

Lappeenranta University of Technology

School of Energy Systems

Master’s Degree Programme in Electrical Engineering

Evgenii Kosenko

INDUSTRIAL IoT DEVELOPMENT FOR CONDITION MONITORING PURPOSES

Examiners: Professor Olli Pyrhönen

 Associate Professor Tuomo Lindh

Supervisor: M.Sc. Pekko Jaatinen

ABSTRACT

Lappeenranta University of Technology

LUT School of Energy Systems

Master’s Degree Programme in Electrical Engineering

Evgenii Kosenko

INDUSTRIAL IoT DEVELOPMENT FOR CONDITION MONITORING PURPOSES

Master’s Thesis

78 pages, 21 figures, 4 tables, 11 appendices

Examiners: Professor Olli Pyrhönen

Associate Professor Tuomo Lindh

Keywords: industrial IoT, IoT, Internet of Things, security, CPS, Beckhoff, mosquitto,

MQTT, protocols, AMB, PLC

The research concentrates on internet of things (IoT) system design for industrial application

of condition monitoring. The main goal is to study recent practices in the IoT field and

implement them to a design of secured cloud-based cyber-physical system. Tools were chosen

accordingly to literature review and task requirements. Thus, MQTT protocol communication

protocol, mosquitto - open-sourced broker and TLS encryption protocol are used. Thingspeak

cloud - stores, visualizes and analyzes data. Developed system was applied to real prototype,

namely an AMB system and tested on temperature measurement example.

ACKNOWLEDGEMENTS

The thesis was carried out in frame of Energy Systems School, Lappeenranta University of

technology. I would like to express all of my gratitude to my supervisor Pekko Jaatinen for his

guidance and patience, to associate professor Tuomo Lindh for his advises, to professor Olli

Pyrhönen for providing opportunity to work with great team in an exiting field.

I want to thank professor Victor Vtorov from St. Petersburg Electrotechnical University for his

help. I wish to express my thanks to my college and teachers from St. Petersburg

Electrotechnical University.

I am indebted to my dearest friends and colleges – Rostislav, Iurii, Maksim, Dmitrii for having

countless discussions of ideas, advises. I am truly grateful to my parents, grandparents and

dearest brother for their love and support. I wish to express my thanks for constantly

supporting me to my dearest Valeriya.

TABLE OF CONTENTS

1. INTRODUCTION ...7

1.1 Background ..7

1.2 Aim, goals and delimitation ... 10

1.3 Research methodology ... 11

1.4 Organization of the study .. 12

2. COMMUNICATION PROTOCOLS AND CLOUDS .. 13

2.1 Communication Protocols ... 13

2.1.2 MQTT Protocol ... 16

2.1.3 AMQP Protocol ... 17

2.1.4 CoAP Protocol ... 18

2.1.5 OPC UA Protocol .. 19

2.1.6 Protocol Choice ... 19

3. CLOUD SOLUTIONS ... 22

4. IOT SECURITY PRACTICES ... 27

5. IoT DESIGN ... 32

5.1 General Structure of The Design .. 32

5.2 Communication Layer ... 33

5.3 Broker ... 36

5.4 Security Features Implementation ... 38

5.5 Data Access Interfaces ... 40

5.6 Testing Prototype Results .. 42

6. CONCLUSIONS .. 46

REFERENCES ... 47

LIST OF SYBMOLS AND ABBREVIATIONS

AMB - Active Magnetic Bearing

AMQP - Advanced Message Queuing Protocol

API - Application Programming Interface

CoAP - Constrained Application Protocol

CPS - cyber-physical systems

CSV -Comma-Separated Values

DDoS - Denial-of-Service attack

HTTPS - Hypertext Transferred Protocol Secure (HTTPS)

IDE - Integrated Development Environment

IoT - Internet of Things

IP - Internet Protocol

IPv4 – Internet Protocol version 4

IPv6 - Internet Protocol version 6

JSON -JavaScript Object Notation

LE - Low Energy

LWM2M - Lightweight M2M

M2M – Machine to Machine

MITM – Man in the Middle

MQTT - Message Queuing Telemetry Transport

OPC UA - OPC Unified Architecture

OWASP - Open Web Application Security Project

PLC - Programmable Logic Controller

QoS – Quality of Service

REST - Representational state transfer

SCADA - Supervisory Control and Data Acquisition

ST - Structured Text

STOMP - The Simple Text Oriented Messaging Protocol

TCP - Transmission Control Protocol

TLS - Transport Layer Security

UDP - User Datagram Protocol

XMPP - Extensible Messaging and Presence Protocol

7

1. INTRODUCTION

In this chapter background of the topic, general concept and examples of IoT are presented.

Main aim, goals and delimitations are formulated. Methodology of the research is described.

1.1 Background

The idea of automotive industries has been in the air since the very begging of industrialization

process. It is been driven by concept of providing products of as high goods quality as possible

with respect to as minimal prime cost and production time as possible. Nowadays, four stages

are presenting the whole evolution flow through timeline of almost three hundred years; the

stages, of so-called industrial revolutions, are presented in Figure 1.

Figure 1. Four stages of industrial revolutions [1].

8

Manual labor in factories was at the very start of industrialization, it was followed by

mechanization of some parts of workflow since the advent of waterpower and steam power

machines. The next turning point was the mass production, which was promoted by Henry

Ford’s assembly line in the field of vehicles production [2]. It was a game changing idea with

huge impact, it is still wildly used in the industrial field. The third turning point – is automated

process with the help of computer and industrial robots.

Consequently, fourth revolution is the current stage of automation in manufacturing. That stage

is called - Industry 4.0, the name was proposed by government of Germany as a part of

stimulation actions of local manufactories at 2011, which, apparently, became world’s trend. In

two years from introducing name of the revolution stage, the Research Union Economy –

Science of the BMBF, introduced a description of the main ideas and concepts [3]. The stage is

characterized by introduction to production chain cyber-physical systems (CPS).

Internet of Things (IoT) is an approach, which is aimed to help create a CPS. Originally, the

term was proposed at 1999 by Kevin Ashton, engineer working at Procter & Gamble at the time

[4]. Mr. Ashton revealed general idea that IoT is a new branch of global network, where data

will be generated not by humans (filling forms, publishing text, photos, graphs and figures), but

by machines, things and devices (publishing states, data from sensors). Alternatively, more

formal definition has been given by Internet of Things Global Standards Initiative. IoT- a global

infrastructure for the information society, enabling advanced services by interconnecting

(physical and virtual) things based on existing and evolving interoperable information and

communication technologies [5]. Therefore, IoT concept is interconnection of machines, real

world sensors, devices with virtual cloud services, applications through which one machine can

reach another. Application for IoT counts a wide range of fields and includes not only original

industrial field, but also such as: travel, health care and retail.

For example, ABB company, a supplier of power and automation equipment is applying the IoT

concept in production and in products for the customers. One example of predictive maintenance

in heavy industry can be ABB’s gearless mill drive. Grinding process is an aggressive regime

9

and can produce a lot of stress on the drive. Therefore, real-time monitoring system allows to

avoid delays in flour producing process, which can cause substantial losses in production. The

system able to alert customer about problems with the machine and prevent outages [6].

Another illustration of Industry 4.0 in work is company Fingrid - finish energy transferring

company, they transmit energy from the producers to distribution companies and heavy

industries via high voltage grids. The IoT approach allowed Fingrid to unite different blocks of

their production made by different companies into the one ecosystem. This eases the overall

system management [7]. In particular, by collecting the data from sensors Fingrid is able to

check condition of instrument transformers and switchgear based on acoustic, discharge

measurements, and predict fault scenarios using methods of Big Data analysis [8].

Rolls-Royce company is the famous luxury car producers but also a manufacturer of airplane

engines. IoT concept can also use in the jet engines to prevent flight delays. Embedded sensors

in engines send information to supervisory control and data acquisition (SCADA) program and

display required information to a pilot of the plane. The analyzation system helps to calculate

required fuel for the flight, maintenance of the engines and other parameters in real-time,

alerting pilots and engineers on the ground. Rolls-Royce is using the Microsoft Azure platform

as a core for their IoT application [9].

Description of experiences and applications of IoT in industrial field by companies can be

summarized and main concept of IoT design presented on Figure 2.

10

Analytic
and notification

systemsConnected devices

Edge Device

Remote server
(Cloud)

Users

Figure 2. General IoT Structure

The basic structure of IoT system consists of a device or in other words - sensor, which is

connected to a net. The sensor can send and, sometimes, receive data to/from local or remote

server environment. Usually, data goes to a local server (edge device) where data reduction step

take place. Embedded algorithms process the data and then required packets of data are sent to

remote server via communication channel. The next chain of that structure is data processing,

usually meaning storing collected data, analysis, visualization, which take place usually on

remote server, cloud, and notification systems, meaning access point to the data for users.

1.2 Aim, goals and delimitation

The main aim of this research work is to create secure cloud-based CPS with respect to recent

IoT practices. In accordance with the aim, following goals has to be achieved:

1. Data exchange protocol has to be chosen to establish communication channel

2. Cloud services options has to be reviewed

3. Security features applied to secure data and system

4. User notification system has to be proposed

11

This work was carried out in frame of the Lappeenranta University of Technology environment,

thus, a hardware decisions were predefined by laboratory’s equipment. Namely, industrial PC

by Beckhoff is used as running platform due to build in Simulink interfaces, which enables fast

prototyping. However, for low-cost-embedded IoT solution Beckhoff PC is too expensive and

has excessively high computational power. For this reason, there are no limitations on the

protocol selection. Nevertheless, all guidelines and decisions can be applied with other hardware

solution. Besides, data receiving is not shown in final system due to local network limitations

of the university.

Additionally, we do not take into account commercial features of cloud based solutions due to

limited financial and work resources, free account of Thingspeak cloud is used instead. Hence,

detailed descriptions and comparison of cloud servers are presented in Chapter 3.

1.3 Research methodology

A brief structure view of the report methodology is shown on following Figure 3.The research

base is literature review, the IoT design, general structure and features were obtained.

Common tools and practices in the field will be discussed and will be applied to developed

IoT design. Detailed creating process of an IoT system prototype will be provided, with

example of real application to temperature measurement of an active magnetic bearing (AMB)

system. Several scenarios with use of different tools will be proposed to give respectfully full

description of possible ways to design the system.

