
885
SOFTW

ARE SUSTAIN
ABILITY BY DESIGN

Shola Oyedeji

SOFTWARE SUSTAINABILITY BY DESIGN

Shola Oyedeji

ACTA UNIVERSITATIS LAPPEENRANTAENSIS 885

Shola Oyedeji

SOFTWARE SUSTAINABILITY BY DESIGN

Acta Universitatis
Lappeenrantaensis 885

Dissertation for the degree of Doctor of Philosophy to be presented with
due permission for public examination and criticism in the room 1316 at
Lappeenranta-Lahti University of Technology LUT, Lappeenranta, Finland on
the 5th of December, 2019, at noon.

Supervisors Adjunct Professor Birgit Penzenstadler

LUT School of Engineering Science

Lappeenranta-Lahti University of Technology LUT

Finland

Professor Jari Porras

LUT School of Engineering Science

Lappeenranta-Lahti University of Technology LUT

Finland

Reviewers Dr. Colin C. Venters

Department of Computer Science

School of Computing and Engineering
University of Huddersfield

United Kingdom

Professor Patricia Lago

Software Engineering

Vrije Universiteit Amsterdam

Netherlands

Opponents Assistant Professor Nelly Condori-Fernandez
Computer Science

University of Coruña

Spain

Dr. Colin C. Venters

Department of Computer Science

School of Computing and Engineering
University of Huddersfield

United Kingdom

ISBN 978-952-335-456-2

ISBN 978-952-335-457-9 (PDF)

ISSN-L 1456-4491

ISSN 1456-4491

Lappeenranta-Lahti University of Technology LUT

LUT University Press 2019

Abstract

Shola Oyedeji

Software Sustainability by Design

Lappeenranta 2019

84 pages

Acta Universitatis Lappeenrantaensis 885

Diss. Lappeenranta-Lahti University of Technology LUT

ISBN 978-952-335-456-2, ISBN 978-952-335-457-9 (PDF), ISSN-L 1456-4491, ISSN

1456-4491

In our current world, software impacts almost everything; it connects people and forms

the cornerstone for the economy, as such, has an impact on sustainability and the

emerging sustainable development goals (SDGs). Currently, sustainability is a concept

with different interpretations and perceptions in the software engineering community.

Software sustainability design, development and measurement are evolving and require

more research in software engineering. There are only a few concrete guidelines,

measures, tools and examples for software architects, developers, requirement engineers

and companies to use in the design, development and measurement of software

sustainability efficiently and effectively.

This research aims to explore how best to guide and support stakeholders (requirement

engineers, software architects, developers, and companies) in the design, development

and measurement of software systems, based on sustainability dimensions (economic,

social, individual, environment and technical) in software engineering. This work will

serve as the first step towards alleviating the challenge of understanding what

sustainability means in software design, development and measurement for different

stakeholders.

This research has been conducted using the design science research methodology to

identify and design solutions (artefacts) for the problems of sustainability in software

design, development and measurement. These artefacts are the Sustainable Business Goal

Question Metric (S-BGQM), the Software Sustainability Design Catalogue (SSDC), the

Framework for Sustainability of Software System Design (FSSSD) and the Template for

Software Sustainability Requirement Best Practice documentation.

The overall outcome from this research is tailored towards supporting sustainability in

software design and development practices. Output from this research provides the

building block to foster more research investigation on tools and methods to support shift

in stakeholders’ mindsets towards adopting sustainability in a way that translates into

software design decisions and practices.

Keywords: software sustainability, software sustainability requirement, software

sustainability design, software sustainability perceptions, software sustainability analysis,

software sustainability measures, karlskrona manifesto principles, software sustainability

measurement

Acknowledgements

I want to say big thanks to my supervisors, Adjunct Professor Birgit Penzenstadler and

Professor Jari Porras, for providing me with good insight, supervision and support during

all my research activities for this dissertation.

The foundation for my research in this dissertation was provided by Professor Ahmed

Seffah who hired me initially as his PhD student. I appreciate all your efforts in supporting

and guiding me to understand how best to translate my ideas into good research.

I acknowledge and thank reviewers of this dissertation, Dr. Colin C. Venters and

Professor Patricia Lago for all your valuable comments and feedbacks which helped me

improve this dissertation.

I would like to express gratitude to Mariam Abdulkareem, Bilal Naqvi, Victoria Palacin,

Andrey Sultan, Dr. Antti Knutas, Dr. Annika Wolff, Ola Mikhail Adisa and Dr. Janne

Parkkila for always been there to discuss my research and assist me throughout this

journey of PhD.

My master program Erasmus Mundus Joint Master Degree (EMJMD) in Pervasive

Computing and Communications for Sustainable Development (PERCCOM) provided

me the opportunity to further my studies for PhD. I would like to thank Professor Eric

Rondeau for selecting me into PERCCOM program, Jean-Philippe Georges, Thierry

Divoux, Francis Lepage, Professor Olaf Droegehorn, Professor Karl Andersson, Dr. Josef

Hallberg, Professor Gérard Morel, Ah-Lian Kor, Professor Karl-Erik Michelsen and other

PERCCOM lecturers for impacting me with knowledge of sustainability in ICT. All my

friends in Cohort 1, 2, 3 and 4 from the PERCCOM program, you rock and I love you all.

I appreciate the support and assistance of my colleagues at the Software Engineering Unit

and our boss Professor Kari Smolander. Special thanks to Tarja Nikkinen, Ilmari

Laakkonen and Petri Hautaniemi for the administrative and technical support.

This dissertation would not be complete today without the support of caring friends and

family in Finland and abroad: Ibrahim & Bilikisu, Larry & Munifah, Ayo & Nike,

Moshood Afolabi, Mahmoud El-sebaie, Hicham Benkeltoum, Ezeanowi Nnaemeka

Celestine, Alex Dankwah, Imtiaz Ahmed, Kuburat Abdulkareem, Rose Alshawwaf,

Agnes Asemokha, Misbah Mustapha, Ibrahim Adebayo Ola, Mehar Ullah, Amin

Esmaeili, Obi Chike Hilary, Alharith Asim Surij, Moses Irunokhai, Muhammad Ahsan,

Mahdi Merabtene, Abdelrahman Azzuni, Fasasi Olufemi, Banji Seun, Abass Abolaji

Adeniji, Anar Bazarhanova, Niklas Kolbe, Dimitar Minovski, Kola Adebayo, Ashraf

Abdo, Md Anowarul Abedin, Ornela Bardhi, Dagnachew Azene Temesgene, Melanie

Pittumbur, Sumeet Thombre, Rajeshwari Chatterjee, Jonathan Pucher, Stefanos

Georgiou, Julien Da, Khan Mohammad Habibullah, Ahmad Azwan Ja'afar, Samuri

Firusi, Mishael Akpabio, Nurul Haida Akhir, Moy Zulaikha, UshaDevi Balakrishnan,

Futri Najla Saleh, Nuru Salihu and all my gym buddies.

To my dad, mum, siblings, uncles and aunties, I want to say big thanks for always

listening to my struggles, supporting and believing in me throughout this research towards

my dissertation.

Finally, big thanks to my lovely caring wife, Diajeng Rahmawati for your understanding

and patience, especially during all those late nights in office. I appreciate all your efforts

in making this process easy for me and those encouragements over the years.

Shola Oyedeji

November 2019

Lappeenranta, Finland

This thesis is dedicated to my parents (Sule & Fausat

Oyedeji), Diajeng’s parents (Firman & Utami Anwar),

Eksannudin Elias, Dr. Kalaivani Chellappan, Norlini Ramli

and all my family members for their endless love and support

Contents

Abstract

Acknowledgements

Contents

List of publications 11

Nomenclature 13

1 Introduction 15
1.1 Research Questions ... 17
1.2 Research Contribution ... 18

1.2.1 Overview of Research Contribution ... 18

2 Background 21
2.1 Sustainability ... 21

2.1.1 Brief History of Sustainability and Sustainability Definitions ... 22
2.1.2 Sustainability Pillars ... 23

2.2 Sustainability in Software Engineering ... 26
2.2.1 Software Sustainability Dimensions and Definitions 26
2.2.2 Sustainability in Software Design and Development 28
2.2.3 Software Sustainability Measures and Measurement 32

3 Methodology 37
3.1 Selection of Research Methods ... 37

3.1.1 Design Science Research Cycles .. 39
3.1.2 Design Science Research Processes .. 41
3.1.3 Case Study Research Method ... 43

4 Publication Overview 45
4.1 Publication I: .. 46

4.1.1 Research Objective ... 46
4.1.2 Relation to Thesis Research Question .. 46
4.1.3 Research Output and Contribution .. 46

4.2 Publication II: .. 48
4.2.1 Research Objective ... 48
4.2.2 Relation to Thesis Research Question .. 48

4.2.3 Research Output and Contribution .. 49
4.3 Publication III: ... 53

4.3.1 Research Objective ... 53
4.3.2 Relation to Thesis Research Question .. 53
4.3.3 Research Output and Contribution .. 53

4.4 Publication IV: .. 54

4.4.1 Research Objective ... 54
4.4.2 Relation to Thesis Research Question .. 54
4.4.3 Research Output and Contribution .. 54

4.5 Publication V: .. 55
4.5.1 Research Objective ... 55
4.5.2 Relation to Thesis Research Question .. 56
4.5.3 Research Output and Contribution .. 56

5 Results and Evaluation 57
5.1 Research Evolution and Results .. 57
5.2 Evaluation of Validity in Design Process .. 66
5.3 Threat to Validity .. 68
5.4 Limitation of Research .. 69

6 Conclusion 71
6.1 Addressing Research Questions .. 72
6.2 Future Research ... 72

References 75

11

List of publications

This thesis is based on the following publications; the publications are titled as

Publications I - V.

I. S. Oyedeji, A. Seffah, and B. Penzenstadler, 2017. Sustainability quantification in

requirements informing design. Proceedings of 6th International Workshop on

Requirement Engineering for Sustainable System co-located with the 25th

International Conference on Requirements Engineering.

II. S. Oyedeji, A. Seffah, and B. Penzenstadler, 2018. A catalogue supporting

software sustainability design. Sustainability, Vol. 10, no. 7, pp. 1–30.

III. S. Oyedeji, A. Seffah, and B. Penzenstadler, 2018. Classifying the measures of

software sustainability. Proceedings of the 4th International Workshop on

Measurement and Metrics for Green and Sustainable Software Systems co-

located with 12th International Conference on Empirical Software Engineering

and Measurement

IV. S. Oyedeji and B. Penzenstadler, 2018. Karlskrona manifesto: Software

requirement engineering good practices. Proceedings of the 7th International

Workshop on Requirements Engineering for Sustainable Systems co-located with

the 26th International Conference on Requirements Engineering.

V. S. Oyedeji, B. Penzenstadler, M. O. Adisa, and A. Wolff, 2019. Validation study

of a framework for sustainable software system design and development.

Proceedings of 6th International Conference on ICT for Sustainability, ICT4S.

List of publications 12

Author's contribution to publications

I. The dissertation candidate is the principal author and investigator of this

publication, who conceived the idea and discussed it with the co-authors.

II. The dissertation candidate is the main author of this publication, who conceived

the idea of the publication based on discussion with the third author (main

supervisor), and carried out the planning and execution of data collection through

literature reviews, analyses and reporting under the supervision of the second and

third authors.

III. The dissertation candidate is the principal author and investigator of this

publication, under the supervision of the second and third author.

IV. The dissertation candidate is the main author of the publication and carried out

the research investigation and reporting after discussions with the second author,

who supervised the research process.

V. The dissertation candidate is the principal author and investigator of the

publication, conducted the planning and execution of the case study and

documented the results and findings.

