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ABSTRACT 
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105 pages, 13 figures, 10 tables, 4 appendices 
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  Assoc. Professor Karl Andersson (Luleå University of Technology) 
 

Keywords: Data Center, Energy Efficiency, Smart City, Productivity Metrics, Thermal 

Metrics, Thermal Management, Machine Learning, Real Data Analysis 

 

This work covers energy efficiency analysis of Data Center (DC) operations. DCs 

empower a wide variety of applications and enhance decision making processes. Having 

such a crucial role in the modern life, DCs remain large power consumers due to their IT 

and cooling systems’ demand for electricity. Since sustainability has become one of the 

main global goals, DCs should incorporate eco-friendly strategies to continue their 

operations without violating sustainability requirements. For a DC, sustainable goals could 

be interpreted as pursuing energy efficiency of all the operations. Therefore, energy 

efficiency has been addressed in this work from the point of IT equipment energy 

productivity and thermal characteristics of an IT room. Mathematical modelling, statistical 

analysis, productivity and thermal metrics evaluation and a Machine Learning (ML) 

technique applied to monitoring data collected in a real DC have resulted in a set of 

recommendations for DC energy efficiency improvement.  
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1 INTRODUCTION 
 

An estimation made by United Nations states that 66% of the world’s population will live 

in cities by 2050 [2]. To address current and foreseen environmental and social challenges, 

cities tend to exploit Information and Communication Technologies (ICT). This helps 

optimise urban management and marks a process of their phasing into smart cities [3], [4]. 

ICT involvement fosters numerous applications to emerge in the cities and contributes to 

the quality of everyday life through enhancement of transportation, facilitating medical and 

governmental services as well as leveraging e-commerce and other spheres [5], [6]. For 

their effective work, applications require collection and processing of massive quantities of 

data (i.e. Big Data) related to urban living from objects (e.g., IoT), systems (e.g., energy 

infrastructure) and society (e.g., city residents as applications users). These diverse big data 

create useful content for various stakeholders, including citizens, visitors, the local 

government, and companies. In this scenario, the Data Centers (DCs) play a fundamental 

role, since they satisfy the demand to process a vast amount of urban big data which comes 

from interconnected systems operating in the cities. DCs, as High-Performance Computing 

(HPC) facilities that process urban applications, could be used to foster smart city 

sustainability providing computational resources for smart technologies. However, these 

processing demands have led to a tremendous increase in energy consumption, and 

undeniably, electricity usage contributes to the highest portion of expenditure in DCs [7]. 

High energy consumption leads to extensive use of energy resources and affects the 

environment by indirect carbon emissions as well as resources exhaustion. This implies 

that DC sustainability and in particular, its energy efficiency are crucial goals to be 

achieved by current emerging computational technologies.  

 
1.1 Background 
 

The context of this work is defined by three partially intersecting notions of a smart city, a 

data center and sustainability as shown in Fig. 1. To approach the central intersection of all 

three notions depicted in Fig. 1 which is a focus of this work, the following paired review 

is conducted: a data center and sustainability, a smart city and a data center, a smart city 

and sustainability, and finally, a sustainable data center in a (sustainable) smart city. 
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Data Center and Sustainability 
 
Sustainability of a DC is most frequently regarded to as its energy efficiency and adoption 

of best practices for optimal DC infrastructure management [8]. In the context of 

sustainable DC operations, energy efficiency comprises cooling and IT equipment 

utilisation optimised to maintain recommendable IT room conditions and to satisfy service 

level agreements with minimal energy consumption. Moreover, sustainable DC practices 

include integration of renewable energy as a resource produced with minimal carbon 

emissions, heat recovery as mentioned before as well as regular evaluation of DC 

productivity and sustainability indices with a set of pre-defined metrics [9].  

 

Pursuing DC sustainability is a challenging task due to a large number of factors affecting 

DC productivity and energy efficiency. For example, a trade-off between colder locations 

for the free air-cooling and sunny places for solar power plants is an issue yet to be 

analysed [10]. Another challenge concerns thermal equipment: raising the setpoint of 

cooling equipment or lowering the speed of CRAC (Computer Room Air Conditioning) 

fans to save energy used by thermal equipment may in the long-term decrease the IT 

systems’ reliability, thus, a balance is yet to be found [10], [11]. Furthermore, an ongoing 

challenge of power overprovisioning and causing energy waste for idle servers has brought 

about research works on energy storage in UPS (Uninterruptible Power Supply), optimal 

allocation of PDUs (Power Distribution Units) with respect to servers, and multi-step 

algorithms for power monitoring and on-demand provisioning reviewed in [10]. Other 

challenges encompass workload management, network-level issues as optimal routing, VM 

allocation, balance between power savings and network QoS (Quality of Service) 

Figure 1. Intersection of smart city, data center and sustainability 
represents a contextual ground for this work 
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parameters as well as choice of appropriate metrics for DC evaluation. 

 

One standard metric used by a majority of industrial DCs is Power Usage Effectiveness 

(PUE) proposed by Green Grid Consortium [9]. It shows the ratio of total DC energy 

utilisation with respect to the energy consumed solely by IT equipment. A plethora of 

metrics currently under development evaluates thermal characteristics, a ratio of renewable 

energy use, energy productivity of various components and other parameters. DCs 

experience an urgent need for a holistic framework that would thoroughly characterise 

them with a fixed set of metrics and find potential pitfalls in their operation. Although such 

attempts have been found in the research work, no framework has been standardised so far 

[12]–[15]. 

 
Smart City and Data Center  
 
ICT is assumed to be a characterising attribute of a smart city as technologies help 

decision-makers optimise urban management and automate it [16], [17]. The very concept 

of a smart city stems from definitions of information cities, digital cities, intelligent cities, 

and only since 2010 a smart city notion have appeared more frequently in literature than its 

predecessors. This development of the notion of a digitally enhanced city emphasizes the 

important role of ICT in smart cities [18].  

 

DCs with their large consolidated computing power enable storage and processing of big 

data coming from interconnected urban systems and residents. They can provide elastic on-

demand virtualised resources for smart city computational needs [19]. Indeed, exponential 

demand for big data processing creates a need for scalable Data Analytics applications. 

Moreover, tremendous growth of data is predicted to reach 35 trillion gigabytes by 2020 

[20]. To cope with such amounts of data, DCs provide Infrastructure, Platform and 

Software as a Service (IaaS, PaaS, SaaS respectively) for developers to implement new 

smart city solutions that help businesses and governmental organisations in decision 

making process [16], [19], [20].  

 
Alternatively, some research work develops a concept of DCs as individual smart city 

players. For example, exploiting flexibility of energy consumption by IT equipment of DC 

for delay-tolerant workload provides a DC with a potential to play an active role in smart 
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city power grids [21]. In this scenario, a DC with a local renewable power generation plant 

should use advanced task scheduling. It is supposed to reshape the load minimising the 

power purchased from the grid and maximising the generated power offered to the grid. 

Additionally, heat recovery technologies could be utilised to supplement existing heating 

solutions in a city [22], [23]. 

 
In essence, a DC provides computing resources to smart city stakeholders and could be 

regarded to as enabler of urban big data applications as well as power grid player and 

supplementary source of heat. Meanwhile, if DC energy consumption is not optimised, it 

contributes to indirect carbon-related emissions. It also needs frequent retrofits because of 

hardware exhaustion and violates sustainable environmental requirements of a smart city. 

 
Smart City and Sustainability 
 
Population growth and high urbanisation rate create a number of social, environmental, 

technological and other challenges for cities. Complex by their nature, cities comprise 

advanced systems that provide transportation, governmental and medical services, places 

of living and leisure. These systems might be undermined as many cities have not been 

created to support current or future estimated number of residents [3]. Therefore, social, 

economic and environmental sustainability are key factors that would ensure cities’ steady 

operation under the circumstances of growing urban population [18].  

 

Initiatives of the cities to pursue various sustainability goals differ in their nature: some 

cities solely invest in technologies while other cities rely on future human capital, foster 

innovation and entrepreneurship. These initiatives may comprise energy, water and waste 

management, transportation and medical services enhancement, e-government and other 

improvements in different aspects of city life. A city that incorporates one or more of 

advanced technological solutions could be called a smart city. Degrees of “smartness” of a 

city may be measured by a number of technological or other initiatives developed in the 

city and their integration into the city infrastructure [24], [25]. However, there is lack of 

consensus about the definition of a smart city and ambiguities still persist [3], [17], [18].  

 

Similar to the definition of a smart city, sustainability is a term that is widely discussed and 

interpreted in various ways. A definition suitable in the scope of this work has been 
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proposed in [17]. It emphasizes the need for a balance amongst “economic development 

and prosperity with environmental protection and integrity and social equity and justice”. 

Within the context of a smart city it would imply adequate growth of a city and 

development of urban applications as well as improvement of quality of life while 

minimising its influence on the environment and combatting social inequality. 

 

Sustainability goals and requirements tend to become essential parts of smart cities’ 

development, although some research work still argues that a smart city and a sustainable 

city are not interchangeable notions [17]. According to [17], smart cities prioritise modern 

technologies and efficient solutions for everyday life, while sustainable cities focus on 

sustainability goals and design in the first place. Smart cities need to incorporate smart 

solutions under environmentally friendly and sustainable frameworks, and sustainable 

cities should exploit advanced technological solutions for their goals. In this way stronger 

connection between smart and sustainable concepts could be achieved.  

 

To clarify, as an example of discrepancies between smart and sustainable cities, a waste 

management system could be considered. In a hyperbolised scenario of a smart but not 

sustainable city, waste collection trucks might have optimised routes and empty garbage 

bins on time to effectively avoid street pollution, but the litter is solely disposed in dumps 

where it decomposes for years and has negative environmental effect. If a sustainable but 

not smart city scenario is considered, there might be opportunities for waste recycling, but 

the waste collection system is not organised well, so waste recycling plants do not 

contribute to the city’s cleanliness.  

 

A recent tendency to include sustainability as one of the necessary requirements for a smart 

city has fortunately narrowed the gap between smart and sustainable cities [18]. Cities use 

IoT for sensing air quality, e-health for providing accessible medicine to patients, smart 

and sustainable waste management, develop renewable energy and smart grids, which 

tends to improve cities from both technological and environmental aspects [5], [26]–[28]. 

 

Sustainable Data Center for a Smart (and Sustainable) City 

 
To consolidate the three notions based on descriptions above, sustainability of a smart city 
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could be fostered by ICT, including DCs that process big data coming from urban 

applications. Smart city applications should be designed in a way that they aim for a 

balance between high quality of life and resource utilisation, not undermining 

environmental and social sustainability goals. For a DC as a smart city actor, a critical 

driver of sustainability is embodied within its energy efficiency strategy. This strategy is 

based on a structured measurement and control framework that could evaluate DC energy 

efficiency and provide insights into ways of its improvement. Since the thermal and IT 

equipment are the major energy consumers within a DC, it should be the primary focus of 

the energy efficiency framework. Finally, if sustainability requirements are met by smart 

city with the help of ICT (and DCs, in particular), eco-friendly policies become essential 

for DCs to follow. 

 

1.2 Motivation 
 

Mankind approaches climate change with various environmental targets as well as 

estimation of global energy consumption and carbon emissions caused by industrial 

activities [29], [30]. According to Gartner (2007), ICT accounts for 2% of global carbon 

emissions with 23% DC share in total ICT emissions. The DC electricity consumption 

increased twice from 2000 to 2005 and slowed from 2005 to 2010 partially due to the 

economic crisis of 2008-2009 and energy efficiency orientation starting from 2005. Total 

electricity use by DCs counted for 1.3% in 2010 [31]. DC carbon emissions are predicted 

to grow at 7% rate and reach 0.29 and 0.36 GtCO2 by 2020 and 2030 respectively [29], 

[30]. Accounting for continuous growth of ICT electricity consumption and its 

environmental impact, energy efficiency strategy, as a part of EU 2020 and 2030 energy 

climate targets, comprises important measures to mitigate carbon emissions, improve the 

security of energy supplies and the business competitiveness compared to “business as 

usual” [32]. 

 

Several studies have investigated the use of metrics for DC assessment and identified the 

relevant set of parameters to assess the energy consumption and evaluate the benefits of 

energy and sustainability strategies [13], [33]. Additionally, some improvement is 

proposed by authors [34] in terms of a more comprehensive metrics framework and, above 

all, parameters for direct evaluation of energy used for productive computing operations, or 
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useful work, in a DC [35]–[37]. The concepts of energy efficiency and sustainability 

represent future challenges in smart cities that depend on urban applications empowered by 

DCs, and ICT in general. In the meantime, complex issues in DCs from the design to 

utilisation stages should be addressed.  

 

1.3 Problem Definition 
 

Despite the emergence of studies and analysis in the corresponding fields, understanding 

the energy efficiency and sustainability concerns of DCs as well as their environmental 

assessment remain limited in practice [17]. Specifically, the following challenges persist: 

 

1. A common regulatory framework encompassing explanatory metrics and methodologies 

for DC sustainability assessment is still unavailable [38], [39].   

 

2. Due to its ease of use, a current standard industrial metric for measuring DC energy 

efficiency is de facto PUE. However, it does not fully reveal the real energy performance 

of DCs, e.g. IT equipment efficiency [40], [41]. Specifically, energy waste generated by 

inefficient use of computing resources is not widely investigated. 

 

3. Limited attention has been devoted to evaluation of IT room thermal characteristics in 

real DCs. Although some frameworks are suggested in this area by the research work [38], 

[42], case studies are still infrequent. 

 

4. Airflow efficiency of a DC is most commonly modelled with Computational Fluid 

Dynamics (CFD), a fluid mechanics approach. Systems that realise this approach in 

practice frequently have high computing resources and memory requirements which makes 

repeated evaluation of DC efficiency expensive from sustainability point of view [42]. 

While these models are beneficial for theoretical investigation, practical real-time analysis 

could be facilitated using other less resource-consuming approaches. 

 

Identified research gaps are addressed in this work through data analysis of real DC power 

utilisation and thermal characteristics. 
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1.4 Research Aims and Objectives 
 

General aim 

Motivated by the mutual dependency between DC energy consumption and sustainable 

requirements for “smartness” of modern technologies and cities, the aim is to explore 

different facets of DC energy efficiency: computing systems energy productivity and 

thermal management.  

 

To achieve this aim, we divide the work into three phases. One of these phases is covered 

in detail in this thesis while the detailed discussion the other two phases are found in 

appendices (Appendix 2 and Appendix 3 and will be submitted to scientific journals. 

 

Phase 1. Energy Efficiency Analysis of IT Processes 

Aim 

The aim is to improve computing processes energy efficiency assessment methods through 

the investigation of productive energy consumption of ENEA Portici CRESCO4 cluster IT 

equipment using dataset 1 (see Appendix 1). In this phase, the following research 

objectives are addressed. 

 
Research objectives 

RO1.1. Evaluate energy utilisation by productive computing processes and energy waste 

within a DC cluster through the employment of appropriate metrics.  

RO1.2. Propose metrics for the evaluation of carbon emissions associated with energy 

waste caused by premature abortion of computational jobs to improve the DC 

sustainability. 

RO1.3. Provide recommendations for the improvement of IT-related energy productivity 

within the computing cluster under consideration. 

 
 
Phase 2. Analysis of Data Center Thermal Characteristics (see Appendix 3 Phase 2 

for methodology, results and discussion) 

Aim 

The aim is to increase DC thermal awareness and provide recommendations for effective 

thermal management based on the study of thermal characteristics of the DC IT room 
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environment and IT equipment energy consumption of ENEA Portici CRESCO6 cluster 

using dataset 2. Phase 2 targets the statistical analysis of IT room thermal characteristics 

and thermal metrics evaluation. To achieve this aim, the following research objectives are 

addressed. 

 

Research objectives 

RO2.1.1. Investigate on typical temperature ranges within a cluster IT room. 

RO2.1.2. Apply macro (room-level) and micro (node-level) thermal metrics as well as 

statistical methods to reveal possible existence of cooling system design pitfalls (e.g. 

hotspots, bypass, recirculation). 

RO2.1.3. Formulate recommendations to improve thermal management in the IT room of 

the cluster in consideration. 

 

Phase 3. Machine Learning for Data Center Thermal Characteristics Analysis 

Aim 

The aim is to identify individual servers that frequently occur in the hotspot zones by 

applying a clustering algorithm to available dataset 2 with thermal characteristics of ENEA 

Portici CRESCO6 computing cluster. The following research objectives will facilitate the 

achievement of this aim. 

 

Research objectives 

RO3.1. Apply an appropriate clustering algorithm to a chosen subset of available data 

concerning IT room thermal characteristics to determine servers (with IDs) rate of 

incidence in the following categories:  high, moderate, or low incidence in hot, moderate or 

cold zones within the cluster. 

RO3.2. Provide a list of recommendations for thermal design to address the issue of local 

hotspots. 

 

1.5 Delimitations   
 

This work aims to create a methodology for holistic evaluation of DC characteristics and 

enhancement of its operation. However, the goal is not to create any automated 

measurement and evaluation system, but rather to provide a proof of concept how energy 
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consumption, thermal characteristics and environmental effects could be estimated based 

on raw data from the monitoring system, what problems have to be addressed during data 

analysis and what assumptions are suitable for a similar DC case study. 

