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aLaboratory of Intelligent Machines,Department of Mechanical Engineering, LUT University,Lappeenranta, Finland
bDepartment of Engineering, University of Ferrara, Ferrara, Italy

Abstract

This paper introduces a new adaptive Kalman filter for nonlinear systems. The proposed method is an adaptive

version of the square-root unscented Kalman filter (Sr-UKF). The presented adaptive square-root unscented Kalman

filter (ASr-UKF) is developed to estimate/detect the states of a nonlinear system while noise statistics that affect

system measurement and states are unknown. The filter attempts to adaptively estimate means and covariances of

both process and measurement noises and also the states of the system simultaneously. This evaluation of the value

of covariances helps the filter to modify itself in order to have more precise estimation. To test the efficiency of the

investigated filter, it is applied to different approaches, including state estimation and fault detection. First, the

proposed filter is used to predict states of two different nonlinear systems: a robot manipulator and a servo-hydraulic

system. Second, the filter is employed to detect a leakage fault in a hydraulic system. All applications are tested

under three assumptions: noises with known constant statistics, noises with unknown constant statistics and noises

with unknown time-varying statistics. Simulation and experimental results prove the efficiency of the presented filter

in comparison with the previous version.

Keywords: Adaptive square-root unscented Kalman filter, State estimation, Fault detection and diagnosis, Robot

manipulator, Servo-hydraulic system, Noise mean and covariance estimation

1. Introduction

Estimation of the internal states of a practical system is an important part of controlling every system. New

methods must be developed to estimate the states. Many different reasons can be pointed out to indicate the

importance of state estimation: some sensors are too expensive to be implemented and some physical components

cannot be measured with sensors. These problems make it reasonable to investigate new methods to estimate or5

detect the states of the systems. Regarding the purpose of the estimation methods, the definition of state estimation

can be given as matching a time series on the propagation of states of the system.

In recent years, different types of filtering approaches, such as model based ones [1], have been developed for

different purposes, such as system estimator, and reflection of cyber-attacks in different systems [2, 3, 4]. For

instance, a new state estimator has been developed in [5]. The proposed algorithm has been designed based on a10

combination of a pole placement method and linear matrix inequality. The proposed method has been employed as
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a larger scheme to control the decentralized secondary voltage. In other research, a new method has been proposed

to estimate the states of noisy systems [6]. The method has been developed to estimate the states in the presence of

sparse sensor integrity attacks. The presented method was a combination of robust control and fault detection and

isolation concepts. Various types of state estimators have been developed previously, such as particle filtering [7] and15

Kalman filtering [8]. For example, a new sequential Monte Carlo approach as a particle filter has been developed in

[9]. The filter uses a nonlinear model for measurement. The purpose of the particle filter is to have a filter with an

acceptable performance in the presence of non-Gaussian noise.

For linear systems, although different methods with acceptable results have been designed, it has been proved that

the Kalman filter has the best estimation of the real system. The Kalman filter is a well-known method introduced20

by Rudolf Kalman. The filter has been developed to estimate the states of the system based on some measurements

of the system in each time step [10]. Regarding the performance of the Kalman filter, it has a wide usage in system

estimation procedures. For example, a combination of Kalman filter and neural network has been introduced for

detecting data fusion in [11]. The method has been developed based on different assumptions: known system model,

describing the mathematical relationship between sampling rates. As can be drawn from the wide usage of the25

filter, it has a good performance on linear systems, but it requires some modifications to estimate nonlinear systems.

Owing to this fact, many researchers have developed state estimation methods for nonlinear systems. For example,

an estimation has been investigated based on Markovian channels in [12]. The method has been developed to solve

the estimation problem in networked systems. Different versions of Kalman filter have been presented for nonlinear

systems. The most common and conventional nonlinear versions are the cubature Kalman filter [13], extended30

Kalman filter (EKF) [14], and unscented Kalman filter (UKF) [15]. These filters have various applications, such as

parameter estimation in diesel-engine SCR system [16], but state estimation is the most common application among.

For instance, the UKF has been used as part of a controlling system for a robotic manipulator in [17]. The filter has

been combined with an evolutionary algorithm to estimate the states of the robotic system. As another example,

in [18] computational load has been decreased by implementation of a new dual time-scale UKF which also assured35

the implementation performance. The proposed filter is trying to estimate the hydrothermal aging factor in a diesel

engine.

The previously introduced methods have some disadvantages that can be summarized as follows. In almost all of

the literature cited previously, it has been assumed that noise mean and power, both for process and measurement

noises, are known previously. In other words, a priori knowledge about noise statistics is assumed. This a priori40

knowledge is almost always difficult and in some cases impossible to pre-define. The other drawback of the approaches

in the literature is assuming fixed noise statistics. The papers have assumed that noise mean and covariance are

constant over time and no change in their values are considered. Any mismatch between the real noises and the ones

that are assumed, and any changes in the mean and covariance matrix of the noise over time, may lead to inaccurate

estimations and even in some cases result in divergence. In some newer researches, some adaptive Kalman filters have45

been introduces which are tried to solve the mismatching problem between real and supposed noise covariances[19].

For instance, a new weighted adaptive version of unscented Kalman filter has been developed and introduced in

[20]. Although the presented method has solved mismatching problem by the estimation of noise covariance and

mean, positive semi-definiteness of the states covariances has not been guaranteed. In another research, an adaptive
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version of the Kalman filter has been introduced which has tried to solve the problem only for measurement noise50

mismatch[21].

To tackle the problems of the previous methods, it is necessary to design new strategies that can solve some

or all of them. Regarding this topic, a new adaptive square-root unscented Kalman filter (ASr-UKF) is presented.

As indicated in [22, 23] the Sr-UKF not only solves the drawbacks of the EKF and UKF, but also guarantees the

positive semi-definiteness of the state covariances. The new filter attempts to present a proper solution for the above-55

mentioned problems. The adaptive filter does not need any prior knowledge about the measurement and process

noises, and not only estimates the states of the nonlinear system but is also able to estimate the covariances of noises.

Regarding this ability, the filter can predict the states of the system during any change in the statistics of noises. In

the procedure of designing this filter, no extra assumptions are considered. To show the proficiency of the presented

method, two different applications of the filter are discussed. As for state estimation, it is applied to two different60

systems: a robotic manipulator and a servo-hydraulic system. The results of simulations are provided.