13

Nomenclature

EF Energy efficiency

EU European Union

FS Functional suitability

FSSSD Framework for Sustainability of Software System Design

GHG Global greenhouse gas

ICT Information and communications technology

KMSD Karlskrona manifesto for sustainability design

PE Performance efficiency

PUE Power usage effectiveness

S-BGQM Sustainable business goal question metric

SDGs Sustainable development goals

SDLC Software development lifecycle

SE Software engineering

SSDC Software sustainability design catalogue

15

1 Introduction

Sustainability is now one of the world’s major challenges (Tilbury et al., 2002; Ehrenfeld,

2008; United Nations, 2013). The importance of sustainability in all aspects of human

lives and development is further highlighted by the collection of 17 sustainable

development goals (SDGs) (United Nations, 2015). These SDGs indicates the need for

global action towards sustainability and software has a role to play. Software is a key

factor and catalyst for all economic activities using information and communications

technology (ICT) and a major driver linking all sectors. Currently, there has been limited

research investigations and solutions on how these SDGs can be achieved through ICT

(Wu et al., 2018), which requires a global multi-disciplinary efforts with joint

collaboration of companies in various industries.

ICT itself contributes an estimated 2% of global CO2 emissions and is accountable for

approximately 8% of the European Union’s (EU) electricity consumption (Calero and

Piattini, 2015), but the percentage of emissions induced by software-intensive systems is

much higher. As stated in an Ericsson report, ICT can help reduce global greenhouse gas

(GHG) emissions for companies by 15% (Ericsson, 2014) and software is a key

component in the reduction. Currently, there are some companies using sustainable

development for software innovations by creating new opportunities to lower costs, add

value and gain competitive advantages (Calero and Piattini, 2015). There is also an

increasing growth in the percentage of organisations redesigning their entire business

models to incorporate sustainability according to a Microsoft report, as well as an IBM

global CEO study on sustainability (Microsoft, 2015; IBM, 2010; Nidumolu, Prahalad

and Rangaswami, 2013).

Sustainability has been on the agenda of many companies for decades, but their

environmental, social and governance activities are disconnected from their core strategy

because they lack understanding on how to integrate sustainability into their business

models (Bonini and Görner, 2011). Software affects all facets of our lives and is a driver

for sustainability and greening in companies (Kocak, 2013). However, the ‘How’ and

‘Where’ to apply each of the sustainability dimensions and how to evaluate the impact on

software applications is still a challenge for many companies during software design

(Kocak, 2013; Oyedeji, Seffah and Penzenstadler, 2018a).

The problem of long-term thinking is now a concern in software design, with focus on

different research angles for holistic consideration of sustainability in software system

during design and the environment in which it will operate (Becker, 2014). Software

engineering (SE) and software designers have an important role to play in promoting

sustainability through the design of sustainable software systems. The way we design and

consequently use software systems has a significant impact and can greatly influence

human perceptions of sustainability (Mahaux, Heymans and Saval, 2011). Although

design is a central phase of any software development process (Freeman, 1980), there has

been limited research on software sustainability design. Professionals’ perception of

sustainability affects the way sustainability has been applied in software development

1 Introduction 16

(Groher and Weinreich, 2017) because different lifestyles, values and practices affect

how sustainability is treated (Ilstedt, Eriksson and Hesselgren, 2017).

The challenge of sustainability in SE is that most research currently does not cover the

full software development life cycle phases to show how sustainability can be an integral

part of each development phase. A systematic mapping study (Wolfram, Lago and

Osborne, 2017) shows the classification of relevant publications on sustainability in SE.

Based on the results of the systematic mapping study (see Figure 1), the distribution of

research efforts on each knowledge area according to SWEBOK (Bourque and Fairley,

2014) indicates that not all software development life cycle phases are proportionally

addressed, from the software project definition phase to the user requirements definition,

system requirement definition, analysis and design, development, integration and testing,

implementation and finally maintenance.

Figure 1. Distribution of sustainability research publications, according to each knowledge area

(Wolfram, Lago and Osborne, 2017)

One of the main problems of sustainability in software design is that for software

designers, even with a systems approach, there are only a few existing tools for

sustainability. Instead, designers must learn to patch a series of disparate sustainability

understandings to address the multiple dimensions of sustainability during software

design and development (Shedroff, 2009). Furthermore, the challenge for most

companies is that there is little understanding of how sustainability can be applied by

software and requirement engineering professionals to facilitate sustainability design as

an established part of the software development process: specifically, the requirements

 17

engineering and design processes (Mahaux and Canon, 2012; Chitchyan et al., 2016;

Jannat, 2016).

The problem of ‘How’ and ‘Where’ to apply sustainability in software design and

challenge of understanding in what way sustainability can impact positively in software

design by stakeholders necessitated this research. Stakeholders in the context of this

research are software architects, developers, designers, requirement engineers,

researchers and companies.

This research focuses on the sustainability practices used in designing and developing

software within software engineering which is usually called sustainable software

engineering. Sustainable software engineering is a process which ‘aims to create reliable,

long-lasting software that meets the needs of users while reducing environmental

impacts’(Amsel et al., 2011). This research also supports software engineering for

sustainability which focuses on how software can help and support sustainability while

in use (Oyedeji, Seffah and Penzenstadler, 2018b).

The overall research is directed towards providing support and guidance to stakeholders

in the integration of sustainability during software design, development and measurement

through the use of a sustainability framework, catalogue and requirement template. The

following points are the goals of this thesis:

 The main goal of this research is to create artefacts for software sustainability

design that can guide and support stakeholders to easily adopt and institutionalise

sustainability in their mainstream software development and management

processes, assess the cost-benefit objectively while creating a business model

associated with the sustainability of their software system.

 The second goal is to improve software sustainability design practices through

software design decisions that will translate into sustainability in software design.

1.1 Research Questions

The research questions are centred on the question of ‘How to guide and support software

developers in the design, development and measurement of software sustainability’.

The research questions and Table 1 describe each research question according to the

publications used in this thesis:

 Research Question 1 (RQ1): How to elicit software sustainability requirements

in software design?

 Research Question 2 (RQ2): How to measure and evaluate software system

sustainability?

 Research Question 3 (RQ3): How to record good practices for software

sustainability design and development?

1 Introduction 18

Table 1. Publications’ relation to research questions

No Publications RQ1 RQ2 RQ3

1 Sustainability Quantification in requirements Informing Design X X

2 A Catalogue Supporting Software Sustainability Design X X

3 Classifying the Measures of Software Sustainability X X

4 Karlskrona Manifesto: Software Requirement Engineering

Good Practices

X X

5 Validation Study of a Framework for Sustainable Software

System Design and Development

X X X

1.2 Research Contribution

This thesis provides a building block to advance the state of the art in software

sustainability design, development and measurement through the identification and

documentation of different research gaps, challenges and problems for software

sustainability design in academia and its application in industry.

Also, Software Sustainability Design Catalogue (SSDC) is proposed as a guideline for

stakeholders. Another core contribution from this thesis is the development of the

Framework for Sustainability of Software System Design (FSSSD) for software architects

and developers, which addresses each software development life cycle phase with

different sustainability goals, concepts, methods, tools, measures and indicators.

Further, a method for documenting software sustainability requirements’ best practices

and a template for documenting these practices were created for reuse by both

experienced and novice stakeholders, researchers and governmental agencies interested

in software sustainability design.

1.2.1 Overview of Research Contribution

The five publications in this research contributed to software sustainability design in

different phases of the software development lifecycle (SDLC). These SDLC phases, for

better categorisation of the research contributions, are grouped into Requirements, Design

and Development, Measurement, Documentation and Validation. Figure 2 summarises

the research contribution based on the categorisation of all publications.

 Requirement: The requirement stage covers the project definition, user

requirements and system requirements phases. Research output from Publication

1 (software sustainability requirements and sustainable business goal question

metrics [S-BGQM]) contributed to facilitating software sustainability

requirement as a core part of the three SDLC phases during software design and

development.

 19

 Design and development: The grouping for design and development includes

the analysis, Design and Development phases of SDLC. Research output from

Publication 2 contributed to this stage. First, the SSDC is a tool to educate

stakeholders on how to design better sustainable software systems through the

sustainability guidelines. Second, FSSSD, a derivative from SSDC, serves as a

guide and support for stakeholders during the software design by using

sustainability goals, aided by different sustainability concepts, methods and tools

to facilitate software sustainability by design.

 Measurement: Publication 3 presents several measures advocating software

sustainability and green software, based on the four software sustainability

perceptions (sustainability in software development, software for sustainability,

green software systems and Sustainability of software ecosystems), to support

stakeholders during the integration and testing SDLC phases. The measures

presented show different practices currently used in software sustainability

evaluation. This measures can be used for software sustainability measurements

during the integration and testing phases.

Documentation: This stage covers documentation during SDLC phases.

Publication 4 presents research on collecting and disseminating software

sustainability requirement elicitation best practices using a Template. Feedback

from stakeholders in Publication 4 shows the template can serve as a useful tool

in recording best sustainability practices during software design and development.

 Validation: Publication 5 provides results from case studies for the validation of

FSSSD, based on the foundation laid in Publications 1- 4. The outcome of FSSSD

in case studies shows that stakeholders need different tools to guide and support

them during software sustainability design, development and measurement. The

early feedback from the case studies highlights the usefulness of Framework for

Sustainability of Software System Design, because it persuaded stakeholders to

rethink their software development project with regards to sustainability. The

feedback also indicates a challenge for those interested in software sustainability

design. One of the major challenge is the lack of a central repository where

sustainability has been exemplified in different software designs for stakeholders

to learn and improve their understanding of sustainability during software design,

development and measurement.

1 Introduction 20

Figure 2. Overview of research contribution

21

2 Background

This chapter addresses the overall background research on software sustainability design,

development and measurement. The general key concepts of this thesis, such as the

meaning and definition of sustainability, sustainability pillars, software sustainability

dimensions and sustainability in SE, are presented in this chapter.

The key research contributions in the field of software sustainability design from different

authors and challenges of sustainability in software design, development and

measurement are also detailed in this chapter. Overall, this chapter describes the research

gap in software sustainability design and development, with a research statement on areas

that require additional research.

2.1 Sustainability

Sustainability is a concept with a particular characteristic: that is, its meaning depends

strongly on the context of the application (Becker, 2014). Sustainability has become a

popular concept, with values expressed in research, academia, industry and government

(Wolfram, Lago and Osborne, 2017). Today, sustainability values from the

environmental, economic, and social dimensions such as healthy environment, vibrant

economy and equitable society are those we all aspire to achieve. We aim to do so through

policies, infrastructure, technological artefacts, systems, social and cultural development,

human welfare and community building.

Sustainability is based on the premise that everything humans require for their survival

and well-being depends, either directly or indirectly, on the natural environment (Marsh,

1864; National Research Council, 2011). Sustainability is regularly expressed as how the

biological system endures and remains diverse and productive, but in the 21st century,

sustainability now refers to the need to develop sustainable models necessary for both the

human race and planet Earth to survive. In 2000, the Earth Charter stated that

sustainability is a global society founded on respect for nature, universal human rights,

economic justice and a culture of peace. Sustainability has gained worldwide recognition

because of the following elements (Degrees, 2019):

 The need for conservation and energy: Advances and growth in economies and

energy came at the cost of environmental degradation. This has led to different

initiatives towards how to slow or prevent pollution, conserve natural resources

and protect the environment.

 Developing and maintaining a sustainable society: Sustainable society is based

on equal access to health care, nutrition, clean water, shelter, education, energy,

economic opportunities and employment, the pursuit of quality life, social justice

for all and harmony with the natural environment.

 Supporting sustainable business: Business patterns that require long-term

practices that encourage respect for the environment, welfare and well-being of

2 Background 22

employees, improved profitability, reduced costs, create innovation and increase

market share.

 Advances in sustainable technology and development: The pervasive nature of

technological advancement also brings the challenge of adverse effects on

sustainability. There is a need to position new technologies with rural and urban

infrastructure grounded around environmentally sound practices to support a

sustainable, healthy and happy population.