12

Research methodology
L
it

e
ra

tu
re

re
v
ie

w
In

tr
o
d

u
c
ti

o
n

Io
T
 d

e
s
ig

n

Background

Data transferring

protocols

Hardware

IoT definition

and structure

Aim, Goals,

Deliminations

Cloud services Security issues

Software Configurations Prototype

Figure 3. Research flow diagram

1.4 Organization of the study

The thesis report consists of five chapters, conclusions and summary.

Chapter 1 is introduction, where briefly described background of Industry 4.0, IoT concept.

Main aim, goals and delimitations revealed.

Chapter 2 contains a description of data transferring protocols.

Chapter 3 describes cloud solutions in the research field.

Chapter 4 covers security issue in the IoT system design. Description of the main

vulnerabilities and common attacks are reviewed as well as preventing actions.

Chapter 5 provides detailed information about developed IoT design. Test and results are

presented.

13

2. COMMUNICATION PROTOCOLS AND CLOUDS

In this chapter overview of communication protocols in IoT field is presented. Detailed

description of top four protocols is covered and choice for further IoT design is made.

2.1 Communication Protocols

In order to design a system for Industry 4.0, one of biggest challenge appears – establishing

communication channel between devices. Coverage of the Internet of Things is wide starting

from single device system up to massive deployments of real-time embedded systems.

Consequently, it leads to broad options of different protocols. However, full communication

stack consists of four different levels – “layers” that is shown in Figure 4.

Application

Layer

Transport

Layer

Internet

Layer

Link Layer

Figure 4. IoT communication stack

Namely, application layer is top layer of the Internet protocol suite, where payload is stored.

Transport layer – standards and protocols, which is managing to provide end-to-end

14

communication for application layer. There are two main protocols in the layer: Transmission

Control Protocol (TCP) and User Datagram Protocol (UDP). Followed by Internet layer –

Internet Protocol (IP), layer, which includes protocols that define how data has to be

transferred between hosts. Nowadays, two version of IP is used: version 4 (IPv4) and version

6 (IPv6). Finally, link layer – consist of protocols that manage a connection of a host to direct-

connected network, for instance, laptop to router via Wi-Fi protocol.

Differences from the Internet when it comes to IoT concluded mainly in the application layer,

where there are variety of different protocols, which try to cover requirements of the field.

According to number of studies [10, 11], the commonly used application layer protocols are

listed below:

 MQTT (Message Queuing Telemetry Transport)

 CoAP (Constrained Application Protocol)

 STOMP (The Simple Text Oriented Messaging Protocol)

 XMPP (Extensible Messaging and Presence Protocol)

 Mihini/M3DA

 AMQP (Advanced Message Queuing Protocol)

 REST (Representational state transfer) - RESTful HTTP

 LWM2M (Lightweight M2M)

 OPC Unified Architecture (OPC UA).

However, research by Pertel concentrates on data protocols used in the field [12]. The research

compares three sources of information: academic systematic review, experience of consulting

companies, practices of industrial manufactures. They try to understand which protocol is more

useful and appropriate in terms of Industry 4.0 concept with the help of bibliography survey

15

[12]. As a result, they came up with top four IoT data protocols: MQTT, AMQP, CoAP, OPC

UA.

In the link layer researchers [11, 13] are marking the following protocols and standards, which

are relevant for IoT field:

 IEEE 802.15.4

 ZWave

 802.11 Wi-Fi

 Bluetooth Low Energy (LE)

 Zigbee

 NFC

 GPRS/2G/3G/4G/5G

 Ethernet

 RFID

 Sigfox

Final view of the communication model is shown in details in Figure 5.

Application

Layer
MQTT, CoAP, AMQP, OPC UA

Transport

Layer
TCP, UDP

Internet

Layer
IPv4, IPv6

Link

Layer

IEEE 802.15.4, Zwave, 802.11 Wi-Fi,

Bluetooth LE, Zigbee, NFC, GPRS/2G/3G/

4G/5G, RFID, Ethernet, Sigfox

Figure 5. IoT communication suit.

16

Therefore, communication channel can be established by choosing appropriate standards and

protocols for data transportation. To make the decision it is enough to choose protocol in

application layer, because that protocol supports particular protocols in transport and Internet

layers, so these layers will be predefined by application layer protocol. Link layer is usually

specified by the hardware solutions. Thereby, below attention will be concentrated on review of

data protocols particularly in the application layer.

2.1.2 MQTT Protocol

MQTT is a simple publish/subscribe based protocol. The main idea is that the clients subscribe

on particular topics, playing role of addresses, in which they are interested in. The connection

is maintained by TCP/IP protocol to a broker, which is playing role of a server. Therefore,

publishers send messages to the broker, which spread them on topics to which clients

(subscribers) are listening to. It was originally developed by IBM Company in 1999 and released

as open source protocol standard in 2010 [14]. General structure can be seen in Figure 6.

Publisher Subscriber

Publisher

Publisher

Subscriber

Subscriber

building1/floor2/light

building1/floor3/light

building1/floor1/door

Broker

Topics:

TCP

17

Figure 6. General structure of the MQTT protocol.

MQTT protocol works by exchanging control packets in specific form. Usually, there are three

parts in a MQTT control packet: fixed header, variable header and payload [15]. Detailed

information on control packets can be found in official standardized documentation [16].

Three quality of service (QoS) levels are available in MQTT, feature to control how messages

are delivered. QoS 0 – at most once delivery, meaning that message is delivered without any

feedback response, message can be lost if subscriber unexpectedly disconnects or broker fails.

QoS 1 – at least once delivery, a broker will deliver message to subscriber at least once,

however duplicate of the message is possible. QoS 2 – exactly once delivery, message is

delivered only once and a broker ensure that there are no duplicates [15].

Topics in the protocol has hierarchical structure. For subscribers there is option to use

wildcards to receive all messages on particular topic and all subtopics of it, using sharp (#)

symbol, for instance to receive all messages from first building subscriber has to specify the

following topic building1/#, consequently all messages from topics as

building1/floor1/temperature, building1/floor2/temperature, building1/floor1/doors/lock1 will

be received. Additionally, it is possible to subscribe on one level of subtopics beneath topic,

using plus (+) symbol. For example, client subscribes on building1/+, hence user will receive

all messages on that level like building1/floor1, building1/floor2 and not

building1/floor1/temperature or building1/floor1/doors [15].

2.1.3 AMQP Protocol

AMQP is an open source protocol that was designed to provide a message passing system for

business applications and organizations [17]. It provides publish/subscribe scheme. Devices in

the net are listening to messages on each queue, which is quite similar with previously described

MQTT. Therefore, the structure looks just like a previous one except the inner part of broker

system. To define to whom a message is addressed to the publisher has to provide information

for which queue the payload has to be delivered and, consequently, subscriber is listening to

that particular queue. There is also distributing mechanism in the broker so called “exchange”

18

block, which delivers message to desired queue. Example of the protocol scheme is shown on

Figure 7.

Publisher Subscriber

Publisher

Publisher

Subscriber

Subscriber

queue1

Broker

queue2

queue3

Exchange

TCP

Figure 7. General AMQP structure.

2.1.4 COAP Protocol

Constrained application (CoAP) protocol is client-server based messaging protocol, which is

working through User Datagram Protocol (UDP). It was developed for resource-constrained

devices, which are mainly applied in IoT field. CoAP has similarity with HTTP and it uses

identical commands: GET, POST, PUT, DELETE. Moreover, both of them can be easily

mapped to each other [16]. General scheme of CoAP is shown in Figure 8.

19

Clients

Server

UDP

Figure 8. Client-server architecture.

2.1.5 OPC UA Protocol

Unified Architecture (OPC UA) is the next generation of the OPC standard with client-server

architecture like CoAP. It is data exchange protocol with high demands for standardization

aiming field of industrial automation [18].

2.1.6 Protocol Choice

Selection of suitable protocol is set mostly by tasks, which system has to solve. Common

requirements for IoT system are: secured design and data, low power consumption due to either

limited energy source, for instance work in remote areas such as a drilling station, either

restricted price policy. Overall comparison of the main features of described protocols is listed

in Table 1.

20

Table 1. Comparison of IoT data protocols [19, 20].

Protocols Architecture Transport Layer Security feature

MQTT Publisher/Subscriber TCP +

AMQP Publisher/Subscriber TCP +

CoAP Client/Server UDP +

OPC UA Client/Server TCP +

MQTT, CoAP and AMQP have a light footprint, hence, can be easily used in the embedded

systems with low power and low computational performance. OPC UA is heavier to run, with

many additional features and configurations. Security feature column in Table 1 shows support

of common security options such as data encryption, user credentials by protocol. Marks “+”

stand for providing the support and “-“ for opposite situation. Consequently, all protocols have

pluses (“+”) meaning that all of these protocols support configurable security features [15-19].

Detailed information on security topic will be presented in Chapter 4.

The focus of the study is to determine design of cloud based system, thus protocols support by

cloud services has to be taken into account. Comparison between cloud service providers and

supported protocols is shown in Table 2. Detailed discussion about cloud solutions will be

provided in Chapter 3. It is notable that common cloud providers do not support OPC UA and

AMQP.

Table 2. Supported protocols

Cloud service name MQTT AMQP HTTP/HTTPS

IoT Hub (Azure) + + +

AWS IoT (Amazon) + +

21

Continuation of Table 2

Watson IoT (IBM) + +

Thingspeak (Matworks) + +

Therefore, after brief review of protocol properties and support by cloud services it is possible

to conclude that the most suitable protocol is MQTT. In further work this protocol will be used,

however, choice of protocol is defined by requirements of a system and task itself and there is

no exact uniform solution.

22

3. CLOUD SOLUTIONS

Cloud can generally be described as a server where user can store and manipulate data. Physical

location of the server is not restricted. To clarify scenarios of use review of four cloud services

for Internet of Things by largest companies in the IT and engineering fields will be discussed:

Microsoft, Amazon, IBM and Mathworks. Microsoft, IBM and Amazon are providing rich list

of web services, each service stands for particular task such as data storage, analytics, and virtual

machines. Combining the items, user can create his own system to solve required tasks.

