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The overall efficiency of high-speed applications can be improved by applying direct
drive motor technology. Operating in the high-speed region is a demanding task for the
traditional bearing technology. With active magnetic bearings, the rotor can be supported
by the magnetic force. As the shaft is rotating in the air, polluting oil lubrication is not
needed, and in practice, the rotor system is maintenance free. However, the magnetic bear-
ing construction increases the rotor length, which has an adverse effect on the dynamical
behavior of the rotor. Bearingless motor technology combines the levitating force capabil-
ity of the magnetic bearing with the traditional electrical motor. This integrated structure
enables a shorter machine length than with the active magnetic bearings.

Compared with the traditional electrical machine design flow, additional parameters must
be taken into account when incorporating the bearingless feature into a motor system. It
is important to analyze the interaction of the generated torque and the levitating force.
The main objective is to minimize this interaction so that the control of the bearingless
machine is more straightforward. The rotor controlled by bearingless motors constitutes a
multi-input multi-output system. The system includes cross-couplings between the rotor
and the motor units. This issue must be taken account in the control of the bearingless
machine.

This doctoral dissertation addresses issues related to the design of a bearingless machine.
The main focus is on how to minimize the interaction between torque and levitation force
generation. A model-based control approach is adopted to control the bearingless ma-
chine by taking into account the cross-couplings. The model is validated by a system
identification approach, and the controllers are tested experimentally in the bearingless
machine.

Keywords: bearingless, control, design, full-levitation, identification, self-levitation
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1 Introduction

Applications powered by electrical motors consume more than half of the electrical energy
produced in the world (Kultere and Presch, 2018). Over the past few years, along with
global trends of sustainable energy consumption and production, regulations related to
electrical motor efficiency have tightened, and consequently, the efficiency of machines
has improved. However, regardless of the application, an efficiency analysis should be
performed considering the transmission as a whole. For example, many fans and high-
speed compressors are driven in a nonoptimal operating point through a gearbox system.
At the present time, gearboxes can be replaced with direct-drive motor technology. The
operating point of an electrical machine can easily be adjusted with a variable frequency
drive (VFD). To further improve the electrical machine efficiency and minimize the over-
all physical footprint, a high-speed design approach can be adopted. Compressor appli-
cations, in particular, benefit from high rotational speeds. For instance, by increasing the
rotational speed of the compressor system, a three-stage compressor can be reduced to a
two-stage one, the compression ratio remaining the same.

It is well known that operation in a high-speed region is a demanding task for tradi-
tional bearing solutions. In general, with respect to the controller and the inverter, the
high-speed region can be defined to be over 20 000 r/min (Pyrhönen, 1991). A more de-
scriptive parameter to determine the high-speed region is the peripheral speed of the rotor.
Considering the mechanical and maximum stress, a common maximum limit for the pe-
ripheral speed is 200 m/s (van der Geest et al., 2015; Miller, 2010). The rotor peripheral
speed determines the absolute maximum rotational speed as it influences the stress of the
rotor material. Operation in the high-speed region sets a strict requirement for the bear-
ing solution to be used. Mechanical bearings are prone to wear at high operating speeds,
which has an impact on the maintenance interval. The speed range can be extended with
ceramic bearings; however, a need for regular maintenance is still present. An alternative
bearing solution is the fluid film bearing, where oil is constantly pumped into the bear-
ing. In air compressor applications, in particular, oil is an unwanted substance in the air
stream, and therefore, the system requires additional oil filters.

High-speed applications can be equipped with active magnetic bearings (AMBs) to re-
place traditional retainer bearings. In this solution, the rotor is levitated with electro-
magnets, and thus, there is no physical contact between the stator and the rotor. There
is no mechanical contact either, and therefore, the bearing solution is maintenance free
in practice. With AMBs, the rotational speed is only limited by the strength of the rotor
structure. A drawback of the AMBs is that they increase the rotor length as the addi-
tional active parts require space on the rotor. An alternative option is to apply bearingless
or self-levitation motor technology. In this approach, the motor unit produces both the
torque and the levitating force. In a basic construction, this can be achieved by two dif-
ferent winding sets wound on one stator unit. A further benefit of a bearingless motor
approach is that standard industrial VFDs can also be used for the levitation winding con-
trol. A bearingless machine is a more integrated system compared with a traditional AMB
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rotor system solution. Overall, a bearingless system has a lower component count and a
smaller footprint and provides better rotor dynamics.

In this doctoral dissertation, the design requirements of the interior permanent magnet
(IPM) bearingless machine are studied. In addition, the research considers modeling and
control aspects of this machine type. Further on in this chapter, the background, motiva-
tion, and objectives of this study are presented. Moreover, seven publications comprising
this study are introduced. The rest of this work is divided into four chapters including
conclusions.

1.1 Background of the study

In 1842, a British mathematician Samuel Earnshaw published his theorem where he states
that there is no stable or static position to levitate a permanent magnet (Earnshaw, 1842).
In other words, to levitate a ferromagnetic object in a magnetic field, at least one degree of
freedom (DOF) has to be actively controlled. Owing to the limitations of the technology
available, it took almost a century to achieve practical results related to magnetic levita-
tion. The first studies on a closed-loop controlled magnetic levitation system date back
to the 1930s. Research into levitating and rotating a small ferromagnetic object at 1200
r/min was conducted in (Holmes, 1937). From the 1970s onwards there has been a steady
growth in publications related to the study of active magnetic bearings. As a result of
the development in the digital electronics and the digital control, the interest in magnetic
levitation accelerated in the 1980s.

A traditional bearing concept of a horizontal-oriented electrical machine includes two
mechanical bearings. These mechanical bearings can be replaced with AMBs that levi-
tate the rotor in the radial direction. Typically, an axial magnetic bearing is also needed
to control the axial movement of the rotor. Less commonly, conical bearings or hybrid
axial-radial AMBs are applied (Amati et al., 2016; Sikora and Pilat, 2018). Fig. 1.1 de-
picts the general structure of an electrical machine equipped with AMBs. It is clearly seen
that adding AMBs to the system increases the axial length of the rotor.

An alternative option to the AMB rotor system is to equip the rotor with self-levitation
or bearingless motor technology. A bearingless motor is a combination of a traditional
electrial motor and a radial AMB. The history of bearingless motors dates back to the
1980s. At that time, Professor Akira Chiba was conducting his PhD research. The idea of
the bearingless machine started to evolve from the magnetic attractive force between the
rotor and the stator; this force was noticeable when the bearing housing bolts were loose
(Chiba et al., 2005). In the year 1989, a patent related to the general idea of bearingless
machines was filed.

Since then, different bearingless machine types have been studied including induction ma-
chines (Chiba, Power, and Rahman, 1991a,b), reluctance machines (Chiba et al., 1991c),
switched-reluctance machines, permanent magnet machines divided into surface perma-
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a) 
a) b) c) 

Figure 1.1. Example of an AMB rotor system. a) Radial magnetic bearings, b) solid-rotor
induction machine, and c) axial magnetic bearing.

nent magnet (SPM) (Tetsuo Ohishi and Dejima, 1994; Ooshima et al., 1994), and IPM
types (Okada et al., 1996). In addition to these, the bearingless function has been in-
cluded in some uncommon machine types. A homopolar bearingless machine consists
of two motor units, where the flux is passing through the stator back (Michioka et al.,
1996; Ichikawa et al., 2001). In the consequent type of permanent magnet bearingless
machine, the rotor magnets have the same polarity (Amemiya et al., 2005). The bene-
fit of a structure of this kind is that the angle measurement is not needed. Disc-shaped
rotors constitute a branch of bearingless machines of their own (Gruber et al., 2009, 2015).

A common winding structure in the bearingless machine is to have two separate three-
phase winding sets for the torque and levitation functions. Alternative winding structures
have been proposed, such as the bridge-configured polyphase winding structure, where
the torque winding is divided into two paths, and an external isolated power supply pro-
duces the levitating current (Khoo, 2005). Middle-point current injection has been pro-
posed where an external power supply is connected between the motor windings (Chiba
et al., 2011). A parallel winding configuration is presented in (Oishi et al., 2013). Differ-
ent winding configurations have been presented in the literature; this work focuses on the
analysis of a separate three-phase winding scheme for generation of torque and levitation
force.

1.2 Motivation and objectives of the study
Minimization of the overall axial length of the high-speed machine is beneficial as the
rotor critical speed will increase. The complexity of a high-speed electrical machine with
a magnetically levitated rotor system can be reduced by applying the bearingless tech-
nology. For example, the evolution of high-speed compressor systems is illustrated in
Fig. 1.2. It can be seen that when the mechanical complexity of the system decreases and
the integration level increases, higher operating speeds can be achieved.
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Figure 1.2. Evolution of the system integration. The notation ‘A AMB’ refers to an axial
AMB and ‘R AMB’ to a radial AMB.

The objective of this study is to optimize the bearingless electrical machine design for a
high-speed application and control it with model-based control methods. The selection
of the bearingless machine type is based on the levitating force production capabilities
and the overall system controllability. A separate winding construction is selected as it
is straightforward to assemble and the control of torque and levitation generation can be
easily separated. The radial force generation capabilities of a surface permanent mag-
net (SPM) and an interior permanent magnet (IPM) bearingless motors are studied in
(Tetsuo Ohishi and Dejima, 1994). The induction-type bearingless motor generates the
highest radial force. However, the controllability of this kind of bearingless machine is
problematic with a standard squirrel cage rotor structure (Chiba and Fukao, 1998). The
IPM-type bearingless machine is selected as it is capable of generating a higher radial
force than the SPM type. Furthermore, the rotor structure with embedded magnets is
easier to manufacture and the iron protects the permanent magnets from demagnetization
and excessive eddy current losses. The minimum pole numbers for the winding sets are
two and four. To minimize the force ripple without any special rotor construction, the
two-pole winding is selected for the levitation windings (Matsuzaki et al., 2012). A ro-
tor structure where the air gap is placed between the interior magnet poles is selected to
further optimize the rotor controllability, even though some of the radial-force-generating
capabilities are lost (Ooshima et al., 2004). With this structure, the dq inductance is more
uniform. With the described analysis, the IPM-type bearingless machine is selected, the
design of which is further optimized keeping the controllability in mind.

A rotor system with bearingless motor units is shown in Fig. 1.3. When comparing
this construction with the AMB system, the benefits are clear. Bearingless motor technol-
ogy enables an overall more compact machine structure. The presented system consists of
several components that have dynamical properties. These components together comprise
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a multi-input multi-output (MIMO) control system. For these reasons, the model-based
control approach is justified in order to provide more accurate control performance.

 

a) a) b) 

) 

Figure 1.3. Example of a bearingless rotor system. a) Bearingless motor unit and b) axial
magnetic bearing.

1.3 Outline of the doctoral dissertation

In this doctoral dissertation, design- and control-related issues of a high-speed permanent
magnet bearingless machine are studied. More precisely, the focus is on a machine of an
IPM type. The design part of this work concentrates on optimization of the IPM bear-
ingless machine and ensuring the functionality of the machine. Furthermore, the scala-
bility of the proposed design for higher powers is analyzed besides automation of the de-
sign process by using genetic algorithms. A model-based control approach is introduced
for the permanent magnet bearingless machine. Together with the system identification
method, several controllers are experimentally verified.

The main contributions of this doctoral dissertation are presented in the following publi-
cations:

Publication I concentrates on rotor optimization to minimize the force error angle. To
this end, it is important to analyze the generated force vectors. With this analysis, the
functionality of the levitation feature is ensured. The bearingless machine is manufac-
tured based on the design presented in this publication. The experimental results reported
in later publications are conducted with this test machine.

Publication II focuses on scaling of the machine design presented in Publication I for
a higher power level. This paper concentrates on optimization of the overall efficiency
of the 100 kW IPM bearingless machine. The force error angle is further minimized by
applying stator skew.
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Publication III presents a tooth-coil-wound stator for the machine discussed in Publi-
cation I to further reduce the machine axial length. This is achieved by a smaller end
winding length of the tooth coil. Additional optimization is needed to reduce the force
error angle, which is enlarged by the increased harmonics in the air gap. Stator and rotor
skew is proposed to minimize the force error angle.

Publication IV addresses the optimization problem of permanent magnet bearingless
machines. Considering the design from the aspects of torque and force generation, a
multivariable problem is formed. By introducing a genetic algorithm in the design flow,
the optimization of the full design can be automated. Genetic algorithms are incorporated
in the initial design and in the finite element method (FEM) design phase. The outcome
of the FEM design is verified by experimental measurements.

Publication V reports a model-based control for the bearingless machine designed in
Publication I. Modeling of the bearingless rotor system by adopting a rigid rotor ap-
proach is carried out. Pole placement and linear quadratic regulator (LQR) based MIMO
controllers are synthesized. The rotor model is validated by the system identification
method using step sine and binary pseudorandom excitation signals. Finally, the con-
troller performance is verified by lift-up tests and a rotational test.

Publication VI investigates a MIMO LQR radial controller with a disturbance estima-
tor. Rotor vibration is analyzed during an experimental test, and the results are compared
with the vibration limits defined by an ISO standard (ISO 14839-3:2004(E), 2004).

Publication VII studies the robust control approach applied to a bearingless machine with
levitation control. A loop-shaping H∞ controller is synthesized and the performance is
compared with a PID controller. The output sensitivity of the controllers is compared with
respect to the levels given in the ISO standard. The output sensitivity of the controllers is
measured by a system identification method by applying a binary pseudorandom excita-
tion signal.

The author of this doctoral dissertation is the main contributor in Publications I, III,
V–VII. The scaled bearingless motor in Publication II is based on the author’s design. In
Publication IV, the author is responsible for conducting the practical experiments. The
system identification procedures presented in Publications V–VII are the work of Mr.
Jouni Vuojolainen. The practical measurements presented in this doctoral dissertation are
entirely conducted by the author of this study.

The author has also been the main or coauthor in the following publications. These papers
are listed here but are not discussed in detail in this doctoral dissertation.

VIII. Jaatinen, P., Jastrzebski, R., Lindh, T., and Pyrhönen, O. (2013). Implementation of
a flux-based controller for active magnetic bearing system. In IEEE International
Conference on Industrial Informatics (INDIN), Bochum, Germany, pp. 141–145.
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IX. Jastrzebski, R., Smirnov, A., Nerg, J., Jaatinen-Värri, A., Jaatinen P., Lindh, T.,
Pyrhönen, O., Sopanen, J., and Backman, J. (2013). Laboratory testing of an active
magnetic bearing supported permanent magnet 3.5 kW blower prototype. In 15th
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1.4 Scientific contributions
The main scientific contributions of this doctoral dissertation are:

• Minimization of the force error angle by optimization of the rotor geometry and
application of stator and rotor skew. Additionally, the stability criteria of the force
error angle are experimentally verified.

• The scalability of the proposed bearingless machine construction is analyzed up to
the highest power bearingless motor present in the world at the time of this study.

• Automation of the bearingless motor design process by using genetic algorithms.

• Identification of bearingless rotor dynamics by using system identification methods
such as step sine and binary pseudorandom excitation.

• A model-based optimal control approach including LQR and H∞ is applied to reg-
ulate the rotor radial position in four degrees of freedom.
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2 Bearingless motor design
A general design flow of torque production in a bearingless machine follows the same
principles as in the traditional electrical machines (Pyrhönen et al., 2013). An integrated
levitation function adds an iterative loop to the design flow where the performance of the
levitation is evaluated. There is cross-coupling present between the both functions. This
makes the full design flow a multivariable iterative process. The main target is to achieve
the best design for levitation and torque production while minimizing the magnetic cross-
coupling. The general design flow is presented in Fig. 2.1.

Initialization

Set design parameters and 

constraints

Motor design 
Levitation function

design

Final design

No No

YesYes

Yes

No

(2)(1)

(3)

Are efficiency and

physical constraints

attained?

Is levitation

performance

reached?

Levitation redesign (2)
Motor redesign (1) 

Re-initialization (3)

Are torque and force

variation capacities

acceptable?

 

Figure 2.1. General design flow of the bearingless machine.

In this doctoral dissertation, the analysis is particularly focused on a double-winding
scheme of a dual motor interior permanent magnet bearingless machine.

2.1 Overview of the electromagnetic design

In the rotating electrical machine design, the objective is to meet the requirements for
speed, power, and torque. By including an additional winding to produce radial force,
the bearingless motor is formed. The operating principle of the bearingless motor is
shown in Fig. 2.2. The inner two-pole winding generates the magnetic flux to produce
the radial force. The outer four-pole winding is the motor winding to produce the torque.
With the levitation winding, the air-gap flux is intentionally altered to be nonsymmetrical
to produce radial force in a certain direction. Fig. 2.2 shows how the air-gap flux is
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increased on the one side and reduced on the opposite side of the air gap. The radial
force is produced in the direction of the arrow. By altering the magnitude and angle of
the current vector in the levitation winding with respect to the rotor angle, the radial force
can be produced in any angle.

X

Y

Fx

 

Figure 2.2. Principle of generating radial force in a bearingless machine in the x-axis
direction. The winding system is presented in the two-phase form to simplify the drawing.
The outer winding layer is the four-pole torque winding, and the inner layer is the two-
pole levitation winding.

To be able to produce radial force in addition to torque, a correct winding scheme must
be selected. The number of pole pairs of the levitation winding has to be ± 1 compared
with the pole pair number of the torque winding (Chiba et al., 2005). This is valid with
the double winding scheme. The key issue in the design of a bearingless machine is to
analyze the force error angle. This angle is determined in Fig. 2.3, where the force in
the x-axis is the target direction. However, there is also a disturbance force present in
the y-axis. The force error angle describes how much disturbing force is present. The
main source of the force error angle is caused by the machine design, that is, how well
the cross-coupling is minimized between the winding sets. The maximum error angle can
be 17 degrees, which is the stability limit (Chiba et al., 2005). As a rule of thumb, the
target of the error angle should be less than 5 degrees to guarantee stability. Delays in
the control system and the operating point of the motor can cause an increase in the force
error angle. The maximum error angle can be determined by an experimental test. The
result of the test is presented in Fig. 2.4. In this experiment, the feedback signal of the
rotor angle is set to a constant value. The force error angle is then produced by rotating
the rotor manually until the control system starts to drift towards the unstable state. It is
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seen that when the rotor angle reaches the value of 16.7 degrees, the rotor position control
starts to oscillate. This confirms the analytical analysis of the stability limit presented in
(Chiba et al., 2005).
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error

Fx
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Figure 2.3. Graphical presentation of the force error angle.

Several aspects have to be taken into account in the design phase of the bearingless motor.
The force error angle should be minimized to ensure the stability and controllability of
the bearingless motor. The force ripple should be inspected, as a linear behavior is de-
sired. The force required to levitate the rotor should be evaluated in a lift-up situation to
guarantee that the magnetic pull and gravity can be overcome. The research methodology
is based on the initial analytical model, which is further analyzed in the FEM software.
Based on the optimized FEM design, a prototype machine is manufactured. The prototype
machine is used to verify the FEM analysis result by experimental tests.

2.2 Rotor geometric optimization

In Publication I, the rotor structure of the interior permanent magnet bearingless motor
was optimized with the FEM software. The designed bearingless machine construction
includes two motor units with an axial AMB. The target operating speed of the machine
is 30000 r/min and the power per motor unit is 5 kW. The parameters of the machine
can be found in Appendix A. The main aim was to minimize the force error angle. This
optimization problem was approached by quantitatively comparing eight different rotor
structures with segmented magnets. The target of this approach was to find the optimal
magnet pole pitch angle. The configurations of the rotor magnet structures are presented
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Figure 2.4. Limit for the force error angle determined by the experimental test. The rotor
is turned manually when the angle feedback in the controller is set to a constant value.
The nonlinear behavior and the sudden increase and vibration of the rotor angle after 5.5
s are caused by the cogging torque of the rotor magnets.

in Fig. 2.5. The limits on the number of magnets are based on the mechanical strength of
the rotor together with the manufacturability.

32 Magnets 36 Magnets 40 Magnets 44 Magnets

16 Magnets 20 Magnets 24 Magnets 28 Magnets

 

Figure 2.5. Different magnet configurations in the IPM bearingless machine rotor.

The force error angle φerror, according to Fig. 2.3, can be mathematically expressed as

φerror = tan−1Fy

Fx
, (2.1)

where Fx is the radial force in the x-direction and Fy is the radial force in the y-direction.
The force error angle is analyzed during the maximum constant load on the levitation
winding to present the worst-case scenario. The result of the error angle comparison is
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shown in Fig. 2.6, where the best of four cases are presented. Of these, the 16-magnet
rotor structure provides the lowest force error angle. The peak value of the force error
angle is 3.03 degrees in this case.

 

Figure 2.6. Force error angle at the maximum load on the levitation winding.

Based on the rotor geometrical optimization, the 16-magnet configuration was selected to
be the rotor structure of the prototype machine. Further analysis was conducted with the
selected magnet configuration. The force error angle was then analyzed at the maximum
current on the levitation winding and the full load on the torque winding as shown in Fig.
2.7.

 

Figure 2.7. Force error angle at the maximum load on the levitation winding with no load
and full load on the torque winding.

The error angle curve shows that the effect of full load on the torque winding is minimal.
It can be concluded that the loading does not affect the force error angle when this kind
of motor structure is used. The linearity of the radial force generation is analyzed in Fig.
2.8 in no-load and full-load situations on the torque winding. The FEM analysis shows
that the produced radial force is linear as a function of levitation current. Loading of the
bearingless motor will increase the amplitude of the produced radial force. The effect is
quite linear and it can be easily taken into account in the control system.

Torque produced by the bearingless motor as a function of current iq is plotted in Fig.
2.9 with different loading currents in the levitation winding. The analysis shows that the
loading of the levitation winding does not significantly affect the torque generation. The
radial force ripple as a function of rotor angle is depicted in Fig. 2.10a and in 2.10b,
where the motor is fully loaded. It can be seen that the levitation force without loading
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is approximately linear up to 120 N. By introducing the full motor load, the force ripple
level is increased. It can be concluded that the produced radial force is linear.

Figure 2.8. Average radial force as a function of current in the no-load and full-load
situations.

Figure 2.9. Motor torque as a function of iq,T current in different loading conditions in the
levitation winding.

a) b) 

Figure 2.10. Radial force as a function of rotor angle. a) Force is produced with a sinu-
soidal levitation current with a constant rms value from 1 to 8 A. b) Force is produced
with a sinusoidal levitation current with a constant rms value from 1 to 8 A at the full
motor load.
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2.3 Design scalability
In Publication II, the scalability of the design presented in Publication I was evaluated.
The output power was scaled up to tenfold keeping the nominal speed at 30000 r/min.
Thus, the total output power of the full machine was 100 kW. The machine parameters
can be found in Appendix B. The initial design is based on the analytical approach where
the machine parameters are tuned. Fine-tuning of the design was done in the FEM soft-
ware. An analysis of the radial force generation and the force error angle as a function of
different loading conditions is presented in Fig. 2.11. In the full load condition with the
maximum levitation current, the peak force error angle reaches 6.7 degrees. To further
optimize the motor performance, continuous stator skew was applied. The effect of the
15-degree stator skew is presented in Fig. 2.12. Based on the FEM analysis, it can be
concluded that the 15-degree stator skew is an effective method to remove the highest
harmonic component from the force waveform.

Figure 2.11. Radial force amplitude from 0 to 24 A in the levitation winding as a function
of different motor load conditions together with the force error angle from each case.
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Figure 2.12. Radial force amplitude and force error angle with and without the 15-degree
stator skew.

The efficiency of the designed bearingless motor presented in Publication I is compared
with the scaled design in Fig. 2.13. In this comparison, the efficiencies of the one
bearingless motor unit is presented based on the FEM simulation. The operating point
used in the simulation presents the nominal load and 130% radial force to levitate the
rotor. It can be seen that the scaled and more optimized motor design provides an 8
percentage units higher efficiency.

2.4 Stator and rotor structure optimization

In Publication III, the rotor and the stator structures were further optimized by applying
stator and rotor skew. In the analysis, distributed and tooth-coil winding schemes were
compared. With the distributed winding construction, the flux distribution in the air gap
is more sinusoidal than with the tooth-coil approach. However, the distributed winding
needs space for the long end windings, which leads to a longer rotor structure. The motor
cross-sections with the both winding schemes are shown in Fig. 2.14 and Fig. 2.15. In a
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                                 a)                                                                        b) 

Figure 2.13. Efficiency map based on the FEM simulations. a) 5 kW bearingless motor
during nominal load and iL = 3 A, b) 50 kW motor during nominal load and iL = 6 A
(Jastrzebski et al., 2016).

high-speed application, it is beneficial to have a shorter rotor structure. A shorter rotor is
stiffer, and thus, the natural bending frequencies are higher.

 

Figure 2.14. Cross-section of the bearingless machine with distributed windings.

 

Figure 2.15. Cross-section of the bearingless machine with tooth-coil windings.