 Investigating climate change: The way we live, produce and use natural

resources has negatively impacted climate change. Debates, discussion and

research are occurring worldwide regarding government policies on how we live,

produce and use natural resources, and also the necessary corporate and individual

actions for positive climate change.

Sustainability is now a worldwide goal for our planet because of the continuous

degradation and depletion of natural resources, particularly the resources required for

human existence, good health and good quality of life. The reasons for sustainability are

now recognised worldwide and show the importance of sustainability in all aspects of our

lives.

2.1.1 Brief History of Sustainability and Sustainability Definitions

The word ‘sustainability’ was originally coined from forestry and it means never

harvesting more than what the forest yields in new growth (Wiersum, 1995). The first use

of sustainability as a word in the European context was in 1713, in the book Sylvicultura

Oeconomica by German forester and scientist von Carlowitz, used as Nachhaltigkeit

(German language) which means sustainability (Heinberg, 2010; Kuhlman and

Farrington, 2010). According to Heinberg (Heinberg, 2010), sustainability is a relative

term that can be used as a frame of reference for the duration of prior civilisations, ranging

from hundreds to thousands of years. Sustainability became a widely used term after the

Brundtland Report from the United Nations World Commission on Environment and

Development and its definition of sustainable development (UN General Assembly,

1987). The Brundtland report defined sustainable development as “development that

meets the needs of the present without compromising the ability of future generations to

meet their own needs.” (UN General Assembly, 1987). This definition of sustainable

development highlights the long-term characteristics of sustainability and ethical

responsibility for fairness between present and future generation. Sustainability is

however different from sustainable development because sustainability is a foundational

concept for sustainable development and the sustainable development goals (Diesendorf,

2000).

2.1 Sustainability 23

Sustainability as a concept has been defined in different ways to ensure equality, quality

of life, a safe environment free from toxic pollution, and continuous human existence in

peace and harmony (Ben-Eli, 2015). The following are some definitions of sustainability:

1. Sustainability is a vision for the world in which current and future humans are

reasonably healthy; communities and nations are secure, peaceful and thriving;

there is economic opportunity for all; and the integrity of the life-supporting

biosphere is restored and sustained at a level necessary to make these goals

possible (Cortese and Rowe, 2000).

2. Sustainability is a dynamic equilibrium in the process of interaction between a

population and the carrying capacity of its environment, such that the population

develops to express its full potential without producing irreversible, adverse

effects on the carrying capacity of the environment upon which it depends (Ben-

Eli, 2015).

3. Sustainability is the long-term viability of a community, set of social institutions,

or societal practice (Britannica.com). Here, community refers to people with

common interests living in a particular area.

4. Sustainability is also defined as the ability to continue a defined behaviour

indefinitely with consideration of the environment, society and economy

(Thwink.org, 2019).

The common aspect from these definitions of sustainability shows people are core part

for achieving sustainability as they form a society. These definitions support economic

prosperity for all and healthy environment for continuous growth, provide values and

goals that every society should have to achieve a good quality of life for all living species

and ensure harmony among them. In order to continue to live as a society for current and

future generations, sustainability values from the social, economic and environmental are

required to ensure human evolution does not lead to depletion of resources.

2.1.2 Sustainability Pillars

The Brundtland report of the World Commission on Environment and Development

(‘Our Common Future’); (UN General Assembly, 1987), the European Information

Technology Observatory in 2002 (EITO, 2002) and the World Summit on Social

Development in 2005 (United Nations, 2005) identified three major areas as the core of

sustainability development, namely, economic development, social development and

environmental protection. These three pillars (Figure 3 and Figure 4) formed the corner

points for different research efforts towards sustainability in different disciplines,

including SE.

 Economic pillar: This means preserving and increasing economic capital without

negative impact on the social and environmental pillars (UN General Assembly,

2 Background 24

1987; EITO, 2002;United Nations, 2005). Protecting business investment and

ensuring that business activities support viable business practices to aid collective

equity are goals of the economic pillar.

 Environmental pillar: Promoting activities that will minimise negative impacts

on the environment through operational efficiency and safeguarding natural

resources from depletion (UN General Assembly, 1987; EITO, 2002; United

Nations, 2005). The goal of the environmental pillar is preserving the earth’s

resources so humans can survive and evolve, with prosperity for current and future

generations.

 Social pillar: Promoting social equity, trust and harmony among all living species

(UN General Assembly, 1987; EITO, 2002; United Nations, 2005). The social

pillar goals support community building on fairness, justice, good quality of life,

security, health and continuous access to resources, irrespective of social class.

(a) (b)

Figure 3. (a) Nested view of sustainability pillars. Figure 4. (b) Venn diagram of sustainability

pillars

The three interdependent and jointly reinforcing pillars of sustainability are commonly

called the ‘triple bottom line’ (EITO, 2002), a term coined by John Elkington in 1997 to

set economic, social and environmental performance goals and objectives. The nested

view of sustainability pillars (Figure 3) and Venn diagram (Figure 4) can be interpreted

as ignoring the intrinsic, immutable relationships existing between each of the pillars. By

characterising the pillars as independent systems, the model falls into a reductionist

epistemological trap which fails to account for the inherent interactions between “the

parts, the whole.” Addressing issues associated with each pillar in isolation will lead to

prioritising one pillar over the other (Moir and Carter, 2012).

Extending the pillars of sustainability, Goodland (Goodland, 2002) presents the types of

sustainability as human (maintaining human capital, such as health, education and access

to services), social, economic, and environmental. Linking sustainability to software

systems (Penzenstadler and Femmer, 2013) argue that sustainability dimensions are

individual, social, economic, environmental and technical. The additional technical

dimension, suggested by (Penzenstadler and Femmer, 2013), offers support for the long-

2.1 Sustainability 25

term evolution of technical systems. Section 2.2 covers more details of the sustainability

dimensions.

In today’s information age, where software has the potential to drive most SDGs with

example of infrastructure/medical diagnosis software and sustainable development

influences ICT policies for software systems (EITO, 2002), there is a need for research

on understanding how sustainability can be a core part of software design and

development. The SDGs namely: No Poverty, Zero Hunger, Good Health and Well-

being, Quality Education, Gender Equality, Clean Water and Sanitation, Affordable and

Clean Energy, Decent Work and Economic Growth, Industry, Innovation, and

Infrastructure, Reducing Inequality, Sustainable Cities and Communities, Responsible

Consumption and Production, Climate Action, Life Below Water, Life On Land, Peace,

Justice, and Strong Institutions, Partnerships for the Goals (United Nations, 2015) needs

more research on how ICT can support international cooperations achieve sustainable

development with the use of software system (Wu et al., 2018). Figure 5 summarises

some of the most important agreements and treaties for sustainable development and

technological policy convergence.

Figure 5. Sustainable development and technological policies convergence (EITO, 2002)

2 Background 26

2.2 Sustainability in Software Engineering

Research on sustainability in SE has evolved with different research efforts from the

requirements, design, development and measurement of software systems (Becker et al.,

2016 ;Wolfram, Lago and Osborne, 2017). Some key challenges of sustainability in SE

include harmonising multiple research efforts into a central focal point to support and

guide stakeholders interested in software sustainability design guidelines (Becker et al.,

2015), development (Wolfram, Lago and Osborne, 2017) and measurement (Albertao et

al., 2010; Bozzelli, Gu and Lago, 2013). This section covers software sustainability

definitions, sustainability dimensions, research work on software sustainability design,

development and measurement.

2.2.1 Software Sustainability Dimensions and Definitions

In SE, sustainability is categorised into five dimensions, namely, economic,

environmental, social, individual and technical (Penzenstadler and Femmer, 2013),

extending the three main pillars of sustainability (United Nations, 2005).

 Economic sustainability is about maintaining financial capital, assets and added

value towards financial growth. For SE, the focus is on how to design and develop

software systems in a cost-effective manner and ensure the safety of the

stakeholders’ long- and short-term investment from economic risk.

 Individual sustainability refers to the maintenance of individual human capital,

human dignity, health, education and equal access to services. In the context of this

research the individual dimension focuses on software architects and developers.

For SE, individual sustainability means, ‘How can software be created and

maintained in a way that enables developers to be satisfied with their job over a

long period?’

 Social sustainability is about the relationship between individuals, groups and

maintaining social capital; the mutual trust structure in the societal communities;

and the balance between conflicting interests. For SE, the main question is, ‘What

are the impacts of software systems and applications on the society?’ (Example:

communication, sense of belonging, interaction and equality).

 Environmental sustainability refers to the use and maintenance of natural

resources, such as water, land, air, minerals and the ecosystem to improve the

welfare of all living creatures (humans and animals). The environmental dimension

is to ensure ecological integrity in which there is a balance in how natural resources

are produced and used at a rate in which they can replenish themselves

(Giovannoni and Fabietti, 2013). For SE, the question is ‘How does software

impact and affect the environment during / after development and maintenance?’

2.2 Sustainability in Software Engineering 27

 Technical sustainability covers the fundamental goal of long-time usage of

systems and their suitable evolution along with changing user requirements and

environments. It is about the maintainability and evolution of systems over time.

For SE, the question is ‘How can software be designed and developed for easy

evolution, maintainability, adaptability to changes in the future’?

The different dimensions of sustainability offer the means to decompose sustainability

values for the engineering of software systems design, and also serve as means for

categorisation during the evaluation of effective sustainability design and development,

using analyses of the first, second and third order impacts to create a sustainable software

system. This order of impacts are explained as follows (Erdmann et al., 2004):

 First order impacts (immediate effects) are about the direct effects of the

development and use of a software system.

 Second order impacts (enabling effects) are about the indirect impacts related to

the effects of using the software system in its application domain.

 Third order impacts (structural effects) are the cumulative long-term effects

resulting from accumulating first and second order impacts over time.

The meaning and understanding of ‘sustainable software’ varies in SE, based on the

different domains of application and the stakeholders involved in the application; some

consider technical sustainability, while others consider the higher impacts of software

systems. Table 2 shows some software sustainability definitions and their corresponding

sustainability dimensions.

Table 2. Software sustainability definitions

Author Definition Sustainability

Dimensions

(Naumann et

al., 2011)

Sustainable software is a software in which the

direct and indirect negative impacts on the

economy, society, human beings and

environments that result from development,

deployment and usage of software are minimal or

has a positive effect on sustainable development.

Environmental,

technical, economic,

social and individual

(Koziolek,

2011)

A software-intensive system is long-living if it

must be operated for more than 15 years.

Technical

(Koziolek,

2011)

A long-living software system is sustainable if it

can be cost-efficiently maintained and evolved

over its entire life-cycle.

Economic, Technical

2 Background 28

(Calero,

Moraga and

Bertoa, 2013)

Sustainability of a software product can be defined

as the capacity of developing a software product

in a sustainable manner

Environmental, Social,

Technical

Seacord et al.

(Seacord et

al., 2013)

Software sustainability, is the ‘ability to modify

software system based on customer needs and

deploy those modifications,’ which means

software sustainability is the ability to modify

systems based on user requirements.

Social, individual and

technical

(Idio, 2014) Long-lasting software that relates to how

well a piece of software will be able to

cope with changes

 Lean software that requires less hardware

and reduces its power consumption

(energy efficient)

 Software for sustainable humans as

software that induces sustainable human

behaviour.

Technical,

environmental,

individual

The above definitions show different perspectives of software sustainability in SE in the

design, development, maintenance and usage phases. According to Venters et al. (Venters

et al., 2014), there are four aspects to consider when supporting sustainability in SE:

1. Development process: The use of environmental, human and capital resources

2. Maintenance process: Continuous monitoring of quality and knowledge

management

3. System production: Dedicated to the way resources are used during production

activities to achieve system development goals

4. System usage: Consider the responsibility for environmental impact.

The use of sustainability dimensions as a key part of the aspects listed above includes

encouragement of better thinking about how to incorporate sustainability into a software

system along with open discussions on how each sustainability dimension should be

treated during the development, maintenance processes, system production and system

usage.