Mathworks provides a ready-made cloud platform for IoT applications – ThingSpeak. It is free

web service where you can collect sensor data and with the tools provided by the application

visualization and data analysis can be done [21]. Detailed information about services can be

found in references [22-24].

Considering an IoT application, services are proposing quite similar functionality. Generally,

an IoT solution consists of different units on cloud side. First unit is receiver and transceiver for

the data from and to a thing-device. Each of listed companies has their own name for that item:

IoT Hub for Microsoft Azure, AWS IoT for Amazon, Watson IoT for IBM and ThingSpeak for

Mathworks. Second unit is responsible for generating a reaction on incoming data, like send to

database. Further items of the system are task dependent, for instance, it can be analysis,

visualization, notification units. On Figure 9 and Figure 10 examples of typical IoT application

are provided by Amazon and Microsoft.

23

Figure 9. Structure of AWS IoT solution [25].

Figure 10. IoT system structure with use of Microsoft’s services [26].

Price is calculated with respect to used items in system design. In Table 3 and Table 4

comparison of tariffs and limits of the services are shown. However, comparison is done only

with respect to simple system with one node - device connectivity item due to prototyping focus

of the study, time and financial limitations. Detailed information on pricing, quotas and

limitations of cloud services can be found in official documentations [27-32]. In cases of IBM

and Amazon solutions price is calculated individually with respect to client’s task.

24

Table 3. Clouds Non- commercial plans comparison.

Plan

limitations

ThingSpeak

by Mathworks

Azure IoT Hub

by Microsoft

Watson IoT

by IBM

AWS IoT

by Amazon

Number of

messages

max 3 million

msg/year (~8.200

msg/day)

max 8.000

msg/day

max 200

MB/month

(~12.796

msg/day)

500,000 msg

(trial for 37500

hours)

Message

update

interval limit

15 sec 12 msg/sec 5 msg/sec 100 msg/sec

Number of

simultaneous

MQTT

subscriptions

3 - 500
500

subs/sec/account

Data storage

capability

10 million messages

for 3 years

Required

additional unit

Required

additional unit

Required

additional unit

Message size

restriction

(device to

cloud)

max 3 KB max 256 KB max 128 KB max 512 KB

Table 4. Clouds commercial plans comparison.

Plan

limitations

ThingSpeak

by

Mathworks

Azure IoT Hub

by

Microsoft

Watson

IoT

by IBM

AWS IoT

by

Amazon

Plan name Standard S1 S2 S3 Standard -

Number of

messages

(msg/day)

9 ·104 8·103 6·106 3·108 unlimited -

25

Continuation of Table 4

Message

update

interval limit

Every second
12

msg/sec

120

msg/sec

6000

msg/sec

10

msg/sec

20,000

msg/sec/account

Number of

simultaneous

MQTT

subscriptions

50 - 500K
500

subs/sec/account

Data storage

capability

100 million

messages per

unit for 3 years

- - -

Message size

restriction

(device to

cloud)

max 3 KB max 256 KB
max

128 KB

max

512 KB

Price

(per unit

per months)

48 € 21.09 € 210.83 € 2,108.25 €
calculated

individually

calculated

individually

Analytic tools
Included

(MATLAB)

Additional

 (Stream Analytics 0.102 €/h)
Additional Additional

From table above, Thingspeak with such features as included possibility to proceed data with

MATLAB’s toolboxes on side of server, even with non-commercial license, web-service with

visualization and cloud storage space are made the service the most suitable for prototyping and

requirements of the study. However, for commercial use Thingspeak has quite limited features

compared with other services.

Additionally, IoT field is a challenging area, it is still young and rapidly-grows. Probably, one

of the biggest issue is to decide whereas go with third party services, either build your own

solutions based on open source tools, for instance, PostgreSQL to store data, mosquitto broker

to receive and transceive the data and libraries of python to react and analyze it. It has to be

26

taken into account that cloud services are aiming to decrease lunch time of an application.

Meaning, that to start any solution company can spend more time on product instead of spending

time on back-end hardware decisions, developing scalable system for numbers of users and

make it robust. Hence, by purchasing plan from third party company it is possible to start in

number of hours in contrast of several weeks or months. Moreover, it is quite cheap if enterprise

does not have a large data flow. Therefore, third party solutions are highly suitable for quick

start and prototyping. However, it should be always in mind of the company that it is temporary

decision and switching to their own solution in future will decrease product cost eventually.

Nevertheless, it seems from companies practices that major part of them are balancing between

those two edges, finding their golden mean.

27

4. IOT SECURITY PRACTICES

Security is the one of the most important aspect to have reliable IoT network. Designing net of

real, physical devices and aiming to collect data on a remote server leads to an idea that while

data is transferred it can be intercept. Moreover, bigger threat appeared when the concept of

remote control of a device is under consideration, interception and taking control over channel

of that kind can have crucial effect, especially when it comes to industrial cases. In the research

by Syaiful following information was highlighted: 24998 MQTT broker worldwide devices

were not using any encryption to protect data, meaning anybody can access it easily [33]. The

same experiment with help of Shodan search engine was performed in August 2018, the results

are presented on Figure 11 [33].

Figure 11. MQTT brokers without encryption worldwide [33].

Therefore, number of devices without any encryption and default settings increases. The most

recent security reports and issues have been reviewed as well as application of preventing

actions have to be taken into account when concerned about IoT design.

28

Open Web Application Security Project (OWASP) is developing a project to define IoT

vulnerabilities and help to create secure IoT [34]. OWASP’s team came up with following list

of top ten exposures:

• Insecure web interface

• Insufficient authentication/authorization

• Insecure network services

• Lack of transport encryption

• Privacy concerns

• Insecure cloud interface

• Insecure mobile interface

• Insufficient security configurability

• Insecure software/firmware

• Poor physical security

First point of list is insecure web interface that is covering issues linked with administrative

interfaces, web pages of a device. Two main obstacles are specified: use of default credentials

and absence of account lock out – security feature that locks any account that has failed to login

more than a defined number of tries in a row.

Second point covers problems with the device authentication and the authorization to interfaces

and services. Weak passwords, insecure password recovery mechanisms and absence of two-

factor authentication feature. Two-factor approach confirms the user in a system by requesting

not only credentials but also some personal information, for instance, identification number.

These are the main factors of that list point. These obstacles are the same for “Insecure Cloud

and Mobile interfaces” points.

29

Third point of the list describes insecurity of network services. Issues of network services of

IoT system including device itself, cloud, web and mobile. Opened unnecessary ports in the

network environment gives opportunity to attacks, OWASP also noticed that utilization of UPnP

for ports, which exposed to the global internet leads to buffer overflow attacks.

Fourth point covers the same services as a previous one. The main obstacles are linked with the

encryption issues in the transport layer of an IoT system. Thus, transferred sensitive data is not

encrypted, encryption protocols poorly configured or not used at all.

Researchers of OWASP highlighted insufficient security configurability for IoT device as

vulnerabilities list with following obstacles: credentials with password, encryption option is not

available. Insecure software and firmware can be defined with quite similar obstacles, where

update servers are not secured or encryption is not applied for updates.

The last but not least item in the list is poor physical security of an IoT device. Three obstacles

presented in OWASP report – existence of unnecessary external ports in design of a device,

open access to operating system through remove media and inability to limit administrative

rights.

The top ten list was carried out in 2014, however, the research by Tankard has shown quite

similar trends and issues [35]. Moreover, in the report following statistic showed us that 70 %

of all IoT devices do not encrypt data transmission and 80 % have opened backdoor. With simple

preventing actions can significantly improve security [35].

Common attack practices to an IoT system according to Russel are [13]:

• Wired and wireless scanning and mapping attacks

• Protocol attacks

• Eavesdropping attacks (loss of confidentiality)

• Cryptographic algorithm and key management attacks

• Spoofing and masquerading (authentication attacks)

30

• Operating system and application integrity attacks

• Denial of service and jamming

• Physical security attacks (for example, tampering, interface exposures)

• Access control attacks (privilege escalation)

Recent security issues have been analyzed by Cisco in 2018 [36]. Positive trends in the main

vulnerability categories stay the same. Nevertheless, Cisco research group have found out a new

type of exposures – botnets [36]. IoT botnets is a distributed network of infected IoT devices

that are used to work as parts of one computer system. The aim of the net is to initiate massive

distributed denial-of-service attack (DDoS), consequently, partly or fully control under IoT

device is taken by ill-wishers. Two main characteristics of the network are rapid exponential

grow and low detection rate [37]. One of largest botnets Mirai in 2016, in peak had 380

thousands of invaded devices [38].

Therefore, general rules should be taken into account to provide high level of security in IoT

design:

• Use strong passwords in all system’s segments.

• Implement multi – factor authentication where it is possible.

• Minimize open ports to global network.

• Do not utilize UPnP.

• Encrypt communication between components of system.

• Implement encryption protocols such as transport layer security (TLS)

protocol.

• Do not use proprietary encryption solution, open backdoor issue possible.

31

• Anonymize collected data from devices.

• Use lockout feature where possible.

• Sign updates.

• Secure update servers.

• Minimize unauthorized physical access to IoT device or servers.

• Minimize external port such as USB.

• Limit administrative rights.

To sum up, high interest to the IoT topic from manufactures, developers and consumers together

with fast growing and competitive market’s demands leads to necessity quickly respond

sometimes in disregard for security side of the issue. However, by following reviewed set of

general rules and awareness of possible threats will improve security of a device design greatly.

Nevertheless, it should be realized that basic principles cannot fully satisfy all aspects in the

topic and cannot be counted as a universal solution. These principles can be used as a starting

point with decent degree of coverage the main ideas. For this reason, the individual needs and

project demands will form treating way to security question. In addition, project OWASP

Internet of Things Project including IoT Attack Surface Areas Project and guidelines for

manufacturers, developers and even for consumers can be used to find out detailed information

and recent practices in the topic of IoT security [39-42].

32

5. IOT DESIGN

In this section, detailed description of developing process of cloud-based CPS system is

described. Designing process starts with general structure of the system and followed by security

feature implementation, description of data access interfaces. The chapter is summarized by

presenting results of prototype test.

