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Catastrophic events may lead to sudden changes in the claim arrival rate and as a result
it is difficult to predict the likelihood for the occurrence of these events. These random
fluctuation cannot be modelled as a homogeneous Poisson process. Hence, the intro-
duction of doubly stochastic Poisson process or Cox process has been an important tool
in modelling such catastrophic events and reduce the probability of ruin to many of the
insurance companies. This research therefore proposes a risk model with stochastic in-
tensity function as a first step towards the process of computing the probability of ruin.
Several sample paths of the model with varying parameter values are shown as a first step
in understanding how the model works. A major assumption of this model is that the time
of jumps follows a renewal shot-noise Cox process and that all past times are considered.
This idea is essential in estimating parameters using different statistical techniques such
as maximum likelihood estimation method and Bayesian estimation method in the model
such as the initial intensity value, the rate of claim settlement and some parameters from



other arbitrary distributions. An algorithm to simulate such time jumps is proposed in this
work via the inversion method.
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1 INTRODUCTION

1.1 Background and motivation

Catastrophic events have been causing great damages and sufferings to human beings
since the beginning of this world. These extremely unfortunate events range from catas-
trophic weather events such as, tornadoes, hurricanes, earthquakes, and tsunamis to catas-
trophe for the economy such as, an economic depression. Consequently, scientist have
been striving to develop mathematical and scientific models that can be used to predict
the likelihood for the occurrence of these events.

One of the areas that has captured the attention of mathematicians is insurance business.
By simple definition, insurance is a contract whereby a person called insurer agrees in
consideration of money paid as premium by the person called insured to indemnify the
latter against loss resulting to him on the happening of certain event(s) [1]. In order to
meet these obligations the amount of premium charged to the insured must be estimated
properly to reflect the risk that the insurer has to undertake. In other words, the amount
of premium charged to the insured must be sufficient enough to reflect the possibility of
the future claims. An insurance claim is a formal request to an insurance company asking
for a payment after the occurrence of a certain contingent event (based on the terms of
the insurance policy). This implies that the continual survival of an insurance company
depends largely on the accuracy of mathematical models used to predict the claim severity,
frequency and arrival rates.

The classical approaches to modelling insurance losses are based on a simple assumption
that claims counts over a certain period of time follow a certain distribution, particularly
Poisson, binomial and negative binomial distributions. However, there are number of
challenges associated with these models, including uncertainties about its accuracy and
the need for historical aggregated data in order to fit these distributions. These challenges
triggered the need for developing a model that can capture the time evolution of claims
and also use the available data in a more effective and efficient way, that is a Poisson
process.

There is one main challenge associated with this model especially when it comes to the
assumption that the claim arrival rate for the insurer remain constant over a certain period
of time. This applies also to a homogeneous Poisson process where the arrival rate is as-
sumed to vary deterministically over time. Thus its ability to capture random complexity
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of insurance business is highly questionable. This necessitated the need for developing
a stochastic model which incorporate the stochastic nature of changes in insurer’s claims
rate (intensity), that is doubly stochastic Poisson processes, or Cox processes. For in-
stance, during extreme rain an insurer is more likely to receive a significant number of
claims from the policy holders who have insured their building against floods. Consider a
case in Tanzania where heavy rain in April, 2018 which lasted for a period of only three
days resulted into a death of 20 people, with around 250 homes reportedly destroyed [2].

1.2 Purpose of the study

The main purpose of this study is to model the claim arrival rate using non homogeneous
Poisson process which allow its intensity function to be stochastic process in order to
capture random complexity of insurance business. This necessitated the need for devel-
oping an algorithm to simulate a renewal shot-noise Cox process which incorporate the
stochastic nature of changes in insurer’s claims rate (intensity).

1.3 Objectives

The specific research objectives of the thesis are as follows:

• Compare different graphical representation of the sample path of the intensity pro-
cess λ(t) while changing the exponential rate of decay of the claim settlement be-
tween catastrophic events.

• Use of maximum likelihood estimation method to derive the parameter estimates of
the intensity function and other arbitrary distribution.

• Use of Bayesian estimation method to derive the posterior distribution for the in-
tensity function and other arbitrary distribution.

• Introduce the Monte Carlo Markov Chain (MCMC) method to enable sampling the
parameter estimates from the posterior distribution of the intensity function and
other arbitrary distribution derived using Bayesian estimation method.

• Develop an algorithm to simulate the process with renewal shot-noise Cox intensity.



11

1.4 Definition of terms

In this section, we provide terminologies that is used throughout the report.

Definition 1.4.1 (Stochastic process)

A stochastic process {X(t), t ≥ 0} is simply defined as a collection of random variables

X(t). There exist a special type of stochastic process named as counting process that is

used to model claim frequency over time as stated in [3].

Definition 1.4.2 (Poisson process)

The counting process {N(t), t ≥ 0} is said to be Poisson process if it satisfies the follow-

ing conditions. According to [4], the counting

• N(0) = 0, means that the initial arrivals is assumed to be zero.

• Independent increments: The random variable N(t) has independent increments

that is the number of arrivals that occurs in disjoint time interval are statistically

independent. For instance, given the disjoint time s < t < u then N(t) − N(s) is

independent to N(u)−N(t).

• Stationary increments: The random variable N(t) has stationary increments that

means the intervals of the same length of time have the same statistical behaviour

(probability distribution) independent of the exact location of the interval on the

time axis. Therefore, random variable of arrivals with the same time interval τ ,

have the same probability distribution. For instance, N(τ + s) − N(s) has the

same distribution function as N(τ + u)−N(u) with the same time interval τ .

There are two main types of Poisson process which are homogeneous and inhomogeneous
Poisson process.

Homogeneous Poisson process is one of the most popular Poisson process denoted as
{Ñ(t), t ≥ 0} where the intensity function is assumed to be constant over time λ(t) = λ.
In fitting homogeneous Poisson process, the only parameter which needs to be estimated
is λ and maximum likelihood estimation can be used to estimate the parameter λ. The
assumption that intensity of claims remain constant over time needs to be improved in
modelling claims from catastrophic events to depend on time [3].
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On the other hand, an alternative model to homogeneous Poisson process is inhomoge-
neous Poisson process in which the intensity function λ(t) is a non-constant deterministic
function that depends on time. In insurance, the inhomogeneity in claim intensity is very
useful especially in modelling the occurrence of seasonal catastrophic events [3].

Definition 1.4.3 (Doubly stochastic Poisson process or Cox process)

This is the stochastic process which is the generalization of Poisson process where the

time-dependent intensity λ(t) is itself a stochastic process [5]. In insurance modelling,

Poisson process is used to model the claim arrivals. However, there have been significant

number of questions on appropriateness of Poisson process in insurance modelling most

especially in rainfall modelling. For catastrophic events, the assumption of claim to follow

Poisson process is inadequate as it has deterministic intensity. Therefore, we will need to

employ Cox process/ doubly stochastic Poisson process in which the claim intensity λ(t)

is itself a stochastic process. However, doubly stochastic Poisson process can be viewed

as two step randomisation procedure [6].

Definition 1.4.4 (Shot-noise process)

Renewal process is simply an integer-valued or counting process {N(t), t ≥ 0} for which

the inter-arrival times are independently and identically distributed random variables

with arbitrary distribution [7]. This decrease continue until another catastrophic event

occurs and this result into a positive jump in the shot-noise process. Hence, shot-noise

process is used as a parameter of doubly stochastic Poisson process to measure the claim

frequency due to catastrophic events [5].

Definition 1.4.5 (Renewal process)

Renewal process is simply an integer-valued or counting process {N(t), t ≥ 0} for which

the inter-arrival times are independently and identically distributed random variables

with arbitrary distribution [7].

Begin with the terminology point process as it is essential for the better understanding of

renewal process. The process {N(t), t ≥ 0} denoted byN(t) is said to be a point process

on R+, where the number of times Tn in the interval (0, t] is defined as in [8] by:

N(t) =
∞∑
n=1

1(Tn ≤ t), t ≥ 0.
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Assume this counting processN(t) is finite valued for every t, which is similar to Tn →∞
a.s as n→∞, where Tn are the arrival times.

However, the point process N(t) is said to be simple if its arrival times are distinct:

0 < T1 < T2 < . . . a.s. Therefore, a simple point process N(t) is a renewal process

if its inter-arrival times are independent and identically distributed with the same arbi-

trary distribution function. Examples of renewal process include random times at which:

customers arrive at the queue for bank services, and the way insurance claims are settled.

However, Poisson process is simply counting process for which the inter-arrival times

are independent and identically distributed with exponential distribution. Therefore, the

renewal process is more general counting process than Poisson process.

1.5 Structure of the thesis

The essay is structured as follows. Chapter 2 introduces the Cox process with renewal
shot-noise intensity. Further, this chapter provides illustration for different samples paths
of the renewal shot-noise intensity process λ(t) plotted using different parameters values
with different distribution. This process is then used in estimation of parameters using
maximum likelihood estimation method in Chapter 3. Chapter 4 introduces Bayesian
estimation method and provides derivation of posterior distribution of the intensity func-
tion and other arbitrary distributions. Chapter 5 introduces MCMC method to Bayesian
estimation. Furthermore, this chapter explains the most popular techniques of MCMC
method and their application to obtain Bayesian estimates. The algorithm for simulat-
ing a process with a renewal shot-noise Cox intensity is given in Chapter 6. Chapter 7
presents the results and discussions obtained from the MATLAB codes. Finally, Chapter 8
presents a summary of conclusion and recommendation of this study.
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2 RENEWAL SHOT-NOISE COX PROCESS

This chapter is devoted to renewal shot-noise Cox process. We shall present some back-
ground and basic definitions that will be essential in the course of this project.

2.1 Background of renewal shot-noise Cox process

Cox process was first introduced by [9] as a natural generalization of Poisson process
by considering intensity process as the realization of random measure [10]. Cox process
provides flexibility of intensity not only depending on time but allows it to be a stochastic
process. It can be viewed as a two step randomisation procedure, which is able to model
the stochastic nature of catastrophic loss occurrence in the real world.

A shot-noise Cox process is simply a doubly stochastic process which, conditionally on
the realization of random measure is a Poisson process with intensity function λ(t) in
which initially the claim intensity was assumed to be deterministic. Therefore, shot-
noise process can be used as the intensity of a Cox process to measure the number of
catastrophic losses [11].

Cox models are used widely in many aspects: insurance, finance, queuing theory, statis-
tic. For instance, the study by [6] provides the good insight about the application of Cox
process with Poisson shot-noise intensity to pricing stop-loss catastrophe reinsurance con-
tract and catastrophe insurance derivatives.

2.2 Motivation of renewal shot-noise Cox process

An insurance company insures the policyholder in case of claim occurring due to catas-
trophic event in exchange of some regular premium. Numerous works have clearly pro-
vided some information useful in determination of optimal premium, enabling the insur-
ance company to charge premium that should be high enough such that there is sufficiently
small ruin probability i.e. probability of an insurance company to have insufficient initial
surplus to pay-off the claims arose. The claim sizes are assumed to be independent and
identically distributed with the arrival times said to be jump times from Poisson process.
Recently, the extension of this model considered renewal times where the inter-arrival
times were no longer exponential distributed [3].
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Traditionally, the claim arrival rate was modelled using homogeneous Poisson process
to derive ruin probabilities. Recently to derive the estimates of ruin probabilities, the
risk model was assumed to follow doubly stochastic Poisson process. This assumption
made some improvement in a lot of insurance companies because it has reduced ruin
probability as it provides flexibility of intensity not only depending on time but allows it
to be a stochastic process.

In this chapter, there is extension of the study of arrival times with random arrival (inten-
sity) rates. In particular, the arrival rates are said to have shot-noise features. However,
this could be used to model the claim arrival in dynamic way: many claims will be re-
ported right after the catastrophic events at which the arrival rate will be high at the be-
ginning. Hence, the shot-noise arrival rate models such effect. For this case consider the
claim caused by the catastrophic event where at the beginning of the event there will be
majority of claims but as time passes the number of claims decreases till the occurrence
of the next catastrophic event where the number of claims will increase again. In life
insurance context, occurrence of any natural catastrophe will result to a similar pattern
[3].

Claims arising from the catastrophic events differs from different time interval duration
and they also depend on the time elapsed since the previous claim. Therefore, the im-
proved model beyond Poisson process is used to model such claims arising from the
catastrophic events [12].

Now, a renewal shot-noise Cox process is introduced below.

Definition 2.2.1 (Renewal shot-noise Cox process) Renewal shot-noise Cox process is

a point process Nt ≡ {Tj}j=1, 2,... on R+ with the renewal shot-noise intensity λt, i.e.

a non-negative shot-noise process driven by an ordinary renewal process specified as in

[12] by

λt = λ0e
−δt +

Mt∑
i=1

Yie
−δ(t−T ∗

i ), t ≥ 0, (2.2.1)

where

• λ0 is the initial intensity;

• δ > 0 is the constant rate of exponential decay;

• {Mt}t≥0 is a renewal process with arrival times {T ∗i }i=1, 2,... i.e. Mt ≡ {T ∗i }i=1, 2,...;
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• t is the time period such that all arrival times are included in the process.

