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To mitigate against the effect of urbanization on the ecosystem, the need for an alternative and 

renewable source of energy is paramount. This has resulted in increased popularity of wind 

turbines. Savonius wind turbine is a seamless solution for the urban environment where the wind 

level is low and unsteady. But, the drawback to this kind of wind turbines is the low coefficient of 

power. 

In this thesis, an attempt was made to improve the performance of the Savonius turbine by the 

addition of stator vanes. The current study utilizes CFD simulation to analyze the flow within a 

conventional Savonius rotor and the stator vaned configuration; to help identify the phenomena 

affecting the performance of the Savonius rotor. Although the addition of the stator did not improve 

the performance of the Savonius rotor, one key novelty that can be used to improve the 

performance of the Savonius turbine was observed. 

The key novelty was that the use of the downstream stator vanes as was implemented in this study, 

extends flow attachment on the convex side of the rotor bucket to angle of 180°. On the downside, 

the observation was that the upstream vanes as implemented in this study, resulted in a reduced 

rotor bucket performance by reducing the flow attachments to the buckets’ convex sides.   
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1 INTRODUCTION 

 

1.1 History and current trends in Wind turbines 

Wind is air movement caused by the irregular warming of the atmosphere by the sun. Wind Energy 

Conversation Systems (WECS) exploits the kinetic energy of wind to useful energy. Historically, 

in the mid-19th century, WECS (often called windmills) was generally used for small-scale 

applications such as water pumping and farming (Schubel & Crossley, 2012). The American 

engineer, Palmer Cosslett Putnam in October 1942, was the first to actualize the utilization of large 

wind turbines for electricity generation, see fig 1-1. Although Danish and German engineers in 

Europe have already developed various concepts, World War II halted the implementation of these 

concepts.  In his design, Putnam developed a two-bladed rotor with 53.5 meters in diameter; 

installation of a 1250 kW synchronous generator, on a 35.6 m high lattice tower structure (Hau, 

2013).  

The need for an alternative source of energy, particularly renewable energy, became public interest 

in 1973 due to the energy crisis. Unending public debates were organized to discuss the 

dependence of the industrialized western world on oil exporting countries; scientist and engineers 

with the aid of political support searched for ways to utilize renewables and solve dependencies 

on oil importation. In the USA, the creation of the US Federal Wind Energy Programme with a 

budget of about $ 200 million in 1973 under the Department of Energy (International Symposium 

on Wind Energy Systems, 1982). In Denmark, a commision of experts proposed that it was 

possible to generate over 10% of Danish power requirement from wind energy; by giving subsidies 

to users of wind turbines. In the Federal Republic of Germany, subsidization of wind energy started 

in 1974, with various programmes under the Bundesministerium für Forschung und Technologie. 

In Sweden, 280 million Swedish Crowns were made available for the research and development 

of wind energy in 1975 by the newly created National Swedish Board for Energy Source 

Development (Hau, 2013). Currently, the trend continues, more countries have a direct and indirect 

support program for the development of wind energy technology. 

Furthermore, in recent times, global participation in the use of wind energy for electricity 

generation has increased. A good example is in Asia, where China is aggressively developing its 
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wind energy capacity. Also, Europe and America are not left out in this global race of wind energy 

development. The next sections present recent trends in the development of wind energy resources 

in the EU, Finland and globally.   

 

Figure 1-1: Smith-Putnam wind turbine, in Vermont, USA. (Rotor diameter 53.3 m and rated power of 1250 kW). 

(Hau, 2013) 

1.1.1 Wind energy trend in EU 

With the increasing rate of fossil fuel and coal power plants decommissioning in EU, wind energy 

became the second largest form of power generation in capacity by 2016 and has come to play a 

critical role in meeting EU energy mix. Also, EU wind energy capacity has increased from 65 GW 

in 2008 to 154.8 GW by 2016, with a similar increase in electricity production from wind as shown 

in figure 1-2. In the year 2017, the EU states decommissioned a total of 11963 MW capacity of 

coal and fossil (WindEurope, 2018), while installing a cumulative capacity of 14750 MW of wind 

energy (EurObserv'ER, 2018). The three largest markets, that is, Germany, UK and France with a 

newly installed capacity of 6440 MW, 4270 MW and 1798 MW respectively in 2017 accounts for 

80% of all new installation in EU in 2017. In total, the installed wind energy capacity in Europe at 

the end of 2017 was 169 GW (onshore and offshore inclusive) with a total electricity production 

of 336 TWh accounting for 11.6% of EU electricity consumption. Finally, the wind energy forecast 
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in EU is promising, and growth in the industry is expected to continue with an addition of 25 GW 

new capacity installation by 2020 (EurObserv'ER, 2018). 

 

Figure 1-2: EU wind energy growth from 2008 - 2016. Electricity production (black) increased from 118 TWh in 2005 

to 302.9 TWh in 2016. The installed capacity (orange) increased from 65 172 MW in 2005 to 154 847 MW in 2016. 

Wind Energy Barometer (2010 – 2018). 

1.1.2 Wind Energy in Finland 

Wind energy has a critical role to play in Finland’s renewable energy mix, as the need to increase 

the use of clean energy and mitigate against greenhouse gases (GHG) in the power industry 

continues. In Finland’s National Renewable Energy Action Plan (NREAP), the target is to have 

an installed wind capacity of 2500 MVA and 6 TWh per year, by the year 2020 (Energy 

Department, 2012). Finland’s electricity production from wind has increased from 0.15 TWh in 

2005 to 3068 TWh in 2016 (EurObserv'ER, 2018) shown in fig. 1-3. According to WindEurope, 

Finland added 535 MW to its wind energy capacity in the year 2017, taking Finland’s cumulative 

wind energy capacity to 2113 MW.  Also, Finland’s wind capacity installation accounted for 3.4% 

of all new installations made in EU in the year 2017. In the EU (2017) Finland has the fourth 

largest newly installed wind capacity after Germany, UK, and France respectively. The wind 

energy outlook in Finland is progressive, as production in Finland is likely to increase to meet the 

NREAP target. 
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Figure 1-3: Finland's wind energy growth from 2005 - 2016. Electricity production (black) increased from 0.15 TWh 

in 2005 to 3.068 in 2016. The installed capacity (orange) increased from 143 MW in 2005 to 1532 MW in 2016. Wind 

Energy Barometer (2011 – 2018). 

1.1.3 Global Wind Energy Trend 

Finally, in a global perspective, the wind energy installed capacity has developed steadily from 

17.7 GW in the year 2000 to 539.2 GW in 2017; indicating a landmark achievement in the history 

of wind energy utilization. Asia was the market leader in wind energy capacity, spearheaded by 

China (188 GW) and India. Asia accounted for 42% share of worldwide wind installed capacity 

by the end of 2016, followed by Europe accounting for 33% and North America 20% as presented 

in fig. 1-4 and fig. 1-5. In Europe, Germany recorded the largest amount of installed wind energy 

capacity of 56.1 GW taking it to the third position in global rankings. The United States maintained 

its second position in the global ranking, with an installed capacity of over 89 GW at the end of 

the year 2017. India was in the fourth position with 32.8 GW installed wind capacity. 
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Figure 1-4: Regional share of installed capacity for the year 2016. Asia is the market leader 42% share. Data from 

Wind Energy Barometer, 2018. 

 

Figure 1-5: Top 10 installed wind capacity by country in 2016. Data from Wind Energy Barometer, 2018. 

In conclusion, this section presents the background and the current trends in the development of 

the wind industry. The current trends indicate that the wind energy market is in an expansion phase. 

The key drivers of this expansions according to World Energy Resource Wind 2016 are policy 

support, investors’ familiarity and technology maturity and improvement (increased power factor 
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and availability, production in low wind speed sites). This thesis aims to investigate the possible 

technological improvement in wind turbines for urban areas low wind speed application by 

developing, modeling, simulating a Savonius wind turbine with airfoil stator vanes.  

1.2 Thesis motivation 

Callatay et al., 2011 pointed out that over 70% of the EU population resides in the urban area. 

Also, consumption of 70% of the produced heat and power is in the city, and the urban areas 

produce 75% of EU greenhouse gas emission. Recent trends show that urbanization is still 

increasing. Therefore there is a need to develop an alternative and viable source of renewable 

energy for urban utilization. Wind energy is the perfect fit to tackle the challenge of energizing the 

urban cities successfully. However, some challenges arise when trying to utilize conventional wind 

turbine (HAWT) in an urban area, these challenges include, low wind speed not suitable for 

HAWT, variable wind direction, and low-frequency aerodynamic noise associated with high level 

of turbulence in wind turbine wake (Ledo et al., 2011). Therefore for a wind turbine to successfully 

operate in the urban environment, these challenges must be resolved to an acceptable level; this 

means that the wind turbine must meet some conditions such as city specified noise level, 

architectural blend with existing buildings, aesthetic appearance, effective use of low-speed wind 

and acceptability. The Savonius wind turbine amongst other wind converting machine, especially 

VAWT, meets the above-listed conditions. 

The Savonius wind turbine is a vertical axis wind turbine (VAWT) with curved rotor blades to 

harvest the incoming wind, to produce a mechanical rotation used to rotate the shaft of the 

generator. The Savonius wind turbine primarily generates its torque from the drag force in the 

direction of the wind. Figure 1-6 shows the independence of a Savonius rotor to the wind direction, 

showing that there is no need for the complex yawing system used in the HAWT. Also, other 

advantages that make the Savonius turbine suitable for urban utilization include:  

i. Operation at wind speed level associated with an urban environment.  

ii. Ability to operate in multi-directional wind conditions because of its simple geometry. 

iii. The generator is mounted on the ground to ease maintenance requirement both financially 

and technically. 
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iv. The Savonius turbine operates at almost a noiseless condition. 

v. Low cost of fabrication and production. 

 

Figure 1-6: Schematic illustration of a Savonius turbine (Marmutova, 2016). 

According to (Marmutova, 2016), in her doctoral thesis, she highlighted the potential sites for the 

successful installation of a Savonius turbine, which are; roofs tops of building, masts, wind tunnels 

created between proximity buildings and traffic tunnels. 

Irrespective of the advantageous qualities discussed above; the Savonius turbine remains 

unpopular in urban environments. The unpopularity of the Savonius turbine is because of the low 

coefficient of power associated with the drag type wind converters. The typical power coefficient 

values of drag operating wind turbines (VAWT) are generally lower than those of lift operating 

wind turbines (HAWT); this leads to the first research question of how to effectively increase the 

aerodynamic power coefficient of the Savonius turbine? 

1.3 Aerodynamics and modeling of a Savonius turbine 

Wind energy converters are commonly known as wind turbines. A wind turbine converts the 

kinetic energy of moving wind into mechanical energy for either electrical production (with 

generators shaft) or other uses like water pumping.  The general concept of wind turbine assumes 

that only the mass of air that passes through the rotor is affected and that the mass of air outside 
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the rotor is separated and therefore a boundary surface can be drawn between these two masses of 

air at the rotor. Also, the boundary can be extended to the rotor upstream and downstream; and 

because no flow of air crosses the boundary, the air mass flow is equal within this boundary 

(Burton, et al., 2001). The presence of the turbine causes the approaching wind speed to reduce 

gradually, while pressure increases as it approaches the turbine. After the turbine, the speed of the 

wind continues its reduction while the pressure experiences an abrupt drop. Finally, because in 

wind turbine analysis, air is assumed to be incompressible the cross-section of the stream-tube will 

expand to allow for speed reduction. This concept is known as the Actuator Disc concept, and all 

wind turbine types work based on this principle. 

 

Figure 1-7: Actuator disc concept (Burton, et al., 2001). 

1.3.1 Aerodynamics of two-bucket Savonius turbine 

The Savonius turbine as introduced in the previous section is a VAWT that majorly utilizes drag 

force to convert wind energy into mechanical energy. The two buckets and the three buckets 

configuration are the most common configurations investigated by researchers. Figure 2-2 shows 

the 2-bucket and 3-bucket Savonius turbine configuration. 
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Figure 1-8: 2-blades (buckets) and 3-blades (buckets) Savonius turbine (Paraschivoiu, 2002) 

The mathematical model of the Savonius turbine aerodynamics as presented by (Paraschivoiu, 

2002) indicates that the total torque acting on a two bucket Savonius turbine is the sum of the 

individual torque associated with individual rotor bucket.  