5.1 General Structure of The Design

In the research hardware solutions is predefined. It is an industrial PC by Beckhoff, due to

described delimitations in introduction part. IoT based cloud measurement approach is applied

to an active magnetic bearing (AMB) system where different quantities can be measured such

as temperature, current, voltage, speed and rotor position. These quantities can be used for the

system condition monitoring. General structure of the system is presented on Figure 12.

M

ThingspeakControl system

IoT blocks BrokerMQTT

TwinCAT project

Beckhoff industrial PC Local gateway

I/O

Modules

Frequency

converters

x5

Sensors
Temperature

Position

Current

Voltage

Speed

EtherCAT

EtherCAT

TwinCAT IDEEtherCAT

LUT Firewall

MQTT

Figure 12. Industrial IoT structure.

Software aspect of the project has several parts. First, it is control system of the AMB, which is

generated from MATLAB Simulink block and transferred to TwinCAT integrated development

environment (IDE) where programming Bechoff’s products is made. Second, it is inputs and

33

outputs of the hardware, where data from sensors is coming. Third is part for programmable

logic controller (PLC), using structured text (ST) and IoT library by Beckhoff, group of IoT

blocks were developed. These blocks can read data from Simulink control system part, where

feedback sensors are used, then form required packets and send it to requested cloud, in our case

for Thingspeak.

5.2 Communication Layer

MQTT protocol is in charge of data transporting from Beckhoff industrial PC to the broker. To

publish data from TwinCAT project IoTpublisher functional block was developed, with two

inputs – a payload to publish and configurations of the publisher. To configure the publisher

FB_IoTPublisherConfigs functional block was created. Specifying address of a broker host in

hostName parameter, through which port data will be transferred in portNumber and to which

topic the data has to be published in sTopicPub parameter, publisher configuration is done. Next

step is to pass configurations and desired payload to IoTpublisher functional block.

MQTT client is configured according to defined settings from FB_IoTPublisherConfigs with

help of FB_IoTMqttClient functional block from Beckhoff’s Tc3_IoTBase library. Right after

connection is established with broker. If an error then appeared functional block stops and show

error code in hrErrorOccurred variable. All codes of errors can be found in Beckhoffs

documentation [43]. In case of successfully established connection payload is sent to the broker

by Publish method of FB_IoTMqttClient functional block. Full design of developed system and

all functions is shown on Figure 18.

Raw data cannot be send without preparation, usually cloud services required particular view of

data to be sent. In case of Thingspeak and MQTT protocol, it is required to provide specific

topic format. It has to be in the following format to update particular field in a channel:

channels/<channelID>/publish/fields/field<fieldnumber>/<apikey>, where channelID and

34

apikey can be found in Thingspeak’s profile settings and fieldnumber is a number of desired

field to publish data to. There is an option to publish simultaneously to multiple fields in a

channel, following topic format is required: channels/<channelID>/publish/<apikey>. In that

case additional formatting has to be done with payload. Firstly, fields number and value to

publish has to be provided as follows: field1=100&field2=50&…&fieldx=value. It is also

possible to provide some information like timezone, location of channel, status and date of

creation the message. Detailed information can be found in Thingspeak documentation [22].

Non-commercial Thingspeak’s plan allows to publish data every 15 seconds, Table 3, this suits

not for very dynamic measurements. Moreover, commercial plan allows posting message every

second, Table 3, and it is not suitable for such task as driver position measurements. For that

reason, Thingspeak’s bulk-write feature was applied to the system. Bulk-write option allows to

publish up to 960 messages for non-commercial plan and 14400 for commercial one with one

upload [22]. However, bulk update is not supported by MQTT protocol and uses HTTPS instead.

To use that publishing method new subscriber was introduced to the broker system, the client is

subscribed on bulkWrite topic. When data is published to the topic the subscriber, namely

python script MQTTtoHTTPSbridge, receive data from broker using MQTT and wrap incoming

data in HTTPS POST method. The bulk-write feature supports two data formats for data to

publish: JavaScript Object Notation (JSON) and Comma-Separated Values (CVS). In the

system second one is used due to simple formatting and parsing. Therefore, on side of TwinCAT

project thingspeakPack function was created to wrap a payload in CVS format, each message is

separated with a pipe character. A message has to contain following update parameters separated

with comma: timestamp, field number, latitude, longitude, elevation, status. If parameter is not

used, it has to be still separated with comma. It can be shown on one message example as

follows, first string represents name of parameters and second is the format of payload:

Figure 13. Bulk-write update parameters package

35

In other words to publish, for instance, three messages to field 6 without any additional

parameters of payload have to have as following look:

1,,,,,,0,,,,,,|2,,,,,,1.5388,,,,,,|3,,,,,,-1.5388,,,,,,|

Functional thingspeakPack has two input arguments: data and field number. Calling that

function cyclically it will add new values to existing buffer with respect to described pipe-

comma format. Consequently, MQTTtoHTTPSbridge will pack payload in HTTPS POST

method with defined parameters: url has to be in the following format

https://api.thingspeak.com/channels/<channel_id>/bulk_update.csv , contect-type of POST

method has to be specified as application/x-www-form-urlencoded and body parameters have

to contain write_api_key, time_format, updates. Hence, general format of bulk-write request

has the following format:

write_api_key=WRITE_API_KEY&timeFormat=TIME_FORMAT&updates=payload

Detailed installation guide, code of IoT blocks can be found in appendices: installation guide of

the system – Appendix 1, configurations of broker – Appendix 2 – 4, example of the main

program to send data points to Thingspeak cloud – Appendix 5, thingspeakPack – Appendix 6,

IoTpublisher – Appendix 7, FB_IoTPublisherConfigs – Appendix 8, MQTTtoHTTPSbridge –

Appendix 9. Detailed structure of described system on Figure 14.

M
Thingspeak

Control system

Sensors

TwinCAT project

Beckhoff industrial PC

Local gatewayIoT blocks

IoTpublisher

thingspeakPack

FB_IoTPublisherConfigs Broker

Figure 14. Detailed system structure

36

Therefore, proposed system is able to send data to Thingspeak cloud in two different modes.

First point-by-point mode allows to send one message every 15 seconds, one message can carry

eight field updates, status flag, channel location data. In that mode Tingspeak cloud can receive

up to 8200 messages daily, maximum 3 million messages per year. It is worth noting that during

the research daily peak point does not exceed 3760 messages. Second mode is bulk-write update

mode, where 960 messages can be sent in single bulk-update every 15 seconds. However,

limitation of total messages, which can be published to Thingspeak cloud remains the same, 3

million messages per year for non-commercial plan. Hence, it is possible to estimate data rates

of the communication chain with accordance to upper limits. Maximum receiving speed of data

from convertors and sensors is 30 MB/s, since control system block, Beckhoff PC, are working

with sample rate equal to 50 µs and maximum payload for EtherCAT protocol is 1.5 KB.

Comparatively to data flow through IoT node of the chain can handle speed rate of 0.192 MB/s,

using bulk-update option.

Therefore, the limitations give understanding that not all data has to be and can be transferred

to a cloud. Moreover, time delays, to send data, analyze it and send reaction back, are crucial in

such cases as bypassing obstacles by autonomous car, calling for help from wearable device or

taking decision to stop workflow on a factory due to emergency signal. Therefore, partly data

has to be analyzed locally, on an edge device (local server) with decent computational power,

decision has to be considered with accordance to task priority.

5.3 Broker

As it shown on Figure 14, the data goes not directly to the cloud, the caused by architecture

inside our university network environment, that fact has two sides. On the one hand, it has

positive impact, it means that IT department has their own security walls, for instances firewall

and identification of all devices, which leads to additional step of our design security. On the

other hand, additional node in our system has to be created, which automatically leads to

37

increasing system complexity, consequently, more force has to be applied to create secured

system and maintain it. It is worthwhile noting, that quite commonly in the industrial field there

is no direct connection to global network due to security issues, thus we are concerning

respectively real case in the research. As a result, instead of running our broker on the side of

cloud it will be deployed on a local (inside plant, in our case university) server, which has access

to global net, it will be our local gateway (edge device) with function of a “bridge”. The bridge

will retransfer all the data to defined subscribers. Therefore, our broker has publisher – PLC part

of TwinCAT project, and subscriber is the cloud server. The publisher sends data to local broker,

right after that the broker bridges data to the subscriber.

Considering broker systems, choice turns on Mosquitto broker developed by Eclipse Foundation

[44]. Eclipse Mosquitto is an open source message broker that implement latest versions of

MQTT protocol, namely 3.1 and 3.11 versions. Moreover, it is lightweight and suitable for low

power cases, it is reachable by configuring it with help of wide range of instructions [44].

Additionally, the project provides implementation of MQTT protocol as a client libraries written

on C, C ++ and for Python, in that particular case it is called Paho [44]. The Mosquitto broker

was compiled from source code with additional editing due to a bug, which exist when running

on Windows operational system and bridging with encryption. Detailed information on how to

fix the problem can be found on Github’s page of the project [45].

Therefore, proposed structure can collect data and bridge it to a cloud server. Mosquitto bridge

configured in, generally, three steps. Firstly, all configurations are done in file with “.conf”

extension. Secondly, name of connection to establish and address of a cloud server, where data

has to be retransferred, have to be specified. Thirdly, what topics has to be bridged, then which

version of protocols, finally, turning logging on in order to make debugging process easier.

Example of code can be found on Figure 15.

38

Figure 15. General case of Mosquitto bridge configurations.

Hence, described system can handle almost all requirements of an industrial IoT device.

Moreover, direct implementation of the prototype is possible but not recommended, because

none of security features were applied and the design is totally unsecured. However, the

developer can rely on high level of net security handled by IT department. Clearly, it is not the

best practices, and in the IoT world one of the key trend is to make security of that kind of

devices out of a box feature, meaning by default and embedded in the design itself [41].

5.4 Security Features Implementation

As it was discussed above all transferred data between nodes of the system has to be encrypted,

thus, latest version of TLS, version 1.3, is in use. TLS is cryptographic protocol that allows to

provide secured communication over network. One of the notable applications of it is protection

clients on webpages while browsing with known from daily life - hypertext transferred protocol

secure (HTTPS), which is using TLS.