• {Yi}i=1, 2,... is a sequence of independent and identically distributed random vari-

ables (sizes of renewal jumps or shots) with distribution function H(y), y > 0,

which is assumed to be absolutely continuous with density function h(y) and inde-

pendent of Mt.

Assume Mt is Poisson process instead then λt is said to be classical shot-noise process

[13]. In this project, it is assumed Mt to be renewal process and the process is then a

special case of generalised shot-noise Cox processes [14].

Definition 2.2.2 (A risk process driven by a renewal shot-noise Cox process) Consider

an insurance company with surplus process Xt in continuous time on a probability space

(Ω, F, P ). We assume as in [5] that

Xt = X0 + ct−
Nt∑
j=1

Zj, t ≥ 0,

where

• X0 ≥ 0 is the initial reserve at time t = 0;

• c > 0 is the constant rate of premium income;

• Nt is a renewal shot-noise Cox process with associated claim-arrival times {Tj}j=1, 2,...;

• {Zj}j=1, 2,... are claim sizes which are assumed to be i.i.d.with distribution function

Z(z), z > 0. N(t) is also assumed to be independent.

The surplus process works as the result of some realisation of ruin probability of the

insurer i.e. the probability that at some point in time, the aggregate claims exceed the

received premium income and initial reserve. Therefore, at this particular point in time

the insurance company is said to be ruin.

2.3 Representation of the intensity of renewal shot-noise Cox process

This section presents the simulation procedure of shot-noise intensity function from Equa-
tion (2.2.1) to obtain different graphical representation of the function. Below are the steps
in the algorithm:



17

1. Generate random numbers of inter-arrival times R1, R2, . . . , RMt from the expo-
nential, gamma or Weibull distribution with their rate parameter, shape parameter
and scale parameter depending on the distribution.

2. Calculate the arrival times from these generated random inter-arrival times.

T ∗i = T ∗i−1 +Ri

3. Generate random sizes of claims, Y1, Y2, . . . , YMt from the log-normal distribution
with its mean and variance, where Yi ∼ logN (µ, σ2).

4. Thereafter, sample paths of different catastrophic time interval are described as
follows; First, compute the sample path of renewal shot-noise process starting with
the initial intensity λ0 that decreases exponentially for all t < T ∗1 until the first
arrival time of catastrophic event occurs T ∗1 . Generally, after the occurrence of
the first catastrophic event, compute the sample path of renewal shot-noise process
between each two consecutive arrival times of a catastrophic event for the entire
time period t and the computation involves cumulative process as shown in the
representation (2.3.1)

Mathematical definition of the renewal shot-noise intensity process in the simula-
tion process is represented as:

λt =



λ0e
−δt t < T ∗1

λ0e
−δt + Y1e

−δ(t−T ∗
1 ) T ∗1 ≤ t < T ∗2

λ0e
−δt + Y1e

−δ(t−T ∗
1 ) + Y2e

−δ(t−T ∗
2 ) T ∗2 ≤ t < T ∗3

...
...

...
...

λ0e
−δt +

∑
{i:T ∗

i <t<T
∗
i+1}

Yie
−δ(t−T ∗

i ) T ∗i ≤ t < T ∗i+1

(2.3.1)

5. Therefore, using the assumptions above it is possible to plot different sample paths
of renewal shot-noise intensity process with different values of delta parameter.
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2.4 Some graphical representations through simulated parameter val-
ues

In this section, there will be provision of different figures when inter-arrival times are
assumed to follow some arbitrary distribution and we shall give explanations on the ob-
servation contributed by different parameter values for each distribution.

Figure 1 shows four different representations of the sample paths of renewal shot-noise
intensity process, λt when the inter-arrival times follow exponential distribution and jump
sizes follow log-normal distribution. The assumptions used for these sample paths are as
follows:

i) Assuming that claim sizes follow log-normal distribution with mean parameter, µ =

ln(30) and variance parameter, σ2 = ln(3.5).

ii) Assuming that inter-arrival times follow exponential distribution with rate parame-
ter equal to 1, i.e. rate is simply a reciprocal of scale parameter. Then, determine
the arrival times from these random selected inter-arrival times.

iii) Assuming that delta parameter, δ i.e. exponential rate of decay varies within the
vector 0.1, 0.5, 2 and 10.

iv) Setting up the initial intensity, λ0 = 4 and time period for the whole process to occur
is given by the sequence from 0 to 20 separated by 0.25 time interval. Typically t
will be quite large such that all claims are included in the process.

For the comparative study, the values for the delta parameter were δ = 0.1, δ = 0.5, δ =

2 and δ = 10. Using the above assumptions, sample paths for the renewal shot-noise
intensity process are generated, λ(t) for the times, t = 1, 2, . . . , 20. The simulated
sample paths of the shot noise intensity, λ(t) for the chosen values of δ are shown in
Figure 1. It can be seen that for the low δ case (δ = 0.1), initially the shot-noise intensity
will decay for longer time before another high shot in the intensity, thereafter the shot-
noise intensity will decay for shorter time before another shot. Generally, there is an
observation that as δ increases the shot noise intensity takes longer time to decay. Hence
the peaks in the shot-noise intensity, λ(t) are much more apparent (noticeable) in the case
when δ is large than when δ is small.
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Figure 1. Sample paths of renewal shot-noise intensity process, λt when inter-arrival times follow
exponential distribution and jump sizes follow log-normal distribution varying the delta parameter.

Figure 2 shows four different representations of the sample paths of renewal shot-noise
intensity process, λt when the inter-arrival times follow gamma distribution and jump
sizes follow log-normal distribution. The assumptions from these sample paths are as
follows:

i) Assuming that claim sizes follow log-normal distribution with mean parameter, µ =

ln(30) and variance parameter, σ2 = ln(3.5).

ii) Assuming inter-arrival times follow gamma distribution with fixed shape parameter
equal to 2 and rate parameter equal to 1 i.e. rate is simply a reciprocal of scale
parameter. Then, determine the arrival times from these random selected inter-
arrival times.

iii) Assuming that delta parameter, δ i.e. exponential rate of decay varies within the
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vector 0.1, 0.5, 2 and 10.

iv) Setting up the initial intensity, λ0 = 4 and time period for the whole process to occur
is given by the sequence from 0 to 20 separated by 0.25 time interval. Typically t
will be quite large such that all claims are included in the process.

For the comparative study, the values for the delta parameter were δ = 0.1, δ = 0.5, δ =

2 and δ = 10. Using the above assumptions, sample paths for the renewal shot-noise
intensity process are generated, λ(t) for the times, t = 1, 2, . . . , 20. The simulated
sample paths of the renewal shot-noise intensity process, λ(t) for the chosen values of
δ are shown in Figure 2. It can be seen that for the low δ case (δ = 0.1), the shot-
noise intensity will decay for shorter time before another shot in the intensity while as
δ increases the shot-noise intensity takes longer time to decay. Hence the peaks in the
shot-noise intensity, λ(t) are much more apparent (noticeable) in the case when δ is large
than when δ is small.

Figure 2. Sample paths of renewal shot-noise intensity process, λt when inter-arrival times follow
gamma distribution and jump sizes follow log-normal distribution varying the delta parameter.
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Figure 3 shows four different representations of the sample paths of renewal shot-noise
intensity process, λt when the inter-arrival times follow Weibull distribution and jump
sizes follow log-normal distribution. The assumptions from these sample paths are as
follows:

i) Assuming that claim sizes follow log-normal distribution with mean parameter µ =

ln(20) and variance parameter σ2 = ln(3.5).

ii) Assuming that inter-arrival times follow Weibull distribution with fixed shape pa-
rameter equal to 1.5 and scale parameter equal to 1 i.e. rate is simply a reciprocal
of scale parameter. Then, determine the arrival times from these random selected
inter-arrival times.

iii) Assuming that delta parameter, δ i.e. exponential rate of decay varies within the
vector 0.1, 0.5, 2 and 10.

iv) Setting up the initial intensity, λ0 = 4 and time period for the whole process to occur
is given by the sequence from 0 to 20 separated by 0.25 time interval. Typically t
will be quite large such that all claims are included in the process.

For the comparative study, the values for the delta parameter were δ = 0.1, δ = 0.5, δ =

2 and δ = 10. Using the above assumptions, sample paths for the renewal shot-noise
intensity process are generated, λ(t) for the times, t = 1, 2, . . . , 20. The simulated
sample paths of the renewal shot-noise intensity process, λ(t) for the chosen values of
δ are shown in Figure 3. It can be seen that for the low δ case (δ = 0.1), initially the
shot-noise intensity remain constant for a while thereafter the shot-noise intensity will
start to decay for shorter time before another shot in the intensity while as δ increases
the shot-noise intensity takes longer time to decay. Hence the peaks in the shot-noise
intensity, λ(t) are much more apparent (noticeable) in the case when δ is large than when
δ is small.
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Figure 3. Sample paths of renewal shot-noise intensity process, λt when inter-arrival times follow
Weibull distribution and jump sizes follow log-normal distribution varying the delta parameter.

Generally, Figures 1, 2 and 3 shows drastic fall in shot-noise process as the exponential
rate of decay increases from δ = 0.1 to δ = 10. Observation shows that as time passes,
shot-noise process decreases as more and more claims are settled. This decrease contin-
ues until another catastrophe occurs which results into a positive jump in the shot-noise
process.

This chapter has provided the basis for building the renewal shot-noise Cox process.
Specifically, it has covered the intensity function studied by simulating the renewal pro-
cess, that is the ith arrival times T ∗i with their corresponding ith claim sizes Yi.
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3 MAXIMUM LIKELIHOOD ESTIMATION (MLE)

This chapter presents mathematical derivation of estimators for different types of distri-
butions using the maximum likelihood estimation method. For the purpose of this study,
estimators for four distributions would be presented, all of which belong to a family of
positive skewed distributions, that is log-normal, exponential, gamma and Weibull that
are simulated using renewal process M(t). These estimators will be used to simulate the
renewal shot-noise Cox process.

3.1 Introduction to MLE

Maximum likelihood estimation is the most popular estimation technique for many dis-
tributions, it mostly uses differentiation to find the parameter values that would maximize
the probability of getting a particular sample. Some engaging features of maximum like-
lihood estimators include that they are asymptotically unbiased, and the bias approaches
zero as the sample size n increases as stated in [15].

It is one of the best and efficient methods of estimating parameters given a certain dis-
tribution using some observed data. In particular, maximum likelihood estimators have
excellent and usually easily determined asymptotic properties which is a benefit in dealing
with large-sample data from catastrophic events.

There are several stages in the estimation of parameters;

• One of the most important stages is writing down the likelihood function,

L(Θ) =
n∏
i=1

f(xi; Θ),

for the random sample of x1, x2, . . . , xn from the policyholder with density or
probability function f(x; Θ). Note that Θ is the parameter whose value is to be
estimated. It is said that likelihood function is the function of unknown parameter
Θ. For each value of Θ, we get the corresponding values of the likelihood func-
tion. However, it is necessary to find the value of Θ that maximizes the likelihood
function.

• The next stage involves taking logs of likelihood functions to simplify the proce-
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dures in determination of maximum likelihood estimator, Θ̂.

• Lastly, it is in this stage where differentiation is involved. This means finding
derivatives of log likelihood or likelihood with respect to the parameter Θ and
derivative is set to zero as a result it gives the maximum likelihood estimator for
the true parameter values Θ̂ .

3.2 Derivation of the estimators in the intensity function

The Hawkes process is a particular case of the doubly stochastic Poisson process: It is a
linear self-exciting process. Its conditional intensity process has a particular form which
depends upon the previous values of the point process N(t) itself.

Definition 3.2.1 (Hawkes’ process) A point process N(.) is called self-exciting if the in-

tensity λ(.) depends not only on the time ti but also on the entire past times of the points

process t1, . . . , ti−1 as stated in [16].

The renewal shot-noise Cox process is an extension of the Hawkes’ process. Using
{t1, t2, . . . , tN(T )} to denote the observed sequence of past arrival times of the point
process N(t) in the interval (0, T ] with the positive influence on the current value of the
intensity process. The intensity function is not depending on the point process itself but
on another renewal process leading to an expression that is given by:

λ(s) = λ0 e
−δs +

∑
{j:T ∗

j <s}

Yj e
−δ(s−T ∗

j ).