Two different skewing methods were compared; continuous skew, which is generally ap-
plied to the stator part, and step skew, which is applied to the rotor. Step skew can be
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applied to the rotor with embedded magnets. Step skew helps in the reduction of the eddy
current losses as the magnets are axially segmented by default. The rotor structures with
three- and five-step skew are presented in Fig. 2.16.

 
                a)                                                                  b) 

Figure 2.16. Segmented rotor skew with a) three steps and b) five steps.

In Fig. 2.17, a comparison of the skew method with respect to the force error angle is
presented. The initial error angle with the tooth-coil winding scheme is 7.1 degrees; this
is more than two times as high as in the distributed winding case.

 

Figure 2.17. Comparison of the effect of different skewing methods on the force error
angle.

The analysis results show that the force error angle starts to decrease rapidly after the
20-degree skew angle. The force error angle is under 5 degrees in every analyzed step
skew case after 30 degrees of skew angle.

The force ripple from the average force is compared with different skewing methods as a
function of skew angle in Fig. 2.18a. The skewing reduces the force ripple but it is not as
effective as with the force error angle.



2.5 Machine design using the genetic algorithm 33

In Fig. 2.18b, the loss of the radial force is analyzed as a function of skew angle. The
most effective skewing method when considering the minimization of the loss of radial
force is the continuous skew. Based on the results, the most preferable skew angle is 30
degrees. A stator or rotor with this skew angle is feasible to manufacture. The continuous
skew was left out from the final selection as the error angle is more than 5 degrees with
the selected skew angle. The rest of the skewing methods meet the demand for force error
angle. It can be concluded that the step skew is suitable for reducing the force error angle
of a tooth-coil-wound bearingless motor.

 
a)                                                               b)      

Figure 2.18. Comparison of the effect of different skewing methods on a) the radial force
ripple and on b) he reduction in the radial force.

2.5 Machine design using the genetic algorithm
In Publication IV, the multivariable optimization problem was treated with the genetic
algorithm (GA) approach. The initial design was conducted with analytical equations. A
differential evolution (DE) algorithm was used to optimize the following design parame-
ters: air-gap length, ratio of equivalent core length, permanent-magnet-induced voltage,
tangential stress, peak flux densities in the stator and the rotor, and the slot dimensions.
An analytical method, in particular, a reluctance network (RN), is a good approach for
the initial bearingless machine design. However, it is time consuming to develop an ac-
curate analytical model that takes all the required parameters accurately into account.
Thus, FEM tools are needed to more accurately tune the final parameters and geometrical
features of the machine. A FEM-based design approach can also be equipped with an evo-
lution algorithm that automatically evaluates and selects the best design. The proposed
design flow is presented in Fig. 2.19.

The accuracy of the FEM-based design was verified by experimental measurements. For
this purpose, a special force measurement rig was developed as shown in Fig. 2.20. The
measurement system consists of stepper motors, which are used to control the position of
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Figure 2.19. Bearingless machine design flow using the evolution algorithm approach.

the linear track mover. The rotor can be connected to the linear track mover through the
force measurement sensor. With this setup, the rotor position can be controlled in the xy
plane of the air gap, at the same time measuring the force acting on the rotor in the xyz
plane. A detailed description of the force measurement system is presented in Appendix
C.

The force error angle of the designed 10 kW bearingless machines was experimentally
determined using the presented measurement rig. The measurement results of the force
error angle are compared with the FEM simulation in Fig. 2.21a. In the experiment, the
force error angle of the both motor units was measured. The experiment was conducted
by supplying maximum levitation current in the x-axis direction, and the force error angle
was varied by turning the rotor manually in 15-degree steps. The mechanical structure of
the force measurement rig caused the rotor to drift from the magnetic center during ro-
tation. For this reason, the magnetic center was traced separately for every angle. This
reduced the accuracy of the measurement. However, when comparing the measurement
result with the FEM simulation, the corresponding trend is easily seen.
The same measurement platform was used to experimentally determine the current stiff-
ness of the bearingless motor unit and the unbalance magnetic pull. Current stiffness



2.5 Machine design using the genetic algorithm 35

 

b b 

c 

b 

b 

c 
a 

Figure 2.20. Bearingless machine in the force measurement rig. a) Bearingless machine,
b) stepper motor, and c) 3-axis force sensor.

was measured by supplying current to the levitation winding and measuring the produced
force at the magnetic center. The results of the measurement are shown in Fig. 2.21b and
c. The unbalance pull caused by the permanent magnets in the rotor was measured by
moving the rotor along the x-axis. Both results correlate closely with the FEM analysis.
Based on the measurement, it can be concluded that the FEM analysis produces reliable
results.

 
         a) 

 
                                                b)                                                                               c) 

Figure 2.21. a) Measured force error angle compared with the FEM result, b) measured
current stiffness and c) measured unbalance magnetic pull compared with the FEM result.
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3 System modeling

Linear control approach requires a linear system model where the controller can be syn-
thesized. As the model in the control synthesis is linear, some simplifications are made in
the modeling process. A bearingless machine system itself consists of several inputs and
outputs as shown in Fig. 3.1. The machine contains five separate winding systems that
provide torque for rotation and force to levitate the rotor in the radial and axial directions.
The bearingless machine can be placed into the category of multiport electrical machines
(Cheng et al., 2018). It is natural to use a state-space modeling approach to present the
dynamical equation of the MIMO system. The model of the bearingless machine is only
one part of the whole system model; the rotor dynamics model provides crucial infor-
mation about the cross-coupling of the rotor and the stator parts together with the rotor
flexible modes. For the simulation purposes, a variable frequency drive model with pulse
width modulation is needed.

Bearingless

machine

{a1}

{an}

{b1}

{bm}

 

Figure 3.1. Bearingless machine system comprising several inputs (an) and outputs (bm).
Depending on the machine configuration, the input ports can consist of current and/or
voltage terminals. The outputs are controlled quantities such as rotor position and rotor
speed and torque.

3.1 General modeling guidelines

The system dynamics can be presented by adopting a state-space approach. The differ-
ential equations of the system under study in the continuous time domain can be formed
as

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t),
(3.1)

where A is the system matrix, B is the input matrix, C is the system matrix, D is the
feedforward matrix, x is the state vector, u is the input vector, and y is the output vector.
Often, the feedforward matrix is equal to zero and can thus be neglected.
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3.2 Motor model

The mathematical model of the motor winding in the dq rotor reference frame is described
by

ud,T = RTid,T +
d

dt
(Ld,Tid,T)− ωLq,Tiq,T,

uq,T = RTiq,T +
d

dt
(Lq,Tiq,T) + ωLd,Tid,T,

(3.2)

where uT is the voltage in the motor windings, RT is the resistance of the motor windings,
LT is the inductance of the motor windings, ω is the electrical angle of the rotor, and iT is
the current in the motor windings. The subscript T denotes the torque-generating part.

The motor flux linkages are described by

ψd,T = Ld,Tid,T + ψPM,

ψq,T = Lq,Tiq,T. (3.3)

The produced electrical torque can be expressed as

te =
3

2
p[ψPMiq,T + (Ld,T − Lq,T)iq,Tid,T],

(3.4)

where p is the number of the pole pairs and ψPM is flux linkage produce by the permanent
magnets. The torque equation can be simplified by employing the id = 0 control principle,
which gives

te =
3

2
p(ψPMiq,T) = kTiq,T, (3.5)

where kT is the torque constant.

3.3 Force model

In order to form a model-based controller for a magnetic levitation system, a linear force
model is needed. The model describes how the levitation system behaves as a function of
air gap and control current. The nonlinear parameters of position and current stiffness are
linearized around the operating point.
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3.3.1 One-degree-of-freedom AMB

An axial AMB is considered in modeling of the 1-DOF magnetic levitation system. The
magnetic force produced in the electromagnet can be calculated based on the energy
stored in the air gap (Schweitzer and Maslen, 2009)

f =
1

4
µ0n

2Aa
i2

s2
, (3.6)

where µ0 is the magnetic constant, n is the number of coil turns, Aa is the surface area of
the AMB pole, i is the coil current, and s is the air-gap distance. The nonlinear behavior
of the produced magnetic force is seen in (3.6) as the force amplitude is quadratically
proportional to the current and inverse-quadratically proportional to the air gap. Opposite
electromagnets are needed to control the rotor position in the air gap as only subtracting
force is produced by one electromagnet. The nonlinear function of the produced mag-
netic force must be linearized for the control synthesis purposes. A constant bias current
is added to the electromagnets to linearize the current for force correlation around the
operating point. The resultant force of two opposite magnetic poles is given by

fz = f+ − f− =
1

4
µ0n

2Aa

[
(ib + iz)

2

(s0 − zdis)2
− (ib − iz)2

(s0 + zdis)2

]
, (3.7)

where ib is the bias current, iz is the control current, s0 is the nominal air gap, and zdis is
the air-gap displacement.

By assuming the movement of the ferromagnetic object small with respect to the air-gap
distance, that is, zdis � s0, the nonlinear force function (3.12) can be linearized as

fz =
µ0n

2Aaib
s2

0

iz +
µ0n

2Aai
2
b

s3
0

zdis = kiiz + kxzdis, (3.8)

where ki is the current stiffness, and kx is the position stiffness. The linearized force
model can now be used in the control synthesis.

3.3.2 Bearingless motor

A general version of the bearingless motor consists of separate winding sets that are re-
sponsible for producing levitation force and rotating torque. The modeling principles are
presented in (Chiba et al., 2005), where the flux linkage model is derived for the both
winding sets as
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where ψd,T and ψq,T are the flux linkages produced by the torque winding in the rotor
reference frame, ψd,L and ψq,L are the flux linkages produced by the levitation winding
in the rotor reference frame, Ld,T and Lq,T are the self-inductances of the torque wind-
ing, Ld,L and Lq,L are the self-inductances of the levitation winding, M ′

d and M ′
q are the

mutual inductance slopes with respect to the corresponding rotor displacement, xr and yr

are the rotor displacement in the rotor reference frame, id,T and iq,T are the torque wind-
ing currents in the rotor reference frame, id,L and iq,L are the levitation winding currents
in the rotor reference frame, ψPM is the flux linkage produced by the permanent mag-
nets, and ψ′PM is the flux linkage produced by the permanent magnet with respect to the
corresponding rotor displacement. From the flux linkage model, the force model can be
derived by partial differentiation of the magnetic energy equation with respect to the rotor
displacement. Subsequently, the force model is formed as

[
fx,r

fy,r

]
=

[
ψ′PM +M ′

did,T M ′
qiq,T

M ′
qiq,T −ψ′PM −M ′

did,T,

] [
id,L

iq,L

]
, (3.10)

where fx,r, fy,r are the generated radial forces in the rotor reference frame. The model
presented in (3.10) can be further reduced assuming that the id = 0 control principle is
used for the torque control, and the disturbance force produced by M ′qiq,T is small with
respect to ψ′PM

[
fx,r

fy,r

]
=

[
ψ′PM 0

0 −ψ′PM

] [
id,L

iq,L

]
. (3.11)

When the simplified force model is used as presented, the analogy to the AMB force
model (3.8) can be applied

Fr = Kxqr + Kiid,q, (3.12)

where Fr is the force vector in the rotor reference frame, Kx is the position stiffness
matrix, qr is the position vector in the rotor reference frame, and Ki is the current stiffness
matrix. The position and current stiffness values can be determined by FEM simulations,
which are verified by experimental identification.
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3.4 Rotor model

The rotor model describes the mechanical behavior of the system, the force model be-
ing the system input. Basic modeling of the 1-DOF AMB system is presented together
with the 4-DOF model that is based on the rigid rotor method. The presented modeling
approach is used for the control synthesis in Publication V, Publication VI, and Publi-
cation VII.

3.4.1 Point-mass model

The force equation of the 1-DOF magnetic levitation system is based on Newton’s second
law of motion. A ferromagnetic object that is levitated with a magnetic field is modeled
as a point mass

mq̈ = kxq + kiic, (3.13)

where m is the mass of the levitated object, kx is the position stiffness, ki is the current
stiffness, q is the levitated object position in the air gap, and ic is the control current. This
SISO model is used for the control design of the axial magnetic bearing.

3.4.2 Rigid rotor model

The equation of motion for the linear axially symmetric rotor with the following equation
(Genta, 2005) is described by

Mq̈(t) + (Dr + ΩGr)q̇(t) + Kq(t) = F(t), (3.14)

where M is the mass matrix, Dr is the damping matrix, Ω is the rotor speed, Gr is the
gyroscopic matrix, K is the stiffness matrix, F is the input force vector, and q is the
position vector in the center of mass coordinates. By assuming rigid behavior of the rotor,
the model can be simplified into the following form

Mq̈(t) + (ΩGr)q̇(t) = F(t). (3.15)

The mass and the gyroscopic matrices are arranged in the following form

M =


Iy 0 0 0
0 m 0 0
0 0 Ix 0
0 0 0 m

 , G =


0 0 Iz 0
0 0 0 0
−Iz 0 0 0
0 0 0 0

 , (3.16)

where Ix is the rotor inertia with respect to the x-axis, Iy is the rotor inertia with respect
to the y-axis, Iy is the rotor inertia with respect to the y-axis, and m is the rotor weight.
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Figure 3.2. Cross-sectional view of the bearingless machine. The distances from the
center of mass to the motor and the sensor locations are presented.

The rotor model is presented in the center of mass coordinates, where the position vector
is q =

[
β x α y

]T . The bearingless motor units and the rotor measurement planes
are in different locations compared with the center of mass, as seen in Fig. 3.2. There-
fore, coordinate transformations must be carried out to correctly represent the system.
Transformation of the coordinate system can be made with the subsequent matrices

Tbc =


a 0 −b 0
1 0 1 0
0 a 0 −b
0 1 0 1

 , Tcs =


c 1 0 0
0 0 c 1
−d 1 0 0
0 0 −d 1

 , (3.17)

where Tbc is the transformation from the bearing coordinates to the center of mass co-
ordinates, Tcs is the transformation from the center of mass coordinates to the sensor
coordinates, a, b are the locations of the bearingless motors from the center of mass, and
c, d are the position sensor locations from the center of mass.

F(t) = TbcKxT
T
bcqb + TbcKiic, (3.18)

where F is the radial force vector, Kx is the diagonal position stiffness matrix, Ki is the
diagonal current stiffness matrix, qb is the radial position vector in the bearing coordi-
nates, and ic is the control current vector. Thus, the coordinate transformation must be
performed to the rotor model to match the coordinate system between the inputs and the
outputs.

Mq̈(t) = TbcKxT
T
bcqb + TbcKiic, (3.19)
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By arranging the rigid rotor model in the state-space presentation, the equation takes the
following form

Ar =

[
0 I

(M)−1TbcKxT
T
bc 0

]
,

Br =

[
0

(M)−1TbcKi

]
,

Cr =
[
Tcs 0

]
,

qb =
[
qD-end,x qD-end,y qND-end,x qND-end,y

]T
,

ic =
[
iD-end,x iD-end,y iND-end,x iND-end,y

]T
.

(3.20)

For control synthesis, the time-continuous system model has to be discretized with the
sampling time of the control system

x(k + 1) = Φx(k) + Γu(k)

y(k) = Cx(k),
(3.21)

where Φ is the discrete system matrix, and Γ is the discrete input matrix.

3.5 Actuator model
The actuator model describes the dynamics of the inner control loop, which includes the
current control loop and the winding system. A direct method to model the actuator
dynamics is to use first-order dynamics (Webster and Eren, 2014). The actuator can then
be modeled as a delay in the system. The bandwidth of the current control loop can be
used to describe the first-order system dynamics as

Ga =
ωcc

s+ ωcc
, (3.22)

where Ga is the approximate transfer function of the inner current loop, and ωcc is the
bandwidth of the current controller. The actuator dynamics can be left out from the full
model if the bandwidth is significantly higher than in the position control loop (Smirnov,
2012).

In the simulations presented in Publication V, Publication VI, and Publication VII, the
actuator model is fully implemented including the inner current control loop together with
the full bearingless machine model. The VFD is modeled using the two-stage switching
with a pulse width modulator.
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4 Control
A common factor in publications on the control of bearingless machines is the approach
of PID-based rotor position regulation (Sun et al., 2016b; Wang et al., 2015; Sun et al.,
2016a; Ooshima et al., 2015; Yang et al., 2010; Huang et al., 2014). A PID controller is
a good solution for systems that have simple dynamics and are of a SISO type. In the
case of a magnetic levitation system where several magnetic levitation units are used, the
system is of a MIMO type. This generates cross-coupling between the levitation units, in
other words, the rotor movement affects all units. When adopting a PID-based approach,
the cross-coupling can be taken into account by adding gains between the levitation units.
This, however, makes the design process more complex. By using a model-based control
approach, the inherent cross-coupling of the magnetic levitation system can be taken into
account. However, the mathematical model is essential for the control synthesis and anal-
ysis, and a linearized version can be used to design the MIMO model-based controller. In
the bearingless machine, the control is divided into levitation and torque control. Further,
a traditional AMB is used to control the rotor axial position. As the axial AMB is a SISO
system, the PID controller usually suffices to achieve the control performance.

The performance of a magnetic levitating system can be determined by analyzing the sys-
tem stability. In the standard (ISO 1940-1:2003(E), 2003), a sensitivity analysis method
and acceptable limits for controller performance are presented. The analysis is based on
the output sensitivity of the control system, which determines how sensitive the system is
to output disturbances. Based on the ISO standard, the peak output sensitivity should, in
the best scenario, be under 9.5 dB. At a more general level, the performance of a magnetic
levitation system is analyzed by inspecting the rotor vibration. Acceptable vibration levels
for the magnetic levitation systems are described in the standard (ISO 14839-3:2004(E),
2004). The vibration levels are divided into four zones depicted in Fig. 4.1.

x

y

ZoneA

Zone D

ZoneB

Zone C

Cmin

Rotor

 

Figure 4.1. Rotor vibration zones described in the standard (ISO 14839-3:2004(E), 2004).
Zone A is the acceptable area where the rotor can vibrate continuously. A description
of the vibration zones is given in Appendix D. Value of the Cmin determines the rotor
minimum clearance that is generally restricted by backup bearings.
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4.1 Overview of the control system
The bearingless machine under investigation consists of two bearingless motor units that
are responsible for generating the rotating torque and the levitation force in the radial
direction. In addition, an axial AMB is positioned in the center of the rotor to produce the
stabilizing magnetic force along the shaft. In Fig. 4.2, the variable frequency drive (VFD)
setup is presented. Each of the three phase windings is driven with a separate VFD. This
configuration allows to use one bearingless unit as a load machine to the other unit. The
axial AMB consists of two opposite coils that are driven with a VFD connected between
the phases. Each VFD state is controlled with a field programmable gate array (FPGA),
where the modulator and the inner current controller are implemented. The inner current
control loop is illustrated in Fig. 4.3. The upper-level control loops, as shown in Fig.
4.4, are implemented in an industrial PC. Separate control loops for the axial and radial
positions of the rotor are formed together with the motor speed controller. The sampling
time in the industrial PC is 50 µs.
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  VFD(,) 

VFD(fx, fy) 

D-end ND-end 

VFD(fx, fy) 
VFD(fz) 

VFD(, ) 

a) a) b) b) c) 

Figure 4.2. Block diagram of the bearingless machine VFD configuration; a) position
sensor measurement surface, b) lamination stack of the IPM bearingless motor, and c)
axial disc of the AMB.
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Figure 4.3. Inner current control loop implemented in the FPGA, where θr is the rotor
electrical angle.
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Figure 4.4. Block diagram of the control loops implemented in the industrial PC together
with the inputs and the outputs.

4.2 Levitation control

Magnetic levitation systems are inherently unstable, and therefore, active control is re-
quired to stabilize the system. A PID-based control approach is presented for the axial
AMB. The same control methods can be extended to the noncollocated position control
of radial AMBs. For the radial position control, a MIMO state-feedback approach is pre-
sented. Various control approaches are introduced for the control synthesis, including
pole placement, linear quadratic regulator, and robust control methods in Publications
V–VII.

4.2.1 Axial AMB control

An axial AMB is used to control the rotor position in the longitudinal direction. In the
prototype machine, an axial AMB is positioned in the center of the rotor. In Fig. 4.2, a
cross-sectional view of the rotor is shown, and in Fig. 3.2, a more detailed presentation
of the axial AMB and the axial disc is given. The axial AMB consists of a ferromagnetic
rotor disc and a differential winding system placed on opposite sides of the disc. The
axial AMB is a SISO system having one degree of freedom. The dynamics of the system
is based on the model in (3.13). A PID control approach is used to stabilize the rotor in
the axial direction. The control loop of the axial AMB is presented in Fig. 4.5.

Detailed formulation of the PID controller for a point-mass system is given in (Chiba
et al., 2005). As the force produced by the opposite electromagnets is nonlinear with
respect to the air gap and the supplied current, the system is linearized with a bias current.
The biasing takes the following form
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Figure 4.5. Block diagram of the control loop for the PID controller.

iref =
[
ic + ibias ic − ibias

]
, (4.1)

where the bias current ibias is added to and subtracted from the reference current iref pro-
vided by the PID controller to linearize the force produced by the electromagnets around
the operating point.

4.2.2 Radial position control with pole placement

A classical way to synthesize a controller for a system that is modeled with the state-space
approach is the full state feedback method (Franklin et al., 2010). The state feedback
is based on the knowledge of the system states, and with the feedback gain, the pole
locations can be selected. In many systems, all the state variables cannot be measured
directly. For this reason, a state estimator or an observer must be included in the control
synthesis. Unmeasured states can then be estimated by the state estimator using the input
and output signals of the system. A block diagram of the state-feedback control reported
in Publication V is depicted in Fig. 4.6. Furthermore, this control approach includes
an integral action. The integral states are augmented to the system model to remove
steady-state errors in the system. Obviously, the gravity force is the main source of the
steady-state error.
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Figure 4.6. Block diagram of the state feedback controller with an integral action.

A discretized system model with the augmented integral states can be presented as
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[
x(k + 1)
xI(k + 1)

]
=

[
Φ 0
C I

] [
x(k)
xI(k)

]
+

[
Γ
0

]
u(k)−

[
0
I

]
r(k), (4.2)

where x is the state vector, xI is the augmented integral state vector, Φ is the discrete state
matrix, C is the output matrix, I is the identity matrix, Γ is the discrete input matrix, u is
the input vector, and r is the reference vector.
The feedback loop is closed by feeding the states through the negative feedback gains
back to the input, which gives the feedback control

u(k) = −
[
K KI

] [x(k)
xI(k)

]
, (4.3)

where K is the feedback gain matrix, and KI is the integral gain matrix. As mentioned
above, all the states cannot be measured, and therefore, a state estimator must be included.
The state estimator minimizes the error between the measured and the estimated outputs.
By adjusting the feedback gains of the state estimator, the convergence speed can be
adjusted. The discrete state estimator takes the following form

x̂(k + 1) = Φx̂(k) + Γu(k) + L(y(k)−Cx̂(k)), (4.4)

where x̂ is the estimated state vector, and L is the estimator state feedback gain matrix.

4.2.3 Radial position control with the LQR method

More sophisticated control methods have been developed to overcome the drawbacks
of the full state feedback control. An example of these methods is the linear quadratic
regulator (LQR) control (Franklin et al., 2010). This approach belongs to the optimal
control methods. The method is based on the minimization of the cost function, where
the designer can put weight on certain states and inputs. This provides an opportunity
to directly manipulate the system response and the control effort. The cost function is
presented in the following form

J =
1

2

N∑
k=0

[xT(k)Q1x(k) + uTQ2u(k)], (4.5)

where x is the state vector, Q1 is the state weight matrix, u is the input vector, and Q2 is
the input weight matrix.
In Publication V, the general LQR problem is extended with Bryson’s rule (Bryson and
Ho, 1975). With this method, the most relevant states are weighted as
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Q1 = CTQ̄1C, (4.6)

where C is the output matrix, and Q̄1 is the weighting matrix. This implies that the states
of the rotor position are weighted. The state weighting matrix is determined as

Q̄1,n =


1/m2

1 0 · · · 0
0 1/m2

2 · · · 0
...

... . . . ...
0 0 · · · 1/m2

n,

 , (4.7)

where mn is the maximum deviation of the rotor position, that is, vibration and the sub-
script n is the total number of inputs or outputs. The input weighting matrix is determined
as

Q2,n =


1/u2

1max 0 · · · 0
0 1/u2

2max · · · 0
...

... . . . ...
0 0 · · · 1/u2

nmax

 , (4.8)

where unmax is the maximum deviation of the input current. By applying Bryson’s rule
in the control synthesis, the tuning process can be simplified as there are only input and
output weights to select, which are bound to real parameters. Iterative tuning process is
presented in Publications V.