Underneath a cryptographic protocol lies an idea to establish closed channel by encrypting data

with help of special keys – sets of rules known only to those who are willing to exchange any

data, hence, we are getting end-to-end communication and avoiding “Man In The Middle”

attacks (MITM). MITM attack is when hacker are getting accesses to communication channel

39

and receive all transferred data, thus, even if somebody will listen encrypted channel it will not

be possible to understand anything about payload.

The private channel is organized by performing so called handshake process. The process is

done in several steps: exchange of greeting messages, key exchange, and finally we will get a

channel with symmetric encryption. Implementation of the latest version of the encryption

protocol is done with help of OpenSSL toolkit, which includes full-featured TLS protocol,

functions of general-purpose cryptography library. Furthermore, OpenSSL project is distributed

under an Apache-style license, meaning that is possible to use it in commercial and non-

commercial projects freely, moreover source code is opened, and anybody can assure

themselves that there are no backdoors in it, that is one of major security feature, discussed in

second chapter. Included cryptography library allows to generate public and private keys as a

part of certificates, which is needed in handshake step.

Additional configurations are done in broker settings to embed encryption feature as well as

settings for user credential with respect to security rules from previous chapter. Full code is

listed in appendix section. As a testing example the following program is used, the Beckhoff PC

is generating sinusoidal wave and send it to cloud, general structure of the system and result are

shown on Figure 16.

Beckhoff industrial PC

TLS

protocol

Local gateway

Broker

mosquitto

Configuration file

(Bridge mode with TLS)

Thingspeak

Generation and

Transferring

Sinusoidal signal

Figure 16. Sinusoidal waveform to cloud.

40

5.5 Data Access Interfaces

There are several ways to access data and interact with it, through Thingspeak web interface,

desktop MATLAB or TwinCAT IoT communicator application by Beckhoff for smartphones.

However, all of them provide possibility to work with data, they are all closed-source

platforms, which are not secured due to possible backdoors. Hence, Telegram messenger’s bot

was created as an option to notify users about critical states of system and provide status of the

system. The messenger is cloud-based mobile and desktop messaging application, focus of the

company is security, speed and openness [46].

Web-interface of Thingspeak service consist of channels with fields, maximum number of fields

is eight. There are two types of channel: private and public. Fields represent data storage unit.

Therefore, data published to channel to particular field and automatically is plotted with respect

to field configuration like: name of axis, format, timescale, type and color of line. Hence, data

can be in non-plottable format, for instance text. In that case field will not plot data

automatically, but will just store it. However, it is possible to create custom rule to visualize

received data in the cloud with help of MATLAB Visualizations functions. Another option is to

use desktop MATLAB to access data. Standard library is providing functions to read, write and

plot in cloud data [22].

Next option is notification systems. They are playing roles of subscribers in our design. Thus,

the broker has to be accessed from outside LUT network, which is not possible due to strict

policy of IT department’s firewall system. Therefore, to resolve the issue it is necessary to run

broker on a remote server with direct access to global net. Eclipse Foundation has open server

with running mosquitto broker on it, which is used for testing purposes [47]. Hence, notification

applications are subscribed on eclipse broker and the local broker will bridge data to it, broker

is working in two bridges mode.

41

One solution of notification system is IoT Communicator application for mobile devices by

Beckhoff [48]. It is an app supported by iOS and Android operation systems. The application

provides possibility to subscribe to a topic structure and receive real-time data, plot graphs,

receive warning notifications and send commands back. To make it works: application has to

be installed on mobile devise, address of broker, in global net, topic, port number has to be

specified in settings tab and in TwinCAT project iotCommunicatorAppPublisher block has to

be added. General structure of IoT communicator is shown on Figure 17. Additionally, such

features as authentication, encryption, auto-reconnect and keep screen on features can be

configured in settings tab to tune the application for a task purposes, detailed information can

be found in official documentation [48].

Figure 17. Example of IoT Communicator App application [44].

Another proposed solution is Telegram chat bot, which is account of messenger operated by

software. Open-sourced application programming interface (API) allows to create application

with similar features to previous one [49]. The developed software act as subscriber to our

42

broker, to particular topic structure, and can post warning messages to the chat. Plotting data

feature was developed to allow user to check current state of a system. To make that notification

system works Telegram client has to be installed on mobile, laptop or PC devices, chat bot has

to be added to dialog list, developed software has to be run on a server. Considering TwinCAT

project, one more instance of IoTPublisher has to be added to send data to particular topic, for

example lut/AMBsystem/warnings/chatbot.

Therefore, final design of designed system can be shown in details as follows on Figure 18.

Detailed code of notification system can be found in Appendix 10 for IoT Communicator

application and in Appendix 11 for Telegram chat bot.

Local gateway

Broker

mosquitto

M

Control system

Sensors

TwinCAT project

Beckhoff industrial PC

IoT blocks

IoTpublisher

thingspeakPack

FB_IoTPublisherConfigs

Thingspeak

IoTpublisher

(warning messages)

Configuration file

(Two bridge mode with TLS)

Thingspeak bridge

Notification system

bridge

Eclipse

open cloud

Telegram

chat bot

TLS

protocol

Figure 18. Design of industrial IoT system.

5.6 Testing Prototype Results

Performance of designed system was tested on temperature measurement task. The system was

stably collecting information for several weeks. However, a bug was found during debugging

process, the system went freezing from time to time. Additionally, in IoT Communicator app

status of device was always offline, whereas it was functioning properly. It was found that

instance of standard IoT library, which is used in developed IoTpublisher block, was causing

43

that problem. After changing type of variable from input variable to input-output variable the

freezing issue was gone as well as status issue in the Beckhoff Communicator application. Some

minor fixes was applied during work process, most of them was caused by inaccurate

information in documentations such as not clear or sufficient examples on informational

Beckhoff portal, confusing typo issues in Thingspeak documentations, wrong methods to send

data were described. However, during the research work Thingspeak was informed about issues

and they fixed it. Nevertheless, task was solved and following charts are representing results

from different interfaces of the system. On Figure 19, Thingspeak interface is presented with

plot of temperature measurements for two days.

Figure 19. Temperature measurement visualization in Thingspeak web-interface with 15

seconds step

Figure 20 represents interface of Beckhoff Communicator application. There are three windows,

on the first one list with devices is given, by clicking on basementLab user will reach second

one, where real-time temperature measurements will appear. It is possible to plot a graph from

measured points, as it was discussed previously, example on third window.

44

Figure 20. Temperature measurements in IoT Communicator app

On Figure 21 Telegram chat bot notification system is presented. By starting dialog user

automatically will receive warning messages. Additionally, get figure feature was developed by

clicking the button and providing desired date range, user will receive graph of measurements

for the period from the cloud.

45

Figure 21. Temperature measurements in Telegram chat bot

46

6. CONCLUSIONS

In conclusion, the main aim of the study was achieved, the secured cloud based IoT CPS were

developed. The following goals were solved in order to achieve the aim: data exchange protocols

were reviewed and MQTT was chosen to establish communication channel, cloud services

reviewed and Thingspeak has been chosen as the most suitable for prototyping purposes, recent

studies in security field reviewed and implemented in the system design. User notification

system has been proposed. The system is applied and tested on condition monitoring task for

AMB system. Number of experiments were done in frame of the research work. Firstly, simple

example of wave generator with synchronization data to cloud and notification system.

Secondly, long-term experiment of temperature measurements of a coil in AMB system, it lasted

for a week. Thus, tests allowed to find bugs, errors of developed system and fix them.

Developers can use examples, created tools and applied technics as a starting guide to creating

an IoT solution. Nevertheless, decisions in the research can not be taken as strict rules, choice

of tools highly depended on requirements of the task. As well as implementing security features

not guarantee hundred percent protection. Periodical maintenance and updates of a system with

respect to recent studies in the field can support high security level. Functionality of developed

system is scalable and can be rearranged to different tasks. Limitations of the system are

generally connected with limitations of third-party products such as cloud service, which can be

tuned with respect to needs of application.

47

REFERENCES

1. Kagermann H., Wahlster W., Helbig J., 2013, Recommendations for implementing

the strategic initiative INDUSTRIE 4.0., Germany, Heilmeyer und Sernau

2. Henry Ford, Samuel Crowther, 1992, My life and work, Garden City, N.Y.,

Doubleday Page & Co.

3. Federal Ministry for Economic Affairs and Energy, 2018, Plattform Industie 4.0

[online document]. [Accessed 3 May 2018]. Available at https://www.plattform-

i40.de/I40/Navigation/EN/ThePlatform/PlattformIndustrie40/plattform-industrie-

40.html

4. Kevin Ashton, 2009, That 'Internet of Things' Thing, RFID Journal [online

document]. [Accessed 4 June 2018]. Available at

http://www.rfidjournal.com/articles/view?4986

5. SERIES Y: GLOBAL INFORMATION INFRASTRUCTURE, INTERNET

PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS, Next

Generation Networks – Frameworks and functional architecture models, 2013,

Overview of the Internet Things, Switzerland Geneva

6. AIG company, IoT Case Studies: Companies Leading the Connected Economy, Part

2, 2017

7. Fingrid, 2015, Case study [online document]. [Accessed 3 May 2018]. Available at

https://www.ibm.com/case-studies/fingrid

8. Fingrid, 2017, Main grid development plan 2017–2027, Finland, Helsinki

9. Rolls-Royce, 2016, Rolls-Royce and Microsoft collaborate to create new digital

capabilities [online document]. [Accessed 4 May 2018]. Available at

https://customers.microsoft.com/en-US/story/rollsroycestory

10. Postscapes, 2018, IoT Standarts and Protocols [online document]. [Accessed 23

August 2018]. Available at https://www.postscapes.com/internet-of-things-

protocols/#protocols

11. IoTSense, 2017, Top Internet of Things (IoT) Data Protocols [online document].

[Accessed 11 June 2018]. Available at http://www.iotsense.io/blog/top-internet-of-

things-iot-data-protocols/

http://www.rfidjournal.com/article/view/4986

48

12. Vinicius Moura Pertel, Maicon Saturno, Fernando Deschamps, Eduardo de Freitas

RochaLoures, 2017, Analysis of IT Standards and Protocols for Industry 4.0, 24th

International Conference on Production Research, July, Poznan, Poland

13. Brian Russel, Drew Van Duren, Siddhi Rane 2016. Practical Internet Of Things

Security. Birmingham: Packt Publishjing Ltd.