Proposition 3.2.2 Let N(.) be a regular point process on [0, T ] for some finite positive

T and let t1, t2, . . . , tN(T ) denote a realisation of N(.) over [0, T ]. Then, the general

expression of the likelihood L of N(.) for any process from [17] is expressible in the form

L =

N(T )∏
i=1

λ(ti)

 exp

− T∫
0

λ(s)ds

 .
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From the given Theorem 4.2.2, the log-likelihood function is given by:

log(L(λ0, δ)) = log

N(T )∏
i=1

λ(ti)

 exp

− T∫
0

λ(s)ds


= −

T∫
0

λ(s)ds+

T∫
0

log λ(ti)dN(ti)

= −
N(T )∑
i=1

ti∫
ti−1

λ(s)ds+

N(T )∑
i=1

log λ(ti) (3.2.1)

Substituting the intensity function of renewal shot-noise Cox process into Equation (4.2.1)
and obtain the expansion

= −
N(T )∑
i=1

ti∫
ti−1

(
λ0 e

−δs +
∑

{j:T ∗
j <ti}

Yj e
−δ(s−T ∗

j )
)
ds

+

N(T )∑
i=1

log
(
λ0 e

−δti +
∑

{j:T ∗
j <ti}

Yj e
−δ(ti−T ∗

j )
)

= −
N(T )∑
i=1

ti∫
ti−1

λ0e
−δsds−

N(T )∑
i=1

ti∫
ti−1

∑
{j:T ∗

j <ti}

Yj e
−δ(s−T ∗

j )ds

+

N(T )∑
i=1

log
(
λ0 e

−δti +
∑

{j:T ∗
j <ti}

Yj e
−δ(ti−T ∗

j )
)
. (3.2.2)

Evaluate the first integral:

−
N(T )∑
i=1

ti∫
ti−1

λ0e
−δsds = −λ0

N(T )∑
i=1

ti∫
ti−1

e−δsds

= −λ0
N(T )∑
i=1

− 1

δ
e−δs

∣∣∣∣ti
ti−1

=
λ0
δ

N(T )∑
i=1

(e−δti − e−δti−1).



26

Since, exp(−dt) is a decreasing function, and so the sum is a telescoping sum, giving the
result.

−
N(T )∑
i=1

ti∫
ti−1

λ0e
−δsds =

λ0
δ

(e−δtN(T ) − e−δt0).

Assume that the initial point in time t0 = 0 then obtain the first integral:

−
N(T )∑
i=1

ti∫
ti−1

λ0e
−δsds =

λ0
δ

(e−δtN(T ) − 1). (3.2.3)

Evaluate the the second integral:

−
N(T )∑
i=1

∑
{j:T ∗

j <ti}

ti∫
ti−1

Yj e
−δ(s−T ∗

j )ds = −
N(T )∑
i=1

∑
{j:T ∗

j <ti}

Yj e
δT ∗
j

ti∫
ti−1

e−δsds

= −
N(T )∑
i=1

∑
{j:T ∗

j <ti}

Yj e
δT ∗
j

(
−1

δ

(
e−δti − e−δti−1

))
.

The second integral is given as:

−
N(T )∑
i=1

∑
{j:T ∗

j <ti}

ti∫
ti−1

Yj e
−δ(s−T ∗

j )ds = −
N(T )∑
i=1

∑
{j:T ∗

j <ti}

Yj e
δT ∗
j

[
−1

δ

(
e−δti − e−δti−1

)]
.

(3.2.4)

Evaluate the the third integral:

N(T )∑
i=1

log λ(ti) =

N(T )∑
i=1

log
(
λ0 e

−δti +
∑

{j:T ∗
j <ti}

Yj e
−δ(ti−T ∗

j )
)
. (3.2.5)
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Finally, to get the log-likelihood function Equation (3.2.2) reduces to

log(L(λ0, δ)) =
λ0
δ

(e−δtN(T ) − 1)−
N(T )∑
i=1

∑
{j:T ∗

j <ti}

Yj e
δT ∗
j

[
−1

δ

(
e−δti − e−δti−1

)]

+

N(T )∑
i=1

log
(
λ0 e

−δti +
∑

{j:T ∗
j <ti}

Yj e
−δ(ti−T ∗

j )
)
.

Next, proceed to derive the formulae for the estimators of the unknown parameters (λ0, δ)

as follows. Differentiating the log-likelihood function with respect to λ0 and setting the
result to zero, and get

∂ log(L(λ0, δ))

∂λ0

∣∣∣∣
(λ0, δ)=(λ̂0, δ̂)

=
1

δ̂
(e−δ̂tN(T ) − 1) +

N(T )∑
i=1

e−δ̂ti

λ̂0 e−δ̂ti +
∑

{j:T ∗
j <ti}

Yj e
−δ̂(ti−T ∗

j )
= 0.

Solving for λ̂0, we get that

N(T )∑
i=1

e−δ̂ti

λ̂0 e−δ̂ti +
∑

{j:T ∗
j <ti}

Yj e
−δ̂(ti−T ∗

j )
= −1

δ̂
(e−δ̂tN(T ) − 1). (3.2.6)

Differentiating the log-likelihood function with respect to δ and setting the result to zero,
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and obtain that

∂ log(L(λ0, δ))

∂δ

∣∣∣∣
(λ0, δ)=(λ̂0, δ̂)

= − λ̂0
δ̂2

(
e−δ̂tN(T ) − 1

)
+
λ̂0

δ̂

(
tN(T )e

−δ̂tN(T )

)

−
N(T )∑
i=1

∑
{j:T ∗

j <ti}

Yj T
∗
j e

δ̂T ∗
j

[
−1

δ̂

(
e−δ̂ti − e−δ̂ti−1

)]

−
N(T )∑
i=1

∑
{j:T ∗

j <ti}

Yj e
δ̂T ∗
j

[
1

δ̂2

(
e−δ̂ti − e−δ̂ti−1

)]

−
N(T )∑
i=1

∑
{j:T ∗

j <ti}

Yj e
δ̂T ∗
j

[
1

δ̂

(
ti e
−δ̂ti − ti−1 e−δ̂ti−1

)]

+

N(T )∑
i=1

−λ̂0 ti e−δ̂ti +
∑

{j:T ∗
j <ti}

Yj (ti − T ∗j ) e−δ̂(ti−T
∗
j )

λ̂0 e−δ̂ti +
∑

{j:T ∗
j <ti}

Yj e
−δ̂(ti−T ∗

j )
= 0.

(3.2.7)

Since, explicit solutions for Equation (3.2.6) and Equation (3.2.7) does not exist, they
may be solved numerically using the Newton Raphson method.

3.3 Derivation of the estimators in the log-normal distribution

A positive random variable Yj > 0 is log-normally distributed, if the natural logarithm of
Yj is normally distributed such that ln(Yj) ∼ N (µ, σ2). Probability density function of
log-normal distribution is given by:

f(Yj | µ, σ2) =
1

Yj
√

2πσ2
exp

{
−(lnYj − µ)2

2σ2

}
,

where Yj is the jth claim size of log-normal distribution, −∞ < µ < ∞ is the mean
parameter of log-normal distribution and σ > 0 is the shape parameter of log-normal
distribution.

The likelihood function of the log-normal distribution for a series of jump sizes Y ′j s (j =

1, 2, . . . , M(t)) is denoted by taking product of probability densities of the individual
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Y ′j s:

L(µ, σ2 | Y ) =

M(t)∏
j=1

f(Yj | µ, σ2)

=

M(t)∏
j=1

(2πσ2)−
1
2Y −1j exp

{
−(lnYj − µ)2

2σ2

}

= (2πσ2)−
M(t)

2 exp

−
M(t)∑
j=1

(lnYj − µ)2

2σ2


M(t)∏
j=1

Y −1j .

The log-likelihood function of the log-normal for the series of Y ′j s (j = 1, 2, . . . , M(t))

is then derived by taking the natural log of the likelihood function.

logL(µ, σ2 | Y ) = ln

(2πσ2)−
M(t)

2 exp

−
M(t)∑
j=1

(lnYj − µ)2

2σ2


M(t)∏
j=1

Y −1j



= −M(t)

2
ln
(
2πσ2

)
−

M(t)∑
j=1

lnYj −

M(t)∑
j=1

(lnYj − µ)2

2σ2
.

Now, we need to find µ̂ and σ̂2 which maximize logL(µ, σ2 | Y ). To do this, the gradient
of logL(µ, σ2 | Y ) is required and setting the result to zero.

Differentiating the log-likelihood function with respect to µ and setting the result to zero,
and obtain that

∂ logL(µ, σ2 | Y )

∂µ

∣∣∣∣
(µ, σ2)=(µ̂, σ̂2)

=

M(t)∑
j=1

lnYj

σ̂2
− M(t)µ̂

σ̂2
= 0.

Solving for µ̂, we obtain the estimator for the mean parameter µ as

µ̂ =

M(t)∑
j=1

lnYj

M(t)
. (3.3.1)
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Differentiating the log-likelihood function with respect to σ2 and setting the result to zero,
and obtain that

∂ logL(µ, σ2 | Y )

∂σ2

∣∣∣∣
(µ, σ2)=(µ̂, σ̂2)

= −M(t) +

M(t)∑
j=1

(lnYj − µ̂)2

σ̂2
= 0.

Solving for σ̂2, we obtain the estimator for the variance parameter σ2 as

σ̂2 =

M(t)∑
j=1

(lnYj − µ̂)2

M(t)
,

which simplifies to

σ̂2 =

M(t)∑
j=1

(lnYj)
2 −

(
M(t)∑
j=1

lnYj

)2

M(t)

M(t)
. (3.3.2)

3.4 Derivation of the estimator in the exponential distribution

A positive random variable Rj > 0 is exponentially distributed such that Rj ∼ exp(α).
Probability density function of exponential distribution is given by:

f(Rj | α) = α exp (−αRj) ,

where Rj > 0 is the jth inter-arrival time of exponential distribution and α is the rate
parameter of exponential distribution.

The likelihood function of the exponential distribution for a series of inter-arrival times
R′js (j = 1, 2, . . . , M(t)) is denoted by taking product of probability densities of the
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individual R′js:

L(α | R) =

M(t)∏
j=1

f(Rj | α)

=

M(t)∏
j=1

α exp (−αRj)

= αM(t) exp

−αM(t)∑
j=1

Rj

 .

The log-likelihood function is then derived by taking the natural log of the likelihood
function,

logL(α | R) = ln

αM(t) exp

−αM(t)∑
j=1

Rj


= M(t) lnα− α

M(t)∑
j=1

Rj.

Differentiating the log-likelihood function with respect to α and setting the result to zero,
and obtain that

∂L(α | R)

∂α

∣∣∣∣
α=α̂

=
M(t)

α̂
−

M(t)∑
j=1

Rj = 0.

Solving for α̂, we obtain the estimator,

α̂ =
M(t)
M(t)∑
j=1

Rj

. (3.4.1)

3.5 Derivation of the estimators in the gamma distribution

A positive random variable Rj > 0 is gamma distributed such that Rj ∼ Γ(β, k, α).
Probability density function of gamma distribution is given by:

f(Rj | β, k, α) =
αRαk−1

j

βαkΓ (k)
exp

{
−
(
Rj

β

)α}
,
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where Rj > 0 is the jth inter-arrival time of gamma distribution, k > 0 is the shape
parameter of gamma distribution and β > 0 is the scale parameter of gamma distribution.

The likelihood function of the gamma distribution for a series of inter-arrival timesR′js (j =

1, 2, . . . , M(t)) is denoted by taking product of probability densities of the individual
R′js:

L(β, k, α | R) =

M(t)∏
j=1

f(Rj | β, k, α)

=

M(t)∏
j=1

{
αRαk−1

j

βαkΓ (k)
exp

[
−
(
Rj

β

)α]}

= αM(t)
(
βαkΓ (k)

)−M(t)
exp

−
M(t)∑
j=1

Rα
j

βα


M(t)∏
j=1

Rαk−1
j .

The log-likelihood function is then derived by taking the natural log of the likelihood
function,

logL(β, k, α | R) = ln

αM(t)
(
βαkΓ (k)

)−M(t)
exp

−M(t)∑
j=1

(
Rj

β

)αM(t)∏
j=1

Rαk−1
j


= M(t) lnα−M(t)αk ln β −M(t) ln Γ (k)−

M(t)∑
j=1

(
Rj

β

)α

+ (αk − 1)

M(t)∑
j=1

lnRj.

Differentiating the log-likelihood function with respect to β and setting the result to zero,
and obtain that

∂ logL(β, k, α | R)

∂β

∣∣∣∣
(β, k)=(β̂, k̂)

= −M(t)αk̂

β̂
+
α

β̂

M(t)∑
j=1

(
Rj

β̂

)α
= 0.
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Solving for β̂, we obtain the estimator,

β̂ =


M(t)∑
j=1

Rα
j

M(t)k̂


1

α

. (3.5.1)

Differentiating the log-likelihood function with respect to k and setting the result to zero,
and obtain that

∂ logL(β, k, α | R)

∂k

∣∣∣∣
(β, k)=(β̂, k̂)

= −M(t)α ln β̂ −M(t)
∂ ln Γ

(
k̂
)

∂k̂
+ α

M(t)∑
j=1

lnRj = 0

Next, solve for k̂ and replace
∂ ln Γ

(
k̂
)

∂k̂
with Ψ(k̂) to obtain

M(t)Ψ(k̂) = α

M(t)∑
j=1

lnRj −M(t)α ln β̂

Ψ(k̂) =

α
M(t)∑
j=1

lnRj

M(t)
− α ln β̂.