2.2.2 Sustainability in Software Design and Development

Sustainability has gained increasing attention in software design and development,

especially from the requirement engineering domain (Mahaux and Canon, 2012;

Penzenstadler, 2014; Oyedeji, Seffah and Penzenstadler, 2017) and other research topics

(Ehrenfeld, 2008; Chitchyan et al., 2015; Robillard, 2016; Spinellis, 2017). Requirements

engineering, as a major phase of software system development, has an important role to

2.2 Sustainability in Software Engineering 29

play in software sustainability design. The International Workshop on Requirements

Engineering for Sustainable Systems (RE4SuSy) (Penzenstadler, Mahaux and Salinesi,

2014; Penzenstadler, Mahaux and Salinesi, 2015; Penzenstadler, Salinesi and Ruzanna,

2017) provided an anchor point for many researchers on software sustainability through

the lens of requirements engineering.

One of the major drivers for sustainability during requirements engineering is the ability

to discuss the benefits of sustainability for both end users and all stakeholders involved.

The current requirements engineering methods and tools do not facilitate negotiation or

discussion about sustainability requirements during software development, which usually

leads to the omission of sustainability or consideration of only one dimension during the

software design (Seyff et al., 2018). Seyff and colleagues (2018) presented an adaptation

of the EasyWinWin method and WinWin Negotiation Model to facilitate and stimulate

negotiation among stakeholders and requirements engineers for sustainability

requirements in software systems. Seyff and colleagues detected how each requirement

affects each sustainability dimension: first order impacts (immediate), second order

impacts (enabling) and third order impacts (structural). This can help support

sustainability consideration during software requirement. However, there is a need for

education and awareness to improve practitioners’ knowledge about the concept of

software sustainability by design in the professional environment, such as an

understanding of software sustainability by design and the potential of applying

sustainability in requirements and SE. Crowd-focused requirements engineering was used

by Seyff et al. (2018) to support the evolution of software sustainability requirements to

improve the awareness and understanding of sustainability in requirement engineering for

researchers and interested stakeholders. This is one way of improving sustainability

awareness among stakeholders in the requirements engineering domain.

The results of a study of requirements engineering practitioners shows that the attitudes

and perceptions of software practitioners regarding sustainability are limited due to a

narrow understanding of sustainability, poor organisational awareness about the positive

opportunities for applying sustainability and the benefits that can be generated from it

(Chitchyan et al., 2016). Furthermore, another major challenge of sustainability in

software requirements engineering is that there is no single reference point where

different research on the application of sustainability in software requirement are gathered

and exemplified (Chitchyan et al., 2015), to support and guide requirement engineers on

how to effectively elicit software sustainability requirements during software design and

development. The Karlskrona Manifesto for Sustainability Design (KMSD) principles

provides the basis for creating a reference point that can be applied during software design

by different stakeholders (Becker et al., 2015). These are the nine principles of KMSD:

1. Sustainability is systemic: Sustainability is never an isolated property. It requires

transdisciplinary common ground of sustainability as well as a global picture of

sustainability within other properties.

2 Background 30

2. Sustainability has multiple dimensions: We have to include different

dimensions into our analysis if we are to understand the nature of sustainability in

any given situation.

3. Sustainability transcends multiple disciplines: Working in sustainability means

working with people from across many disciplines, addressing the challenges

from multiple perspectives.

4. Sustainability is a concern independent of the purpose of the system:

Sustainability has to be considered even if the primary focus of the system under

design is not sustainability.

5. Sustainability applies to both a system and its wider contexts: There are at

least two spheres to consider in system design: the sustainability of the system

itself and how it affects the sustainability of the wider system of which it will be

part.

6. System visibility is a necessary precondition and enabler for sustainability

design: Strive to make the status of the system and its context visible at different

levels of abstraction and perspectives to enable participation and informed

responsible choice.

7. Sustainability requires action on multiple levels: Seek interventions that have

the most leverage on a system and consider the opportunity costs: whenever you

are taking action towards sustainability, consider whether this is the most effective

way of intervening in comparison to alternative actions (leverage points).

8. Sustainability requires meeting the needs of future generations without

compromising the prosperity of the current generation: Innovation in

sustainability can play out as decoupling present and future needs. By moving

away from the language of conflict and the trade-off mindset, we can identify and

enact choices that benefit both present and future.

9. Sustainability requires long-term thinking: Multiple timescales, including

longer-term indicators in assessment and decisions, should be considered.

The Karlskrona Manifesto principles are driver for a broader discussion about

sustainability in software design (Becker et al., 2015) for different stakeholders (software

practitioners, researchers, professional associations, educators, customers and users) in

the SE community and industry to consider the different sustainability dimensions during

software requirements engineering and development (Penzenstadler, 2015). The KMSD

shows design is a big part of achieving software sustainability and also a key element in

software sustainability design and development (Oyedeji, Seffah and Penzenstadler,

2018a;). Software design, as a key aspect of software development, can help to reduce

energy consumption by 30% to 90% because software dictates what and how hardware

functions, meaning that software can support real energy savings in any software system

(Musthaler, 2014).

2.2 Sustainability in Software Engineering 31

 However, there is currently limited research on software sustainability design, even

though design is the central phase of any software development (Freeman, 1980; Tate,

2005). The methods applied and practices in design and usage of a software system have

a significant effect on sustainability in SE and can have a major influence on the users’

perception of sustainability (Mahaux, Heymans and Saval, 2011). Software practitioners

and stakeholders should identify different leverage areas for a better understanding of

how software can act as a catalyst for transformational change towards sustainability

(Penzenstadler and Venters, 2018). Leverage points in software systems, in which a

change in one aspect of the software can positively impact the whole system’s

sustainability, can help software engineers to address issues of sustainability in a software

system (Penzenstadler et al., 2018).

A study of software design and development life cycle activity focusing on protection of

the environment proposed a formula that can assist software architects and developers

calculate software waste in order to promote the design and development of green

software. The use of the proposed formula will aid computational and data efficiency

(Erdélyi, 2013). Venters et al. (2018) presented some issues of sustainability in software

architecture design, such as sustainability debt, cumulative effects of flawed architectural

design choices over time, resulting in code smells, architectural brittleness, erosion,

coupling and cohesion issues. The authors’ work (Venters et al., 2018) also provides a

roadmap for open research challenges and issues in sustainable software architectures.

In addition, the concept of sustainability for software design and its integration into the

existing catalogue of design quality attributes are needed to achieve sustainable software

(Robillard, 2016) and sustainability should also be considered as a quality of software

systems like security and usability (Lago et al., 2015). This consideration will require a

multidimensional and interdisciplinary approach (Chitchyan et al., 2016; Penzenstadler,

Tomlinson and Richardson, 2012; Bozzelli, Gu and Lago, 2013). Research work on

formalising the design of sustainability into software systems based on the five

sustainability dimensions is needed to develop official standards and models of

sustainability in software design, development and measurement (Wolfram, Lago and

Osborne, 2017).

Overall, this section describes some of the key challenges and problems of sustainability

in software design and development. Based on current research, one of the major

challenge of sustainability in SE and application of sustainability in a software project is

lack of understanding about what sustainability means in software design and

development. Another challenge is the lack of awareness, especially among practitioners

about the benefits of sustainability in software design and how to formalise different

dimensions of sustainability into software sustainability design and development.

Addressing these challenges will facilitate better software sustainability requirements,

design and development from the different sustainability dimensions, which can improve

the negative effects and impacts on software systems. This thesis uses the following

research work as a building block to address these challenges: the KMSD (Becker et al.,

2 Background 32

2015), requirements engineering design methods for software sustainability systems

design and development (Penzenstadler, 2014; Chitchyan et al., 2015; Penzenstadler,

2016).

2.2.3 Software Sustainability Measures and Measurement

Research on software sustainability measures and measurement is an area currently with

limited research. There is the challenge for guidance on what sustainability measures can

be effectively used in the measurement and evaluation of software systems considering

the five sustainability dimensions (Albertao et al., 2010;Calero, Bertoa and Angeles

Moraga, 2013). Currently, there are few studies about ‘what’ aspect of software

sustainability to measure and ‘how’ to measure it efficiently (Lami and Buglione, 2012).

The lack of understanding of what and how to measure software sustainability has limited

the complete adoption of sustainability in most software design and development projects.

Another challenge of software sustainability measurement is that the management and

planning of software sustainment are affected by the lack of consistently applied practical

software sustainability measures (Seacord et al., 2013).

There is need for software sustainability measures that addresses the different

sustainability dimensions and software quality. In this regard, Albertao et al. (Albertao et

al., 2010) suggested the use of existing software quality attributes and measures as an

indirect way to evaluate the economic, social and environmental sustainability of software

projects. Gordieiev and colleagues (Gordieiev, Kharchenko and Fusani, 2016) proposed

the use of measures associated with other software quality attributes as a way of

evaluating green software. Some of the measures used in the evaluation of software

sustainability and green software systems are detailed in Table 3.

Table 3. Software sustainability measures

Measure Description Sustainability

Dimension

Energy

efficiency (EF)

(Johann et al.,

2012)

EF=UsefulWorkDone/UsedEnergy, where Useful

Work Done is the total amount of completed task

by a software module, and Used Energy is the total

amount of energy used (Joule) in the process of

completing the task

Technical,

environment

Functional

suitability (FS)

(Gordieiev,

Kharchenko and

Fusani, 2016);

Albertao et al.,

2010)

FS is measured using computational accuracy

(CA), where CA is the total number of frequency

of all inaccurate results based on user operation

FS = A / T

A= Number of cases encountered by users with a

difference against reasonably expected results

beyond allowable

T= Operation time

Technical

2.2 Sustainability in Software Engineering 33

Performance

efficiency (PE)

(Gordieiev,

Kharchenko and

Fusani,

2016)Albertao

et al., 2010)

PE is divided into the following:

Time behaviour

 Response Time: The amount of time taken

to complete a task

T = (time of gaining the result)

 - (time of command entry finished)

 Response Time Mean (RTM) -Mean Time:

the mean response time of the software

system to finish a task or request.

RTM= Tmean / TXmean

Tmean = (Ti) / N, (for i=1 to N)

TXmean = required mean response time

Ti= response time for i-th evaluation (shot)

N= number of evaluations (sampled shots)

Technical,

environmental,

economic

Power usage

effectiveness

(PUE)

(Rondeau,

Lepage and

Georges, 2015)

PUE = Total Facility Energy/IT equipment Energy

where the Total Facility Energy and IT equipment

Energy is measured in watts and converted to Joule

Environmental,

technical

Maintainability

(Gordieiev,

Kharchenko and

Fusani,

2016)Albertao

et al., 2010)

Analysability

 Diagnostic function support

X= A / B

A= Number of failures which maintainer

can diagnose (using the diagnostics

function) to understand the cause-effect

relationship

B= Total number of registered failures

 Failure analysis capability

X=1- A / B

A= Number of failures of which causes

are still not found

B= Total number of registered failures

Testability

 Availability of built-in test function

X= A / B

A= Number of cases in which maintainer

can use the suitably built-in test function

B= Number of cases of test opportunities

 Re-test efficiency

X= Sum(T) / N

Environmental,

technical, economic

2 Background 34

T= Time spent to test to make sure

whether the reported failure was resolved

or not

N= Number of resolved failures

Software energy

cost

(Noureddine et

al., 2012)

Esoftware = Ecomp +Ecom +Einfra, where Ecomp

is the computational cost (i.e. CPU processing,

memory

access, I/O operations). Ecom is the cost of

exchanging data over the network, and Einfra is the

additional cost incurred by the OS and runtime

platform (e.g., Java VM)

Technical

Resource usage

(Koçak,

Alptekin and

Bener, 2014)

The amount of CPU Usage, I/O Usage,

Memory Usage, Storage Usage for completing a

software task

Technical

Energy impact

(Koçak,

Alptekin and

Bener, 2014)

Energy impact is the total energy consumption and

the CO2 emission based on the energy usage

Technical,

Environmental

Energy

efficiency

(Speedup

Greenup,

Powerup, and)

(Abdulsalam et

al., 2015)

Speedup=Tφ/To where Tφ is the total execution

time of non-optimised code, and To is the total

execution time of the soptimised code

Greenup = Eel/Eon Assuming Pφ is the average

power consumed by the non-optimised code and Po

is the average power consumed by the optimised

code

Powerup =Po /Pφ=

Speedup /Greenup

Environmental,

Technical

Software

Project’s

Footprint

(Albertao et al.,

2010)

The effect of the number of resources used in

software development projects, such as power,

electricity, computers, fuel consumption for

transportation, emissions and human resources

Economic, Social,

Environmental

The measures proposed and used in the measurement of software sustainability (Table 3)

shows that energy and energy efficiency has received the largest attention for measures

applied in measuring and evaluating software sustainability. This is further highlighted

by research compilation on different software sustainability measures and measures for

green software (Bozzelli, Gu and Lago, 2013; Kern et al., 2013). This might be due to the

research attention green software has gained over the past ten years and the need to reduce

energy cost for many companies (Oyedeji, Seffah and Penzenstadler, 2018b).