14. OASIS, What is MQTT?, Who invented MQTT? [online document]. [Accessed 4

May 2018]. Available at http://mqtt.org/faq

15. OASIS, MQTT Version 3.1.1 Plus Errata 01 [online document]. [Accessed 5 May

2018]. Available at http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/errata01/os/mqtt-

v3.1.1-errata01-os-complete.html#_Toc442180924

16. International Business Machines Corporation (IBM) Eurotech, MQTT V3.1

Protocol Specification [online document]. [Accessed 5 May 2018]. Available at

http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#utf-8

17. AMQP, AMQP is the Internet Protocol for Business Messaging [online document].

[Accessed 10 May 2018]. Available at http://www.amqp.org/about/what

18. CoAP, CoAP RFC 7252 Constrained Application Protocol [online document].

[Accessed 10 May 2018]. Available at http://coap.technology/

19. OPC Foundation, Unified Architecture [online document]. [Accessed 10 May

2018]. Available at https://opcfoundation.org/about/opc-technologies/opc-ua/

20. Paul Duffy, Beyond MQTT: A Cisco View on IoT Protocols [online document].

[Accessed 11 June 2018]. Available at https://blogs.cisco.com/digital/beyond-mqtt-

a-cisco-view-on-iot-protocols

21. Jahanzaib Imtiaz, Juergen Jasperneite 2013. Scalability of OPC-UA down to the

chip level enables “Internet of Things” Industrial Informatics (INDIN) 11th IEEE

International Conference July 2013, p. 500-505

22. The Mathworks, Thingspeak [online document]. [Accessed 16 May 2018].

Available at https://se.mathworks.com/help/thingspeak/index.html

23. AWS, AWS IoT Core Documentation [online document]. [Accessed 16 May 2018].

Available at https://aws.amazon.com/documentation/iot/

49

24. Microsoft, IoT Hub Documentation, [online document]. [Accessed 16 May 2018].

Available at https://docs.microsoft.com/en-us/azure/iot-hub/

25. IBM Cloud, Internet of Things Platform [online document]. [Accessed 17 May

2018]. Available at

https://console.bluemix.net/docs/services/IoT/index.html#gettingstartedtemplate

26. Olawale Oladehin, Brett Frasncis 2017. Core Tenets of IoT [online document].

[Accessed 17 May 2018]. Available at https://d1.awsstatic.com/whitepapers/core-

tenets-of-iot1.pdf

27. Gandhali Smant 2017. Create an End-to end IOT Scenario with Azure Services

[online document]. [Accessed 18 May 2018]. Available at

https://blogs.msdn.microsoft.com/gsamant/2017/02/24/create-an-end-to-end-iot-

scenario-with-azure-services/

28. IBM Cloud, Internet of Things Platform 2018. Quotas [online document].

[Accessed 18 May 2018]. Available at

https://console.bluemix.net/docs/services/IoT/reference/quotas.html#quotas

29. Microsoft Azure 2018. Reference - IoT Hub quotas and throttling [online

document]. [Accessed 18 May 2018]. Available at https://docs.microsoft.com/en-

gb/azure/iot-hub/iot-hub-devguide-quotas-throttling

30. Microsoft Azure 2018. Azure subscription and service limits, quotas, and

constraints [online document]. [Accessed 18 May 2018]. Available at

https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits#iot-hub-

limits

31. Amazon Web Services 2018. AWS Service Limits [online document]. [Accessed

18 May 2018]. Available at

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_iot

32. Amazon Web Services 2018. AWS IoT Core Pricing [online document]. [Accessed

18 May 2018]. Available at https://aws.amazon.com/iot-core/pricing/

33. Syaiful Andy, Budi Rahardjo, Bagus Hanindhito 2017. Attack Scenarios and

Security Analysis of MQTT Communication Protocol in IoT System. Proc. EECSI

2017, 19-21 September , Yogyakarta, Indonesia

50

34. OWASP, Top IoT Vulnerabilities Platform [online document]. [Accessed 17 May

2018]. Available at https://www.owasp.org/index.php/Top_IoT_Vulnerabilities

35. Colin Tankard, Digital Pathways, 2015, “The security issues of the Internet of

Things”, Computer Fraud & Security

36. Cisco, Cisco 2018 Annual Cybersecurity Report [online document]. [Accessed 18

May 2018]. Available at https://www.cisco.com/c/en/us/products/security/security-

reports.html

37. Cisco, “The IoT is only just emerging but the IoT botnets are already here,” p. 39,

Cisco 2017 Midyear Cybersecurity Report Report [online document]. [Accessed 18

May 2018]. Available at

cisco.com/c/m/en_au/products/security/offers/cybersecurity-reports.html

38. Brian Krebs, October 1 2016, “Source Code for IoT Botnet ‘Mirai’ Released”

KrebsOnSecurity blog[online document]. [Accessed 23 May 2018]. Available at

krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/

39. OWASP, OWASP Internet of Things Project [online document]. [Accessed 24 May

2018]. Available at

https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=Mai

n

40. OWASP, IoT Attack Surface Areas Project [online document]. [Accessed 24 May

2018]. Available at

https://www.owasp.org/index.php/OWASP_Internet_of_Things_Project#tab=IoT_

Attack_Surface_Areas

41. OWASP, IoT Security Guidance [online document]. [Accessed 24 May 2018].

Available at https://www.owasp.org/index.php/IoT_Security_Guidance

42. R. A. Light 2017. Mosquitto: server and client implementation of the MQTT

protocol. The Journal of Open Source Software, vol. 2, no. 13

43. Beckhoff Information System, TF6701 TC3 IoT Communication (MQTT) [online

document]. [Accessed 1 August]. Available at

https://infosys.beckhoff.com/english.php?content=../content/1033/tf3600_tc3_con

dition_monitoring/27021598926818571.html&id=

51

44. Eclipse Foundation, Paho [online document]. [Accessed 24 May 2018]. Available

at http://wiki.eclipse.org/Paho

45. GitHub, Mosquitto bridge problem due to non blocking socket connect #478 [online

document]. [Accessed 1 August]. Available at

https://github.com/eclipse/mosquitto/issues/478

46. Telegram, What is Telegram? [online document]. [Accessed 24 May 2018].

Available at https://telegram.org/faq#q-what-is-telegram-what-do-i-do-here

47. Eclipse Foundation, Sandboxes [online document]. [Accessed 24 May 2018].

Available at https://iot.eclipse.org/getting-started/#sandboxes

48. Beckhoff Information System, TF6730 TC3 IoT Communicator Overview [online

document]. [Accessed 10 May]. Available at

https://infosys.beckhoff.com/index_en.htm

49. Telegram, Telegram Bot Platform [online document]. [Accessed 26 July 2018].

Available at https://telegram.org/blog/bot-revolution

52

APPENDIX 1. Installation guide of the system

IoT installation guide

Contents
• Overview

• Install requirenments

• Mosquitto (MQTT broker)

• TwinCAT project

– Quick start example

– Tools

• Desciption

• Configuration

– FB_IoTPublisherConfigs

– IoTpublisher

– iotCommunicatorAppPublisher

– MQTTtoHTTPSbridge.py

– thingspeakPack

• Debugging

• Notification systems

– Telegram bot

– IoT communicator application

• Troubleshooting

– mosquitto

Overview

In that guide a step-by-step tutorial is described to provide help with configuring an IoT
system on simple example.
The system consist of five nodes as shown on following figure

53

Program in TwinCAT IDE will generate data and transfer it to broker, which is runing on
same machine.
The broker will recieve data and bridge it to Thingspeak cloud or to another broker,
which can be acessed from global network. For example, on Eclipse open cloud. Option
with simultanious brindging will be described too. Two notification system will be
proposed as subscribers to global runing broker - IoT Communicator app and Telegram
chat bot.
All necessary files and source codes can be found in IoTProjectSrc.zip

Install requirenments
1. Mosquitto (MQTT broker)

• Install OpenSSL (Win32OpenSSL-1_0_2n.exe) to root folder

• On step “Select Additional Tasks” choose copy DLLs to /bin directory

54

• Installing mosquitto (mosquitto-1.4.15a-install-win32.exe)

• Put pthreadVC2.lib in mosquitto folder

2. Install TwinCAT
Requirements on all devices at least TwinCAT v.3.1.4022

3. To get API keys for Thingspeak cloud create an account

4. To get API keys for AWS IoT follow instructions here

Mosquitto (MQTT broker)
• Execute mosquito.exe from CLI to start broker

– Open cmd on Windows (press win + r, type cmd and press enter)

– Navigate to folder where mosquito was installed Exmaple: cd "Program
Files (x86)\mosquitto"

– mosquitto.exe (the command will start MQTT broker with default
configurations, more detailed information on configuration file could be
found here)

– To start the broker with custom configuration file execute mosquitto with –c
attribute as follows: mosquitto.exe -c
C:\somePathToConfFile\confFile.conf somePathToConfFile has to be
changed to real path where configuration file is stored

• To start broker in bridge mode you have to choose one of provided .conf files

– thingSpeakBridgeTLS.conf

• bridging all topics which start with remote/thingspeak to ThingSpeak
cloud

– awsBridgeTLS.conf

• bridging localgateway_to_awsiot topic to AWS IoT cloud

• In this .conf files some tuning has to be made

– Path to certificates have to be specified, ###### has to be changed
accordingly

• For ThingSpeak:

http://www.beckhoff.com/TwinCAT/
https://thingspeak.com/
https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html
https://mosquitto.org/man/mosquitto-conf-5.html

55

• For AWS:

• twoBridges.conf All logs will be displayed in CLI window. In case of
problems go to troubleshooting section.

TwinCAT project

Quick start example

To send data to broker let’s run Beckhoff’s example, which works out of a box with
several changes. That example also can be found in IoTProjectSrc directory. The example
send value of counter, which goes up and down, each 15 seconds, to a broker. On
Beckhoff webpage it is located under Samples tab, the name is IotMqttSampleUsingQueue.