4.2.4 Disturbance estimator

An extension to the state estimator is to add a known disturbance model to the estimator.
The operating principle is then similar to the integral action as the disturbance estima-
tor drives the error to zero. The disturbance that can be presented with the first-order
differential equation can be included in the disturbance estimator. In Publication VI, a
disturbance estimator with the state feedback controller tuned by the LQR approach is
addressed. In Fig. 4.7, a block diagram of the LQR controller with a disturbance estima-
tor is presented. Disturbance can be modeled in the continuous time domain as (Franklin
et al., 2010)

ẋd(t) = Adxd(t)

w(t) = Cdxd(t),
(4.9)

where xd is the disturbance state vector, Ad is the disturbance system matrix, w is the
disturbance output vector, and Cd is the disturbance output matrix. By discretizing the
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disturbance model with the sampling time, it takes the form

xd(k + 1) = Φdxd(k)

w(k) = Cdxd(k),
(4.10)

where Φd is the discrete system matrix. The disturbance model can be augmented to 3.21
to form a system model where the disturbance estimator can be synthesized

[
x(k + 1)
w(k + 1)

]
=

[
Φ ΓdCd

0 Φd

] [
x(k)
w(k)

]
+

[
Γ
0

]
u(k)

y(t) =
[
C 0

] [x(t)
w(t)

]
.

(4.11)

With a constant disturbance, the system model takes a simpler form[
x(k + 1)
w(k + 1)

]
=

[
Φ Γd

0 I

] [
x(k)
w(k)

]
+

[
Γ
0

]
u(k)

y(t) =
[
C 0

] [x(t)
w(t)

]
,

(4.12)

where the system matrix of the disturbance model decreases to the identity matrix.
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Figure 4.7. Block diagram of the LQR-based feedback controller together with the dis-
turbance estimator.

4.2.5 Radial position control with the H∞ loop-shaping approach

Robustness is defined in order to ensure that the system under control is stable with a
certain amount of model uncertainty. In the robust control approach, the uncertainty is
evaluated mathematically. The H∞ approach is one method in the field of robust control.
The H∞ control is based on finding a stabilizing controller that minimizes the H∞ norm
(Skogestad and Postlethwaite, 2001). Different versions of the H∞ control synthesis have
been developed after its invention in the late 1980s. In the mixed-sensitivity H∞ control,
the sensitivity functions are shaped with weighting functions to minimize theH∞ norm of
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the sensitivity function. A signal-based H∞ method minimizes the selected error signal
with respect to the model uncertainty. In the loop-shaping method, the open-loop plant is
shaped with the weighting functions. Coprime factor uncertainty is used to guarantee the
robustness limits. In Publication VII, the loop-shaping robust control method is applied
to the radial position control of a bearingless rotor system. A two-degree-of-freedom
control form is used, where the reference input has a weighting function of its own. A
block diagram of the control problem is depicted in Fig. 4.8. The tuning iteration begins
with weighting the open-loop system model as

Gs(jω) = G(jω)W1(jω), (4.13)

where Gs is the shaped open-loop system model, G is the system model, and W1 is
the diagonal weight matrix. The weighted open-loop system model is arranged into the
coprime factor form as

Gs(s) = M−1
s (s)Ns(s) = (Ms + ∆Ms)

−1(s)

+ (Ns + ∆Ns)(s),
(4.14)

where Ms and Ns are the coprimes of the system model, and ∆Ms and ∆Ns are unknown
transfer functions of the perturbed disturbance. The stabilizing feedback controller is
synthesized by minimizing

∥∥∥∥[K2

I

]
(I−GsK2)−1M−1

s ,

∥∥∥∥
∞
≤ ε−1, (4.15)

where K2 is the feedback controller gain matrix, and ε is the maximum perturbation.
The designer prefilters the open-loop system response with the weighting function

rI rIK1

K2

Wref

Ns

DNs 

MS
-1

DMs 

S

S

SS
r eyu

-

-
 

 

Figure 4.8. Block diagram of the H∞ loop-shaping with the 2-DOF design scheme.
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Figure 4.9. Block diagram of the implemented H∞ controller.

W1(jω) = I4×4 ·
s+ wa1

s+ wa2
· s+ wb

wb
· wc

s+ wc
, (4.16)

where wa,b,c is the weighting parameter of the prefilter. The first transfer function is used
to provide sufficient gain in the DC area. The crossover frequency behavior is tuned by
the latter transfer functions. The selected parameters can be found in Appendix A.
The reference model is designed to follow the second-order system dynamics as

Wref(jω) = I4×4 ·
ω2

ref

s2 + 2ωrefs+ ω2
ref
, (4.17)

where ωref is the bandwidth of the reference weight. To guarantee a zero offset between
the system output and the reference input, the following input filter is implemented

Wi
∆
= [(I−Gs(s))K2(s))−1Gs(s)K1(s)]−1Wref(s)|s=0, (4.18)

where Wi is the input filter gain matrix, and K1 is the reference gain. The designed con-
troller is discretized with the sampling time, and the implementation of the full controller
is presented in Fig. 4.9.

4.3 Torque control
From the torque control perspective, the bearingless machine behaves as a traditional
electrical machine. Depending on the machine type, a suitable control scheme can be
selected without any specific features. From the levitation control’s point of view, the
additional flux path caused by the torque generation acts as a disturbance. This effect is
based on the machine design and the loading condition. However, in this work, the cross-
coupling between levitation and torque windings is neglected as the machine is driven in
the no-load condition.

4.3.1 Scalar control

The simplest method to rotate a permanent magnet synchronous machine is to take a scalar
control approach. For high-speed applications where no fast load dynamics is present, the
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scalar control is suitable (Halkosaari, 2006). An additional benefit of this control method
is sensorless operation.
The scalar control of dual motor bearingless machines is depicted in Fig. 4.10. In this
method, the same voltage reference based on the speed command is sent to the VFDs of
the both motors.
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Figure 4.10. Scalar control for dual bearingless motors.

4.4 Experimental results

The presented modeling approach and the controllers used in the study are experimentally
verified with the prototype machine. An identification method is used for the model and
controller verification. The functionality of the bearingless machine is tested with lift-up,
levitation, and rotational experiments.

4.4.1 Model validation

Model validation is an important phase in the model-based control implementation. Er-
rors in the modeling can cause difficulties during operation. An identification procedure
is used to measure the system dynamics. By comparing the measured system dynamics
with the analytical model, the correspondence can be verified. The identification proce-
dure is conducted in practice by injecting an excitation signal into the system to excite a
frequency spectrum of interest. The system model can be calculated as

G(jω) =
Y (jω)

U(jω)
, (4.19)

where G(jω) is the model of the system to be identified, Y (jω) is the system output, and
U(jω) is the excited input signal. A basic setup of the implemented identification setup
is illustrated in 4.11. The block diagram presents the excitation signal inputs, where di

is the signal injected to the plant input and do is the signal to the plant output. The plant
model can be identified from the response between the excitation signal do and the system
output y. Similarly, the system output sensitivity can be determined between do and the
output y.
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Figure 4.11. Block diagram of the general identification measurement setup.

The excitation signal is produced by using the pseudorandom binary sequence (PRBS)
method in the frequency spectrum of 1 to 750 Hz. The identified plant model is compared
with the analytical model in Fig. 4.12.

 

a)                                                                 b) 

 
c)                                                                  d) 

Figure 4.12. Identified plant model of the D-end x-axis, where the responses are from
the D-end x-axis to a) D-end x-axis, b) D-end y-axis, c) ND-end x-axis, and d) ND-end
y-axis.

The results show that the rigid dynamics corresponds well with the analytical model.
However, the cross-coupling dynamics does not follow the model. It is clear that the
cross-coupling is not fully described in the analytical model, and for this reason, further
analysis is needed.

4.4.2 Levitation experiments

The performance of the designed controllers is tested with practical experiments. The
most straightforward initial test is lifting the rotor to the origin from the backup bearings,
which is the magnetic center of the bearingless motor. The lift-up test with pole place-
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ment and the LQR controller is presented in Fig. 4.13. These experiments are discussed
in Publication V. The upper diagram pair presents the simulation and measurement re-
sults of the pole placement method. Correspondingly, the lower figure pair presents the
simulation and measurement results of the LQR control approach.

 

Figure 4.13. Rotor lift-up test; a) simulation with pole placement, b) experimental test
with pole placement, c) simulation with LQR, and d) experimental test with LQR.

The results show that the best performance is achieved with the LQR control approach.
Compared with pole placement, LQR generates no overshoot, whereas in the pole place-
ment lift-up test, the overshoot is 170 µm at the D-end motor. In principle, the simu-
lation results follow the experimental results. However, the responses are larger in the
experimental results, which indicates that the applied model does not fully describe the
system behavior. It is pointed out that the initial starting position of the rotor is lower in
the experimental case as the mechanical center and the magnetic center are not aligned.
Moreover, the presented modeling approach is effective to describe the bearingless rotor
system behavior. The LQR control approach using Bryson’s tuning rule simplifies the
control synthesis and provides superior performance compared with the pole placement
method.

In Publication VII, a loop-shaping H∞ controller for the bearingless rotor system is con-
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sidered. The identification routine described in Section 4.4.1 is used to experimentally
determine the system output sensitivity. In this case, the excitation signal is injected into
the plant output, and the response is analyzed between the excitation signal and system
outputs. The system sensitivity to the output disturbance is depicted in Fig. 4.14.

 
                                                    a)                                                                                       b)  

Figure 4.14. Identified system output sensitivity compared with simulation, employing a)
PID controller and b) H∞ loop-shaping controller.

In this experiment, a SISO PID-based radial position controller is compared with a MIMO
controller that is tuned by using the loop-shaping H∞ approach. Furthermore, in Fig.
4.14, the sensitivity function limits are drawn. The measurement results show that the
sensitivity peak of the SISO PID controller reaches to the D zone. The sensitivity with the
H∞ controller reaches to the limit of the A zone. On the other hand, the simulation results
show a much better sensitivity response. This indicates that the model is not accurate
enough. A comparison between the analytical model and the identified one is presented
in Fig. 4.12. It is seen that the diagonal part of the model is accurate but the cross-coupling
between the axes includes nonmodeled dynamics. Moreover, the H∞ controller provides
a peak sensitivity that is within the acceptable limits defined by the standard. However, a
more accurate system model is needed to improve the control performance.

4.4.3 Rotation experiments

The synthesized 5-DOF levitation controllers are experimentally tested under rotor rota-
tion. In Publication V, a model-based control approach is presented using pole placement
and LQR control methods. The initial rotation test is conducted with the LQR radial po-
sition controller applying a low rotational speed at 300 r/min. Experimental results of the
initial rotation test are illustrated in Fig. 4.15. The test is carried out by supplying a rotat-
ing electrical field to the D-end motor. The results show the rotating current waveforms
of the both levitation windings and the D-end motor winding. The experimental results
confirm that the presented control approach is able to levitate and rotate the bearingless
rotor system.

In Publication VI, an LQR controller with the disturbance estimator approach is applied
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a)                                                                 b) 

 
c)                                                                  d) 

 
e) 

Figure 4.15. Initial rotation test at 300 r/min; a) rotor position at the D-end motor, b)
rotor position at the ND-end motor, c) levitation winding current at the D-end motor,
d) levitation winding current at the ND-end motor, and e) rotating current in the stator
reference frame at the D-end motor.

to the radial position regulation of the rotor system. In this experiment, the rotor is rotated
up to 1500 r/min. The operating speed is bound to this value owing to limitations in the
control system. A rotating electrical field is synchronously applied to both motors by
using the scalar control method presented in Fig. 4.10. The current waveforms of the
levitation and torque windings are depicted in Fig. 4.16 during operation at 1500 r/min.
The results show that the harmonic content of the levitation winding is increased com-
pared with the measurement in Fig. 4.15. In other words, the rotor vibration is increasing
as a function of rotational speed caused by an unbalance and run-out in the measurement
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a)                                                                 b) 

 
c)                                                                  d) 

Figure 4.16. Motor and levitation currents at 1500 r/min

surfaces. The rotor position during the rotation experiment is presented in Fig. 4.17,
where the orbits of both ends are shown.

Moreover, the acceptable vibration level is indicated in the figure. From the orbits it
can be seen that the vibration is mainly caused by the harmonics. The frequency spec-
trum of the rotor vibration in the speed range of 150 and 1500 r/min is presented in Fig.
4.18 and 4.19. The frequency spectrum shows the amplitude of the rotor unbalance, which
is synchronous with the rotational speed. It is steadily increasing as a function of speed.
However, the main reason for the vibration is seen in the 3rd harmonic content. This part
is mainly caused by the run-out effect caused by the uneven measurement plane surfaces
(Kim and Lee, 1997). Based on the achieved results, it can be concluded that the levita-
tion system is behaving acceptably during the rotation. Nevertheless, the vibration levels
must be observed at higher operating speeds.
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Zone A 

Figure 4.17. Rotor orbits at 1500 r/min.

 

Fundamental 3rd harmonic 5th harmonic 7th harmonic 

Figure 4.18. Frequency spectrum of the rotor position at the D-end motor from 150 r/min
to 1500 r/min.

 

Fundamental 3rd harmonic 5th harmonic 7th harmonic 

Figure 4.19. Frequency spectrum of the rotor position at the ND-end motor from 150
r/min to 1500 r/min.
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5 Conclusions and future study
In this doctoral dissertation, an IPM bearingless machine was analyzed from the design
and control perspectives. The work was divided into three parts focusing on the design,
modeling, and control of the IPM bearingless machine. A significant part of the opti-
mization of the bearingless machine design was performed with the help of FEM tools
where the initial parameters were obtained from an analytical method. The motor opti-
mization aimed at ensuring the controllability of the designed machine. The FEM-based
design of the machine was verified by experimental results. Moreover, the design scala-
bility for a higher power region was analyzed. As the design problem contains multiple
variables, genetic algorithm methods were applied to further automate the design process.
For the model-based control approach, MIMO modeling of the bearingless system was
presented. Several controllers were synthesized based on the MIMO model including
pole placement, LQR, and H∞ methods. Experimental tests were conducted to verify the
presented modeling and control approaches for the bearingless machine.

Publications I–IV concentrated on problems related to bearingless machine design. In
Publication I, the force error angle was optimized for an IPM bearingless machine by
varying the pole angle of the permanent magnets. The proposed design was scaled up
to tenfold, and the performance was analyzed in Publication II. Further minimization of
the force error angle was achieved by applying stator skew. In Publication III, a bear-
ingless motor with tooth-coil windings was considered. Different stator and rotor skew
constructions were analyzed to minimize the additional harmonics caused by the selected
winding arrangement. A design procedure that applies a genetic algorithm was proposed
in Publication IV. As the overall design problem is multivariable, a genetic algorithm
can be used to automate the process. A genetic algorithm can be applied in the predesign
phase when initial parameters are determined with an analytical approach.

In Publications V–VII, the model-based control of the IPM bearingless machine was
studied. A model-based control approach based on a rigid rotor model was introduced
for the IPM bearingless machine in Publication V. Pole placement and LQR controllers
were applied to the radial position control. The controllers were experimentally verified
by lift-up and rotation tests. In Publication VI, the rotor vibration levels were measured
and compared with an ISO standard. In this case, the LQR controller with a disturbance
estimator was used. Finally, in Publication VII, the loop-shaping H∞ robust controller
method was employed and the performance was compared with the SISO PID control
approach. A system identification method was used to experimentally determine the out-
put sensitivity of the controllers. The results were compared with the ISO standard that
defines the limits for acceptable sensitivity peaks. Furthermore, the identified plant model
was compared with the analytical model. It was found that the cross-coupling between
the same axes at different motor units is not fully described by the analytical model.
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5.1 Future study
The scope of the presented doctoral dissertation is wide, and thus, potential approaches
to future research are manifold. The focus of the future study can be divided into design-
and control-related problems. Considering the design issues of bearingless motors, as pre-
sented in the literature, many motor types can be equipped with the bearingless function.
However, for high-speed applications, the selection of suitable motor types is more lim-
ited. For high-speed applications, the most convenient types are permanent magnet and
induction motors. Permanent magnet motors have a higher efficiency; however, the me-
chanical design calls for specific attention. An induction motor is an attractive choice for
a high-speed application as the rotor can be very rigid when using a solid rotor structure
and the produced radial force is higher than with other motor types. On the other hand, the
induction motor cannot compete in efficiency, and its controllability is uncertain. How-
ever, in applications where the rotor is exposed to high temperatures, a permanent magnet
construction is not the best solution. An interesting question is: what are the limitations
for high-speed and high-power industrial bearingless machines in terms of mechanical,
thermal, electromagnetic, and control analysis?

Furthermore, magnetic levitation systems typically involve displacement sensors, which
are used to observe the rotor movement and are needed in the closed-loop control. A
synthesized controller is implemented in a control system that usually has high calculation
power. This spare calculation power with position sensor information can be used for
system diagnostics. This kind of measurement setup can be employed to estimate possible
faults in the system. Secondly, the calculation power can be used to automate the control
tuning for example by applying an adaptive control. In general, the control platform
available can be used to provide additional information about the system state and help
the user adapt to changes if necessary.
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Appendix A

Table A.1. System parameters of the 5 kW bearingless motor

Parameter Symbol Value Unit

Rated speed Ω 30 000 r/min

Rated power per motor unit P 5 kW

Resistance R 0.27 Ω

Inductance Ld 0.91 mH

Inductance Ld 0.93 mH

Rated voltage (Y) u 400 V

Rated current i 8.4 A

Coil turns per phase n 5

Pole pairs p 2

Levitation

Resistance R 0.27 Ω

Inductance Ld,q 3.27 mH

Current stiffness Ki 29 N/A

Position stiffness Kx 672 N/mm

Rated voltage (Y) u 400 V

Rated maximum current i 8 A

Coil turns per phase n 10

Pole pairs p 1

Controller parameters

Distance to sensor location c, d 211 mm

Distance to bearingless motor a, b 107.5 mm

Sampling time Ts 50 µs

Proportional gain KP 42000 A/m

Integrator gain KI 8.2·105 As/m

Derivative gain KD 103 A/ms

Filter coefficient Tf 100

Prefilter parameter wa1 150

Prefilter parameter wa2 0.1

Prefilter parameter wb 600

Prefilter parameter wc 800

Reference model bandwidth ωref 370 rad/s

Scalar gain ρ 1

Current controller bandwidth ωcc 5654.9 rad/s

Position controller bandwidth (H∞) ωpc 351.8 rad/s

Position controller bandwidth (PID) ωpc 333 rad/s
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Table A.1. (Continued)

Parameter Symbol Value Unit

Dimensions

Rotor mass m 11.65 kg

Rotor inertia J 0.232 kgm2

Stator outer diameter 150 mm

Stator inner diameter 70 mm

Rotor diameter 68.8 mm

Shaft diameter 33 mm

Shaft length 507 mm

Tooth width 5.9 mm

Air gap length s0 0.6 mm

Magnet thickness 2.5 mm

Gap width around the magnet 0.05 mm

Stack length 59 mm

Materials

Bakker/Nd-Fe-B Magnet N38SH

Lamination material SURA NO20
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Appendix B

Table B.1. Parameters of the 100 kW bearingless motor

Parameter Symbol Value Unit

Rated speed Ω 22 000 r/min

Rated power per motor unit P 50 kW

Resistance R 0.03 Ω

Rater voltage (Y) u 690 V

Rated current i 51 A

Power factor cosφ 0.95 Ω

Coil turns per phase n 32

Pole pairs p 2

Levitation

Resistance R 0.09 Ω

Current stiffness Ki 57 N/A

Position stiffness Kx 954 N/mm

Rated voltage (Y) u 400 V

Rated maximum current i 8 A

Coil turns per phase n 32

Pole pairs p 1

Dimensions

Rotor mass m 21.5 kg

Rotor inertia J 0.52 kgm2

Stator outer diameter 220 mm

Stator inner diameter 84.8 mm

Rotor diameter 83 mm

Shaft diameter 35 mm

Shaft length 649 mm

Tooth width 10 mm

Air gap length s0 0.9 mm

Magnet thickness 3.6 mm

Gap width around the magnet 0.05 mm

Stack length 72.5 mm

Materials

Hitachi/Nd-Fe-B Magnet NMX-S41EH

Lamination material SURA NO20

Slot wedge material MAGNOCAL 2067
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Appendix C
The force measurement platform to determine the radial forces acting on the rotor is
presented in Fig. C.1. Rotor position can be controlled in the air gap with stepper motors.
The smallest step size is 1.4 µm. Forces can be measured in the xyz axis. In the xy axis,
the maximum measured force is ± 1900 N with a resolution of 0.32 N. The maximum
force that can be measured in the z-axis is ± 3800 N with a resolution of 0.43 N.
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Figure C.1. Custom-made force measurement platform comprises the following compo-
nents: a) bearingless machine under investigation, b) eddy-current position measurement
sensors in the bearingless machine, c) three-axis force measurement sensor, d) linear track
where the rotor can be positioned in the xy plane, and e) stepper motors that control the
rotor position (Jaatinen et al., 2016).

Table C.1. Force measurement platform

Component Manufacturer

Industrial PC Beckhoff C6930
Analog-to-digital convecter Beckhoff EL3702
Stepper motor Beckhoff AS1060
Linear track Hiwin KK60
Force sensor ATI Industrial Automation Mini85
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Appendix D
The rotor vibration level zones and sensitivity limits are based on the ISO standard. The
zones are described as follows; Zone A is for newly commissioned system for continuous
operation, Zone B is acceptable when operating for unrestricted long time periods, Zone
C is acceptable for short time periods and when operating in Zone D may cause a damage
to the system.

Table D.1. Recommended criteria of zone limits (ISO 14839-2:2004(E), 2004).

Limit Rotor displacement Dmax

Zone A < 0.3 Cmin

Zone B < 0.4 Cmin

Zone C < 0.5 Cmin

Zone D > 0.5 Cmin

Table D.2. Recommended criteria of zone limits (ISO 14839-3:2004(E), 2004).

Limit Peak output sensitivity

Zone A/B 9.5 dB
Zone B/C 12 dB
Zone C/D 14 dB
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Abstract — Bearingless motors combine the torque generation 
of electrical motors and the radial suspension force capabilities of 
traditional magnetic bearings. The magnetomotive force (MMF) 
distribution in the motor generates radial force interference. The 
interference force affects the angle between the actual and 
desired radial force. This angle is called the force error angle. 
For stable levitation of the rotor of the bearingless motor the 
force error angle must be minimized in the design phase of the 
machine. This paper presents an optimal rotor structure for 
minimization of the error angle in a high-speed interior 
permanent magnet bearingless motor with magnets embedded in 
the rotor surface.  

I. INTRODUCTION 

Active magnetic bearing (AMB) technology has evolved in 
the past decades to become a feasible solution for high-speed 
motor applications.  Features of the AMBs are superior 
compared to traditional ball or roller bearings and other 
bearing technologies. AMBs use a magnetic field to suspend 
the rotor without any mechanical contact. This feature 
overcomes the mechanical restrictions of traditional bearings. 
Because a motor with AMBs does not need any lubrication, 
such motors are suitable for oil-free environments. Diagnostic 
and operational supervision functions can be integrated into 
the AMB system by taking advantage of the built-in position 
measurement sensors and magnetic actuators. For these 
reasons AMBs are used in many high-speed motor 
applications such as compressors, pumps and flywheel energy 
storage systems [1].  

When a rotor is equipped with AMBs the rotor length is 
increased due to the space needed for the radial and axial 
magnetic bearings. The increased rotor length lowers the rotor 
bending mode frequencies, which can cause problems if the 
bending mode frequency decreases to close to or into the 
operation region.  

Bearingless motors or self-bearing motors offer a viable 
replacement to more traditional AMB-rotor systems [2]. This 
technology combines the electrical motor and radial AMB 
properties into a one-stator structure. An additional benefit 
from using a bearingless motor construction is that standard 
three-phase inverters can be used, which leads to a reduced 
number of switching components [2]. 

Traditional motor types that can be equipped with a 
bearingless function include induction, permanent magnet, 
synchronous reluctance and switched reluctance type motors 
[2]. Induction type bearingless motor can produce higher 
radial force than surface permanent magnet bearingless 
motors. However, squirrel-cage type induction bearingless 
motors need a special type of rotor to improve the efficiency 

and radial force production capabilities [2]. The achieved 
radial force in interior permanent magnet (IPM) type 
bearingless motors is close to that of induction type motors 
[3]. No special rotor arrangements are needed with IPM 
motors. Permanent magnet type bearingless motor have a high 
power factor than in induction and reluctance motors.  
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Fig. 1. Working principle of the bearingless motor. 

II. MOTOR STRUCTURE 
The motor under study is an interior permanent magnet 

type bearingless motor with magnets embedded close to the 
rotor surface. This type of motor provides better radial force, 
mechanical strength, and demagnetization and thermal 
properties than its surface mounted magnet counterpart [4]. 
The designed bearingless motor is equipped with four non-
salient magnetic poles. Machine rated power is 5 kW and rated 
rotation speed is 30 000 r/min. The magnet poles are 
segmented into smaller pieces to gain higher mechanical 
strength against the centrifugal force and to reduce eddy 
current losses in the magnets.   

In the bearingless motor, two three-phase winding sets are 
wound on the one-stator core. The winding sets are called the 
torque and the suspension windings. To achieve the required 
levitation force, a configuration of 2-pole suspension windings 
and 4-pole motor windings was chosen. 