The previously referenced works have focused on specific dimensions of sustainability.

In order to have a holistic measurement of software sustainability, there is a need to

provide methodological frameworks and methods to create new measures of software

sustainability. Such frameworks and methods should take into account the five

2.2 Sustainability in Software Engineering 35

dimensions of sustainability (economic, social, individual, environment and technical)

with the capability to extend current software measures.

37

3 Methodology

This chapter presents an overview of the research methods and processes applied in this

research. A general description of the other research methods considered is provided with

full details of design science, including the guidelines for design science methodology,

design science research cycles and processes, case study research methods and

components of case study research design. Details of how design science and case study

research methods are applied in the publications are presented in this chapter.

Design science research methodology (Hevner et al., 2004) was applied in this thesis

because the aim of this research is to create new artifacts to improve problems of

sustainability in software design and contribute new knowledge to software engineering

practices. It also aims to improve the applicability of existing artifacts such as Karlskrona

manifesto principles to solve identified problems during software sustainability design.

Case study (Starman, 2013) was used in the demonstration and evaluation of artifacts

created in this thesis.

3.1 Selection of Research Methods

The following are the research methods considered at the beginning of this thesis research

with rational for selecting design science and case study.

Grounded Theory: This methodology originated with the work of Glaser and Strauss on

the interactions between health care professionals and dying patients. It is define as the

discovery of theory from data systematically obtained from social research (Glaser and

Strauss, 1967). The main feature in grounded theory is the development of new theory

through the collection and analysis of data about a phenomenon. However in this research

the main aim is to create new artifacts and not to derive new theory which means grounded

is not appropriate for this research.

Action Research: Action research is an emergent inquiry process that integrates theory

and action to couple scientific knowledge with existing organizational knowledge and to

address real organizational problems together with the people of the system under inquiry

(Mohajan, 2018). It seeks transformative change through the simultaneous process of

taking action and doing research, which are linked together by critical reflection. Action

research is also a systematic and orientated around analysis of data whose answers require

the gathering and analysis of data and the generation of interpretations directly tested in

the field of action (Macdonald, 2012).This research method would have been suitable for

this research, but this thesis was not based on active collaboration with companies where

the researcher collaborate with participants (company staffs such as software developers

and architects) to improve practice of software sustainability design in the companies.

Rather artefacts were created within this thesis, evaluated and tested in companies using

case study. Thus, action research was not applied in this thesis work.

3 Methodology 38

Design Science Research: Design science research is a research paradigm in which a

designer answers questions relevant to human problems via the creation of innovative

artefacts, thereby contributing new knowledge to the body of scientific evidence (Hevner

and Chatterjee, 2010). This research method was selected because it provides research

processes that best suit the research questions in this thesis and it supports the creation of

artifacts that can be used to improve stakeholders (software architects, developers,

requirement engineers, researchers and companies) understanding of sustainability in

software design. Design science also support design iteration of artifacts to improve

artefacts usability in tackling the research problems.

Design science research seeks to create innovations that define the ideas, practices,

technical capabilities and products through which the analysis, design, implementation,

and use of information systems can be effectively and efficiently accomplished (Hevner

et al., 2004). This research method is centred on the improvement of designed artefacts

functional performance to solve identified problems. Table 4 details the design science

research guidelines (Hevner et al., 2004) applied in this thesis.

Table 4. Design science research guidelines adopted from (Hevner et al., 2004)

Guideline Description

Design as an Artefact Design science research must produce a viable artefact in

the form of a construct, a model, a method or an

instantiation.

Problem Relevance The objective of design science research is to develop

technology-based solutions to important and relevant

business problems.

Design Evaluation The utility, quality and efficacy of a design artefact must

be rigorously demonstrated via well-executed evaluation

methods.

Research Contributions Effective design science research must provide clear and

verifiable contributions in the areas of the design artefact,

design foundations and design methodologies.

Research Rigour Design science research relies upon the application of

rigorous methods in both the construction and evaluation

of the design artefact.

Design as a Search Process The search for an effective artefact requires utilising

available means to reach desired ends while satisfying laws

in the problem environment.

Communication of Research

Design science

Design science research must be presented effectively to

both technology-oriented as well as management-oriented

audiences.

Case Study: A case study is an in-depth exploration from multiple perspectives of the

complexity and uniqueness of a particular project, policy, institution, programme or

system in real life (Starman, 2013). Case study was used in the validation of artifacts

created within this research because it takes into account the context of the subject under

investigation and requires the formation of questions in terms of ‘who’, ‘what’, ‘where’,

3.1 Selection of Research Methods 39

‘how’, and ‘why’ during the research investigation. For evaluating the artefacts created

through the design science process, the method of a case study offers in-depth content

that provides a complete picture for the whole situation. The goal of this thesis is to

support and guide stakeholders in software sustainability design and development, case

study allows for collecting feedback from natural setting and context which in this case

is a company and university where software is designed and developed. The two case

studies used allow discovery of the real problems in adopting sustainability during

software design and development and explore means for solving those problems.

3.1.1 Design Science Research Cycles

The research work of (Hevner et al., 2004) on design science did not include a detailed

process for performing design science research. A new method, proposed in 2007, is

called the design science research cycles. This new process is based on the information

system (IS) research framework (Hevner et al., 2004). It has overlays of three inherent

research cycles (Relevance Cycle, Rigour Cycle and Design Cycle) for any design science

research work (Hevner and Chatterjee, 2010).

The Relevance Cycle links the contextual environment of the research project to design

science activities. The Rigour Cycle links the design science activities with the

knowledge base of scientific foundations and finally, the Design Cycle iterates between

the core activities of building and evaluating the design artefacts and the processes

involve in the research. Figure 6 shows the refined design science cycles as a guide for

carrying out any design science research project.

Figure 6. Design science research cycles (Hevner and Chatterjee, 2010)

Table 5 details how the design science research process and cycles were applied in this

thesis, from the problem identification and motivation to the communication process.

3 Methodology 40

Table 5. Design Science Research Process and Cycles Applied in Thesis

1. What is the research question?

Phase: Identification of problem and

motivation (Relevance Cycle)

The research question for this thesis is stated

in Chapter 1.1.

2. What are the objectives of the solution?

Phase: Define objectives of solution

(Relevance Cycle)

The objectives are stated in Chapter 1 and also

in Publications 1 and 2.

3. What is the designed artefact?

Phase: Design and development (Design

Cycle)

The artefacts created in this thesis are S-

BGQM (Publication 1), SSDC and FSSSD

(Publication 2), and Template for Software

Sustainability Requirement Elicitation Best

Practice (Publication 4). Details of the

artefacts are in Chapter 4.

4. What were the design processes used in

creating the artefacts?

Phase: Design and development (design

cycle)

After identification of the problems for

software sustainability design through

literature reviews and discussion with

stakeholders in the industry, the first artefact

was created in the first iteration (Publication

1) through an iterative design process; the

second and third artefacts were designed

(Publication 2). The fourth artefact was

created after feedback from stakeholders on

the second and third artefacts (Publication 4).

4. How was the artefact used in the application

environment to test the usefulness?

Phase: Demonstration (Relevance cycle)

The artefacts were used in case studies

(Publication 5) and tested with industry

experts (Publication 4).

5. How were the design process and artefacts

grounded in the knowledge base?

Phase: Evaluation (Linking Design to Rigour

Cycle)

The design process for the artefacts was

grounded in the KMSD (Becker et al., 2015)

and requirements engineering design methods

for software sustainability systems design and

development (Penzenstadler, 2014).

6. How were the artefacts evaluated?

Phase: Evaluation (Design Cycle)

The artefacts were used in two case studies:

one case study with sustainability as a

principal factor, and the other without

sustainability consideration. The purpose was

to see if the artefact would guide and support

stakeholders to consider sustainability in their

software design and development project.

Publication 5 describes the positive results

and some of the identified areas to improve

the artefact.

7. What new contribution is added to the

knowledge base, informed by theory, method

or literature?

Phase: Communication (Rigor cycle)

New artefacts to support and guide software

sustainability design and development have

been created. Furthermore, the identification

of new research gaps, detailed in Chapter 1

(introduction) and Chapter 2 (background) as

problems, challenges of software

3.1 Selection of Research Methods 41

sustainability design and discussion in

Chapter 5.

8. Did this thesis address all research

questions?

Phase: Complete review and evaluation of the

research process (Relevance cycle)

All research questions have been satisfactorily

addressed, as detailed in Chapter 5 and

Publications 1-5.

How has the process for designing, using and

evaluating the artefacts been communicated?

Phase: Communicating design, application

and evaluation results of artefacts. (Rigor

Cycle)

All the processes involved in the design, usage

and evaluation of the artefacts have been

published in conferences and journal

(Publications 1-5).

3.1.2 Design Science Research Processes

This thesis is grounded in design science research (Hevner et al., 2004) and design science

research methodology (DSRM). Peffers et al. (2007) proposed the use of a six-step guide

process during design science research. Figure 7 shows an overview of the six-step guide

for design science research.

Figure 7. Modified DSRM process model adopted from (Peffers et al., 2007)

1. Identify problem and motivate: This step involves defining the specific research

problem and challenge in a clear way and justify the value of finding a solution to

the problem. Publication 1 investigates different kinds of literature from SE and

other similar domains to identify the current problems and research gaps of

software sustainability design, development and measurement. The outcome from

Publication 1 led to the definition of the main research question and the sub-

research questions (RQ1, RQ2 and RQ3) in Chapter 1. Publication 1 details the

problems and challenges of software sustainability requirement elicitation, design

and development.

Process Iteration

3 Methodology 42

2. Define objectives of the solution: The main purpose and goals of the solutions

to the identified problems are stated base on the current understanding of what is

achievable. In this research, based on the identified problems from the first step

which form the basis of the research questions, Publication 2 details the objectives

for creating guidelines and framework to support software sustainability design,

development and measurement of software sustainability.

3. Design and development: This stage involves the creation of artefacts, such as

methods, constructs, theories and models. The first artefact in this thesis is the

Sustainable Business Goal Question Metric (S-BGQM) approach to support the

software sustainability requirements elicitation from Publication 1. From

Publication 2, the second artefact, SSDC, is proposed to show how sustainability

can be applied to different software systems. The third artefact, FSSSD, was

created to be used in software design by software architects, developers and

companies during software design and development. Finally, in Publication 4, the

last artefact, a template to document best practices for the design of software

sustainability, is created to ensure effective documentation of all best practices

that will serve as guide for others interested in software sustainability design.