If you are runing example downloaded from
documantation’s page change value of timer to
15 sec:

fbTimer : TON := (PT:=T#15S);
It is Thingspeak cloud’s limitation.

Before running the project mosquitto broker has to be runing in bridge mode with
thingSpeakBridgeTLS.conf file and several changes has to be done in PrgMqttCom
function file: 1. Api key and channel id have to be changed to your own 2. Address of host
(in our case broker’s one) have to be changed 3. Topics should to be specified for your

https://infosys.beckhoff.com/english.php?content=../content/1033/tf6701_tc3_iot_communication_mqtt/index.html

56

needs

To run project:
1. Activate Configuration in order to configure project, install required licenses

* Press “OK” to proceed configuration

* It could be asked to type security code for updating required licenses

57

* Press “OK” to restart/start TwinCAT in run mode

 2. Login and run compiled project *
In PLC tab press Login button or on front-page toolbar panel

* Press Yes

58

* Finally, press Start button in PLC tab or on the toolbar panel or F5

* To stop running program press Stop in PLC tab or Shift + F5 and then Logout

Each 15 sec data packages has to appear in broker window and in your channel on
Thingspeak cloud. Configured system has following structure:

 ###
Tools #### Desciption In quick start example standard functional blocks were used to
publish data from TwinCAT project.
To make integration to a project easier, custom tools where developed:
1. FB_IoTPublisherConfigs functional block 2. IoTpublisher functional block
3. iotCommunicatorAppPublisher functional block

59

4. MQTTtoHTTPSbridge.py script
5. thingspeakPack function

Configuration

FB_IoTPublisherConfigs

FB_IoTPublisherConfigs was created to configure the publisher

FB_IoTPublisherConfigs := (hostName := 'brokerAddress',
 portNumber :=1883,
 sTopicPub := 'remote/thingspeak/yourChannelNum
ber/publish/yourApiKey');

Specifying address of a broker host in hostName parameter, through which port data will
be transferred in portNumber and to which topic the data has to be published in
sTopicPub parameter, publisher configuration is done. Next step is to pass configurations
and desired payload to IoTpublisher functional block. ##### IoTpublisher IoTpublisher
it is functional block with two inputs – a payload to publish and configurations of the
publisher and status output.
IoTpublisher(pubConfigs := configuration, sPayloadPub := valueToPublish,

sendStatus => status); >pubConfigs - input for configurations fo publisher
>sPayloadPub - desired value in string format >>sPayloadPub can get 2000 characters
max >sendSatus - output status of publisher Bool type >>TRUE if message was sent
successfully >>FALSE if error occured, inside block code of error can be found in
hrErrorOccurred variable
>>>detailed error description can be found here
iotCommunicatorAppPublisher Functional block was created to publish data to
IoT Communicator application by Beckhoff.
iotCommunicatorAppPublisher(stData := appData, fbIot := appConfig,

sendStatus => appPubStatus) >stData - input data to publish in form of following
structure

TYPE ST_ProcessData :
STRUCT
 {attribute 'iot.DisplayName' := 'Temperature'}
 {attribute 'iot.ReadOnly' := 'true'}
 {attribute 'iot.Unit' := 'Celsius'}
 {attribute 'iot.MinValue' := '5'}
 {attribute 'iot.MaxValue' := '30'}
 nTemp : LREAL;
END_STRUCT
END_TYPE

detailed information can be found in documentation fbIot - configuration Configuration of this publisher is done
with help of standard FB_IotCommunicator block from TC3_iotcommunicator library

FB_IotCommunicator := (
 sHostName := 'brokerAddress', // MQTT Broker Adress

https://infosys.beckhoff.com/english.php?content=../content/1033/tf3600_tc3_condition_monitoring/27021598926818571.html&id=
https://infosys.beckhoff.com/english.php?content=../content/1033/tf6730_tc3_iot_communicator/9007203166935691.html&id=1116881685303960790

60

 nPort := 1883, // MQTT Port
 sMainTopic := 'topic', // Main Topic
 sDeviceName := 'deviceName'); // Device Name

sendStatus - output status of publisher Bool type >TRUE if message was sent successfully >FALSE if error
occured, inside block code of error can be found in hrErrorOccurred variable
>>detailed error description can be found here It is similar to IoTpublisher, with difference in specific data form,
which is requested by the Communicator application
MQTTtoHTTPSbridge.py The script is representing subscriber to a broker. It recieves data and wraps it to
HTTPS format and sends it to Thingspeak cloud using bulkWrite
All parameters marked with #### has to be configured with respect to your own values
How to use:

python MQTTtoHTTPSbridge.py

To send demo values:

python MQTTtoHTTPSbridge.py -d

To clead channel’s feed:

python MQTTtoHTTPSbridge.py -c

thingspeakPack

thingspeakPack function was created to wrap a payload to CVS format, each message is
separated with a pipe character. A message has to contain following update parameters
separated with comma: timestamp, field number, latitude, longitude, elevation, status.
Hence payload has to look like:

TIMESTAMP,FIELD1_VALUE,FIELD2_VALUE,FIELD3_VALUE,FIELD4_VALUE,FIELD5_VALUE,

FIELD6_VALUE,FIELD7_VALUE,FIELD8_VALUE,LATITUDE,LONGITUDE,ELEVATION,STATUS
|
DATETIME_STAMP_OR_SECONDS_FROM_LAST_ENTRY,FIELD1_VALUE,FIELD2_VALUE,FIELD3_
VALUE,
FIELD4_VALUE,FIELD5_VALUE,FIELD6_VALUE,FIELD7_VALUE,FIELD8_VALUE,LATITUDE,L
ONGITUDE,ELEVATION,STATUS

thingspeakPack has one input argument, it is payload in STRING format.
Function is used when bulkWrite option has to be performed. By calling the function
cyclically it will add new values to existing, preparing them to be published

Notification systems

Two options proposed to realize data exchange between TwinCAT PLC and smart device
via an MQTT message broker:
1. IoT communicator application by Beckhoff
2. Telegram chat bot

https://infosys.beckhoff.com/english.php?content=../content/1033/tf3600_tc3_condition_monitoring/27021598926818571.html&id=
https://www.mathworks.com/help/thingspeak/bulkwritecsvdata.html
https://www.mathworks.com/help/thingspeak/bulkwritecsvdata.html

61

IoT communicator application

Description

Detailed information can be found in documentation.
Download IoT communicator application for iOS or Android
Configuration In SETTINGS tab simple configuration has to be made to start
receive data: 1. Broker Address specified
iot.eclipse.org 2. Port number set 3. Topic provided
eclipsecloud/test/temperature
After go to DEVICES tab. Your device has to appear with online status

Telegram bot

Description

Telegram chat bot can recieve warning messages and plot data in desired time range
Configuration To turn on telegram bot plotGraph.py script has to be executed
python.exe pathToScript/plotGraph.py >Python has to be installed
>bot token provided in botToken variable >to get token follow instuction here

Debugging

To test settings of cloud side or debug work of broker and program, mosquitto provides
two utilities
mosquitto_pub and mosquitto_sub.
By default folder with these utilities is the same as for mosquitto broker.

To publish a test message to ThingSpeak cloud:
mosquitto_pub.exe -h mqtt.thingspeak.com -p 1883 -t
channels/chatID/publish/writeAPIKey -m "field1=100"

To subscribe to our broker and listen to all topics, all data, which is going through:
mosquitto_sub.exe -p 1883 -t #

Troubleshooting

mosquitto
• If you are facing problem with opening socket on port

 It means that instance of mosquitto has been already launched and you will have to
stop it manually by executing following:
sc stop mosquitto
Note: Command prompt has to be run as administrator

https://infosys.beckhoff.com/english.php?content=../content/1033/tf6730_tc3_iot_communicator/4424593675.html&id=
https://itunes.apple.com/us/app/twincat-iot-communicator/id1113995901?mt=8
https://play.google.com/store/apps/details?id=com.beckhoff.tciotcommunicator&hl=en
https://www.python.org/downloads/
https://core.telegram.org/bots#3-how-do-i-create-a-bot
https://mosquitto.org/man/mosquitto_pub-1.html
https://mosquitto.org/man/mosquitto_sub-1.html

62

APPENDIX 2. Simple broker configuration

===

Bridges to thingSpeak

===

Establishing connection with the cloud

connection thingspeak

address mqtt.thingspeak.com:1883

Setting protocol version

bridge_protocol_version mqttv311

notifications false

cleansession true

log_type all

63

APPENDIX 3. Broker bridge configuration

===

Bridges to thingSpeak

===

Establishing connection with the cloud

connection thingspeak1

address mqtt.thingspeak.com:8883

Specifying which topics are bridged

all topics which start with remote/thingspeak will be

bridged with prefix channels/######, where ###### your

write API key of your channel on thingSpeak.com

topic # out 0 remote/thingspeak/ channels/

Setting protocol version explicitly

bridge_protocol_version mqttv311

bridge_insecure false

notifications false

cleansession true

log_type all

===

Certificate based SSL/TLS support

Path to the rootCA

have to be changed to specific path to ca-certificates.crt file

bridge_cafile ###### \ca-certificates.crt

64

APPENDIX 4. Two bridges configuration

===

Bridges to thingSpeak

===

Establishing connection with the cloud

connection thingspeak1

address mqtt.thingspeak.com:8883

Specifying which topics are bridged

all topics which start with remote/thingspeak will be

bridged with prefix channels/######, where ###### your

write API key of your channel on thingSpeak.com

topic # out 0 remote/thingspeak/ channels/

Setting protocol version explicitly

bridge_protocol_version mqttv311

bridge_insecure false

notifications false

cleansession true

log_type all

===

Certificate based SSL/TLS support

Path to the rootCA

have to be changed to specific path to ca-certificates.crt file

bridge_cafile ######\ca-certificates.crt

===

Bridges to eclipse

===

65

Establishing connection with the cloud

connection eclipse-org

address iot.eclipse.org:8883

Setting protocol version explicitly

bridge_protocol_version mqttv311

bridge_insecure false

notifications false

cleansession true

topic # out 0

log_type all

===

Certificate based SSL/TLS support

Path to the rootCA

have to be changed to specific path to ca-certificates.crt file

#bridge_cafile ######\ca-certificates.crt

66

APPENDIX 5. Main program of TwinCAT project

PROGRAM MAIN

VAR

 thingspeakPub : IoTpublisher;

 appPub : iotCommunicatorAppPublisher;

 pack : formPack;

 thingspeakConfig : FB_IoTPublisherConfigs := (

 hostName := '#####’,

 portNumber :=1883,

 sTopicPub := 'remote/thingspeak/#####');

 appConfig : FB_IotCommunicator := (

sHostName := #####, // MQTT Broker Address

nPort := 1883, // MQTT Port

sMainTopic := 'builds', // Main Topic

sDeviceName := 'basementLab'); // Device Name

 thingspeakPubStatus : BOOL;

 appPubStatus : BOOL;

 pubTimer : TON := (PT:=T#15S);

 dataV : ARRAY [1..30] OF LREAL;

 value : LREAL := 27.23;

 pubValue : STRING(500);

 appData : ST_ProcessData;

 i : INT;

 once : BOOL := TRUE;