𝑄 = 𝑄𝑀 + 𝑄𝐷 (1.1) 

Also, the total torque is obtained using the difference in pressure between the advancing blade and 

the retreating blade. 

Mathematically, 

𝑄 = 2𝑟2. 𝐻 ∫ (∆𝑃𝑀 − ∆𝑃𝐷) sin 2𝜃𝑑𝜃
𝜋/2

0

 
(1.2) 

Where r is the radius of the rotor bucket for an overlap ratio of 0 (fig 1-9), H, is rotor height, θ is 

the rotor bucket angular position, ΔPM and ΔPD are the pressure difference on the returning blade 

and the advancing blade respectively. The change in pressure was evaluated using experimental 

procedures; the procedure requires the placement of seven pressure gauges on both the front and 

back surfaces of the advancing and the returning blades. Equation 1.3 present the derived pressure 

difference correlation based on the gauge measurement. 

∆𝑃𝑀
(𝑓)

1
2 𝜌𝑉𝑒

2
= 𝐾 

(1.3) 
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Figure 1-9: Savonius rotor - calculation scheme (Paraschivoiu, 2002) 

And, 

∆𝑃𝐷
(𝑓)

1
2 𝜌𝑉𝑖

2
= 𝐾′ 

(1.4) 

Where K and K’ are sinusoidal functions of the blade azimuthal angle α and Ve = V∞ - Vi where V∞ 

is the freestream velocity, and Vi is the absolute velocity on the blade on point Mi. Inserting 

equation 1.3 and 1.4 into equation 1.2 gives 

𝑄𝑀 = 𝜌𝑟2𝐻𝐾 [𝑉∞
2 + 2𝛼̇2𝑟2 −

𝜋

2
𝑉∞𝛼̇𝑟𝑐𝑜𝑠𝛼 − 2𝑉∞𝛼̇𝑟𝑠𝑖𝑛𝛼] (1.5) 

And, 

𝑄𝐷 = 2𝜌𝑟4𝐻𝛼̇2𝐾′ (1.6) 

The average power, P, of the Savonius turbine, is the torque (equation. 1.2) integral over the 

azimuthal angle in the range of 0 to π. Mathematically, 

𝑃 = 𝜔. 𝑄 =
𝜔

𝜋
∫ 𝑄𝑑𝛼

𝜋

0

 
(1.7) 

And the normalized power coefficient is given by 
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𝐶𝑃
∗ =

𝑃

1
2 𝜌𝑉∞

3𝐴𝑠

 
(1.8) 

Where * represents a normalized variable, ω is the angular velocity of the turbine and As is the 

total turbine swept area. Combining equation 1.5, 1.6, 1.7, and 1.8 gives 

𝐶𝑃
∗ = [

𝐾𝜆

2

1

2
−

𝐾𝜆2

2𝜋
+

𝐾 − 𝐾′

𝐾
.
𝜆3

4
] 

 

Making K’ = K eliminates the last term which has no physical implication. Therefore, 

𝐶𝑃
∗ = [

𝐾𝜆

2

1

2
−

𝐾𝜆2

2𝜋
] 

(1.9) 

Maximum power coefficient occurs when 

𝑑𝐶𝑃
∗

𝑑𝜆
= 0 

(1.10) 

Solving equation (1.10) using product rule helps to eliminate K, the resulting solution is substituted 

back into equation (1.9) gives 

𝐶𝑃
∗ = 𝐶𝑃𝑚

∗ 16 (
𝜆

𝜋
) [

1

2
− (

𝜆

𝜋
)] 

(1.11) 

Where Cpm* is the normalized maximum power coefficient. Equating CP* to CPm* and solving the 

resultant equations gives a value of TSR as 0.79 for maximum coefficient of power; this value 

corresponds to the experiments conducted by Sandia National Laboratories on two blades 

Savonius turbine with s/d = 0, the result of the experiment shows that the maximum power 

coefficient occurs when TSR is close to 0.8. Figure 2-4 shows the comparison between the 

analytical solution and the experimental results. 
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Figure 1-10: Normalized power coefficient vs. TSR. The thick line is the analytical solution (Paraschivoiu, 2002). 

1.3.2 Modeling of a Savonius Turbine 

The most common cost-effective way of modeling a Savonius turbine is the use of computational 

fluid dynamics (CFD) methods. CFD involves the use of available software (referred to as solvers) 

to solve the complex partial differential mathematics (governing equations) of fluid mechanics 

around a body. The interaction of the body and the fluid can either be steady or transient; steady 

interaction meaning the body is at rest, while transient means that the body is in motion. The 

simulation of the Savonius turbine utilizes both the steady and the transient solver to calculate the 

interaction between the turbine and the flow field. The process of modeling a Savonius turbine 

involves firstly, the construction of the geometry, the generation of the computational domain and 

finally the use of CFD solvers. Chapter 3 presents the details of the modeling processes.  

It is important to point out at this juncture that the utilization of the CFD approach has inherent 

errors that can adversely affect the results and sometimes cause large discrepancies between 

simulation results and experimental results. The errors associated with CFD emanates from the 

deficiencies of the individual process that makes up CFD itself. It is, therefore, impossible to get 

rid of all the errors in CFD but can be reduced to an acceptable level and validated by experimental 

results. The prominent errors for Savonius turbine simulations include discretization error, 

rounding-off error, and convergence error. The discretization error occurs when insufficient mesh 
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density is utilized to capture the algebraic solution of the governing differential equations 

inadequately; discretization errors results in over-approximation of the solution (Zikanov, 2010).  

Another source of error is the rounding-off error. It is the difference between the actual solution 

of the discretization equation and the exact solution of the discretization equation. A rounding-off 

error has a direct relationship with the precision limits of a solver, for this thesis the precision of 

Fluent was double-precision. Double precision means that the calculated values are rounded-off to 

15 significant digits. Also, mathematically the discretization error and the round-off error are 

related as follows. Using the follow notation 

Cma is the exact analytical solution of the PDE that represents the Savonius turbine torque 

Cmd is the exact solution of the system of the discretization equation and, 

Cmn is the actual solution of the system of discretization equation (solver results), 

Therefore, the discretization error, ed 

𝑒𝑑 =  𝐶𝑚𝑑 − 𝐶𝑚𝑎 (1.12) 

And, the round-off error, er is 

𝑒𝑟 =  𝐶𝑚𝑛 − 𝐶𝑚𝑑 (1.13) 

Equation 1.13, indicates that the actual solution differs from the exact solution with the magnitude 

of the round-off error. In general round-off errors are very small but can sum up quickly if 

numerous transient simulations are conducted and ruin the results of the simulations (Zikanov, 

2010).  

The convergence error is the difference between the ideally fully converged solution and the non-

converged solution. Nonconvergence of a simulation is typically relative, based on the solver 

settings. For Fluent the convergence is controlled by the residual tolerance level; a higher residual 

tolerance level will converge the solution quickly but with inaccurate results, while a very low 

residual level will require more computational resources but with better solution accuracy.  

Therefore, trading-off between computational resource requirement and solution accuracy is a 

dilemma regularly faced in CFD simulations. In this thesis, the residual level was 1e-6 for all 

variables. This residual value is proposed for VAWT simulation (Balduzzi et al., 2016). Other 
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factors that affect the solution convergence in Fluent include, boundary conditions, solution 

initialization, time step size, number of internal iteration and the Courant number. 

Noting the errors associated with CFD discussed earlier the second research question arises how 

to correctly use CFD to analyze the aerodynamics of a Savonius turbine? 

1.4 Organization and limitations of the thesis 

1.4.1 Organization of the thesis 

The thesis is made up of five chapters, the first chapter consists of two sections, the first section 

presents the history and current trends in the wind energy industry. While the second section, 

discusses the aerodynamics of two bucket Savonius turbine without an air gap, also it informs on 

the numerical modeling of Savonius turbine and its associated errors. Finally, this chapter presents 

the research questions. 

The second chapter reviews the studies already done on the Savonius turbine. In particular, the 

chapter highlighted the research trend in the field of the Savonius turbine; presenting both 

experimental and simulation studies. In this chapter, the influence of various configurations was 

reviewed and presented. The third chapter discusses the numerical modeling, this includes the 

model description, the mesh generation, and the simulation procedure. 

The fourth chapter presents and analyzes the simulation results. Revealing phenomena that resulted 

from the modification of the Savonius rotor. While the final chapter gives a conclusion about the 

thesis, highlighting the findings of this research. Finally, presenting suggestion and further studies 

opportunities. 

1.4.2 Limitations of the thesis 

Although the author of this thesis attempts to examine and present physical representative results 

rightfully, the author is faced with the following limitations: 

i. Various modified Savonius geometries were simulated, but only one was presented and 

further investigated in this thesis. 
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ii. The experimental results of Blackwell, et al., 1977, was used to validate the conventional 

Savonius turbine presented in this thesis. On the other hand, experimental validation of the 

modified Savonius turbine is pending and therefore not presented in this thesis.  

iii. This thesis makes use of the 2-D model, which assumes equal distribution of quantities 

along the rotor bucket height. Using a 2-D model will overestimate the performance of the 

turbine. 

iv. The total number of cells for the calculation domain was limited to 512,000 cells in 

accordance with the Ansys Student license requirement. 

v. This thesis investigates only the aerodynamics properties of Savonius turbine.  



16 

 

 

2 LITERATURE REVIEW 

 

The expectation of wind power generation in urban areas has increased, these expectations are, for 

example, small-scale generation for household use, the combination with solar power, and 

cogeneration of energy required by larger buildings. Although the HAWT has been able to meet 

some of these expectations its is highly unsuitable for many reasons. These reasons include the 

requirement of greater wind velocities not expected in city environments. Also, they produce low-

frequency noises that are harmful to animals. The Savonius turbine, on the contrary, is not 

associated with these environmental problems and does not require high wind velocities to start. 

These qualities of the Savonius turbine has been a source of motivation for researchers to 

investigate the Savonius turbine further. There have been several types of research done in the 

field of the Savonius turbine. Researchers have investigated the effects of different configurations 

amongst which are the number of rotor buckets, numbers of rotor stages, overlap ratio, aspect ratio, 

endplates, rotor blade shapes, and stator inclusion.  

2.1 Experimental investigations of Savonius turbines 

Experimental studies were the norm in the early stages of the investigations of the Savonius 

turbine, but with the recent advancement in computational power and better-improved CFD 

solvers, simulations have become popular in wind turbine investigations. Irrespective of this shift, 

experimental investigations remain very important, as they are used to validate simulation results. 

Therefore, it is necessary at this point to highlight the experimental investigation that contributes 

to the overall scientific knowledge of the Savonius turbine.  

The experimental investigation of the Savonius turbine can be done in both controlled and 

uncontrolled environment. A controlled condition generally refers to a wind tunnel while an open 

atmosphere refers to as an uncontrolled environment. The common techniques utilized for 

Savonius turbine experiments are the flow visualization (Fujisawa & Gotoh, 1992) method and 

pressure measurement (Blackwell et al., 1977) on rotor buckets. In the experiment of (Fujisawa & 

Gotoh, 1992) the aerodynamics of the flow around and within a Savonius turbine was visualized 

alongside pressure measurements for both still and a rotating Savonius rotor. A remarkable 

difference between the static and the rotating rotor are as follows.  
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i. The downward movement of the separation point. (compare figure 2.1c and figure 2.2c) 

ii. The relative decrease in the pressure coefficients in the convex side of the advancing 

bucket. (compare figure 2.1d and figure 2.2d) 

iii. Resisting flow caused by rotating effect weakens the Overlap flow. (compare figure 

2.1b and figure 2.2b) 

The difference in the flow around and within a still and a rotating Savonius rotor is mainly because 

of Coanda effect at small rotor angles of less than 45° figure 2-2a. For the rotating turbine, the 

separation of the attached flow occurs at higher rotor angles of 90° - 135°. This attached flow in 

the rotating rotor contributes to the rotating torque of the rotor (figure 2-2d). But, on the other 

hand, the stagnation pressure is reduced when compared to the still rotor. 