Differentiating the log-likelihood function with respect to α and setting the result to zero,
and obtain that

∂ logL(β, k, α | R)

∂α

∣∣∣∣
(β,k)=(β̂,k̂)

=
M(t)

α
−M(t)k̂ ln β̂ −

M(t)∑
j=1

(
Rj

β̂

)α
ln

(
Rj

β̂

)

+ k̂

M(t)∑
j=1

lnRj = 0.
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=⇒
M(t)∑
j=1

(
Rj

β̂

)α
ln

(
Rj

β̂

)
− k̂

M(t)∑
j=1

lnRj =
M(t)

α
−M(t)k̂ ln β̂

M(t)

α
+ k̂

M(t)∑
j=1

lnRj =

M(t)∑
j=1

Rα
j

β̂α

M(t)∑
j=1

lnRj − ln β̂

+M(t)k̂ ln β̂.

Substituting Equation (3.5.1) into the above equation, and obtain shape parameter k̂, as
follows

M(t)

α
+ k̂

M(t)∑
j=1

lnRj = M(t)k̂

M(t)∑
j=1

lnRj −
1

α
ln

M(t)∑
j=1

Rα
j +

1

α
ln
(
M(t)k̂

)
+

M(t)k̂

α
ln

M(t)∑
j=1

Rα
j −

M(t)k̂

α
ln
(
M(t)k̂

)

M(t)k̂

M(t)∑
j=1

lnRj − k̂
M(t)∑
j=1

lnRj =
M(t)

α

k̂ =
M(t)

α

(
(M(t)− 1)

M(t)∑
j=1

lnRj

) . (3.5.2)

Now return to gamma distribution from the generalized gamma distribution by replacing
the α = 1 into Equation (3.5.2) then get the shape parameter k̂,

k̂ =
M(t)(

(M(t)− 1)
M(t)∑
j=1

lnRj

) . (3.5.3)

Substitute Equation (3.5.3) into Equation (3.5.1) when α = 1 to get the scale parameter
β̂,

β̂ =

M(t)∑
j=1

Rj

(
(M(t)− 1)

M(t)∑
j=1

lnRj

)
M(t)2

. (3.5.4)
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3.6 Derivation of the estimators in the Weibull distribution

A positive random variable Rj > 0 is Weibull distributed such that Rj ∼Weibull(γ, η).
Probability density function of Weibull distribution is given by:

f(Rj | γ, η) =
γ

ηγ
Rγ−1
j exp

{
−
(
Rj

η

)γ}
,

where Rj > 0 is the jth inter-arrival time of Weibull distribution, γ > 0 is the shape
parameter of Weibull distribution and η > 0 is the scale parameter of Weibull distribution.

The likelihood function of the Weibull distribution for a series of inter-arrival times
R′js (j = 1, 2, . . . , M(t)) is denoted by taking product of probability densities of the
individual R′js:

L(γ, η | R) =

M(t)∏
j=1

f(Rj | γ, η)

=

(
γ

ηγ

)M(t)

exp

−
M(t)∑
j=1

Rγ
j

ηγ


M(t)∏
j=1

Rγ−1
j .

The log-likelihood function is then derived by taking the natural log of the likelihood
function.

logL(γ, η | R) = M(t) ln

(
γ

ηγ

)
−

M(t)∑
j=1

Rγ
j

ηγ
+

M(t)∑
j=1

lnRγ−1
j

= M(t) ln γ −M(t)γ ln η −

M(t)∑
j=1

Rγ
j

ηγ
+ (γ − 1)

M(t)∑
j=1

lnRj.

Differentiating the log-likelihood function with respect to η̂ and setting the result to zero,
to get

∂ logL(γ, η | R)

∂η

∣∣∣∣
(γ, η)=(γ̂, η̂)

= −M(t)γ̂

η̂
+ γ̂

M(t)∑
j=1

Rγ̂
j

η̂γ̂+1
= 0.
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Solving for the scale parameter η̂ from the above equation, we obtain that

η̂ =

M(t)∑
j=1

Rj

M(t)
1
γ̂

. (3.6.1)

Differentiating the log-likelihood function with respect to γ and setting the result to zero,
we obtain that

∂ logL(γ, η | R)

∂γ

∣∣∣∣
(γ,η)=(γ̂,η̂)

=
M(t)

γ̂
−M(t) ln η̂ −

M(t)∑
j=1

(
Rj

η̂

)γ̂
ln

(
Rj

η̂

)
+

M(t)∑
j=1

lnRj

=⇒
M(t)∑
j=1

(
Rj

η̂

)γ̂
ln

(
Rj

η̂

)
− M(t)

γ̂
=

M(t)∑
j=1

lnRj −M(t) ln η̂.

Substitute Equation (3.6.1) into the above equation to get shape parameter γ̂,M(t)∑
j=1

lnRj − ln

M(t)∑
j=1

Rj +
1

γ̂
lnM(t)

M(t)− M(t)

γ̂
=

M(t)∑
j=1

lnRj −M(t) ln

M(t)∑
j=1

Rj

+
M(t)

γ̂
lnM(t)

=⇒ γ̂ =
M(t)

(M(t)− 1)
M(t)∑
j=1

lnRj

. (3.6.2)

Substitute Equation (3.6.2) into Equation (3.6.1) to get scale parameter η̂,

η̂ =

M(t)∑
j=1

Rj

M(t)


(M(t)− 1)

M(t)∑
j=1

lnRj

M(t)



. (3.6.3)
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4 BAYESIAN ESTIMATION METHOD

This chapter presents mathematical derivation of estimators for different types of distri-
butions using the Bayesian method. For the purpose of this study, estimators for four
distributions would be presented, all of which belong to a family of positive skewed dis-
tributions, that is log-normal, exponential, gamma and Weibull that are simulated using
renewal process M(t). These estimators will be used to simulate the renewal shot-noise
Cox process.

4.1 Introduction to Bayesian estimation method

In maximum likelihood estimation method, we have seen that the parameters to be es-
timated are said to be fixed quantities and only data is allowed to be random. But in
Bayesian estimation method, the parameter estimates are allowed to be random that re-
sults in less uncertainty as the parameters are more informed due to the addition of the
prior information about the model parameter.

In this case, we face the necessity to use Bayes’ theorem that would be required to demon-
strate the conditional posterior distribution of the model parameter given the random gen-
erated data, expressed as follows

π(Θ | xi) =
L(xi | Θ)π(Θ)∫
L(xi | Θ)π(Θ)dΘ

,

where xi are the random generated data from a given distribution and Θ is the parameter
value to be estimated. The integral part,

∫
L(xi | Θ)π(Θ)dΘ which is known as the

normalization constant is mostly inconvenient to compute it analytically for some other
distribution and for the numerical integration may sometime be impossible.

With the help of Markov chain Monte Carlo (MCMC) methods, Bayesian inference of
the model parameter may be found without the need to compute this difficult integral.
Now, for simplicity the conditional posterior distribution of the model parameter given
the random generated data is reduced to

π(Θ | xi) ∝ L(xi | Θ)π(Θ). (4.1.1)
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Before we go into details of MCMC method, we first present the derivation of conditional
posterior distribution for the intensity function. Thereafter, we present other derivation of
conditional posterior distributions from the family of positive skewed distributions, that
is log-normal, exponential, gamma and Weibull.

4.2 Derivation of posterior distribution for the intensity function

The Hawkes process is a particular case of the doubly stochastic Poisson process: It is a
linear self-exciting process. Its conditional intensity process has a particular form which
depends upon the previous values of the point process N(t) itself.

Definition 4.2.1 (Hawkes’ process) A point process N(.) is called self-exciting if the in-

tensity λ(.) depends not only on the time ti but also on the entire past times of the points

process t1, . . . , ti−1 as stated in [16].

The renewal shot-noise Cox process is an extension of the Hawkes’ process. Using
{t1, t2, . . . , tN(T )} to denote the observed sequence of past arrival times of the point
process N(t) in the interval (0, T ] with the positive influence on the current value of the
intensity process. The intensity function is not depending on the point process itself but
on another renewal process leading to an expression that is given by

λ(s) = λ0 e
−δs +

∑
{j:T ∗

j <s}

Yj e
−δ(s−T ∗

j ).

Proposition 4.2.2 Let N(.) be a regular point process on [0, T ] for some finite positive

T and let t1, t2, . . . , tN(T ) denote a realisation of N(.) over [0, T ]. Then, the general

expression of the likelihood L of N(.) for any process from [17] is expressible in the form

L =

N(T )∏
i=1

λ(ti)

 exp

− T∫
0

λ(s)ds

 . (4.2.1)
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From the given Proposition 4.2.2, we substitute the intensity function of renewal shot-
noise Cox process into Equation (4.2.1) and obtain the expansion

L =

N(T )∏
i=1

λ0 e−δti +
∑

{j:T ∗
j <ti}

Yj e
−δ(ti−T ∗

j )


exp

−
T∫

0

λ0 e−δs +
∑

{j:T ∗
j <ti}

Yj e
−δ(s−T ∗

j )

 ds

 . (4.2.2)

Evaluate the first section of the expansion

N(T )∏
i=1

λ0 e−δti +
∑

{j:T ∗
j <ti}

Yj e
−δ(ti−T ∗

j )

 = λ0 e
−δ

N(T )∑
i=1

ti
+

N(T )∏
i=1

∑
{j:T ∗

j <ti}

Yj e
−δ(ti−T ∗

j ).

Evaluate the second section of the expansion

exp

− T∫
0

λ(s)ds

 = exp

−
N(T )∑
i=1

ti∫
ti−1

(
λ0 e

−δs +
∑

{j:T ∗
j <ti}

Yj e
−δ(s−T ∗

j )
)
ds


(4.2.3)

Substitute Equation (3.2.3) and Equation (3.2.4) into Equation (4.2.3), and obtain the
expansion

= exp

λ0δ (e−δtN(T ) − 1)−
N(T )∑
i=1

∑
{j:T ∗

j <ti}

Yj e
δT ∗
j

[
−1

δ

(
e−δti − e−δti−1

)] .

Finally, to get the likelihood function, Equation (4.2.2) reduces to

L(λ0, δ | tN(T ), Y N(T )) =

λ0 e−δ
N(T )∑
i=1

ti
+

N(T )∏
i=1

∑
{j:T ∗

j <ti}

Yj e
−δ(ti−T ∗

j )


exp

λ0δ (e−δtN(T ) − 1)−
N(T )∑
i=1

∑
{j:T ∗

j <ti}

Yj e
δT ∗
j

[
−1

δ

(
e−δti − e−δti−1

)] .

(4.2.4)
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The likelihood function proportional to the parameter λ0, fixing all other quantities, is
expressed as

L(λ0 | tN(T ), Y N(T )) ∝ λ0 exp

{
λ0
δ

(e−δtN(T ) − 1)

}
. (4.2.5)

Assuming the prior distribution of the parameter λ0 is gamma distribution with hyperpa-
rameters of shape, θ and scale, φ as suggested in [18], we obtain that

π(λ0) ∝ λ θ−1
0 exp

(
−λ0
φ

)
; λ0 > 0. (4.2.6)

Based on Equation (4.1.1), the conditional posterior distribution of λ0 is given by

π(λ0 | tN(T ), Y N(T )) ∝ L(λ0 | tN(T ), Y N(T ))π(λ0). (4.2.7)

Substituting Equation (4.2.5) and Equation (4.2.6) into Equation (4.2.7) and obtain the
expression

π(λ0 | tN(T ), Y N(T )) ∝ λ 1+θ−1
0 exp

{
λ0

(
e−δ

δ
− 1

δ
− 1

φ

)}
. (4.2.8)

Therefore, the conditional posterior distribution of λ0 is said to be gamma distribution

with the hyperparameters of shape, θ′ = 1 + θ and scale, Φ′ =

(
e−δ

δ
− 1

δ
− 1

φ

)−1
.

Also, the likelihood function proportional to the parameter δ fixing all other quantities is
expressed as

L(δ | tN(T ), Y N(T )) ∝

e−δ
N(T )∑
i=1

ti
+

N(T )∏
i=1

∑
{j:T ∗

j <ti}

Yj e
−δ(ti−T ∗

j )


exp

λ0δ (e−δtN(T ) − 1)−
N(T )∑
i=1

∑
{j:T ∗

j <ti}

Yj e
δT ∗
j

[
−1

δ

(
e−δti − e−δti−1

)] .

(4.2.9)

Assuming the prior distribution of the parameter δ is gamma distribution with hyperpa-
rameters of scale, n and shape, p as suggested in [18], we obtain that

π(δ) ∝ δ n−1 exp

(
−δ
p

)
; δ > 0. (4.2.10)
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Based on Equation (4.1.1), the conditional posterior distribution of δ is given by:

π(δ | tN(T ), Y N(T ), λ0) ∝ L(δ | tN(T ), Y N(T ), λ0)π(δ). (4.2.11)

Substituting Equation (4.2.9) and Equation (4.2.10) into Equation (4.2.11) and obtain the
expression

π(δ | tN(T ), Y N(T )) ∝

δ n−1e−δ
N(T )∑
i=1

ti
+

N(T )∏
i=1

∑
{j:T ∗

j <ti}

Yj δ
n−1e−δ(ti−T

∗
j )


exp

 λ̂0δ (e−δtN(T ) − 1)− δ

p
−

N(T )∑
i=1

∑
{j:T ∗

j <ti}

Yj e
δT ∗
j

[
−1

δ

(
e−δti − e−δti−1

)] .