On the other hand, the Kalman filter as a model-based fault detection method [24, 25] is in wide usage for fault

detection and diagnosis (FDD) in different types of systems [26, 27]. For instance, a combination of the Kalman filter

and fault factor methods has been introduced for fault detection and isolation (FDI) in [28]. The proposed method

has been applied to a rocket engine. Application of a Kalman filter for leakage fault detection in practical systems65

has been an interesting research topic in recent years. For example, an EKF has been employed to detect leakage

faults in [29]. The proposed method has been designed to detect the fault in the presence of uncertainties in the

system model as an unknown external loading. To evaluate the performance of the presented filter in this research,

it also been tested as an FDD module. The hydraulic actuator leakage fault is studied to show the performance of

the proposed filter as an FDD method.70

The rest of this paper is organized as follows. In Section 2 the principles of the proposed ASr-UKF are described.

First, the conventional square-root unscented Kalman filter (Sr-UKF) is discussed and then the adaptive filter is

presented, which deals with the drawback of the Sr-UKF. The simulation and experimental result parts are addressed

in Section 3 and consists of three subsections. First, the application of the filter as a state estimator is described,

and it is examined over two different case studies, namely a six-degree-of-freedom (6-DOF) robot manipulator and a75

servo-hydraulic system. The dynamics of these two systems are addressed and then two scenarios are simulated to

demonstrate the efficiency of the ASr-UKF; constant and time-varying noise statistics are considered. For the second

application, the proficiency of the ASr-UKF is simulated on the leakage FDD of a hydraulic system. The paper is

concluded in Section 4.

2. Adaptive Square-root Unscented Kalman Filter80

As mentioned previously, regarding nonlinear systems, different approaches have been introduced to approximate

the nonlinearities of the system’s dynamics, such as EKF and UKF. The drawbacks of these methods are discussed

and addressed. In this section, the principles of the Sr-UKF are proposed first; then, an adaptive version of the filter

is given, which outperforms the conventional Sr-UKF in the case of unknown or time-varying noise distributions.
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Consider the following nonlinear system:

ẋ(t) = f(x (t) , u (t)) + w(t) (1)

y(t) = g(x (t)) + v(t)

where x ∈ Rn represents the state vector, and y ∈ Rm and u ∈ RL represent the outputs and inputs, respectively.85

The nonlinear dynamics and measurements of the system are represented by the functions f and g. The system is

affected by Gaussian white process and measurement noise distributions, indicated as w ∼ N(0, Q) and v ∼ N(0, R),

respectively. It is assumed that these noises have zero mean and covariance matrices Q and R.

Note that, if Ts is the sampling period, the variable values are considered at each sampling time k.Ts; however,

to simplify notation, in the rest of the paper, k will be used instead of k.Ts.90

The first step of the algorithm is the initialization. In this phase, the initial values of states and the square-root

of the error covariance matrix, (Sk), are considered as follows:

x̂0 = E[x0] (2)

S0 = CH
(
E
[
(x0 − x̂0)(x0 − x̂0)T

])
the function CH represents the Cholesky factor of E

[
(x0 − x̂0)(x0 − x̂0)T

]
.

Next, using the a priori state (x̂k−1|k−1) and Cholesky factor (Sk−1|k−1), the sigma points (X (i)
k−1|k−1) are calcu-

lated as

X (i)
k−1|k−1 =

[
x̂k−1|k−1, x̂k−1|k−1 +

√
L+ λ Sk−1|k−1, x̂k−1|k−1 −

√
L+ λ Sk−1|k−1

]
(3)

Here, i = 0, 1, ..., 2L where L is the number of states and λ is a scaling parameter defined as λ = L
(
α2 − 1

)
. In

this article, α is a weighting factor, which is set between 10−4 and 1. The calculated sigma points are now propagated

through the nonlinear dynamics function f

γ
(i)
k|k−1 = f

(
X (i)

k−1|k−1, uk−1|k−1

)
, i = 0, 1, ..., 2L (4)

The a posteriori mean and time update of the Cholesky factor, Sk|k−1, are thus calculated:

x̂k|k−1 =
2n∑
i=0

w
(m)
i γ

(i)
k|k−1 (5)

Sk|k−1 = QR

([√
w

(c)
i

(
γ

(i)
k|k−1 − x̂k|k−1

) √
Q

])
Sk|k−1 = CU

(
Sk|k−1, γ

(0)
k|k−1 − x̂k|k−1, w

(c)
0

)
where the function QR(A) returns the matrix S that satisfies the equation A = Z × S. In this equation, S is an

upper triangular matrix and Z is a unitary matrix. The function CU represents the rank-one update of the Cholesky

factorization. The predefined weights w(m)
i and w

(c)
i used in (5) are calculated by

w
(m)
0 =

λ

L+ λ
(6)

w
(c)
0 =

λ

L+ λ
+
(
1− α2 + β

)
w

(m)
i = w

(c)
i =

1
2 (L+ λ)

; i = 1, ..., 2L

4



  

in which the secondary scaling parameter β is usually set to 2 for a Gaussian distribution [30]. In (5) QR represents the

QR decomposition. On the other hand, because the weight, w(c)
0 , might be negative, the subsequent Cholesky update,

known as downdate, is necessary and is calculated by the choleupdate function, defined as follows. Considering A, for

instance, as the original Cholesky factor of the matrix P , A = chol {P}, choleupdate {A,B, c} returns the Cholesky

factor of the matrix P+cBBT . It should be mentioned that the CH, QR, and CU functions denote the corresponding

MATLAB R© chol, qr, and cholupdate functions. Therefore, the output should be updated. To this end, the sigma

points need to be updated:

X (i)
k|k−1 =

[
x̂k|k−1 x̂k|k−1 +

√
L+ λSk|k−1 x̂k|k−1 −

√
L+ λSk|k−1

]
(7)

using the nonlinear measurement function, g. Therefore, each column of the updated sigma points are propagated

as

Y(i)
k|k−1 = g

(
X (i)

k|k−1

)
, i = 0, 1, ..., 2L (8)

then the Cholesky factors of the observation-error covariance matrices, Syy
k and P xy

k , are calculated as

ŷk|k−1 =
2n∑
i=0

w
(m)
i Y(i)

k|k−1

Syy
k = QR

([√
w

(c)
i

(
Y(i)

k|k−1 − ŷk|k−1

) √
R

])
Syy

k = CU
(
Syy

k , Y(0)
k|k−1 − ŷk|k−1, w

(c)
0

)
(9)

P xy
k =

2n∑
i=0

{
w

(c)
i

(
γ

(i)
k|k−1 − x̂k|k−1

)(
Y(i)

k|k−1 − ŷk|k−1

)T
}

therefore, the Kalman filter gain will be calculated using these matrices

K = P xy
k / (Syy

k )T
/Syy

k (10)

The a posteriori estimated state and Cholesky factor Sk|k can be computed using the Kalman gain

x̂k|k = x̂k|k−1 +Kk

(
yk − ŷk|k−1

)
(11)

U = KkS
yy
k

Sk|k = CU
(
Sk|k−1, U, −1

)
this concludes the Sr-UKF algorithm.