 

Available datasets that are composed of measurements of real DC facilities characteristics 

provides unexhaustive ground for DC metrics evaluation and assessment of its 

characteristics. Methods used to address issues of missing values or incomplete data are 

described in subsequent sections. For example, the total energy consumption of the DC 

was not available in any of the datasets. This either results in the approximation of some 

values for computed metrics or impedes the evaluation of some other metrics. 

 

Transferability of the work depends on monitoring systems used in DCs, the quality and 

coverage of measurements data as well as individual DC characteristics. For example, DC 

providers might define and assess useful work of computational processes in a way most 

suitable for their infrastructure and purpose of DC operation. This current work shows a 

use-case of metrics that include estimation of useful work and motivates DC operators to 

closely investigate portions of IT equipment energy consumption used for jobs with 

different status of fulfilment but does not limit them in defining the types of jobs exit status 

and other inferences. 

 

As a remark on terms used throughout this work to facilitate comprehension, the word 

“cluster” is dedicated to a set of servers connected in a separate infrastructure with its own 

network, load scheduling, and central management system. Several clusters in the use-

cases are not interconnected and should be seen as independent structures both physically 

and logically. One cluster should be regarded as a small independent data center. For that 

reason, we do not evaluate characteristics which would cover several clusters within one 

DC but study them individually. 

 

1.6 Novel Contributions 
 

Overall contribution of this work is the identification of mutual interconnections between 

the smartness of the city, sustainability concept and DC involvement into urban operations. 

A three-phased methodology is proposed to assess DC energy efficiency as a main 
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sustainability requirement imposed on the DC to provide benefits for smart cities while 

minimising negative environmental impact of large electricity consumption. A set of 

recommendations is formed based on unravelled pitfalls of the real DC clusters work. 

 

The degree of transferability of applied methods depends on the monitored data of a DC 

willing to integrate proposed methods, however, the concepts covered in this work are 

useful for energy efficiency evaluation of any DC. This work showcases applicability of 

best practices and guidelines to a real DC and goes beyond the set of existing metrics for 

DC sustainability assessment. Contributions of three distinct phases are displayed below. 

 

Phase 1 Contributions 

C1.1. Assessment of the IT productivity metrics and waste energy evaluation based on 

collected real data over a period of 12 months to address the gap between metrics 

definition and their exploitation in a real DC context; 

C1.2. Suggestions on energy waste and productivity metrics utility, namely Energy Waste 

Ratio and Data Center Energy Productivity, within the general methodology of energy 

efficiency assessment and overall DC sustainability framework; 

C1.3. Proposal of a new metric, Carbon Waste Ratio based on Energy Waste Ratio, that 

links useful computing work, energy waste and its associated carbon emissions; 

C1.4. A set of recommendations is proposed to enhance a DC cluster IT equipment energy 

productivity. 

 

Phase 2 Contributions 

C2.1. Thermal and energy efficiency policies for the DC are improved through real data 

center thermal data analysis, evaluation of thermal metrics and characteristics of DC IT 

room environment; 

C2.2. Conducted analysis has increased operators’ general awareness of possible thermal 

related weak points in DC thermal management; 

C2.3. The problem of the air-cooling system which results in dangerous hotspots that could 

reduce IT equipment reliability and lifetime is highlighted; 

C2.4. A list of thermal management and monitoring improvements is proposed for a DC 

cluster analysed in the Phase 2. 
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Phase 3 Contributions 

C3.1. The hotspots are localised around individual cluster servers with the help of K-

Means clustering algorithm applied to time series of IT room thermal characteristics; 

C3.2. A set of measures is suggested to overcome an issue of hotspots in the DC cluster 

under consideration. 

 

1.7 Structure of the Thesis 
 

This thesis work is structured as follows: 

Chapter 1: Introduction provides the background, motivation, research goals and 

objectives, key contributions and delimitations of this work; 

Chapter 2: Related Work gives an overview of recent approaches towards smart cities 

and their sustainable requirements for DCs; 

Chapter 3: Research Methodology introduces methods and techniques used in phases 1-3 

of this work; 

Chapter 4: Phase 1. Energy Efficiency Analysis of IT Processes covers power 

consumption and load scheduling data analysis of a real DC cluster through mathematical 

modelling to assess energy productivity of the cluster IT part; 

Chapter 5: Sustainability Analysis of the Work outlines main sustainability 

contributions of this thesis; 

Chapter 6: Conclusion provides a summary of findings and possible future work. 

Appendices: description of datasets, Phase 2, Phase 3, list of recommendations for a DC 

in question. 
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2 RELATED WORK 
 

The concepts of a data center, sustainability and a smart city are presented interconnected 

in the existing literature as smart cities rely on the development of ICT and DCs and 

pursues sustainability goals, DCs partially operate to satisfy smart city needs and tend to 

reduce energy consumption and thus environmental footprint and sustainability embraces a 

number of practices and approaches for both DC and smart city. Mutual interconnections 

between these three notions that appear in literature are studied in the current part of this 

work to further strengthen them with obtained results of three-phased data analysis. 

 

2.1 Smart Cities Improved by ICT 
 

The notion of smart cities appears in the 21st century with emerging ICT capabilities and 

rising environmental awareness as a trade-off with improved quality of life. The city is 

recognised as “smart” if it integrates enhanced technologies in one or several of the 

following sectors: education, governmental support, healthcare, transportation, safety, 

clean energy production and other industrial spheres [5]. Solutions deployed in a smart city 

aim to reduce negative environmental impact and increase the comfort of everyday life. 

Smart cities’ solutions are empowered by technologies that typically rely on interconnected 

monitoring and reactive components, as well as large quantities of data generated by IoT 

and other involved systems [4], [16], [20], [27], [43]. Aggregation of historical data and 

data generated by societal use of applications contributes to the Big Data (BD) 

phenomenon with characteristics that match at least 3 to 7 V’s versions of a BD definition 

[44], [45].  

 

Smart cities are still in their early years of development, so notions and definitions 

regarding the concept of a smart city are being discussed in the literature. As outlined in 

the review paper [18], smart city is now a term that has recently outperformed digital city, 

information city and sustainable city in the number of citations and thus now is most 

widely used.  The majority of works cited in the review paper include environmental 

awareness as a necessary point of smart city development. This point can be interpreted in 

a variety of ways, from achieving a balance between resource utilisation for urban needs 
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and protection of the environment to energy-related savings, to overall thoughtful resource 

exploitation. However, the authors emphasise that growing cities that attract more people 

by good living conditions generate environmental outcomes that should be tackled within 

an umbrella of measures so that smart city and sustainable city would become 

interchangeable notions. 

 

Following the discussion of a smart city as an ICT-enabled urban area, in the work [5] a 

variety of definitions of smart city and big data are shown as well as benefits of combining 

these two emerging principles in healthcare, transportation system, governmental use, etc. 

Authors propose a set of big data application requirements suitable for any smart city 

project, for example, security enhancement, governmental and citizen involvement, smart 

network, specialised platforms, enhanced algorithms, etc. The paper [5] is concluded with 

challenges concerning smart cities on a global scale, mostly from ethical point of view: 

• Seamless data sharing between urban departments with varying privacy policies; 

• Data format unification; 

• Creating a knowledge base for a smart city with high interoperability between 

devices and platforms; 

• Data quality enhancement, especially when collected from humans (tackling 

objectiveness) or from sensors of a third party; 

• Data security improvement while it is being transferred via the network to different 

applications and actuators and identification of privacy rights of data owners; 

• Decreasing the cost of smart projects and raising governmental and societal 

willingness to launch them; 

• Development of smooth deployment and testing procedures so that new systems do 

not result in temporary problems of the integration stage in the sector that they are 

destined to improve 

• Scalability of applications, especially under the circumstances of growing 

population that is prone to create increasing amounts of data in a smart city 

• Reduced response time and enhanced reliability of real-time applications 

 

The way these and other challenges are met by a certain city allows to place it on the scale 

of smart city maturity model described, for example, in [24], [25]. According to IDC 
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Energy Insights Smart Cities maturity model, each city can be placed on a specific level 

depending on the city’s components and their performance: scattered (several smart 

projects are being developed, but not interconnected), integrated (initiatives are combined 

together and first positive results are achieved), connected (all projects coexist together and 

are managed by one committee) [24]. EUP maturity levels differ from the IDC levels in the 

sense that they are applicable to separate initiatives or projects and not to the whole city 

[25]. 

 

Several examples of smart cities are discussed in the literature. For instance, the paper [6] 

focuses on the integration of Big Data analytics in the smart cities, and through the case 

studies shows that Big Data analytics potentially can play an important role in the smart 

city environment and gives tools for business and research bodies to address the upcoming 

challenges of a smart city. It discusses some North European cities which incorporated 

several urban automated systems: waste management & inner city traffic are enhanced 

through smart applications in Stockholm. The city of Helsinki provides open public data 

stored in databases including transport, economics, conditions, well-being. Copenhagen 

aims to become the first carbon neutral capital by 2025, it introduces smart technologies to 

transportation, waste, water, heating systems and develops alternative energy sources.  

 

Among the big data challenges reported in the paper [6], the authors identify business and 

technological concerns. The business issues consist in cost of essential devices, their 

scarcity, difficulties in planning an efficient solution, sustainable and secure use of 

stakeholders` information, and integration of cloud computing which may require data 

centers collocation for easier user access in various geographical areas. Technological 

challenges consolidate confidentiality of private data, efficient GIS-based 3D visualisation, 

support of a certain level of quality of service and enhancing computational intelligence 

algorithms for datasets of a smart city scale. Results of data analytics applied to big urban 

datasets are suggested to provide authorities a clear vision of current urban environment 

and become the basis for new legislation. For our study the paper gives insight into the 

data center role in a smart city and its place in future business models that involve big data 

processing and cloud computing. 
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2.2 Data Center Sustainability as a Smart City Requirement 
 
We emphasise that a city is known as a smart urban environment if it has reached a level of 

environmental sustainability [3], [18], [24], [25]. DCs are pivotal actors of a 

technologically advanced smart city, must not disregard their role and responsibilities of 

maintaining a healthy environment and effective use of resources. It is, therefore, 

important to provide insight into the origins of DC environmental influence and explore 

the best practices proposed by international bodies (e.g. EU Code of Conduct for Data 

Center Energy Efficiency [8]) to address sustainability from the DC point of view. 

 
2.2.1 Role of Data Center in Smart Cities 
 
Smart cities extensively rely on big data processing thus far primarily provided by cloud 

technologies, and, therefore, DCs. Characteristics of computational, storage and network 

resources such as their reliability, availability and accessibility, security, and optimal 

power management are crucial for smart cities and their associated applications which can 

impact humans’ life and safety [6], [19]. Overall, as an enabler of smart city services, DC’s 

positive impact on the quality of life should outperform the negative environmental impact 

caused by indirect carbon emissions from electricity production, heat and material waste, 

as well as noise pollution that is expected to increase with the growth of DCs. However, 

limited attention has been accorded to the actual DC operation in the context of smart city 

and, a DC is often viewed as a separate area of study. This current study focuses on DC 

sustainability, energy and thermal efficiency in the context of smart cities.  

 
2.2.2 DC Energy Efficiency 
 
For the DC sector to continue its seamless integration in the smart city, pursuing energy 

efficiency is mandatory for a number of reasons listed further and explained by examples 

in the literature review afterwards. Firstly, DC is an integral part of a smart city as an 

enabler of city services, but at the same time, a huge consumer of energy. Secondly, energy 

efficient strategies can contribute to prolonged lifetime of the IT equipment through 

optimisation of its utilisation and decrease or slow down the amount of material waste 

generated by DCs. Thirdly, energy efficiency could also be interpreted as optimal thermal 

management of IT rooms and other places in the DC, which will positively impact the 
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overall DC energy consumption and decrease heat waste. Moreover, integration of 

renewable energy is a plus to every DC site, as it allows to approach a problem of high 

carbon emissions caused by traditional energy production process through low-emissions 

procedure of energy generation.  

 

Incessantly increasing demand in High Performance Computing (HPC) Data Centers 

require growing energy consumption, due to both data processing and cooling activities. 

For this reason, Data Center must be seen as a Cyber-Physical system, taking into account 

the thermal and computational resources [36]. This view of a DC coincides with the aim of 

the thesis investigation on energy efficiency of cooling system and IT Equipment (ITE) as 

of major energy consumers within the DC, where cooling refers to the physical part and 

performance of ITE concerns the cyber part of the notion. The findings of the authors in 

[36] contribute to the problem of estimation of “useful work” in terms of IT applications 

performed by DC and confirms the hypothesis about non-zero idle mode power 

consumption within the DC. The authors outline two problems to be analysed and solved: 

not-uniform DC`s workload overtime that results in fluctuations of power consumption, 

and not ideally proportional performance, i.e. non-zero idle power rates and non-linear 

power utilisation by DCs, which are shown on a case study example. Phase 1 of this 

current work can be seen as a continuation of the study in [36]. 

 

The study [31] reports changes in electricity use by data centers in the USA and worldwide 

through 2000 to 2005 and 2010 based on the data from International Data Corporation 

(IDC) on installed base of servers. It helps define four scenarios of growth in electricity 

consumption and identify existing challenges: 

• Server peak power is different from server annual electricity use, which affects the 

trends and electrical network load. 

• Network and data storage equipment electricity consumption should be also 

measured. Power needed for storage devices is defined by spindle movements, 

which differs with the growing density and capacity of storage facilities. 

• Cloud computations decrease the need for installation of new servers and thus 

positively affect the electricity consumption. Nevertheless, there is too little data on 

the ratio of cloud computing servers within DCs. 
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2.2.3 Direct and Indirect Waste Created by DC 
 
When a DC is not optimised, it contributes to different types of wastage. A DC generates 

physical waste during refurbishment and upgrade, heat waste as a result of servers 

processing IT jobs, and energy waste due to low computational productivity in comparison 

to energy resources used as discussed above. Moreover, these types of waste are 

interconnected: the IT equipment lifetime may be directly impacted by the temperature 

inside the IT room, unoptimised resource allocation, poor energy and cooling management. 

Reduced have an incidence about the rate of DC electronic waste generation.  

 

LCA analysis and eco-labeling could be applied to tackle physical waste. Furthermore, 

thermal energy waste could be reused in the process called heat recovery, when heated 

water or air in the DC is directed to a heating system (within the DC or nearby buildings) 

that supplements existing heating processes [21]–[23], [46], [47]. Unfortunately, energy 

waste caused by inefficient use of electricity for cooling or computation cannot be reused.  

 

Energy waste assessment has been addressed in academia and industry both qualitatively 

and quantitatively. Inefficient energy use causes increased electricity demand and also 

negative environmental impact if non-renewable energy is used in the DC. Some research 

work explores VM allocation-related energy waste that is particularly crucial for cloud 

paradigm in DCs which provide computing resources to users in the forms of 

infrastructure, platform and software as a service. Such work proposes Virtual Machine 

(VM) allocation strategies and algorithms which increase the performance and QoS 

characteristics of DCs [48]–[50]. In other research work, energy waste is discussed in 

terms of heat generation and in such cases, thermal energy reuse is suggested as a potential 

solution. For example, the heat recovery in smart cities can be used for heating (sometimes 

partially) the nearby buildings, or even the premises of the same DC to provide good 

working conditions for offices within DC premises [22], [46], [47].  

 

Useful work, as opposed to energy waste, refers to the useful outcome of DC activity in 

terms of IT jobs processing. The definition is ambiguous, because useful results of data 

processing depend on application type and cannot be uniformly measured. Thus identified 
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on the application level, useful work varies from the number of floating-point operations, 

number of service invocations, number of transactions, or another essence related to the 

individual application [9], [51]. In [52] the authors classify tasks failures-based causes such 

as server or software failure, scheduler issue and evaluates energy spent on such tasks. 

 
2.2.4 Integration of Renewable Energy Sources 
 
A part of sustainable DC strategies, reducing the carbon footprint of DC worldwide is a 

considerable challenge under the pressure of big data deluge and smart city-related 

processing [53]. A series of projects has been created under the paradigm of sustainable 

DC [54]. For example, DC4Cities focuses on creation of energy adaptive eco-friendly DCs 

that operate to support smart city applications. Thus, DC involvement in a Smart City life 

is defined by storing and processing the data coming from smart sensors and 

administration procedures. This data modification and knowledge extraction may simplify 

decision-making process. The authors in [27] mention Data-Information-Knowledge-

Wisdom (DIKW) pyramid which has raw data as the basis, contextualised data or 

information on the second level, actioned or processed data at the knowledge level and 

automated data representing the wisdom level in the smart city context, because it helps 

increase effectiveness and add value to the decision-making process. 

 

The project DC4Cities assumes that smart city is focused on increasing the share of 

renewable energy sources in their energy supply, which is aligned with the citizens 

involvement in sustainability goals and active use of smart home systems. Energy mix 

within smart cities is thoroughly studied during the DC4Cities project realisation [55], as 

well as possible evolution of electricity grids components to smart grids with extensive 

share of distributed energy sources. Trials of the developed methodology are made on the 

sites of Barcelona and Trentino DCs.  