 

Figure 2-1: Flow in and around a still Savonius rotor; a: visualized flow field; b: flow inside the rotor; c: flow field; 

d: surface pressure distribution (Fujisawa & Gotoh, 1992) 
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Figure 2-2: Flow in and around a rotating Savonius rotor (TSR=0.9); a: visualized flow field; b: flow inside the rotor; 

c: flow field; d: surface pressure distribution (Fujisawa & Gotoh, 1992) 

(Blackwell, et al., 1977), conducted fascinating experiments that form the bases of result validation 

for the conventional Savonius rotor in this thesis. The authors conducted wind tunnel tests on 

various configurations of the Savonius turbine. In the experiments, geometry parameters like the 

number of buckets, gap spacing, and rotor height were varied. Also, flow parameters such as 

freestream velocity and the corresponding Reynolds numbers were varied. The table 2-1 presents 

the varied geometry and flow parameters 
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Table 2-1: Experiment parameters of Blackwell, et al., 1977. 

Parameter Values 

Number of buckets 2,3 

Gap spacing (s/d) 0.0, 0.1, 0.15, 0.2 

Rotor height 1, 1.5 

Freestream velocity 7 m/s, 14m/s 

Reynolds number 4.32 x 105, 8.67 x 105 

 

The experiments took place at the Vought Systems Division Low-Speed Wind Tunnel. The results 

show that for the three and two buckets rotor configurations except for the no gap configuration, 

the torque coefficient is all positive for all angular position. Another observation from the 

experiments was that for the two buckets rotor, the power coefficient peaks at a tip speed ratio 

close to 0.9 for all configuration; except for the no gap rotor which peaks at close to 0.8. While for 

the three-bucket configuration the maximum power coefficient was observed at TSR close to 0.6. 

Also, the three-bucket rotor produces lesser variation in static torque coefficient than the two-

bucket rotor. 

In comparing the two- and three-bucket Savonius rotors (figure 2-3), it is seen that the two-bucket 

rotor outperforms the three-bucket rotor on the bases of torque coefficient and power coefficient 

for all TSR with a factor of about 1.5. Noting that, the only temporary advantage the three-bucket 

rotor has over the two-bucket rotor is a better starting torque. This temporary advantage is easily 

removed by utilizing, a multi-stage two-bucket rotor to increase the starting torque as observed by 

the authors. Finally, the experiments concluded that; 

i. The two-bucket rotor experiences more variable torque per angular position than the 

three-bucket rotor. 

ii. The two-bucket rotor outperforms the three-bucket rotor aerodynamically, except for 

starting torque. 

iii. Increase Reynolds number generally increases the aerodynamic performance of all 

configurations. 

iv. The optimum dimensionless gap is in the range of 0.1 to 0.15. 
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v. Finally, the recommended Savonius rotor configuration by the authors is a two-stage 

two-bucket rotor, rotated at 90° apart, with gap width ratio in the range of 0.1 – 0.15.  

 

Figure 2-3: Comparison of power and torque coefficient of 2- and 3- bucket Savonius rotors with gap width ratio of 

0.15 at Re/m of 8.64 x 105  

2.2 Simulation investigations of a Savonius turbine 

The recent trends in Savonius rotor research are the use of simulation, although CFD has its 

disadvantages as highlighted in the previous chapter it also has its own merits. The main 

advantages are that it offers a reduction in the time and cost of conducting studies, that are 

generally expensive with experiments (Versteeg & Malalasekera, 2007). With the recent advances 

in high-speed computing, the popularity of CFD has grown immensely in engineering and 

scientific discipline. Therefore, it comes as no surprise that it is also popular in the analysis of flow 

within and around a Savonius turbine. The general pattern of Savonius rotor research has been to 

analyze the performance of the conventional Savonius rotor and after which flow, and geometry 

parameters are modified, and the effect of such modification on the performance parameters is 

studied.  

Jaohindy, et al., 2013 investigated the effect of using variable aspect ratios, Wenehenubun et al., 

2015 investigated the effect of number of blades of a Savonius turbine, El-Askary et al., 2015 

simulated the effect of using guiding vanes, while Grönman, et al., 2018 used both experiments 
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and numerical analysis to study Savonius turbine with airfoil stator vanes. Also, Mohamed et al., 

2010 placed an obstacle to shield flow from getting to the returning blade in other to increase the 

performance of the Savonius rotor. 

In other studies, researchers investigated the correctness of different methodologies used in the 

numerical analysis of the Savonius turbine. Roy & Ujjwal K. Saha, 2013 observed that the use of 

various simulation techniques has a direct influence on the predicted rotor aerodynamic 

performance. The study shows that 3D computational study always predicts better result than its 

2D counterpart. Also, the 2D simulation always over-predict the aerodynamic performance of the 

Savonius rotor. Finally, they suggested that the Hybrid Detached-Eddy Simulation (DES) and k–

ω SST turbulence model captures the unsteady effect of the Savonius rotor more accurately. 

However, the authors concluded that the 3D k–ω SST model shows a close prediction when 

compared with the experimental results (figure 2-4). 

 

Figure 2-4: Comparison of different turbulence models with experimental data (Roy & UjjwalK.Saha, 2013). 

In another simulation research D’Alessandro, et al., 2010 gained an insight on the flow developing 

within and around the Savonius rotor; they observed a solid relationship between the variable 

torque and the TSR and time. Also, the research developed a computational fluid dynamics model 

for the interaction between the flow field and the rotor blades. Comparing the data obtained at the 

Environmental Wind Tunnel (EWT) laboratory of the Polytechnic University of Marche, validated 
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the result of the developed CFD model. Their numerical approach was to develop a computational 

methodology to solve RANS equations coupled with turbulence model using the Finite Volume 

Method (FVM) of the Fluent code. The convective term discretization was obtained using the 

MUSCL approach; the central differencing scheme was used to discretize the diffusive terms. The 

effect of numerical diffusion was cancelled by using second-order implicit scheme for the time-

step. Finally, solving the pressure-velocity coupling with the SIMPLEC approach. The conclusion 

from the results is that the aerodynamic performance obtained by the developed computational 

methodology was in agreement with the experimental data. Therefore, the researchers suggest the 

use of this numerical approach for investigating the Savonius rotor. 

2.3 Influence of geometry and flow parameters on Savonius type rotors 

Different parameters affect the aerodynamic performance of the Savonius turbine (Akwa et al., 

2012). The commonly studied geometry parameters include the effect of end plates, aspect ratio, 

buckets spacing, buckets overlap, buckets shapes, buckets number, center shaft inclusion, and rotor 

stages. Also, flow parameter like Reynolds number is commonly studied to observe its effect on 

the performance of the Savonius turbine. 

2.3.1 Impact of number of rotor buckets 

Some studies have been conducted to understand the aerodynamic impact of varying bucket 

quantities on the Savonius turbine. Sheldahl, et al., 1978 conducted experiments on a various 

number of buckets and observed that the two-bucket rotor aerodynamic performance was better 

than that of the three- and four- bucket rotors. The numerical work of (Zhao et al., 2009) compares 

the power coefficient (Cp) of the two- and the three- bucket rotor and found out that the maximum 

Cp for the two-bucket rotor is 0.165 and that for the three-bucket rotor us is 0.12, which agrees 

with the work of (Saha et al., 2008). The general observation is that bucket addition to the Savonius 

rotor reduces the maximum Cp (figure 2-3). This is because, the added bucket will deflect the air 

flow that should focus on the next bucket, and this process repeats for the next bucket; therefore, 

creating a “cascade effect” that reduces the amount of wind energy converted to mechanical energy 

by the rotor and ultimately reducing the performance of the rotor (Akwa et al., 2012).  
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2.3.2 Impact of number of turbine stages 

A common shortcoming of the two-bucket Savonius turbine is the large variation of the static 

moment at different rotor angle. Saha et al., 2008 wind tunnel tests found that a solution to this 

inadequacy is the utilization of multi-stage rotors. The authors experimented on single-stage, two-

stage and three-stage rotors figure 2-5 (left).  

 

Figure 2-5: Left: Models of single-, two-, three-stage rotor systems. Right: variation of power coefficient with velocity 

(Saha et al., 2008). 

The observation was that the turbine Cp increased when the number of stages increases from one 

to two, and Cp decreases when the number of stages increases from two to three figure 2-5 (right). 

The authors concluded that the turbine performance decreased when the stages increased from two 

to three because of the increase in the turbine inertia caused by the addition of the third stage. 

2.3.3 Impact of end plates 

Endplates have positive effects on the aerodynamic performance of the Savonius turbine 

(Ushiyama & Nagai, 1988) as presented in figure 2-6, this is because the endplates reduce losses 

by preventing the escaping air from the concave side of the buckets and maintains the pressure 

difference between the concave and the convex sides of the plates.  

The general agreement is that the use of endplates increases the turbine performance, but the 

endplates thickness should be negligible when compared to the height of the rotor buckets. 

Furthermore, (Ushiyama & Nagai, 1988) have suggested that the endplates diameter should be 1.1 

times the rotor diameter.   
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Figure 2-6: Endplates effect on the performance of a Savonius rotor (Ushiyama & Nagai, 1988) 

2.3.4 Impact of aspect ratio 

The aspect ratio is the dimensionless parameter relating the turbine height to the rotor diameter for 

a conventional Savonius rotor. The observation is that with an increase in aspect ratio, the tip losses 

reduces; therefore, increased aspect ratio has the same effect as the inclusion of endplates (Akwa 

et al., 2012). Various literature suggests that an optimum aspect ratio would be within 1 to 2. 

Blackwell, et al., 1977 also investigated the effect of aspect ratio on Savonius rotor performance. 

The authors experimented with aspect ratios of 1.0 and 1.5, the observation was that the 

aerodynamic performance of the rotor with an aspect ratio of 1.5 was better than that of the rotor 

with an aspect ratio of 1.0. 
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Figure 2-7: Impacts of aspect on two-bucket Savonius turbine (Blackwell, et al., 1977). 

 

2.3.5 Impact of overlap ratio 

The overlap ratio is the dimensionless ratio of the overlap space and the bucket diameter. Various 

authors have a different opinion of what is the optimum overlap ratio. Fujisawa, 1992 shown in 

figure 2-7, and Kamoji, et al., 2008 in their research observed an optimum overlap ratio of 0.15, 

(Blackwell et al., 1977) said that the optimum value of overlap ratio was between 0.1 and 0.15. 

(Alexander & Holownia, 1978) and (Mojola, 1985) both gave an optimum overlap ratio in the 

range of 0.2 to 0.3. According to (Kamoji et al., 2008) the vorticity losses of the Savonius turbine 

increases at overlap ratios greater than 0.15, which reduces the rotor aerodynamic performance. 
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Figure 2-8: Effect of bucket overlap on the performance of the Savonius turbine (Fujisawa, 1992). 

2.3.6 Impact of bucket profile  

Researchers have studied different types of bucket profile; the helically shaped bucket profile is 

amongst the most studied alternative to the semi-circular rotor. Damak et al., 2012 investigated 

the aerodynamic behavior of a modified helical Savonius rotor with a twist of 180°. The 

observation from the authors' experiment was that the Savonius turbine with a helically shaped 

bucket had better performance than the conventional Savonius rotor as shown in figure 2-8. In the 

wind tunnel tests of Saha et al., 2008 they investigated the aerodynamic performance of 12.5° 

twisted buckets (see figure 2-10 A for examples of helically twisted Savonius rotor). The 

conclusion the authors inferred was that the twisted bucket shows better performance because; in 

the case of the conventional buckets (semi-circular), the maximum force acts at the center of 

curvature. While for the twisted bucket geometry, the maximum force acts on the tip of the bucket. 