Reconsidering the relations of Sk|k−1 and Syy
k in (5) and (9), respectively, it can be concluded that the process

and the measurement covariance matrices, Q and R, have a critical effect on their values. Therefore, it is required

that the Q and R matrices be known exactly. Hence, any mismatch between real noises that affect the system95

and those that are assumed in Sr-UKF can reduce the performance of the algorithm, which can also diverge. An

adaptive Sr-UKF (ASr-UKF) is thus proposed in this paper, which solves the problem of the Sr-UKF by estimating

the process and measurement noise covariances.

Consider the nonlinear dynamic model of (1). Assume that process and measurement noises are defined as

w ∼ (q,Q) and v ∼ (r,R). To estimate the noise covariance and mean values, a posteriori density function is

5



  

assumed in the following form, which should be maximized:

J∗ = p [X(k), Q,R, q, r|Y (k)] =
p [Y (k)|X(k), Q,R, q, r] p [X(k), Q,R, q, r]

p [Y (k)]
(12)

where X(k) is the state vector [x0, x1, ..., xk] and Y (k) is the measurement vector [y0, y1, ..., yk]. As p [Y (k)] is not

involved in the optimization problem, therefore the J function can be rewritten as the following unconditional density

function:

J = p [Y (k)|X(k), Q,R, q, r]× p [X(k)|Q,R, q, r]× p [Q,R, q, r] (13)

In this equation, the term p [Q,R, q, r] is assumed to have a constant value because it can be acquired based on

a priori information [31]. It is also assumed that the following assumptions are valid, which indicates that noise

distributions are not correlated and cross-correlated,

Cov[wi, wk] = 0, i 6= k

Cov[vi, vk] = 0, i 6= k

Cov[vi, wk] = 0, i 6= k

which make it possible to use the multiplication theorem of conditional probabilities, which leads to the following

expression:

p [Xk|Q,R, q, r] = p [x0]
k∏

j=1

p [xj |xj−1, q,Q] (14)

=
1

(2π)n/2|P0|1/2
exp

{
−1

2
‖x0 − x̂0‖2P−1

0

}
×

k∏
j=1

1
(2π)n/2|Q|1/2

exp
{
−1

2
‖xj − fj−1(xj−1)− q‖2Q−1

}
=

1
2πn(k+1)/2

|P0|−1/2|Q|−k/2

× exp

−1
2

‖x0 − x̂0‖2P−1
0

+
k∑

j=1

‖xj − fj−1(xj−1)− q‖2Q−1


p [Yk|Xk, q,Q, r,R] =

k∏
j=1

p [yj |xj , r, R]

=
k∏

j=1

1
(2π)m/2|R|1/2

exp
{
−1

2
‖yj − gj(xj)− r‖2R−1

}

=
1

2πmk/2
|R|−k/2 exp

−1
2

k∑
j=1

‖yj − gj(xj)− r‖2R−1


where n and m represents the process and the measurement dimension, respectively. The notation |A| indicates the

determinant of a square matrix A, whereas ||u||2A = uTAu is the quadratic form.100

By considering the relations in (14), the estimation problem can be formulated as an optimization problem of the

cost function J :

6



  

J =
1

2πn(k+1)/2

1
2πmk/2

|P0|−1/2|Q|−k/2|R|−k/2p [q,Q, r,R] (15)

× exp

−1
2

‖x0 − x̂0‖2P−1
0

+
k∑

j=1

‖xj − fj−1(xj−1)− q‖2Q−1 +
k∑

j=1

‖yj − gj(xj)− r‖2R−1


= C|Q|−k/2|R|−k/2 exp

−1
2

 k∑
j=1

‖xj − fj−1(xj−1)− q‖2Q−1 +
k∑

j=1

‖yj − gj(xj)− r‖2R−1


where

C =
1

2πn(k+1)/2

1
2πmk/2

|P0|−1/2.p [Q,R] . exp
{
−1
2
||x0 − x̂0||2P−1

0

}
(16)

is a constant value.

Now, after computing the derivative of J with respect to r, q, R, and Q, the noise mean and covariance values

can be calculated as

Q̂k =
1
k

k∑
j=1

{
[x̂j − fj−1(x̂j−1)− q] [x̂j − fj−1(x̂j−1)− q]T

}
(17)

q̂k =
1
k

k∑
j=1

[x̂j − fj−1 (x̂j−1)]

R̂k =
1
k

k∑
j=1

{[
yj − gj(x̂j|j−1)− r

] [
yj − gj(x̂j|j−1)− r

]T}

r̂k =
1
k

k∑
j=1

[
yj − gj

(
x̂j|j−1

)]
where the terms fj−1(x̂j−1) and gj(x̂j|j−1) can be evaluated from the Sr-UKF algorithm as follows:

fj−1(x̂j−1) =
2n∑
i=0

w
(m)
i f(X (i)

j−1|j−1, uk−1) (18)

gj(x̂j|j−1) =
2n∑
i=0

w
(m)
i g(X (i)

j|j−1)

The ASr-UKF estimation scheme is represented by Algorithm 1.