Figure 1 presents the working principle of the bearingless 
motor. The figure shows the flux paths of the 4-pole motor 
windings and the 2-pole suspension windings. The 2-pole flux 
produced by the suspension windings decreases the air-gap 
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flux on the left-hand side of the air-gap and increases that on 
the right-hand side. This asymmetry generates a radial force in 
a positive x-direction. Switching the polarity of the suspension 
winding current results in a change in the force direction. For 
simplicity, only U-phases are illustrated.  

X
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Fig. 2 Error angle definition.  

III. FORCE ERROR ANGLE

The rotor radial position is controlled in the xy-coordinate 
system, where the origin of the coordinate is placed at the 
geometrical center of the rotor. When controlling the rotor in a 
certain direction, for example along the x-axis, a smaller force 
is generally present also along the y-axis. This force depends 
on the rotation angle. Angle deviation between the desired and 
actual force is called the force error angle [5]. Fig. 2 illustrates 
this angle, which is presented mathematically:  

   (1) 

Misalignment between the x- and y- force components can be 
caused by eddy currents, gyroscopic effects, or permeance 
distribution and spatial space harmonics of the magnetomotive 
force (MMF) [2]. Measurement delay of the rotor position and 
calculation delay of the force command also affect the error 
angle. For this reason, the interference between the force 
components must be carefully assessed in the design phase of 
a bearingless motor. An additional benefit from minimization 
of the error angle is reduced power consumption in the 
suspension windings [6]. 

An error angle larger than 15 degrees reduces the damping 
of the rotor such that levitation is no longer possible due to 
high rotor vibration [2].  

In this work to guarantee enough damping for the rotor, the 
highest acceptable error angle was chosen in the design phase 
as five degrees.  

IV. MAGNET CONFIGURATION OPTIMIZATION

As presented in papers [5] and [6] the radial force can be 
derived from the motor MMF components using the following 
assumptions: 

1. The rotor is postitioned at the magnetic center point
of the stator

2. The radial force is generated only under the iron
poles

3. The magnetic material is linear
4. The flux flows only in the radial direction

The motor MMF components are air-gap MMF caused by 
the permanent magnets, MMF caused by the suspension 
windings and MMF due to the motor windings. In this study 
the motor current is not considered so the MMF equation can 
be simplified to: 

                 (2) 

where APM is MMF caused by air-gap flux and As is MMF 
caused by the suspension windings.  

In paper [6] magnet pole pitch was varied to minimize the 
effect of the MMF harmonic components of the suspension 
windings. It was noticed that smaller rotor pole pitch produced 
smaller error angle. In [6], the analysis was, however, based 
on the consequent pole rotor where the salient iron pole is 
between the magnets. Assumptions 2 and 3 are not valid in the 
case of IPM motors. In the prototype design there is only a 
small iron bridge because of the non-salient and segmented 
magnet rotor structure. These small bridges between the 
magnets and in the rotor surface will saturate easily. 

Due the magnetic saturation  it is more challenging to 
derive accurate analytical equations for IPM motors. The 
analysis in this paper is based only on FEM-results.  

Eight different segmented rotor structures, from 16 magnets 
to 44 magnets were used to find the most suitable magnet 
configuration. Fig. 3 illustrates the studied rotor structures. 
Using less than 16 segmented magnets is not feasible because 
of the mechanical strength requirements of the rotor at the 
nominal speed. Upper limit was determined the 
manufacturability and assembly of the magnets. 

 The presented rotor structures were studied with finite 
element analysis software to determine the optimal magnet 
configuration, segmentation and pole pitch. Only radial force 
production capability and quality were considered in the 
optimization.  Maximum suspension current was used in the 
FEM simulation. 
In earlier work related to IPM bearingless motors the total 
number of magnets was 44 magnets, embedded in the rotor 
surface [8]. The initial number of magnets was chosen as 20 in 
the machine presented in this paper. The reason for this 
selection was to gain higher air-gap flux density compared to 
the machine presented in literature. Higher air-gap flux is 
gained from the larger amount of magnet material. However, 
with 20 embedded magnets, as Fig. 4 shows, the archived 
error angle was outside the design requirements and fluctuated 
considerably.   



 

 
a) 16 magnets            b) 20 magnets 

 
c) 24 magnets           d) 28 magnets 

 
e) 32 magnets          f) 36 magnets 

 
e) 40 magnets          f) 44 magnets 

 
Fig. 3. Different magnet configurations. 
 
 

 
Fig. 4. Error angle comparison between the first four rotor configurations. 
 
Fig. 4 presents error angle waveforms of the first four rotor 
configurations, namely, 16, 20, 24 and 28 magnets. Only 
suspension currents are supplied for force generation in x-axis. 
It can be seen that the effect of the magnet configurations on 
the error angle is significant. The error angle is small in case 
of 16 magnets. The difference between the 16 and 28 magnet 
configurations is greater than 50 percent. These results 
correspond with those presented in paper [7]. Smaller magnet 
pole pitch results in smaller harmonic content in the 
suspension winding MMF.    

 
Fig. 5. Radial force waveform in x-direction   
 
 

 
Fig. 6. Radial disturbance force waveform in y-axis  
 

Fig. 5 and 6 show the force amplitude waveforms in the x- 
and y-directions, respectively. It is noteworthy that the force 
ripple in the x-direction is smallest in the case of 16 magnets 
in the rotor. The disturbance force magnitude in the y-axis is 
smallest with 16 magnets. Harmonics analyses were done for 
the x- and y-axis force components, which are presented in 
Fig. 7 and 8. The main harmonic components are the 2nd and 
4th harmonics. The slot openings cause the 12th harmonic.  
These components cause the radial force fluctation and are 
responsible for the magnitude of the disturbance force. Further 
error angle minimization is possible if special winding 
arrangements are used to compensate the highest harmonic 
components [7]. 
 Fig. 9 compares the error angle and the force ripple of all 
rotor structures considered. It can be noted that the error angle 
starts to decrease after 32 magnets. However, the force ripple 
increases. The effect for 32 or more magnets is not congruent 
with the results presented in [7]. This effect needs further 
investigation. It can be noted that the slot ripple harmomic is 
reduced. It is also understood that 44 magnets in [8] has 
reasonable low force error angle and ripple, however 16 
magnets provide better performance. 
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Fig 7. Harmonic order of the radial force x-component. 
 
 

 
 
Fig. 8. Harmonic order of the radial force y-component.  
 

 
Fig. 9.  a) Peak error angle between x- and y- axis force b) Maximum radial 

force ripple. 

V. SUSPENSION FORCE PERFORMANCE ANALYSIS 
As the FEM analysis result showed the rotor structure with 

16 magnets caused smallest error angle due to smallest 
harmonic content. Further suspension force performance 
analysis is done using this rotor structure. Motor radial force 
production was analyzed at rated torque with varied 
suspension current between 0-8A. Motor parameters are 
presented in Table I. Fig. 10 presents a comparison of the error 
angle where maximum suspension current is applied with no 
torque and at rated torque. Error angle magnitude is not 
notably affected by the torque producing current. 

Force-current linearity was analyzed for nominal torque and 
no torque.  It can be noticed in Fig. 11 that the slope changes 
as a function of the torque. This change must be taken into 
account in the controller. The force needed to lift-up the rotor 
from the back-up bearings is 215 N, including forces caused 
by gravity and the unbalance magnet pull. 

 

 
 
Fig. 10. Error angle comparison between load and no load condition.  
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This force corresponds to a 6.5A current in the suspension 
windings in the no load condition. These result shows that it is 
possible to lift up the rotor with additional 500g weight of the 
impeller wheel without over current.  Different suspension 
current values from 1 to 8 A were analyzed at rated torque, 
shown in Fig. 12. When the rotor is operating ± 50 μm from 
the magnetic center point the required suspension current is 
below 2A. The radial force produced in this situation is close 
to constant. Higher forces are only needed in the lift-up phase, 
to levitate the rotor, or in the case of external disturbance.      
 
 

 
Fig. 11. Force-current linearity at no motor current and rated operation point. 
 

 
 

Fig. 12. Radial force in the positive x-direction at rated operation point. 
 
Fig. 13 presents torque and motor current linearity with 

different suspension currents. It can be seen that the produced 
torque is not significantly affected by the suspension current.     

 
Fig. 13. Torque linearity with respect of the motor and the suspension current. 
 

TABLE I 
Motor parameters 

Motor type IPM 4-pole 3-phase 
Motor output power 5 kW 
Rated speed 30000 r/min                          
Rated torque 1.59 Nm 
Voltage 400 V 
Current 8.4 A 
Power factor 0.88 
Suspension windings 2-pole 3-phase 
Voltage 250 V 
Current 8 A 
Magnetic air gap 0.6 mm 
Mechanical air gap 0.25 mm 
Rotor outer diameter 68.8 mm 
Stator inner diameter 70 mm 
Stator outer diameter 150 mm 
Stack length 59 mm 
Magnet height 2.5 mm 
Magnet type NdFeB 
Rotor weight 5,5 kg 
Needed radial force 215 N 

 

VI. CONCLUSION 
Different rotor magnet configurations were analyzed using 

finite element analysis software. The results are plotted in Fig. 
9. The rotor structure with 16 magnets provided the best 
outcome. It can be concluded that the error angle and radial 
force ripple can be reduced by selecting the optimal number of 
segmented magnets. It was noted that special winding schemes 
are not needed to attain acceptable error angle. It was shown 
that designed bearingless motor can provided enough lift-up 
force to levitate the rotor without any problems.  

Based on the achieved results it can be concluded that it is 
important to consider the rotor structure of IPM bearingless 
motor to improve overall performance of the force production 
of the suspension windings.     

Future study will require confirmation of the FEM results 
with a prototype machine.  
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Abstract — In this work a design optimization of the high-
speed buried-type interior permanent magnet bearingless motor 
with significant power for such machines is presented. The 
geometry, windings arrangement and magnets are adjusted from 
the non-levitated motor design to avoid the significant magnetic 
saturation and achieve the performance target without oversizing 
the machine. The analytical design is optimized in finite element 
method analysis. The effect of stator skew on machine 
performance is thoroughly investigated. 

 Keywords: High-speed electrical machines, bearingless 
motor, permanent magnet motor, magnetic bearing, magnetic 
levitation, stator skew. 
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Abstract—Bearingless machine technology is well-suited for 
high-speed applications as it removes the mechanical friction by 
supporting the rotor with electromagnetic force. For electrical 
machine, which is operating in high-speed region, a short rotor 
length is beneficial to avoid the rotor vibration caused by 
structural properties of long rotor. A 6-slot tooth-coil wound 
bearingless machine is well suited for high-speed applications as 
it shortens the rotor length compared to more traditional 
distributed winding configuration. Drawback of the tooth-coil 
wound machine is the higher space harmonic content which 
decrease the radial force performance characteristics including 
ripple and disturbance forces. In this paper, the rotor skew is 
introduced to improve the radial force characteristics of IPM 
bearingless machine.   

Keywords— bearingless motor; skew; tooth-coil; PM motor; 
magnetic levitation 

I. INTRODUCTION  
Bearingless motor construction is very attractive for a high-

speed applications as it reduces the overall length of the 
machine compared to traditional magnetic bearing 
configurations [1]. High operational speeds can be achieved as 
mechanical bearings are not used, hence the rotor is levitated 
with magnetic force produced by the additional stator 
windings. Applications which are oil-free such a pressurized 
air compressors will benefit from bearing technology where 
oil-based lubricants are not needed. For example, purity classes 
of the pressurized air are described in ISO 8573 standard. In 
this standard, the amount of the oil in pressurized air is divided 
to different classes by how much oil is concentrated in air 
mg/mm3 [2].     
 In high-speed applications i.e. air compressors, a small 
axial length to rotor diameter ratio (LD ratio) is beneficial as 
the rigid rotor is less sensitive to vibrations. It is preferable to 
stay in subcritical rotational speed as it eases the control design 
and operation in the working speed. Motor winding 
arrangement has a significant part to LD ratio. Previously, 
tooth-coil winding arrangement have been compared to more 
traditional distributed winding configuration [3]. Bearingless 
machine with distributed and tooth-coil windings are compared 
in Fig. 1. It is very evident that tooth-coil structure reduced the 
LD ratio significantly. Additionally shorter rotor structure 
reduces weight of the rotor and the foot print of the overall 
machine. Drawback of the tooth-coil winding structure is the 
higher space harmonic content which reduces radial force 

characteristics by increasing the radial force ripple and force 
error angle [1]. Applying skew in the motor is well known 
method to improve torque ripple in surface and interior 
permanent magnet machine by reducing the effect of the 
harmonics [6]-[8]. This far, the skew has been used in 
bearingless machine to reduce the torque ripple [5]. In this 
paper, the feasibility of applying skew in the interior 
permanent magnet (IPM) bearingless machine to improve 
radial force characteristics is evaluated. Rotor skew is 
considered as the most suitable choice as the magnets will be 
segmented also axially to reduce the eddy current losses. It also 
helps the winding work as the stator is not skewed. Continuous 
skew is used as a reference in analysis. Using rotor skew to 
improve radial force characteristics is proposed and analyzed. 

II. RESEARCH PROBLEM 

A. Descripion of machine under investigation 
Bearingless motor under investigation is constructed with 

two separated winding layers for producing torque and radial 
force. Bearingless machine consist of two motor units to 
produce torque and radial force together with axial bearing to 
create force in axial direction. With this configuration rotor 
position can be controlled in 5-degrees of freedom. Fig. 1a 
shows a rotor structure of laboratory prototype machine with 
distributed windings. Machine under analysis with tooth-coil 
windings is shown in Fig. 1b. Cross-sectional view of the rotor 
and stator is illustrated in Fig. 2 Same IPM rotor structure is 
used in both machines. Machine parameters can be found in 
Table 1. Minimum winding construction to reduced iron losses 
for high-speed bearingless machine is 2-pole and 4-pole 
windings [3]. In this case the motor windings are 4-pole and 
the levitation windings are 2-pole. This structure was chosen to 
have the smaller radial force ripple compared to the case where 
levitation winding is 4-pole [9]. 

B. Reduction of machine axial length 
 Cross-sectional view of the both machines and stator 

stacks can be found in Fig. 1-2.  Using distributed winding 
construction increases the total machine length hence the end 
windings are long compared to the stator stack. Long machine 
structure lowers the bending mode frequencies of the rotor. 
This sets extra demands to control the machine when compared 
to the rigid rotor. By using the tooth-coil winding construction, 
axial length can be reduced significantly, which can be seen in 
Fig. 1. The LD ratio of distributed wound machine is 7.369 and 
for the tooth-coil wound machine it is 5.392. By using the 
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a) 

            
b) 

Fig. 2. Cross-section view of the rotor and stator from the end point of the 
rotor. Upper drawing (a), shows a distibuted wound machine. Torque 
producing windings are two-layers short pitched. Lower drawing (b), shows a 
tooth-coil wound machine. Both machines uses the same rotor stucture with 
embedded magnets.  

 
            a) 

 
b) 

1. Cross-section view of the distibuted a) and tooth-coil b) wound bearingless machine. Componets in the rotor system are; (1) rotor position measurement 
surface in radial and axial, (2) rotor active part with embedded magnets, (3) stator of the motor unit and (4) axial bearing to control the rotor position in axial 
direction. 

tooth-coil wound machine the LD ratio is reduced 26.8 percent. 
Reduced axial length also decreases the weight of the rotor. 
This reduction of mass from the rotor decreases the power 
needed to levitate the rotor in a steady-state situation.  

C. Error angle of radial force 
In the ideal case, the radial force produced by levitation 

windings would be ripple free with no external disturbances. 
However, in reality the produced force is affected by the space 
harmonics caused by windings together with shape of stator 
and rotor dimensions. The harmonic content generates ripple to 
the radial force. Additionally, unwanted disturbance force 
vector is appearing from ±90 degrees from target force vector. 
Effect of the harmonics can be seen in Fig. 3a, where radial 
force is generated in x-direction. There is also a y-axis 
disturbance force vector present. Angle between the target and 
the disturbance force vector is called the force error angle. This 
error angle and related force vectors are illustrated in Fig. 3b. If 
the error angle is greater than 17 degrees the phase margin of 
the closed-loop system is reaching to -180 dB which leads to 
unstable system [1]. From the same analysis, we can find that 
less than 5-degree error angle is not significantly affecting to 
the phase margin.     
 The error angle should be minimized in the machine design 
phase. After manufacturing, the force error angle can get worse 
because the delays in the system. Harmonic content in the air-
gap can be optimized for example by rotor design [3], where 

(3) 

(3) (3) 

(3) (4) 

(4) 

(2) (2) 

(2) (2) 

(1) 

(1) (1) 

(1) 
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a) 

 
b) 

Fig. 4. Step skew in IPM type rotor. To simplify the figure rotor lamination 
material is only shown in front of the active part. (a-b) Shows a rotor active 
part with 3 and 5 step skew, respecitvely.     

by varying the angle of magnets the minimum point is 
searched. Same method is used in the test case. Maximum error 
angle between the forces is presented in Fig. 3a for the tooth-
coil configuration. Value of the error angle is 7.8 degrees. This 
means that further optimization is necessary to guarantee the 
controllability of bearingless motor.   

III.  STEP SKEW 
 To improve the radial force characteristics of the tooth-coil 
wound machine, several step skew configurations in function 
of skew angle are compared. Step skew means the rotor skew 
is axially divided to steps. These steps are positioned in 
different angles so that they create a discrete skew. Fig. 4 
shows a practical implementation of 3 and 5 step rotor skew. 
Similar structure has been used in [6], [7]. Step skew from 2 to 
5 steps and continuous skew are compared how they affect to 
torque and force characteristics of the machine. Continuous 
skew is used as a reference and it is practically implemented as 
a stator skew.  

A. Calculating the skew 
Effect of the skew were simulated by 2-dimensional FEM 

using a commercial software JMAG 2015.1. Rotor initial angle 
were changed from 0 to ± 30 degrees for generating cut-planes 
to calculate the effect of the skew. Rotor initial angle were 
changed with 0.5 degree steps (Fig. 5). In every simulation 
rotor were rotated 180 degrees to get torque and force curve in 
current operation point. Effect of the continuous skew were 
calculated taking an average value from torque or force vector 
in range of skew angle. For example, vector f as in (1), is 
describing force during simulation when rotor is rotated 0 to 
180 mechanical degrees, 

,... 121 jj fffff  (1) 

where j is the rotated rotor angle. Continuous skew is 
calculated by 

,
12

1 n

nk
kf

n
 (2) 

where n is the rotor initial angle from zero degrees to describe 
the skew and f is the force or torque vector.  The effect of the 
step skews was calculated with (3-6). These average equations 
are applied to calculate every even skew angle n, from 0 to +-
30 degrees. 
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a)                                                                                                  b) 

Fig. 3. Produced radial force in x-direction with unwanted force in y-dircetion, Ilevitation = 8 A rms (a). Illustration of force error angle (b). 

(

(



 
 
 

0⁰ 
+n-n

 

Fig. 5. In 2d FEM anlysis, the initial angle of the rotor is changed from -30 to 
30 degrees with 0.5 degree steps. 

 
a) 

 
b) 

Fig. 6. Torque ripple at the nominal point as a function of skew angle with 
rated Imotor = 8.4 A rms in motor windings and  Ilevitation = 0 A rms in suspension 
windings (a). Torque ripple with rated Imotor = 8.4 A rms in motor winding and 
maximum Ilevitation = 8 A rms in suspension windings (b).   

 

 

 

 

 

 

IV. SIMULATION RESULTS 
Effect of the skew is presented based on the results 

obtained from 2D-FEM and analytical equations. Five different 
cases are plotted with two different conditions. These cases 
will plot torque ripple, reduction of average torque, force 
ripple, reduction of average force and force error angle in 
function of skew angle. Each of five cases is studied for two 
different conditions: (a) and (b), which are presented in figures. 
Condition (a) shows only generated torque or force. Condition 
(b) shows a rated torque together with the maximum force at 
the same time. Condition (b) can be considered as a worst-case 
scenario where full radial force is applied under full load of the 
motor. Skew angle is plotted till 60 degrees, which is the slot 
pitch angle in the tooth-coil machine.  

A. Results of torque production 
Torque ripple is presented in Fig. 6 and it can be seen that 
continuous skew provides the best reduction in function of 
skew angle. As motor is more saturated in full-load condition 
torque ripple is increased which is seen in Fig. 6b. The step 
skew is effective to reduce torque ripple only till a certain 
point. As an example, in the case of 2-step skew after 26-
degree skew angle the torque ripple is amplified. It is clear that 
this is the limiting factor of small step skew. Applying 
continuous skew provides smallest reduction of average torque 
and average force as a function of skew angle (Fig. 7). 

B. Results of force production 
Force ripple is presented in Fig. 8a with only force 

generating condition and it can be noted that the skew is not 
very effective until 22 degrees. With full-load condition, force 
ripple reduction is in the same range but due to saturation 
effects, average force ripple have been increased eight percent 
(Fig. 8b). Reduction of the average force is following the same 
pattern as torque curve as seen in Fig 9. However, it seems that 
less force is lost during the full-load condition. In full-load 
condition the produced average force is also increased which is 
the reason of smaller force reduction. 
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a)                                                                                                                       b) 

Fig. 8. Maximum force ripple Ilevitaion = 8 A rms as a function of skew angle with no current Imotor = 0 A in motor windings (a) and nominal current Imotor = 8.4 A 
rms in motor windings (b).   

            
a)                                                                                                                       b) 

Fig. 9. Radial force reduction at maximum force Ilevitation = 8 A  as a function of skew angle with no current Imotor = 0 A in motor windings (a) and nominal current 
Imotor = 8.4 A in motor windings (b).   

            
a)                                                                                                                       b) 

Fig. 7. Torque reduction at nominal point Imotor = 8.4 A rms as a function of skew angle with no current in suspension windings Ilevitaion = 0 A rms (a) and maximum 
current Ilevitaition = 8 A rms in suspension windings (b).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

a) 

b) 

Fig. 10. Force error angle at maximum radial force Ilevitaion = 8 A as a function 
of skew angle with no current Imotor = 0 A in motor windings (a) and nominal 
current Imotor = 8 A in motor windings (b).   

C. Results of force error angle 
Force error angle is analyzed by generating radial force in 

x-direction and determining the angle between x-axis force and 
disturbance force in y-axis. Condition where only suspension 
current is present is shown in Fig. 10a. The skew angle is 
starting to be effective not until 24 degrees. In full-load 
condition the force error angle is over targeted maximum of 5 
degrees. Error angle is still acceptable for the worst-case 
situation, i.e. it is still far from unstable point when 30-degree 
skew angle is applied. Applying 30-degree skew is a half of the 
one slot pitch.   

 
 
 
 
 
 
 
 

TABLE I.  MOTOR PARAMETERS 

Symbol 
Parameters 

Parameter Distributed Tooth-coil 

P 
Output power per motor unit, 
kw 5 kW 5 kW 

nn Rated speed, r/min 30000 30000 

Tn Rated torque, Nm 1.59 1.59 

Qs Number of stator slots 24 6 

p Number of poles 4 4 

Um Voltage in motor widings, V 400 400 

Ul 
Voltage in levitation 
winding, V 400 400 

Im Current in motor windings, A 8.4 8.4 

Il 
Maximum current in 
levitation winding, A 8 8 

Ds Stator outer diameter, mm 150 150 

Dr Rotor outer diamteer, mm 70 70 

 Air gap length, mm 0.6 0.6 

l Stator stack length, mm 60 61 

Br 
Permanent magnet 
remanence, T  1.24 1.24 

 Lamination material NO20 NO20 

 

V. CONCLUSIONS 
In this paper, aspects of tooth-coil wound bearingless 

machine for high-speed applications are considered. Short rotor 
structure permits to operate in high-speed region with 
subcritical rotor.  However, due to higher space harmonic 
content in the tooth-coil wound machine, the radial force 
production performance is decreased when considering radial 
force ripple and force error angle. To improve radial force 
production performance, stator and rotor skew have been 
analyzed. Results shows that by applying skew angle of 30 to 
32 degrees the error angle can be decrease in acceptable level 
when using 2 or 3-step skew.  In the worst-case scenario when 
the full radial force is provided under nominal loading of the 
motor, force error angle is over target value but still in the 
acceptable region. Rotor skew divided in 3-steps provides 
better overall performance thus it reduces also the torque ripple 
when 30 degrees skew angle is applied. Naturally the 
application dictates the need of torque ripple reduction. In the 
case of air-compressor application the torque ripple reduction 
is not as important because it is filtered by the inertia of rotor 
system.  It can be concluded that skew can be used to improve 
torque and radial force ripple with force error angle. However, 
the average torque and force production is reduced in function 
of the skew angle. Applying rotor skew in tooth-coil wound 
machine will permit to use this kind of machine structure in 
high-speed applications.  
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Abstract— Bearingless motors combine torque generation 
and suspension force capabilities into one electromagnetic 
actuator. However, design optimization of bearingless motors is 
more complex than with traditional motor structures. The 
combined levitation and motoring performance cannot be 
quickly evaluated by using Computer Aided Design (CAD) tools 
applied in traditional motor designs. This work proposes a 
bearingless motor design chain. The initial dimensions of the test 
case motor are iteratively derived. The levitation performance 
is verified by using a lumped parameter model. The fine tuning 
of the rotor geometry is carried out by using the Finite Element 
Method (FEM). The objectives for the FEM optimization are a 
minimum torque ripple, minimum levitation force variations, 
and maximum torque and force capacities. Finally, 
experimental force angle measurements of a manufactured test 
case machine with a unique method are provided. Application 
of differential evolution is presented and discussed in both 
analytical and in FEM design steps. 