27 

 

 

 

Figure 2-9: Comparison of the helical Savonius rotor to the conventional Savonius rotor (Damak, et al., 2012). 

(Kamoji et al., 2008) also investigated a modified rotor buckets shape, shown in figure 2-10, in a 

wind tunnel test. The authors' observation was that the maximum Cp of the modified buckets was 

17%, 11%, and 18% higher when compared to the conventional Savonius turbine at Reynolds 

number of 1e5, 1.2e5 and 1.5e5 respectively.  

 

Figure 2-10: Modified Savonius rotor profiles  
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2.3.7 Effect of Reynolds number 

(Blackwell et al., 1977) investigated the effect Reynolds number has on the Savonius rotor 

performance, and the observation was that; with an increase in Reynolds number, the turbine 

aerodynamic performance improves. The observed improvement is because an increase in the Re 

delays the boundary layer separation on the convex side of the bucket. The delayed boundary layer 

separation increases the lift force contribution to the resultant force at an angular position close to 

0° or 180° as seen in figure 2-11 (Akwa et al., 2012). 

 

Figure 2-11: Re influence on Savonius rotor absolute pressure. (a) Re = 43,350 (b) Re = 867,000 (Akwa et al., 2012). 

Figure 2-10 shows the influence of increased Re on the separation point and its contribution to the 

overall absolute pressure on the Savonius rotor. 

2.4 Savonius turbine augmentation techniques 

In this section, discussion on the improvement of Savonius turbine using additional features such 

as guide vanes (El-Askary et al., 2015), deflector plates (Altan & Atilgan, 2008), guide box tunnel 

(Irabu & Roy, 2007), stator (Grönman et al., 2018), and multiturbine interaction (Shigetomi et al., 

2011) is presented. In most cases, the ideology is to manipulate the upstream flow, to focus it on 

the concave side of the advancing blade.  

2.4.1 Guide vanes, deflector plates, and guide box 

El-Askary et al., 2015 researched the improvement of the power coefficient of the Savonius turbine 

by guiding the incoming flow to the concave side of the advancing and returning blade using 
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special deflector plate designs shown in figure 2-12A. In the researchers' investigations, three 

different types of rotor designs were simulated using FLUENT®. The results show that the 

suggested design with curved passage shape, had no negative torque coefficient and therefore it is 

possible to self-start. Also, the suggested design resulted in an impressive maximum power 

coefficient of 0.52 shown in figure 2-12B. However, a significant amount of wake was generated 

by these new designs when compared to the conventional Savonius rotor. The major drawback of 

this design is it non-aesthetic outlook and as such not fully suitable for a modern city environment. 

 

Figure 2-12: Guide vanes design (A), comparison of power coefficient between the conventional Savonius rotor and 

modified Savonius rotor with guide vanes (B) (El-Askary et al., 2015). 

(Altan & Atilgan, 2008) conducted wind-tunnel experiments supported by numerical analysis of 

the use of deflector plates which are called curtains showed in fig 2-13A. The aim of augmenting 

the Savonius rotor with the curtains is to decrease the value of negative torque that is generated by 

the returning blade of the Savonius rotor. Furthermore, the curtains are designed to rotate 360° 

around the Savonius rotor with the aid of a sensor. The observation from the study shows that the 

Savonius turbine with curtain design has improved aerodynamic performance compared to the 

conventional Savonius rotor figure 2-13B. Also, it was observed by the authors that the worst 

curtain position is when the rotor angle is at 90° to the main flow as shown in figure 2-13A this is 

because the flow guided by the curtain escapes over the returning blade and increases the negative 

torque of the turbine. This design, although was able to increase the performance of the Savonius 

A B 
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turbine has a drawback of the complexity of using a wind direction sensor (yawing device) to 

reposition the curtain based on the direction of the wind.  

Irabu & Roy, 2007 experimented with two- and three- blade conventional Savonius turbines 

augmented with a moving wall guide box as shown in figure 2-14 (note: for two-bucket shown). 

In this experiment a guide box tunnel (GBT) was used for the following purpose, firstly to increase 

the Savonius turbine output power and secondly act as a windshield for the Savonius rotor in very 

gusty wind conditions.   The observation from the experiment shows that the utilization of GBT 

resulted in a maximum power coefficient 1.23 times greater than that of a conventional Savonius 

turbine for the case of the two-bucket rotor. While for the three-bucket case, the power coefficient 

of the GBT modified rotor was 1.5 times that of the conventional turbine. The drawback to this 

design is that it is unfeasible in the large-scale scenario and the guide box has a lot of moving parts 

which becomes difficult to maintain over time. 

 

Figure 2-13: A modified Savonius rotor with curtains (A), comparison of power coefficient of conventional and curtain 

augmented Savonius turbine (B) (Altan & Atilgan, 2008). 
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Figure 2-14: Rotor and guide box tunnel as proposed by (Irabu & Roy, 2007) 

2.4.2 Multi-turbine interaction 

(Shigetomi et al., 2011) took an interesting perspective, the authors investigated the interaction 

between two Savonius turbines in a nearby configuration in the horizontal plane. They found 

particular configurations that increased the turbines power, as an example see figure 2-15. The 

increase is mostly due to firstly the Magnus effect that alters the mainstream flow behind the first 

turbine to increase rotation in the downstream turbine. Secondly, vortex shedding and cyclic 

pressure fluctuation which causes periodic coupling between the Savonius turbines. Bi-coordinate 

system was used to present the interaction of the two turbines, and four locations were found to 

increase the two turbines performance above that of a single turbine. Positive effects were found 

firstly at, (x/D, y/D) = (1.5, 1.5), as a result of the Magnus effect. Secondly, at (x/D, y/D) = (1.5, 

1.5) due to mainstream flow bending behind the first turbine in this region. Thirdly, at (x/D, y/D) 

= (1.5, -1.5) this is due to the wake of the first turbine, vortex shedding, and pressure fluctuation. 

Fourthly, positive coupling is also observed at (x/D, y/D) = (0.5, -0.5).  
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Figure 2-15: Velocity vector plot for positive interaction condition. 

2.4.3 Stator Vanes  

The stator vanes have also been used to augment the Savonius turbine, the research of (Shahizare, 

et al., 2016) indicated that the use of stator vanes has a positive impact on the overall turbine 

performance. In the study, the researchers observed that the turbine power coefficient increased 

with stator vanes addition. (Grönman et al., 2018) also used stator vanes to augment the 3-bladed 

Savonius rotor, but there was no direct comparison with the conventional 3-bladed Savonius rotor. 

In the study of (Grönman et al., 2018), experiments and numerical method was used to 

comprehensively analyze the flow within and around a stator only configuration and a stator-rotor 

interaction configuration. The authors' observations were that the stator has the tendencies of 

accelerating the flow above the free stream velocity. Also, the study presented a generic flow 

model for the vaned Savonius turbine as shown in figure 2-16. 
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Figure 2-16: Generic flow model for the vaned Savonius turbine (Grönman et al., 2018). 

Another study by (Shahizare et al., 2016) used numerical methods to investigate the effect of stator 

vane angles on the performance of the VAWT based on the author’s previous study. The guide 

vanes consist of four pairs of guide vanes as shown in figure 2-16. The inference from the study 

was that, the optimal stator angles are when β = 55° and α = 20°. At these angles the performance 

of the VAWT was improved by 40.9%, 36.5%, 35.3% and 33.2% at TSR of 0.745, 1.091, 1.901 

and 2.53.  
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Figure 2-17. Top view of Omni-directional stator vanes (Shahizare, et al., 2016) 

 

2.5 Summary 

Many researchers have studied the conventional Savonius rotor to gain a full understanding of the 

flow phenomena that happens within and around the rotor. While others have tried to improve the 

overall performance of the turbine or improve a certain characteristic of the turbine like the starting 

torque. The historical method was to use experiments to study the Savonius rotor, but the current 

trend is to adopt a cost-effective numerical simulation alongside experimental validation to study 

the Savonius turbine. Also, turbine augmentation studies have become popular in the hopes of 

increasing the performance parameters of the Savonius rotor. In this thesis, stator vanes are added 

to the Savonius rotor, and the effect of the stator vanes on the aerodynamic properties is studied 

with the aid of numerical simulation.  
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3 NUMERICAL MODELLING  

This chapter discusses the geometry creation, mesh generation and the numerical models used in 

this thesis. More so, this section also presents, to some detail, the governing equations of the fluid 

dynamics, turbulence models, near-wall modeling and discretization schemes. A 2D model of the 

Savonius rotor used in the experiment of Blackwell et al., 1977 was modified and numerically 

investigated in this thesis. The 2D geometry creation was made with Autodesk Fusion® 360 version 

2.0.4391 student license. Autodesk Fusion® 360 present an easy but comprehensive interface for 

generating geometries. After the geometry creation, the next step involves the 2D mesh generation 

using Pointwise® mesh generation software. After which, the simulation is done by Ansys Fluent® 

18.0 and the post-processing is done with CFD post. 

The use of a two-dimensional geometry is acceptable because only the main flow phenomena are 

investigated in this thesis. Notwithstanding, the simulation results will be affected by using 2D 

geometry, this would generally result in the over-approximation of the turbine performance when 

compared to experimental data. The over-estimation occurs because the pressure profile varies 

with the rotor height and 2-D geometry does not capture this phenomenon. A way to mitigate 

against this issue would be to increase the aspect ratio of the rotor as was suggested by Grönman 

et al., 2018. 

3.1 Model description 

In this thesis, part of the aim is to develop a modification, for the Savonius turbine, that increases 

the self-start capacity and the overall performance by using stator vanes. To the best of the author’s 

knowledge, only a hand full of researches Grönman et al., 2018, Pope et al., 2010, and Shahizare 

et al., 2016 exist to this respect. The aim of using stator vanes by these researchers was to focus 

the upstream flow to the concave part of the Savonius turbine. The development of the stator vanes 

used in this thesis exploits the same ideas as was those of the above-mentioned researchers. 

Vividly, the modified turbine consists of the Savonius rotor and NACA 0012 stator vanes 

configuration as shown in figure 3-1.  

The Savonius rotor in the experiment of (Blackwell et al., 1977) was improved with the addition 

of NACA 0012 airfoil. In its simple form, the geometry parameters of the Savonius rotor used by 

Blackwell, et al., 1977 are thus:  
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The overlap or gap ratio is 0.15, the rotor diameter is Dr is 0.9262 m, the bucket thickness t is 0.12 

mm, bucket radius r is 0.5 m, the rotor height is 1 and finally an endplate with diameter with a 

ratio of 1.1 the rotor diameter (not shown in 2-D). From figure 3-1, the addition of six stator vanes 

(three upstream and three downstream) to the Savonius rotor is shown.  

The stator vanes should perform two significant functions which are (1) to act as a curtain and 

block wind flow from getting to the convex side of the returning rotor blade and (2) to direct wind 

flow towards the concave side of the advancing rotor blade. The stator performs these two 

functions only at the rotor angular position 90° (shown in the figure 3-1) or 270° to the mainstream 

flow, U∞, because the stator vanes are static.  

 

Figure 3-1: Savonius rotor with stator vanes 

3.1.1 The stator vanes 

The stator consists of 6 NACA 0012 airfoils each with different chord length, and variable angle 

of attack. The chord length and the angle of attack are selected based on the requirement to stop 

the upstream flow from getting to the convex side of the returning bucket and divert flow to the 

concave side of the advancing bucket respectively. The stator chord length is just enough to make 

sure that there is no lateral distance between the leading edge and the trailing edge of the adjacent 

airfoil as shown in figure 3-2, while the stator angle is selected to divert flow to the concave tip of 

the advancing blade.  

The assumption is that blocking the direct flow towards the returning blade by the stator vanes will 

decrease the resistance caused by pressure buildup on the convex surface of the returning blade; 
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and thereby increases the pressure difference between the advancing and the returning blade which 

will increase the resultant drag force in the direction of the advancing blade. Table 3-1 and 3-2 

show the stator vanes parameters. Finally, the downstream stator vanes, are identical to the 

upstream stator vanes but rotated at an angle of 180° about the z-axis. The downstream stator blade 

is used to maintain the omnidirectional property of the Savonius rotor while avoiding complicated 

yawing systems. 