 
As aforementioned, in recent years serious effort has been made by consortia involving the 

industry, academia and public authorities to address the increasing energy demand 

challenge of the DC sector. Although such effort does provide valuable tools and practices 

towards reducing energy consumption, they should be merely considered as the beginning 

of a journey towards environmental targets. In a smart city context, past energy inefficient 

practices, such as ignoring the potential use of waste heat or renewable sources, are not 
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sustainable. Now, the research work proposes to plan DC activities according to forecasted 

availability of renewable power sources and clean energy from the grid to minimise 

associated carbon and equivalent emissions [21]. The Real time workload and Delay 

Tolerant workload developed in [21] could be used with two advantages: (1) better 

management of task scheduling, (2) better adaptation between DC activities and green 

energy produced locally (solar panel on DC roof, for example) for reducing carbon 

emission.  

 
2.2.5 Sustainable DC Guidelines and Best Practices 
 
A lot of industrial and research effort has been dedicated to defining a sustainable DC and, 

more importantly, to providing suggestions on the incorporation of sustainability goals and 

practices. They cover all aspects of DC energy efficiency mentioned before and go beyond 

them. The sustainability-related practices and standards encompass Life-Cycle Assessment 

(LCA) of DC operations that include equipment, energy, and other resources use 

throughout the DC lifecycle, including its expansion, and upgrade of hardware as well as 

software components. LCA is a methodology that could assess interlinked environmental 

impacts of a DC while single-issue metrics do not provide a holistic overview [56].  

 

Several guidelines for sustainable DC operations have been developed by different 

research and industrial bodies, as well as voluntary programs (e.g. Code of Conduct for 

Energy Efficiency in Data Centers [8], [57]). They cover renewable energy use, power 

efficiency in computational and cooling processes, recommendations for appropriate 

hardware, software, reduced energy consumption, and electronic equipment disposal.  

 

Specifically, Energy Star programme has developed a set of requirements concerning 

energy use and optimised operations that should be satisfied by IT equipment and its 

manufacturers to be assigned an eco-label [58]. ASHRAE has developed several guidelines 

concerning power equipment and DC operational requirements for in the pursuit of 

sustainability [59], [60]. JRC Commission has proposed a holistic framework for 

assessment of the level of sustainability practices integration in a specific site in its Code 

of Conduct for Energy Efficiency in Data Centers [8].  
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The Code of Conduct provides a methodology for DC operators to assess their sites in 

terms of general policies adoption, IT, power use and cooling efficiency, building 

exploitation, and monitoring. Application of this methodology results in a DC evaluation 

on the scale from 1 to 5 (best score) in all DC areas that the methodology encompasses. 

This evaluation also allows DC operators to compare their DC’s performance and metrics 

indices before and after some sustainability-related actions are undertaken. A more detailed 

overview of the practices and guidelines is displayed below. 

 
2.2.5.1 EU Code of Conduct Guidelines 
 
The practices concerning the entire data center, comprise, for example, forming an 

approval group for important decisions to regulate them in accordance with energy 

efficiency strategy, auditing the equipment to measure and optimise its usage, prepare 

plans for environmental and energy management. Air quality monitoring is a suggestion 

after ASHRAE 2011 white paper results (2011 Gaseous and Particulate Contamination 

Guidelines for Data Centers’) which brings focus to dangerous corrosive elements in the 

air that can influence the equipment quality and lifetime. 

 

Guidelines on provisioning and resilience level of data center operation highlight that 

infrastructures should be built as needed for business requirements and adjusted to 

maximise energy efficiency under conditions of partial and growing load of the facility. 

The latter adjustments are possible when power and cooling systems have several levels of 

resilience and when the whole DC is planned to be modularly scaled in the future. 

 

The best practices also cover the process of choosing appropriate IT equipment with the 

help of customised or standardised metrics, for instance, making use of Energy Star, SERT 

or SPECPower. Not only will these measures improve energy efficiency, but also bring 

reduction in average utilisation cost. When purchasing a set of new equipment, it is crucial 

to verify temperature and humidity operation levels. Operators should set them carefully to 

consider the designed power capacity. During the selection process, equipment 

benchmarking should be verified to conform to the full allowable temperature ranges. 

Equipment with energy efficiency labelling and energy-aware design should be matched 

with the infrastructure and room configuration. Once cooling is concerned, air flow of new 
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devices is required to match existing air flow schema, as well as the added IT equipment 

should comply to temperature and humidity levels typical or adjustable on the site. 

 

As suggested in guidelines, equipment acquisition and deployment should be adjusted to 

business requirements and avoid overprovisioning. Same practices concern software 

selection and development. All the existing equipment should be carefully audited and 

analysed to remove or power off idle and standby components. 

 

Major data management issues are concerned with unnecessary data duplication or heavy 

protection and archivation. Thus, data storage policies should be developed by the 

organisation and characterise data to preserve time limits and protection levels. Optional 

measures involve efficient snapshots to be used and data cleaning days to be organised, 

which in the long term should lead to overall storage volume reduction. 

 

Guidelines on effective cooling include containment and separation of hot and cold air 

flows, positioning of blanking panels to eliminate air recirculation where the space is not 

occupied by any equipment and maintaining raised floors without apertures or 

obstructions. Recirculation should be minimised through tuning the pressure of air stream 

slightly higher than that of IT equipment air flow. Equipment requiring different 

environmental conditions should be separated and in case of colocation data centers 

charged with respect to the strictness of SLA in order to incentivise energy efficiency 

concept through billing policies. Cooling equipment settings should be reviewed upon 

every alteration of the facilities and IT equipment placement, for example, cooling system 

should be turned off in empty rooms, cooling units should be calibrated not to work against 

each other, they should also be properly maintained and cleaned. Temperature and 

humidity settings are deeply connected, since with overcooling comes increased humidifier 

energy consumption. Thus, raising intake air temperature, widening humidifier range and 

optimising water temperature to set it to the optimal level. Free cooling could facilitate 

easy energy conservation by allowing fresh cold air to cool the air or water used in DC 

cooling systems. It is also a good practice to use centralised humidity controller that would 

eventually benefit to potential use of adiabatic humidification and free cooling. 
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When cooling system requires refrigeration, the following aspects are important to 

consider: high Coefficient of Performance of chillers, decreased difference between 

cooling system temperatures, adjusting the cooling system to expected continuous partial 

load, including speed drives for cooling system elements and possibility of "free cooling" 

is also an important characteristic in the areas where this type of temperature management 

is possible. 

 

Furthermore, cooling systems aimed at IT equipment appropriate conditions should not be 

affected by temperature management for other purposes. Computer Room Air Conditioners 

should allow variable speed of fans and configured to control on supply temperature, in 

order to handle varying conditions and loads. At the same time, operators should avoid 

multiple humidifier controllers. Waste Heat reuse options are discussed in the report, 

listing direct reuse of warm air in offices adjacent to the DC, introducing additional heat 

pumps to warm the water and heat nearby buildings or districts. Efficiency of such 

undertakings is proposed to be measured with Energy Reuse Factor and Energy Reuse 

Effectiveness metrics from The Green Grid. 

 

Power equipment guidelines comprise suggestions on modular scalable power supply 

units, which comply with EU Code of Conduct requirements and perform efficiently when 

partially loaded. Existing power equipment should be audited and adjusted to the 

frequency of their usage. Their power factor should be high enough to guarantee less 

negative side effects such as electrical inefficiency and cable losses. 

 

Energy use for the overall non data floor areas should be as well optimised according to 

building standards. Simple practices of switching off the lights when they are not needed, 

using energy efficient bulbs and providing energy reports from the hardware installed in 

the offices could improve sustainability on the site of a DC. DC should be located and 

engineered so as to benefit from all the natural conditions, facilitating free cooling, avoid 

high humidity areas, possibly collocate with the power source and capture rainwater. 

 

The study [32] reports DCs participation in the EU Code of Conduct (CoC) initiative by 

2016 and reveals that CoC Energy efficiency voluntary initiative is widely supported by 
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DCs across the EU. By December 2016, 325 DCs have applied for the CoC Participant 

status and 289 of them have been approved with average PUE value of all the latter sites of 

1.8. The majority of approved DCs have applied 26-50 best practices while the number of 

mandatory practices has been 81. The results of the study confirm that DCs are heading 

toward sustainability and energy efficiency practices, but it s challenging to comply with 

all mandatory guidelines, especially owing to the fact that both energy requirements and 

CoC set of practices are updated every year while the latency of DC retrofit and upgrades 

is still high. 

 

Overall, effective environmental management requires energy use monitoring, specifically 

of incoming energy consumption, IT energy consumption, room-level metering of supply 

air temperature and humidity, CRAC/CRAH unit level metering of air temperature as well 

as more granular metering. Undertaken measurements should be further analysed and 

reported to preserve statistics of energy use and economisation levels and use it for 

improvement of DC sustainability level. Usually, a set of metrics is exploited to provide 

final step of DC assessment, after all the data is gathered. Discussion of DC efficiency 

metrics is placed after the following part that particularly focuses on thermal guidelines 

from ASHRAE. 

 

2.2.5.2 ASHRAE Thermal Management Guidelines 
 
ASHRAE started unification of the environmental parameters which affected DC 

computing efficiency, performance, availability and reliability in 2004, and created their 

first set of thermal guidelines. In response to metrics development, namely, to the wide use 

of PUE metric, the organisation has created additional environmental equipment classes 

and guidance on their usage. The major achievement of the TC9.9 ASHRAE committee 

described in the whitepaper [59] is that ITE manufacturers agreed on recommended and 

allowable ranges for operational environment, which the committee summarised in the 

guidelines. Furthermore, the guidelines are formulated in terms of recommended and 

allowable envelopes, i.e. suggested sets of limits for thermal characteristics, for DC 

operators and aimed at two main factors: high reliability and energy efficiency. DCs are 

proposed a methodology to create their own envelopes with more suitable standards tuned 

for a specific site, if there is such need. It is emphasised in the cases when DC operators 
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have an intention of changing these ranges, a set of possible side effects such as noise, 

variative speed of chemical reactions should be considered and tackled with, and the 

climate conditions should be primarily investigated. 

 

Before the first edition of ASHRAE Thermal Guidelines for Data Processing 

Environments, DCs typically cooled their IT rooms down to 20-21 °C using the most 

stringent thermal requirement of all the equipment present in the rooms and a safety factor. 

One accomplishment of ASHRAE TC9.9 is the agreement between different major IT 

manufacturers on what thermal levels are regarded to as recommendable and allowable, so 

that DC operators are permitted to manage IT room with diverse components with a single 

agreed set of temperature and humidity ranges. The thermal ranges are expanded according 

to global desire to minimise the total cost of ownership and improve energy efficiency. 

The guidelines delineate six types of IT equipment, out of which four classes refer to DC 

premises and two types to individual or point-of-sale use. The classes are attributed with 

thermal characteristics according to the mode of use of the equipment comprising them and 

statistical investigation with the help of industry representatives. The stringency of the 

temperature, humidity and other thermal characteristics is divided into two levels: the one 

called recommended envelope and the other being allowable limits. Recommended 

envelope in a set of thermal ranges which ensures the most reliable and reasonable 

operating environment, from energy efficiency point of view. In the meantime, if the 

ranges are exceeded within the allowable limits for short periods of time, it does not lead to 

deterioration of reliability. 

 

The organisation suggests a clear set of steps for DC optimisation projects, where operators 

are proposed to first check their DC compliance with general best practices, then to apply 

ASHRAE classification and determine allowable limits suitable for a particular DC to 

further perceive to what extent the ASHRAE recommended operating envelope can be 

violated, and finish the optimisation project with optional customisation of recommended 

envelope of characteristics. The final optional step importantly includes consideration of a 

list of options for advanced optimisation brought together by ASHRAE committee. The 

options cover internal and outdoor temperature and humidity rating that includes 

monitoring of all types of IT, network, power and cooling equipment, airflow management 
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and cooling architecture, requirements for economizer and chiller as well as type of DC 

affecting the reliability and availability requirements, and overall project type, covering 

introduction of new components, upgrades of existing components or retrofit.  

 

Thus, optimisation projects should start with monitoring and statistical analysis of 

available data on climate, indoors thermal characteristics and architecture of cooling IT 

systems, with a goal to identify possible limitations, for example, some cooling equipment 

only allow maximum inlet temperature of 30°C. In addition, it is necessary to choose 

power equipment considering its mutual placement with IT equipment. For example, rack 

PDUs are usually placed in the back of IT equipment racks or at their sides, which makes it 

difficult for rack PDUs to access the cooling air from the cold aisle and requires power 

equipment to be designed to meet or exceed the IT equipment exhaust air. Having obtained 

the full picture of the DC operation and climate features, DC operators are suggested to 

start customisation of recommended envelope. All the optimisation steps are summarised 

in a flowchart as a guideline for DC operators for ease of use (Appendix F in [59]). 

 

IT equipment, which operate properly and reliably at higher temperatures and relative 

humidity levels, pertain to ASHRAE classes A2-A4. Important to emphasise that A2-A4 

ITE classes do operate reliably within allowable limits proposed by ASHRAE, but they 

still experience some increase in failure rate with changes of the working environment. 

While limited data is available for ITE of such classes, it is assumed that in the aftermath 

of adjusting temperatures to these classes DC will necessitate dealing with increased noise 

levels. Noise level augmentation by 3-5 DB caused by 2°C rise of inlet server temperature 

is referred to as a reasonable forecast. The problem of noise pollution produced within DCs 

may become an extreme challenge, if estimated noise level elevation reaches 97.9 dB(A) at 

45°C ambient temperature and require action according to countries legislation in healthy 

working environment. This fact might inspire the idea of sound energy conversion in a DC 

into electrical energy useful for the data center, although this area requires further research. 

 

Changes in DC thermal setpoints, introduction of economizers and chiller-free techniques, 

with the intention of increasing energy efficiency and improving the PUE value, are prone 

to side effects studied in ASHRAE guidelines [59]. The side effects include enlarged 
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server power use, higher system air flow speed, increased noise levels, transformed 

reliability, performance and cost trends. One downside of the ASHRAE guidelines is that 

the base level of reliability is defined as failure rate at 20°C server inlet temperature, which 

may vary for different DCs and be incorrectly interpreted in terms of proportion of active 

servers.  

 

Adoption of chiller-less economizer technologies requires prior analysis of time-at-

temperature climate data to assess applicability of such changes. Thus, dry bulb, wet bulb 

temperature and humidity measurements should be obtained for the DC location as well as 

equipment failure rate in the projected resulting indoor conditions, i.e. a certain 

temperature rise from outdoor air to server inlet diapason is equally required. A similar 

research was conducted for some cities spread across the world in the same ASHRAE 

whitepaper. Although failure factors for locations with high annual temperatures increase 

in case of some economizer configurations, in general, the failure rate is predicted to be 

lower than those expected under continuously high temperature steady state operation 

conditions. In the view of the fact that IT equipment specifications and climate have 

undergone some changes since the release of ASHRAE guidelines, the exact numbers are 

exempt from the current work. 

 

DCs, especially those which use economizers, need additional dehumidification, 

particulate and gas filtration in geographical locations with high pollution, temperature and 

humidity levels to mitigate condensation and pollution risks for ITE. High humidity levels 

are dangerous for dielectrics and may cause delamination of fine materials. The risks get 

higher when negative factors are combined: dust, gaseous or particulate pollutants together 

with high relative humidity facilitate corrosion of copper and silver miniature components. 

Therefore, it is recommended to maintain relative humidity less than 60% and apply 

filtration. 

 

ITE performance might suffer from loose thermal limits, if the equipment lacks power 

management capabilities which would respond to variation in environmental conditions in 

the room. Therefore, DC operators are suggested to consult ITE manufactures to 

understand how the product will react to limits of allowable thermal envelopes. Added 
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expenditure is also expected in DCs which aim to upgrade IT equipment to classes with 

higher allowable thermal limits and benefit the environment. However, improved materials 

for ITE, enhanced cooling systems with potentially lower energy consumption, or in 

general, new equipment adds to the cost of maintenance of a DC, which should be 

recalculated considering trade-offs between cooling solution, temperature ratings of ITE 

and its performance capabilities. 

 

2.2.6 Metrics for DC Assessment 
 

Data centers vary in their size, operational purposes and level of confidentiality of 

processed data [13]. They can be public, private and confederated and display different 

levels of reliability (probability of failure over a time period), availability (average time per 

time period of working without any downtime) and redundancy (availability in the event of 

failure). Several reports of GeSI, DatacenterDynamics and others on DC environmental 

impact and power usage focus on environmental impact of DCs, specifically their energy 

consumption and indirect carbon emissions. Although they show different levels of 

precision and representativeness [13], these steps forward to the prediction of DC 

environmental impact display rising consciousness of research and industry communities 

as well as DC providers about the DC energy demand and required improvements. Among 

current challenges authors identify the absence of indices which can show interrelations of 

management actions on different environmental consequences. However, a plethora of 

metrics exist for evaluation of distinct DC features, for example, its indirect carbon 

emissions, air/water/energy usage effectiveness, levels of systems’ optimisation, and other 

specific characteristics. In general, a metric can be defined as an empirical, objective 

assignment of numbers, according to a rule derived from a model or theory, to attributes of 

objects or events with the intent of describing them [61].  