(4.2.12)

Therefore, the conditional posterior distribution of δ is not of the closed form solution.

4.3 Derivation of posterior distribution for the log-normal distribu-
tion

Probability density function of log-normal distribution is given by:

f(Yj | µ, Φ) =
1

Yj

√
Φ

2π
exp

{
−Φ

2
(lnYj − µ)2

}
,

where Yj is the jth claim size of log-normal distribution, −∞ < µ < ∞ is the mean
parameter and Φ is the precision parameter but not of the log-normal distribution.

The likelihood function of the log-normal distribution for a series of jump sizes Y ′j s (j =

1, 2, . . . , M(t)) is denoted by taking product of probability densities of the individual
Y ′j s:

L(µ, Φ | Y ) =

M(t)∏
j=1

f(Yj | µ, Φ)

=

M(t)∏
j=1

(
Φ

2π

) 1
2

Y −1j exp

{
−Φ

2
(lnYj − µ)2

}

=

(
Φ

2π

)M(t)
2

exp

−Φ

2

M(t)∑
j=1

(lnYj − µ)2


M(t)∏
j=1

Y −1j .
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4.3.1 Unknown parameter, µ

Assume that the parameter µ, is unknown and parameter Φ, is known. The likelihood
function proportional to parameter µ is given by:

L(µ | Y ) ∝ exp

−
M(t)Φ

2


M(t)∑
j=1

lnYj

M(t)
− µ


2
 . (4.3.1)

where Y =

M(t)∑
j=1

lnYj

M(t)
is the mean of log data.

Assuming the conjugate prior distribution of the parameter µ is normal distribution with
hyperparameters of mean, m and precision, q as suggested in [19], we obtain that

π(µ) ∝ exp
{
−q

2
(µ−m)2

}
. (4.3.2)

Based on Equation (4.1.1), the conditional posterior distribution of µ is given by:

π(µ | Y ) ∝ L(µ | Y )π(µ). (4.3.3)

Substituting Equation (4.3.1) and Equation (4.3.2) into Equation (4.3.3) and obtain the
expression

π(µ | Y ) ∝ exp

{
−M(t)Φ

2

(
Y − µ

)2 − q

2
(µ−m)2

}
∝ exp

{
−1

2

(
M(t)ΦY

2 − 2M(t)ΦY µ+M(t)Φµ2 + qµ2 − 2qµm+ qm2
)}

∝ exp

[
−1

2

{
µ2(M(t)Φ + q)− 2µ(M(t)ΦY + qm) +M(t)ΦY

2
+ qm2

}]
∝ exp

{
−1

2
(M(t)Φ + q)

(
µ2 − 2µ

M(t)ΦY + qm

M(t)Φ + q
+
M(t)ΦY

2
+ qm2

M(t)Φ + q

)}

∝ exp

{
−1

2
(M(t)Φ + q)

(
µ− M(t)ΦY + qm

M(t)Φ + q

)2
}

(4.3.4)

Therefore, the conditional posterior distribution of µ is said to be normal distribution with

the hyperparameters of mean, m′ =
M(t)ΦY + qm

M(t)Φ + q
and precision, q′ = M(t)Φ + q.
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4.3.2 Unknown parameter, Φ

Assume that the parameter Φ, is unknown and parameter µ, is known. The likelihood
function proportional to parameter Φ is given by:

L(Φ | Y ) ∝ Φ
M(t)

2 exp

−M(t)Φ

2

M(t)∑
j=1

(lnYj − µ)2

 . (4.3.5)

where SS =
M(t)∑
j=1

(lnYj − µ)2 is the sum of squares of the residuals.

Assuming the conjugate prior distribution of the parameter Φ is gamma distribution with
hyperparameters of shape, α and scale, β as suggested in [19], we obtain that

π(Φ) ∝ Φ α−1 exp

(
−Φ

β

)
; Φ > 0. (4.3.6)

Based on Equation (4.1.1), the conditional posterior distribution of Φ is given by:

π(Φ | Y ) ∝ L(Φ | Y )π(Φ). (4.3.7)

Substituting Equation (4.3.5) and Equation (4.3.6) into Equation (4.3.7) and obtain the
expression

π(Φ | Y ) ∝ Φα+
M(t)

2
−1 exp

(
−Φ

2
SS − Φ

β

)
∝ Φα+

M(t)
2
−1 exp

{
−Φ

(
SS

2
+

1

β

)}
. (4.3.8)

Therefore, the conditional posterior distribution of Φ is said to be gamma distribution with

the hyperparameters of shape, α′ = α +
M(t)

2
and scale, β′ =

(
SS

2
+

1

β

)−1
.

4.4 Derivation of posterior distribution for the exponential distribu-
tion

Probability density function of exponential distribution is given by:

f(Rj | λ) = λ exp (−λRj) ,
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where Rj > 0 is the jth inter-arrival time of exponential distribution and λ is the rate
parameter of exponential distribution.

The likelihood function of the exponential distribution for a series of inter-arrival times
R′js (j = 1, 2, . . . , M(t)) is denoted by taking product of probability densities of the
individual R′js:

L(λ | R) =

M(t)∏
j=1

f(Rj | λ)

=

M(t)∏
j=1

λ exp (−λRj)

= λM(t) exp

−λM(t)∑
j=1

Rj

 . (4.4.1)

Assuming the conjugate prior distribution of the parameter λ is gamma distribution with
hyperparameters of shape, a and scale, b as suggested in [20], we obtain that

π(λ) ∝ λ a−1 exp

(
−λ
b

)
; λ > 0. (4.4.2)

Based on Equation (4.1.1), the conditional posterior distribution of λ is given by:

π(λ | R) ∝ L(λ | R)π(λ). (4.4.3)

Substituting Equation (4.4.1) and Equation (4.4.2) into Equation (4.4.3) and obtain the
expression

π(λ | R) ∝ λ a+M(t)−1 exp

−λ
M(t)∑

j=1

Rj +
1

b

 . (4.4.4)

Therefore, the conditional posterior distribution of λ is said to be gamma distribution with

the hyperparameters of shape, a′ = a+M(t) and scale, b′ =

(
M(t)∑
j=1

Rj +
1

b

)−1
.
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4.5 Derivation of posterior distribution for the gamma distribution

Probability density function of gamma distribution is given by

f(Rj | k, s) =
Rk−1
j

skΓ (k)
exp

(
−Rj

s

)
,

where Rj > 0 is the jth inter-arrival time of gamma distribution, k > 0 is the shape
parameter of gamma distribution and s > 0 is the scale parameter of gamma distribution.

The likelihood function of the gamma distribution for a series of inter-arrival timesR′js (j =

1, 2, . . . , M(t)) is denoted by taking product of probability densities of the individual
R′js

L(k, s | R) =

M(t)∏
j=1

f(Rj | s, k)

=

M(t)∏
j=1

{
Rk−1
j

skΓ (k)
exp

(
−Rj

s

)}

=
(
skΓ (k)

)−M(t)
exp

−
M(t)∑
j=1

Rj

s


M(t)∏
j=1

Rk−1
j . (4.5.1)

With the indefinite assumption on the prior of the two-parameter gamma distribution, let
us assume that the non informative prior as stated in [21] is expressed as

π(k, s) ∝ 1

s
. (4.5.2)

Based on Equation (4.1.1), the joint posterior distribution of k and s is given by

π(k, s | R) ∝ L(k, s | R)π(k, s). (4.5.3)

Substituting Equation (4.5.1) and Equation (4.5.2) into Equation (4.5.3) and obtain the
expression

π(k, s | R) ∝
(
skΓ (k)

)−M(t)

s
exp

−
M(t)∑
j=1

Rj

s


M(t)∏
j=1

Rk−1
j . (4.5.4)



46

The conditional posterior distribution of parameter k given fixing all other quantities is
given as

π(k | R) ∝
(
skΓ (k)

)−M(t)
M(t)∏
j=1

Rk−1
j . (4.5.5)

Therefore, the conditional posterior distribution of k is not of the closed form solution.

Also, the conditional posterior distribution of parameter s given fixing all other quantities
is given as

π(s | R) ∝ s−(kM(t)+1) exp

−
M(t)∑
j=1

Rj

s

 . (4.5.6)

Therefore, the conditional posterior distribution of s is said to be inverse-gamma distribu-

tion with the hyperparameters of shape, k′ = kM(t) and scale, s′ =
M(t)∑
j=1

Rj .

4.6 Derivation of posterior distribution for the Weibull distribution

Probability density function of Weibull distribution is given by

f(Rj | γ, η) =
γ

ηγ
Rγ−1
j exp

{
−
(
Rj

η

)γ}
,

where Rj > 0 is the jth inter-arrival time of Weibull distribution, γ > 0 is the shape
parameter of Weibull distribution and η > 0 is the scale parameter of Weibull distribution.

The likelihood function of the Weibull distribution for a series of inter-arrival times
R′js (j = 1, 2, . . . , M(t)) is denoted by taking product of probability densities of the
individual R′js

L(γ, η | R) =

M(t)∏
j=1

f(Rj | γ, η)

=

(
γ

ηγ

)M(t)

exp

−
M(t)∑
j=1

Rγ
j

ηγ


M(t)∏
j=1

Rγ−1
j . (4.6.1)
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With the indefinite assumption on the prior of the two-parameter Weibull distribution, let
us assume that the non informative prior as stated in [22] is expressed as

π(γ, η) ∝ 1

γη
. (4.6.2)

Based on Equation (4.1.1), the joint posterior distribution of γ and η is given by

π(γ, η | R) ∝ L(γ, η | R)π(γ, η). (4.6.3)

Substituting Equation (4.6.1) and Equation (4.6.2) into Equation (4.6.3) and obtain the
expression

π(γ, η | R) ∝ 1

γη

(
γ

ηγ

)M(t)

exp

−
M(t)∑
j=1

Rγ
i

ηγ


M(t)∏
j=1

Rγ−1
j . (4.6.4)

The conditional posterior distribution of parameter γ given fixing all other quantities is
given as

π(γ | R) ∝ 1

γ

(
γ

ηγ

)M(t)

exp

−
M(t)∑
j=1

Rγ
j

ηγ


M(t)∏
j=1

Rγ−1
j . (4.6.5)

Therefore, the conditional posterior distribution of γ is not of the closed form solution.

Also, the conditional posterior distribution of parameter η given fixing all other quantities
is given as

π(η | R) ∝ 1

ηγM(t)+1
exp

−
M(t)∑
j=1

Rγ
j

ηγ

 . (4.6.6)

Therefore, the conditional posterior distribution of η is not of the closed form solution.
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5 MCMC METHODS TO BAYESIAN ESTIMATION

This chapter presents the most popular techniques of MCMC methods. For the purpose
of this study, the techniques and their respective algorithms will be presented. These
algorithms will provide assistance to the Bayesian estimation with the help of MCMC
methods.

5.1 Introduction to MCMC methods

MCMC methods have been proposed to generate a sequence of samples, θ = {θ1, θ2, . . . , θn}
whose distribution approaches the posterior distribution as the sample size, n increases.
The Monte Carlo term is used to describe methods that involve random generation of
numbers. Based on the sequence of samples generated, the new sample point, θi+1 de-
pend on the previous sample point, θi and hence the samples form a Markov Chain [23].

With MCMC method, the model parameters can be estimated without the need to estimate
the difficult integral. Metropolis-Hastings algorithm together with Gibbs sampling turns
out to be the most popular techniques of MCMC methods.

5.2 Metropolis-Hastings algorithm

This is one of the most widely used MCMC algorithms as it simply works by generating
the candidate sample points from the proposal distribution followed by either accepting
or rejecting the proposal candidate points generated using a simple rule. This simple rule
can be implemented by generating the uniform random number, u and comparing it to the
acceptance probability. The algorithm has proved to be more efficient since it deals with
non-symmetric proposal distributions. This algorithm still works well even with cases
where the conditional posterior distribution does not follow any closed distribution [24].

The Metropolis-Hastings algorithm can be written as described in [25] as follows:
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Algorithm 1 : Metropolis-Hastings algorithm
Input: Initial parameter θ1, proposal distribution q(. | θ), chain length N
Output: Posterior sample parameters {θn}Nn=1

while the number of iteration is less than the chain length do
- Generate a new candidate point: θ̂ ∼ q(θ̂ | θn)

- Compute α(θn, θ̂) = min(1,
π(θ̂)q(θn | θ̂)
π(θn)q(θ̂ | θn)

)

- Generate a uniform random variable: u ∼ U(0, 1)

if u < α(θn, θ̂) then
Accept: Set θn+1 = θ̂

else
Reject: Set θn+1 = θn

end
end

To implement the Metropolis-Hasting algorithm, we need to specify the proposal distri-
bution, q(θ̂ | θn) in the algorithm that would be easy to sample from it.

5.2.1 Random walk Metropolis (RWM)

The RWM is said to be one of the best choice in generating the candidate samples since
it explores the neighbourhood of the current candidate value, θn to propose the new can-
didate value, θ̂ as mentioned in [24].

