
This study shows that the backup bearing misalignment has a great effect on
the dynamic behavior and the rotor motions after a dropdown. The rotor orbits
indicate that critical whirling of the rotor could occur if the contacting surfaces are
contaminated or otherwise are having some roughness that can induce a greater
contact friction, or the damping properties designed properly. The direction of
misalignment with respect to the direction of misalignment could be studied in
the future. In addition, the behavior of physical rotor during dropdown event
should be measured using the position sensors.
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4.3 Bearing stress studies

The stresses in a backup bearing during dropdown of an AMB-supported rotor
were modeled using a numerical simulation. In this study, the system investigated
compromised of a flexible rotor, two AMBs and backup bearings. The deep
groove ball bearing were modeled as backup bearings using a simplified ball
bearing model. The flexible rotor was modeled using Timoshenko finite beam
elements. The Hertzian contact stresses in the backup bearing were evaluated
in this study. The contact stresses in the backup bearing are influenced by the
material properties used in backup bearing as well as the dynamic behavior of
rotor. The stress history of the backup bearing based on the transient force
equilibrium was calculated. The results showed that the normal contact forces
inside the bearing are not evenly distributed among all the balls of the backup
bearing. During the first contact, the balls that are initially located in the loaded
zone of the backup bearing experience higher stress. The stress experienced by
individual ball in the loaded zone is dependent on the ball position, which will
change during the rotor dropdown by means of the friction forces induced by
rotor-bearing contact.

4.4 Summary of internal contact studies

A custom internal contact model is developed and utilized for studying contact
behavior at high-speed operation. The results are presented and compared to the
results generated by using commercial software (Ansys). In addition, the inclusion
of the stress-stiffening effect is also studied extensively. Two example cases are
studied; an experimentally verified test shaft assembly with shrink fit interference
joint and a conical impeller assembly. With the test shaft assembly, a number of
different radial interferences were studied and compared to the measured data.
Based on the results, it was noticed that the amount of radial interference in the
shrink-fitted joint will not in fact change the free-free natural bending frequencies
of the assembly noticeably when the initial stress state is relatively low.
The partial contact opening with the conical impeller assembly was studied and
detected using a custom frictionless contact model. The same conditions were
studied also using Ansys software for comparison purposes. The custom developed
contact model will update the contact status on every speed step. The results
generated using this custom contact detection model differ moderately from the
ones solved using Ansys. It seems the contact status is not updated in Ansys
by default during the regular solution of damped eigenvalue problem, when the
rotational speed is used as a variable for a step solution for generating Campbell
diagram. Based on the presented results, the stress-stiffening effect should be
included into eigenvalue calculation particularly in cases, where relatively heavy
bodies attached on the shaft using interference fittings are rotating at high-speeds.
In addition, the contact region constraint error was studied in detail. Two
comparison cases with both custom code and Ansys were studied. The MPC
method with frictionless contact was determined to be more accurate than the
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developed trial force method that is based on used stiffness coefficients having
similarities to penalty function method. On Ansys side, normal Lagrangian
method was determined to be more accurate than the augmented Lagrangian
method in this particular test case. Ansys seems to use a significantly higher
number of iterations when solving contact problems, compared to the custom
code method.

4.5 Thermal stress studies

A solution method for calculating the combined thermal mechanical stress using
loading history and fatigue life analysis of a traction motor is presented. A finite
element method was utilized to solve coupled field thermal and mechanical problem
using commercial FE software. Based on the results, a significant change between
mechanical and combined thermomechanical stress levels was observed. In addition,
the predicted fatigue life is highly dependent on whether the thermal loads are
taken into account or not. The total stress levels of the studied traction motor
were acceptable due to the conservative approach adopted in the design process,
even when the thermal effects were included. By sacrificing the electromagnetic
performance, the mechanical durability of the rotor can be increased. Based on the
results presented, a comprehensive thermomechanical stress analysis is essential
for optimal design. The results were obtained by utilizing the thermomechanical
coupled field solution routine presented in this work. This solution routine could
be extended for a electro–thermomechanical coupled problem of interior PMSMs.