4. Demonstration: This step is about using the artefact to solve the problems

mentioned above. This can be demonstrated through case studies, experiments or

any activity that shows the application of the artefact. The demonstration of the

proposed artefacts is described in Publication 5, regarding a validation study in

which the artefacts were applied to case studies for different types of software

systems to test effectiveness in solving problems of software sustainability design,

development and measurement. Publication 4 also demonstrates the use of the

best practice template for documenting software sustainability requirement

elicitation.

5. Evaluation: The results from applying the artefacts to solve the identified

problems were assessed to see how well the artefacts met the set objectives of the

proposed solution by comparing the result of using the artefacts to the set

objectives. Results and feedback from applying the S-BGQM approach to

software design and development projects led to the design of new artefacts, such

as SSDC and FSSSD, for better software sustainability design. Results from using

SSDC and FSSSD are in Publication 5; the feedback is detailed in Chapter 5 under

section 5.1 research evolution and results.

6. Communication: The documentation of the problem identification, relevance,

artefacts, artefacts usefulness and effectiveness in solving the identified problem

are communicated to the community of interested stakeholders or users. In this

thesis, publications in conferences and journal served as a means of reporting and

communicating research outcomes from different processes to get feedback from

academia and industry. These publications are in the following sequence:

3.1 Selection of Research Methods 43

a. Sustainability Quantification in Requirements Informing Design: This

publication summarises our investigations on sustainability during

software design and development, focused on the requirements

engineering processes.

b. Catalogue Supporting Software Sustainability Design: This publication

introduces SSDC, which comprises a series of guidelines and a framework

for the sustainability of software system design.

c. Classifying the Measures of Software Sustainability: This publication

identifies and compiles the measures of green software and software

sustainability from sustainability perceptions and dimensions.

d. Software Sustainability Good Practices: This publication explores the

derivation of good practices by applying sustainability in software design

and development.

e. Validation Study of a Framework for Sustainable Software System

Design and Development: This publication presents the results for

validating the proposed framework for the sustainability of software

system design.

This thesis is based on an iterative design process for addressing the research questions

for software sustainability design and development. Design science offers the right

research method to address the challenges and problems identified from the research gaps.

The design science process guides the process of designing the artefacts that can be

applied to address the specified research questions. The design science research cycles

support a quality iterative process for the design, application, evaluation and

communication of artefacts.

3.1.3 Case Study Research Method

Case study design research method is an empirical inquiry that investigates a

contemporary phenomenon within its real life context when the boundaries between

phenomenon and context are not clearly evident, and in which multiple sources of

evidence are used (Yin, 1984; Zainal, 2007).

There are five components of case study design according to Yin (Yin, 1984), namely: A

study’s questions, study proposition (if any), units of analysis, the logic linking data to

the propositions, and criteria for interpreting the findings.

1. Study Questions: The first component of case study research design is the

formation of questions in terms of ‘who’, ‘what’, ‘where’, ‘how’, and ‘why’,

which provides the basis for the relevant research strategy to use. In Publication

5, the study question is about how to use SSDC and FSSSD to guide and support

stakeholders during software design, development and measurement.” The second

3 Methodology 44

study question is on “why companies have difficulties in incorporating

sustainability into their software design and development project.”

2. Study proposition: This is about what should be examined with the scope of the

study. The ‘how’ and ‘why’ only shows what an investigator is interested in, but

does not point the investigator to what should be studied. In Publication 5, the

proposition is that a software sustainability framework can help stakeholders in

software design and development, and the second proposition is that the lack of

concrete guidelines exemplifying the use of sustainability in software design

affects the adoption of software sustainability design and development in

companies.

3. Units of analysis: The third component is the fundamental problem of defining

what the case is in case studies. A case can be an individual, implementation,

company, entity, event, organisational change or programme. The proposition

helps identify the case and guides the investigator on what data to collect instead

of collecting data on everything. The definition of the unit analysis of a case is

related to the way the initial research questions have been defined. Publication 5

details a case of implementing FSSSD in company settings with two case studies

and the unit analysis for the case is the number of decisions and practices

influenced by FSSSD during software design and development.

4. The logic linking data to the propositions: This component is about connecting

data collected with the propositions in the case study. One approach is ‘pattern-

matching’, in which several pieces of information from a case study are related to

some theoretical proposition. The data collected during the application of SSDC

and FSSSD were checked to see if it match the two propositions.

5. Criteria for interpreting the findings: In order to avoid confusion on

interpreting findings, it is good to set conditions base on the logic linking data to

the propositions used in understanding findings based on the unit of analysis. The

conditions set are based on checking the usefulness and effectiveness of SSDC

and FSSSD in supporting and guiding stakeholders during software sustainability

design and development in the two case studies detailed in Publication 5.

45

4 Publication Overview

The research publications, as a core contribution to this thesis, are summarised in this

chapter, focusing on all five publications. The five publications address the identification

of different research challenges in software sustainability design, development and

measurement. All the created artefacts are aimed towards supporting and guiding

software requirement engineers, software architects, developers and companies for

software sustainability design and development. Table 6 provides the list of publications,

descriptions, outcomes and SDLC Phase were those outcomes are useful.

Table 6. Summary of Publications in Thesis

Publication Description Outcomes SDLC Phase

Publication I

Study the factors affecting

sustainability quantification in

software development

Sustainable business

goal question metric (S-

BGQM) approach to

software development

User

requirement

System

requirement

Publication II

Investigated the challenges of

sustainability in software design

and development. Proposed the

SSDC and pilot framework to

assist software developers and

managers in eliciting software

sustainability requirements and

measuring software sustainability

Software sustainability

design catalogue

(SSDC)

Framework for

Sustainability of

Software System Design

(FSSSD)

All SDLC

phases

Publication

III

Studied current software

sustainability measures based on

the five sustainability dimensions

and categorised them into four

perceptions (Sustainability in

Software Development; Green

Software Systems; Software for

Sustainability; and Sustainability

of the Software Eco System)

Categorisation of

software sustainability

understandings into four

perceptions and

measures associated to

each perceptions

Integration

and Testing

Publication

IV

Explore how to document

software sustainability

requirements good and best

practices during the design and

development of software system

guided by KMSD (Becker et al.,

2015)

Method for collecting

and disseminating

software sustainability

requirement elicitation

best practices

Template for software

sustainability

All SDLC

phases

4 Publication Overview 46

requirements elicitation

best practices

Publication V

Validation study of SSDC and

FSSSD using two case studies

Validation results of

SSDC and FSSSD and

challenges from

stakeholders involve in

the two case studies

All SDLC

phases

4.1 Publication I: Sustainability Quantification in Requirements

Informing Design

4.1.1 Research Objective

The main objective is to study different sustainability definitions and measures, and how

those definitions relate to a software system in SE to generate software sustainability

requirements and how to quantify sustainability in software design.

4.1.2 Relation to Thesis Research Question

Publication I investigated the first research question on how to elicit software

sustainability requirements during software design and development. Software quality

criteria, generated from the sustainability definitions in Table 4, shows some of the

requirements for software sustainability. The second research question, how to measure

and evaluate software system sustainability, is also explored in this publication using the

S-BGQM approach to software design and development, which provides setting

questions to characterise each sustainability goal for the software. The answers to the

questions are then used to create metrics and indicators to evaluate software sustainability,

based on the context of development.

4.1.3 Research Output and Contribution

The first contribution from this publication is the summary of different sustainability

definitions and the software requirements identified from those definitions. Table 7 shows

the sustainability definitions and software requirements.

Table 7 Sustainability Definitions and Software Requirements (Oyedeji, Seffah and

Penzenstadler, 2017)

Author Definition Requirement

Idio (Idio,

2014)

Long-lasting and Lean software, software for

sustainable humans

Energy efficiency,

longevity and user

experiences

4.1 Publication I: Sustainability Quantification in Requirements Informing

Design

47

Author Definition Requirement

Venters et

al. (Venters

et al., 2014)

“Sustainability is the quality of being sustained.

Longevity and maintenance are the two most

important factors for understanding

sustainability”.

Longevity and

maintenance

Heiko

Koziolek

(Koziolek,

2011)

“Long-living system that should last for more

than 15 years and can be cost-efficiently

maintained and evolved over its entire life

cycle.”

Longevity and

maintenance

Seacord et

al. (Seacord

et al., 2013)

Ability to modify a software system based on

customer needs and deploy these modifications.
Modifiability

(Harris and

Goodwin

2001)

“Sustainability as a system that must achieve

fairness in distribution and opportunity,

adequate provision of social services.”

Accessibility

(Naumann

et al., 2011)

“Software whose direct and indirect negative

impacts on the economy, society, human beings

and environment that result from development,

deployment and usage of the software are

minimal.”

Economic,

environment,

social and

individual

dimensions of

sustainability

Tainter

(Tainter,

2006)

To define sustainability in a specific context, the

questions should be “to sustain what, for whom,

how long and at what cost?”

Sustainability is a

requirement

within a certain

context and

requires

specification of

the context

The second contribution is the S-BGQM approach to encourage consideration of

sustainability during software design and development, especially in the requirements and

software testing phases. Figure 8 provides details of the S-BGQM approach during

software design and development. S-BGQM is aimed at supporting both technical

(requirement engineers, developers, testers, architects) and non-technical (business

requirement personnel, business managers and project managers) stakeholders that

incorporate sustainability into their software development or enhancement projects.

4 Publication Overview 48

Figure 8. Sustainable business goal metric process flow (S-BGQM; (Oyedeji, Seffah and

Penzenstadler, 2017)

4.2 Publication II: A Catalogue Supporting Software Sustainability

Design

4.2.1 Research Objective

The research goal of this publication is to provide concrete guidelines that software

architects and developers can apply effectively with support and guidance in the

elicitation of software sustainability requirements, design, measuring and testing software

sustainability against set requirements.

4.2.2 Relation to Thesis Research Question

The two contributions from this publication (SSDC and FSSSD) relate to the first and

second research questions of this thesis on how to elicit software sustainability

requirements and how to measure the software sustainability during design.

4.2 Publication II: A Catalogue Supporting Software Sustainability Design 49

The SSDC provides a series of software sustainability guidelines to help stakeholders

become involved in software design and development, based on the analysis of different

software systems, to improve their understanding of sustainability in software design,

which in turn can facilitate better software sustainability requirements and measurements.

The FSSSD was developed to guide and support stakeholders incorporate sustainability

goals, requirements and measurements during software design and development. FSSSD,

through its structures, guides developers on how to create software sustainability goals,

elicit software sustainability requirements and identify the right software sustainability

measures to evaluate the software.

4.2.3 Research Output and Contribution

The first main research output from this publication is the SSDC. The SSDC is a set of

guidelines derived from the nine Karlskrona Manifesto principles, based on a cross-

analysis of different systems. SSDC was created to aid sustainability integration in

software design and offer a better understanding to software architects, practitioners and

other stakeholders on sustainability in software design, development and measurement.

Figure 9 shows how SSDC was created using the Karlskrona Manifesto principles,

sustainability dimensions and the three orders of impact (first, second and third order

impacts).

Figure 9. Structure and flow of the derivation of the SSDC (Oyedeji, Seffah and Penzenstadler,

2018a)

4 Publication Overview 50

The second research output from this publication is the pilot FSSSD, based on SSDC, to

guide and support stakeholders to use sustainability as a core metric during software

design and development when covering the whole software development life cycle.

Figure 10 shows the details of FSSSD, and Table 8 presents FSSSD in tabular form for

better understanding.

Figure 10. FSSSD (Oyedeji, Seffah and Penzenstadler, 2018a)

Table 8. Contents of the FSSSD (Oyedeji, Seffah and Penzenstadler, 2018a)

SDLC phases

and KMSD

principles

Sustainability goals Sustainability

concepts, Methods

and Tools

Indicators

Phase 1.