In Algorithm 1, two innovation terms are used. The term ξk is a parameter to increase the performance of the105

estimator and Γk is the forgetting factor [32]. The subtractions in the Q̂k and R̂k formulas may lead to negative

matrices. The following relations can be used for deriving positive-definite matrices:

R̂k = R̂k−1 + Γk

(
2n∑
i=0

{
w

(c)
i

(
Y(i)

k|k−1 − ŷk|k−1

)(
Y(i)

k|k−1 − ŷk|k−1

)T
})

(19)

Q̂k = Q̂k−1 + Γk

(
2n∑
i=0

{
w

(c)
i

(
γ

(i)
k|k−1 − x̂k|k−1

)(
γ

(i)
k|k−1 − x̂k|k−1

)T
})

3. Simulations and Experimental Results

This section summarizes the simulation results achieved from the application of the proposed ASr-UKF filter to

two different systems. A robotic manipulator and a servo-hydraulic system are chosen as case studies. For each110
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Algorithm 1 Adaptive Square-root Unscented Kalman Filter (ASr-UKF)

1: Initialization: x̂0 = E[x0], S0 = CH
(
E
[
(x0 − x̂0)(x0 − x̂0)T

])
2: for all samples do

3: Time Updating:

X (i)
k−1|k−1 =

[
x̂k−1|k−1, x̂k−1|k−1 +

√
L+ λ Sk−1|k−1, x̂k−1|k−1 −

√
L+ λ Sk−1|k−1

]
γ

(i)
k|k−1 = f

(
X (i)

k−1|k−1, uk−1|k−1

)
x̂k|k−1 =

2n∑
i=0

w
(m)
i γ

(i)
k|k−1

Sk|k−1 = QR

{[√
w

(c)
i

(
γ

(i)
k|k−1 − x̂k|k−1

) √
Q

]}
Sk|k−1 = CU

(
Sk|k−1, γ

(0)
k|k−1 − x̂k|k−1, w

(c)
0

)
X (i)

k|k−1 =
[
x̂k|k−1, x̂k|k−1 +

√
L+ λSk|k−1, x̂k|k−1 −

√
L+ λSk|k−1

]
]

Y(i)
k|k−1 = g

(
X (i)

k|k−1

)
ŷk|k−1 =

2n∑
i=0

w
(m)
i Y(i)

k|k−1

4: Measurement Update:

Syy
k = QR

{[√
w

(c)
i

(
Y(i)

k|k−1 − ŷk|k−1

) √
R

]}
Syy

k = CU
(
Syy

k , Y(0)
k|k−1 − ŷk|k−1, w

(c)
0

)
P xy

k =
2n∑
i=0

{
w

(c)
i

(
γ

(i)
k|k−1 − x̂k|k−1

)(
Y(i)

k|k−1 − ŷk|k−1

)T
}

5: States Enhancement:

K = P xy
k / (Syy

k )T
/Syy

k

x̂k|k = x̂k|k−1 +Kk

(
yk − ŷk|k−1

)
U = KkS

yy
k , Sk|k = cholupdate

{
Sk|k−1, U, −1

}
6: Noise Estimation:

ξk = yk − ŷk|k−1 − r̂k Γk =
1− %
1− %k

0 < % < 1

R̂k = (1− Γk) R̂k−1 + Γk

[
ξkξ

T
k −

2n∑
i=0

{
w

(c)
i

(
Y(i)

k|k−1 − ŷk|k−1

)(
Y(i)

k|k−1 − ŷk|k−1

)T
}]

Q̂K = (1− Γk) Q̂k−1 + Γk

[
Kkξkξ

T
k K

T
k + Sk|k −

2n∑
i=0

{
w

(c)
i

(
γ

(i)
k|k−1 − x̂k|k−1

)(
γ

(i)
k|k−1 − x̂k|k−1

)T
}]

r̂k = (1− Γk) r̂k−1 + Γk

[
yk −

2n∑
i=0

w
(m)
i g

(
X (i)

k|k−1

)]

q̂k = (1− Γk) q̂k−1 + Γk

[
x̂k −

2n∑
i=0

w
(m)
i f

(
X (i)

k−1, uk

)]

7: end for
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(a) First link’s position (b) Estimation error of the first link’s position

(c) Second link’s position (d) Estimation error of the second link’s position

(e) Third link’s position (f) Estimation error of the third link’s position

Figure 1: Comparison of estimated states and estimated errors of the robotic manipulator: components of the robot’s position affected

by noises with known constant statistics (True: , ASr-UKF: , Sr-UKF: , UKF: , EKF: ).

system, three different scenarios are proposed. In the first situation, the filter attempts to estimate the states of

the system in the presence of a known noise with constant statistics, to evaluate the performance of the filter in

the same condition with same condition with previously introduced filter, whereas the second considers an unknown

noise with constant statistics. In the last scenario filter tries to estimates states in presence of an unknown noise

with time-varying statistics. The results of all simulations are also presented. Finally, an FDD application has also115

been considered. In particular, the proposed method is applied for the detection of a leakage in a servo-hydraulic

system.

3.1. Robotic manipulator

A 6-DOF robotic manipulator is chosen as the second case study. The simulations are performed by fixing the

wrist of the robot, and only 3 DOFs are considered. The full presentation and the scheme of the robot model can be120

found in [33]. The robotic system is simulated in two different conditions. The first case assumes that the robotic

system is affected by a noise with constant distribution, and the proposed filter is applied to the system to estimate

its states. Then, the simulations include noise with time-varying statistics. The new filter, ASr-UKF, is used to

estimate the states in this condition. The results of these simulations are given in the following.

3.1.1. Noise with known constant statistics125

As the first test, the robotic manipulator is simulated under effect of a noise with known constant statistics. The

proposed filter is applied on the robot to estimate its states. It is considered that the system is affected by two zero-

mean noises with process and measurement noise covariance of Q = 10−5I6×6 and R = 10−3I6×6, respectively. The

initial values of the covariances required by ASr-UKF are set as Q̂ = 10−5I6×6 and R̂ = 10−3I6×6. The performance

of the proposed method is compared with traditional filters, Sr-UKF, UKF [34], EKF [35], AUKF [36], and AEKF130

[37]. Results are given in Fig. 1. To have a more comprehensive comparison between results, percent normalized

mean square error of estimation of robot is presented in Tab. 1. The results show that all filters have almost same

results with an acceptable percentage error. As it can be seen, in the case that noises statistics are known, the

performance of the proposed ASr-UKF is acceptable. In next sections, the system will be affected with unknown

noise statistics and the performance of the above mentioned filters will be studied.135

3.1.2. Noise with unknown constant statistics

As mentioned previously, in the first simulation, it is assumed that the robotic manipulator is affected by a noise

with constant statistics. For this purpose, the process and measurement noises, which are presented as w (t) and

v (t) in (1), are assumed with noise processes with zero mean. The covariance of process noise and measurement

9



  

Table 1: Percent normalized mean square error of estimation of the robotic manipulator affected by noises with known constant statistics

Method

Variable
θ1 θ2 θ3 θ̇1 θ̇2 θ̇3

ASr-UKF 2.91 0.58 0.41 2.32 1.96 5.16

Sr-UKF 2.37 0.47 0.41 2.55 1.69 4.19

AUKF 2.98 0.69 0.41 2.46 2.42 5.97

UKF 2.38 0.46 0.41 2.38 1.71 4.98

AEKF 3.15 0.67 0.54 2.41 2.58 5.89

EKF 4.63 0.81 0.47 2.66 2.58 6.16

(a) First link’s position (b) Estimation error of the first link’s position

(c) Second link’s position (d) Estimation error of the second link’s position

(e) Third link’s position (f) Estimation error of third link’s position.