Keywords — genetic algorithm, differential evolution, 
bearingless motor, electromagnetic design, magnetic levitation, 
design optimization, force measurement. 

I. INTRODUCTION 
Magnetically levitated rotors have been applied for very 

demanding and special applications in place of traditional 
mechanical and oil-film bearing solutions. In such 
applications as pumps, fans, turbines, and compressors, high-
speed magnetically levitated rotors have commonly 
employed active magnetic bearings (AMBs). The AMBs 
allow very low friction without oil, but the system suffers 
from increased overall complexity, additional cost, and a 
longer rotor. The bearingless motors combine the 
motor/generator and the magnetic levitation functionality 
into a single actuator. This reduces component count, 
machine footprint, rotor length, and cost. Additionally, all 
benefits of active control and measurement system inherent 
in AMBs, such as active vibration damping, monitoring, and 
diagnostics capabilities, are available. Admittedly, the 
machine design becomes more challenging than for separate 
motor and AMBs. This, in particular, has been limiting the 
applications to lower power machines. 

Analytical CAD software tools for motor/generator 
optimization have been assisting engineers in initial sizing of 
the machines and in preliminary optimization of the design 
features for a few decades already [1]. The examples include 
a variety of academic and open code design methods, such as 
Mathcad®-based programs [2] and complex commercial 
tools, for example, SPEED™ software [3], [2]. Similarly, the 

AMB design can be facilitated with analytical design 
automation tools [4]. However, an increase in the popularity 
of bearingless motors is impeded by the fact that their 
levitation performance [5] cannot be evaluated 
straightforwardly in the design phase by using the tools 
currently available. Nowadays, finite element method (FEM) 
tools allow accurate prediction of torque ripple, efficiency, 
and effective fine-tuning of the motor design in different 
conditions. Nevertheless, the FEM-based design is time 
consuming. The optimization process requires experience 
and appropriate initial sizing and initial geometry of the 
machine. For bearingless motors, the optimization objectives 
are different than in the case of regular motor designs. For a 
radial bearingless motor, the design feasibility is determined 
by how well the magnetic force vector can be controlled in 
the x- and y-directions. For example, when controlling the 
force acting on the rotor in the x-direction, also a smaller 
unwanted force is generated in the y-direction. Minimization 
of variations in the force angle with the angular rotor position, 
referred to as force error angle, is the major design objective. 
Other objectives include force capacity and amplitude 
variations. Different optimization tools can alleviate the time-
consuming design process. Genetic algorithms (GA) provide 
a proven framework for the electromagnetic design of active 
magnetic bearings [6], [7], control tuning for magnetically 
levitated systems [8], and permanent magnet (PM) motor 
designs [9], [10], [11], [12]. 

This paper presents a design chain for PM type bearingless 
motors. Custom analytical predesign tools and FEM GA 
optimization are evaluated. The feasibility of various methods 
is discussed. Surface PM (SPM) motors and interior PM 
motors (IPM) with multilayer short-pitch coils are considered. 
The constrained problem of minimizing magnetic force errors 
(angle and amplitude variations), maximizing torque and 
absolute force amplitude, maximizing efficiency, and 
minimizing torque variations in a PM bearingless motor 
design is addressed. The proposed design chain comprises an 
analytical motor predesign part, a levitation verification part, 
which focuses on the prediction of force variations, and the 
FEM optimization. The bearingless machine under design 
consists of two motor/levitation units together with an axial 
magnetic bearing [13]. With this setup, the rotor position can 
be controlled in the air gap in 5-degrees-of freedom. Torque is 
produced with both motor units. A unique force measurement 
rig is used for the evaluation of the FEM- and analytical-
estimated force error angles in the test case IPM bearingless 
machine. 
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II. ANALYTICAL OPTIMIZATION OF THE MOTOR 
The initial dimensioning of the machine can be performed 

analytically. This significantly reduces the computation and 
design times of the FEM-based optimization, which is only 
used for the fine-tuning and final verification of the design 
performance. The overall flowchart of the proposed 
optimization chain is shown in Fig. 1. Differential evolution 
(DE) is applied in the analytical predesign stage and in the 
FEM optimization. 

A. DE algorithm 
The initial steps in the analytical bearingless machine 

design are similar to those available for standard electrical 
machines. Here, the analytical method as in [2] is transcribed 
into MATLAB® and executed using a differential evolution-
based GA framework [14]. 

First, we select the preliminary design constrains, such as 
materials, nominal torque, nominal speed, number of slots 
and poles, and geometry type. The algorithm amends the 
motor windings with the levitation windings according to the 
required force capacity. Second, the genetic optimization 
solves the motor dimensions for optimal efficiency and 
constrained material volumes. 

A DE/best/1/bin DE algorithm is applied as the 
optimization tool. Das and Suganthan [15] in the survey of 
different methods point to DE/best/1/bin algorithm (using 
always the best solution to find search directions and 
binomial crossover) as the most competitive scheme, 
regardless the characteristics of the problems. This algorithm 
reduces the convergence time compared to classical DE 
scheme. The framework applies the population  that 
contains parameter vectors under optimization. Index j, refers 
to amount of the parameters. Index i, indicates population 
length; and g refers to number of generation. Initially, 
parameters of the first generation are randomly created with 
upper and lower bounds. The mutant vector  is created 
from combination of three different vectors. First, the best 
suitable vector  is selected based on the objective 
function f. Two randomly selected vectors  are subtracted 
and scaled by the scale factor Fj. Traditional DE algorithm 
uses the scalar scale factor F. This method uses the random 
uniformly distributed scale factor Fj for every parameter. 

  (1) 

  (2) 

The trial vector  is selected using the cross over (CR) 
term, which controls DE and a probability to inherit mutant 
vector properties to the trial vector. 

  (3) 

 (4) 

Initialization
Set design parameters and constraints: air gap length, ratio of core 

length, diameters, permanent-magnet-induced voltage, tangential stress 
in the air gap, peak flux densities, slot dimensions, parameters limits.

Pre-motor design
Analytical optimization (DE)

FEM-design fine tuning (GA)

Analytical magnetic 
levitation verification

(RN model)

No

Yes

Evaluate levitation
performance

Yes

Evaluate based on
torque and force

variations and capacities

Optimal design

No

No

Yes

Evaluate based
on efficiency and

physical constraints

 
Fig. 1. Flowchart of the motor and levitation function optimization chain. 
Differential evolution (DE) is applied in the preliminary analytical motor 
design, in analytical magnetic levitation verification using reluctance 
network (RN) and in the FEM fine-tuning of the rotor geometry. 
 

In the last phase the algorithm selects suitable vector 
determining whether the trial vector survives to the next 
generation (or if the target is retained in the population) based 
on objective function. Objective function uses the mean 
square error to evaluate the fitness of parameter vectors under 
optimization. 

B. Evolutionary optimization of motoring function 
The set of design parameters is constrained by the upper 

and lower limits. The optimized analytical design parameters 
include air-gap length, ratio of equivalent core (machine) 
length and air-gap diameter, permanent-magnet-induced 
voltage, tangential stress in the air gap, peak flux densities in 
the iron stator (rotor) yokes, peak flux density in the tooth, 
and slot dimensions. Additionally, the maximum stator and 
rotor diameters are limited by the mechanical constrains. The 
motor efficiency without turned-on levitation is directly taken 
as an objective function. Fig. 2 shows results of optimization 
of 4-pole 5kW SPM motor. The maximum efficiency is 
reached by individuals with the permanent-magnet-induced 
voltage of about 222 V. The red stars in different figures 
represent the result of the best parameter vector. The 
optimum cases are for the lowest peak flux densities in the 
stator yoke but for a wide range of peak flux density values 
in the rotor yoke (Fig. 3ab). The optimal range of flux 
densities in the tooth is between 1 T and 1.2 T (Fig. 4). 
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With maximum efficiency, the maximum values of 
tangential stresses are reached (Fig. 5). The analytical script 
can very quickly iterate on hundreds of motor designs for the 
specified parameter ranges and roughly estimate their 
efficiency. 

The evolutionary optimization speeds up the process of 
achieving optimal initial dimensions of the potentially most 
efficient motor for the required torque, speed, and air gap. 

 

 
Fig. 2. Analytically estimated efficiency for different design cases as a 
function of permanent-magnet-induced voltage. The red star indicates the 
optimal design case from the last generation. 
 

 

 
Fig. 3. Analytically estimated efficiency for different design cases as a 
function of peak flux densities in the stator yoke (a) Bys and the rotor yoke 
(b) Byr. The red star indicates the optimal design case from the last 
generation. 

 

 
Fig. 4. Analytically estimated efficiency for different design cases as a 
function of peak flux density in the tooth Bdapp. The red star indicates the 
optimal design. 

 

 
Fig. 5. Analytically estimated efficiency for different design cases as a 
function of assumed tangential stress Ftan. The red star indicates the optimal 
design case. 

III. ANALYTICAL VERIFICATION OF LEVITATION 
The motor geometry has to be optimized not only from 

the torque production and efficiency perspective but also 
from the viewpoint of magnetic levitation. The required force 
capacity has to be ensured. The most important objective with 
respect to the feasibility of controlling the levitation forces is 
minimization of the force error angle. 

A. Force error angle 
A single unit of the bearingless motor is assumed to 

control the rotor radial position in the xy coordinate system. 
The origin of the coordinate is placed at the geometrical 
center of the rotor. The angle deviation between the desired 
and the actual force can be computed from the force x and y 
vector components 

  (5) 

For the rotor rotating about its principal axis of inertia, the 
force error angle is caused by permeance distribution and the 
spatial space harmonics of the (magnets and coils) 
magnetomotive force (MMF) [5], [16], [17]. In practice, force 
variations and their measurements are also affected by eddy 
currents, gyroscopic effects, delay of rotor position, and 
calculation delay of the force command. Minimization of the 
error angle results in reduced power consumption in the 
levitation windings [17]. For error angles larger than 15 
degrees, damping of the rotor vibrations and levitation are no 
longer feasible [5]. 

B. Analytical verification of levitation forces 
In this work, the performance characteristic, such as force 

capacity and force variations, are computed using a simple 
lumped parameter reluctance network (RN) model. The basic 
RN is similar to a distributed network [5]. It comprises 
reluctances of the stator and rotor branches dependent on the 
geometry, and air gap. The reluctances vary with angular 
positions. No leakage fluxes are assumed. The reluctances ℜj 
of the air gaps and the initial volume reluctances of the iron 
are 

  (6) 

where lj, μj, and Sj are the length, relative permeability, and 
area of the jth element. The air-gap relative permeability is 
assumed to be one. μ0 is the relative permeability of vacuum. 
The generalized equation set for the loop fluxes ml and the 
branch fluxes m can be expressed as 

  (7) 

where ℜ, T, N, and i are the diagonal reluctance matrix, the 
loop set matrix that relates the branch fluxes to the loop 
fluxes, the linkage matrix, and the vector of coil currents, 
respectively. The force vector acting on the rotor is computed 
using the principles of virtual work with respect to the virtual 
displacement vector x 

  (8) 

Based on the idealized flux distribution, the force 
amplitude, ripple, and angle can be predicted for various rotor 
and stator geometries, winding skew and distribution, and 
different motor and levitation currents. On one hand, in 
Matlab sript, a considerably greater flexibility can be 
achieved for example in testing of the effects of current ripple 
or when using the model for control verification purposes. On 
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the other hand, compared with the FEM, the accuracy is 
significantly limited especially for IPM rotor geometries with 
thin iron bridges, which experience local strong saturation 
points [13], [18]. 

In Figs. 6 and 8 the RN obtained flux densities are 
presented for stand-still rotor at initial position. When 
rotating, the MMFs and reluctances are updated in time. This 
changes flux distribution and causes force variations. In Figs. 
7 and 9 the corresponding average forces are shown during 
one rotor revolution. The closest RN results to the FEM ones 
are achieved for the SPM rotor (Fig. 6–9). 

For the IPM rotor, the force amplitudes computed with 
the basic RN model presented here differ considerably from 
the FEM obtained values (Fig. 11). 

Apart from the force capacity verification, the RN can 
also be applied for prediction of errors in the generated 
levitation force vector as well as tuning of pole pitch and 
height, segmentation of PMs, and skew in terms of 
conductors in a slot in multilayer windings (similarly to 
FEM). Both the motor and levitation windings can have a step 
shortening [2]. The RN script copies the initial parameters 
from the motor design part to form stator and rotor reluctance 
maps, the rotor PM magneto-motive force (MMF), the 
torque-producing winding MMF, and the force-producing 
winding MMF. 

 
Fig. 6. Magnetic flux density B as a function of angle in the air gap of the 4-
pole 5 kW SPM test case bearingless motor for the motor current peak 
amplitude im= 0.667 A and the levitation current peak amplitude is= 3 A. 
 

 
Fig. 7. Magnetic forces (a) fx (b) fy, for the motor current peak amplitude im 

= 0.667 A and the levitation current peak amplitude is = 3 A in the 4-pole 5 
kW SPM test case motor. 
 

 
Fig. 8. Magnetic flux density in the air gap Bair of the 4-pole 5 kW SPM test 
case bearingless motor for the motor current amplitude im= 12 A and the 
levitation current amplitude is = 8 A. 

 
Fig. 9. Magnetic forces (a) fx (b) fy, for the motor current peak amplitude im 
= 12 A and the levitation current peak amplitude is = 8 A in the 4-pole 5 kW 
SPM test case motor. 
 

 
Fig. 10. Magnetic flux density in the air gap Bair of the 4-pole 5kW IPM test 
case bearingless motor for the motor current peak amplitude im = 12 A and 
the levitation current peak amplitude is = 8 A. 
 

After solving for the magnetic flux density in the air gap, 
the script estimates the magnetic forces and their variations 
with respect to rotor position and time. 

Fig. 6, Fig. 8, and Fig. 10 present a comparison of the 
magnetic flux density in the middle of the air gap of the test 
case machine of 5 kW at 30000 r/min in selected working 
conditions. The results are equivalent in terms of accuracy 
with respect to the FEM for the upscale 50 kW machine [18]. 
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The predicted forces and their variations are different from 
the FEM results, particularly for the IPM rotor geometry. The 
errors increase for the higher flux values. The more dense and 
complex RN should be implemented where slot leakage 
would be modelled. Fig. 12 and Fig. 13 compare the force 
error angle and force amplitude variations for the FEM and 
the RN depending on the magnet angle. The magnet angle 
defines the width of the surface-mounted or inner-mounted 
PMs. 

A correlation is seen between the minima and graph 
shapes; however, in general, the levitation performance 
indices predicted by the basic RN are different from the ones 
obtained by the FEM. Fig. 13 shows the RN limitation as 
there is no difference for the performance indices of the 
loaded and the unloaded machine computed by the RN, which 
is not the case in the FEM. 
 

 
Fig. 11. Magnetic forces (a) fx (b) fy, for the motor current amplitude im = 12 
A and the levitation current amplitude is = 8 A in the 4-pole 5 kW IPM test 
case motor. 
 

 
Fig. 12. FEM results for SPM motor for different motor currents and 
levitation currents: (a) Maximum levitation force error angle as a function of 
magnet angle for a fixed initial magnet thickness. (b) Maximum levitation 
force amplitude error as a function of magnet angle. 

 
Fig. 13. RN results for SPM motor for different motor currents and levitation 
currents: (a) Maximum levitation force error angle as a function of magnet 
angle for a fixed magnet thickness. (b) Maximum levitation force amplitude 
error as a function of magnet angle. 
 

IV. FEM DESIGN OF THE TEST MACHINE 
The analytically designed SPM and IPM bearingless 

motors are evaluated in the FEM. The 5 kW machine is 
considered as a test case, but upscaling to 50 kW is also 
possible [18]. 

Fig. 14 and Fig. 15 show the geometries and flux 
distributions of the SPM and IPM machines, respectively. 
The IPM machine has been fine-tuned in the FEM by 
manually iterating the initial dimensions obtained from the 
analytical method. Different numbers of equally dimensioned 
magnet fragments have been studied with respect to 
minimizing the force error angle [13]. In the case of the SPM, 
the geometry parametrization is significantly easier, and 
therefore, the GA optimization has been applied. 

 

  
Fig. 14. Magnetic flux density contour and flux lines for the motor current 
amplitude im = 12 A and the levitation current amplitude is = 8 A in the 4-
pole 5 kW SPM test case motor. The carbon band of 2.5 mm (not shown) 
retains the magnets and a magnetic air gap of 0.6 mm. 
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Fig. 15. Magnetic flux density contour and flux lines for the motor current 
amplitude im = 12 A and the levitation current amplitude is = 8 A in the 4-
pole 5 kW IPM test case motor. 

 
In the FEM optimization, a single-objective GA is applied 

similarly to the analytical optimization in the predesign of the 
motor. A single fitness function  that maps the chromosomes 
into the fitness values comprises three subfunctions n each 
multiplied by the predefined weight wn 

  (9) 

where N equals the number of objective subfunctions. The 
design objectives are: the force amplitude ripple dfy scaled by 
the average absolute force (corresponding to error angle for 
small y-force variations as verified in Fig. 12 and Fig. 16), the 
force amplitude error dfx scaled by the average absolute force, 
and the torque ripple scaled by the average torque. By 
demanding the force vector in the x-direction the computation 
of the objective subfunctions is simplified. The importance of 
the error angle is stressed with the five times as high weight 
as for the other subfunctions. Additionally, the mean nominal 
force amplitude and the average nominal torque should be 
greater than or equal to the force and torque obtained from 
the initial case. For fast computation, only the magnet 
thickness and the magnet angle are varied in the optimization 
with the rest of the geometry remaining fixed. The 
optimization uses nominal speed, torque, and maximum force 
command in the x-direction. Fig. 17 shows the evolution of 
the performance objective subfunctions during ten 
generations of cases. The optimized geometry is shown in 
Fig. 14. 

 
Fig. 16. FEM results for the SPM motor for different motor currents and 
levitation currents for a scenario where the force command in the x-direction 
is executed. The force amplitude is 100 N during the test. 
(a) Range of change of fy (corresponding to the force error angle from Fig. 
11a as a function of magnet angle. (b) Range of change of fx (corresponding 
to the force amplitude error from Fig. 11b as a function of magnet angle. 
 

 
Fig. 17. Response graphs from the FEM optimization of SPM 5 kW 30000 
r/min motor. (a) Force amplitude ripple dfx scaled by the absolute force value. 
(b) Force amplitude ripple dfy scaled by the absolute force value. (c) Torque 
ripple dT scaled by the absolute torque value. 

V. EXPERIMENTAL RESULTS 

A. Custom-built force measurement rig 
The radial force production capabilities of the designed 

IPM bearingless motor are validated by a special custom-built 
measurement rig presented in Fig. 18. This identification rig 
consists of two xy-axis linear tracks. The linear track mover 
position is controlled with Beckhoff stepper motors. Both 
sides are equipped with a force sensor. The rotor ends of the 
machine under identification are connected to the 
measurement sensors so that the force applied to the rotor can 
be measured for different positions in the air gap. 

The main components of the identification rig are listed 
in Table I. The rotor can be moved inside the air gap with the 
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smallest discrete step of 1.3 μm when micro stepping is 
applied in the stepper motors. The sensors measure force and 
torque on the xyz axes. The resolution of the force 
measurement on the xy axes is 0.32 N in the range of ±1900 
N. The measurement bandwidth is 5 kHz. The force sensor 
self-resonance is 2400 Hz on the xy axes and 3100 Hz on the 
z-axis. 

The mechanical bearings are placed between the force 
sensors and the rotor enabling rotation during an 
identification process. 

B. Measurement results 
The prototype machine consists of two identical 

bearingless motors, which enable control of the rotor 
movement in the xy directions and tilting about the xy axes. 
The z-direction movement is controlled by a classical axial 
AMB. The force capacity and force variations of the 
bearingless motors are validated against the FEM model. The 
right-hand side of the prototype machine unit, which is shown 
in Fig. 18, is referred here as the drive end (D-end) because 
of the assumed connection to the driving/driven 
turbine/compressor wheel, and the other side is referred as the 
non-drive end (ND-end). 

The capability of measuring the radial force can be used 
to verify the unbalance magnetic pull caused by the magnets 
embedded in the rotor, the radial force-producing capacity as 
a function of supplied levitation current, and the force error 
angle as a function of rotor mechanical angle. In order to be 
able to measure these parameters, the rotor must be moved to 
a reference position where the magnetic field caused by the 
PMs is uniform. This point is referred to as a magnetic center. 
The magnetic center is identified by the force feedback from 
the sensors so that the force on the xy axes is zero when the 
gravity effect is taken into account. 

The unbalance magnetic pull caused by the magnets is 
measured by moving the rotor on the x-axis and measuring 
the corresponding force. This parameter is required in the 
control synthesis; it is also called ‘position stiffness’ in AMB 
applications, abbreviated generally as kx. Fig. 19 shows that 
there is a slight variation between the FEM result and the 
measurement from the D-end of the machine. 

The radial force-producing capacity as a function of 
supplying current in the levitation windings is the second 
parameter needed in the control synthesis. This parameter is 
also called ‘current stiffness,’ generally denoted by ki. The 
measurement is carried out by supplying a q-axis current into 
the levitation windings. The rotor is positioned so that the d-
axis of the magnets is aligned with the x-axis of the stator. In 
this position, the d-axis current with a zero current vector 
angle in the levitation windings provides force on the y-axis, 
and thus, a q-axis current provides force in the x-axis 
direction.  Fig. 20 depicts the measured force as a function of 
levitation current. Both the D-end and the ND-end are 
compared with the FEM simulation results. There are only 
small variations between the lines. 

One of the most important aspects in the bearingless 

motor design is the minimization of the force error angle. 
Force error angle is measured by providing current in the 
levitation windings and changing the angle of the rotor. At 
the same time, a current vector angle in the levitation 
windings must be changed in relation to the rotor angular 
position to keep the constant force direction relative to the 
stator. A mechanical bearing between the rotor and the force 
measurement sensor causes displacement error in the xy plane 
when the rotor angle is changed. For this reason, the magnetic 
center must be searched every time the rotor angle is changed. 
The measured force error angle from the both ends of the 
machine is shown in Fig. 21. It is clear that there is a 
difference between the FEM and the measured error angle. 
However, the measured error angle curves are following the 
FEM curve pattern. 

 

 
Fig. 18.  Photograph of the experimental measurement setup. It consists of a 
bearingless machine and an external identification rig (a) Bearingless 
machine under force identification test. (b) Beckhoff stepper motor 
connected to a linear track. (c) Three degrees-of-freedom force measurement 
sensor 
 

 
Fig. 19.  Unbalance magnetic pull caused by the magnets embedded in the 
rotor. The measured force is compared with the FEM simulation result. 
 

 
Fig. 20.  Produced radial force on the x-axis as a function of current in the 
levitation windings. The motor windings are not under load. 
 

TABLE I COMPONENTS OF IDENTIFICATION RIG 

Component Type Manufacturer 

Stepper motor AS1060 Beckhoff 
Linear track KK60 Hiwin
Force sensor Mini85 ATI Industrial Automation 
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Fig. 21.  Unbalance magnetic pull caused by magnets embedded in the rotor. 
The measured force is compared with the FEM results. 
 
Reasons behind these discrepancies can be manufacturing 
nonidealities, differences in the magnet segments, and errors 
in the searched magnetic centers. 

VI. CONCLUSION 
This paper addresses the bearingless PM motor design 

optimization when applying custom DE-assisted CAD 
methods for preliminary fast machine sizing and for accurate 
performance tuning. For initial machine sizing an analytical 
method is applied. The featured RN numerical solution is 
very simple compared with the FEM approach. However, the 
computation time is a tiny fraction of that of a FEM solution, 
allowing fast iterative design optimization and control 
simulation capabilities. The GA-optimized motor design 
provides initial dimensions for further fine-tuning. However, 
the accuracy of the RN-predicted force error angle is not 
satisfactory. Accuracy of the results in comparison with FEM 
are geometry sensitive. The applied RN solution has to be 
refined in the future work. However, the extensively 
increased complexity of the RN could result in computation 
times comparable with the FEM while the code preparation 
effort for each new geometry would be greater than for the 
FEM. The FEM simulations combined with the GA 
optimization provide a very good method for final rotor 
geometry tuning. A compromise between the minimization of 
the force error angle, the force amplitude error, and the torque 
ripple relative to the levitation force amplitude can be 
achieved. The final design of the test case IPM bearingless 
motor is implemented in the FEM, and the manufactured 
machine is tested in the laboratory conditions. The force 
capability, control coefficient identification, and error angle 
measurements are carried out using a unique custom-built 
identification rig. The measured results correspond well to 
the FEM-predicted values. The presented methodology and 
results are extendable to other bearingless machine types. 