 

A growing body of literature has proposed, examined, and critiqued the metrics for DC 

assessment [9], [34], [37], [51], [62], [63]. For example, in [9], a taxonomy of the state-of-

art DC efficiency metrics is presented for further use by DC providers and researchers. A 

plethora of metrics is categorised (by their DC core dimensions) into groups:  energy 

efficiency (e.g., DCeP, PUE), “greenness” (e.g., CUE, WUE), cooling systems (e.g., 

HVAC System Effectiveness, Recirculation Index), thermal and air management (e.g., 
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Rack Cooling Index, Return Heat Index, Recirculation Ratio), performance or productivity 

(e.g., Idle-to-peak Power Ratio, Data Center Performance), security (e.g., Accessibility 

Surface, Defense Depth), network (e.g., Network Power Usage Effectiveness), storage 

(e.g., Response Time, throughput) and financial impact (e.g., CapEx, OpEx, ROI) metrics. 

Exhaustive information is given on each metric, including its expressivity, advantages and 

limitations, interrelationship and concepts which lie in the basis of the metric. The main 

advantage of the work is that it provides a quick access to a needed metric or group of 

metrics by addressing the category. The authors outline the current challenge in the area of 

metrics: no metric describes all the data center components at once, neither normalisation 

strategy nor metrics exist to compare different data centers, dependence of metrics on sites 

individual features, difficulties on metrics application to co-location DCs and overall 

complexity and unpredictable nature of data centers. While some work highlights new 

emerging metrics like Datacenter Performance per Energy (DPPE), ASHRAE Performance 

Index (PI) [64], others review and discuss existing metrics, such as internationally 

recognised but not exhaustive PUE metric [40], [41], [65], [66]. 

 

Special attention is dedicated to thermal metrics that identify efficiency of the cooling 

equipment and IT room design [14], [34], [38], [63], [67]. These metrics are divided into 

two categories that can identify global (e.g., RTI, SHI and RHI) and local (e.g., RCI) 

thermal and air-flow phenomena. They allow to discover infrastructurally caused 

disadvantageous processes of air bypass and air recirculation. It remains true for all the 

metrics that they are only single-purposed and do not assess DCs holistically unless they 

are used under a methodology that would encompass all available measurements and apply 

a set of metrics to evaluate the DC from different points of view. Therefore, this current 

work will only expand relevant metrics that are essential for the undertaken analysis. 

 

2.2.7 Use Cases. How Do Real DC Providers Approach Sustainability? 
 

Cloud Data Center providers claim that use of their services is more optimal and 

sustainable in terms of carbon emissions. We chose three cloud service providers, Amazon 

Web Services, Microsoft Azure and Google Cloud, which appear in Top-5 lists according 

to TechRadar reviews resource and Gartner Magic Quadrant 2018 [68]–[70], to make a 

brief overview of the companies’ efforts to improve energy efficiency of their services. 
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The cloud actors mentioned above were also reviewed in 2017 by Greenpeace report on 

renewable energy use in data centers [71]. The report ranked Google Cloud, Microsoft and 

Amazon with A, B, and C grades correspondingly. The ranking criteria were based on ratio 

of clean energy sources in the whole range of sources used, transparency of activities and 

availability of information on sustainable efforts, adoption of renewable energy strategies 

and investments in this area, energy efficiency and level of attracted support in 

sustainability initiatives. It is also remarkable that the main focus of sustainable strategies 

varies for these three providers, being on-site renewable energy farms for AWS, carbon-

neutrality through renewable energy purchases and grid interactions for Google and 

Microsoft, also thermal management for Google and IT operational energy efficiency and 

life-cycle carbon emissions assessment for Microsoft, as observed from the companies’ 

websites and sustainability reports. 

 

AWS based its estimations on NRDC report and deduced that, in the cloud, customers use 

only ¼ of the number of servers they would use on-premises [72], [73], thus leading to less 

power consumption rates and carbon emissions. AWS also claims that with the use of 

carbon-intense power mix together with optimised servers involvement, carbon emission 

reduction potential is 88%. This is the main driver for the Amazon company renewable 

energy sources development. With 3 wind farms and 6 solar farms, AWS reached an 

intermediary result of 50% renewable energy usage in January 2018 on its way to pursue 

the goal of being 100%-powered by renewable energy [73], [74]. The future goals include 

solar systems installation on in 50 facility rooftops by 2020 [75]. Focusing on 

sustainability together with employees, AWS encourages them to commit to work avoiding 

the use of personal cars and reduce packaging. One of the reasons for getting a low grade 

for renewable energy use from Greenpeace was the lack of transparency. Indeed, 

sustainability timeline published on AWS website starts from 2014, while, for example, 

Google is known to be carbon-neutral from 2007. So, AWS has made a leap to achieve 

energy efficiency and sustainability adoption on a high level since 2014. 

 

Google Cloud purchases renewable energy and balances electricity use with sustainable 

resources provisioning, thus the company’s renewable energy purchases zero out the entire 

carbon footprint of their electricity use [76]. Therefore, the company has improved since 
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2017 Greenpeace report on data center sustainability assessment [77]. The company 

assures that it provides energy efficient storage with fast data access [78]. Google Cloud 

shows remarkable trailing twelve-months PUE of 1.1 as a result of a set of measures 

undertaken by the company, which comprise high granularity continuous monitoring of 

energy use on all sites, customised efficient servers and power paths, airflow management, 

including blanking panels and plastic curtains, setpoint adjustment to 26.7°C, application 

of evaporation and sea water free cooling, recycle and reuse strategies only, since the 

company diverted 100% from the landfill [79], [80]. A worth mentioning fact is that while 

100% carbon neutrality level is reached by Google data centers, carbon emissions are still 

present in their reports, although leveraged by renewable energy purchases. 

 

In addition, Google reported that the company successfully applied Neural Networks, a 

Machine Learning (ML) technique, for predicting the PUE, as a proof-of-the-art, in which 

standard predictive modelling with fixed formulae resulted in large errors, because they 

failed to express complicated interdependencies within a dataset [81]. Automatic 

prediction of PUE can leverage performance alerting, real-time efficiency targets 

adjustment and troubleshooting, also DC management planning without physical changes 

and reduce uncertainty of future changes. The case study has shown that increasing the IT 

load in the range of 0-70% yields large efficiency gains which decline only slightly with IT 

load increasing even further after 70%, due to the cooling plant higher useful work 

percentage. It is also concluded that increasing the number of operational chillers, process 

water pumps, outdoor wet bulb temperature, outside air enthalpy (total outdoor air energy 

content), or any similar physical or management changes that increase the load on thermal 

control system, result in the rise in the PUE. The work has demonstrated that given a 

sufficient set of DC parameters, it is possible to predict PUE variation with increase of 

Process Water Supply Temperature, prove errors in new meters installed on site, optimise 

operational parameters in case of DC plant reconfiguration in the real use-cases. 

 

Microsoft reported that running applications in Microsoft Azure cloud is up to 98% more 

carbon friendly and uses 22-93% less energy than when they reside on enterprise data 

centers [82], [83]. Being a cloud provider for 140 countries [84], Microsoft has created a 

set of policies to promote Cloud for Good initiative encompassing internet security, rural 
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broadband gap reduction, realisation of the AI for Earth educational initiative which raises 

availability of cloud resources for research, clean energy promotion and other social and 

technological aspects of sustainability in the global view. In the Microsoft blog, the 

company’s president reported that they have operated in a carbon neutral manner since 

2012. The company used internal carbon fee model, charging units for their resultant 

carbon emissions to incentivise development of carbon-saving technologies. In Microsoft 

report [83] a comparative analysis of energy use and carbon emissions of Microsoft IT 

applications, compute and storage resources was conducted as opposed to equivalent on-

premises deployments. The study showed that overall energy and carbon emissions could 

be reduced by switching from on-premises infrastructure to Microsoft cloud provider, 

mainly caused by decreased electricity use per useful output. However, the term of useful 

output is not explicitly defined, and the wide ranges of potential improvements predicted, 

such as 22-93% energy savings mentioned above, lack granularity and detailed 

explanation. 

 

In essence, major cloud services providers mainly focus on carbon neutrality through 

renewable energy purchases and/or solar and wind farms installation directly on their sites. 

Some energy saving and waste reducing guidelines are provided to DC employees to 

further reduce environmental impact of the companies’ environmental footprint. Cloud 

providers are motivated to be transparent in their environmental initiatives and DCs’ 

assessment through globally accepted metrics, out of which only PUE is widely used so 

far. 
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3 RESEARCH METHODOLOGY 
 

This current work encompasses several phases of the exploration of DC energy efficiency. 

In this section, the overall methodology provides an idea of research stages. Furthermore, 

every phase of the work is summarised. However, detailed methodology for every phase is 

given in the dedicated sections.  

 

As discussed in the Background Section 1.1, sustainability of a data center is fostered 

through the pursuit of energy efficiency in all possible operational aspects, including IT 

jobs processing efficiency, optimal power, materials resources allocation, appropriate 

cooling technologies. Therefore, energy efficiency investigation is the main focus of this 

current work and the basis for data analysis throughout all phases of the work. 

 

Fig. 2 shows an approach of this work to assessment of DC energy efficiency in the 

context of a smart city. The diagram in Fig. 2 should be read from left to right. As shown 

in Fig. 2, analysis is performed in three phases and is based on available monitoring data 

concerning IT and thermal parts of DC. It is noteworthy that the DC under consideration 

processes jobs that have been designed for a broad range of scientific research 

computations and, among others, for smart city applications such as smart homes, air 

quality modelling and monitoring. We closely analyse IT room energy efficiency of DC 

clusters that have monitoring devices installed to measure power consumption, jobs 

scheduling data, and some thermal characteristics. These data are analysed within three 

phases. The phases are reported in chronological order of the work: Phases 1 and 2 bring 

about the necessary breadth of the work concerning energy efficiency analysis of thermal 

and IT dimensions of the DC; Phase 3 extends analysis in Phase 2 through the 

identification of thermal management pitfalls.  The current work is organised in such a way 

that Phase 1 research work is discussed in the main body of the thesis while Phases 2 and 3 

are summarised in the Appendices 2 and 3.  However, it ought to be noted that the focus of 

this research work is DC energy efficiency assessment, relevant metrics, and evidence-

based recommendations to DC owners. As Fig. 2 depicts, the analysis results will provide 

evidence-based energy efficiency related recommendations to the DC owners. 
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Each phase has a separate methodology; however, all the phases assume the same structure 

based on an adapted data lifecycle methodology. While data lifecycle methodology exists 

in different forms, it typically includes stages of data collection, preprocessing, analysis, 

results exploitation and the cycle repeats. The scope of this current work does not cover 

data collection as the data has been provided before the commencement of this work. Thus, 

only stages of data preprocessing, analysis and results exploitation are implemented. The 

cycle is not iterated due to time constraints and lack of direct access to the monitoring 

systems settings. For example, commercial platform used for load scheduling and 

workload monitoring has a fixed algorithm of data acquisition and is not subject to 

changes. This commercial platform is called Load Sharing Facility (LSF), an IBM product, 

that will be discussed in Phase 1. Finally, adapted data lifecycle methodology of each 

phase is realised with Python programming language suitable for big datasets, computation 

of statistical characteristics, mathematical modelling and visualisation. Initially, all datasets 

have been received in .csv or .xlsx format. 

 

Phase 1. Energy Efficiency Analysis of IT Processes 

With the purpose of calculating energy waste and useful energy consumption of IT 

Figure 2. Overall thesis methodology comprising three phases of the work 
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Equipment, a mathematical modelling approach has been used. It consists in applying the 

law of energy conservation to available data, integrating time series measurements of 

power consumption and evaluating the hourly amount energy required by each process in 

one core. Further, categorisation of jobs processed by the cluster is performed to make a 

distinction between jobs which cause energy waste for different reasons. The Phase 1 

section also includes evaluation of carbon emissions associated with useful work and 

wasted energy consumed by the cluster and a new sustainability-related metric, Carbon 

Waste Ratio, is proposed.  

 

Phase 2. Analysis of DC Thermal Characteristics (see Appendix 2 for details) 

Phase 2 is dedicated to the assessment of real thermal conditions in the IT room of one DC 

cluster as compared with thermal equipment setpoints and guidelines. Hidden factors such 

as bypass, recirculation, hotspots and partial rack overheating can negatively affect the 

health of IT and power equipment that is critical for the DC. Based on real data from 

server-level sensors, data analysis is conducted with the aim to identify potential risks 

caused by the possible presence of aforementioned hidden factors. Specifically, this phase 

involves extensive statistical analysis of available thermal data, global and local thermal 

metrics evaluation, investigation of possible correlation between power consumption of 

server components and temperature variation. 

 

Phase 3. Machine Learning for DC Thermal Characteristics Analysis (see Appendix 3 

for details) 

To provide suggestions for hotspots localisation as well as categorisation of nodes based 

on surrounding air temperature ranges, Machine Learning techniques are used in Phase 3. 

Variability of thermal data and uncertainties in defining temperature thresholds for 

hotspots identified in Phase 2 have invoked a need for unsupervised learning. Therefore, a 

clustering algorithm is applied in Phase 3 to address the challenges that are beyond typical 

statistical techniques. In this phase, the number of clusters is determined using two indices 

(Silhouette metric and Within-Cluster Sum of Squares), and available thermal 

characteristics (i.e. exhaust temperature, CPUs temperatures) are inputs to a clustering 

algorithm. Subsequently, a series of clustering results are intersected to unravel nodes 

(identified by IDs) that frequently fall into high temperature areas of the cluster racks. 
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4 PHASE 1. ENERGY EFFICIENCY ANALYSIS OF IT PROCESSES 
 

In this part of the work the concept of energy efficiency is approached through definition 

and assessment of useful work and energy waste of IT jobs processing based on real data 

related to the power consumption and load scheduling within HPC cluster CRESCO4 

hosted by DC within the ENEA Portici Research Center. To evaluate energy consumption 

of IT processes, energy conservation law is employed in this part of the work to build an 

approximation of every process energy consumption from one core during each hour of 

monitored period. Several productivity metrics are then applied to evaluate useful work and 

energy waste on different levels of analysis granularity: these of individual jobs, cluster 

queues, groups of parallel and serial jobs and the whole cluster. Special attention is given 

to the interpretation of energy consumption profiles from sustainability point of view, i.e. 

in terms of associated carbon emissions. Additional point in favor of the current work is 

that the real data from a working DC is used for analysis, thus, in comparison with 

simulations of a DC operation, it shows real issues which should be addressed both by DC 

operators to optimally manage DC processes and by the user side to improve their 

applications performance. The research contained in this section synthesizes and develops 

the results published in [85]–[88] during the thesis work. 

  

4.1 Data Center Facility and Datasets Description 
 

The cluster CRESCO4 consists of 38 Supermicro F617R3-FT chassis, with 8 dual CPU 

nodes each. Each CPU is of the type Intel E5-2670 and hosts in its turn 8 cores, which 

results in a total number of 4864 cores. The CPUs operate at a clock frequency of 2.6 GHz. 

Furthermore, each core of the system is provided with a RAM memory of 4 GB. 

Computing nodes access a DDN storage system, constituting a total storage amount of 1 

Pbyte. Computing nodes are interconnected via an Infiniband 4xQDR QLogic/Intel12800-

180 switch (432 ports, 40Gbps). 

 

This section exploits available data gathered on CRESCO4 cluster of ENEA DC during the 

period from February 2017, to January 2018. Datasets have been obtained from 

(1) Platform LSF (Load Sharing Facility) job scheduler and (2) Zabbix power consumption 
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monitoring tool. To clarify, the words “process”, “job”, and “application” are used as 

synonyms in this section. 

 

Briefly, LSF is a workload management platform and job scheduler for distributed HPC 

systems. This platform is concerned with deciding which process is to be run and is 

designed to keep CPUs as busy as possible. The LSF dataset covers details about the 

number of cores assigned by the scheduler for every process, start and end time of the 

application activity, names of executable file and directory and the marker of whether the 

process has finished successfully (“done”) or with an error (“exit”). Zabbix dataset 

contains average level of power consumption, minimum and maximum registered power 

consumption for each hour. These datasets are intersected based on monitoring time 

period, and the resulting dataset covers 11 months from 12:00, 19th of February 2017, to 

12:00, 25th of January 2018, divided by 19th day, 12:00, of each consecutive month except 

January 2018. 

 

The task scheduling of the cluster is based on First Come First Served algorithm. The 

queues characteristics are reported in Table I in [85]. The cluster processes approximately 

40 types of applications and benefits several fields of research, such as climate modelling, 

renewable energy, environmental issues, materials science, efficient combustion, nuclear 

technology, plasma physics, biotechnology, aerospace, complex systems physics, HPC 

technology. 

 

4.2 Methodology 
 

Initial goal of this thesis phase is to obtain energy consumption data from available 

datasets. Once energy use is evaluated, analysis proceeds with energy efficiency 

investigation and finding answers to other research questions including recommendations 

on enhancing DC sustainability. Thus, datasets processing has been done according to 

adapted data lifecycle methodology as depicted in Fig. 3. It shows that data preprocessing 

stage covers formatting available datasets, their intersection and conversion of all the fields 

into the formats that would allow further processing (e.g. timestamps de-/encoding). 