 

Figure 3-2: The lateral distances between two adjacent stators vanes. 

Table 3-1: Stator vanes parameters 

 

 

 

Table 3-2: Stator design parameters 

 

 

S/N NACA type Chord length [m] Angle of attack 

1 0012 0.20 50° 

2 0012 0.14 60° 

3 0012 0.12 70° 

Stator outer radius [m] 0.675 

Stator inner diameter [m] 0.5 

Stator height [m] 1 

Tip and hub clearance [m] 0.0389 

Stator solidity 0.74 
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3.1.2 Stator solidity 

Stator solidity is an important parameter to consider in this design modification. The stator solidity 

defined as the ratio of the blade length to the pitch is expressed mathematically as, 

𝑠𝑡𝑎𝑡𝑜𝑟 𝑠𝑜𝑙𝑖𝑑𝑖𝑡𝑦 = 𝑐/𝑠 (3.1) 

Where c is the chord length, and s is the pitch. The pitch is the ratio mean stator area to the number 

of blades which is  

𝑠 = 2𝜋𝑟𝑚/𝑛𝑏 (3.2) 

Where nb is the number of blades and rm is the mean radius of the stator. For this stator the mean 

radius is  

𝑟𝑚 = √
𝑟𝑜

2 + 𝑟𝑖
2

2
 

(3.3) 

Where ro and ri are the stator outer and inner radius of the longest vane. The chord length c is the 

average chord length of the stator vanes given by 

𝑐 =
𝑐1 + ⋯ + 𝑐𝑛𝑏

𝑛𝑏
 

(3.4) 

Inserting the numerical values from table 3-1 and 3-2 into equation 3.1 to 3.4 gives a solidity of 

0.74. The value of the solidity correlates with the suggestion of Grönman et al., 2018. The 

suggestion of Grönman et al., 2018 is that the stator solidity should be in the region of 0.7. 

3.2 Simulation procedure  

This thesis required two simulation cases, the first case is the simulation of the conventional 

Savonius rotor (SIM1), while the second case is the simulation of the vaned configuration of the 

Savonius turbine (SIM2). Henceforth, the two cases are referred to as SIM1 and SIM2. Irrespective 

of the case, the same solver setting except for the Courant number are adopted. Adopting the same 

solver settings will allow both cases to be comparable to each other. The discretization of the 

transport equation was with the second-order upwind scheme in these simulations, but in order to 

avoid instability in the simulations, the solution was first initialized using a steady state flow with 

a moving reference flow around the turbine to get the initial guess for the transport variables. Then 
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the unsteady state simulations started with a first-order differencing scheme in both space and time 

for one rotation, before switching to the second-order scheme for the remaining rotations.  

The turbulence model used by the solver was the k-ω shear-stress transport (SST) as suggested by 

Balduzzi et al., 2016, the advantage of using the k-ω SST model is that it combines the precise 

near wall formulation of the standard k-ω with the free-stream formulation of the k-ϵ model. 

The following cell zones and boundary conditions are defined in the calculated domain and are 

presented in figure 3-4: 

 A rectangular outer zone with a length of 45 D and a height of 20 D. 

 A circular rotating mesh zone with a diameter 1.04 times the diameter of the rotor. The size 

of this zone is smaller than seen in the literature (Kacprzak et al., 2013), this is to reduce 

the clearance between the stator vanes and the rotor buckets. 

 The wall boundary condition was used in the interface between the rotating domain and 

the far-field domain. 

 The velocity inlet with a value of 7 m/s. 

 The pressure outlet has a pressure of 1 atm. 

 Finally, the upper and the lower wall of the far-field zone is symmetry condition. 

3.2.1 Solver settings 

This section presents the settings used for the Ansys Fluent® solver. First, the common settings 

between the SIM1 and SIM2 are discussed. After which, the discussion is focused on the different 

Courant numbers used in both simulations. In general, each simulation considered six design 

points. The tip to speed ratio forms the bases of each design point, each design point is assigned a 

TSR. In this thesis, TSR 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 are investigated by numerical methods for 

both the conventional and modified Savonius turbine. 

Low Mach number is a characteristic of the flow within and around a Savonius turbine as such the 

flow is considered incompressible, therefore the pressure-based solver is used for both SIM1 and 

SIM2. In this approach, the continuity equation and the momentum equation are used to derive the 
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equation required to solve for the pressure field (Balduzzi et al., 2016). Also, both cases use the 

absolute velocity formulation as the size of the rotating zone is relatively small when compared to 

the calculation domain extent.  

The next setting concerns the choice of the algorithm used to solve the pressure-velocity coupling; 

it is common in literature to utilize either the SIMPLE or the Coupled algorithm in VAWT 

simulations. Both solution algorithms are iterative; this is because the governing equations are 

non-linear and coupled, as such the solution loop most be solved until achieving a converged 

solution. The major difference between the two algorithms is the rate of convergence and the 

memory requirements. The SIMPLE algorithm requires less memory but has a slow rate of 

convergence. While the Coupled algorithm requires a memory increase of about 1.5 – 2 times of 

the SIMPLE algorithm, but the convergence rate is faster (Fluent Inc., 2001). Also, the Coupled 

algorithm solves the momentum and the derived pressure-based equation together, resulting in a 

robust and efficient solution for transient flow. Therefore, in both simulations, the Coupled 

algorithm is used to solve the pressure-velocity coupling problems. Each iteration of the coupled 

algorithm consists of the steps illustrated in figure 3-3. 

 

Figure 3-3: Overview of Pressure-Based Coupled Algorithm (Fluent Inc., 2001) 

The angular timestep is the same for both simulations. An angular timestep of 1° was suitable to 

achieve a stable and converged solution. The timestep of 1° is common with the simulation of 

Savonius rotor (Lee et al., 2016), (Zhang et al., 2017). Focusing on the Courant-Friedrichs-Lewy 

(CFL) criterion that defines a Courant number, Co as the dimensionless number representing the 
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ratio between the temporal timestep (Δt) and the cell size (Δx) multiplied by the convective flow 

velocity (V).  

𝐶𝑜 = 𝑉
∆𝑡

∆𝑥
 (3.9) 

The Courant number of 1 is also common with the simulation of the Savonius turbine and is used 

in SIM1. However, for SIM2, the interaction of the upstream stator vanes with the main flow will 

result in an increase of the flow velocity within the Savonius rotor. Hence, a reduction in Courant 

number was required to maintain the convergence of the simulation results. Furthermore, a variable 

Courant number was used for SIM2, at low TSR the Co was 0.5 and at higher TSR the Co was 0.25. 

3.2.2 Modeling turbulence  

In Fluent® turbulence modeling is done with the robust and accurate k-ω SST model developed by 

(Menter, 1994). The major difference between the standard and the SST k-ω are that firstly, the 

SST model is an addition of the standard k-ω and the k-ϵ model multiplied by a blending factor. 

This blending factor has a value of 1 near the surface, which activates the k-ω model, and 0 away 

from the wall which activates the k-ϵ model. Secondly, the turbulent viscosity formulation is 

modified taking the effect of turbulent shear stress into consideration, hence the name k-ω SST. 

These differences make the k-ω SST model dependable over a range of wider kind of flows than 

the standard k-ω model (Fluent Inc., 2001). 

See Appendix I for the mathematical formulation of the SST k-ω algorithm. 

3.3 Mesh generation 

A high-quality mesh is required if the aim is to mitigate instability and get converged solutions. 

For this reason, Pointwise® V18 is used to generate the calculating mesh. Pointwise is a dedicated 

mesh generation and pre-processing software for CFD simulation (Pointwise, 2018). The process 

of creating an adequate mesh to resolve the problem properly involves firstly, the construction of 

a computational domain large enough so that the domain does not influence the flow field. 

Secondly, the creation of adequate density meshes to capture the flow phenomena. 

 Figure 3-4 presents the extent of the computational domain; the length of the upstream and 

downstream domain is 15 times and 30 times the diameter of the rotor respectively. While the 
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height of the domain is 20 times the diameter of the rotor, this domain extent is large enough to 

avoid the blockage effect of the lateral boundaries following the suggestion of Balduzzi et al., 

2016. The calculation domain consists of two parts which are the rotating domain and the far-field. 

The diameter of the rotating domain is 1.04 the diameter of the rotor, in order to reduce the needed 

computational requirement and reduce the clearance between the stator vanes and the rotor. The 

rotating and the far-field domains are made up of mixed mesh containing both triangular, and 

quadrilateral cells (see figure 3-7).  

 

Figure 3-4: Extent of the computational domain 

3.3.1 Spatial discretization 

This section examines the density of mesh required to adequately solve the discretized Unsteady 

Reynolds Average Navier Stokes equations (URANS). It is required that a fine mesh is used to 

capture the gradient of the flow (Balduzzi et al., 2016), but due to solver license (Ansys Student) 

cell size limitations, the maximum number of cells cannot exceed 512000 cells. Therefore, an 

attempt is made to discretize the calculation domain to mitigate against solution instability and still 

be within the limits of the student license. The discretization will require selective order of 

resolution for different part of the computational domain. In this case, the near wall region (that is 

the rotor bucket and the stator vanes) have the highest resolution, see figure 3-5. The black region 

near the wall indicates high mesh density. 
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Figure 3-5: Selective mesh resolution of the computational domain. The rotor buckets and the stator vanes having 

the highest resolutions. 

3.3.2 Boundary layers modeling 

The near wall region of the calculation mesh is very important, and as such care was taken to mesh 

this region adequately. In the near wall region structured (quadrilateral cells) mesh was utilized to 

resolve the boundary layer profile (y+). The number of discretization nodes on the rotor bucket 

and the stator vanes profiles is crucial to resolving the incoming flow incidence angle on the bucket 

or stator vanes surface. For the rotor bucket, the nodes are densely distributed at the tips, while for 

the stator vanes the node points are densely distributed at the leading and the trailing edges.  

The mesh in the region of the wall boundary is constructed with the aim of making the 

dimensionless wall distance, y+, below 1 to avoid discontinuity (Balduzzi et al., 2016). The true 

y+ is not known a priori to the simulation. Therefore the y+ value used in the meshing stage was 

approximated using the law of the wall. The law of the wall is an empirical relationship in turbulent 

flows near solid boundaries. The law states that the velocity in the flow near the wall varies with 

the logarithmic distance from the wall (Wilcox, 2006). Figure 3-6 shows the graphical 

representation of the law of the wall, also the distance from the wall is approximated using the 

formula 

𝑦 ≡
𝑦+𝜈

𝑢𝜏
 (3.5) 

Where the kinematic viscosity, ν, is the ratio of the molecular viscosity μ, and density ρ, ν = μ/ρ, 

and uτ is the friction velocity defined as  
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𝑢𝜏 ≡ √
𝜏𝑤

𝜌
 (3.6) 

Where τw is the surface shear stress and given by  

𝜏𝑤 = 𝑐𝑓 ×
1

2
𝜌𝑈∞

2  (3.7) 

Where cf is the skin friction and U∞ is the freestream velocity. The skin friction is approximated 

using the Schlichting-Gersten correlation given by 

1

√𝑐𝑓

= 4𝑙𝑜𝑔10(2𝑅𝑒𝐷√𝑐𝑓) − 1.6 (3.8) 

ReD is the Reynolds number and is a function of the average velocity across the surface and the 

surface diameter. 

 

Figure 3-6: Velocity profile for a turbulent boundary layer (Wilcox, 2006). 

Therefore, to maintain the y+ value below 1, the near boundary layer region has ten layers of the 

structured grid with a growth rate of 1.1, and the first cell from the wall has a height of 2e-5 m. 

Table 3-3 presents the flow and geometry parameters used for calculating the first cell height from 

the wall. Also, each rotor bucket is discretized with 3235 nodes, while the three stator vanes have 

840 nodes, 590 nodes, and 507 nodes respectively from the longest to the shortest airfoil.  
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Table 3-3: Flow and geometry parameters for calculating first cell height from the wall. 