ACKNOWLEDGMENT 
The authors would like to express their gratitude to the 

Academy of Finland, grant No. 270012, No. 304071, and No. 
304784 and to Business Finland (Dnro 1170/31/2016) for their 
financial support. 

REFERENCES 
[1] J.R. Hendershot and T.J.E. Miller, Design of brushless permanent-

magnet machines, 2nd ed., USA: Motor Design Books LLC, 2010. 
[2] J. Pyrhonen, T. Jokinen and V. Hrabovcova, Design of rotating 

electrical machines, John Wiley & Sons, 2nd ed., Chichester, U.K., pp. 
314, 2014. 

[3] T.J.E. Miller, M. McGilp and A. Wearing, "Motor design optimisation 
using SPEED CAD software," IEE Seminar on Practical 
Electromagnetic Design Synthesis, pp. 2/1–2/5, 1999. 

[4] R.P. Jastrzebski, T. Sillanpaa, P. Jaatinen, A. Smirnov, J. Vuojolainen, 
T. Lindh, A. Laiho and O. Pyrhönen, “Automated design of AMB rotor 
systems with standard drive control software and hardware 
technologies,” in International Symposium on Magnetic Bearings, 
2016. 

[5] A. Chiba, T. Fukao, O. Ichikawa, M. Oshima, M. Takemoto, and D.G. 
Dorrell, Magnetic bearings and bearingless drives, Amsterdam, The 
Netherlands: Elesevier, 2005. 

[6] G. Stumberger, D. Dolinar, U. Pahner and K. Hameyer, “Optimization 
of radial active magnetic bearings using the finite element technique 
and the differential evolution algorithm,” in IEEE Transactions on 
Magnetics, vol. 36, no. 4, pp. 1004–1008, 2000. 

[7] H. Chang and S. Chung, “Integrated design of radial active magnetic 
bearing systems using genetic algorithms,” in Mechatronics, vol. 12, 
pp. 19–36, 2002. 

[8] R.P. Jastrzebski, K.M. Hynynen and A. Smirnov (2010). ”H  control 
of active magnetic suspension,” in Mechanical Systems and Signal 
Processing, no. 24, vol. 4, pp. 995–1006, 2010. 

[9] G.Y. Sizov, P. Zhang, D.M. Ionel, N.A.O. Demerdash, M. Rosu, 
“Automated multi-objective design optimization of pm ac machines 
using computationally efficient FEA and differential evolution,” in 
IEEE Trans. on Industry Applications, vol. 49, no. 5, pp. 2086–2096, 
2013. 

[10] M.E. Beniakar, A.G. Sarigiannidis, P.E. Kakosimos, A. G. Kladas, 
“Multiobjective evolutionary optimization of a surface mounted pm 
actuator with fractional slot winding for aerospace applications,” in 
IEEE Trans. on Magnetics, vol. 50, no. 2, pp. 2–5, 2014. 

[11] A. Wang, Y. Wen, W.L. Soong and H.Li, “Application of a hybrid 
genetic algorithm for optimal design of interior permanent magnet 
synchronous machines,” in IEEE Conference on Electromagnetic Field 
Computation, pp. 1–1, 2016. 

[12] J. Baek, S.S.R. Bonthu, S. Choi, “Design of five-phase permanent 
magnet assisted synchronous reluctance motor for low output torque 
ripple applications,” in Trans. on IET Electric Power Applications, vol. 
10, no. 5, pp. 339–346, 2016. 

[13] P. Jaatinen, R.P. Jastrzebski, H. Sugimoto, O. Pyrhönen and A. Chiba,  
”Optimization of the rotor geometry of a high-speed interior permanent 
magnet bearingless motor with segmented magnets,” in International 
Conference on Electrical Machines and Systems, ICEMS, pp. 962–967, 
2015. 

[14] K.V. Price, R.M. Storn and J.A. Lampinen, “Differential Evolution A 
Practical Approach to Global Optimization,” Berlin: Springer-Verlag, 
pp. 37–130, 2005. 

[15] S. Das, P. Nagaratnam Suganthan, “Differential Evolution: A Survey 
of the State-of-the-Art, in IEEE Transactions on Evolutionary 
Computation,” vol. 15, no. 1, pp. 4–31, 2011. 

[16] J. Asama, R. Natsume, H. Fukuhara, T. Oiwa and A. Chiba, ”Optimal 
suspension winding configuration in a homo-polar bearingless motor,” 
in IEEE Transaction on Magnetics, vol. 48, no. 11, pp. 2973–2297, 
2012. 

[17] J. Amemiya, A. Chiba, D.G. Dorrell and T. Fukao, “Basic 
characteristics of a consequent-pole-type bearingless motor,” in IEEE 
Transaction on Magnetics, vol. 41, no. 1, pp. 82–89, 2005. 

[18] R.P. Jastrzebski, P. Jaatinen, H. Sugimoto, O. Pyrhönen and A. Chiba, 
”Design of a bearingless 100 kW electric motor for high-speed 
applications,” in International Conference on Electrical Machines and 
Systems, ICEMS, pp. 2008–2014, 2015. 

2334



Publication V

Jaatinen, P., Vuojolainen, J., Nevaranta, N., Jastrzebski, R., and Pyrhönen, O.
Control system commissioning of fully levitated bearingless machine

Reprinted with permission from
Modeling, Identification and Control

vol. 40, no. 1, pp. 27–39, 2019
©2019, Norwegian Society of Automation Control





Modeling, Identification and Control, Vol. 40, No. 1, 2019, pp. 27–39, ISSN 1890–1328

Control System Commissioning of Fully Levitated
Bearingless Machine

P. Jaatinen 1 J. Vuojolainen 1 N. Nevaranta 1 R. Jastrzebski 1 O. Pyrhönen 1

1Department of Electrical Engineering, Lappeenranta University of Technology, FI-53851 Lappeenranta, Finland
E-mail: pekko.jaatinen@lut.fi, jouni.vuojolainen@lut.fi, niko.nevaranta@lut.fi, rafal.jastrzebski@lut.fi,
olli.pyrhonen@lut.fi

Abstract

The bearingless permanent magnet synchronous motor (BPMSM) is a compact motor structure that
combines the motoring and bearing functions based on well-designed integrated windings for generating
both torque and magnetic suspension force. In order to achieve a successful high-performance control
design for the BPMSM, an adequate model of the rotor dynamics is essential. This paper proposes
simplified multiple-input and multiple-output (MIMO) control approaches, namely the pole placement and
the linear-quadratic regulator (LQR), that allow to carry out identification experiments in full levitation.
Additionally, the stability of the MIMO levitation controller is verified with the rotation tests. Compared
with other recently published works, the novelty of this paper is to experimentally demonstrate that a
stable fully levitated five-degrees-of-freedom (5-DOF) operation of a bearingless machine can be achieved
by the proposed approach, and thereby, options for commissioning of such a system are obtained.

Keywords: Bearingless, magnetic levitation, MIMO control, self-levitating, system identification, 5-DOF

1 Introduction

Operation in the high-speed region is very beneficial
especially in the field of compressor applications. The
compressor pressure ratio and mass flow rate can be
raised by increasing the rotational speed Yoon et al.
(2013). In the speed range of 20 000 r/min and
over, the electrical motor efficiency can be increased
by achieving the minimum weight-power ratio. It is
clear that operating in the high-speed region increases
both the motor and compressor efficiency. Nowadays
there is a growing interest in high-speed technology,
where the traditional bearing solution is replaced by a
more advanced solution, namely active magnetic bear-
ings (AMBs) Gerhard Schweitzer (2009). The well-
known benefits of AMBs are contact-free operation,
active control of the rotor, and self diagnostic prop-
erties. As AMBs do not need oil lubrication because of
the magnetic levitation of the rotor, they are the most

suitable solution for oil-free compressor applications in
the fields of pharmacy and food industry. However,
one drawback of the AMBs is that they extend the
total length of the rotor as the radial and axial mag-
netic bearings need a certain amount of space, which
results in an increased axial length of the rotor shaft
along with a larger and more complicated motor struc-
ture. Depending on the operational speed and rotor
mechanical dimensions, this extra length can lower the
flexible mode frequencies to the operating region. This
is an unwanted feature as the operation close to the
flexible mode is difficult. From the viewpoint of the
overall system behavior, and especially with respect to
controllability, it is advantageous that the rotor does
not need to pass flexible modes.

Reducing the rotor length, simultaneously keeping
the benefits of the traditional AMBs, a self-levitating
or bearingless motor technology can be applied Chiba
et al. (2009). In a bearingless motor, one stator pro-
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duces both the levitation force to support the rotor and
the torque for rotation. This can be achieved by the use
of separate windings or by different common winding
configurations in one stator unit Chiba et al. (2013).
Because the windings are of a three-phase type for both
generating torque and levitation force, commercial mo-
tor drives can be used, and thus, the amount of power
electronics is decreased compared with the traditional
AMB configuration.

Bearingless operation is possible also with single-
stator disc-shape motors Mitterhofer and Amrhein
(2012). Other applications that exploit the benefits of
bearingless operation are artificial hearts Hoshi et al.
(2006) and canned pump Warberger et al. (2010) ap-
plications, where a long air gap length is needed. How-
ever, in this paper, a standard horizontal-type machine
equipped with two bearings is considered. The machine
type with two or more supporting bearings can handle
a higher loading force caused by the weight and mass
flow of the impeller wheel.

In general, when dealing with high-speed machines,
it is important to analyze the rotor behavior Swanson
et al. (2008). As a result of the dynamic properties
of the rotor structure, bending occurs when the rota-
tion speed is increased. Without qualitative analysis of
the rotor dynamics, the rotor operating point in nom-
inal operation can be close to the rotor flexible mode.
Thus, it is of great importance that in the machine
commissioning phase, the rotor dynamics are identified
in order to verify the flexible modes of the rotor Noh
et al. (2017). A common method is to use an impulse
hammer with vibration sensors to conduct the mode
analysis. Naturally, as the AMB system is equipped
with a displacement sensor and power electronics, the
rotor identification can be made in the system without
removing the rotor.

In recent years, a variety of different bearingless ma-
chine setups have been introduced in the literature,
and their control has become a topic of significant in-
terest. The five-degrees-of-freedom (5-DOF) control of
a bearingless machine has been reported in Takemoto
et al. (2009); Yamamoto et al. (2011); Severson et al.
(2017), and other studies have considered the combina-
tion of a bearingless motor and a magnetic bearing in
Cao et al. (2017); Schneider and Binder (2007). Here,
the 5-DOF operation refers to two radial xy-planes and
one axial z-plane of the control axes. Note, however,
that many of the reported prototypes are laboratory
versions, where all degrees of freedom (DOF) have not
been evaluated. It is also worth emphasizing that in
these examples the most common structure is a bear-
ingless motor with a ball bearing supporting the other
end of the rotor Chiba et al. (2013); Sun et al. (2016a);
Ooshima et al. (2015); Yang et al. (2010); Huang et al.

(2014). Although there are a few publications where
the system has one bearingless motor, it is not shown
or reported how the conical movement of the rotor is
stabilized Qiu et al. (2015); Sun et al. (2016b); Xue
et al. (2015); Yang and Chen (2009); Chen and Hof-
mann (2011); Cao et al. (2016); Zhang et al. (2016);
Zhao and Zhu (2017). In addition, a common factor
in all these publications is that they apply PID-based
position controllers. To the authors’ knowledge, only
the model-based controller has been addressed in Mes-
sager and Binder (2016) for machines of the horizontal
dual bearingless motor type. Another approach based
on a linear-quadratic regulator (LQR) controller for a
bearingless motor has been introduced in Kauss et al.
(2008). However, the presented prototype is 2-DOF
and the other end is supported by a ball bearing.

In order to conduct rotor identification, the rotor
must be fully levitated. The aim of this paper is to
study MIMO control approaches that provide a stable
fully levitated operation of a bearingless machine. The
novelty of this paper compared with the previously re-
ported studies is that it provides experimental results
that show the actual 5-DOF operation of a bearingless
machine, and more importantly, introduces results of
the full levitation. For this purpose, a 4-DOF MIMO
controller is used for the radial position control. The
axial position is controlled with an axial AMB, and
it is separated from the radial controller. Rigid body
is used as an initial rotor model. Pole placement and
LQR radial position controllers are used, and the suit-
ability of the controllers is discussed. The designed
4-DOF radial controllers are simulated and tested in
a 10 kW dual motor interior permanent magnet bear-
ingless machine. Additionally, the stability of the levi-
tation control is verified with low-speed rotation tests.
Finally, system identification experiments are carried
out with the pole placement and the LQR controller
by superposing a stepped sine excitation signal to the
system.

2 Problem statement

To operate in a high-speed region, the dynamic prop-
erties of the rotor must be known. An initial analysis
of the rotor dynamics is normally done with analytical
tools, by which the natural frequencies of the rotor are
found. However, experimental tests are mandatory to
verify the model and detect possible defects of the ro-
tor. One common method to carry out experimental
modal analysis is to use an impulse hammer, which in-
cludes for example an integral piezoelectric accelerom-
eter sensor to produce the excitation to the rotor and
measure the applied force Kolondzovski et al. (2010).
When the rotor system is equipped with AMBs, the
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same modal analysis can be done in the system. Simi-
larly as in the impulse hammer test, the AMBs produce
the excitation signal and displacement sensors are used
to measure the vibration of the rotor. Based on the re-
sults, the natural frequencies of the rotor can be found.
The obtained results can be used to improve the ana-
lytical model by updating the rigid and flexible modes,
thereby resulting in a more accurate system model.

To simplify this procedure in a bearingless machine,
the rotor can be levitated without a rotating field as
the rotor identification is made at a standstill. In this
case, the decoupling of the torque and levitation wind-
ings can be ignored. When knowing the rotor angle and
transforming the three-phase windings into a 2-phase
system, the control principles of traditional AMB sys-
tems can be adopted.

2.1 System description

The prototype machine consists of two identical in-
terior permanent magnet (IPM) bearingless motors
(BMs) together with an axial magnetic bearing. Fig. 1.
depicts the prototype machine. The axial magnetic
bearing is in the middle of the machine, and bearing-
less motors are placed on opposite sides of the machine.
This provides a symmetrical rotor structure when the
load is not considered. A block diagram of the full
control system is shown in Fig. 2. The rotor position
is measured with an eddy-current sensor differentially
from the radial direction and single ended from the
axial direction. A non-contact encoder is placed on
the right side of the machine to sense the rotor angle.
Moreover, five industrial motor drives are used to oper-
ate the machine: one is needed for the axial bearing and
two for the torque and radial force production for each
BM. Each motor drive includes a field programmable
gate array (FPGA), where the inner loop current con-
troller is implemented. A block diagram of the inner
current control loop is illustrated in Fig. 3. The upper-
level control is implemented in a Beckhoff industrial
PC, and the communication between the industrial PC
and the motor passes through an EtherCAT industrial
fieldbus. The sampling time of the control system is
50 µs.

3 Model of the system

In this paper, the rigid rotor model is used to tune
the proposed control approaches. In general, a mathe-
matical model of the system can be presented using a
state-space representation

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(1)

 

Non-drive end Drive end 

Figure 1: Photograph of the 10kW dual motor bear-
ingless machine. The axial AMB is in the
middle of the machine and bearingless mo-
tors are located on both ends.
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Figure 2: Block diagram describes the overview of the
system configuration. All controllers are im-
plemented on a Beckhoff industrial PC shown
in far left. In total, five 3-phase motor
drives are used to produce levitation force
and torque. Three drives are allocated for the
5-DOF levitation purposes, and both motors
are driven separately. The rotor position in
5-DOF is measured together with the rotor
angular position.

where A is the system matrix, B is the input matrix,
and C is the output matrix. The vectors x and u are
state and input vectors, respectively. In this paper,
separate models for the axial and radial directions are
used as the coupling is not strong. In the axial direc-
tion, the rotor is modeled as a point mass, whereas in
the radial direction, a rigid body rotor model is used.
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Figure 3: Block diagram of the PI current controller
scheme applied to motor drives that produce
the radial force. ABC: three-phase reference
frame and DQ: rotor reference frame.

3.1 Rotor model

General form of the rotor model is presented in the
following:

Mq̈(t) + (D + ΩG)q̇(t) + Kq(t) = F(t), (2)

where M is the mass matrix, D is the damping matrix,
Ω is the rotational speed, G is the gyroscopic matrix,
K is the stiffness matrix, F is the force applied to the
rotor and q is the displacement vector of the rotor.
This model can be simplified to a rigid rotor model,
which describes the rotor movement with respect to
the center of the rotor mass Smirnov (2012)

Mq̈(t) + ΩGq̇(t) = F(t), (3)

where M is the diagonal matrix including rotor
mass and inertia at the center of mass, q =[
x y αx αy

]T
is the vector that describes the ro-

tor position in the xy-axis and the angle around
the corresponding axis at the center of mass. As
the displacement sensors and the magnetic bearings
are not located at the center of mass, a coordi-
nate transformation is needed for the control de-
sign and simulation purposes. To acquire the ab-
solute location in the xy-axis of the sensors, qs =[
xD,s yD,s xND,s yND,s

]T
and the magnetic bear-

ing locations, qb =
[
xD,b yD,b xND,b yND,b

]T
at

the drive and non-drive end of the machine, the follow-
ing transformation matrices are applied

qb =




1 0 0 −a
0 1 −a 0
1 0 0 b
0 1 b 0




︸ ︷︷ ︸
Tb

q, qs =




1 0 0 −c
0 1 −c 0
1 0 0 d
0 1 d 0




︸ ︷︷ ︸
Ts

q,

(4)

where a, b are the drive-end and non-drive-end bearing
locations from the center of the rotor mass, respectively

and c, d are the drive-end and non-drive-end sensor
locations from the center of mass. Rotor cross-sectional
view is illustrated in Fig. 4.

Radial forces produced by the bearingless machine
can be presented by the following equation

F(t) = Kxqb + Kiic, (5)

where F is the total linearized radial force generated
by the bearingless machine, qb is the rotor position at
the bearing location, ic is the control current to the lev-
itation windings, Kx is the diagonal position stiffness
matrix, and Ki is the diagonal current stiffness ma-
trix. The total force depends on the rotor position and
current in the levitation windings. The coefficients Kx

and Ki can be determined experimentally by different
tests and measurements. Parameters of the prototype
machine are listed in Table 1.

In Fig. 5 a) the position stiffness value is determined
by moving the rotor in the air gap, and the force caused
by the unbalance pull of the permanent magnets is
measured. From this measurement, the slope of the
position stiffness can be calculated, Kx = 4fx/4 Px.
The current stiffness is measured by applying current in
the levitation windings and measuring the correspond-
ing radial force. Similarly, from the measured slope,
the current stiffness can be calculated, Ki = 4fx/4iL.
It can be seen that the measured values are closely
matching the FEM simulations presented in Fig. 5.
Measured values are used in the control design. The
force measurement setup is described in more detail in
Jaatinen et al. (2016).

The rigid rotor model presented in (3) can be fur-
ther simplified by neglecting the gyroscopic matrix as
the rotor is not rotating during the identification, that
is, Ω = 0. Furthermore, this simplification is also valid
for the rotating system when axial length of the ro-
tor is much greater than the rotor diameter thus the
gyroscopic effect is then negligible Gerhard Schweitzer
(2009). By substituting (4) and (5) into (3), a simpli-
fied rigid rotor model is achieved

Mbq̈b = Kxqb + Kiic. (6)

where Mb = (T−1
b )TMT−1

b is the mass matrix in the
bearing plane. In the state-space form, the simplified
rotor model is written as

Ar =

[
0 I

(Mb)
−1Kx 0

]
,

Br =

[
0

(Mb)
−1Ki

]
,

Cr =
[
TsT

−1
b 0

]
.

(7)

30



Jaatinen et.al., “Control System Commissioning of Fully Levitated Bearingless Machine”

Bearingless 

motor, ND-end

Bearingless 

motor, D-end

ab
d c

Sensor surface, 

ND-end

Sensor surface, 

D-end

Axial disc

 

Figure 4: Cross-sectional view of the rotor in the pro-
totype system. Locations of the bearingless
motors and the sensor surfaces are measured
respect of the center of mass.

   
a)                                                                           b) 

Figure 5: Simulated and measured current and posi-
tion stiffnesses. The current stiffness can be
calculated from the slope presented in a). In
the same manner, the position stiffness can
be calculated from the slope presented in b).

3.2 Actuator model

The actuator consists of the dynamics of the inner cur-
rent control loop. A straightforward method to model
the actuator dynamics is to use the bandwidth of the
current controller

Ga =
ωbw

s+ ωbw
, (8)

where Ga is the approximate transfer function of the
inner current loop and ωbw is the bandwidth of the
current controller.

In the simulation, the inner control loop consists of
the PI controller, the motor drive model, and the bear-
ingless motor model including the levitation windings.
The motor drive is modeled as two-stage switching with
a pulse width modulator. The bearingless motor is
modeled in the dq reference frame as

ud = Rid +
d

dt
Ldid − ωLqiq,

uq = Riq +
d

dt
Lqiq + ωLdid,

(9)

where u is the voltage over the levitation windings, R
is the resistance of the levitation windings, L is the

inductance of the levitation windings, i is the current
of the levitation windings, and ω is the electrical angle.

3.3 Full model

A full model can be produced by combining the rotor
model with the actuator model.

A =

[
Aa 0

BrCa Ar

]
, B =

[
Ba

0

]
,

C =
[
0 Cr

]
,

(10)

where Ba = −Aa = diag
[
ωbw ωbw ωbw ωbw

]
is

the current controller bandwidth, and the rigid rotor
model matrices are denoted by the subscript r .

3.4 Axial AMB model

The axial direction of the rotor can be controlled sep-
arately as the coupling to the radial direction is negli-
gible in the center of the air gap. As the axial AMB
controls only 1-DOF, the model of the rotor can be
simplified to a point mass model

mq̈ = Kxqa +Kiic, (11)

where m is the rotor mass, qa is the acceleration of
the rotor, Ki is the current stiffness, and Kx is the
position stiffness.

4 MIMO control of a bearingless
machine

In the literature, there are many publications that ad-
dress the issues of the MIMO control of traditional
AMB systems equipped with two radial and one axial
AMBs Yoon et al. (2013); Gerhard Schweitzer (2009).
The same principles can be adopted to the bearingless
machine control. However, there are two major dif-
ferences compared with the traditional AMB system.
Firstly, the rotating magnetic flux that generates the
levitating force is synchronous with the rotor rotation.
Secondly, decoupling of the motor control from the lev-
itation control is required. If the decoupling param-
eters are correctly identified, the motor control does
not affect the performance of the levitation controller
Ooshima et al. (2004). It is emphasized that in this
paper, the decoupling controller is not taken into con-
sideration as the rotor identification is conducted with
a nonrotating rotor. Moreover, a 4-DOF MIMO radial
controller with a PID-type axial controller for commis-
sioning and rotor identification purposes is tuned based
on a rigid rotor model.
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Table 1: Machine parameters

Parameter Symbol Value Unit

Nominal speed Ωnom 30 000 r/min

Nominal power per motor unit Pnom 5 kW

Rotor mass m 11.65 kg

Rotor inertia J 0.232 kgm2

Resistance, levitation winding R 0.27 Ω

Inductance, levitation winding L 3.27 mH

BM location a, b 107.5 mm

Position sensor location c, d 211 mm

Air gap length lδ 0.6 mm

Rotor length lr 480 mm

BM lamination stack length lrl 61 mm

BM lamination diameter drl 68.8 mm

BM stator outer diameter ds 150 mm

Axial disk thickness la 8 mm

Axial disk diameter da 112 mm

Rotor shaft diameter drs 33 mm

Current stiffness, measured Ki 29 N/A

Position stiffness, measured Kx 672 N/mm

Current stiffness, FEM Ki,FEM 29.6 N/A

Position stiffness, FEM Kx,FEM 618 N/mm

Maximum input deviation unmax 2 A

Maximum output deviation mn 25 µm

Furthermore, an additional coordinate transforma-
tion is needed when comparing the bearingless system
with the traditional AMB system. In Fig. 6, the prin-
ciple of the radial force generation both in the x and
y directions is shown. Here, the three-phase winding
is transformed into a two-phase presentation. When
the rotor is in a certain angular position, for instance
0 deg, where the poles are parallel with the station-
ary xy-reference frame, the corresponding two-phase
current produces force in that axis. By changing the
polarity of the current, the force direction can be re-
versed. By taking into account the rotation of the ro-
tor in the coordinate transformation, the force can be
generated at any angle. A radial position control-loop
block diagram is presented in Fig. 7. Note the coor-
dinate transformation between the position controller
and the inner current controller.