Figure 2: Comparison of estimated states and estimated errors of the robotic manipulator: components of the robot’s position affected

by noises with constant statistics (True: , ASr-UKF: , Sr-UKF: , UKF: , EKF: ).

(a) First link’s velocity (b) Estimation error of the first link’s velocity

(c) Second link’s velocity (d) Estimation error of second link’s velocity

(e) Third link’s velocity (f) Estimation error of the third link’s velocity

Figure 3: Comparison of estimated states and estimated errors of the robotic manipulator: components of the robot’s velocity affected

by noises with constant statistics (True: , ASr-UKF: , Sr-UKF: , UKF: , EKF: ).

noise are Q = 10−6I6×6 and R = 10−4I6×6, respectively. To highlight the advantages of the proposed filter, it is140

assumed that there is no a priori knowledge about the statistics of the noises. Based on this assumption, the initial

values for the noise statistics are fixed to Q̂ = 10−20I6×6 and R̂ = 10−20I6×6, which are different from the actual

noise covariances. The starting values for the robotic model and the proposed filter, ASr-UKF, are initialized as

X0 = [1, 0.5, 1, 2,−1,−2]T and randomly selected X̂0 = [4.3, 2.62, 7, 6.65, 3.5, 8.75]T , respectively. Considering these

assumptions, the results of the simulation are reported in Figs. 2 and 3. A comparison is made with traditional145

filters, Sr-UKF, UKF, EKF, AUKF, and AEKF. As can be seen in Figs. 2 and 3, the new introduced filter has

a better performance in comparison with the conventional filters. To provide a further performance metric, the

percent normalized mean square errors of the estimation processes are given in Table 2. In the rest of simulations,

the application of the proposed ASr-UKF have close results with AUKF and AEKF. Because of that and to have

clear figures, the results for AUKF and AEKF are not presented in figures and the comparative results have just150

presented in tables.

In Figs. 2 and 3, it is assumed that X̂0 = [4.3, 2.62, 7, 6.65, 3.5, 8.75]T . This initial condition is chosen randomly.

To evaluate the robustness of the proposed filter with respect to the estimated initial values, different simulations

10



  

Table 2: Percent normalized mean square error of estimation of the robotic manipulator affected by noises with constant statistics

Method

Variable
θ1 θ2 θ3 θ̇1 θ̇2 θ̇3

ASr-UKF 2.37 0.48 0.41 2.48 1.79 4.80

Sr-UKF 88.5 11.89 20.86 8.59 12.67 17.17

UKF 93.23 33.17 32.21 7.76 10.94 16.45

AUKF 2.39 0.48 0.39 2.47 1.82 4.96

EKF 78.12 21.00 11.49 10.32 16.95 20.57

AEKF 2.57 0.49 0.41 2.47 1.80 4.80

with different initial values are performed. The results of the percent normalized mean square error are presented

in Table 3. As can be seen, the performance of the proposed filter is notable in different initial conditions. As for155

X̂0 = [4.3, 2.62, 7, 6.65, 3.5, 8.75]T , which has high percent mean square error compared with other initial conditions,

it was demonstrated in Table 2 that the ASr-UKF algorithm still has better performance than the other filters.

3.1.3. Noise process with unknown time-varying statistics

This section reports the simulations when noise processes affect the manipulator. In this case, the covariance of

noises are defined as follows:160

• for t < 5 s, Q = 10−5I6×6, R = 10−5I6×6;

• for 5 s ≤ t ≤ 15 s: Q = 10−4I6×6, R = 10−7I6×6;

• for t > 15 s, Q = 10−5I6×6, R = 10−5I6×6.

Despite these varying conditions, the new ASr-UKF filter has to estimate the states of the robotic manipulator.

The initial values for the estimation covariances are set as Q̂ = 10−20I6×6 and R̂ = 10−20I6×6. The starting point165

of the estimated system and actual system is initialized as X0 = [1, 0.5, 1, 2,−1,−2]T and X̂0 = [0, 0, 0, 0, 0, 0]T ,

respectively. The simulation results for the links of the robot are reported in Fig. 4. These results are compared

with those obtained with Sr-UKF, UKF, and EKF. The estimation results and its error for the velocity of robot’s

links are summarized in Fig. 5. As can be seen in Figs. 4 and 5, the conventional filters do not have adaptation

Table 3: Robustness evaluation of the robotic manipulator affected by noises with constant statistics and different initial conditions by

the percent normalized mean square error criteria

ASr-UKF

Variable
θ1 θ2 θ3 θ̇1 θ̇2 θ̇3

X̂0 = [0, 0, 0, 0, 0, 0]T 0.73 0.13 0.07 0.82 0.36 0.63

X̂0 = [1, 0, 1, 2,−1,−2]T 0.22 0.13 0.02 0.12 0.11 0.09

X̂0 = [1, 1, 1, 3,−1,−3]T 0.21 0.13 0.03 0.42 0.10 0.32

X̂0 = [4.3, 2.62, 7, 6.65, 3.5, 8.75]T 2.49 0.49 0.41 2.49 1.82 4.81
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(a) First link’s position (b) Estimation error of the first link’s position

(c) Second link’s position (d) Estimation error of the second link’s position

(e) Third link’s position (f) Estimation error of third link’s position

Figure 4: Comparison of estimated states and estimated errors of the robotic manipulator: components of the robot’s position affected

by noises with time-varying statistics (True: , ASr-UKF: , Sr-UKF: , UKF: , EKF: ).