Main velocity  7 m/s 

Density 1.225 kg/m3 

Dynamic viscosity 1.7894e-5 kg/ms 

Turbine diameter 0.9262 m 

Reynolds number 440 000 

Desired y+ 0.5 

 

In pointwise, the immediate boundary layer mesh was created in the following order: 

i. Connectors profiles were generated from the geometry database using the Entity on 

Database command. 

ii. The connectors profiling the rotor buckets were discretized using the Dimension 

(crtl+W) command under the Grid option on the toolbar. 

iii. The generated node points are distributed accordingly; to the tips for the rotor buckets, 

and to the leading and trailing edges for the stator vanes. The distribution is done with 

the Distribute (crtl+G) command under the Grid option on the toolbar. 

iv. Finally, the rotor buckets and the stator vanes immediate mesh are generated using the 

Normal Extrusion command under the Create option on the toolbar.  

3.3.3 Grid dependency study 

To evaluate the impact of the grid extent and density, three grids are constructed for both the vaned 

and the vaneless turbine and simulated with a flow velocity of 7m/s which corresponds to the 

velocity used by Blackwell, et al., 1977. Tables 3-3 and 3-4 present the properties of the studied 

meshes, the main variables used in regulating the final grid is the number of node points on the 

rotor and the stator buckets, and the domain size.  An example is figure 3-7 showing the details of 

the near wall resolution of the M3 mesh, (A) is showing the rotor bucket and the advancing stator 

vanes, (B) the stator vane and (C) the tip of the rotor bucket. 
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Table 3-4: Mesh sensitivity analysis for the vaned configuration. 

Reference 

name 

Type Number of 

nodes on the 

rotor buckets 

Number of nodes 

on the stator vanes 

Total cells count Domain size 

M1 Coarse 1661 263, 304 and 432 181,728 22.5D x 10D 

M2 Normal 1661 263, 304 and 432 251,388 30D x 15D 

M3 Fine 3,235 507, 590 and 840 508,141 45D x 20D 

 

Table 3-5: Mesh sensitivity analysis for the vaneless configuration. 

Reference 

name 

Type Number of 

nodes on the 

rotor buckets 

Total cells count Domain size 

G1 Coarse 1661 151,825 22.5D x 10D 

G2 Normal 1661 221,501 30D x 15D 

G3 Fine 3,235 448 410 45D x 20D 

 

The impact of the meshes was evaluated using the average torque coefficient value at TSR = 0.5 

(see figure 3-7). The results show that the coarse meshes (M1 and G1) and the normal meshes (M2 

and G2) overestimated the torque coefficient when compared to the fine meshes. The fine meshes 

(G3 and M3) generated could no longer be improved as it was a few cells count below the Ansys 

student limit of 512,000. Therefore, the simulation of the vaned and the vaneless configuration 

uses the fine meshes (M3 and G3) respectively. To prove the suitability of the fine mesh, a 

validation, and a convergence study is carried out in the next section, to evaluate the mesh and the 

solver setting performance.  
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Figure 3-7: M3 mesh details. 

 

Figure 3-8: Grid sensitivity analysis at TSR = 0.5. 

3.3.4 Convergence criteria and validation 

The convergence criteria of the Savonius turbine, as common with different researches occurs 

when the performance parameters show a periodic behavior with a difference of less than 1%. 

Figure 3-9 shows that for TSR of 0.6, the vaneless configuration attained periodic behavior at flow 

time of 3 seconds. Figure 3-10 shows the percentage difference of the last two rotations for both 

the vaned and the vaneless configuration. The maximum difference for the vaned configuration 

was at TSR of 0.4 with a magnitude of 6%, while for the vaneless configuration the maximum 

difference was 4% at TSR of 0.4. This increase in the percentage difference was affected by the 

number of rotations per simulation. In this thesis, the maximum rotation for the simulations is 6. 
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But to achieve a difference of less than 1% it is common to use 10 rotations per simulation as was 

used by Grönman, et al., 2018.  

 

Figure 3-9: Convergence criteria 

 

Figure 3-10: Percentage difference between the last two rotations per TSR. 

The validation process for the vaneless configuration involves the comparison of the simulation 

results from the G3 mesh, with the experimental data of Blackwell et al., 1977. For validating the 

simulation of Savonius rotor three dimensionless parameters are regularly considered, 

The tip speed ratio TSR is defined as  

𝑇𝑆𝑅 =
𝜔𝑅

𝑈∞
 (3.10) 

While the torque coefficient is defined as  
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𝐶𝑚 =
𝑇

0.5𝜌𝐴𝑅𝑈∞
2

 (3.11) 

And the power coefficient is defined as  

𝐶𝑝 =
𝑇𝜔

0.5𝜌𝐴𝑈∞
3

= 𝐶𝑚 × 𝑇𝑆𝑅 (3.12) 

Where ω is the turbine angular speed, R is the rotor radius, ρ is the density and A is the swept area 

of the rotor. 

Figure 3-11 shows the comparison between the simulated results and the experimental data, the 

dashed line represents the experimental data of Blackwell et al., 1977, while the solid line is the 

simulation result. Plot (A) shows the torque coefficient as a function of TSR while (B) shows the 

power coefficient as a function of TSR. The figure shows that there is a good matching between 

the simulation results and the experimental data for all TSR; with the optimal TSR in the range of 

0.8 – 0.9 in both cases. However, slight differences are noticed in the magnitude of the performance 

parameters of the simulation results. The increase is because of the use of 2D geometry as earlier 

pointed out in section 3.1. More important is that the simulation results follow the same trend as 

the experimental data. 

Due to the novel nature of the vaned turbine, no experimental data are available for validation.  

 

Figure 3-11: Validation for the conventional Savonius rotor 
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3.4 Summary 

In summary two cases SIM1 and SIM2 were simulated in this thesis with the following settings 

and boundary conditions as presented in table 3-6. 

Table 3-6: Elaborate solver settings for simulated cases. 

Description  Settings 

Simulation type Transient 

Velocity formulation Absolute 

Solver type Pressure-based 

Turbulence model k-ω SST 

Cell zone motion 

Rotating domain Sliding mesh motion 

Far-field domain No motion 

Boundary conditions 

Inlet boundary condition Velocity inlet 

Outlet boundary condition Pressure outlet 

Rotor boundary condition Moving wall, rotational, with no slip 

Stator boundary condition Moving wall, rotational, with no slip 

Mesh interface condition Moving wall, rotational, with no slip 

Solution methods 

Pressure-velocity scheme Coupled 

Momentum discretization Second order upwind 

Gradient discretization Least Square Cell based 

Transient formulation Second-order implicit 

Angular time-step 1° 

Time-step method Fixed 

Iteration per time-step 30 

Courant number 1 (for SIM1) and, 

0.5 for TSR 0.4 – 0.7 and 0.25 for TSR 0.8 – 0.9 (for SIM2) 
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4 RESULTS AND DISCUSSION 

This section will try to make sense of the significant amount of data generated by using CFD 

simulation, and present the results in a simple, meaningful and easy to understand manner. The 

first part of this chapter presents the transient simulation results in the forms of charts showing the 

average performance parameters for the design points investigated in this thesis. Transient 

simulation meaning that during the simulation the rotor was rotated along the z-axis in the direction 

of the flow as shown in figure 4-1. The average torque coefficient and the average coefficient of 

power is presented for both the vaned and the vaneless turbine configurations (see figure 4-2). 

After which the torque coefficient is presented for all design points for rotor angle ranging from -

90° to 270° (see figure 4-3 to 4-8). The other half of this section will try to analyze the generated 

result plots and contours plots to fully understand the impact of the NACA 0012 airfoil on the 

turbine performance.  

More so, visual analysis is made by comparing the flow parameters contour plots of the vaneless 

and the vaned configurations at rotor angles of interest at selected TSR. Finally, because of the 

voluminous quantity, the contour plots showing the flow within and around the vaned Savonius 

turbines are presented in the Appendix II section of this thesis 

 

Figure 4-1: Rotor angular positions for one complete rotation during transient simulation. 
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4.1 Performance parameters 

Focusing our attention on the average performance parameters over the range of design points. 

The results displayed in figure 4-2 presents (A) the average torque coefficient as a function of 

TSR, and (B) the average power coefficient as a function of TSR. One observation that is easy to 

notice in these figures is that the vaneless Savonius rotor outperforms the vaned turbine when 

considering both the torque coefficient and the power coefficient. Taking a closer look at the 

average torque coefficient chart (figure 4-2A), both the vaneless and the vaned Savonius turbine 

have the maximum torque coefficient when the tip speed ratio is 0.4 and follows the same trend. 

Although, the vaned turbine has a step-like behavior; with an almost constant average torque 

coefficient at a TSR of 0.4 to 0.7 before decreasing at TSR of 0.8 and remaining almost constant 

at TSR of 0.9.  More so, for the power coefficient curve, the optimum TSR of the vaneless turbine 

is at 0.8, but for the vaned turbine the optimum TSR is outside the limit of the simulated design 

points. On the average, the vaneless Savonius rotor outperforms the vaned configuration by 20%. 

Turning our attention to the starting capacity performance, as one of the initial aims of adding the 

vanes to the Savonius turbine was to improve the starting torque. Figures 4-3 to 4-8 presents the 

torque coefficient of the vaned (solid line) and the vaneless (dashed line) configurations as a 

function of the rotor angle of attack for one complete rotation ranging from -90° to 270°. In this 

simulation the main flow direction is towards the negative x-axis and therefore the rotor bucket is 

rotated counterclockwise. Thus, the range of angles of the rotor indicates that at the starting 

position of the simulation; the rotor bucket is normal to the flow and rotates counterclockwise. The 

first chart, A, presents the rotor buckets torque coefficient, while the second chart, B, and the third 

chart, C, displays the torque coefficient for the advancing bucket and the returning bucket 

respectively. The observation from figures 4-3 to 4-8 regarding the starting torque is that the 

vaneless Savonius turbine has positive static torque coefficient on all simulated tip to speed ratio 

and can self-start at all rotor angular position. This agrees with the observation of Blackwell, et 

al., 1977. On the other hand, the vaned Savonius turbine has negative static torque coefficient 

when operating at TSR of 0.5 and 0.7. Also, for the vaned turbine, the static torque coefficient has 

very low minimum values for the other TSR. This indicates that the addition of the stator vanes as 

was implemented in this thesis diminishes the starting capacity of the Savonius turbine.  
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In one sentence, it can be said that the inclusion of stator vanes as was implemented in this thesis 

has a negative effect on the overall Savonius rotor performance. The latter part of this chapter is 

devoted to elucidating how the NACA 0012 airfoil reduces the performance of the Savonius rotor 

and if at all it has any positive contribution to the overall Savonius rotor performance. 