4.1 State-feedback control with pole
placement

One common control method for handling state equa-
tions is state feedback with pole placement, in which
the locations of the closed-loop poles are selected to ob-

tain the desired performance. As all states are not mea-
surable, a state estimator is also needed. To remove
the steady-state error, an integral state is augmented
to the state feedback controller. The full discrete-time
state equation can be written Franklin et al. (2010)

[
x(k + 1)
xI(k + 1)

]
=

[
Φ 0
C I

] [
x(k)
xI(k)

]
+

[
Γ
0

]
u(k)−

[
0
I

]
r(k),

(12)

where Φ, Γ are discretized system state and input ma-
trices, C is the output matrix, I is the identity matrix,
x is the system state vector, xI is the integral state
vector, u is the system input vector, and r is the ref-
erence input vector. The feedback law is then written
as

u(k) = −
[
K KI

] [ x(k)
xI(k)

]
, (13)

where K is the state feedback gain and KI is the inte-
grator gain.

The state estimator uses the following presentation

x̂(k + 1) = Φx̂(k) + Γu(k) + L(y(k)−Cx̂(k)),
(14)

where x̂ is the estimated state vector and L is the feed-
back gain of the state estimator. In this paper, the
state feedback controller is designed by using the prin-
ciples presented in Gerhard Schweitzer (2009).

The main drawback of the pole-placement-based
tuning is that it is not very intuitive. Secondly, when
the system degree increases, also the number of poles to
be placed increases, resulting in a more complex tuning
problem. This is an important factor to be acknowl-
edged, especially when including flexible modes to the
control model.

4.2 Linear-quadratic regulator

There are other control methods that facilitate con-
troller tuning by providing more intuitive tools, which
do not need direct manipulation of the poles. One of
these optimal control methods is the linear-quadratic
regulator (LQR). The controller tuning is based on
minimization of the quadratic cost function

J =
1

2

N∑

k=0

[xT (k)Q1x(k) + uT (k)Q2u(k)], (15)

where J is the cost function, x is the state vector, u
is the input vector, Q1 is the output weight function,
and Q2 is the input weight function. The weighting
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Figure 6: Description of radial force generation in a permanent magnet bearingless motor. The three-phase
windings are transformed into a two-phase presentation in the xy plane. The currents of the two-phase
windings are denoted by ix and iy. The principle of producing radial force in the x -axis is shown in
a). By applying current to the x phase windings, the flux is increased and decreased opposite to the
air gap in x -axis. This flux unbalance produces the radial force. By applying negative current, the
force direction can be reversed. In a similar fashion, the radial force in the y-axis can be produced by
applying current in the y-phase winding.
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Figure 7: Block diagram of the position control loop.

functions are diagonal matrices that affect the states
and inputs of the system. There are different methods
to determine the weighting functions Q1 and Q2. One
of the methods is called Bryson’s rule Franklin et al.
(2010), where the effect of the state weight on the out-
put follows

Q1 = CT Q̄1C. (16)

The weights are selected for the output by deciding
how large a deviation of the output is acceptable

Q̄1,n =




1/m2
1 0 · · · 0

0 1/m2
2 · · · 0

...
...

. . .
...

0 0 · · · 1/m2
n


 , (17)

where mn is the maximum deviation of the output sig-
nal. The weights for the inputs are selected by the
maximum input signal amplitude

Q2,n =




1/u21max 0 · · · 0
0 1/u22max · · · 0
...

...
. . .

...
0 0 · · · 1/u2nmax


 ,

(18)

where unmax is the maximum input signal deviation.
Table 1 lists the values selected for the weights m and
u based on several simulation iterations.

When designing the LQR-based controller, the de-
gree of freedom is lower (two parameters) than with
the pole placement method, where eight poles have to
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Figure 8: Block diagram of the state feedback con-
troller. A state estimator is necessary for
generating the full state vector including ro-
tor acceleration, which is not measurable.
Naturally, an integral action is added to re-
move the steady-state error.

be selected. This difference is amplified in the case of
the flexible plant model, where more states are added
to the system plant.

5 Experimental Results

Both controllers are tested with the prototype bearing-
less machine. First, the initial lift-up test is conducted
and compared with simulations in Fig. 9. The rotor
position is shown during the initial lift-up with the pole
placement and the LQR controller. At the beginning
of the test, the rotor is resting on the backup bear-
ings, where it is levitated to the center of the air gap.
Based on the simulations, it can be noted that the pole
placement controller has a higher overshoot, but both
controllers provide full levitation.

In Figs. 10 and 11, the current in the dq reference
frame is shown for the pole placement controller and
the LQR controller during the rotor lift-up sequence.
Because of the unbalanced magnetic pull of the em-
bedded magnets in the rotor, a high current peak is
needed to lift the rotor away from the backup bearings
to the center of the air gap. Based on the results, it
can be concluded that both of the proposed controllers
meet the requirement of levitating the rotor. It can
also be seen that a good correspondence between the
simulations and measurements is achieved. From the
current RMS values in the steady-state situation we
can notice that the LQR controller provides lower cur-
rent demand. It is pointed out, however, that there is
one notable difference between the BMs in the exper-
imental test; the ND-end has a smaller current ripple
than the D-end.

5.1 System Identification

As was shown in Fig. 9, both the proposed control ap-
proaches provided a stable fully levitated operation of
the bearingless machine. Thus, system identification

 

Figure 9: Simulated and measured rotor lift-up from
the backup bearings. Initially, the rotor is
lying on the backup bearings, and after the
controller is enabled, the rotor is magneti-
cally levitated to the operating point, that
is the origin (x, y) = (0, 0). Simulation and
measurement results for the pole placement
controller are shown in a) and b), and for the
LQR controller in c) and d).

experiments can be carried out when the rotor is lev-
itating by superposing artificially generated excitation
signals to the control system. In this paper, an adap-
tive amplitude stepped sine signal is considered with
a frequency band from 1 Hz to 750 Hz in order to
validate the suitability of the control approaches for
commissioning purposes. System identification exper-
iments are carried out with both control approaches.
In Fig. 12, the experimentally obtained frequency re-
sponses are shown. Uncertainty is shown in the low
frequency area (<10 Hz) as it is challenging to identify
the DC-area with the motor inverter. Also the closed
loop controller influences to the low frequency region
limiting the accuracy of identification. Nevertheless,
identified rotor model for both controllers is matching
closely to the initial rigid rotor model. Identified rotor
model can be further use in the control design where
the flexible part is included. Evidently, the system
rotor dynamics can be identified in the full-levitation
mode similarly as with the 5-DOF AMB system Vuo-
jolainen et al. (2017).
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a)                                                                 b) 

 
c)                                                                  d) 

Figure 10: Simulated and measured DQ currents dur-
ing the rotor lift-up with the pole placement
controller. Simulation of the DQ axis cur-
rent of the D-end and the ND-end motor
are shown in a) and b), respectively. The
measured DQ axis current of the D-end and
the ND-end motor are shown in c) and d),
respectively. Steady state RMS values for
current in the simulation a) and b) are 2 A.
For the measured steady state RMS current
values c) 2.3 A and d) 2.4 A.

5.2 Rotational tests

To further validate the observations reported in this
paper, rotational tests are carried out with modest
velocity of 150 and 300 r/min. The measured cur-
rents from the motor and levitation coils are shown
with the measured position during the rotation test
for both speeds in Fig. 13 and Fig. 14. Note, that,
for illustrative purposes the rotational test are carried
out only with the LQR based control approach. These
results clearly indicate that the proposed control ap-
proach produces stable levitation also during rotation.
Torque for the rotation is produced with the D-end
motor windings without the decoupling in the levita-
tion controller. The average fluctuation of the positon
measurement during the rotation is 2.5 µm, which is
caused by the sensor noise and the runout of the sensor
surface together with the unbalance of the rotor. By
comparing rotor position measurements in Fig. 13 and
Fig. 14 it can be noticed that D-end orbit is affected
the most from the rotation speed change. Fundamen-
tal orbit change of the rotor position with rotor speed
from 150 to 300 r/min is for D-end from 2.15 µm to

 
a)                                                                 b) 

 
c)                                                                  d) 

Figure 11: Simulated and measured DQ currents dur-
ing the rotor lift-up when using the LQR
controller. Simulation of the DQ axis cur-
rent of the D-end and the ND-end motor are
shown in a) and b), respectively. The mea-
sured DQ axis currents of the D-end and
the ND-end motor are shown in c) and d),
respectively. Steady state RMS values for
current in the simulation a) and b) are 2 A.
For the measured steady state RMS current
values c) 2.2 A and d) 2.3 A.

 

Figure 12: Frequency response plot where the result
of the experimental identification with the
stepped sine method is compared with the
rigid body rotor model. The experimental
result shows the first flexible mode peak.

2.1 µm and for ND-end 4.5 µm to 3.2 µm. Effect of the
cross-coupling between the levitation and the torque
windings in D-end is seen from the results.
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a)                                                                 b) 

 
c)                                                                  d) 

 
e) 

Figure 13: Rotation test with speed of 150 r/min. Mea-
sured rotor position is shown for D-end and
ND-end in a) and b), respectively. Levita-
tion winding current for D-end and ND-end
is shown in c) and d). respectively. Torque
producing current in the D-end motor wind-
ings is shown in e). The motor currents
are represented in αβ -armature reference
frame.

6 Summary of the Commissioning
Steps

A summary of the commissioning steps is given to ex-
plicate the connection between the proposed control
methods and the control system.

• Step I: Derivation of the rigid system model (2)
using the rotor mass m and the inertia J with
the position stiffness Kx and current stiffness Ki

parameters obtained from the FEM and validated
by experiments (see Fig. 5). To derive the full
model used for the control design (10), the inner
current controller dynamics (14) is considered.

• Step II: MIMO state space controller design con-
sidering pole placement or LQR. The initial se-

 
a)                                                                 b) 

 
c)                                                                  d) 

 
e) 

Figure 14: Rotation test with speed of 300 r/min. Mea-
sured rotor position is shown for D-end and
ND-end in a) and b), respectively. Levita-
tion winding current for D-end and ND-end
is shown in c) and d). respectively. Torque
producing current in the D-end motor wind-
ings is shown in e). The motor currents
are represented in αβ -armature reference
frame.

lection for the pole placement control is to place
all the poles in the same location, that is, z =

e−
√

Kx
m ·Ts , which corresponds to the eigenvalue

for a spring-mass-system with a negative stiffness.
The LQR can be straightforwardly designed with
Bryson’s rule by selecting reasonable maximum
input signal and output deviation limits for the
controller. A good initial selection for the maxi-
mum output deviation is to consider smaller val-
ues for the deviation than the values given in the
ISO standard ISO 14839-2:2004(E) (2004), where
the acceptable rotor vibration with respect to the
air-gap length in magnetic levitation applications
is recommended. Here, a value of 0.083·Cmin is
considered, where Cmin is the minimum clearance.
The maximum levitation current can be used as
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the initial value for the input deviation. An ac-
ceptable control effort can be achieved by tuning
the input deviation, and thus, in this paper, the
selected input deviation is 2 A.

• Step III: Estimator design (14) based on the sys-
tem model, The estimator can be tuned by using
the general guidelines given for instance in Mes-
sager and Binder (2016) , Franklin et al. (2010)
so that the observer poles are around 4–10 times
faster than the closed-loop poles. Here, a ten times
faster design is considered.

• Step IV: Check in the simulation that the desired
response and dynamics are obtained for the lift-up
test (see example in Fig. 9 a) and c)). If the
requirements are not met, redesign the controller
and the estimator in Steps II and III.

• Steps V–VI: Experimental lift-up test, where the
basic functionality of the controller is further ver-
ified. After that, identification tests supported
with a model validation routine should be carried
out. Here, the adaptive amplitude stepped sine
Vuojolainen et al. (2017) is used as an excitation
signal in the identification experiments.

After the proposed commissioning routine, the natural
next step is the controller retuning based on the iden-
tified model, if the initial mathematical model does
not correspond to the identified one. This step is im-
portant, especially if there is some identified dynam-
ics, such as cross-coupling, which should be considered
in the final controller design for the rotation over the
whole speed range. To this end, previous studies fo-
cusing on the control of different bearingless machine
applications Zhang et al. (2016), Zhao and Zhu (2017)
have shown that PID-based controllers are useful tools
for stabilizing a rigid rotor. However, a MIMO con-
troller should be considered as a final controller as it
is more straightforward to tune in order to adequately
stabilize the complex dynamics in the case of a flex-
ible rotor Yoon et al. (2013). Moreover, in general,
when considering a magnetically levitated high-speed
motor application with a very high speed requirement,
the PID controller has certain shortcomings that can
destabilize the system for example if there are flexible
modes within the controller bandwidth. When com-
missioning is carried out with a MIMO controller, the
final control law can be designed using the same al-
gorithm straightforwardly. In this case, this ensures a
better cooperation between bearingless motors for the
stabilization of the system and stable rotational oper-
ation over the whole speed range.

7 Conclusion

Commissioning steps for fully levitated bearingless ma-
chine using the model based control approach is pre-
sented. It is beneficial to apply the MIMO control prin-
ciples over very traditional PID-based control struc-
tures, which do not take into account the coupling of
the rotor system. In this paper, it was shown that
the well-established MIMO AMB control principles can
be straightforwardly applied to a bearingless machine
system. By comparing the adopted controllers, it is
shown that the LQR outperforms the pole placement
controller. Designing an LQR-based controller is much
more straightforward as a result of the more intuitive
tuning methods. Secondly, weighting-function-based
controllers are not sensitive to a model order change as
the weights affect the inputs and outputs but not the
states themselves. Updating a rigid body rotor model
to a flexible model would increase the number of poles
to be tuned. Naturally, the pole placement controller
is more suitable for simpler systems than a complex
MIMO system, such as a 4-DOF levitated rotor sys-
tem, but in this paper, it was only considered as an
example MIMO control case for a bearingless machine.

The results presented in this paper are important as
the 5-DOF operation of bearingless machines has not
been comprehensively analyzed in the literature thus
far. The 5-DOF operation was shown and analyzed
with two distinct MIMO control approaches using sim-
ple rigid rotor model. The proposed controllers can be
applied for commissioning purposes, and it was experi-
mentally shown that artificial-excitation-based system
identification experiments can be carried out during
full levitation operation. Additionally, stability of the
LQR based levitation controller was verified with the
low-speed rotation tests.
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Abstract—The bearingless machine construction is optimal
for high-speed machines as it reduces the axial length of the
machine. It is crucial that the vibration levels of the rotor
are under control during rotation. In the bearingless machine,
the rotor is magnetically levitated with an integrated winding
system alongside a standard motor winding. In this paper, a
control approach is presented to regulate the rotor position in
the radial and axial directions together with the speed control of
the machine. The rotor vibration levels are verified by rotational
tests.

I. INTRODUCTION

Currently, there is a growing need for high-speed direct
drive motors especially in air compressor applications. The
direct drive technology removes the need for a mechanical
gear box calling for regular maintenance in traditional high-
speed solutions. By replacing the traditional solution with a
direct-driven one, the overall efficiency of the system can be
improved. Operation in a high-speed region imposes certain re-
quirements on the bearing technology applied. A modern solu-
tion is a system with active magnetic bearings (AMBs), which
provide contactless suspension. It is an ideal solution for high-
speed applications, as it removes mechanical friction present
in traditional bearing technologies. Moreover, the contact-free
operation reduces the need for regular bearing maintenance. A
further benefit is that the rotor system equipped with AMBs is
suitable for oil-free environments as no lubrication is needed.

Another type of a magnetic-levitated bearing system is a
bearingless or a self-levitating motor [1]. This technology
combines the levitation function of AMBs with the torque
production of the standard electrical motor. The most common
winding structure for the bearingless motor uses two winding
sets in the stator unit; the first produces the required levitating
force and the second the rotating torque. With this kind of
a structure, the bearingless machine can be defined as a
multiport machine [2], as the machine itself has several input
and output ports. In Fig. 1, a schematic diagram of a multiport
machine is shown. As the bearingless machine is a more
integrated system, it reduces the overall axial length and the
need for power electronic components.

In this paper, the modeling and motion control of a dual-
motor interior permanent magnet (IPM) bearingless machine
with an additional axial magnetic bearing is presented. A

Bearingless

machine

{a1}

{an}

{b1}

{bm}

 

Fig. 1. General description of a multiport machine, where an = [un, in] is a
distinct input vector from the motor drive and bm is the output vector, whose
values are application dependent. In a bearingless machine, in general, the
outputs are the torque, speed, and rotor position depending on the controlled
degrees.

prototype machine, which uses a separate winding configu-
ration for force and torque generation is illustrated and used
as an experimental test system. As the system is naturally
of a multi-input multi-output (MIMO) type, it is beneficial
to use an MIMO-based control approach for the regulation
of the rotor radial position instead of a more traditional
solution with PID controllers. In this paper, a linear quadratic
regulator (LQR) based controller with a disturbance observer
is applied to the MIMO control problem. The position of the
axial direction is regulated by a separate single-input single-
output (SISO) control loop. Moreover, this paper introduces
the total configuration of the control system in detail. For
torque generation, a centralized scalar U/f control is used as
it is suitable for the speed regulation of a high-speed dual
motor, where the motor units are on the same shaft [3]. The
paper concentrates on the basic functionality of the system,
and the system performance is verified with a low-speed test
up to 1500 r/min. The rotor of the prototype machine is
not prebalanced, and no special surface treatment is applied
to the sensor surfaces. Finally, the system performance is
studied from the viewpoint of rotor vibration levels, which
are compared against ISO standards [4].
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II. SYSTEM DESCRIPTION

A variety of machine configurations that combine AMBs
with a bearingless machine have been proposed in the litera-
ture. A configuration where one end of the rotor is supported
with the AMB and another with a bearingless motor (BM) has
been presented in [5], [6]. The prototype machine studied in
this paper uses a dual-motor structure similar to [7], [8]. A
standard distributed winding construction with short-pitching
is used. Contrary to the setup depicted in [8], the presented
system uses separate variable frequency drives (VFDs) for
torque production. An axial magnetic bearing is added to
the center of the rotor to control the axial movement. With
this setup, the rotor can be controlled with a five degrees of
freedom (5-DOF) configuration. The cross section of the rotor
is illustrated in Fig. 2, where the sides of the machine are
denoted the drive-end (D-end) and the non-drive-end (ND-
end).

In total, five VFDs are needed to control the rotor motion
in 6-DOF including rotation. The overall configuration of the
VFD setup is shown in Fig. 2. The control system is built
by using Beckhoff industrial automation components. The
communication between the VFDs, I/Os, and the industrial
PC is carried out through an EtherCAT fieldbus. The upper-
level block diagram of the control system is depicted in Fig. 3.
This control layer includes separate controllers for the motor
speed and an axial and radial position control. The sampling
time in the industrial PC is 50 µs.

Every VFD is equipped with a custom field programmable
gate array (FPGA) board, where the inner control loop is
implemented. A simplified block diagram of the inner control
loop is shown in Fig. 4. The inner current controller is
used in the radial and axial position control and for torque
production, and the voltage reference is directly provided to
the modulator (simplified in the figure). The measurement
system includes eddy-current sensors to attain the rotor radial
and axial displacement. Additionally, a rotational encoder
is needed, as with this type of a bearingless machine, the
direction of the radial force depends on the rotor angle. A
vector diagram of the stator and rotor coordinates is presented
in Fig. 5. The measured rotor angle θr has to be synchronized
between the rotor dq-coordinate and the stator xy-coordinate
to determine the correct force direction.

III. MODELING AND CONTROL

A model-based control approach is adopted to the regula-
tion of the rotor radial position. Typically, modeling of the
dynamics of a high-speed motor application can be divided
into three parts; the rotor model, the actuator model, and the
force model. If the bandwidth of the actuator, which is the
inner current control loop, is high compared with the outer
position control loop, it can be neglected. The parameters of
the prototype machine are listed in Table II.

General MIMO dynamic equation of the rotor about the
center of mass is [9]

Mq̈(t) + (D + ΩG)q̇(t) + Kq(t) = F(t), (1)

~
~

~
~

~
~

~
~

~
~

  VFD(,) 

VFD(fx, fy) 

D-end ND-end 

VFD(fx, fy) 
VFD(fz) 

VFD(, ) 

a) a) b) b) c) 

Fig. 2. Block diagram of the variable-frequency drive setup with a cross
section of the rotor, where a) is the rotor position measurement surface, b)
is the rotor lamination with interior permanent magnets, and c) is the axial
disc. The upper VFDs are used for torque/velocity (τ , ω) generation and the
lower VDFs to control the position in the x, y, z directions.

Axial 

Position

Controller

Motor

Speed

Controller

MIMO Radial

Position

Controller

Industrial PC

D-end, uref(a,b)

ND-end, uref(a,b)

D-end, iref(d,q)

ND-end, iref(d,q)

Axial, iref(u,w)

Speedref

Positionref(z)

Positionmeas(z)

Position, D-endref(x,y)

Position, ND-endref(x,y)

Position, D-endmeas(x,y)

Position, ND-endmeas(x,y)

 

Fig. 3. Block diagram of the control system with three distinct control
loops implemented in the Beckhoff industrial PC. In the motor control loop,
a centralized speed controller provides the current reference to both motors.
The axial position of the rotor is regulated by a PID controller, and an MIMO
controller regulates the radial movement of the rotor at the both ends of the
machine. The rotor position is measured in 5-DOF with the eddy-current
displacement sensors. The current references provided by the controllers are
transferred through an EtherCAT fieldbus to the industrial VFDs.

where M is the mass matrix, D is the damping matrix, G
is the gyroscopic matrix, K is the stiffness matrix, Ω is the
rotational speed, q is the vector of rotor position about the
center of mass, and F is the applied force vector. The rotor
equation can be simplified by assuming that the rotor is rigid
and gyroscopic coupling is negligible [10]

Mq̈(t) = F(t). (2)

As the motor and levitation windings are in the same stator
unit, a coupling by mutual inductance is present. However, in
the steady-state situation, the coupling is constant and it can
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Fig. 4. Block diagram of the inner current control loop. Every VFD contains
a custom FPGA control board where the inner PI current control loop is
implemented. The rotor electrical angle θr , is measured with a contactless
magnetic encoder. In the VFD that controls the axial bearing currents, the
coordinate transformation is removed.
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Fig. 5. For the purposes of stable radial force production, the rotor initial
electrical angle has to be synchronized with the stator coordinate. At a certain
angle, the d-axis current corresponds to the x-axis force and the q-axis current
corresponds to the y-axis force. It is also valid at every 90 degrees; however,
the direction of force with respect to the xy axes is switched.

be treated as a disturbing force. By treating the coupling as a
disturbance, the general force model of a magnetic levitation
system can be used [10]

F(t) = Kxq(t) + Kiic(t), (3)

where Kx is the diagonal position stiffness matrix, Ki is
the diagonal current stiffness matrix, and ic is the control
current vector. The rotor position is presented at the center
of mass, and thus, a coordinate transform is needed to change
the position into a bearing coordinate

qb =


−a 1 0 0
0 0 a 1
−b 1 0 0
0 0 b 1

q, (4)

where qb is the vector in bearing coordinates, a is the drive-
end bearing location, and b is the non-drive-end bearing
location. By substituting (3) and (4) into (2), the rigid rotor
model in the bearing coordinates is obtained

Mbq̈b(t) = Kx,rqb(t) + Ki,ric(t). (5)

For the purposes of the MIMO control synthesis, the rigid

rotor model is presented in the state-space form

ẋ(t) = Ax(t) + Bu(t)

ẏ(t) = Cx(t)
(6)

where A is the system matrix, B is the input matrix, C is the
output matrix, x is the state vector, u is the input vector, and
y is the output vector. The rotor model in (5) is transformed
into the state-space form

A =

[
0 I

−(Mb)
−1Kx 0

]
,

B =

[
0

−(Mb)
−1Ki

]
,

C =
[
I 0

]
,

x =
[
xd yd xnd ynd ẋd ẏd ẋnd ẏnd

]T
,

u =
[
ix,d iy,d ix,nd iy,nd

]T
,

y =
[
xd yd xnd ynd

]T
.

(7)

In order to synthesize the discrete time controller, the
plant model has to be discretized. An external disturbance is
included in the following discrete state-space model

x(k + 1) = Φx(k) + Γu(k) + Γdw(k)

y(k) = Cx(k),
(8)

where Φ is the discretized system matrix, Γ is the dis-
cretized input matrix, Γd is the discretized disturbance input
matrix, and w is the external disturbance vector.

The obtained discrete state-space equation is used as the
plant model in control synthesis. A linear-quadratic regulator
(LQR) is used as the feedback controller [11]. The feedback
gain K is calculated by minimizing the quadratic cost function

J =
1

2

N∑
k=0

[xT (k)Q1x(k) + uTQ2u(k)], (9)

where x is the state vector, u is the input vector, Q1 is the
state weighting matrix, and Q2 is the input weighting matrix.
The gains are typically selected by trial and error or by using
a method with tuning guidelines such as Bryson’s rule, where
the cost functions are calculated from the maximum deviation
of the inputs and outputs [12], [13].

A. Disturbance estimator

As the acceleration cannot be measured directly by eddy-
current sensors, a state-estimator is needed. Additionally, the
integral action is desired to remove the steady-state error
caused by gravity. It is possible to implement a disturbance
estimator, which includes both estimator and integral actions.
A block diagram of the state feedback radial position controller
together with the disturbance estimator is presented in Fig. 6.