Table 4: Percent normalized mean square error of estimation of the robotic manipulator affected by noises with time-varying statistics

Method

Variable
θ1 θ2 θ3 θ̇1 θ̇2 θ̇3

ASr-UKF 0.47 0.14 0.14 0.66 0.32 0.54

Sr-UKF 60.62 57.00 43.45 4.70 7.80 8.90

UKF 9.50 2.40 0.70 3.48 3.75 5.01

AUKF 0.65 0.27 0.21 0.81 0.51 0.68

EKF 18.92 3.94 8.54 4.71 7.91 9.53

AEKF 0.83 0.29 0.27 1.02 0.69 0.70

capabilities and they are not able to provide effective estimates of the monitored states. To provide more effective170

comparisons, the percent normalized mean square errors of the estimations for all methods are presented in Table 4.

The results show that the presented the ASr-UKF can provide more accurate estimations than traditional filters.

(a) First link’s velocity (b) Estimation error of the first link’s velocity

(c) Second link’s velocity (d) Estimation error of the second link’s velocity

(e) Third link’s velocity (f) Estimation error of third link’s velocity

Figure 5: Comparison of estimated states and estimated errors of the robotic manipulator: components of the robot’s velocity affected

by noises with time-varying statistics (True: , ASr-UKF: , Sr-UKF: , UKF: , EKF: ).

To evaluate the robustness of the proposed ASr-UKF with respect to the estimated initial values, the percent

normalized mean square-root is listed in Table 5 for different initial values. These values are chosen randomly. It is

obvious that the proposed ASr-UKF is robust with respect to the changes in initial conditions.175

3.2. Servo-hydraulic system

We now consider a second case study represented by a servo-hydraulic process. The schematic diagram of this

system is sketched in Fig. 6. The mathematical relation describing the behaviour of the system has the following

form:

MẍP = −bẋP +A1p1 −A2p2 − Fe (20)

where xP represents the piston position. The pressure and the area of the cylinder are represented by the parametersp1,

P2 and A1, A2, respectively. The parameters M , Fe, and b represent the load mass, external force, and friction,
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Table 5: Robustness evaluation of the robotic manipulator affected by noises with time-varying statistics and different initial conditions

by the percent normalized mean square error criteria

ASr-UKF

Variable
θ1 θ2 θ3 θ̇1 θ̇2 θ̇3

X̂0 = [0, 0, 0, 0, 0, 0]T 0.47 0.14 0.14 0.68 0.36 0.57

X̂0 = [2, 1, 3, 3, 2, 4]T 0.51 0.15 0.24 0.40 0.90 1.69

X̂0 = [2, 1, 4, 4, 2, 5]T 0.50 0.14 0.34 0.86 1.14 2.07

X̂0 = [1, 1, 2, 2, 1, 2]T 0.29 0.14 0.13 0.23 0.60 1.13

respectively [38]. To determine the position of the piston, Eq. (20) can be used to derive the pressure on the two

sides of the cylinder. By applying the basic hydraulic laws [39], the pressures of the two sides of the cylinder are

defined by the following relations:

Ṗ1 =
βe

V1
(Q1 −A1ẋP +QI −QE1)

Ṗ2 =
βe

V2
(Q2 −A2ẋP −QI −QE2) (21)

where the fluid flows of each side of the cylinder are represented by Q1, and Q2. The parameters βe, V1, and V2

represent the bulk modulus and the volume of each side of the cylinder, respectively. The internal leakage and

external leakage of each side are given by QI , QE1, and QE2, respectively. Different flows in the hydraulic circuit

can be described by the following relations:

Q1 =

 Csu
√
ps − p1 u ≥ 0

Csu
√
p1 − pa u < 0

Q2 =

 Csu
√
p2 − pa u ≥ 0

Csu
√
ps − p2 u < 0

QI = Ki (p2 − p1) (22)

QE1 = KE1 (p1 − pa)

QE2 = KE2 (p2 − pa)

The relations in (22) need the volume on different sides of the cylinder. These values can be calculated using the

following relations:

V1 = A1xP + v01

V2 = A2 (L− xP ) + v02 (23)

where the dead volume of each side is indicated with v0i. The parameter L represents the maximum value of the

piston position.

As for the first case study, three scenarios are considered in the simulation of the hydraulic system. The results

of the simulation are presented in the following.180
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Figure 6: The schematic of servo-hydraulic system

Table 6: Percent normalized mean square error of estimation of a servo-hydraulic system affected by noises with known constant statistics

Method

Variable
Xp Ẋp P1 P2

ASr-UKF 0.496 0.616 2.518 1.271

Sr-UKF 0.493 0.616 2.511 1.271

UKF 0.475 0.617 2.518 1.371

AUKF 0.489 0.616 2.510 1.281

EKF 2.269 1.501 2.621 1.518

AEKF 0.782 0.947 2.593 1.372

3.2.1. Noise with known constant statistics

The performance of the proposed ASr-UKF is studied when the statistics of the noise are known. To this end,

the true values of the noises are considered as Q = 10−6I6×6 and R = 10−4I6×6. Fig. 7 represents the performance

of the ASr-UKF in comparison to other filters. To have a better comparision metric, the percent normalized mean

square error of this simulation is shown in Tab. 6. The results indicate the acceptable performance of the ASr-UKF185

algorithm. The other filters have almost the same results.

(a) Estimation of Xp (b) Estimation error of Xp

(c) Estimation of Ẋp (d) Estimation error of Ẋp

(e) Estimation of P1 (f) Estimation error of P1

(g) Estimation of P2 (h) Estimation error of P2

Figure 7: Comparison of estimated states and estimated errors of the servo-hydraulic system: affected by noises with known constant

statistics (True: , ASr-UKF: , Sr-UKF: , UKF: , EKF: ).