 

Figure 4-2: Performance parameters as a function of the tip speed ratio. (A) Torque coefficient (B) Power coefficient 
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Figure 4-3:  Torque coefficient as a function of bucket angle at TSR = 0.4. (A) Torque coefficient for the rotor (B) 

Torque coefficient for the advancing bucket and, (C) Torque coefficient for the returning bucket 
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Figure 4-4: Torque coefficient as a function of bucket angle at TSR = 0.5. (A) Torque coefficient for the rotor (B) 

Torque coefficient for the advancing bucket and, (C) Torque coefficient for the returning bucket 
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Figure 4-5: Torque coefficient as a function of bucket angle at TSR = 0.6. (A) Torque coefficient for the rotor (B) 

Torque coefficient for the advancing bucket and, (C) Torque coefficient for the returning bucket 
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Figure 4-6: Torque coefficient as a function of bucket angle at TSR = 0.7. (A) Torque coefficient for the rotor (B) 

Torque coefficient for the advancing bucket and, (C) Torque coefficient for the returning bucket 
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Figure 4-7: Torque coefficient as a function of bucket angle at TSR = 0.8. (A) Torque coefficient for the rotor (B) 

Torque coefficient for the advancing bucket and, (C) Torque coefficient for the returning bucket 
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Figure 4-8: Torque coefficient as a function of bucket angle at TSR = 0.9. (A) Torque coefficient for the rotor (B) 

Torque coefficient for the advancing bucket and, (C) Torque coefficient for the returning bucket 
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4.2 Effect of stator vanes 

On the topic of the influence of the stator vanes on the performance parameters; the observation 

from the former part of this chapter was that the stator vanes have undesirable impacts on the 

performance parameters. Therefore, this section is focused on giving a robust analysis of the 

interaction between the stator vanes, the rotor vanes and the flow field around and within the 

Savonius turbine; to elucidate why the addition of the stator vanes results to a negative overall 

Savonius rotor performance. Additionally, design point 2 and 6 corresponding to the turbine with 

a tip speed ratio of 0.5 and 0.9, is used for the solution analysis. The choice of using design point 

2 was affected by the fact that different phenomenon affects the Savonius turbine at a lower speed 

while design point 6 is used to simulate phenomenon common to all design points, as it has the 

best operating design point for the vaned configuration examined in this thesis. Besides, the 

convergence and the accuracy of simulation at these design points are very good and the difference 

between the last two rotations is less than 3% as shown in figure 3-9.  

The turbine parameters are affected differently by the upstream and the downstream stator vanes 

depending on the rotor buckets angle. It is easily observed from the torque coefficient figures 4-3 

(B and C) to 4-8 (B and C), that firstly, for the advancing bucket, the torque coefficient of the 

vaned turbine is higher than that of the conventional Savonius rotor at certain rotor angles between 

-90° to 30° for all design points (see figure 4-1 for rotor positions). For the returning bucket, this 

corresponds to a bucket angle in the range of 90° to 210°. Secondly, torque coefficient for the 

vaned turbine is lower than that of the vaneless configuration in the advancing bucket at bucket 

angles of attack ranging from 30° to 210° which corresponds to bucket angles of -90° to 90° on 

the returning bucket. The gain in the advancing bucket occurs simultaneously with the loss in the 

returning bucket. Therefore, the total torque coefficient at any instance is a sum of the torque 

coefficient of the advancing and the returning buckets at that instance. 

In other to explain the improved and inferior torque performance of the vaned turbine; a control 

line A, with one hundred control points (1 – 100) is drawn in front of the downstream vanes and 

behind the rotor buckets as shown in figure 4-9 (left). Also, a control line, B, with one hundred 

points (1 – 100) is drawn behind the upstream stator vanes and in front of the rotor buckets as 

shown in figure 4-9 (right). The analysis procedure involves changing the angle of attack of the 

rotor buckets and extracting flow properties along these control lines. After which pressure and, 
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velocity profile along these control line with the contour plots is used to explain the observed flow 

behavior as related to the turbine performance. Finally, control line A sectioning the advancing 

bucket will be used to analyze the improved torque performance, while the control line B 

sectioning the returning blade is used to analyze the inferior torque performance of the vaned 

Savonius turbine. 

 

Figure 4-9: Control lines A and B for measuring flow parameters. 

4.2.1 Improved torque performance analysis 

Although the overall performance of the vaned turbine is inferior when compared to the vaneless 

rotor. But there are rotor angles when a single bucket or the combine rotor buckets of the vaned 

turbine outperforms the vaneless turbine. The improved torque performance of the vaned Savonius 

turbine at these rotor angles is investigated in this section, with the hopes of replicating it across 

all rotor angles. The advancing bucket gain on the torque coefficient for the vaned turbine was 

observed when the rotor angle of attack was -90° to 30° across all tip speed ratios. These angles 

correspond to positions, where the advancing bucket is the vicinity of the downstream vanes.  

Regarding all the investigated tip speed ratio in this thesis, the phenomenon responsible for 

improved advancing bucket performance of the vaned turbine is the extended flow attachment on 

the convex side of the bucket. Fujisawa & Gotoh, 1992 observed that flow attachment improves 

the torque performance of a rotating Savonius rotor. The authors further observed that for a rotating 

Savonius rotor, flow separation occurs when angle of attack of the buckets is within of 90° and 

135°; for the case of the vaned Savonius rotor flow attachment to the convex side of the advancing 

is extended until the angle of attack of the rotor was at 180° before flow separation occurred. 

Figure 4-10 shows the particle path at a tip speed ratio of 0.9 for the rotor bucket with a 180° angle 

U∞ 

Control line A  

Point 1  

Point 100  
Point 100  

Point 1  

Control line B  
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of attack. The image on the left shows that the interaction between the downstream vanes and the 

flow causes an extended flow attachment to the convex side of the bucket. For the vaneless 

Savonius turbine, on the right, flow attachment to the advancing bucket is not observed at this 

angle. To the author’s knowledge, the extension of flow attachment using downstream turbine is 

not documented in any literature, as such this is a novelty to this thesis. 

 

Figure 4-10: Streamlines showing particle path for the vaned (left) and vaneless (right) Savonius turbine. 

Focusing our attention to the lower tip speed ratios; in addition to the extended flow attachment, 

another phenomenon responsible for improved advancing bucket performance is the presence of 

accelerated recirculating flow originating from the interaction of the upstream vanes with the main 

flow. This phenomenon is investigated using the control line A.  

Concerning control line, A, at TSR of 0.5 and rotor angle of attack of -30°, the advancing bucket 

lies between points 34 and 35. Figure 4-11 shows the pressure profile (left) and the velocity profile 

(right) along the control line A for the vaned (solid line) and the vaneless (dashed line) Savonius 

rotor at an angle of attack of -30°. The observation is that the pressure on the convex side of the 

vaned turbine is lower than that of the vaneless turbine. This leads to a higher-pressure difference 

for the vaned turbine as the pressure on the concave side of the advancing bucket for both turbines 

are almost the same.  
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Prior to the convex surface (that is from points to 1 to 33) an oscillating velocity profile is observed 

in the vaned turbine. This oscillating profile is the outcome of a recirculating flow that is generated 

as the upstream stator vanes interact with the main flow. The interaction between the upstream 

vanes and the main flow accelerates the flow (seen in the generic flow model of Grönman, et al., 

2018) and increases the flow velocity in the convex surface of the advancing blade. This is clearly 

visible in the velocity vector plot shown in figure 4-12.  

The increased flow velocity is accompanied by a reduction in pressure, which leads to a larger 

pressure difference between the concave side and the convex side of the advancing bucket of the 

vaned Savonius turbine when compared to the vaneless rotor. The higher-pressure difference 

translates to better advancing bucket performance at this rotor angle for the vaned turbine. This 

phenomenon is observed at rotor buckets angle of attack in the range of -60° to 0° for lower tip 

speed ratios of 0.4 to 0.7.  

In summary, two phenomena are responsible for the improved performance on the advancing 

bucket of the vaned Savonius turbine. The first is the extended flow attachment caused by the 

interaction of the main flow with the downstream vanes. Secondly, the recirculating accelerated 

flow caused by the interaction of the upstream stator vanes with the main flow. 

 

Figure 4-11: Pressure (left) and velocity (right) of control line A at a rotor angle of attack of -30° 
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Figure 4-12: Velocity vector showing the flow around and within a vaned Savonius rotor (left) and a vaneless 

Savonius rotor (right). Rotor angle of attack is -30° and the tip speed ratio is 0.5. 

4.2.2 Inferior torque performance analysis 

The overall performance of the vaned Savonius turbine is inferior to the vaneless Savonius turbine, 

even though the rotor buckets experience some gain at certain angles as discussed in the previous 

section of this chapter. But ultimately, it has more angles of inferior performance than superior 

performance. This section will analyze the flow within the vaned Savonius rotor and compare it to 

the vaneless rotor; to find a meaningful explanation to the inferior performance as observed in the 

torque coefficient charts presented in figures 4-3 to 4-8, in the hopes of eliminating the causes. 

The phenomena that cause the negative turbine performance is the same for all design points, as 

such only design point, 6 is analyzed in this section. But the analysis is done at two different angles 

of attack which are -60° and 30°. Figure 4-13 shows the particle path within and around a Savonius 

turbine with a -60° rotor bucket angle of attack. Focusing our attention to the vicinity of the 

upstream stator vanes, the quick observation is that the upstream vanes intercept the main flow 

before it reaches the returning bucket. The presence of the stator vanes totally halts flow attachment 

to the convex side of the returning bucket, thereby reducing the torque performance at this rotor 

angle of attack. This phenomenon is also common to other rotor angles. 
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Figure 4-13: Velocity and particle path of vaned and vaneless Savonius turbine at TSR of 0.9, and a rotor angle of 

attack of -60°. 

Regarding higher angles of attack of -30° and above, in addition to the reduced flow attachment, 

the wake and the vortices generated by the upstream vanes as it interacts with the main flow 

reduces the performance of the vaned Savonius turbine. To elucidate this phenomenon, flow 

parameters along control line B is examined at a rotor angle of 30°. At this rotor angle, the returning 

bucket is between control points 91 and 92 of the control line B. Examining the pressure profile 

along the control line B (see figure 4-14) clearly shows a reduced pressure on the concave side of 

the returning bucket. The pressure drop is as a result of velocity fluctuation caused by the wake 

generated by the interaction of the upstream stator with the main flow. This phenomenon is visible 

from the pressure contour plot in figure 4-15.  
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Figure 4-14: Pressure profile of control line B at a rotor angle of attack of -30° 

 

Figure 4-15: Pressure contour plots of vaned (left) and vaneless (right) Savonius turbine at TSR 0.9 and a rotor angle 

of attack of -30°. 

Therefore, the conclusion is that the two phenomena that reduce the performance of the vaned 

Savonius turbine are the flow separation caused by the flow interception by the upstream vanes 

before it reaches the convex side of the rotor bucket. The second is the pressure reduction on the 

concave surface of the bucket by the wakes and vortices generated from the interaction of the 

upstream vanes with the main flow. 
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4.3 Results summary 

This section has presented and the discussed the results obtained from the simulation of the vaned 

and the vaneless Savonius turbine. In the first part of this chapter, the average performance 

parameters of the simulated turbines were examined. The results show that the vaneless turbine 

was superior to vaned Savonius turbine in all turbine performance parameters, even though there 

are certain rotor bucket angles in which the vaned configuration outperformed the vaneless rotor. 

The second part of this chapter was focused on elucidating why the vaned turbine performed so 

badly and if there is anything advantageous in using this configuration for the Savonius turbine. 

The following observations were made. 

On the issue of improved performance; 

1. The interaction of the main flow and the downstream stator vanes causes an extended flow 

attachment on the convex side of the advancing bucket which improves the rotor bucket 

performance. This extended flow attachment is a novelty to this thesis, as to the author’s 

knowledge, this has not been documented in any literature. 

2. The interaction of the upstream vanes with the main flow generates an accelerated 

recirculating flow which reduces the pressure on the convex side of the advancing bucket.  

On the issue of reduced performance;  

1. The upstream stator vanes intercept flow from getting to the convex side of the returning 

bucket and thereby reducing flow attachment. This, in turn, reduces the performance of the 

turbine. 

2. The interaction of the upstream vanes with the main flow generates vortices and wake that 

reduces the pressure on the concave side of the returning blade. This reduces the pressure 

difference between the concave and the convex side of the returning blade. 
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5 CONCLUSION 

This chapter presents a recap of the main findings and novelty of this thesis and the answers to the 

research questions. Finally, the proposal for future research work is presented.  

5.1 Findings of the thesis 

The full aim of adding the NACA 0012 stator vanes to the turbine was to improve the Savonius 

rotor performance. But unfortunately, the addition of the stator vanes did not improve the 

performance instead it diminished the Savonius turbine performance. On the bright note, this thesis 

has presented how NOT to configure a Savonius turbine. 

Irrespective of the overall negative performance of the vaned configuration, some phenomena were 

observed that improved the performance of the Savonius turbine. And this phenomenon could be 

implemented in the future construction of a Savonius turbine. The most important and noticeable 

one is the flow attachment extension on the convex side of the bucket due to the interaction of the 

downstream vanes and the main flow. This phenomenon is a novelty to this thesis as this has never 

been documented in any literature to the best of the author’s knowledge.  