Project

definition,

P1, P2 and P3

Design for sustainable

efficiency, reusability

Flourishing

Business Canvas

Carbon footprint,

material footprint, end

of life footprint

Phase 2.

User

requirements

definition,

P2

Increase sustainability

awareness among users

Sustainability

requirement

template

Total number of

sustainability

requirements, priority

assign to sustainability

requirements

Phase 3.

System

requirements

definition,

P4, and P5

Design for efficiency,

sustainability

awareness and

interoperability

Sustainability

requirement

template, goal

model

Total number of

system goals relating

to sustainability

dimensions

Phase 4.

Analysis and

design,

P2, P4, P6 and

P8

Design for reuse and

efficiency, localisation,

interoperability

Lifecycle

sustainability

assessment, social

return on

investment,

Number of first-,

second- and third

order impacts of the

system identified

4.2 Publication II: A Catalogue Supporting Software Sustainability Design 51

sustainability

analysis radar chart

Phase 5.

Development,

P2 and P4

Design for reuse,

design for module

replicability, design for

efficiency,

sustainability

awareness, efficiency

and design for easy

service and

maintenance

Biomimicry Number of coding

choices influenced by

sustainability, number

of features (functions)

added to systems to

inform users about

sustainability through

functions like eco

feedback

Phase 6.

Integration and

testing,

P2 and P4

Design for easy

assembly and

disassembly and design

for durability

Sustainability

analysis radar

chart, life cycle

sustainability

assessment

How much

information from

sustainability analysis

chart was used during

integration and testing,

such as the number of

systems functions

tested against

sustainability concerns

such as the first order

(immediate) impact,

possible second order

(enabling) and

potential third order

(structural) impacts to

the system

Phase 7.

Implementation,

P5 and P7

Design for easy use,

design to induce

conscious sustainability

awareness, design to

educate users about

sustainability and

design for easy

recycling

Sustainability

analysis radar chart

The priority assigned

to sustainability by

developers and the

system owners/users

during or after

implementation

Phase 8.

Sustainment

and

maintenance,

P9

Proper design for

serviceability, design

for easy replacement of

code modules and

design for continuous

user engagement

through sustainability

awareness

Life cycle

sustainability

assessment,

sustainability

analysis radar chart

Number of

improvements to the

system based on

sustainability

requirements, either

from users’ feedback

or developers

4 Publication Overview 52

These are brief explanation of the sustainability concepts and tools used in FSSSD as

shown in Table 8:

1. The Flourishing Business Canvas (Sustainable Business Canvas): is a visual

design tool that embeds a common language to enable more effective

collaboration by stakeholders deemed relevant to designing the economic, social

and environmental aspects of an organization’s business model. The tool aims at

maximizing positive and avoiding negative impact on society and nature.

Therefore, sustainability is integrated into the core business. (Enterprise, 2019)

2. Sustainability Requirement Template: provide stakeholders a way of

categorizing software requirements into the five sustainability dimensions. The

template foster better thinking on how software requirements relates to each

sustainability dimension and provide an avenue to understand the requirement

categorization by stakeholders (Oyedeji and Penzenstadler, 2019).

3. Goal Model: provides a holistic grouping of software application goals into

business goal, usage goal and system goals to identify conflicts early in order to

resolve them with consideration of the five sustainability dimensions

(Penzenstadler, 2016).

4. Life Cycle sustainability assessment (LCSA): refers to the evaluation of all

environmental, social and economic negative impacts and benefits in decision-

making processes towards more sustainable products throughout their life cycle

(Guinée, 2016).

5. Social Return on Investment (SROI): is a process of understanding, measuring

and reporting on the social, environmental and economic value that is being

created by an organisation (Cohen, Robbins and Denault, 2012). This is calculated

using: Net present value of benefits / Net present value of investment

6. Sustainability Analysis Radar Chart: This is a chart that presents the effects

and impacts of software system considering the five sustainability dimensions

with the first order impact (immediate effect), second order impacts (enabling

effect) and third order impacts (structural effect) (Becker et al., 2016b).

7. Biomimicry: is a science of studying the designs, processes, and phenomena in

nature as a source of inspiration for human creations. It recognizes nature as a

model for us to emulate in our designs, measures to evaluates design and a mentor

from which to learn (Benyus, 1997). Biomimicry (from bios, meaning life, and

mimesis, meaning to imitate) is a design discipline which studies nature’s ideas

that can be imitated in design process to solve human problems (Mann, 2007).

4.3 Publication III: Classifying the Measures of Software Sustainability 53

4.3 Publication III: Classifying the Measures of Software

Sustainability

4.3.1 Research Objective

This publication aims to study the different proposed and suggested measures of software

sustainability to identify different measures for green software, software sustainability

and the perceptions of software sustainability measures in SE.

4.3.2 Relation to Thesis Research Question

The research output from this publication relates to the second research question about

how to measure and evaluate software system sustainability. The measures compiled in

this publication highlight the kinds of measures currently being applied for software

sustainability and green software. This publication also raises some research needs about

software sustainability measurement and the need for a framework to ground the

derivation of new software sustainability measures with a clear interpretation based on

the general software measurement theory.

4.3.3 Research Output and Contribution

The first main contribution is the categorisation of software sustainability understandings

into four perceptions, namely, sustainability in software development (development),

software for sustainability (usage), green software systems (focused impact) and

sustainability of software ecosystems (net effect).

Figure 11. Sustainability perceptions for SE (Oyedeji, Seffah and Penzenstadler, 2018b)

4 Publication Overview 54

Figure 11 shows the four perceptions and their relation. Out the four perceptions, the

green software system has received the highest number of related research works on

measures for evaluating green software systems.

The second contribution is the compilation of different measures used in evaluating green

and sustainable software systems based on the software development life cycle, the four

sustainability perceptions and the five sustainability dimensions. Publication 3 shows

what measures are used in evaluating green and sustainable software systems and what

formula were applied, with a definition of each measure.

4.4 Publication IV: Karlskrona Manifesto - Software Requirement

Engineering Good Practices

4.4.1 Research Objective

The goal of this publication is to explore the derivation of good and best practices during

software design and development by applying the Karlskrona Manifesto principles in

software sustainability requirements elicitation and documenting these best practices in a

template to aid dissemination among interested stakeholders.

4.4.2 Relation to Thesis Research Question

The contribution from this publication covers the third research question on how to record

good practices for software sustainability design and development. The method for

documenting software sustainability requirements best practices and the template

proposed in this publication can serve as a step towards encouraging different interested

parties to document and share how sustainability was used in their software projects, both

in academia and industry, to increase the knowledge base on software sustainability

design and development. This can assist and educate novice stakeholders interested in

software sustainability on what to do and how to do it during software sustainability

design, development and measurement.

4.4.3 Research Output and Contribution

The research contribution from this publication is a method for collecting and

disseminating software sustainability requirement elicitation best practices and providing

a template for the documentation. Long-term usage of the template for documentation of

different software sustainability requirement best practices will serve as a central point to

educate software developers on how sustainability is treated in different software projects

and contexts, which can help the rethink of how software is currently designed and

4.5 Publication V: Validation Study of a Framework for Sustainable Software

System Design and Development

55

developed in the future. Table 9 addresses details of the template for documenting

software sustainability requirement elicitation best practices.

Table 9 Template for software sustainability requirements elicitation of best practices

(Oyedeji and Penzenstadler, 2018)

Element Description

Title Which title best describes best practice?

Date In what month and year is the ‘good practice’ published or documented?

Authors Who wrote the good practice document?

Target

Audience

Who is the target group?

To whom is this document useful?

Objective What is the goal or aim of the best practice?

Location What is the geographic location in which this practice can be applied for

a software system (country, region, town or village)? Examples: system

for a country, state, province health care system or banking system or a

commercial software application

Stakeholders Beneficiaries of this best practice?

Who are the users, institutions and implementing agencies of the best

practice?

Methodology What methodology was used in documenting best practice?

What were the process and steps involved?

Selected

Karlskrona

Manifesto

principles

What are the principles that served as a guide for creating best practices

for requirements elicitation?

Requirements What were the requirements used in best practice?

How was sustainability considered in the requirement?

Validation How was best practice validated?

Did best practice fulfil the best practice criteria?

Impact What was the impact in the application of best practice?

Lessons Learnt What is the key take-away from the application of best practice?

Sustainability What are the dimensions of sustainability covered in best practice

application?

Contact Details What are the contact details of those responsible for best practice?

4.5 Publication V: Validation Study of a Framework for Sustainable

Software System Design and Development

4.5.1 Research Objective

The goal of this publication is to present the validation results for the SSDC and FSSSD

by applying it in the case of studies for software design, development and measurement.

4 Publication Overview 56

4.5.2 Relation to Thesis Research Question

The contribution from this publication relates to three research questions of this thesis

because the validation study results show SSDC and FSSSD provides the necessary

guidance and support to create software sustainability goals, elicit software sustainability

requirements and facilitate the measurement of software based on sustainability

measures.

4.5.3 Research Output and Contribution

The research contribution from this publication is the validation of applying SSDC and

FSSSD in the two case studies during software design, development and measurement.

The first case study where SSDC and FSSSD were applied is about how to design and

develop a pension benefit tracker application. This case study does not have sustainability

as a core motive during the project initiation, but the application of FSSSD shows that the

project stakeholders made changes to some of the software requirements and added new

ones to improve the overall efficiency of the pension benefit tracker application. The

usage of FSSSD in this case study also shows the benefits of sustainability consideration

in software design and development not only for the software but also the stakeholders.

This is because the developers' satisfaction during development (individual dimension of

sustainability) was considered as a yardstick for evaluating the software project by the

company’s project manager.

The second case study is about an application to display energy usage and carbon

emission through activities with the university staff and students driven by the

university’s sustainability goals. FSSSD provided the necessary guidance and support in

assisting the stakeholders in creating sustainability goals methodically, elicit

sustainability requirements for the project and incorporate these goals into the design and

development of the application in each software development life cycle.

5.1 Research Evolution and Results 57

5 Results and Evaluation

This chapter presents a summary of the results that describes the evolution of the research,

based on different design iterations, by explaining how and why the artefacts designed

and used in this thesis were created. The validity of the design processes, threat to validity

and the research limitations are also explained.

5.1 Research Evolution and Results

The first research stage (Publication 1 and Chapter 4, Section 4.1) of this thesis focused

on the requirements engineering domain by exploring sustainability definitions about

software systems; the key elements of requirements in the form of software quality were

derived from those definitions of sustainability. The identified sustainability dimensions

for software sustainability requirements in Publication 1 shows there is no consensus on

what software sustainability requirements should be during design and development. This

is corroborated by research results in (Venters et al., 2017).

The first challenge of software sustainability requirements during software design and

development, as noted in Publication 1, is how to elicit software sustainability

requirements methodically. The second challenge is on how stakeholders can be guided

from software project initiation to final product delivery and how to derive necessary

software sustainability goals that can facilitate software sustainability design. The third

challenge is on how to evaluate software system, based on the elicited software

sustainability requirements. How to identify indicators, measures and benchmarks for the

proper evaluation of software sustainability requirements to ensure sustainability issues

are addressed throughout the whole software development life cycle.

The S-BGQM (first artefact) approach is proposed in Publication 1 to address these

challenges by supporting stakeholders with processes that would help identify key

sustainability goals of a software system and specify software sustainability requirements.

Identify areas within the context of the application that the software will impact, set

questions that will characterise the goals, specify indicators or measure to evaluate the

sustainability goals of the software system related to each of the software sustainability

requirements. S-BGQM approach also supports sustainability analysis of software system

to provide insights on major first, second and third order impacts of the software system

within the five sustainability dimensions.