Further, data analysis is divided into two major steps of mathematical modelling that 

would make a foundation for the second step, energy efficiency analysis. Energy efficiency 
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analysis stage includes IT jobs categorisation, evaluation of productivity metrics and 

indirect carbon emissions. The phase results in recommendations for improving energy 

efficiency of IT equipment and jobs processing to feed into overall DC sustainability. Data 

analysis steps are explained in the following parts of methodology subsection. 

 

 
 

4.2.1 Mathematical Modelling for Estimation of Energy Consumption IT jobs 
 

To estimate effective energy consumption by the cluster IT jobs and energy waste created 

by incorrectly finished jobs, energy conservation law has been applied to the combination 

of available data to find a set of introduced unknown variables and further estimate energy 

consumption of every process. With this intention equations of the energy conservation 

law have been expressed in terms of available characteristics of the DC cluster, see 

Equation (1): 

 
(1) 

for each hour j of every month, , where  stands for the number of hours within 

one month. The right part of the equality represents the value of energy consumed by the 

cluster. The left part of the equation has been formed by the cluster power load generated 

Figure 3. Phase 1. Data Lifecycle methodology adapted to mathematical modelling and 
energy efficiency evaluation of DC IT jobs processing, including metrics evaluation and 

estimation of indirect carbon emissions. 
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by jobs, which had been processed by a certain number of cores (nodes), integrated over a 

period of time obtained from LSF dataset. The process of creation of these equations as 

well as notations are explained below: 

1. Power used by the cluster will be integrated over the time of monitoring reported in 

the Zabbix dataset, i.e. over approximately one hour, and extrapolated to exactly fit 

one-hour period, resulting in the variable , denoting the number of watt-hours of 

energy consumed by the cluster during the hour . 

a. LSF data allows to estimate the power used by an arbitrary process within 

every hour of the cluster activity. Consider the variables  standing for the 

number of cores required to work on application  during the hour , and 

 – start and end time of the process  activity during the hour  These 

variables can be devised from the monitored data.  

b. For the purpose of obtaining power value in the workload part of the 

equation, an unknown set of variables is introduced:  stands for the power 

required by arbitrary application every second from one core during the hour 

 

c. Multiplication of  produces the amount of power consumed by 

application  during the hour , the integral of this product over the period of 

this application activity results in energy consumption registered for the 

application  during the hour . Finally, summation over the number  of 

applications which had been active during the hour  provides the estimation 

of energy required for processing the applications during the hour under 

consideration. 

2. Equation (1) is then transformed discrete format to avoid integration over non-

continuous variable and is rewritten as follows: 

 
(2) 

where, ti,j represents the duration of job i processing in seconds and is divided by the 

number of seconds in one hour. Equation (2) forms a sequence of linear equations 

with one unknown variable  for each equation from the sequence. The equations 

can be resolved by simple division of the right part over the sum from the left part.  
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3. Having resolved unknown variable , one can estimate monthly energy consumption 

of the cluster using summation of  over j from 1 to N, or energy consumption by 

individual processes and that of other different granularity levels. Once calculated, 

these results will contribute to achieving the research objective RO1.1. 

 

4.2.2 Quantitative Analysis of IT Jobs Energy Efficiency 
 

1. Once the power required by any process from one core within each hour  is 

obtained, the processes can be categorised by their productivity for the end-users as 

described in Section III.D [85] and summarised below in subsection 4.2.2.1.  

2. Using markers for processes that resulted in energy waste , and Kronecker delta 

, where   – ID of processes that finished with errors, 

it is possible to estimate  – monthly energy waste as a sum of hourly energy waste 

: 

𝐸𝑤 =$𝐸𝑤𝑗

𝑁

𝑗=1

	

 
(3) 

𝐸𝑤𝑗 = % 𝑐𝑖,𝑗 ∙ 𝑡𝑖,𝑗 ∙ 𝑥𝑗 ∙ 𝛿𝑖
𝑤

𝐾

𝑖=1

,  𝑗 = 1,  … , 𝑁 
 

(4) 

3. Monthly energy waste evaluation allows to estimate DCeP and EWR, energy 

productivity metrics, the overview and discussion on which is included in subsection 

4.2.2.2. 

4. Quantitative analysis concludes with interpretation of energy use in terms of indirect 

carbon emissions using carbon factor for Italy, c = 0.343 tCO2/MWh [89]: 

 (5) 

where E is energy in MWh and CO2e stands for the amount of carbon emissions 

(tCO2). Application of this formula will contribute to investigation on research 

objective RO1.2. 

 

In addition, energy efficiency analysis of cluster queues and groups of parallel and serial 

jobs is explained in [86], [88]. 
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4.2.2.1 Categorisation of jobs by productivity or energy waste type 
 

All jobs that are marked by LSF as correctly finished processes are assigned to useful 

work. Furthermore, three categories of jobs that have caused energy waste are 

distinguished: (I) jobs that run for too short time (≤ 30 seconds); (II) jobs that exceed their 

queues’ maximum allowed running time; (III) jobs that end with errors for other unknown 

reasons.  

 

In case (I), the time is so short that it can only cover job scheduler activities and such jobs 

cannot bring about useful results to end-users. Even if the jobs are reported to have 

finished without errors, they should be marked with energy waste sign, therefore, this 

category reveals additional energy waste that is not registered as such by LSF. The 

category (II) comprises jobs that continue running after the queue maximum time is 

exceeded and are by default marked as erroneous jobs. However, within the queue 

maximum time limit these jobs have fed into useful processing results for the end-users 

and only the part that exceeded the queue time limit has caused energy waste. Hence, the 

second category splits jobs that automatically got an “ending with error” status to useful 

work and energy waste depending on the jobs’ processing time. The third (III) category 

dumps all other jobs that ended with errors for unknown reasons and should be analysed by 

DC operators more thoroughly. 

 

4.2.2.2 Energy Productivity Metrics, DCeP and EWR 
 

As mentioned in previous sections, the DC energy consumption has increased dramatically 

over the last decade, and this situation has determined the quest for metrics that evaluate 

DC energy efficiency. Despite a great interest, traditional metrics for measuring energy 

efficiency in DC (e.g., PUE) are limited to calculating the energy required for the major IT 

components of the DC plus the energy for supporting infrastructure. In contrast, the present 

part aims to compute energy efficiency metrics based on a clear definition of the useful 

work which is a parameter intended to gauge the real computing carried out by a DC 

(RO1.1).  

 

In the research that approaches energy waste with the use of metrics similarly to this work, 
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useful energy, as the opposite to the energy waste, might have an ambiguous definition. 

Useful work depends on the type of application that it characterised and vary from the 

number of floating-point operations to number of transactions, network traffic or other 

measurable output [33], [51]. Therefore, unified approach to useful work assessment is 

highly needed. 

 

The analysis on productivity metrics related to the useful work, despite the ambiguity of 

this term, is necessary to achieve sustainability goals. Generally, useful work of a DC can 

be represented by overall computing activity of the IT Equipment. The ITE activity 

comprises computing, storing and transferring data and is referred to as IT services. 

Appropriate productivity metrics are used to measure and assess such activity’s 

characteristics [34], [37]. Nevertheless, productivity metrics differ in their approach to 

assess useful work. As a consequence, none of the metrics has provided a practical way to 

exactly calculate the work done or useful work, even though several attempts have been 

made to define the productivity metrics for DCs. Among all the productivity metrics, 

DCeP (Data Center Energy Productivity) is the most significant one [9] and is calculated as 

follows:  

 
(6) 

The present stage of work is devoted to calculating it based on the DC operation data. 

DCeP metric evaluation is facilitated by the consideration of each IT job power 

consumption per core during each second obtained from Eq. 2 and the information about 

the fulfilment status of jobs. As described in step 2 of subsection 4.2.2, jobs that have 

caused energy waste are marked with Kronecker delta, all the other jobs have finished 

successfully and are assumed to contribute to the useful work. Thus, monthly energy 

consumption with separation on the energy for useful work and energy waste is obtained 

for each month of the investigated period. Further, DCeP is evaluated as the ratio of energy 

for useful work over the total energy consumption as mentioned in the Eq. 6. As Total DC 

Energy Consumed Over Time is not available in this work, the denominator contains total 

IT energy used by DC, which will indicate more precisely which part of IT energy is 

consumed by useful work. 

 

Energy waste assessment has been addressed in academia and industry both qualitatively 
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and quantitatively, for the reason that inefficient energy use causes increased electricity 

cost and negative environmental impact if the extra energy used is produced from non-

renewable resources. Unlike useful work, energy waste is related to the energy that has 

been used for computing activities but has not produced results for the end user. Therefore, 

energy waste and energy spent on useful computational work are two supplementary 

portions together forming the total cluster ITE energy consumption. For this reason, EWR 

(Energy Waste Ratio) metric [35], [90] which is equal to (1 – DCeP) or can be otherwise 

expressed as in Eq. 7, is studied for individual applications and energy waste categories.  

 
(7) 

Similar to DCeP, the metric EWR shows what portion of energy has been wasted on jobs 

that have not resulted in any useful work of cluster processing activities. Since this metric 

estimates how much energy the cluster uses in vain, measures taken to minimise this value 

should result in rise of DC IT productivity, therefore, once the metric components are 

clearly defined, it is useful for DC energy efficiency analysis. 

 

4.3 Results and Discussion 
 

Energy distribution between tasks occupying the reported DC cluster is illustrated in Fig. 1 

in section IV of [85]. In detail, the figure shows the proportion in which energy is 

consumed by different processes over the overall period of monitoring. In the meantime, it 

indicates the purposes of cluster computations: the variety of applications observed to 

reside on the cluster is typical for a data center which is adapted for smart city purposes. 

The variety spans from air quality monitoring, climate modelling, initial versions of smart 

home and other urban applications to Monte Carlo algorithms for particle physics 

simulations.  

 

Out of all processes, statistical Monte Carlo methods for particle detection, transport and 

nuclear fusion are registered to have the highest energy demand and consume 35% of 

energy over the whole observed period of 11 months. The second group of applications is 

responsible for 23% of the cluster energy consumption includes air quality simulation and 

forecast. Other applications individually do not require more than 6% of cluster resource 

use, while the smallest considerable portion of energy is dedicated to genetic analysis and 
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mathematical algorithm for turbulent flows simulation. Applications with less than 1% 

energy use over the period under consideration (11 months) have been combined into one 

group. Given that this group necessitates 16% of total cluster energy, the cluster utilisation 

pattern is visible: it processes a large number of applications with low energy demands. 

 

Monthly energy consumption has been calculated as described in subsection 4.2.1. The 

results are represented in Fig. 4 along with DCeP metric evaluation. The largest portion of 

energy use is observed during the month from 19th of March to 19th of April reaching the 

point of 35.6 MWh, whereas the smallest portion of energy consumption is reported in the 

months from 19th of July to 19th of September. DCeP varies from the minimum of 0.61 in 

the last reported month to 0.84 in the June-July period. In the sense of sustainable resource 

utilisation, these findings bring evidence that around 60-80% of all energy is consumed by 

IT equipment to produce useful work, a ratio that could be improved with some practices 

that will be discussed in conclusion and concern users alerts and better load scheduling. 

 

As a note on data analysis strategy, in the case when jobs are taken directly from the LSF 

data, without categorisation and identification of additional categories (I) and (II) from 

subsection 4.2.2.1, DCeP is reported to stay at a lower level than after preprocessing the 

LSF dataset and extracting categories. DCeP differences can be observed in Fig. 4 (b), 

where no categorisation has been done, versus Fig. 4 (a) depicting values when the 

categorisation has been considered. The reason for such differences stem from the fact that 

in the raw LSF dataset useful work performed by jobs that exceeded queue maximum time 

have been hidden by the marker of erroneous job for the full period of jobs execution. In 

addition. However, as described previously, the energy used within the queue time had 

been spent on useful work and only the remaining part of processing period caused energy 

waste. Also, some short jobs have been marked as useful work which does not agree with 

our assumptions. Henceforward, the categorised dataset is used, i.e. the one corresponding 

to Fig. 4 (a).  

 

In addition, energy consumption of the processes is found to have been unevenly 

distributed. The majority of the processes consume less than 100 kWh per month. A more 
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a)       b) 

Figure 4. Monthly analysis of energy consumed by correctly finished jobs (useful work) 
and jobs which exited a queue with an error status (energy waste), and DCeP 
a) Energy waste categories are considered;  
b) Jobs are not categorised by causes of energy waste, data on jobs status is taken directly 
from LSF. 
 

granular analysis showed that from 62% to 93% of the overall number of the cluster jobs 

consume less than 10 kWh per month as shown in Fig. 4 section IV.B in [85].  

 

Energy use by queues and by groups of serial and parallel jobs is studied and reported in 

in-press works [86], [88] that are available upon request. The main findings are, however, 

the following. Energy consumption of all 18 queues ranges from 1 kWh to 207 MWh over 

the total period of monitoring. Number of jobs allocated to each queue reveals no 

correlation with energy consumed by the queue: for example, the queue with the second 

smallest energy consumption over the total period and EWR of 16% is reported to have 

had the most significant number of job allocations. The ratio of 99% of energy is 

consumed by 9.5% separate submissions, while there is no correlation between energy 

consumption of a queue and number of jobs submissions. Second smallest energy 

consumption has been detected in the queue with the highest number of job allocations. 

 

The Energy consumption and EWR of parallel jobs generally prevail over serial jobs, while 

the number of serial jobs submissions is observed to have been higher than parallel jobs 

submissions in 10 out of 11 months. An even pattern of parallel jobs EWR has a mean 

value of 22%, whereas the same metric for serial jobs fluctuate between 0.025% – 4%. It is 

noted that the monitored cluster parallel jobs consume more energy and, if such a job fails, 
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then the energy required for computations until to the failure point is largely wasted in 

comparison with serial jobs. In addition, serial jobs consume around two times less energy 

throughout the studied period, although they are submitted 200 times more frequently on 

average, the value having been dispersed throughout the months from 10 to 1000 times. 

 

Statistical characteristics are taken from the monthly samples of data and are shown in 

Table 1. The table includes the minimum, maximum, mean value and standard deviation of 

the ratios of energy used by jobs from each category related to the general energy use. As 

might be observed from Table 1, processes with short running time consume the least share 

of energy (i.e. approximately 0.03%), whereas jobs which exceed the queue time used 

around 0.2% of total energy consumption. A considerable amount of jobs which are only 

processed by the scheduler and have a maximum running time of 30 seconds (category I)) 

represent from 14 to 56% of all submitted jobs throughout the whole period of 

investigation, Table 1. On the contrary, jobs, which exceed the queue time limit, form less 

than 1% during the majority of reported period. 

Table  1. Energy Waste Ratio by Job Categories with Relation to Overall Energy, % 
Statistical 
Characteristics a) Running time  30 sec b) Running time > queue time c) Other reasons 

Min 0.007 0.004 16 
Max 0.06 0.3 39 
Mean 0.03 0.2 23 
Standard Deviation 0.01 0.09 7 

 

To summarize, results obtained through the assessment of useful work and energy waste 

reveal the energy consumption patterns within the cluster. Firstly, the least energy is 

consumed during the summer months of annual vacations, whereas the most significant 

amount of wasted energy is observable in December-January when users might have 

worked remotely during the Christmas holidays. Secondly, a high percentage of jobs 

consume less than 10 kWh per month, which result in the energy spent on minor jobs 

rather than resource-hungry processes. Also, the cluster wastes most of the energy for jobs 

which end with errors for unknown reasons that require further examination. Regarding the 

energy waste categories, some jobs that are only preprocessed by the scheduler and do not 

provide any results, is considerably higher than the number of jobs removed from the 

queue because of the time limit conflicts. 



 
 
 

53 

 

The results in terms of energy consumption required for useful work and processes without 

positive results for the end user have been translated into CO2 or equivalent greenhouse 

gases (GHG) emissions to show the environmental impact of the cluster’s processing work. 

Fig. 5 shows the amount of carbon emissions produced by the computation facilities during 

the cluster processing. As a basis for this figure, the monthly energy consumption is 

calculated for all the jobs, which are successfully completed, and the jobs, which end up 

with errors. The values are converted to MWh and then multiplied by the carbon factor.  

Evaluation of CO2 or equivalent GHG emitted only by IT equipment does not facilitate the 

assessment of CUE (Carbon Usage Effectiveness) metric for the cluster, because it requires 

data on total emissions caused both by IT equipment and supportive infrastructure of the 

DC. Thus, by analogy with EWR, we propose to use Carbon Waste Ratio, CWR, to 

express the same value in terms of CO2 emissions as in Eq. 8. CWR metric and  

 

 
(8) 

 

The overall CO2 emissions fluctuate between 8 and 12.2 tonnes CO2 per month. The 

proportion of CO2 emissions caused by energy waste ranges from 16% to 40% of monthly 

emissions (CWR value in %). Fig. 5 is used here to highlight the importance of identifying 

jobs, which do not produce any useful work, but negatively impact on the energy 

consumption and environment. These results meet the target RO1.2. 

 
Figure 5. Monthly CO2 (or equivalent) emissions caused by jobs which ended with errors 

and correctly finished jobs, CWR. 
 