3.2.2. Noise with unknown constant statistics

The first case assumes that two zero-mean noises affect the process and measurement of the servo-hydraulic

system. The covariance of the real noises is set as Q = 10−3I6×6 and R = 10−3I6×6, which represent the covariance

of process and measurement noises, respectively. As mentioned previously, one of the advantages of the method190

14



  

Table 7: Percent normalized mean square error of estimation of a servo-hydraulic system affected by noises with constant statistics

Method

Variable
Xp Ẋp P1 P2

ASr-UKF 1.80 0.78 2.49 2.52

Sr-UKF 9.11 6.72 15.01 16.70

UKF 23.94 14.55 24.47 28.07

AUKF 1.71 0.78 2.54 2.52

EKF 29.43 21.11 31.96 37.24

AEKF 2.12 0.76 2.61 2.51

proposed in this work is its independence from a priori knowledge about the noise. Regarding this fact, the initial

values of the estimated covariance are set to Q̂ = 10−20I6×6 and R̂ = 10−20I6×6. The estimated system and actual

plant start from X̂0 = [0, 0, 0, 0]T and X0 = [0.18, 0.0002, 2e6, 2e6]T , respectively. After these assumptions, the

results of the simulation are summarized as Fig. 8. As in the previous simulations, the proposed method is compared

with Sr-UKF, UKF, EKF, AUKF, and AEKF. The Fig. 8 shows that the proposed ASr-UKF provides more accurate195

estimation when compared with the other filters. To have a more precise view, the percent normalized mean square

error of each method is reported in Table 7.

(a) Estimation of Xp (b) Estimation error of Xp

(c) Estimation of Ẋp (d) Estimation error of Ẋp

(e) Estimation of P1 (f) Estimation error of P1

(g) Estimation of P2 (h) Estimation error of P2

Figure 8: Comparison of estimated states and estimated errors of the servo-hydraulic system: affected by noises with constant statistics

(True: , ASr-UKF: , Sr-UKF: , UKF: , EKF: ).

3.2.3. Noise with unknown time-varying statistics

This section considers the case where noise with time-varying statistics affects the servo-hydraulic system. The

covariance of the noise process changes according to the following rules:200

• for t < 4 s, Q = 10−7I6×6, R = 10−5I6×6;

• for 4 s ≤ t ≤ 16 s, Q = 10−5I6×6, R = 10−3I6×6;

• for t > 16 s, Q = 10−7I6×6, R = 10−5I6×6.

Even if the power of the noise processes, which affect states and measurement of the hydraulic system, changes

over time, the filter is able to estimate the states of the plant by updating the estimated covariances. The initial205

values of the covariance matrices are set to Q̂ = 10−20I6×6 and R̂ = 10−20I6×6. The initial conditions are set as

X0 = [0.2, 0.0002, 2.5e6, 2.5e6]T and X̂0 = [0, 0, 0, 0]T . Based on these assumptions, the simulation results are shown
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in Fig. 9. As for this case, because the hydraulic system has severe nonlinearity, the conventional EKF was not able

to estimate the states and became “not a number” (NaN). Therefore, the EKF plot is removed from Fig. 9.

(a) Estimation of Xp (b) Estimation error of Xp

(c) Estimation of Ẋp (d) Estimation error of Ẋp

(e) Estimation of P1 (f) Estimation error of P1

(g) Estimation of P2 (h) Estimation error of P2

Figure 9: Comparison of estimated states and estimated errors of the servo-hydraulic system: affected by noises with time-varying

statistics (True: , ASr-UKF: , Sr-UKF: , UKF: ).

The percent normalized mean square error of each state of the system is summarized in Table 8.210

Table 8: Percent normalized mean square error of estimation of a servo-hydraulic system affected by noises with time-varying statistics

Method

Variable
Xp Ẋp P1 P2

ASr-UKF 0.80 1.29 1.00 0.17

Sr-UKF 46.10 42.77 26.79 11.14

UKF 46.12 19.17 12.81 14.07

AUKF 0.82 1.38 1.14 0.16

EKF NaN∗ NaN NaN NaN

AEKF 0.91 1.34 1.13 0.17
∗NaN is an abbreviation for “not a number.”

3.2.4. Experimental results

To test the proficiency of the proposed method, it is applied on a real-world practical system. A servo-hydraulic

actuator is chosen as a practical case study. The system is situated in the Laboratory of Intelligent Machines at LUT

University. The structure of the system is shown in Fig. 10. The overall procedure of data collection from practical

set can be explained as follows:215

• The supply pressure is controlled by a constant pressure pump driven by an inverter

• Control signal is produced by High speed PC

• dSpace module convert the produced control to analog format and sends it to the system

• New data in servo-hydraulic system, which is a consequence of new control signal, are collected using sensors

• dSpace module converts collected analog measurements into diginal signal220

• High speed PC collects measured data and produces new control signal
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Table 9: Percent normalized mean square error of estimation of a servo-hydraulic system in a practical application

Initial covariances values Hydraulic system states

Q̂0 R̂0 xp P1 P2

10−10 10−10 1.36 2.94 1.60

10−8 10−8 2.11 1.85 0.97

10−2 10−2 1.84 4.28 1.98

10−11 10−18 3.93 5.33 3.12

The proposed method is applied on the collected data from the practical system, and the results can be found in

Fig. 11. For the estimation, the position of the piston is considered as the output of the system and other states are

estimated regarding this output. Owing to the practical instruments, it was possible to collect data for three states

of the system, xp, P1, and P2. The collected data can be found in ”http://dx.doi.org/10.17632/cg6p86pg8j.1”.225

Percent normalized mean square error of estimation for each state of the system is xp = 1.36, P1 = 9.80, and

P2 = 6.90. Comparison between collected data and estimated values for all three states proves that the proposed

method can be considered as a strong and reliable approach for estimation of the states of practical systems. In

order to test the validity of the proposed method in different conditions with different reference input signals, some

experimental tests were done which their percent normalized MSE are sketched in Tab. 9. As it can be seen in230

the table, the proposed method is capable to preform with acceptable error. The presented results guarantee the

universality of the filtering algorithm. The experimental data set, which have been used for the validity check, are

available in ”http://dx.doi.org/10.17632/9nb3vbbtjw.1”.