This works by assuming that the proposal distribution, q(θ̂ | θn) is symmetric and the
probability of generating the movement from θn to θ̂ only depend on difference of its
movement, q(θ̂ | θn) = g(

∣∣∣θn − θ̂∣∣∣) where g is the symmetric distribution [24].

To implement this case, we need to generate θ̂ by setting θ̂ = θn + ε where ε are said to be
independent and identically distributed (i.i.d) with symmetric distribution such as normal
distribution with the mean of 0 and variance of σ2

θn
. Here, the choice of proposal variance,

σ2
θn

is very important as it has a great influence on the efficiency of the algorithm.

The modification of Metropolis-Hasting algorithm to random walk Metropolis algorithm
can be written as described in [25] as follows:
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Algorithm 2 : Random Walk Metropolis algorithm
Input: Initial parameter θ1, proposal variance σ2

θn
, chain length N

Output: Posterior sample parameters {θn}Nn=1

while the number of iteration is less than the chain length do
- Generate a new candidate point: θ̂ ∼ N(θn, σ

2
θn

)

- Compute α(θn, θ̂) = min(1,
π(θ̂)

π(θn)
)

- Generate a uniform random variable: u ∼ U(0, 1)

if u < α(θn, θ̂) then
Accept: Set θn+1 = θ̂

else
Reject: Set θn+1 = θn

end
end

5.3 Gibbs sampling

In the above algorithm, the candidate sample points are all proposed at the same time.
However, sometimes in high-dimensional problems it is actually difficult to get a good
multivariate proposal distributions. In this case, Gibbs sampling is introduced to allow
sampling from one-dimensional proposal distribution meaning each parameter is sampled
one at a time given that the remaining parameters are kept fixed [25].

The algorithm is only efficient, if the conditional posterior distribution of each parameter
is of known form or closed distribution. Gibbs sampling is the special case of Metropolis-
Hastings algorithm where the proposal distributions are the conditional posterior distribu-
tions and all the proposal candidate sample points are always accepted.

The Gibbs sampler can be written as described in [25] as follows:
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Algorithm 3 : Gibbs sampler
Input: Initial parameter θ0 = (θ 0

1 , θ
0
2 , . . . , θ

0
p ) ∼ q(θ), parameter length p, chain length

N

Output: Posterior sample parameters {Θn}pn=1

for iteration i = 1, 2, . . . , N do
θ i1 ∼ π(Θ1 = θ1 | Θ2 = θ i−12 ,Θ3 = θ i−13 , . . . ,Θp = θ i−1p )

θ i2 ∼ π(Θ2 = θ2 | Θ1 = θ i1 ,Θ3 = θ i−13 , . . . ,Θp = θ i−1p )
...
θ ip ∼ π(Θp = θp | Θ1 = θ i1 ,Θ2 = θ i2 , . . . ,Θp = θ ip−1)

end
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6 A SIMULATION STUDY

This chapter introduces the simulation study of the renewal shot-noise Cox process. To
accomplish this study, the intensity function introduced and built in Chapter 2 will be used
to simulate the point process N(t) with intensity of the renewal shot-noise Cox process.

6.1 Derivation of general expressions used in simulation techniques

In this section, derivation of general expressions used in the simulation process is pro-
vided. However, first familiarize ourselves with some basic concepts and definitions that
would assist in the derivation procedures.

Definition 6.1.1 (Point process) A point processN(t) is a stochastic, or random process

composed of a time series of binary events that occur in continuous time. However, there

are properties of binary time series obtained from the underlying point process in terms

of a natural parameter function of the point process. This parameter is called the zero

probability function since it is computed as the probability that no events of the point

process occur in a given time set. They are used to describe data that are localized at a

finite set of time points. As opposed to continuous-valued processes, which can take on

any of countless values at each point in time, a point process can take on only one of two

possible values, indicating whether or not an event occurs at that time [13].

Proposition 6.1.2 Let the point process N(t) be an non-homogeneous Poisson process

where the intensity function λ(t) is a non-constant deterministic function that depends on

time then the process is said to follow Poisson distribution with the parameter
t∫
0

λ(s) ds

as stated in [16]. Therefore, we have:

P (N(t) = n) =

(
t∫
0

λ(s)ds

)n
exp

(
−

t∫
0

λ(s) ds

)
n!

.

Proposition 6.1.3 The number of events in any interval of length t is Poisson distributed

with mean
t∫
0

λ(s) ds as proved in [16] without taking into consideration on the starting
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point i.e, stationary increments. That is, for all s, t ≥ 0

P (N(t+ s)−N(s) = n) =

(
t∫
0

λ(s)ds

)n
exp

(
−

t∫
0

λ(s) ds

)
n!

.

Consider a Poisson process, and let T1 denote the time of the first event. Further, for
i ≥ 1 we let Ti denote the time between the (i − 1)st and the ith event. The sequence
{Ti, i ≥ 1} is called the sequence of inter-arrival times.

Now, determine the distribution of the Ti but to do so first take into consideration {T1 > t}
that takes place if and only if, no events of the Poisson process occur in the interval [0, t],
and thus

P (T1 > t) = P (N(t) = 0) = exp

−
t∫

0

λ(s) ds

 .

Hence, T1 has an exponential distribution with mean value function Λ(t) =
t∫
0

λ(s) ds <

∞ that is the expected number of events of the non-homogeneous Poisson process on the
time interval (0, t). To obtain the distribution of T2 conditional on T1, we proceed as
follows:

P (T2 > t|T1 = s) = P (N(t+ s)−N(s) = 0|T1 = s)

= P (N(t+ s)−N(s) = 0) (by independent increments) ,

= exp

−
t∫

0

λ(s) ds

 (by stationary increments) . (6.1.1)

Therefore, conclude that T2 is also exponential random variable with mean value function

Λ(t) =
t∫
0

λ(s) ds <∞ and further more T2 is independent of T1. Hence, Ti, i = 1, 2, . . .

are independent identically distributed exponential random variables having the mean

value function Λ(t) =
t∫
0

λ(s) ds <∞ as stated in [26].

Using the basic concept on Bayes’ theorem i.e. P (A ∩ B) = P (A|B) × P (B) and
the stated expression in Equation (6.1.1), then get the general expression of jump times
and their probabilities to belong in a particular interval for i = 1, . . . , N(T ) to assist in
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derivation procedures.

Suppose that we are dealing with the stochastic intensity function λ(t) that is given by:

λ(t) = λ0 e
−δt +

∑
{j:T ∗

j <t}

Yj e
−δ(t−T ∗

j ).

Then

P (T ∗i−1 < T < T ∗i ) = P (T < T ∗i | T > T ∗i−1)P (T > T ∗i−1)

=
(
1− P (T > T ∗i | T > T ∗i−1)

)
P (T > T ∗i−1)

=⇒ P (T > T ∗i | T > T ∗i−1) = P (N(T ∗i−1, T
∗
i ) = 0)

= exp

−
T ∗
i∫

T ∗
i−1

(
λ0 e

−δt +
∑

{j:T ∗
j <T

∗
i }

Yj e
−δ(t−T ∗

j )
)
dt



=⇒ P (T > T ∗i−1) = P (N(0, T ∗i−1) = 0)

= exp

−
T ∗
i−1∫
0

(
λ0 e

−δt +
∑

{j:T ∗
j <T

∗
i−1}

Yj e
−δ(t−T ∗

j )
)
dt

 ,

where the jump time t generated by the Cox process N(t) with the intensity function
depending on the renewal process is said to be realization of the random variable T .

In this simulation process, fix in values for time T , initial intensity λ0 and exponential
rate of decay δ.
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6.1.4 Finding the probability of ith jump times from the point process N(t) belong-
ing to a given interval

1. First, find the probability P1 of ith jump times from the point process N(t) belong-
ing to an interval [0, T ∗1 ].

P (T < T ∗1 ) = 1− P (T > T ∗1 )

= 1− exp

−
T ∗
1∫

0

λ0 e
−δt dt


=⇒ P1 = 1− exp

{
λ0
δ

(
e−δT

∗
1 − 1

)}
.

2. Then, find the probability P2 of ith jump times from the point process N(t) belong-
ing to an interval [T ∗1 , T

∗
2 ] that is given by:

P (T ∗1 < T < T ∗2 ) = P (T < T ∗2 |T > T ∗1 )P (T > T ∗1 )

=

[
1− exp

{
λ0
δ

(
e−δT

∗
2 − e−δT ∗

1
)

+
Y1
δ

(
e−δ(T

∗
2−T ∗

1 ) − 1
)}]

× exp

{
λ0
δ

(
e−δT

∗
1 − 1

)}

=⇒ P2 = exp

{
λ0
δ

(
e−δT

∗
1 − 1

)}
− exp

{
λ0
δ

(
e−δT

∗
2 − 1

)
+
Y1
δ

(
e−δ(T

∗
2−T ∗

1 ) − 1
)}

.

3. Formulation of the general expression of the probability Pi for i = 1, 2, . . . , N(C)

is given by:

Pi = exp

{
λ0
δ

(
e−δT

∗
i−1 − 1

)
+

i−2∑
j=1

Yj
δ

(
e−δ(T

∗
i−1−T ∗

j ) − eδT ∗
j

)}

− exp

{
λ0
δ

(
e−δT

∗
i − 1

)
+

i−1∑
j=1

Yj
δ

(
e−δ(T

∗
i −T ∗

j ) − eδT ∗
j

)}
. (6.1.2)
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and the probability expression of PN(C)+1 is given as follows:

PN(C)+1 = exp

λ0δ (e−δT ∗
N(C) − 1

)
+

N(C)−1∑
j=1

Yj
δ

(
e−δ(T

∗
N(C)

−T ∗
j ) − eδT ∗

j

)
− exp

λ0δ (e−δT ∗
N(C)+1 − 1

)
+

N(C)∑
j=1

Yj
δ

(
e−δ(T

∗
N(C)+1

−T ∗
j ) − eδT ∗

j

) .

(6.1.3)

6.1.5 Finding the value of summation of the probabilties qi depending on the inter-
val in which the value of ti lies

1. Initially, find the value of q1 assuming that the value of time t1 lies in any of the
interval between 0 and T . Hence, the value of q1 is given by:

q1 =

N(C)∑
i=1

Pi

=

N(C)∑
i=1

[
exp

{
λ0
δ

(
e−δT

∗
i−1 − 1

)
+

i−2∑
j=1

Yj
δ

(
e−δ(T

∗
i−1−T ∗

j ) − eδT ∗
j

)}

− exp

{
λ0
δ

(
e−δT

∗
i − 1

)
+

i−1∑
j=1

Yj
δ

(
e−δ(T

∗
i −T ∗

j ) − eδT ∗
j

)}]
. (6.1.4)

2. Then, find the value of q2 given time t1 assuming time t2 will belong in the time
interval [t1, T

∗
1 ]. Start with evaluation of the probability in the interval [t1, T

∗
1 ] that

is given by:

P (t1 < T < T ∗1 ) = P (T < T ∗1 |T > t1)P (T > t1)

=

[
1− exp

{
λ0
δ

(
e−δT

∗
1 − e−δt1

)}]
exp

{
λ0
δ

(
e−δt1 − 1

)}

= exp

{
λ0
δ

(
e−δt1 − 1

)}
− exp

{
λ0
δ

(
e−δT

∗
1 − 1

)}
.
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Hence, the value of q2 is given by:

q2 = exp

{
λ0
δ

(
e−δt1 − 1

)}
− exp

{
λ0
δ

(
e−δT

∗
1 − 1

)}
+

N(C)∑
i=2

Pi

= exp

{
λ0
δ

(
e−δt1 − 1

)}
− exp

{
λ0
δ

(
e−δT

∗
1 − 1

)}

+

N(C)∑
i=2

[
exp

{
λ0
δ

(
e−δT

∗
i−1 − 1

)
+

i−2∑
j=1

Yj
δ

(
e−δ(T

∗
i−1−T ∗

j ) − eδT ∗
j

)}

− exp

{
λ0
δ

(
e−δT

∗
i − 1

)
+

i−1∑
j=1

Yj
δ

(
e−δ(T

∗
i −T ∗

j ) − eδT ∗
j

)}]
.

3. Continuing in this way, find the general expression of qi for i = 1, 2, . . . , N(C) is
given by:

qi = exp

{
λ0
δ

(
e−δti−1 − 1

)
+

i−2∑
j=1

Yj
δ

(
e−δ(ti−1−T ∗

j ) − eδT ∗
j

)}

− exp

{
λ0
δ

(
e−δT

∗
i−1 − 1

)
+

i−2∑
j=1

Yj
δ

(
e−δ(T

∗
i−1−T ∗

j ) − eδT ∗
j

)}

+

N(C)∑
j=i

[
exp

{
λ0
δ

(
e−δT

∗
j−1 − 1

)
+

j−2∑
k=1

Yk
δ

(
e−δ(T

∗
j−1−T ∗

k ) − eδT ∗
k

)}

− exp

{
λ0
δ

(
e−δT

∗
j − 1

)
+

j−1∑
k=1

Yk
δ

(
e−δ(T

∗
j −T ∗

k ) − eδT ∗
k

)}]
. (6.1.5)

6.1.6 Finding the ith jump times from the point process N(t) using an inversion
method

1. First, find the value of t1 belonging to an interval [0, T ∗1 ] and let P (T > t1) =

1− F (t1) that is derived as follows:

P (T > t1) = P (N(0, t1) = 0)

= exp

−
t1∫
0

λ0 e
−δs ds


=⇒ 1− F (t1) = exp

{
λ0
δ

(
e−δt1 − 1

)}
.
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Using, inversion method find the value of t1 as follows

log (1− F (t1)) =
λ0
δ

(
e−δt1 − 1

)
t1 = −1

δ
log

[
δ

λ0
log (1− F (t1)) + 1

]

F−1(U1) = −1

δ
log

[
δ

λ0
log (1− U1) + 1

]
.