The conducted analysis provides a more in-depth insight into the useful work performed by 
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the cluster IT equipment and, at the same time, waste energy. An incremental contribution 

towards a better understanding of DC sustainability has been presented in terms of carbon 

emissions for useful work and jobs associated with energy waste. However, the data 

available in the case study is not sufficient for the evaluation of any carbon or 

sustainability metric, therefore a new metric has been proposed. 

 

4.4 Phase 1 Conclusion 
 

Assessment of IT equipment energy efficiency has been addressed in this part of the work 

through evaluation of useful work and energy waste generated by IT jobs processing. 

Ambiguity of useful work definition has been overcome with the help of IT jobs markers 

of successful or faulty completion of every job assigned by Load Sharing Facility and 

enhanced by further categorisation of jobs that caused energy waste based on jobs 

individual characteristics. Investigation on energy efficiency pursues the goal of improving 

cluster’s sustainability, since it helps identify weak points in cluster jobs scheduling 

processing so that DC operators and users are motivated to act appropriately and increase 

energy efficiency, reaching higher productivity and larger amounts of useful work with 

less energy consumption.  

 

The study goes beyond energy efficiency and translates energy utilisation values to 

associated carbon emissions of the cluster. With the aim to quantify energy use in terms of 

environmental burden imposed by the DC, these results increase awareness of DC 

stakeholders about the severity of IT equipment ecological impact and the urgency of the 

need to improve energy efficiency. 

 

Raising a question of transferability of the current findings, methodology proposed in this 

part of the work applicable for evaluation of energy use of the same DC cluster during its 

future operation.  Moreover, general technique to apply energy conservation law for the 

study of energy distribution between applications is transferable to other systems with 

different patterns of monitored data. Use of carbon factor proposed to assess carbon 

emissions caused by the cluster is an approach that gives a rough estimate of associated 

carbon footprint but is widely applicable thanks to its simplicity. The carbon metric CWR 

is based on analogous EWR index and can complement the latter for a more rigorous 
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assessment of energy-related impact. They both require distinction between energy waste 

and useful work, which has been discussed in this section. Since the final goal of 

separating jobs in these two categories, useful work and Not Useful Work, has the final 

goal of evaluation of energy by these groups, it is sufficient to assume some jobs provide 

computational results to the end user and then directly evaluate energy consumption of 

such jobs rather than, for example, interpreting useful work in terms of floating-point 

operations and translating it into the energy characteristics. Therefore, suggested 

methodology allows to avoid one extra step in useful work-related energy consumption in 

the settings where resultant jobs can be marked as such.  

 

This part of the work concludes with energy efficiency-oriented recommendations based 

on the findings concerning the cluster IT equipment operation to address the objective 

RO1.3. 

 

4.4.1 Recommendations for DC IT Jobs Energy Efficiency Enhancement 
 
REC 1. Improve scheduling policies 

REC 1.1. Currently utilised FCFS queuing algorithm could be replaced by other 

algorithms (appropriate under different circumstances), for example, Largest Job 

First, to optimise the system load, or Smallest Job First, to optimise the 

throughput, or other algorithms. 

Introduce/enhance priorities and add backfilling approaches if necessary: reorder 

jobs to match the availability of resources and tasks priority. 

REC 2. Enhance task resource allocation strategy 

REC 2.1. Consider energy usage optimisation queuing strategy rather than to the currently 

employed chronological order-based strategy. According to the chronological 

order-based queuing the first job that enters the system is allocated the first 

available queue with required characteristics. By contrast, energy usage 

optimisation could foster the choice of the queue with minimal energy 

consumption for a specific job. 

REC 3. Apply best practices for general energy efficiency 

REC 3.1. Avoid overprovisioning: provision only the required IT power usage (guideline 

4.1.9 from [8]), shut down and remove idle equipment (guideline 4.3.6 from 
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[8]), apply Dynamic Voltage and Frequency Scaling whenever possible; 

consolidate servers when needed (guideline 4.3.4 from [8]). 

REC 3.2. Improve monitoring system to separately take power measurements from IT 

components such as different-purpose servers and PDUs. 

REC 3.3. Review load characteristics and monitoring system. 

REC 4. Alert and inform end users about optimal utilisation of the cluster. 

REC 4.1. Jobs not optimised for parallelism must not be submitted to parallel queues as 

they can cause large energy waste. For example, submission of a job requiring 

only one core to a 24-core queue will cause idle power consumption of 23 

remaining cores.  

REC 4.2. Jobs must be well-designed and tested prior to their submission to the cluster 

queues; resubmission of faulty jobs should be avoided to minimise energy waste. 

REC 5. Raise environmental awareness of the DC by auditing the energy consumption of 

existing equipment. 

REC 5.1. Identify the degree of DC IT equipment compliance to Energy Star 

specifications. 

REC 5.2. Compare monitored power or energy consumption values with technical 

specifications to determine if any equipment consumes extra power and 

investigate its underlying reasons. 

REC 5.3. Regularly evaluate a cluster energy consumption and apply performance and 

productivity metrics for cluster energy efficiency assessment. Include an 

analysis of carbon emissions into a regular cluster evaluation to determine its 

environmental impact. 

REC 5.4. Consider an integration of free cooling in cold months and renewable energy 

use. 
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5 SUSTAINABILITY ANALYSIS 
 
This work covers energy efficiency analysis of data center operations. Energy efficiency is 

a driver for DC sustainability that has been covered from the point of IT equipment energy 

productivity, associated carbon emissions and thermal characteristics of an IT room to 

identify possible areas for improvement in terms of recommendations for a real DC under 

consideration. Optimised and reduced energy consumption could contribute to the global 

environment as it would imply emitting less indirect carbon emissions.  

 

For a more detailed analysis of this work, following the model proposed in [91] with 

guidelines for its use in [92], sustainability contributions are studied from five 

perspectives: technical, economic, environmental, social, and individual. These five 

dimensions are further sorted by immediate, enabling (long-term) and structural (global 

cumulative) orders of effects that the work has on each of the dimensions. Key effects are 

depicted in Fig. 6.  

 

As shown in Fig. 6, immediate effects originate from improved energy efficiency of a DC 

and comprise energy consumption (and thus, reduced electricity expenditure) and physical 

waste reduction as a result of quantitative analysis of IT jobs and thermal operation 

efficiency. The proposed framework for DC energy efficiency analysis is flexible and 

provides environmental benefits of reduced carbon emissions and fewer risks for air 

pollution-related health diseases as indicated in Fig. 6. Every dimension is considered in 

detail in the remainder of this chapter. 

 

Environmental dimension 

Suggested sets of recommendations have a principal goal of reducing energy waste 

generated by IT systems and thermal equipment. Analysis and recommendations targeting 

at energy efficiency reveal possibilities for better resource utilisation. Moreover, optimal 

thermal conditions slow down deterioration of physical equipment and thus reduce the rate 

of physical waste generation.  

 

Since the DC under consideration does not provide information on utilisation of renewable  
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energy, carbon emissions of large-scale energy consumption might exacerbate the 

environmental situation to a smaller or larger extent. Moving towards energy efficient DCs 

could be regarded to as one measure in favour of their sustainable operation. In this regard, 

a Carbon Waste Ratio metric is proposed as an index that estimates the ratio of carbon 

emissions generated by futile IT work. Quantitative evaluation of carbon emissions could 

facilitate their reduction and, if applied globally, might reduce indirect emissions of DCs 

on a global scale. 

 
Addressing the issue of environmental cost of this work would entail the management and 

control of costs related to environmental impact of the DC operations. This would 

encompass changes made to the existing DC monitoring system installation (that has been 

set up prior to the start of this work) and its deployment. Therefore, the only direct 

environmental effect that the methodology proposed in this work would be the ecological 

footprint of data analysis performed on a PC which is negligible compared to the scale of 

the DC cluster considered here. Quantitative evaluation of the environmental cost of this 

work requires an in-depth and rigorous audit of the energy consumed by the PC used for 

Figure 6. Sustainability analysis of the work 
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this research work and also its life cycle accounting which is beyond the scope of this 

research work. However, it could be regarded as one of directions for future work. 

 
Technical dimension 

The conceptual framework of energy efficiency assessment presented in this work is 

mainly targeted at DC operators and engineers, i.e. prospective users who are specialised 

in DC maintenance and supervision. The framework is flexible to the changes of DC 

characteristics and adding/replacing features. For example, if a new metric is assumed 

beneficial, it can be easily added to a list of discussed indices. Alternatively, with 

extension of the monitoring system, new features available for supervision and control 

could be added to the analysis.  

 
Accuracy of the results might be affected by errors of the monitoring system. Some 

monitoring inaccuracies have been found and avoided in Phase 2 during evaluation of 

energy consumption (see Appendix 2). However, some errors might have remained hidden, 

for example, for thermometers that provided extremely high temperature readings (up to 

80°C). This implies that a monitoring system as a basis of this analytical work requires 

constant maintenance and tuning. 

 
The methodology and results of this work are transferable to DCs other than the one 

considered here. For example, mathematical modelling approach described in Phase 1 is 

specifically developed for the type of CRESCO4 cluster monitoring system output and can 

be reused as long as this system is utilised. The concepts enabling this approach, i.e. 

energy conservation law applied to find power consumption of individual processes on a 

core level, have a potential for adaptability to other DCs. In addition, this work showcases 

applicability of thermal and productivity metrics for a real DC. A technical possibility of 

metrics evaluation could motivate DC operators to apply advanced monitoring and to 

report the state of their facilities for better control and management that could contribute to 

transparency of DC characteristics. 

 
Economic dimension 

The findings of this work contribute to DC operators in a way that they could potentially 

reduce electricity bills as well as prolong devices lifetime compared to business-as-usual 

strategies. In addition, a part of DC recommendations suggests notifying users in case of 
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repetitive failures of their jobs so that they are motivated to submit good-quality code. 

Users’ activity could help further reduce energy waste and extra electricity spending. 

 

Immediate economic, technical and environmental effects of reducing energy and physical 

waste within a DC as well as electricity consumption make a DC more competitive on a 

global market of cloud and high-performance computations. Increased competitiveness 

could help attract more investment for further sustainable initiatives as a cumulative 

effect. 

 
Social dimension 

Users and employees of an energy efficient DC could benefit from a sense of contributing 

to global sustainability goals. Inclusion in the EU CoC initiatives of applying best 

practices and guidelines for DC energy efficiency is a rewarding idea that could unite 

people concerned about the environment.  

 
Individual dimension 

Reduced carbon emissions as a result of lower electricity demand by an optimised DC 

improves regional environmental conditions and positively affects humans’ health that 

leads to increased quality of life. 
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6 CONCLUSION 
 
This chapter provides a summary of findings for this work, clarifies a role of a DC in smart 

cities as it has been considered in this work, and mentions suggestions for the future work. 

 
6.1 Summary of Findings 
 
Data centers play a crucial role in smart cities as enablers of urban applications, as 

summarised in Chapters 1 and 2. They provide scalable on-demand computing and storage 

resources to varying load of smart city transportation, governmental services, ecological 

monitoring, smart home and other applications that enhance residents’ quality of life. 

Meanwhile, DCs are large electricity power consumers which impose certain challenges 

for a DC and a smart city that tends to accomplish sustainability goals. Indirect carbon 

emissions, generated through the process of electrical energy production that is later 

utilised by DCs, should be outweighed by positive environmental effects of smart city 

applications empowered by DCs. In this scenario, sustainability of a DC represents an 

essential goal for a large high-performance computing facility to operate within a smart 

city. In terms of DC operations, sustainability could be interpreted in a number of ways, 

and this work primarily focuses on energy efficiency.  

 
Two major DC aspects have been considered in this work: IT equipment energy 

productivity and thermal characteristics of an IT room. The findings of this work are based 

on analysis of available monitoring data characterising two clusters of ENEA Portici DC, 

CRESCO4 and CRECSO6. Three phases of analysis have unravelled possible 

improvements for thermal design and load management with overall methodology of this 

work covered in Chapter 3. 

 
In the first phase (Chapter 4), a question of IT jobs energy productivity has been raised. 

Mathematical modelling as well as energy efficiency metrics evaluation have been 

employed to investigate how effectively energy is used by IT equipment of CRESCO4 

cluster to produce useful processing work. Not useful work or energy waste has been 

categorised based on the reasons for which IT jobs failed to produce results to the end 

users. The phase covered Energy Waste Ratio and Data Center energy Productivity metrics 

assessment and a proposal of a new metric Carbon Waste Ratio to better assess the portion 
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of indirect carbon emissions generated during cluster processing activities that resulted in 

no useful work. Recommendations for the cluster IT equipment energy efficiency 

improvement encompassed better queue policies and resource allocation, users’ 

notification about repeated failures of their jobs’ submissions and auditing the IT 

equipment for better assessment of its environmental impact. 

 
The second phase (Appendix 2) has been dedicated to statistical analysis and metrics 

evaluation of the CRESCO6 cluster IT room thermal conditions. Analysis of available real 

data obtained from temperature sensors has provided insights into thermal design pitfalls 

such as bypass and hotspots observed in the IT room. Statistical assessment of temperature 

ranges has shown that servers are overheated inside the rack. To address these issues a set 

of recommendations has been provided including air flow speed adjustment, better 

isolation of underfloor plenum, extension of the monitoring system to humidity and 

temperature sensors in various locations as well as regular maintenance and calibration of 

the monitoring equipment. 

 
In the third phase (Appendix 3), a clustering technique has been employed to localise the 

hotspots identified in the second phase. Using the same dataset concerning CRECO6 IT 

room temperature measurements, sequential clustering has been performed to group nodes 

by thermal ranges in which they have resided most frequently during the period of 

observations. The ratio of 8% of all servers has been most frequently observed in the hot 

temperature range. Several measures to combat an issue of hotspots have been 

recommended concerning directional cooling, load management, and continuous 

monitoring of the IT room thermal conditions. 

 

6.2 Emerging Challenges  
 

The outcome of this work could not have been possible without having overcome some 

data analytics challenges in each phase. Firstly, the choice of granularity for the analysis 

being performed is a separate task. For a global level of a DC, it has been considered that 

monthly statistics would be sufficiently representative and useful for DC providers.  

 

Furthermore, the datasets provided for Phase 1 have been challenging in two ways. They 
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had uneven timestamps, therefore, additional methods were necessary to work with both 

datasets simultaneously. The most important challenge in Phase 1 was that the load 

scheduling dataset did not contain detailed information about which core IDs were used for 

every job execution. Instead, a number of all active cores was mentioned. Thus, the main 

result of mathematical modelling used in Phase 1 was to obtain average estimation of 

power use of every job per any arbitrary core. In the meantime, some cores were loaded 

more than other but this information could not be retrieved due to the mentioned challenge 

of Phase 1. 

 

Phase 2 was initially provided with two datasets, one of which was not suitable for 

computations as more than 40% of data was missing. This challenge shaped the work into 

analysis of thermal characteristics exclusively. In addition, Phase 3 required sequential 

clustering as opposed to regular clustering or other techniques. For the type of data 

provided in Phase 3, a usual research objective would be prediction based on time series 

analysis. By contrast, the objective of Phase 3 was to obtain a group of frequently 

overheated nodes that required clustering, and since the measurements were repetitive, the 

problem transformed into sequential clustering which is rarely used and scarcely described 

in the literature. In this part of the work the most challenging task was to combine a 

sequence of results and reach a final outcome. 

 
6.3 Future Work 
 
Some suggestions for the future work could be made based on this thesis: 

• A tool for automation of metrics evaluation based on the methods provided in this 

research could be useful for a DC. Automation of monitoring and immediate 

control of DC processes in case of undesirable thermal conditions or IT jobs failure 

could decrease the latency of DC operators’ reaction to phenomena that reduce 

energy efficiency. 

• For a better overview of the DC under consideration, energy efficiency analysis of 

the thermal equipment would be fruitful. So far, thermal analysis considered only 

the IT room characteristics, i.e. the output of the thermal equipment. However, the 

CRAC unit is a separate energy consumer and its efficiency could influence total 

DC energy consumption. In addition, monitoring of the CRAC power use as well as 
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other sources of the DC electrical consumption could enable PUE and other metrics 

evaluation and provide an opportunity to participate in EU CoC assessment. 

• Distribution of the temperature ranges within the DC is a topic for further research 

both in the field of statistical analysis and fluid dynamics. A model of the 

temperature distribution could empower DCs to prevent and mitigate overheating in 

the areas suggested by such a model. 

• To date, a limited number of approaches exist to address an issue of DC hotspots. 