Concerning, the answers to the first research question asked in the first chapter, on how to 

effectively increase the aerodynamic power coefficient of the Savonius turbine? 

Following the result presented in chapter 4 of this thesis. The suggestion for improved Savonius 

wind turbine performance is the utilization of only the downstream vanes when configuring a 

Savonius rotor (see figure 5-1). Using only the downstream vanes will enhance the performance 

of the Savonius by extending flow attachment on the convex side of the rotor buckets till a rotor 

bucket angle of attack of 180°. On the other hand, not using the upstream vanes will get rid of the 

disadvantages that arise as a result of the interaction of the upstream vanes with the main flow.  
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Figure 5-1: Proposed configuration for the Savonius turbine. 

The backlash to this configuration is that the Savonius turbine will become unidirectional and will 

require a yawing system to rotate in the direction of the main flow. But this will be compensated 

by the increased performance. 

The second research question on how to correctly use CFD to analysis the aerodynamics of a 

Savonius turbine? 

To effectively use CFD to analyze the aerodynamics of the Savonius turbine the following steps 

are suggested.  

i. Design an accurate geometry representing the Savonius turbine. 

ii. Generate a computational domain large enough so that the domain does not affect the flow 

field. 

iii. Use accurate and physical representative solver settings and initial conditions. 

iv. Run the transient simulation for at least five rotations and finally, 

v. Validate the simulation results with available experimental data. 

5.2 Recommendation for future work 

For the future work, simulation and experimental study of the proposed modification of using just 

the downstream vanes could be done. The shape, the length, and distances between the vanes could 

be varied to achieve the optimum geometry configuration.  
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In this thesis wind tunnel conditions were used; further work could include open environment test 

conditions. Also, the use of a 3-dimensional geometry could help elucidate the pressure 

distribution on the vaned Savonius turbine configuration. 
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APPENDIX I 

SST k-ω Model Transport Equations 
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𝜕

𝜕𝑥𝑖
(𝜌𝑘𝑢𝑖) =

𝜕

𝜕𝑥𝑗
(Γ𝑘

𝜕𝑘

𝜕𝑥𝑗
) + 𝐺𝑘 − 𝑌𝑘 + 𝑆𝑘 I-1 

And  

𝜕

𝜕𝑡
(𝜌𝜔) +

𝜕

𝜕𝑥𝑖

(𝜌𝜔𝑢𝑖) =
𝜕

𝜕𝑥𝑗
(Γ𝑘

𝜕𝜔

𝜕𝑥𝑗
) + 𝐺𝜔 − 𝑌𝜔 + 𝐷𝜔 + 𝑆𝜔 I-2 

 

In these equations, Gk represents turbulent kinetic energy generation, and Gω represents specific 

dissipation rate generation. Γk and Γω represent the effective diffusivity of k and ω. Also, Yk and 

Yω are a dissipation of k and ω due to turbulence. Finally, Dω is a cross-diffusion term while Sk and 

Sω are source terms. 

Modeling Effective Diffusivity 

Γ𝑘 = 𝜇 +
𝜇𝑡

𝜎𝑘
 I-3 

 

Γ𝜔 = 𝜇 +
𝜇𝑡

𝜎𝜔
 I-4 

Where σ is the turbulent Prandtl numbers and μt is the turbulent viscosity computed as  

𝜇𝑡 =
𝜌𝑘

𝜔

1

max [
1

𝛼∗ ,
Ω𝐹2

𝛼1𝜔]
  

I-5 

Where 

Ω ≡ √2Ω𝑖𝑗Ω𝑖𝑗 I-6 

Ωij is the average rate of rotation tensor and is given by 

Ω𝑖𝑗 =
1

2
(

𝜕𝑢𝑖

𝜕𝑥𝑗
−

𝜕𝑢𝑗

𝜕𝑥𝑖
) I-7 
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𝜎𝑘 =
1

𝐹1

𝜎𝑘,1
+ (1 − 𝐹1)/𝜎𝑘,2

 
I-8 

 

𝜎𝜔 =
1

𝐹1

𝜎𝜔,1
+ (1 − 𝐹1)/𝜎𝜔,2

 
I-9 

 

Low Reynolds number correction 

α* is responsible for low Reynolds number correction by damping the turbulent viscosity and it is 

given by 

𝛼∗ = 𝛼∞
∗ (

𝛼0
∗ + 𝑅𝑒𝑡 𝑅𝑘⁄

1 + 𝑅𝑒𝑡 𝑅𝑘⁄
) I-10 

Where 

𝑅𝑒𝑡 =  
𝜌𝑘

𝜇𝜔
 I-11 

 

𝑅𝑘 = 6 I-12 

 

𝛼0
∗ =

𝛽𝑖

3
 I-13 

 

𝛽𝑖 = 𝐹1𝛽𝑖,1 + (1 − 𝐹1)𝛽𝑖,2 I-14 

α∞* = 1, for high Reynolds-number flow α* = α∞* = 1, βi,1 = 0.075 and βi,2 = 0.0828.  

The blending functions F1 and F2 are given by 

𝐹1 = tanh(𝛷1
4) I-15 
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Φ1 = min [max (
√𝑘

0.09𝜔𝑦
,
500𝜇

𝜌𝑦2𝜔
) ,

4𝜌𝑘

𝜎𝜔,2𝐷𝜔
+𝑦2

] I-16 

 

𝐷𝜔
+ = max [2𝜌

1

𝜎𝜔,2

1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
, 10−20] I-17 

 

𝐹2 = tanh(𝛷2
2) I-18 

 

Φ2 = max [
√𝑘

0.09𝜔𝑦
,

500𝜇

𝜌𝑦2𝜔
] I-19 

Where y is the distance to the next surface and Dω
+ is the positive portion of the cross-diffusion 

term. 

Modeling turbulence production 

Two terms represent the turbulence production in the SST k-ω transport equations; these terms are 

Gk and Gω. Gk represents the production of turbulence kinetic energy while Gω represents the 

specific dissipation rate production. 

Production of k  

From the transport equation of k, Gk may be defined as  

𝐺𝑘 = 𝜌𝑢𝑖
′̅𝑢𝑗

′̅
𝜕𝑢𝑗

𝜕𝑥𝑖
 I-20 

Applying the Boussinesq hypothesis in equation I-20, Gk becomes 

𝐺𝑘 = 𝜇𝑡𝑆2 I-21 

Where S is the modulus of the average rate-of-strain tensor defined as  

𝑆 ≡ √2𝑆𝑖𝑗𝑆𝑖𝑗 I-22 

And  
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S𝑖𝑗 =
1

2
(

𝜕𝑢𝑗

𝜕𝑥𝑖
+

𝜕𝑢𝑖

𝜕𝑥𝑗
) I-23 

 

Production of ω 

The production of ω is represented by Gω in the transport equation, and it is given by 

𝐺𝜔 =
𝛼

𝜈𝑡
𝐺𝑘 I-24 

Where  

𝛼 =
𝛼∞

𝛼∗
(

𝛼0 + 𝑅𝑒𝑡 𝑅𝜔⁄

1 + 𝑅𝑒𝑡 𝑅𝜔⁄
) I-25 

Rω = 2.95, and α∞ is given as 

𝛼∞ = 𝐹1 ∝∞,1+ (1 − 𝐹1)𝛼∞,2 I-26 

 

∝∞,1=
𝛽𝑖,1

𝛽∞
∗

−
𝜅2

𝜎𝜔,1√𝛽∞
∗

 I-27 

 

∝∞,2=
𝛽𝑖,2

𝛽∞
∗

−
𝜅2

𝜎𝜔,2√𝛽∞
∗

 I-28 

 

κ = 0.41, βi,1 = 0.075 and βi,2 = 0.0828, β∞* = 0.09.  

Modeling turbulence dissipation 

Turbulence dissipation is represented by Yk and Yω in the transport equation of the SST k-ω model. 

Yk is the dissipation of turbulent kinetic energy while Yω is the dissipation of ω. 

Dissipation of k 

𝑌𝑘 = 𝜌𝛽∗𝑓𝛽∗𝑘𝜔 I-29 

Where fβ* = 1 



80 

 

 

𝛽∗ =𝛽𝛽∗ [1+𝛽∗ 𝛽𝛽𝛽] I-30 

 

𝛽𝑖
∗ = 𝛽∞

∗ (
4 15⁄ + (𝑅𝑒𝑡 𝑅𝛽⁄ )4

1 + (𝑅𝑒𝑡 𝑅𝛽⁄ )4
) I-31 

ζ* = 1.5, Rβ = 8 and β∞* was given in the production of ω section. F(Mt) is the compressibility 

correction function based on the turbulent Mach number, and it is given in equation I-34. 

Dissipation of ω 

𝑌𝜔 = 𝜌𝛽𝑓𝛽𝜔2 I-32 

Where fβ = 1 and, 

𝛽 = 𝛽𝑖 [1 +
𝛽𝑖

∗

𝛽𝑖
𝜁∗𝐹(𝑀𝑡)] I-33 

Where βi and βi* are defined in equation I-14 and I-31 respectively. 

Compressibility correction 

𝐹(𝑀𝑡) = {
0 𝑀𝑡 ≤ 𝑀𝑡0

𝑀𝑡
2 − 𝑀𝑡0

2 𝑀𝑡 > 𝑀𝑡0
 I-34 

Where  

𝑀𝑡
2 =

2𝑘

𝑎2
 I-35 

 

𝑀𝑡0 = 0.25 I-36 

 

𝑎 = √𝛾𝑅𝑇 I-37 

 

Cross-Diffusion Modification 

The cross-diffusion term, Dω, in the SST k-ω transport equation is as a result of the transformation 

of the k-ϵ model into equations based on k and ω. The cross-diffusion term Dω is given by 
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𝐷𝜔 = 2(1 − 𝐹1)𝜌𝜎𝜔,2

1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗
 I-38 

 

Model Constants 

𝜎𝑘,1 = 1.176, 𝜎𝜔,1 = 2.0, 𝜎𝑘,2 = 1.0, 𝜎𝜔,2 = 1.168, 𝑎1 = 0.31 
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APPENDIX II 

 

 

Figure II-1: Streamlines and velocity vector showing the flow stream in a vaned and vaneless Savonius turbine for 

various angles at TSR of 0.4. (1) is for rotor angle of 30, (2) is for angle of 60, (3) is for angle of 90, (4) is for angle 

of 120, (5) is for angle of 150 and, (6) is for angle of 180. 
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Figure II-2: Streamlines and velocity vector showing the flow stream in a vaned and vaneless Savonius turbine for 

various angles at TSR of 0.5. (1) is for rotor angle of 30, (2) is for angle of 60, (3) is for angle of 90, (4) is for angle 

of 120, (5) is for angle 
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Figure II-3: Streamlines and velocity vector showing the flow stream in a vaned and vaneless Savonius turbine for 

various angles at TSR of 0.6. (1) is for rotor angle of 30, (2) is for angle of 60, (3) is for angle of 90, (4) is for angle 

of 120, (5) is for angle. 
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Figure II-4: Streamlines and velocity vector showing the flow stream in a vaned and vaneless Savonius turbine for 

various angles at TSR of 0.7. (1) is for rotor angle of 30, (2) is for angle of 60, (3) is for angle of 90, (4) is for angle 

of 120, (5) is for angle. 
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Figure II-5: Streamlines and velocity vector showing the flow stream in a vaned and vaneless Savonius turbine for 

various angles at TSR of 0.8. (1) is for rotor angle of 30, (2) is for angle of 60, (3) is for angle of 90, (4) is for angle 

of 120, (5) is for angle. 
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Figure II-6: Streamlines and velocity vector showing the flow stream in a vaned and vaneless Savonius turbine for 

various angles at TSR of 0.9. (1) is for rotor angle of 30, (2) is for angle of 60, (3) is for angle of 90, (4) is for angle 

of 120, (5) is for angle. 
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