2. Next, find the value of t2 belonging to an interval [T ∗1 , T
∗
2 ] and let P (T > t2) =

1− F (t2) that is derived as follows:

P (T > t2) = P (N(0, t2) = 0)

= exp

−
t2∫
0

(
λ0 e

−δs + Y1 e
−δ(s−T ∗

1 )
)
ds


=⇒ 1− F (t2) = exp

{
λ0
δ

(
e−δt2 − 1

)
+
Y1
δ

(
e−δ(t2−T

∗
1 ) − eδT ∗

1
)}

.

Using, inversion method find the value of t2.

log (1− F (t2)) =
1

δ

[
λ0
(
e−δt2 − 1

)
+ Y1

(
e−δ(t2−T

∗
1 ) − eδT ∗

1
)]

t2 = −1

δ
log

[
δ log (1− F (t2)) + λ0 + Y1 e

δT ∗
1

λ0 + Y1 eδT
∗
1

]

F−1(U2) = −1

δ
log

[
δ log (1− U2) + λ0 + Y1 e

δT ∗
1

λ0 + Y1 eδT
∗
1

]
.

3. Therefore, the general expression of the value of ti for i = 1, 2, . . . , N(C) is given
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by:

ti = −1

δ
log


δ log (1− F (t2)) + λ0 +

i−1∑
j=1

Yj e
δT ∗
j

λ0 +
i−1∑
j=1

Yj e
δT ∗
j



F−1(Ui) = −1

δ
log


δ log (1− Ui) + λ0 +

i−1∑
j=1

Yj e
δT ∗
j

λ0 +
i−1∑
j=1

Yj e
δT ∗
j

 . (6.1.6)

6.2 Simulating a renewal shot-noise Cox process

In this section, there will be proposition of an algorithm for simulating a renewal shot-
noise Cox process. Then arrival times of a non-homogeneous Poisson process can be
simulated from the renewal shot-noise Cox process in order to generate some arrival times
for the renewal shot-noise process. Then the arrival times are aggregated to represent the
number of events per time interval [0, T ].

The algorithm for the generation of simulated data from renewal shot-noise Cox process
is thus described as follows:

1. Draw the random number Ui from the uniform distribution on [0, qi] given ti−1.
Initially, assume that t0 = 0 to compute q1 and later continue updating the expres-
sion of qi depending on the interval in which the value of ti lies, where the general
expression derived in Equation (6.1.5) is given by:

qi = exp

{
λ0
δ

(
e−δti−1 − 1

)
+

i−2∑
j=1

Yj
δ

(
e−δ(ti−1−T ∗

j ) − eδT ∗
j

)}

− exp

{
λ0
δ

(
e−δT

∗
i−1 − 1

)
+

i−2∑
j=1

Yj
δ

(
e−δ(T

∗
i−1−T ∗

j ) − eδT ∗
j

)}

+

N(C)∑
j=i

[
exp

{
λ0
δ

(
e−δT

∗
j−1 − 1

)
+

j−2∑
k=1

Yk
δ

(
e−δ(T

∗
j−1−T ∗

k ) − eδT ∗
k

)}

− exp

{
λ0
δ

(
e−δT

∗
j − 1

)
+

j−1∑
k=1

Yk
δ

(
e−δ(T

∗
j −T ∗

k ) − eδT ∗
k

)}]
.
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2. Thereafter, obtain a uniform random number Ui and find out the interval in which
the random number Ui lies between any of the interval [Qi−1, Qi] as a result obtain
the interval at which ti lies with

Qi =
i∑

j=1

Pj

and
Q0 = 0,

where

Pj = exp

{
λ0
δ

(
e−δT

∗
j−1 − 1

)
+

j−2∑
k=1

Yk
δ

(
e−δ(T

∗
j−1−T ∗

k ) − eδT ∗
k

)}

− exp

{
λ0
δ

(
e−δT

∗
j − 1

)
+

j−1∑
k=1

Yk
δ

(
e−δ(T

∗
j −T ∗

k ) − eδT ∗
k

)}
.

3. Then, using the general expression derived in the Equation (6.1.6) that is used to
simulate T between [T ∗i−1, T

∗
i ] and the inversion method to get the value of ti de-

pending on the interval it lies in, where the general expression is given as follows:

ti = F−1(Ui) = −1

δ
log


δ log (1− Ui) + λ0 +

i−1∑
j=1

Yj e
δT ∗
j

λ0 +
i−1∑
j=1

Yj e
δT ∗
j

 .
The algorithm for the inversion method is given as follows:

• Draw the uniform random number Ui on [0, 1].

• Compute the value of ti i.e. F−1(Ui).

and go back to step 1 to repeat the entire algorithm several times till time T .

The above algorithm generates the jump times ti for i = 1, 2, . . . , N(C) of renewal
shot-noise Cox process.

In this chapter, the proposed algorithm for simulating the renewal shot-noise Cox
process will be presented. Further, the proposed algorithm is structured in such a
way that it allows for the time-dependent intensity function to be a stochastic pro-
cess. As described in the previous chapters this increases reliability of the estimates
in insurance business.
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7 RESULTS AND DISCUSSION

This chapter summarizes the results together with the deep discussion of the results dis-
covered using both statistical techniques as illustrated in the Chapter (3) and Chapter (4)
with the help of MATLAB software. Later, we will then accomplish the study by compar-
ing the results from both statistical techniques using the algorithm built in Chapter (6) to
simulate the point process N(t) with intensity of the renewal shot-noise Cox process and
generate the jump times at which future catastrophic events will happen.

This involves generation of different parameters using the sample real data from an in-
surance company in Poland as the result of occurrence of catastrophic events over the
time period from 7.1.1990 to 10.12.1992 and later on use the generated parameter values
to generate their respective inter-arrival times and claim sizes that will be useful in the
algorithm to simulate the point process N(t) with intensity of the renewal shot-noise Cox
process to get reasonable results of jump times.

7.1 The maximum likelihood estimators

This is one of the statistical techniques that is used to generate fixed parameter values
from different distributions that are important in the simulation of the point process N(t)

with intensity of the renewal shot-noise Cox process.

We generate the claim sizes using the maximum likelihood estimators of the log-normal
distribution i.e. the mean parameter, µ̂ and the variance parameter, σ̂2 as derived in Equa-
tion (3.3.1) and Equation (3.3.2) respectively, we get the mean parameter, µ̂ = 18.0203

and the variance parameter, σ̂2 = 1.5963.

However, in the generation of the inter-arrival times we proposed three arbitrary distribu-
tions i.e. exponential, gamma and Weibull. First, using the maximum likelihood estimator
of the exponential distribution i.e the rate parameter, α̂ as derived in Equation (3.4.1) to
obtain the rate parameter, α̂ = 0.0974. Then, using the maximum likelihood estimators
of the gamma distribution i.e the shape parameter, k̂ and the scale parameter, β̂ as de-
rived in Equation (3.5.2) and Equation (3.5.1) respectively, we get the shape parameter,
k̂ = 0.0054 and use the result of the estimated shape parameter to obtain the scale param-
eter, β̂ = 1.8861e + 03. Lastly, using the maximum likelihood estimators of the Weibull
distribution i.e. the shape parameter, γ̂ and the scale parameter, η̂ as derived in Equation
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(3.6.2) and Equation (3.6.3) respectively, we get the shape parameter, γ̂ = 0.0054 and use
the result of the estimated shape parameter to obtain the scale parameter, η̂ = 0.

Using the generated claim sizes from the maximum likelihood estimators of the log-
normal distribution and generated inter-arrival times from the maximum likelihood es-
timators of three different arbitrary distributions i.e. exponential, gamma and Weibull to
obtain the initial intensity, λ̂0 and exponential rate of decay, δ̂ as derived from their deriva-
tives of the log-likelihood function in Equation (3.2.6) and Equation (3.2.7) respectively
with the help of Newton Raphson method. First, using the inter-arrival times that are
assumed to be exponentially distributed, we get the numerical values of initial intensity,
λ̂0 = 3.8548 and use the result of the estimated initial intensity to obtain the exponential
rate of decay, δ̂ = 9.1621e − 06. Then, using the inter-arrival times that are assumed
to be gamma distributed, we get the numerical values of initial intensity, λ̂0 = 113.2740

and use the result of the estimated initial intensity to obtain the exponential rate of decay,
δ̂ = 8.9878e− 06. Lastly, using the inter-arrival times that are assumed to be Weibull dis-
tributed, we get the numerical values of initial intensity, λ̂0 = 115.7068 and use the result
of the estimated initial intensity to obtain the exponential rate of decay, δ̂ = 8.9904e−06.

7.2 The Bayesian estimators

This is another statistical techniques that is used to generate random parameter values
using MCMC method from different posterior distributions that are important in the sim-
ulation of the point process N(t) with intensity of the renewal shot-noise Cox process.

Figure 4 shows the sample paths of the MCMC runs of 10000 realizations for both mean
parameter and precision parameter respectively, where jump sizes follow log-normal dis-
tribution. The sample paths show that the mixing of the chain is optimal after 10000

realizations.

Here, we generate the claim sizes using the Bayesian estimators of the log-normal distri-
bution i.e. the mean parameter, µ̂ and the precision parameter, Φ̂ as derived from their pos-
terior distributions in Equation (4.3.4) and Equation (4.3.8) respectively with the help of
MCMC method using Gibbs sampling algorithm, we get the mean parameter, µ̂ = 1.4478

and the precision parameter, Φ̂ = 0.0043 from their respective mean values of the MCMC
chain parameter values after 10000 realizations.
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Figure 4. Sample paths of the MCMC runs for both mean parameter and precision parameter,
where jump sizes follow log-normal distribution.

Figure 5 shows the posterior distribution of the parameters after 10000 realizations for
both mean parameter and precision parameter, where jump sizes follow log-normal dis-
tribution. This shows that there is zero correlation between these parameters after 10000

realizations i.e. non-existence of relationship between parameters.
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Figure 5. Posterior distribution of the parameters, where jump sizes follow log-normal distribu-
tion.

Figure 6 shows the sample paths of the MCMC runs of 10000 realizations for rate pa-
rameter, where inter-arrival times follow exponential distribution. The sample paths show
that the mixing of the chain is somewhat not optimal after 10000 realizations.

Here, we generate the inter-arrival times using the Bayesian estimators of the exponential
distribution i.e. the rate parameter, λ̂ as derived from its posterior distribution in Equation
(4.4.4) with the help of MCMC method using random walk Metropolis algorithm, we get
the rate parameter, λ̂ = 0.1068 from its mean value of the MCMC chain parameter values
after 10000 realizations.
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Figure 6. Sample paths of the MCMC runs for rate parameter, where inter-arrival times follow
exponential distribution.

Figure 7 shows the sample paths of the MCMC runs of 10000 realizations for both scale
parameter and shape parameter respectively, where inter-arrival times follow gamma dis-
tribution. The sample paths show that the mixing of the chain is optimal after 10000

realizations.

Here, we generate the inter-arrival times using the Bayesian estimators of the gamma
distribution i.e. the scale parameter, ŝ and the shape parameter, k̂ as derived from their
posterior distribution in Equation (4.5.6) and Equation (4.5.5) respectively with the help
of MCMC method using both Gibbs sampling and random walk Metropolis algorithm,
we get the scale parameter, ŝ = 5.1600 and the shape parameter, k̂ = 1.6201 from their
respective mean values of the MCMC chain parameter values after 10000 realizations.



66

Figure 7. Sample paths of the MCMC runs for both scale parameter and shape parameter, where
inter-arrival times follow gamma distribution.

Figure 8 shows the posterior distribution of the parameters after 10000 realizations for
both scale parameter and shape parameter, inter-arrival times follow gamma distribution.
This shows that there is zero correlation between these parameters after 10000 realizations
i.e. non-existence of relationship between parameters.
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Figure 8. Posterior distribution of the parameters, where inter-arrival times follow gamma distri-
bution.

Figure 9 shows the sample paths of the MCMC runs of 10000 realizations for both scale
parameter and shape parameter respectively, where inter-arrival times follow Weibull dis-
tribution. The sample paths show that the mixing of the chain is not optimal after 10000

realizations.