(a) Hydraulic test setup (b) Servo-hydraulic actuator

Figure 10: Practical servo-hydraulic actuator system in the Laboratory of intelligent Machines at LUT University.
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(a) Estimation of xp (b) Estimation error of xp

(c) Estimation of P1 (d) Estimation error of P1

(e) Estimation of P2 (f) Estimation error of P2

Figure 11: State estimation of the experimental hydraulic actuator: affected by noises with unknown statistics (Collected data: ,

ASr-UKF: )

3.3. Hydraulic actuator leakage fault detection

As remarked in Section 1, the Kalman filter can be used to detect and diagnose different sensor, actuator, and235

component faults. Among all approaches to FDD [40, 41], model-based approaches represent powerful methods

owing to their flexibility and robustness in real applications. It is based on the analytical redundancy principle,

which consists of comparing the measured and estimated states to obtain the information such as the size, location,

and the time of fault. In other words, by analysing the difference between measured and estimated signals, it can

be decided whether a fault has occurred or not. The signal resulting from the difference of measured and estimated240

states is called the residual signal. In fault-free conditions, the residual signal is almost zero. However, when its

value exceeds a predefined threshold, this indicates the occurrence of a fault. Kalman filters represent one of the

most suitable methods for residual generation in the presence of noise.

However, the accuracy of Kalman filters depends also on the precise knowledge of the noise covariance matrices.

An inaccurate Kalman filter would lead to residuals with limited FDD performance.245

Therefore, the application of ASr-UKF is considered here to generate accurate residual signals in comparison with

conventional Sr-UKF, which leads to accurate FDD capabilities. To evaluate the FDD performance of this filter, a

fault representing a leakage in the hydraulic system has been simulated. By using a simple geometric approach for

residual evaluation, a fixed threshold has been settled. In fault-free conditions, the residual signals do not exceed

this threshold. On the other hand, if the residual signals exceed it, a faulty situation is detected. In the following,250

the residual generation and evaluation phases are described:

• the values of P1 and P2 are measured from the nonlinear system;

• P1 and P2 are estimated from the system in fault-free conditions;

• the residual signals are generated;

• the generated residuals are compared with the detection threshold;255

• a fault occurrence is detected when the residual signals exceed the fixed threshold.

The residual generator scheme and the residual evaluation phase are summarized in Fig. 12. Based on the above-

mentioned steps, it is necessary to modify the model of (21) to include the fault description. As remarked previously,

internal and external leakages for the first and second side of the cylinder are described by QI , QE1, and QE2,
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respectively. According to this description, the model of the system is modified in the following form:

Ṗ1 =
βe

V1
(Q1 −A1ẋP )

Ṗ2 =
βe

V2
(Q2 −A2ẋP ) (24)

To have a clearer view of the proposed fault detection approach, the achieved results are presented in the following.

Figure 12: Diagram of the residual generation and evaluation modules.

3.3.1. Noise with constant statistics

As a first test, the process and measurement noises are considered to be constant over time. The actual noise statis-

tics that affect the system are assumed to be zero mean with process covariance of Q = 10−5I6×6 and measurement co-260

variance ofR = 10−4I6×6. The initial values of the estimated covariances are set to Q̂ = 10−10I6×6 and R̂ = 10−10I6×6

and in the same way, the initial condition point of the system and its estimation is X0 = [0.2, 0.0002, 2.5e6, 5e6]T and

X̂0 = [0, 0, 0, 0]T , respectively. It has also been assumed that the threshold is 200 (Pa) for P1 and P2. To simulate

the leakage fault, described by (24), it is assumed that the system is working in a fault-free condition from t = 0 to

10 s, which is when the fault occurs and lasts to the end of the simulation.265

The results of the simulation are summarized in Fig. 13. It can be seen from Fig. 13a that the proposed filter

is capable of following the true values of P1 after t = 10 s with high accuracy, even though the noise statistics are

unknown. By analysing Fig. 13b it is obvious that a fault has occurred for t > 10 s, as the residual signal exceeds

the threshold fixed in fault-free conditions. Therefore, the threshold 200 (Pa) allows the considered fault case to be

detected properly. The same results hold for the signal P2, which are shown in Figs. 13c and 13d.270

(a) Estimation of P1 (b) Residual signal of P1

(c) Estimation of P2 (d) Residual signal of P2

Figure 13: Generated residual signals for leakage fault detection of hydraulic actuator: affected by noises with constant statistics (True:

, ASr-UKF: , Sr-UKF: ).

3.3.2. Noise with time-varying statistics

To further study the performance of ASr-UKF for fault detection, the time-varying noise distribution is considered

in this section. The changes of noise covariance variations are defined as:
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• for t < 4 s, Q = 10−5I6×6, R = 10−4I6×6;

• for 4 s ≤ t ≤ 16 s: Q = 10−4I6×6, R = 10−3I6×6;275

• for t > 16 s, Q = 10−5I6×6, R = 10−4I6×6.

The initial conditions are set as X0 = [0.2, 0.0002, 2.5e6, 5e6]T and X̂0 = [0, 0, 0, 0]T . The fault is assumed to

occur at t = 15 s for both pressures. The threshold is set to 50 (Pa) for both P1 and P2.

The simulated results are shown in Fig. 14. Although the process and measurement noise processes vary over

time, the accuracy of the ASr-UKF allows for accurate fault detection capabilities. In fact, Figs. 14b and 14d show280

that the residual signals are different from zero for t > 15 s. The threshold fixed at 50 (Pa) allows the fault for t ≥ 15

s to be detected.

(a) Estimation of P1 (b) Residual signal of P1

(c) Estimation of P2 (d) Residual signal of P2

Figure 14: Generated residual signals for leakage fault detection of hydraulic actuator: affected by noises with time-varying statistics

(True: , ASr-UKF: , Sr-UKF: ).

4. Conclusion

The aim of this study was to introduce a new version of square-root unscented Kalman filter. The presented filter

was designed so that it can adapt itself over time. Whilst other traditional estimation filters need a priori knowledge285

about the noise covariance that affects the system, the presented filter does not require such information and it is

capable to estimate the noise statistics of the process and measurement noises in an adaptive manner. The filter

was derived by means of basic probabilistic equations, which guaranteed its stability. The performances of this filter

were investigated by considering two applications of state estimation and fault detection. In particular, the presented

filter was applied to estimate the states of two systems, a robotic manipulator and a servo-hydraulic actuator. The290

achieved results were compared with well-established estimation methods relying on Kalman filters. The simulations

and experimental application highlighted that the proposed filter provides accurate estimations when the other filters

fail in the presence of both unknown fixed and varying noise statistics. Finally, the ability of the presented filter

to detect a leakage fault in a hydraulic system has also been tested. The results proved that the filter can also be

exploited as a reliable instrument for fault detection. Further studies will verify the reliability and robustness features295

of the developed tool, when used also for fault-tolerant control applications, as the accuracy of the estimated signals

is very important.
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