END_VAR

67

pubTimer(IN:=TRUE);

IF pubTimer.Q THEN

 pubTimer(IN:=FALSE);

 pubValue := thingspeakPack(value,1);

 thingspeakPub(pubConfigs := thingspeakConfig, sPayloadPub := pubValue, sendStatus =>

thingspeakPubStatus);

 appData.nTemp := value;

 appPub(stData := appData, fbIot := appConfig, sendStatus => appPubStatus);

 GVL.dataToSend := '';

 GVL.delta_t := 1;

END_IF

68

APPENDIX 6. thingspeakPack functional block

FUNCTION thingspeakPack : STRING

VAR_INPUT

 data : LREAL;

 fieldNumber : UINT;

END_VAR

VAR

END_VAR

thingspeakPack := CONCAT(CONCAT(CONCAT('field', TO_STRING(fieldNumber)),'='),

LREAL_TO_STRING(data));

69

APPENDIX 7. IoTpublisher functional block

FUNCTION_BLOCK IoTpublisher

VAR_INPUT

 pubConfigs : FB_IoTPublisherConfigs;

 sPayloadPub : STRING (2000):= '';

END_VAR

VAR_OUTPUT

 sendStatus : BOOL := FALSE;

END_VAR

VAR

 fbMqttClient : FB_IotMqttClient;

 bSetParameter : BOOL := TRUE ;

 bConnect : BOOL := TRUE ;

 hrErrorOccurred : HRESULT; // contains the latest occurred error

 statusStr : STRING(255);

END_VAR

(*check if parameters is set*)

IF bSetParameter THEN

 fbMqttClient.sHostName:= pubConfigs.hostName;

 fbMqttClient.nHostPort:= pubConfigs.portNumber;

 fbMqttClient.sTopicPrefix:= '';

 bSetParameter := FALSE;

END_IF

(*establishing cnnection with the host*)

fbMqttClient.Execute(bConnect);

IF fbMqttClient.bError THEN

 hrErrorOccurred := fbMqttClient.hrErrorCode;

70

END_IF

IF fbMqttClient.bConnected THEN

 fbMqttClient.Publish(sTopic:= pubConfigs.sTopicPub,

 pPayload:= ADR(sPayloadPub), nPayloadSize:= LEN2(ADR(sPayloadPub)),

 eQoS:= TcIotMqttQos.AtMostOnceDelivery, bRetain:= FALSE, bQueue:= FALSE);

 sPayloadPub := '';

 IF fbMqttClient.bError THEN

 // add your error logging here

 hrErrorOccurred := fbMqttClient.hrErrorCode;

 ELSE

 sendStatus := TRUE;

 END_IF

END_IF

71

APPENDIX 8. FB_IoTPublisherConfigs

FUNCTION_BLOCK FB_IoTPublisherConfigs

VAR_INPUT

 hostName : STRING(255);

 portNumber : UINT;

 sTopicPub : STRING (500);

END_VAR

VAR_OUTPUT

END_VAR

VAR

END_VAR

72

APPENDIX 9. MQTTtoHTTPSbridge

import paho.mqtt.client as mqtt

import requests

def sendPacket(payload):

 url = 'https://api.thingspeak.com/channels/###/bulk_update.csv'

 headers = {'content-type': 'application/x-www-form-urlencoded'}

 packet = {'write_api_key':###,'time_format':'relative'}

 packet['updates'] = payload

 r = requests.post(url, headers = headers, data = packet)

 print(r.text)

 print(r.status_code)

def on_message(mqttc, obj, msg):

 print("Message: " + "topic = " + msg.topic + " q = " + str(msg.qos) + " " + str(msg.payload))

 sendPacket(msg.payload)

def on_subscribe(mqttc, obj, mid, granted_qos):

 print("Subscribed: " + str(mid) + " " + str(granted_qos))

def on_log(mqttc, obj, level, string):

 print(string)

 mqttc = mqtt.Client("pythonScriptClient")

 # Poke the methods into the class:

 mqttc.on_message = on_message

 mqttc.on_subscribe = on_subscribe

 # mqttc.on_log = on_log

 mqttc.connect("###", ###, ###)

 mqttc.subscribe("bulkWrite", 0)

 mqttc.loop_forever()

73

APPENDIX 10. iotCommunicatorAppPublisher

FUNCTION_BLOCK iotCommunicatorAppPublisher

VAR_INPUT

 stData: ST_ProcessData; // Values to send

END_VAR

VAR_IN_OUT

 fbIoT : FB_IotCommunicator;

END_VAR

VAR_OUTPUT

 sendStatus : BOOL := FALSE;

END_VAR

VAR

 hrErrorOccurred : HRESULT; // contains the latest occurred error

 timer : TON;

END_VAR

fbIoT.Execute(TRUE);

timer(IN := NOT timer.Q, PT := T#1S);

IF fbIoT.bConnected AND timer.Q THEN

 fbIoT.SendData(ADR(stData), SIZEOF(stData));

END_IF

IF fbIoT.bError THEN

 // add your error logging here

 hrErrorOccurred := fbIoT.hrErrorCode;

ELSE

 sendStatus := TRUE;

END_IF

74

APPENDIX 11. Telegram chat bot

from telegram import ReplyKeyboardMarkup, ReplyKeyboardRemove

from telegram.ext import Updater, CommandHandler, MessageHandler, Filters,

RegexHandler, ConversationHandler

import paho.mqtt.client as mqtt

import matplotlib.pyplot as plt

import numpy

import requests

import io

import pandas as pd

import logging

url = "https://api.thingspeak.com/channels/###/fields/#.csv?api_key=###"

chatId = ###

logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',

 level=logging.INFO)

logger = logging.getLogger(__name__)

CHOOSING, SET_START_POINT, SET_END_POINT = range(3)

reply_keyboard = [['Get Figure'],

 ['Help']]

markup = ReplyKeyboardMarkup(reply_keyboard, one_time_keyboard=True)

start = ''

end = ''

def start(bot, update):

 global reply_keyboard

 update.message.reply_text(

 'Hi!',

 reply_markup=ReplyKeyboardMarkup(reply_keyboard, one_time_keyboard=True))

75

 return CHOOSING

def getFigure(bot, update):

 update.message.reply_text('send me date range for the figure in following form: YYYY-

MM-DD')

 return SET_START_POINT

def setStart(bot, update):

 global start

 print(start)

 start = update.message.text

 print(start)

 bot.send_message(chat_id=chatId, text=('got it! start point is ' + start +'. Send me end point

now'))

 return SET_END_POINT

def setStop(bot, update):

 global end

 end = update.message.text

 bot.send_message(chat_id=chatId, text=('got it! end point is ' + end + '.'))

 print(end)

 plot(bot, update)

 return CHOOSING

def plot(bot, update):

 global start, end

 # start = '2018-08-20%2000:00:00'

 # end = '2018-08-21%2000:00:00'

 start = str(start) + '%2000:00:00'

 end = str(end) + '%2000:00:00'

 bot.send_message(chat_id=chatId, text=str('downloading...'))

 data = requests.get(url+'&start='+start+'&end='+end)

76

 df = pd.read_csv(io.StringIO(data.text))

 plt.plot(df['entry_id'], df['field4'], '-')

 plt.grid(True)

 plt.savefig ("./my_img.png")

 bot.send_message(chat_id=chatId, text=str('here is your plot'))

 bot.send_photo(chatId, photo=open('my_img.png', 'rb'))

def MQTTsubscribe():

 mqttc = mqtt.Client("pythonScriptClient")

 mqttc.connect("test.mosquitto.org", 1883, 60)

 mqttc.subscribe("plants/Building6/TcIotCommunicator/Messages/#", 0)

 mqttc.loop_start()

 return mqttc

def on_message(mqttc, obj, msg):

 global chatId, dp

 print("Message: " + "topic = " + msg.topic + " q = " + str(msg.qos) + " " + str(msg.payload))

 data = str(msg.payload)

 dp.bot.send_message(chat_id=chatId, text=data[2:(len(data)-1)])

def on_subscribe(mqttc, obj, mid, granted_qos):

 print("Subscribed: " + str(mid) + " " + str(granted_qos))

def helpFunc(bot, update):

 print('help')

 return CHOOSING

def done(bot, update, user_data):

 user_data.clear()

 return ConversationHandler.END

def error(bot, update, error):

 logger.warning('Update "%s" caused error "%s"', update, error)

77

updater = Updater("botToken")

dp = updater.dispatcher

def main():

 global dp

 conv_handler = ConversationHandler(entry_points=[CommandHandler('start', start)],

 states={

 CHOOSING: [RegexHandler('^Get Figure$',

 getFigure),

 RegexHandler('^Help$',

 helpFunc),

],

 SET_START_POINT: [MessageHandler(Filters.text,

 setStart),

],

 SET_END_POINT: [MessageHandler(Filters.text,

 setStop),

],

 },

 fallbacks=[RegexHandler('^Done$', done)])

 dp.add_handler(conv_handler)

 mqttc = MQTTsubscribe()

 mqttc.on_subscribe = on_subscribe

 mqttc.on_message = on_message

 # log all errors

 dp.add_error_handler(error)

 # Start the Bot

 updater.start_polling()

78

 updater.idle()

if __name__ == '__main__':

 main()