Here, we generate the inter-arrival times using the Bayesian estimators of the Weibull
distribution i.e. the scale parameter, η̂ and the shape parameter, γ̂ as derived from their
posterior distribution in Equation (4.6.6) and Equation (4.6.5) respectively with the help
of MCMC method using random walk Metropolis algorithm, we get the scale parameter,
η̂ = 4.8550 and the shape parameter, γ̂ = 1.7932 from their respective mean values of the
MCMC chain parameter values after 10000 realizations.
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Figure 9. Sample paths of the MCMC runs for both scale parameter and shape parameter, where
inter-arrival times follow Weibull distribution.

Figure 10 shows the posterior distribution of the parameters after 10000 realizations for
both scale parameter and shape parameter, inter-arrival times follow Weibull distribution.
This shows that there is zero correlation between these parameters after 10000 realizations
i.e. non-existence of relationship between parameters.
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Figure 10. Posterior distribution of the parameters, where inter-arrival times follow Weibull dis-
tribution.

Figure 11 shows the sample paths of the MCMC runs of 10000 realizations for the initial
intensity parameter. The sample paths show that the mixing of the chain is optimal after
10000 realizations.

Here, we generate the initial intensity parameter using the posterior distribution as de-
rived in Equation (4.2.8) with the help of MCMC method using random walk Metropolis
algorithm, we get the initial intensity parameter, λ0 = 4 from its respective mean value of
the MCMC chain parameter values after 10000 realizations.
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Figure 11. Sample paths of the MCMC runs for the initial intensity parameter.

Figure 12 shows the sample paths of the MCMC runs of 10000 realizations for the expo-
nential rate of decay parameter. The sample paths show that the mixing of the chain is
optimal after 10000 realizations.

Here, we generate the exponential rate of decay parameter using the posterior distribu-
tion as derived in Equation (4.2.12) with the help of MCMC method using random walk
Metropolis algorithm, we get the exponential rate of decay parameter, δ = 0.3555 from
its respective mean value of the MCMC chain parameter values after 10000 realizations,
where the inter-arrival times are assumed to be exponentially distributed.
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Figure 12. Sample paths of the MCMC runs for the exponential rate of decay parameter, where
inter-arrival times follow exponential distribution.

Figure 13 shows the posterior distribution of the parameters after 10000 realizations for
both initial intensity parameter and exponential rate of decay parameter, where inter-
arrival times are assumed to be exponentially distributed. This shows that there is positive
correlation between these parameters after 10000 realizations i.e. existence of positive
relationship between parameters. The possibility of such behavior could be due to the
reason that the prior distribution of both initial intensity parameter and exponential rate
of decay parameter are assumed to follow gamma distribution in Bayesian estimation
method as the result they behave in a similar manner.
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Figure 13. Posterior distribution of the parameters, where inter-arrival times follow exponential
distribution.

Figure 14 shows the sample paths of the MCMC runs of 10000 realizations for the expo-
nential rate of decay parameter. The sample paths show that the mixing of the chain is
somewhat not optimal after 10000 realizations.

Here, we generate the exponential rate of decay parameter using the posterior distribu-
tion as derived in Equation (4.2.12) with the help of MCMC method using random walk
Metropolis algorithm, we get the exponential rate of decay parameter, δ = 0.1364 from
its respective mean value of the MCMC chain parameter values after 10000 realizations,
where the inter-arrival times are assumed to be gamma distributed.
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Figure 14. Sample paths of the MCMC runs for the exponential rate of decay parameter, where
inter-arrival times follow gamma distribution.

Figure 15 shows the posterior distribution of the parameters after 10000 realizations for
both initial intensity parameter and exponential rate of decay parameter, where inter-
arrival times are assumed to be gamma distributed. This shows that there is positive
correlation between these parameters after 10000 realizations i.e. existence of positive
relationship between parameters. The possibility of such behaviour could be due to the
reason that the prior distribution of both initial intensity parameter and exponential rate
of decay parameter are assumed to follow gamma distribution in Bayesian estimation
method as the result they behave in a similar manner.
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Figure 15. Posterior distribution of the parameters, where inter-arrival times follow gamma dis-
tribution.

Figure 16 shows the sample paths of the MCMC runs of 10000 realizations for the expo-
nential rate of decay parameter. The sample paths show that the mixing of the chain is
somewhat not optimal after 10000 realizations.

Here, we generate the exponential rate of decay parameter using the posterior distribu-
tion as derived in Equation (4.2.12) with the help of MCMC method using random walk
Metropolis algorithm, we get the exponential rate of decay parameter, δ = 0.1453 from
its respective mean value of the MCMC chain parameter values after 10000 realizations,
where the inter-arrival times are assumed to be Weibull distributed.
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Figure 16. Sample paths of the MCMC runs for the exponential rate of decay parameter, , where
inter-arrival times follow Weibull distribution.

Figure 17 shows the posterior distribution of the parameters after 10000 realizations for
both initial intensity parameter and exponential rate of decay parameter, where inter-
arrival times are assumed to be Weibull distributed. This shows that there is positive
correlation between these parameters after 10000 realizations i.e. existence of positive
relationship between parameters. The possibility of such behaviour could be due to the
reason that the prior distribution of both initial intensity parameter and exponential rate
of decay parameter are assumed to follow gamma distribution in Bayesian estimation
method as the result they behave in a similar manner.
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Figure 17. Posterior distribution of the parameters, where inter-arrival times follow Weibull dis-
tribution.

7.3 The jump times, ti

The main purpose of this thesis is to generate the jump times ti for i = 1, 2, . . . , N(C)

of renewal shot-noise Cox process using the algorithm derived in Chapter (6) in the sim-
ulation of the point process N(t) with intensity of the renewal shot-noise Cox process
using the statistical techniques i.e. maximum likelihood estimation method and Bayesian
estimation method for results comparison.

Note that we will use the estimators from both statistical techniques i.e. maximum likeli-
hood estimation method and Bayesian estimation method that will assist in the simulation
process using the formulated algorithm as stated in Section (6.2).

Figure 18 shows the sample paths by comparing the jump times generated using the main
algorithm formulated in Section (6.2) to the arrival times generated using exponential
distribution with both statistical techniques i.e. maximum likelihood estimation method
and Bayesian estimation method over the entire period of the occurrence of catastrophic
events.
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Here, we observe that the predicted jump times generated using maximum likelihood
estimation method are somewhat far apart from the arrival times of the actual occurrence
of catastrophic events generated using real data as compared to the ones generated using
Bayesian estimation method, where inter-arrival times follow exponential distribution.
This shows that there is greater accuracy of the predicted jump times generated using the
Bayesian estimation method to the ones generated using maximum likelihood estimation
method.

Figure 18. Sample paths of the catastrophic times for both maximum likelihood estimation
method and Bayesian estimation method, where inter-arrival times follow exponential distribu-
tion.

Figure 19 show the sample paths by comparing the jump times generated using the main
algorithm formulated in Section (6.2) to the arrival times generated using gamma dis-
tribution with both statistical techniques i.e. maximum likelihood estimation method
and Bayesian estimation method over the entire period of the occurrence of catastrophic
events.

Here, we observe that the predicted jump times generated using maximum likelihood
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estimation method are completely far apart from the arrival times of the actual occurrence
of catastrophic events generated using real data as compared to the ones generated using
Bayesian estimation method in which the predicted jump times are somewhat close to
the arrival times of the actual occurrence of catastrophic events, where inter-arrival times
follow gamma distribution. This shows that there is greater accuracy of the predicted
jump times generated using the Bayesian estimation method to the ones generated using
maximum likelihood estimation method.

Figure 19. Sample paths of the catastrophic times for both maximum likelihood estimation
method and Bayesian estimation method, where inter-arrival times follow gamma distribution.

Figure 20 shows the sample paths by comparing the jump times generated using the
main algorithm formulated in Section (6.2) to the arrival times generated using Weibull
distribution with both statistical techniques i.e. maximum likelihood estimation method
and Bayesian estimation method over the entire period of the occurrence of catastrophic
events.

Here, we observe that the predicted jump times generated using maximum likelihood
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estimation method are completely far apart from the arrival times of the actual occurrence
of catastrophic events generated using real data as compared to the ones generated using
Bayesian estimation method in which the predicted jump times are very close to the arrival
times of the actual occurrence of catastrophic events, where inter-arrival times follow
Weibull distribution. This shows that there is greater accuracy of the predicted jump times
generated using the Bayesian estimation method to the ones generated using maximum
likelihood estimation method.

Figure 20. Sample paths of the catastrophic times for both maximum likelihood estimation
method and Bayesian estimation method, where inter-arrival times follow Weibull distribution.

Generally, we have observed that the Bayesian estimation method seems to have gener-
ated the predicted jump times that appear to be more accurate as compared to the ones
generated using maximum likelihood estimation method. Also, we have observed that
in the maximum likelihood estimation method that there is small divergence of predicted
jump times to the arrival times of the actual occurrence of catastrophic events when the
inter-arrival times are assumed to follow exponential distribution as compared to the re-
maining arbitrary distributions.
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8 CONCLUSION AND RECOMMENDATION

In this chapter, we provide the conclusion and recommendation of this study.

8.1 Conclusion

In this project, we explored the use of renewal shot-noise Cox process in the modelling of
claim arrivals process as it measures frequency, magnitude and time period to determine
the effects of catastrophic events through shot-noise process, such a model also allows
the time dependent intensity function to be a stochastic process. Although the renewal
shot-noise Cox process has been an important tool in modelling claim arrivals process, in
this project we included renewal shot-noise Cox process in modelling catastrophic events
taking into consideration the frequency of claim counts.

We have derived estimators for the parameters in the intensity function of renewal shot-
noise Cox process and other arbitrary distributions. In this case, inter-arrival times are
assumed to follow gamma, Weibull and exponential distribution while claim sizes are
assumed to follow log-normal distribution using different statistical techniques i.e. maxi-
mum likelihood estimation method and Bayesian estimation method for comparison pur-
poses. Through a simulation study, we have proposed an algorithm of simulating a re-
newal shot-noise process λ(t) of the point process N(t) to generate the jump times at
which future catastrophic events will happen.

Basing on the results of the simulated jump times generated with the help of MATLAB

software, we have drawn a conclusion that the Bayesian estimation method proves to be a
more efficient statistical technique in comparison to the maximum likelihood estimation
method.

8.2 Recommendation

We recommend that the insurance companies should think about putting into practice
the implementation of the algorithm built in Chapter (6) to simulate the point process
N(t) with intensity of the renewal shot-noise Cox process and generate the appropriate
jump times at which future catastrophic events will happen using Bayesian estimation
method. Hence, result to the improvement in a lot of insurance companies because it will



81

reduce ruin probability as it provides flexibility of intensity not only depending on time
but allows it to be a stochastic process. Therefore, it is very useful in determination of
optimum premium, enabling them to charge the policyholder enough premium such that
there is sufficiently small ruin probability.
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Appendix 1. Histogram plots of the sample paths of MCMC runs

Figure A1.1. Histogram plot of the sample paths of MCMC runs for the mean parameter, where
jump sizes follow log-normal distribution.

(continues)



Appendix 1. (continued)

Figure A1.2. Histogram plot of the sample paths of MCMC runs for the precision parameter,
where jump sizes follow log-normal distribution.

(continues)



Appendix 1. (continued)

Figure A1.3. Histogram plot of the sample paths of MCMC runs for the rate parameter, where
inter-arrival times follow exponential distribution.

(continues)



Appendix 1. (continued)

Figure A1.4. Histogram plot of the sample paths of MCMC runs for the scale parameter, where
inter-arrival times follow gamma distribution.

(continues)



Appendix 1. (continued)

Figure A1.5. Histogram plot of the sample paths of MCMC runs for the shape parameter, where
inter-arrival times follow gamma distribution.

(continues)



Appendix 1. (continued)

Figure A1.6. Histogram plot of the sample paths of MCMC runs for the scale parameter, where
inter-arrival times follow Weibull distribution.

(continues)



Appendix 1. (continued)

Figure A1.7. Histogram plot of the sample paths of MCMC runs for the shape parameter, where
inter-arrival times follow Weibull distribution.

(continues)



Appendix 1. (continued)

Figure A1.8. Histogram plot of the sample paths of the predicted jump times generated using
maximum likelihood estimation method, where inter-arrival times follow exponential distribution.

(continues)



Appendix 1. (continued)

Figure A1.9. Histogram plot of the sample paths of the predicted jump times generated using
Bayesian estimation method, where inter-arrival times follow exponential distribution.

(continues)



Appendix 1. (continued)

Figure A1.10. Histogram plot of the sample paths of the predicted jump times generated using
maximum likelihood estimation method, where inter-arrival times follow gamma distribution.

(continues)



Appendix 1. (continued)

Figure A1.11. Histogram plot of the sample paths of the predicted jump times generated using
Bayesian estimation method, where inter-arrival times follow gamma distribution.

Figure A1.12. Histogram plot of the sample paths of the predicted jump times generated using
maximum likelihood estimation method, where inter-arrival times follow Weibull distribution.

(continues)



Appendix 1. (continued)

Figure A1.13. Histogram plot of the sample paths of the predicted jump times generated using
Bayesian estimation method, where inter-arrival times follow Weibull distribution.

(continues)
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