Disturbance can be generally modeled in a time-continuous
form as [13]

ẋd(t) = Adxd(t)

w(t) = Cdxd(t),
(10)
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Fig. 6. Block diagram of the state-feedback radial position controller together
with the disturbance estimator.
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Fig. 7. Block diagram of the axial control loop.
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Fig. 8. Block diagram of the scalar U/f motor speed controller.

where Ad is the system matrix of the disturbance, Cd is the
output matrix of the disturbance, xd is the state vector of the
disturbance, and w is the output of the disturbance model. The
discrete version of the disturbance model can be expressed in
the following form

xd(k + 1) = Φdxd(k)

w(k) = Cdxd(k),
(11)

where Φd is the discretized system matrix of the distur-
bance. The disturbance model is incorporated into the system
model by substituting 11 in 8 .[

x(k + 1)
w(k + 1)

]
=

[
Φ ΓdCd

0 Φd

] [
x(k)
w(k)

]
+

[
Γ
0

]
u(k)

y(t) =
[
C 0

] [x(t)
w(t)

] (12)

The steady-state error caused by gravity and the motor
windings is constant, and thus, the disturbance model can be
simplified to

[
x(k + 1)
w(k + 1)

]
=

[
Φ Γd

0 I

] [
x(k)
w(k)

]
+

[
Γ
0

]
u(k)

y(t) =
[
C 0

] [x(t)
w(t)

] (13)

B. Other Control Loops

The control loop of the axial magnetic bearing is shown in
Fig. 7. When operating in the magnetic center, the regulation
of the axial direction position can be treated as a separate
SISO control loop. A second-order point-mass plant model
is used to calculate the initial gains for the PID controller
[1]. In a permanent magnet bearingless machine, the magnets
act as a biasing force to generate linear force with respect to
the rotor position. However, an axial bearing is a traditional
magnetic bearing, where two opposing coils produce the force.
To linearize the force generation curve, the bias current is
added to both coils.

The speed regulation of the dual-motor configuration is
handled with a scalar U/f control. In Fig. 8, a block diagram
of the scalar U/f controller is presented. From the reference
speed, the corresponding stator reference frame voltages are
calculated for both motors.

IV. EXPERIMENTAL VALIDATION

The rotor vibration levels of the prototype machine both
in the radial and axial directions were verified by a set of
rotational tests from 150 r/min to 1500 r/min. In the prototype
machine, the rotor itself was unbalanced, and the measurement
surfaces were not polished. There are four sources of rotor
vibration; the first is the unbalance mass in the rotor, the
second is the run-out caused by the uneven sensor surface,
the third is the magnetic cross coupling, and the fourth is
mechanical resonanses caused by the motor structure. The
fundamental and harmonic components of vibration can com-
pared with respect to the rotation speed by using the fast
Fourier transform (FFT) algorithm. The rotor unbalance can
be seen in the fundamental frequency as it is in the same
phase with the rotational speed. The vibration caused by the
run-out can be seen partly in the fundamental frequency and
party in the harmonics of the fundamental frequency [14].
Acceptable rotor vibration with respect to the air-gap length in
magnetic levitation applications has been recommended in the
ISO 14839-2:2004 standard [4]. In Table I, the zone limits for
the vibration are given. Zone A is for continuous operation,
and the vibration should be less than 30 % of the full air-gap
length.

The measured rotor orbit of the both ends of the motor at
1500 r/min is shown in Fig. 9. It can be seen that the orbits are
not round, which indicates that there are dominant harmonic
components present. The motor and levitation currents of the
both ends are presented in Fig. 10. The corresponding current
waveforms are seen in the ND-end levitation windings, where
the controller compensates the vibration. The vibration level
of the axial direction is illustrated in Fig. 11. An increase
in amplitude and vibration can be seen in the axial direction
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TABLE I
RECOMMENDED CRITERIA OF ZONE LIMITS [4]

Limit Displacement Dmax

Zone A < 0.3 Cmin

Zone B < 0.4 Cmin

Zone C < 0.5 Cmin

Zone D > 0.5 Cmin

 

Zone A 

Fig. 9. Orbits of the rotor measured form both ends of the machine at 1500
r/min.

measurement. The vibration is in phase with the rotor mechan-
ical speed, which indicates small cross coupling between the
levitation and the motor windings. The frequency spectra of
the rotor vibration of the both motor ends have been obtained
by the FFT, and they are plotted in Figs. 12 and 13. It is
clearly visible that the third harmonic is the dominant one in
this speed range.

TABLE II
MACHINE PARAMETERS

Parameter Symbol Unit

Motor unit nominal power Pn 5 kW
Rated speed ωn 30 000 r/min
Rated torque τn 1.59 N
Rated voltage, motor Un,m 400 V
Rated current, motor In,m 8.4 A
Rated voltage, levitation Un,l 400 V
Rated current, levitation In,l 8 A
Position stiffness, radial Kx,r 672 N/mm
Current stiffness, radial Ki,r 29 N/A
Position stiffness, axial Kx,a 847 N/mm
Current stiffness, axial Ki,a 112.9 N/A
Rotor mass m 11.65 kg
Rotor inertia J 0.232 kgm2

BM position a, b 107.5 mm

 
a)                                                                 b) 

 
c)                                                                  d) 

Fig. 10. Measured motor and levitation currents at 1500 r/min where a), c)
D-end and b), d) ND-end of the machine.

 

Fig. 11. Rotor vibration in the axial direction at the speeds of 150 r/min
and 1500 r/min.

V. CONCLUSIONS

This paper presented an overall framework to implement
a model-based radial position control for a dual-motor IPM
bearingless machine with an axial magnetic bearing. Even
though the U/f scalar control is simple, it is still a practical
solution for high-speed applications with a constant operation
speed. Rotation tests with a levitated rotor were run from 150
r/min to 1500 r/min. The vibration results show that at low
speeds the vibration is mostly caused by the run-out effect.
To keep the rotor orbit in a zone A at the nominal speed area,
the rotor balancing is needed as the effect of the unbalance
grows quadratic in function of rotational speed.
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Fundamental 3rd harmonic 5th harmonic 7th harmonic 

Fig. 12. Frequency spectra of the D-end rotor orbit from 150 to 1500 r/min. Electrical speed is used in the rotational speed axis.

 

Fundamental 3rd harmonic 5th harmonic 7th harmonic 

Fig. 13. Frequency spectra of the ND-end rotor orbit from 150 to 1500 r/min. Electrical speed is used in the rotational speed axis.
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Abstract—It is beneficial to use model-based control ap-
proaches for the position control of high-speed machines with
a magnetically levitated rotor system, as the system inherently
involves multiple inputs and outputs. There is always uncertainty
in the model parameters, and thus, a robust control approach
is a preferable choice. In this paper, an H∞ loop-shaping
method for bearingless machine control synthesis is studied and
compared with the widely used PID control approach. System
identification experiments are conducted to validate the results
and the controller performance in the prototype system.

Index Terms—bearingless machine, identification, MIMO, ro-
bust control

I. INTRODUCTION

High-speed compressors can be equipped with active mag-
netic bearing (AMB) technology to replace traditional retainer
bearings. With AMBs, the rotation speed is only limited by
the mechanical strength of the rotor structure. A drawback of
AMBs is that they increase the rotor length as the additional
active parts require space in the rotor. An alternative option is
to apply bearingless or self-levitating motor technology [1].
In this approach, the motor units produce torque together
with the levitating force. In a basic construction, this can be
achieved by two different winding sets wound on one stator
unit. An additional benefit when applying a solution based
on bearingless technology is that standard industrial variable
frequency drives can also be used for levitation winding
control. Hence, a bearingless motor can be designed to be
a more integrated system than a traditional AMB rotor system
solution, which is beneficial in high-speed applications.

Approaches to control the rotor position in a bearingless
machine are generally presented with a PID-based controller
[2], [3]. The selection of the PID controller is supported by
practical reasons such as the ease of implementation and an
intuitive tuning approach. However, an actively levitated rotor
system has to be supported with two bearing planes in the
radial direction and one plane in the axial direction. This
setup constitutes a multi-input multi-output (MIMO) system,
where cross-couplings between the controlled axes are present.

To effectively control the MIMO rotor system with a PID
controller, additional cross-coupling gains must be included.
This naturally increases the complexity of the PID controller.
By adopting a model-based control approach, cross-coupling
can be taken into account directly in the model applied to the
control synthesis [4]. The model-based control solution allows
the adoption of well-established control approaches such as
state feedback with pole placement, optimal control [5], and
robust control [6], to name but a few. Further, the same model-
based control principles used for traditional AMB solutions
can also be applied in the case of bearingless machines [7].

Different robust control methods for the position control of
an AMB rotor system have been proposed in the literature.
In [8], an H∞ loop-shaping is considered for a magnetic
bearing system. Another paper discusses a signal-based H∞
control method for an active magnetic bearing application and
compares it with loop-shaping in [9]. A mixed sensitivity-
based approach for a high-speed machine with AMBs is
reported in [10]. Finally, the control of a flexible rotor system
using the µ-synthesis method is investigated in [11].

In this paper, the control of a dual motor interior permanent
magnet bearingless machine is addressed by employing the
H∞ loop-shaping control method. The modeling of the rotor
system is reported. The robustness of the system is analyzed
and the results are compared with the standards related to the
acceptable limits of mechanical vibrations in AMB systems
[12], [13]. The performance of the synthesized multi-input
multi-output (MIMO) H∞ controller is verified by experimen-
tal tests on a 10 kW prototype machine. The well-known PID
controller is used as a reference controller.

The paper is organized as follows. Section II describes
the problem statement, and the system under investigation
is introduced. Section II also approaches system modeling
by presenting a MIMO rotor system model. The background
theory and uncertainty modeling are discussed in Section
III. The PID controller configuration applied in the study is
described together with the tuning of the 4-DOF H∞ controller
with the loop-shaping method in Section IV. The experimental
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results are given in Section V, where the performance of the
H∞ controller is compared with the PID controller. Section
VI concludes the paper.

II. PROBLEM STATEMENT

A rotor system that is supported in five degrees of freedom
constitutes a MIMO system, where cross-coupling between
the controlled axes is present. PID-controller-based solutions
are widely used in industrial applications, but the drawback
of the PID approaches is that their tuning laws are designed
for single-input single-output (SISO) systems. To take account
of the full system with a PID controller, additional cross-
coupling gains are required [1]. With a model-based approach,
the MIMO rotor system dynamics can be straightforwardly
incorporated in the control synthesis.

The are several standards that define the acceptable operat-
ing conditions for high-speed electrical machine application.
For instance, the acceptable unbalance of the rotor with respect
to the operating speed is studied in [14]. Moreover, the
vibration and sensitivity peak of the rotor system equipped
with AMBs are investigated in [12], [13]. The sensitivity
against disturbances as a function of frequency is a further
important performance metric addressed in the standard. By
applying the H∞ control approach, the controller design is
carried out directly in the frequency domain by selecting the
suitable weighting functions. By correct weight selection, the
desired performance can be achieved and the requirements
specified in the standards can be met. This paper studies
the H∞ loop-shaping method for bearingless machine control
synthesis.

A. System description

The magnetically levitated rotor system under study con-
sists of dual bearingless motor units and an axial AMB.
The bearingless motor units include two separate distributed
winding sets that generate torque and radial-direction levita-
tion force. The rotor itself consists of two lamination stacks
with interior permanent magnets along with the measure-
ment surface for the eddy-current displacement sensors in
five degrees of freedom (5-DOF). In addition to the rotor
position measurement, the rotor angle is measured with a
noncontact magnetic encoder. The position of the axial AMB
is controlled with a separate PID controller. A photograph of
the prototype machine is shown in Fig. 1. The system is driven
with industrial three-phase variable frequency drives equipped
with a custom control unit. The inner current control loop
is implemented in the variable frequency drive, whereas the
position control is implemented in Beckhoff TwinCaT using
the Simulink/Matlab environment.

B. System modeling

The basic modeling of the system dynamics of a magnetic
levitation system can be approached in two ways. The simplest
approach is based on point mass modeling, which describes
the basic operation of a magnetically levitated system in one
degree of freedom (DOF). The second approach is a rigid body
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Fig. 1. Prototype machine, where a) is the location of the motor units, b)
the location of the axial AMB, c) the measurement planes of the rotor radial
position with the eddy-current sensors, d) the measurement of the rotor axial
displacement with the eddy-current sensor, and e) the measurement of the
rotor angle with a noncontact magnetic encoder.

model, which represents the full rotor system in four degrees
of freedom. The latter modeling approach combines the rigid
rotor model together with a linearized force model. As the
model is of the MIMO type, the state-space presentation is a
convenient choice for such a system.

ẋ(t) = Ax(t) + Bu(t)

ẏ(t) = Cx(t),
(1)

where A is the system matrix, B is the input matrix, C is
the output matrix, u is the input vector, x is the state vector,
and y is the output vector. The rotor model can be generally
expressed with the equation

Mq̈(t) + (D + ΩG)q̇(t) + Kq(t) = F(t), (2)

where M is the mass matrix, D is the damping matrix, G is
the gyroscopic matrix, K is the stiffness matrix, F is the force
vector, and q is the rotor position around the center of mass.
This equation can be simplified by assuming rigid behavior of
the rotor, which reduces the system model into

Mq̈(t) + ΩGq̇(t) = F(t). (3)

A further model simplification can be made by assuming
that the rotor is not gyroscopic. This assumption is valid when
the rotor axial length is greater than the rotor diameter. By
including the linearized force model in the rotor model, an
overall model is obtained

Mq̈(t) = Kxq(t) + Kiic(t), (4)

where Kx is the position stiffness matrix, Ki is the current
stiffness matrix, and ic is the control current vector.
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Fig. 2. Cross-sectional view of the prototype machine, where the locations of the motor units (a, b) and the rotor position measurement planes (c, d) are
illustrated from the center of mass.

A cross-sectional view of the modeled prototype ma-
chine is illustrated in Fig. 2. The rotor movement q =[
β x α y

]T
, is presented around the center of mass,

where x is the rotor position in the x-axis, α is the angle
around the y-axis, y is the rotor position in the y-axis, and
β is the angle around the x-axis, respectively. The control
current vector is in the motor reference frame, whereas the
rotor position is measured in different locations (reference
frame). For this reason, the coordinate transformation matrices
are needed to transfer the inputs and the outputs to the
corresponding coordinate system

Tbc =




a 0 −b 0
1 0 1 0
0 a 0 −b
0 1 0 1


 , Tcs =




c 1 0 0
0 0 c 1
−d 1 0 0
0 0 −d 1


 ,

(5)

where Tbc is the transformation from the bearing into the
center coordinate and Tcs is the transformation from the center
into the sensor coordinate. By combining the coordinate trans-
formations with the overall model, the state-space presentation
takes the following form

Ar =

[
0 I

(M)−1TbcKxTT
bc 0

]
,

Br =

[
0

(M)−1TbcKi

]
,

Cr =
[
Tcs 0

]
.

(6)

The presented system model takes into account the noncollo-
cated sensor locations [4]. The derived model is used for the
control synthesis.

III. BACKGROUND THEORY

The objective of the feedback control is to stabilize the
system so that it is insensitive to external disturbances and the
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Fig. 3. Upper block diagram illustrates the general feedback control and the
lower the two-degree-of-freedom control approach.

system follows the reference. The block diagram of a feedback
controller is shown in Fig. 3 b). From the figure, the plant can
be determined

y = Gu+ do (7)

where G is the linear plant model, u is the control input vector,
do is the output disturbance, and y is the output vector. By
closing the feedback loop we can get

y = GC(r− dn − y) + do (8)
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where C is the feedback controller, r is the reference vector,
and dn is the sensor noise vector. By solving the output vector
y, we obtain

y = (I + GC)−1GC︸ ︷︷ ︸
T (jω)

r− (I + GC)−1GC︸ ︷︷ ︸
T (jω)

dn

+ (I + GC)−1

︸ ︷︷ ︸
S(jω)

do,
(9)

where the output is described with respect to reference, sensor
noise, and output noise. In general, the transfer function T (jω)
refers to the complementary sensitivity and S(jω) to the
output sensitivity. The main challenge of the control design
is introduced in (9), where the feedback control gains C
should be selected so that the system will follow the reference
signal together with the sensor noise attenuation and the
output disturbance rejection. This seems to be an ambitious
task; however, by inspecting the sensitivity functions in the
frequency spectrum it is possible to find a trade-off solution.
The sensitivity and complementary sensitivity functions can be
used as tools to determine the system stability and robustness.

A. Uncertainty model

In general, the uncertainty of a system can be determined
by a structured or an unstructured model. Structured uncer-
tainty describes a certain parameter uncertainty in the model,
whereas unstructured uncertainty defines the nonlinearity of
the system. Depending on the control problem, a suitable un-
certainty model must be selected, where the uncertainty can be
an additive, multiplicative, or coprime-factorized perturbation.

In this case, the system model is presented by a coprime
factorization method with perturbed uncertainty. The following
form represents the left coprime-factorized weighted plant
model

Gs(s) = M−1
s (s)Ns(s) = (Ms + ∆M )−1(s)

+ (Ns + ∆N )(s),
(10)

where Gs(s) is the weighted plant model, Ms(s) and Ns(s)
are the stable coprime transfer functions, and ∆N and ∆M

are the unknown transfer functions that represent the perturbed
uncertainty. The block diagram of the left coprime plant model
with perturbed uncertainty is depicted in Fig. 4 in the dashed-
line box. The control problem is then written as

∥∥∥∥
[
K2

I

]
(I−GsK2)−1M−1

s

∥∥∥∥
∞
≤ ε−1 (11)

where K2 is the feedback controller gain, I is the identity ma-
trix, and ε is the stability margin that indicates the maximum
perturbation level.

IV. ROTOR POSITION CONTROL

A rotor system whose axial length is greater than its
radial diameter must be supported magnetically from two
radial bearing locations for stable operation. In addition, to
ensure a fully levitated rotor system, the axial direction must
be controlled with a passive or active magnetic bearing. In

this section, the PID- and H∞-based controller designs are
discussed.

A. PID control approach

To achieve full levitation in 5-DOF with PID controllers,
one control loop for the axial direction and four control loops
for the radial direction are required. The parallel-form PID
controller can be written as

C(PID)(z) = KP(PID)
+KI(PID)

Ts

z − 1

+KD(PID)

Tf

1 + Tf
Ts

z−1

(12)

where C(PID)(z) is the PID controller transfer function,
KP (PID) is the proportional gain, KI(PID), is the integral
gain, KD(PID) is the derivative gain, Ts is the sampling time,
and Tf is the time constant of the derivative filter. In this paper,
the initial parameter tuning principles for the PID controller
are adopted from [1], and the parameters are further tuned
against the simulation model followed by final iterative tuning
during the experimental test. The control parameters applied
in the experimental tests are given in Table I.

B. H∞ loop-shaping

The H∞ loop-shaping control approach is used for the radial
position stabilization of the MIMO bearingless system. A two-
degree-of-freedom controller is selected, where the reference
input has a separate weighting function. The block diagram of
the 2-DOF control problem is depicted in Fig. 4, where the
plant model is coprime factorized [15]. The design process
begins by selecting a suitable prefilter W1 that shapes the
open-loop response of the system in the frequency domain

Gs(jω) = G(jω)W1(jω), (13)

where G(jω) is the open-loop plant and Gs(jω) is the shaped
plant. The weighting function Wref is used to shape the
behavior between the reference input and the output

Wref (jω) = I4×4 ·
ω2
ref

s2 + 2ωrefs+ ω2
ref

, (14)

where ωref is the designed bandwidth for the reference weight.
A prefilter is designed to put more weight on the dc gain area
to counter the disturbance in this frequency region

W1(jω) = I4×4 ·
s+ wa1

s+ wa2
· s+ wb

wb
· wc

s+ wc
(15)

where wa1 and wa2 are used to define the weight for the
low-frequency behavior, and wb and wc are used to define
the weight around the crossover frequency. With the scalar
parameter ρ (see Fig. 4), the weight on the model matching
can be further increased.
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Fig. 4. Block diagram of the H∞ loop-shaping with the 2-DOF design scheme.
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Fig. 5. Block diagram of the implemented H∞ controller.

The reference input is scaled with the following constant to
match the output with the reference model

Wi
∆
= [(I−Gs(s))K2(s))−1Gs(s)K1(s)]−1Wref (s)|s=0,

(16)

where K1 is the feedback gain and K2 is the reference
gain. The designed and implemented controller takes the form
illustrated in Fig. 5.

C. System identification

In this paper, the experimentally identified sensitivity fre-
quency responses are used for the control design validation
and comparison. In general, the frequency response can be
mathematically described as a relation of the input and output
signals

G(jω) =
Y (jω)

U(jω)
, (17)

where Y (jω) and U(jω) are the Fourier-transformed system
output and input signals, and G(jω) is the estimated system
transfer function. The closed-loop system identification is car-
ried out by including an additional excitation signal designed
in a certain frequency range. The output sensitivity of the
system can be determined with an experimental identification
test, where the excitation signal is injected to the plant output
as a disturbance. The sensitivity to the output disturbance is
then calculated from the disturbance to the measured output
as

S(jω) =
Y (jω)

Do(jω)
(18)

where Y (jω) is the measured system output and Do(jω) is the
artificially generated excitation signal in the frequency domain.
In this paper, a pseudorandom binary sequence (PRBS) is
considered as an excitation signal that excites the system in
the frequency spectrum from 1 to 750 Hz as in [16].

V. EXPERIMENTAL RESULTS

The traditional PID-controller-based solution is compared
with the presented 4-DOF MIMO H∞ approach. Both the
controllers are implemented on the Beckhoff industrial PC
operating at the 50 µs sampling time. The identified output
sensitivity functions for both the controllers are depicted in
Fig. 6. It can be seen that the sensitivity peak is lower in the
case of the optimized H∞ controller in Fig. 6 b).

To further analyze the performance, the limits of the sensi-
tivity peaks described in the standard are shown in the output
sensitivity plots [14]. In the case of the PID controller system,
it can be seen that the sensitivity peak exceeds every limit. On
the other hand, the peak of the H∞ controller is around the
A/B zone, which indicates that the output sensitivity should
be acceptable in the normal operating point. Moreover, when
comparing the experimental output sensitivity results with the
simulated ones, we can see that the simulation produces a
lower peak. This indicates that the model used for the control
design deviates from the actual plant.

To verify the dynamics, the rotor model is identified by
injecting a PRBS excitation signal to the current reference
signal during the steady-state levitation and measuring the
rotor movement with the eddy-current sensors. Thus, the open-
loop rotor model can be identified from the signals used in
(17). The identification results are illustrated in Fig. 7, where
the response from the D-end x axis to the other axes is demon-
strated. We can see that the modeled rigid modes correspond
well with the identified one shown in Fig. 7 a. However, there
is an unmodeled dynamics in the cross-coupling between the
other axes. Therefore, to improve the control performance, a
more accurate plant model must constructed. This, however,
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                      a) 

 
     b) 

Fig. 6. Identified output sensitivity of the bearingless system controlled with
a) PID- and b) H∞-type controller.

 

a)                                                                 b) 

 
c)                                                                  d) 

Fig. 7. Identified plant model compared with the analytical model. For
simplicity, only one axis of the symmetrical system is illustrated; the subplots
are a) D-end x-axis current reference to the D-end x-axis measured position,
b) D-end x to D-end y, c) D-end x to ND-end x, and d) D-end x to ND-end.

will be a topic of a future publication. A comparison shows the
drawback of the SISO-design-based PID controller solution,
where the design does not include the effect of cross-coupling.

TABLE I
SYSTEM PARAMETERS

Parameter Symbol Value Unit

Nominal speed Ωnom 30 000 r/min
Nominal power per motor unit Pnom 5 kW
Rotor mass m 11.65 kg
Rotor inertia J 0.232 kgm2

Resistance R 0.27 Ω

Inductance L 3.27 mH
Current stiffness Ki 29 N/A
Position stiffness Kx 672 N/mm
Distance to sensor location c, d 211 mm
Distance to bearingless motor a, b 107.5 mm
Sampling time Ts 50 µs
Proportional gain KP 42000 A/m
Integrator gain KI 8.2·105 As/m
Derivative gain KD 103 A/ms
Filter coefficient Tf 100
Prefilter parameter wa1 150
Prefilter parameter wa2 0.1
Prefilter parameter wb 600
Prefilter parameter wc 800
Reference model bandwidth ωref 370 rad/s
Scalar gain ρ 1

VI. CONCLUSION

In this paper, an H∞-based MIMO controller was ap-
plied to the radial position control of the dual-motor bear-
ingless machine. The controller output sensitivity was used
for performance evaluation in terms of standards provided
for the actively controlled levitating systems. Additionally,
the PID-based controller was used as a reference control
law and compared with the proposed H∞ design. For the
validation purposes, the sensitivity functions from both control
approaches were identified with experimental identification
tests. The results of the experimental tests show that the H∞
approach outperforms the PID controller. It was found that
the identification results demonstrated unmodeled dynamics
in the system model. The future work focuses on the system-
identification-based modeling issues to improve the control
synthesis and the system closed-loop behavior.
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