Future research could be dedicated to preventing and cooling the hotspots; 

• A further investigation into Machine Learning techniques for thermal data analysis 

could be fruitful. In particular, results of different ML methods applied to the 

thermal data could be compared and constitute a theoretical study of the 

effectiveness of ML techniques for the given problem. Cross-validation of the 

range of generated machine learning models will be deemed useful; 

• Assessment of the environmental cost of this work could be important for DCs to 

evaluate added carbon emissions by monitoring systems’ use and analysis of their 

data. A methodology could be proposed to evaluate environmental effects of 

changes brought to a DC during refurbishing and upgrades aimed at compliance 

with sustainability best practices; 

• This work has shown that data centers and smart cities are closely related. This 

work could form the basis of a new research question “Why do smart cities need 

smarter and more sustainable data centers?”, which could call for further 

consideration. 
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APPENDIX 1. FACILITY AND DATASET DESCRIPTION  
 
CRESCO4 datasets format 

Table  2. Zabbix dataset (power consumption of servers) 
Start	Timestamp	
(1h	interval)	

Min	
Power	

Avg	
Power	

Max	
Power	

Measurement	
Duration	(sec)	

1487505600	 38600	 40637	 41500	 60	

1487509200	 40010	 40863	 41530	 60	

8673 rows, 4 columns 

 

Table  3. Load Sharing Facility (jobs running on the servers) 
Job	
ID	

Start	
(UTC)	

End	
(UTC)	

Duration	
(sec)	

Num	
Cores	
Used	

User	 Queue	 File	
Directory	

Executable	
File	Name	

Job	
Status	

1	 <utc	
start	
1>	

<utc	
stop	
1>	

102383	 256	 guarnier	 system	 	 wrapper.sh	 DONE	

2	 <utc	
start	
2>	

<utc	
stop	
2>	

103760	 256	 guarnier	 system	 	 wrapper.sh	 DONE	

571471 rows, 10 columns 

 

CRESCO6 IT Room 

 
Cold aisle containment 

 
Hot aisle 

The CRESCO6 cluster is equipped with a cooling machine Vertiv PX054DD connected 

with two HCR51 condenser units. 

(continues) 



 

 
 
 

APPENDIX 1. Facility and dataset description (continues) 

 

CRESCO6 dataset format 

Table  4. Thermal dataset – description of features 
Node Name server ID, integer from 1 to 216; 

Timestamp timestamp of a measurement; 

System, CPU, Memory 

Power 

one server instantaneous system, memory, CPU power use 

in three corresponding columns, W; 

Fan 1a, Fan1b, 

…,  

Fan 5a, Fan 5b 

speed of a cooling fan installed in the node, RPM; 

System, CPU, 

Memory, I/O 

utilisation 

ratio of component utilisation, %, missing data; 

 

Inlet, CPU1, CPU2, 

Exhaust temperature 

temperature at the front, inside (CPU1 and CPU2) and at 

the rear of every node; 

 

SysAirFlow speed of air traversing the node, CFM; 

DC Energy 
total energy that the server has used by the corresponding 

timestamp, kWh 

24 columns, different number of measurements for every month 

3347335 rows in total for months May 2018 – February 2019 

 

(continues) 



 

 
 
 

APPENDIX 1. Facility and dataset description (continues) 

CRESCO6 dataset snapshot 

 

 



 

 
 
 

APPENDIX 2. PHASE 2. ANALYSIS OF DATA CENTER THERMAL 
CHARACTERISTICS 
 

In this section we shift the focus from IT jobs productivity to thermal characteristics of IT 

room. Here, we rigorously explore the monitored thermal data in a new cluster of ENEA 

DC that has been assembled and set up in ENEA Portici Research Center. The cluster 

started processing end user tasks since September 2018 but collected dataset of available 

thermal and power measurements also covers a period of the cluster stress-testing in May-

July 2018.  

 

Referring to research objectives for Phase 2, we explore temperature ranges around the 

cluster nodes and possible pitfalls of thermal design of an IT room in question. The 

underlying paradigm of improving DC energy efficiency remains the dominant direction of 

this work. Optimised thermal management reduces excess energy consumption by 

conditioning units from one hand and servers that require less energy for internal fans from 

the other hand. Moreover, compliance of IT room environment with recommended 

temperature ranges contributes to steady reliability, availability and overall server 

performance without breakdowns. Therefore, identification of hotspots and negative 

effects of air dynamics such as bypass or recirculation are useful for DC operators who 

could improve thermal design and ensure uninterrupted steady operations within their 

facilities. 

 

Data Center Facility and Datasets Description 
 
Analysis described in this section is founded on server power and surrounding air 

temperature monitoring data of the new cluster CRESCO6 in ENEA Portici Research 

Center premises introduced in summer 2018. The new cluster was created due to the 

growing demand for research center computational and analytic activities as well as the 

general motivation to keep abreast with current modern technologies.  

 

(continues) 



 

 
 
 

APPENDIX 2. Phase 2. Analysis of Data Center Thermal Characteristics 

(continues) 
 

The High-Performance Computing cluster CRESCO6 has nominal computing power of 

around 700 TFLOPS (500 TFLOPS the result obtained on High Performance Computing 

Linpack Benchmark, a computational power test that performs parallel calculations on 

dense linear systems with 64bit precision). It complements the CRESCO4 HPC system, 

already installed and still operating in the Portici Research Center, with nominal 

calculation powers of 100 TFLOPS. CRESCO6, on its own, provides increase equal to a 

factor x7 of the entire computing capability currently available for computational activities 

in the ENEA research center. 

 
Apart from enhanced hardware, improvement has also been made to the monitoring system 

of the new cluster. It comprises energy and power meters, temperature and air flow sensors 

and fans speed registration. Measurements were taken throughout the period from cluster 

initialisation and performance tuning in the months of May-July to the months of cluster 

utilisation by end users in September 2018-February 2019 for approximately 9 months in 

total with a break in the month of August 2018. The measured characteristics are 

represented in Table 4 of Appendix 1. 

 

Phase 2 Methodology 
 

The nature of measurements does not facilitate the evaluation of energy consumed to 

produce useful work and energy waste of the new cluster CRESCO6 as it has been done 

for CRESCO4. Instead, it facilitates the investigation on temperature variation in different 

parts of the IT room and evaluate thermal metrics. Additional investigation on cluster 

energy use and idle mode power threshold is shown in Appendix 3. As depicted in Fig. 7, 

adapted data lifecycle methodology employed for Phase 2 comprises stages of data 

preprocessing, analysis as well as results interpretation and exploitation in the form of  

 

(continues) 



 

 
 
 

APPENDIX 2. Phase 2. Analysis of Data Center Thermal Characteristics 

(continues) 
 

recommendations for the DC. Fig. 7 also clarifies substages of the work: data analysis 

comprises statistical analysis of thermal data and evaluation of thermal metrics. Available 

readings of servers’ exhaust, inlet, CPUs temperature have been investigated to find 

general statistical properties and then aggregated into several descriptive metrics that 

 
Figure 7. Phase 2. Data Analytics methodology adapted to statistical analysis and metrics 

evaluation of DC thermal characteristics. 
 

reveal global and local phenomena within the IT room. All stages represented in the Fig. 7 

are described in detail below.  

 

Data cleansing step includes extracting valuable features of the thermal data and removing 

direly incomplete or erroneous data. For example, zero or negative values of temperature 

measurements should be marked with NaN as not a number will be automatically omitted 

by the statistical software used the analysis. Such selective marking of missing or 

erroneous values helps maintain a sizable cleaned dataset. Additionally, it is required to 

convert all the timestamp fields into the datetime format to be able to perform 

mathematical operations on them. 

(continues) 



 

 
 
 

APPENDIX 2. Phase 2. Analysis of Data Center Thermal Characteristics 

(continues) 
 

Data analysis stage includes several substages. Firstly, observed temperature ranges are 

consolidated and averaged for every month to investigate on periodical fluctuations of the 

overall cluster air temperature in the cold, hot aisle and inside the nodes. These four 

thermal sensors’ locations are fixed and used for air temperature assessment throughout the 

entire phase. This stage of analysis aims to meet the research objective RO2.1.1. 

 

 

The next stage of data analysis is devoted to thermal metrics choice and evaluation 

(RO2.1.2). Following globally recognised procedures for metrics evaluation [14], [38], 

[51], [62], [63], we investigate the efficiency of IT room design, focusing on possible 

bypass, recirculation, temperature increase within a rack and other factors. They can be 

categorised into two groups: local and global thermal metrics. Most widespread local 

thermal metrics comprise Recirculation (R), ByPass (BP), Balance (BAL), shows how well 

server requirements are met in terms of air distribution in the IT room. The index β 

indicates presence of self-heating due to recirculation while Rack Cooling Index (RCI, %) 

shows how effectively the cold aisle temperature is maintained. A list of most frequently 

discussed global thermal metrics includes Return Temperature Index (RTI, %) that 

identifies if bypass or recirculation is present globally. It also encompasses Return Heat 

Index (RHI) that indicates how much the air is mixed in the hot aisle with some unwanted 

sources of the cold air how effectively the cold air is used to cool the IT equipment or if it 

there are any air mixes in the underfloor plenum or the hot aisle.  

 

Finally, results of statistical analysis and metrics evaluation have been visualised, 

interpreted and exploited to provide a list of observed pitfalls and recommendations for the 

DC operator to improve thermal management (RO2.1.3). 

 

 

(continues) 



 

 
 
 

APPENDIX 2. Phase 2. Analysis of Data Center Thermal Characteristics 

(continues) 
 

Results and Discussion 
 

The data cleansing step has reduced the number of features in the resulting dataset as 

several measurements such as CPU, memory and overall system utilisation are unavailable 

in reality, although the dataset contains some values for these features. Data concerning 10 

fans’ speed is excluded from analysis because it is not clear where exactly these fans is 

beyond the scope of this work. Nevertheless, thermal operation of the cluster cooling 

system could be characterised by temperature in the hot and cold aisles and CPU 

temperature measurements as described below.  

 

Thermal Ranges 
 

Average temperature observed at the inlet of the nodes in the cold aisle and exhaust 

temperature at their rear side in the hot aisle, is represented in Fig. 8. The temperature 

measurements are also taken next to two CPUs of every node. The setpoints of the cooling 

system were fixed approximately on 18°C at the output and 24°C at the input of the 

cooling machine which are represented in Fig. 8 as blue and red vertical lines respectively. 

It is subsequently discovered that the lower setpoint is variable and provides supply air at 

15-18°C as well as high setpoint varies between 24-26°C.  

 

As observed from the graph, cold aisle preserves the setpoint temperature at the inlet of the 

node, which affirms the efficient design of the cold aisle (i.e. supported by existing plastic 

panels isolating cold aisle from other spaces in the IT room of the data center). However, 

exhaust temperature is registered on average at 10°C higher level than the hot aisle 

setpoint. Notably, exhaust temperature sensors are directly located at the rear of the node 

(i.e. in the hottest parts of the hot aisle). Therefore, the air in the hot aisle is distributed in 

such a way that the hotspots are immediately located at the back of server racks and the hot 

(continues) 
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(continues) 
 

 
Figure 8. Temperature observed on average in all nodes during consecutive months with 

vertical lines corresponding to cold and hot aisle setpoints. 
 

aisle air is cooled down to the 24-26°C input level of the cooling system at the CRAC 

intake due to air circulation and mix in the hot aisle.  

 

Meanwhile, the previously mentioned difference of 10°C between the hotspots and the 

ambient temperature unravels the cooling system weak points, since it does not account for 

hotspots directional cooling. In the long term, constant presence of the hot spots might 

affect the servers’ performance which should be carefully addressed by the DC operator.  

 

Thermal Metrics Evaluation 
 

Further assessment of IT room environment will be done through evaluation DC thermal 

metrics. The formulae for these metrics can be found in literature [14], [38], [51], [62], 

[63]. Following the notations of [38], we explain which sensors delivered specific 

information for the metrics calculation and make inferences based on the metrics values. 

The DC cluster under consideration is equipped with air cooling which operates as 

depicted in Fig. 9 with all the notations corresponding to the ones in Table 5 (as in [38]).  

 



 

 
 
 

Based on results of manual sensing of the temperature in cold and hot aisles, three thermal 

scenarios are developed. They are assumed to correspond to potentially low, medium and 

high processing loads and account for low, medium and high cooling system load 

respectively, or high  and low , medium  and medium , low  and high 

. If values of  and are needed for a metric evaluation, they are calculated for 

 
 

Table  5. IT room air temperature nomenclature 
  – CRAC unit supply air temperature 

 

– underfloor plenum supply air temperature 

 

– cold aisle supply air temperature 

 

– rack inlet air temperature 

 

– rack output air temperature 

 

– CRAC return air temperature 

 

three scenarios, low, medium and high cooling system load. Other temperature 

measurements,  and , are taken from available dataset.  

 

The metrics evaluated for every month are consolidated in Tables 6-9. Thermal metrics are 

evaluated according to three scenarios defined through manual temperature sensing to 

overcome uncertainties of CRAC unit setpoints. 

 

(continues) 

Figure 9. Layout of air distribution in an air-cooled DC. 
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1. Low ITE temperature rise – =18, =24. 

  

Table  6. Thermal metrics evaluation in low ITE temperature rise scenario 
 RTI RHI SHI β BP R BAL 

May 2018 31,42 0,98 0,02 0,02 0,7 0,06 3,18 
Jun 2018 31,93 0,98 0,02 0,02 0,7 0,06 3,13 
Jul 2018 31,95 0,98 0,02 0,02 0,7 0,07 3,13 
Sep 2018 34,46 0,98 0,02 0,02 0,68 0,06 2,9 
Oct 2018 36,94 0,98 0,02 0,02 0,65 0,06 2,71 
Nov 2018 40,33 0,98 0,02 0,02 0,62 0,06 2,48 
Dec 2018 40,64 0,98 0,02 0,02 0,62 0,06 2,46 
Jan 2019 40,4 0,97 0,03 0,03 0,62 0,06 2,48 
Feb 2019 38,9 0,97 0,03 0,02 0,64 0,06 2,58 

 

2. Medium ITE temperature rise – =16.5, =25. 
  

Table  7. Thermal metrics evaluation in medium ITE temperature rise scenario 
 RTI RHI SHI β BP R BAL 

May 2018 40,21 0,94 0,06 0,06 0,66 0,15 2,49 
Jun 2018 41,37 0,94 0,06 0,07 0,65 0,16 2,42 
Jul 2018 41,84 0,93 0,07 0,07 0,65 0,17 2,39 
Sep 2018 44,78 0,93 0,07 0,07 0,62 0,16 2,23 
Oct 2018 48,24 0,93 0,07 0,08 0,6 0,16 2,07 
Nov 2018 49,87 0,94 0,06 0,06 0,56 0,12 2,01 
Dec 2018 49,06 0,95 0,05 0,05 0,56 0,1 2,04 
Jan 2019 49,67 0,94 0,06 0,06 0,56 0,12 2,01 
Feb 2019 47,02 0,95 0,05 0,05 0,58 0,11 2,13 
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3. High ITE temperature rise – =15, =26. 

Table  8. Thermal metrics evaluation in high ITE temperature rise scenario 
 RTI RHI SHI β BP R BAL 

May 2018 51,78 0,89 0,11 0,13 0,61 0,25 1,93 
Jun 2018 53,33 0,88 0,12 0,14 0,6 0,26 1,88 
Jul 2018 53,95 0,87 0,13 0,14 0,6 0,26 1,85 
Sep 2018 57,74 0,87 0,13 0,15 0,57 0,26 1,73 
Oct 2018 62,2 0,86 0,14 0,16 0,54 0,26 1,61 
Nov 2018 63,94 0,87 0,13 0,14 0,5 0,23 1,56 
Dec 2018 62,88 0,88 0,12 0,13 0,5 0,21 1,59 
Jan 2019 63,64 0,87 0,13 0,14 0,51 0,22 1,57 
Feb 2019 59,94 0,87 0,13 0,13 0,53 0,21 1,67 

 

Table  9. Evaluation of thermal metrics that do not depend on scenario type 
 

    
May 2018 100 66,33 100 87,37 
Jun 2018 99,91 66,05 99,94 87,27 
Jul 2018 100 66,81 100 87,55 
Sep 2018 100 66,54 100 87,45 
Oct 2018 100 66,56 100 87,46 
Nov 2018 100 64,82 100 86,81 
Dec 2018 100 65,13 100 86,93 
Jan 2019 100 64,1 100 86,54 
Feb 2019 100 61,91 100 85,72 

 

Three scenarios have a similar general pattern and the findings comprise a dangerous and 

inefficient combination of overprovisioning of the cooling air and bypass, and a very low 

possibility of recirculation. High values of RCI metric give evidence of good cold aisle 

structure and appropriate low setpoints of the CRAC unit. However, RCI is only limited to 

assessment of rack intake air compliance to the ASHRAE guidelines (A1 and A2) and does 

not reveal issues that occur within or at the rear of the node. In essence, identified bypass 

results in lost cooling capacity, higher cooling costs, misleading metrics as in the case of 

BAL and RCI, and hotspots. 

 

(continues) 
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Exploration of several scenarios has been an essential step from a theoretical point of view, 

because the setpoints of the systems are variable and picking only one pair on inlet and 

output CRAC unit setpoints could have resulted in poor estimation with large uncertainties. 

However, once the values are computed for all three scenarios, it is clear that general 

trends stay the same and slight variation of metrics values do not bring about remarkably 

new results. From the low to high temperature rise scenario, the metrics’ values change in 

a way to depict slightly higher possibility of recirculation, but they are too negligible to 

warrant superiority of recirculation over bypass.  

 

Phase 2 Conclusion 
 

Phase 2 has covered analysis of ENEA DC CRESCO6 cluster thermal characteristics to 

unravel hidden effects that occur during IT room air-cooling. Thermal characteristics have 

been studied through statistical analysis of sensors data installed around all cluster servers. 