4.6 Future work

Writing this dissertation has raised multiple interesting future research topics.
Starting from beam element modeling, the modeling of the AMB levitation and the
rotor translational inertial state due to this levitation while the rotor dropdown
is initiated should be studied, and the effect of this initial condition – the AMB
levitation – should be investigated.

The inclusion of the flexible frame structure of the electric motor and the stiffness
and damping of the foundation to eigenvalue analysis could yield more realistic
results. In the rotor-frame system, the mass of the frame contributes to the rotor
eigenfrequencies and vice versa. Transient simulation should be implemented
for including possible contact-induced nonlinearities, such as directional depen-
dent stiffness and damping in bolt-jointed frame leg-foundation connections, for
example.

The proposed direct node-to-node contact modeling method developed for eigen-
value problems of 3D solid element modeled rotors would need to be updated to
include the frictional contact forces and contact slippage detection for transient
simulation needs. In addition, the thermal expansion-induced geometric changes
would require an extension from node-to-node contact detection to node-to-node
group detection, in order to properly include geometric changes and contact
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slippage. The thermal expansion forces could be included in an analysis of
high-speed gas turbine components using proposed node-to-node group contact
detection. In addition, the fatigue life of the components of high-speed gas turbine
could be studied. Inclusion of thermal effects with the proposed solution routine
for the Campbell diagram for a rotor having multiple parts would require a model
update during the process. As temperature changes, thermally non-linear material
properties such as the thermal expansion coefficient, elastic modulus, thermal
conductivity and specific heat coefficient should be updated. Because of this, a
model update routine should be developed.

Investigation of various DOF reduction methods could be useful for 3D solid
element based rotor dynamics simulations. For transient or eigenvalue problems,
the use of dynamically condensed superelements could be useful, since this method
can be applied for rotors having contacts, the contact treatment can be done
efficiently, and there is no need for coordinate mapping – unlike using modal
reduction, since the master DOFs selected are described using physical coordinates.
In addition, superelements can be utilized for transient beam element based rotor-
bearing contact problems.
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Appendix A
Constructing element shape functions

In this appendix, a general description of forming isoparametric element shape
functions, is given. The selection of monomials used for a particular element
will determine the basic behavior of the element. A good selection of monomials
will guarantee correct and chronologically increasing eigenmodes for the element.
Monomials should be selected in chronological order. The number of monomials
selected and the highest order of monomials will increase the number of eigenmodes
of the element. Due to the fact the moment matrix P is a square matrix, the
number of monomials is equal to the number of nodes in the element. Therefore,
the greater the number of nodes is in the element, the greater the number of
possible eigenmodes [60].

Even though the topic is on isoparametric element shape functions, for convenience,
the physical coordinates are used to express individual monomials. The vector of
monomials in three dimensional domain using physical coordinates can be written
as follows:

pT (x) =
[
1 x y z xy yz zx x2 y2 z2 · · · xp yp zp

]
(A.1)

Figures A.1 and A.2 visualize how to generate the monomials in two and three
dimensional cases. The moment matrix is formed by placing node coordinates
into the monomial vector of corresponding node as follows:

P =


pT (x1)
pT (x2)

...
pT (xn)

 (A.2)

By placing the node coordinates into moment matrix we get

129



130 A Constructing element shape functions

Figure A.1. Pascal triangle for two-dimensional monomials [60]

P =


1 x1 y1 z1 x1y1 y1z1 z1x1 x2

1 y2
1 z2

1 · · ·
1 x2 y2 z2 x2y2 y2z2 z2x2 x2

2 y2
2 z2

2 · · ·
...