Analysis included estimation of inlet, exhaust, and internal server temperature ranges. The 

investigation also comprises an evaluation of a set of main thermal metrics that provide an 

overview of cold aisle design, CRAC unit setpoints efficiency in combination with effects 

like bypass and recirculation that happen around servers.  

 
Results of the current phase have contributed to evaluation of thermal management of the 

given DC cluster on the early stages of its operation. They have provided a basis for 

regular future estimation of the cluster thermal effectiveness as it grows and operates for 

the smart city and research purposes. Moreover, the methodology proposed for the DC 

under consideration is applicable to other HPC cites given that their monitoring system 

provides a set of measurements comparable by their expressivity with the available dataset 

concerning CRESCO6.  
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The analysis presented in Phase 2 can be further improved by hotspots localisation within 

CRESCO6 cluster and is formulated as a separate goal of the following phase (Phase 3). 

Phase 2 concludes hereby with recommendations for IT room thermal management 

consolidated below based on applicable best practices and other research work [8], [57], 

[93]. 

 

Recommendations for DC IT Room Thermal Management 
 
REC 1. Improve efficiency of the cooling system and reduce bypass to address the issue 

of hotspots 

REC 1.1.  Optimise velocity of air injected to the cold aisle through the floor grilles to 

ensure that the air reaches all the elevated servers of the rack as evenly as 

possible, i.e. it neither overshoots the top nor is seised on the low levels of the 

rack; 

REC 1.2. Switch control of cooling system setpoints from CRAC return temperature to 

supply temperature as suggested in [8] to ensures an even supply air temperature 

independent on the load on CRAC unit; 

REC 1.3. Investigate operating cooling unit fans to ensure a slight oversupply of air 

compared to IT equipment flow demand so that oversupply of air volume is 

avoided as well as recirculation is minimised. In contained air systems with 

separate hot and cold aisle, a slightly positive pressure should be maintained in 

the cold air stream with respect to the hot air stream; 

REC 1.4.  Once an issue of bypass is overcome, temperature and humidity ranges must be 

reviewed for potential widening and lowering load on the cooling system. 

REC 2. Improve IT room design 

REC 2.1.  Review the positioning of floor tiles and remove any obstructions from above 

the tiles; 
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REC 2.2.  Separate and isolate areas with components that run hotter, such as PDUs, with 

plastic curtains, which currently are placed on the vertical sides of the racks 

beside the servers and touch them while servers are more sensible to temperature 

changes; 

REC 2.3.  Seal air gaps in the raised floor: improve floor tiles, use foam pillows, cable 

brushes to isolate underfloor cold air passages and block ways of its dispersion on 

the way to the cold aisle. 

REC 3. Review the load distribution: if some nodes are constantly overloaded, redistribute 

the load, allow more time for their cooling 

REC 4. Improve the monitoring system 

REC 4.1.  Measure the NP (negative pressure) to benefit from the full set of interrelated 

thermal metrics; 

REC 4.2. As far as this cluster design is not finalised, availability of cooling must be 

reviewed prior to any ITE changes to correspond to rising ITE cooling demand; 

REC 4.3.  Periodically review CRAC setpoints calibration and properly maintain the 

cooling unit; maintain the monitoring system to ensure high accuracy and 

uninterruptible measurements. 



 

 
 
 

APPENDIX 3. PHASE 3. MACHINE LEARNING FOR DATA 
CENTER THERMAL CHARACTERISTICS ANALYSIS 
 
This section is devoted to the localisation of hotspots during further CRESCO6 cluster 

thermal characteristics analysis. Statistical analysis of temperature measurements described 

in Phase 2 could not pinpoint specific nodes which caused rack hotspots. Therefore, here, 

we aim to apply Machine Learning techniques for node clustering to identify the incidence 

of hotspots. The results of this phase are expected to help the DC maintenance team 

mitigate negative effects of the hotspots (note: this  was impossible having only statistical 

estimations from Phase 2).  

 

Methodology 
 

To reiterate, a Machine Learning clustering technique is chosen for deeper analysis of 

hotspots location and applied to the dataset of CRESCO6 nodes temperature measurements 

described in Phase 2. Locating hotspots in the CRESCO6 group of nodes* is achieved 

through clustering of sequential sets of nodes into clusters with higher or lower hot aisle 

and internal server temperature.  

 

The steps of data analysis are presented in Fig. 10. They involve data preprocessing 

(cleansing and dataset organisation), three data analysis substages which lead to results 

exploitation in the form of recommendations for the DC. On the data analysis step 

sequential clustering requires determining the optimal number of clusters (done with the 

use of two indices), actual clustering of servers into groups with low, medium and high 

surrounding air temperature ranges and consolidation of results to obtain the most 

frequently occurred cluster label for each server.   

 

To elaborate, on the data preprocessing stage, the dataset is cleansed zero and missing  

 
*Here the term “group of nodes” stands for the data center “cluster”, but the latter is not used to avoid its 

confusion with clusters of data which will be introduced further. 
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Characteristics Analysis (continues) 
 

values, and is organised as shown in Table 10. In Table 10 base is an indicator of one of 

the three combinations of measurements used as the basis for clustering and 

 corresponds to the temperature of the cluster centroid. 

 

 
 

Table  10. Dataset for clustering 
Time 

label 

Real time Node 

ID 

Inlet 

T° 

Exhaust T°  CPU 1 T° CPU 2 T° Cluster 

label 
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(continues) 

Figure 10. Phase 3. Data Analytics methodology adapted to sequential clustering based 
on DC thermal characteristics. 
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Characteristics Analysis (continues) 
 

In this work, K-Means algorithm is chosen for clustering the nodes for the reasons that it is 

fast and suitable for repetitive computations required for sequential clustering based on a 

relatively small number features (1-3). In addition, the drawback of the algorithm, namely 

difference in final results due to the random choice of initial centroids, is made 

infinitesimal by repetition of the clustering procedure which could be seen as cross-

validation in the current problem (RO3.1). 

 

The number of clusters K, i.e. number of ranges for , is an unknown parameter 

which was estimated for each of three combinations separately using two metrics: average 

Silhouette Coefficient and Within Cluster Sum of Squares (WCSS) metric [94], [95]. 

These two indices are shown in practice in the Results subsection.  

 

Once the optimal number of clusters is obtained, actual clustering is performed for the 

chosen bases. For every cluster base we further examine how frequently every node is 

assigned to each cluster and deduce the final cluster label as one of  and 

corresponding sets of nodes as . Subsequently, sets of nodes in the hot range for 

every cluster base are intersected to unravel nodes that are clustered to be in “danger” or 

hot zone with the highest frequency by three clustering algorithms: 

 (RO3.1). The next section will discuss results of this 

clustering procedure and list the nodes that fall in the hot zone. 

 

Results and Discussion	
 

Sequential clustering is further performed for each set of N=216 samples based on three 

combinations of available thermal data: exhaust (base 1), CPU (base 2), exhaust and CPU 
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Characteristics Analysis (continues) 
temperature measurements (base 3). The full dataset consists of M=15569 sets of 

temperature monitoring data where each set consists of 216 node samples with data from 

sensors installed in different locations: in the front (inlet), rear (exhaust) of every node and 

two sensors inside each node (CPU temperature). 

 

The optimal number of clusters depends on the base chosen for clustering. Two metrics are 

computed for random sets to be clustered. Their visualisation can be found in Appendix 4. 

Identified optimal number of clusters K is 3, 5 and 3 for bases 1-3 (exhaust, CPU, exhaust 

& CPU measurements), which will be used in sequential clustering with these bases. 

 

As a remark, a number of clusters could be determined using several approaches that are 

currently widespread among data scientists. However, none of them is considered accurate 

as they all provide an approximate value. This work utilizes two methods: Within Cluster 

Sum of Squares (WCSS) or an elbow method, and average Silhouette Index. These indices 

are computed for a range of cluster numbers K and an optimal value is then chosen based 

on the indices’ values. WCSS is a measure of the cluster’s compactness and is calculates as 

follows: 

 
(8) 

where  is cluster ,  stands for the total number of clusters and  denotes cluster 

sample mean. WCSS should be minimised and, in practice, an optimal value of  that is a 

turning point of the graph where the rate of WCSS decrease slows down, or an elbow of 

the graph. The method is based on the idea that increasing the number of clusters after the 

turning point or an elbow is not meaningful, since WCSS decreases only slightly and the 

positive impact of every next  is low. 
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In the Average Silhouette method, a Silhouette index is computed for every data point (or 

every member of every cluster) and then is averaged over all data points. It estimates 

consistency of the data within clusters and should be maximised for better separation of the 

clusters. The Silhouette index is calculated for every data point as follows: 

 
(9) 

where  is the mean distance between a data point and all other points in the same class,  

 is the mean distance between a sample and all other points in the next nearest cluster. 

Example of these indices utilisation is shown in Fig. 11. 12 for one step of sequential 

clustering for exhaust temperature basis. The optimal elbow point of WCSS is =3 and 

same for Silhouette index local maximum. 

 

 
Figure 11. WCSS estimation for clustering 
based on exhaust temperature	

 
Figure 12. Average Silhouette Index 
estimation for clustering based on exhaust 
temperature	

	

Fig. 13 (a-c) shows the frequency of occurrence of every node in a particular cluster based 

on available measurements and clustering algorithm. This information indirectly implies 

“duration” that particular node resides in a certain temperature range (see legend in Fig. 13 

(a-c)). Here, the nodes most frequently occur in the medium temperature range for all 

cluster bases. However, some nodes remain in the hot range for more than 50% of 

clustering cases.  

(continues) 
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Finally, to cross-validate the clustering we have taken the intersection of nodes clustered 

into cold, medium and hot ranges. Only one node (or 0.5% of all nodes) has been clustered 

in the cold range for all three bases algorithms, the medium range has the highest 

intersection range while 8% (or 18 nodes) are captured in the hot range. 

 
a)      b) 

 
c) 

Figure 13. Proportion of nodes clustered into different temperature ranges based on  
(a) Exhaust temperature, (b) Exhaust and CPU temperature, (c) CPU temperature 
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Characteristics Analysis (continues) 
 

The principle result of Phase 3 analysis is identification of the hot range node IDs and this 

could be exploited by DC operators to improve thermal conditions in the cluster IT room. 

Possible solutions could comprise nodes localisation in the room, upgrading cooling 

system to directional cooling with pumps that could push cold air to the hottest nodes in 

addition to existing natural convection approach, and improving load scheduling to avoid 

overloading and overheating of identified nodes. 

 

Phase 3 Conclusion 
 

High-granularity analysis of this section has considered temperature ranges of the air 

around individual servers to identify and localise frequently overheated servers. A machine 

learning technique, K-Means clustering, has been applied to sequential sets of thermal 

measurements for all the cluster servers. The results are further intersected to obtain IDs of 

the servers that most frequently fall into the hot temperature range. 

 

This part of the work has contributed to thermal characteristics analysis of the DC cluster 

addressing an issue of hotspots. Being a thermal design pitfall, hotspots impose a risk of 

local overheating and deterioration of servers exposed to high temperature for prolonged 

periods of time. In this regard, localisation of hotspots is crucial for better overview and 

control of the IT room temperature distribution. It provides a direction of future thermal 

management improvements that would mitigate the mentioned risk.  

 

Finally, the results infer that the majority of the servers operated in the medium and hot 

temperature ranges. Given that 8% of all cluster servers have been most frequently labelled 

as hot range nodes, a list of recommendations is suggested below to address the issue of 

hotspots (RO3.2). 
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Recommendations for DC IT Room hotspots mitigation 
 

REC 1. Locate nodes by identified hot range IDs and find possible patterns in overheated 

nodes, for example, position in the rack, and proximity to the PDUs; 

REC 2. Tune load sharing so that these nodes are not overloaded in the future; 

REC 3. Add directional cooling, for example, spot cooling; 

REC 4. Continue monitoring IT room thermal conditions in the immediate proximity of 

the nodes to evaluate in what way recommendations would affect the IT room 

temperature. 



 

 
 
 

APPENDIX 4. FULL LIST OF RECOMMENDATIONS 
 

Recommendations for DC IT Jobs Energy Efficiency Enhancement 

REC 6. Improve scheduling policies 

REC 6.1. Currently utilised FCFS queuing algorithm could be replaced by other 

algorithms (appropriate under different circumstances), for example, Largest Job 

First, to optimise the system load, or Smallest Job First, to optimise the 

throughput, or other algorithms. 

Introduce/enhance priorities and add backfilling approaches if necessary: reorder 

jobs to match the availability of resources and tasks priority. 

REC 7. Enhance task resource allocation strategy 

REC 7.1. Consider energy usage optimisation queuing strategy rather than to the currently 

employed chronological order-based strategy. According to the chronological 

order-based queuing the first job that enters the system is allocated the first 

available queue with required characteristics. By contrast, energy usage 

optimisation could foster the choice of the queue with minimal energy 

consumption for a specific job. 

REC 8. Apply best practices for general energy efficiency 

REC 8.1. Avoid overprovisioning: provision only the required IT power usage (guideline 

4.1.9 from [8]), shut down and remove idle equipment (guideline 4.3.6 from 

[8]), apply Dynamic Voltage and Frequency Scaling whenever possible; 

consolidate servers when needed (guideline 4.3.4 from [8]). 

REC 8.2. Improve monitoring system to separately take power measurements from IT 

components such as different-purpose servers and PDUs. 

REC 8.3. Review load characteristics and monitoring system. 

REC 9. Alert and inform end users about optimal utilisation of the cluster. 

REC 9.1. Jobs not optimised for parallelism must not be submitted to parallel queues as 

they can cause large energy waste. For example, submission of a job requiring 

only one core to a 24-core queue will cause idle power consumption of 23 

remaining cores. 
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REC 9.2. Jobs must be well-designed and tested prior to their submission to the cluster 

queues; resubmission of faulty jobs should be avoided to minimise energy waste. 

REC 10. Raise environmental awareness of the DC by auditing the energy 

consumption of existing equipment. 

REC 10.1. Identify the degree of DC IT equipment compliance to Energy Star 

specifications. 

REC 10.2. Compare monitored power or energy consumption values with technical 

specifications to determine if any equipment consumes extra power and 

investigate its underlying reasons. 

REC 10.3. Regularly evaluate a cluster energy consumption and apply performance 

and productivity metrics for cluster energy efficiency assessment. Include an 

analysis of carbon emissions into a regular cluster evaluation to determine its 

environmental impact. 

REC 10.4. Consider an integration of free cooling in cold months and renewable 

energy use. 

 

Recommendations for DC IT Room Thermal Management 

REC 1. Improve efficiency of the cooling system and reduce bypass to address the issue 

of hotspots 

REC 1.1.  Optimise velocity of air injected to the cold aisle through the floor grilles to 

ensure that the air reaches all the elevated servers of the rack as evenly as 

possible, i.e. it neither overshoots the top nor is seised on the low levels of the 

rack; 

REC 1.2. Switch control of cooling system setpoints from CRAC return temperature to 

supply temperature as suggested in [8] to ensures an even supply air temperature 

independent on the load on CRAC unit; 

REC 1.3. Investigate operating cooling unit fans to ensure a slight oversupply of air 

compared to IT equipment flow demand so that oversupply of air volume is 
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avoided as well as recirculation is minimised. In contained air systems with 

separate hot and cold aisle, a slightly positive pressure should be maintained in 

the cold air stream with respect to the hot air stream; 

REC 1.4.  Once an issue of bypass is overcome, temperature and humidity ranges must be 

reviewed for potential widening and lowering load on the cooling system. 

REC 2. Improve IT room design 

REC 2.1.  Review the positioning of floor tiles and remove any obstructions from above 

the tiles; 

REC 2.2.  Separate and isolate areas with components that run hotter, such as PDUs, with 

plastic curtains, which currently are placed on the vertical sides of the racks 

beside the servers and touch them while servers are more sensible to temperature 

changes; 

REC 2.3.  Seal air gaps in the raised floor: improve floor tiles, use foam pillows, cable 

brushes to isolate underfloor cold air passages and block ways of its dispersion on 

the way to the cold aisle. 

REC 3. Review the load distribution: if some nodes are constantly overloaded, redistribute 

the load, allow more time for their cooling 

REC 4. Improve the monitoring system 

REC 4.1.  Measure the NP (negative pressure) to benefit from the full set of interrelated 

thermal metrics; 

REC 4.2. As far as this cluster design is not finalised, availability of cooling must be 

reviewed prior to any ITE changes to correspond to rising ITE cooling demand; 

REC 4.3.  Periodically review CRAC setpoints calibration and properly maintain the 

cooling unit; maintain the monitoring system to ensure high accuracy and 

uninterruptible measurements. 

 

Recommendations for DC IT Room hotspots mitigation 

REC 1. Locate nodes by identified hot range IDs and find possible patterns in overheated 

nodes, for example, position in the rack, and proximity to the PDUs; 
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REC 2. Tune load sharing so that these nodes are not overloaded in the future; 

REC 3. Add directional cooling, for example, spot cooling; 

REC 4. Continue monitoring IT room thermal conditions in the immediate proximity of 

the nodes to evaluate in what way recommendations would affect the IT room 

temperature. 