1 xn yn zn xnyn ynzn znxn x2
n y2

n z2
n · · ·

 (A.3)

The vector of shape functions can be written as follows:

N (x) = pT (x) P−1 = [N1 (x) N2 (x) · · · Nn (x)] (A.4)

In Equation (A.4) it is assumed that the inverse of the moment matrix exists.
The inverse of the moment matrix is dependent on the monomials used and nodal
distribution of the element. The use of moment matrix and Equation (A.4) for
constructing shape functions for isoparametric elements is very suitable since
the element shape is ideal and natural coordinates have values only in range
[-1, 1]. The shape functions will have to fulfill certain requirements: two main
requirements are presented herein. If the constant monomial is included, the sum
of shape functions must form unity as follows[60]:

n∑
i=1

Ni (x) = 1 (A.5)

The delta function property verifies the functionality of individual shape functions
as follows:

Ni (xj) = 1, if i = j

Ni (xj) = 0, if i 6= j
(A.6)
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Figure A.2. Pascal pyramid for three-dimensional monomials [60]

The delta function property indicates that the shape function Ni should be unity
at home nodes xi and zero at remote node xj . It is possible to construct the
shape function using the delta function property. [60]
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Appendix B
Common isoparametric elements

Common isoparametric 2D and 3D elements are introduced in this appendix. The
fundamentals of isoparametric elements are presented. The element monomials
and corresponding shape functions are introduced with detailed illustrations of
element shape and node order. In addition, element dependent integrals are
given. Isoparametric elements are well suited for numerical integration. Other
possible formulations are the use of physical coordinates for quadrilaterals and
hexahedrons or use of area coordinates calculated from physical coordinates, for
triangles and tetrahedrons.

Isoparametric coordinate mapping

With isoparametric elements, the physical coordinates, and thus the physical
shape of the element, is mapped into natural coordinates, where the element shape
is always ideal [60]. In figure B.1 are illustrated the shape of the same element in
physical and natural coordinate systems.

Y

Z

X

(a) In physical coordinate system

η

ζ

ξ

(b) In natural coordinate system

Figure B.1. Same linear hexahedron element described using two different coordinate
systems

Displacement expressions can be written as follows:
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x =
n∑
j=1

Ni (ξ, η, ζ)xj

y =
n∑
j=1

Ni (ξ, η, ζ) yj

z =
n∑
j=1

Ni (ξ, η, ζ) zj

(B.1)

where xj , yj and zj are physical coordinates of node j, n is the number of
shape functions and ξ, η and ζ are natural coordinates used for isoparametric
expression [60].

Partial derivatives of physical coordinates, that are needed for generating the
strain matrix B, for isoparametric element shape functions cannot be directly
calculated. Therefore, the Jacobian matrix is used to express the physical
coordinate derivatives, based on the partial derivatives of natural coordinates, as
follows:

J =


∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

 (B.2)


∂Ni
∂x

∂Ni
∂y

∂Ni
∂z

 = J−1


∂Ni
∂ξ

∂Ni
∂η

∂Ni
∂ζ

 (B.3)

The element volume can be calculated by integrating the Jacobian as follows [46]:

V =
∫ 1

−1

∫ 1

−1

∫ 1

−1
Jdξdηdζ (B.4)

Quadratic hexahedron

Monomials used

1, ξ, η, ζ, ξη, ηζ, ξζ, ξ2, η2, ζ2, ξηζ,

ξη2, ξζ2, ξ2η, ηζ2, ξ2ζ, η2ζ, ξ2ηζ, ξη2ζ, ξηζ2

Figure B.2 describes the 20-node hexahedron element node order. The shape
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Figure B.2. 20-node hexahedron element described using natural coordinates

functions of an isoparametric 20-node quadratic hexahedron element are given in
Equation (B.5) for corner nodes, and in Equation (B.6) for midside nodes.

Nl = 1
8(1 + ξlξ)(1 + ηlη)(1 + ζlζ)(ξlξ + ηlη + ζlζ − 2), l = 1, · · · , 8 (B.5)

Nl = 1
4(1− ξ2)(1 + ηlη)(1 + ζlζ), l = 9, 11, 13, 15

Nl = 1
4(1− η2)(1 + ξlξ)(1 + ζlζ), l = 10, 12, 14, 16

Nl = 1
4(1− ζ2)(1 + ξlξ)(1 + ηlη), l = 17, · · · , 20

(B.6)

The integration scheme for the isoparametric hexahedron element family (linear,
quadratic, cubic, quartic) can be written as follows:

I =
∫ 1

−1

∫ 1

−1

∫ 1

−1
f(ξ, η, ζ) det Jdξdηdζ (B.7)

Quadratic tetrahedron

Monomials used

1, ξ, η, ζ, ξη, ηζ, ξζ, ξ2, η2, ζ2

10-node tetrahedron element shape functions are
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Figure B.3. 10-node tetrahedron element described using the natural coordinates

N1 = (ξ + η + ζ − 1)(2ξ + 2η + 2ζ − 1)
N2 = ξ(2ξ − 1)
N3 = η(2η − 1)
N4 = ζ(2ζ − 1)
N5 = 4ξ(1− ξ − η − ζ)
N6 = 4ηξ
N7 = 4η(1− ξ − η − ζ)
N8 = 4ζ(1− ξ − η − ζ)
N9 = 4ξζ
N10 = 4ηζ

(B.8)

The integration scheme for the isoparametric tetrahedron element family, using
natural coordinates, can be written as follows:

I =
∫ 1

0

∫ 1

0

∫ 1

0
f(ξ, η, ζ)1

6 det Jdξdηdζ (B.9)

Isoparametric 8-node plane quadrilateral element
Monomials used

1, ξ, η, ξη, ξ2, η2 ξ2η ξη2

Isoparametric 8-node quadrilateral element is introduced in Figure B.4.
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Figure B.4. Quadratic quadrilateral element presented using natural coordinates

8-node quadrilateral element shape functions are

N1 = 1
4(1− ξ)(1− η)(−ξ − η − 1)

N2 = 1
4(1 + ξ)(1− η)(ξ − η − 1)

N3 = 1
4(1 + ξ)(1 + η)(ξ + η − 1)

N4 = 1
4(1− ξ)(1 + η)(−ξ + η − 1)

N5 = 1
2(1− ξ2)(1− η)

N6 = 1
2(1 + ξ)(1− η2)

N7 = 1
2(1− ξ2)(1 + η)

N8 = 1
2(1− ξ)(1− η2)

(B.10)

The integration scheme for the isoparametric quadrilateral element family can be
written as follows:

I =
∫ 1

−1

∫ 1

−1
f(ξ, η) det Jdξdη (B.11)

Isoparametric 6-node plane triangle element

Monomials used

1, ξ, η, ξη, ξ2, η2
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The natural coordinates of isoparametric quadratic triangle element are illustrated
in Figure B.5.

ξ

η

1 2

3

4

56

X

Y

Figure B.5. Isoparametric quadratic triangle

6-node quadratic triangle element shape functions are

N1 = (ξ + η − 1)(2ξ + 2η − 1)
N2 = ξ(2ξ − 1)
N3 = η(2η − 1)
N4 = 4ξ(1− ξ − η)
N5 = 4ηξ
N6 = 4η(1− ξ − η)

(B.12)

The integration scheme for the isoparametric triangular element family, using
natural coordinates, can be written as follows

I =
∫ 1

0

∫ 1

0
f(ξ, η)1

2 det Jdξdη (B.13)



Appendix C
Numerical integration

In this appendix, numerical integration schemes and integration points are given for
four quadratic isoparametric elements; 3D solid hexahedron, 3D solid tetrahedron,
2D triangle and 2D quadrilateral. In the end, a table of numerical integration
points of various rotor dynamics related element matrices and force vectors is
compiled. Only full integration schemes are presented here. Various reduced
integration schemes are given in [4], and a discussion of benefits and applications
for reduced integration is provided in Cook [20].

Gaussian quadrature

Gaussian quadrature is a commonly used numerical integration scheme for definite
integrals. In order to use Gauss integration, the interval [a, b] of the integral must
be changed [−1, 1] as follows:

∫ b

a
f (x) dx = b− a

2

∫ 1

−1
f

(
b− a

2 x+ a+ b

2

)
dx (C.1)

The use of n Gauss integral points provides an exact result for the polynomial
integrand of order up to 2n − 1 [60]. The first three Gauss integral points are
presented in Table C.1.

Table C.1. The three first Gaussian quadrature integration points and coefficients [60]

n xi Wi

1 0 2
2 ±

√
1
3 1

3 0 8
9

±
√

3
5

5
9

139
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When applying Gaussian quadrature to isoparametric finite element expression,
the integration interval is [−1, 1] by default, and when a sufficient number of
Gauss points are used, Equation (C.1) can be written as follows:

∫ 1

−1
f (x) dx =

n∑
i=1

Wif (xi) (C.2)

where n is the number of used Gauss integration points, and Wi and xi are the
weight coefficient and the value of the ith Gauss integration point.

Hexahedron elements

Hexahedron elements can be numerically integrated using the Gaussian quadrature
rule, as follows:

I =
n∑
k=1

m∑
j=1

l∑
i=1

WkWjWif (ξi, ηj , ζk) (C.3)

Other integration rules also exist such as the 14-point rule introduced in [4].

Tetrahedron elements

For 10-node quadratic tetrahedron elements, the 4-point tetrahedron integration
rule can be written as follows:

I =
4∑
i=1

Wif (ξi, ηi, ζi) (C.4)

The 4-point tetrahedron integration rule coefficients are presented in Table C.2.
Other tetrahedron rules exists depending on the number of element nodes.
According to [4], the quadrature rule is possible for use for triangle and tetrahedron
elements when using a special integration point distribution.

Table C.2. Isoparametric tetrahedron element 4-point integration points and
coefficients [4]

i ξi ηi ζi Wi

1 0.138196601125010 0.138196601125010 0.138196601125010 0.25
2 0.585410196624968 0.138196601125010 0.138196601125010 0.25
3 0.138196601125010 0.585410196624968 0.138196601125010 0.25
4 0.138196601125010 0.138196601125010 0.585410196624968 0.25
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Quadrilateral elements

Quadrilateral elements can be numerically integrated using the Gaussian quadrature
rule, as follows:

I =
m∑
j=1

l∑
i=1

WjWif (ξi, ηj) (C.5)

For visualization, the 3×3 two-dimensional Gaussian quadrature integration point
locations are presented in Figure C.1.

ξ

η

1 2

34

5

6

7

8

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

1 5 2

8 9 6
4 7 3 Node point

◦Integration point

Figure C.1. The 3× 3 Gaussian quadrature point locations

Triangle elements

For the 6-node triangle element, the 3-point triangle integration rule can be
written as follows:

∫ 1

0

∫ 1

0
f (ξ, η) =

3∑
i=1

Wif (ξi, ηi) (C.6)

The 3 point triangle integration rule coefficients are given in Table C.3, and the
points are visualized in Figure C.2.

Table C.3. Isoparametric triangle element 3-point integration points and
coefficients [2, 4]

i 1 2 3
ξi 1/6 2/3 1/6
ηi 1/6 1/6 2/3
wi 1/3 1/3 1/3
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Figure C.2. Isoparametric quadratic triangle integration points

Integration points for various element matrices

In Tables C.4 and C.5, the recommended integration points for 3D solid element
matrices and corresponding force vectors are compiled. The matrices are grouped
as based on the formulation; matrices using shape function matrix N, such as
mass matrix, require a greater number of integration points, whereas matrices
using strain matrix B or its variant – such as the stiffness matrix – may a require
lower number of integration points. Correspondingly, the force vectors are grouped
as based on their formulation; vectors using shape function matrix N, such as
body force vector F e

b, vectors using strain matrix B, or its variant – such as body
force vector F e

∆T and surface force vectors using shape function matrix N, such
as surface force vector F e

s.

Table C.4. Recommended integration points for various elements matrices [4]

Matrix 20-node hexahedron 10-node tetrahedron
Me, Ge 3× 3× 3 4
Ke
e, Ke

G 2× 2× 2 4

Table C.5. Recommended integration points for various elements force vectors [4]

Vector 20-node hexahedron 10-node tetrahedron
F e
b, F e

Ω, F e
g 3× 3× 3 4

F e
∆T 2× 2× 2 4

F e
s, F e

p 3× 3 6
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