The S-BGQM approach was useful to support software sustainability requirements and

evaluation during software design and development but does not offer a complete guide

for the whole software development life cycle. Without a complete guide covering the

whole software development life cycle on software sustainability design, development

and measurement, it becomes difficult for stakeholders to adopt sustainability in the

software design and development process. Publication 2 explores how the Karlskrona

Manifesto principles on sustainability design (Becker et al., 2015) can be used as a guide

5 Results and Evaluation 58

in all phases of the software development life cycle, as shown through the development

of a second artefact (SSDC) and a third artefact, (FSSSD) in Publication 2.

Publication 2 describes SSDC as a guide for the integration of sustainability during

software design and encourages sustainability design as a core part of software design

practices based on the sustainability analysis of different kinds of software systems.

FSSSD, which was derived from the understanding of software sustainability design

through the SSDC guidelines, serves as a framework to address the problem of holistic

guidance and support covering the whole software development life cycle. This will ease

the challenge of software sustainability design, development and measurement. Table 10

details the interpretation of all the Karlskrona Manifesto principles on sustainability

design to each phase of the software development life cycle and the sustainability design

goals in each phase. The nine Karlskrona Manifesto principles and design goals are

presented in Table 10.

Table 10. Publication 2 summary of the Karlskrona Manifesto principles in relation to SDLC

phases and sustainability goals

SDLC Phases Karlskrona Manifesto principles Design Goals

Phase 1:
Project

Definition

P1- This principle ensures that the project

initiation considers sustainability in the overall

project definition from the beginning.

P2- Software sustainability has different

dimensions that must be considered from the

beginning for better project management with

different stakeholders.

P3- Software projects usually involve

stakeholders from different domains,

incorporating their sustainability concerns and

proper management of those concerns from

multiple perspectives, will help the

incorporation of sustainability in the software.

Design for sustainable

efficiency, reusability,

transferability, ensure a

good working

environment for

developers and work

satisfaction.

Phase 2:
User

Requirements

Definition

P2- It is important to take note of user

requirements regarding each sustainability

dimension to have better sustainability analysis

during the analysis and design phase.

Increase sustainability

awareness among

requirement engineers

and users during

requirement gathering.

Phase 3:
System

Requirements

Definition

P4- During elicitation of system requirements,

requirement engineers should consider

sustainability concerns for the system during the

requirements definition, even when it is not a

core part of the user requirements.

P5- Cross-evaluate the consequential impacts of

system sustainability requirements and the

environment in which the system will function.

Design for efficiency,

sustainability awareness

and interoperability.

Phase 4.
Analysis and

Design

P2- Applying this principle provides a blueprint

for system evaluation from all sustainability

Design for reuse and

efficiency, localisation,

interoperability

5.1 Research Evolution and Results 59

dimensions (economic, environment, social,

individual and technical).

P4- At this phase, the principle helps to

encourage the analysis of system design based

on sustainability in order to facilitate better

sustainable system design.

P6- Application of this principle enables a better

visual and visible overview of the system from

different levels of abstraction.

P8- This principle provides a better

understanding during analysis to make choices

that will help the potential users of the system in

both the present and future when the system

evolves.

Phase 5.
Development

P2- This principle will encourage developers to

consider different sustainability dimensions

during this phase, especially technical, social

and individual dimensions.

P4- Encourage the search for better avenues to

make systems sustainable from the development

perspective (developers) and also the functions

of the system that support longevity.

Design for reuse, design

for module replicability,

design for efficiency,

sustainability

awareness, efficiency,

design for easy service

and maintenance

Phase 6.
Integration and

Testing

P2- Provides integration and a sustainability

template for the test team that can be used to test

the system for all sustainability dimensions

based on the sustainability requirement output

from phases 2, 3 and 4.

P4- Application of this principle will support the

consideration of sustainability in this phase,

even if the primary focus of the system is not

about sustainability.

Design for easy

assembly and

disassembly, design for

durability

Phase 7.
Implementation

P5- Provides beforehand reasoning for the

development team to consider the sustainability

of the system, its production environment and

when pushing it live for use.

P7- Based on Principle 5 (P5), this principle aid

consideration of seeking the involvement of

different stakeholders to make the actualisation

of the system sustainability possible in the

production environment and when pushed live.

Design for easy use,

design to induce

conscious sustainability

awareness, design to

educate users about

sustainability, design

for easy recycling

Phase 8.
Sustainment/

Maintenance

P9- This principle, at this stage, helps create

conscious awareness so that when the system is

in a live environment, there will be a continuous

evaluation to assess system sustainability and

think of ways to optimise and improve the

system’s sustainability from all dimensions.

Proper design for

serviceability, design

for easy replacement of

code modules, design

for continuous user

engagement through

sustainability awareness

5 Results and Evaluation 60

Publication 2 provides two key artefacts that support software sustainability design,

development and measurement with discussion about sustainability requirements during

software development, which is usually not supported by most requirement gathering

method as stated by (Seyff et al., 2018). All the research outcome from publication 2 also

contributes to promoting software sustainability design which presently has limited

research as shown in the research work of (Wolfram, Lago and Osborne, 2017). However,

one challenge noted in Publication 2 is the lack of measures for software sustainability

design and a knowledge base of how software sustainability measures have been applied

in the industry through transfer of research knowledge from academia to practice in

industry.

Publication 3 investigates how different software sustainability measures have been

identified, created, applied and evaluated in different research setups. This resulted in the

compilation of different software sustainability and green software measures, based on

the four sustainability perceptions. From the four identified perceptions of sustainability

in SE, the green software system has the largest number of measures out of the compiled

measures in Publication 3. In particular, the energy efficiency measure, which is the most

used measure in evaluating software sustainability and greenness. Most of the measures

also focus on the environmental and technical dimensions of sustainability only, with few

measures in the social, individual and economic dimensions. According to (Lami and

Buglione, 2012), there are few studies about ‘what’ aspect of software sustainability to

measure and ‘how’ to measure it efficiently. This is evident in the compiled software

sustainability measures in Publication 3.

One reason identified for the lack of measures covering all sustainability dimensions in

Publication 3 is the problem of understanding the different scales of software

sustainability measures in the different sustainability dimensions and the interpretation of

these measures by stakeholders. For example, EU Directive 92/75/EC which established

energy consumption labelling scheme for energy efficiency of refrigerator, categorised

the labelling using A+, A++ and A+++, which means A++ is better than A+, and A+++

is better than A++, based on energy consumption of the refrigerator. For software

sustainability measures during design and development, how could we have a similar

scale of measurement and the right interpretation of these scales of measurement for

software sustainability design and measurement? A good start can be documenting

different software sustainability design, and development projects to record what kind of

sustainability requirements and measures were applied, such as how the requirements and

measures were created and what interpretation and scale of measurement were associated

with these measures. This can then provide a central reference point to show how

measures of software sustainability are exemplified and to provide a good start for

grounding those measures in general software measurement theories. Requirements in

software sustainability design and development are key to having measures for evaluating

the software system, based on those requirements.

Hence, Publication 4 researched how to create a method for documenting and

disseminating software sustainability requirement elicitation best practices and provided

5.1 Research Evolution and Results 61

a template for easy documentation. The criteria for validating the best practice consist of

the following six, namely:

1. Effective and successful: The best practice has demonstrated relevance to

achieve an objective effectively and efficiently, and has been used successfully

with a positive outcome and impact.

2. Environmentally, economically, individually, and socially sustainable: The

best practice meets current requirements and needs without compromising the

capacity to address future needs.

3. Technically feasible: Easy to understand, learn and apply in other similar cases

or scenarios.

4. Inherently participatory: Supports a participatory approach to facilitate joint

decision-making and actions.

5. Replicable and adaptable: Can easily be replicated in other projects and

adaptable in a different context with similar objectives.

6. Reducing disaster/crisis risks, if applicable: Supports risk reduction and crisis

to facilitate resilience.

The template for documenting the requirement elicitation best practices uses the

Karlskrona Manifesto principles for sustainability design as a guide for the requirements

and the different sustainability dimensions. As shown in a study of requirements

engineering practitioners that practitioners perception regarding sustainability are limited

due to a narrow understanding of sustainability (Chitchyan et al., 2016). And also there

still is no single point of reference for either RE researchers or practitioners where the

work on sustainability is gathered and exemplified (Chitchyan et al., 2015). Overtime,

the usage of this template as a documentation of best practice during software

sustainability design can provide more examples to improve practitioners understanding

for applying sustainability in software design and also contribute as a reference point.

Table 11 shows an example of the template from Case Study 2 in Publication 5 about the

energy usage and carbon emission display for university staff and students. This best

practice documentation was not included in the Publication 5 because it was not available

at the time of the publication. Publication 4 also provides a sample of how this template

was used.

Table 11. Best practice documentation from Case Study 2 (Sustainability Awareness via Energy

Data Display) in Publication 5

Element Description

Title Develop sustainability awareness in energy display application for the

public

Date 12/08/2018

Authors Mistretta Tom – Devinez Alexandre

Target

Audience

Engineers / Developers

Objective Create awareness about sustainability requirements in a project

 Encourage the development of ideas around sobriety

5 Results and Evaluation 62

Location Applicable worldwide

Stakeholders Engineers / Developers / Users

Methodology Discussion among software development team on what

sustainability means to them by going through the Karlskrona

Manifesto principles, FSSSD and SSDC

 Dialogue about which requirements can better influence users’

awareness of sustainability

 Dialogue about which requirements can better teach users to

improve their daily habits, influenced by the information shown to

them

 Discussion of how to integrate sobriety awareness requirement in

the project

 Find a way to make the project attractive to users

Selected

Karlskrona

Manifesto

principles

Principle 6: System visibility is a necessary precondition and enabler for

sustainability design.

Principle 7: Sustainability requires action on multiple levels.

Principle 8: Sustainability requires meeting the needs of future generations

without compromising the prosperity of the current generation.

Principle 9: Sustainability requires long-term thinking.

Requirements Functional Requirement
REQ 1 – Interactivity (users must be able to interact with the application)

 The interface must be simple to catch the user’s attention.

 Users can make actions on the interface with energy data and

dynamically get eco feedback.

REQ 2 – Display Information

 The users should be able to understand the displayed data and

information.

 Energy usage data and carbon emission information should be

displayed to users in relation to road distance between LUT

University in Lappeenranta and other cities within Finland (this

will provide a better understanding to users regarding their

impact).

REQ 3 – Community (users must be able to share ideas on sustainability

and advice to the user community group)

 Provide users with a sustainability challenge every week,

dynamically based on energy usage to help users develop a sense

of belonging with the idea of sustainability beyond the university.

This can make them become more curious and choose to change

their habits.

Validation Engineers, developers and some end users validate these requirements

with the best practice criteria.

Impact Promote sustainability and sobriety awareness

Lessons Learnt 1. Test results from user interaction with the prototype design show

users gain a sense of pride if their advice and suggestions help

reduce energy usage in the community section

2. The prototype test result also shows the best way to influence

public behaviour is to present energy and carbon emission

information in relation to what users can easily relate to, which

5.1 Research Evolution and Results 63

can offer better understanding for the public about their impact on

the environment. This approach is why the equivalent of CO2

emission, based on energy usage data, has been presented in the

form of distance between one city and another to explain the

impact on sustainability. This will encourage a change in users’

habits over time instead of telling them to change their habits

based on high energy usage data displays or CO2 emissions.

Sustainability

Dimensions

The requirements in this template cover the following:

 Social sustainability

 Environmental sustainability

 Individual sustainability

Contact Details mistrettatomjulien@gmail.com , devinez.alexandre@gmail.com

Publications 1- 4 provided the problems and challenges for stakeholders in engineering

software sustainability requirements, design and development. The publications also

presented all designed artefacts to address the problems described above and the

challenges of software sustainability design. To check the validity of the artefacts, its

applicability and usefulness, Publication 5 details a validation study through a case study

on the proposed design artefacts.

Publication 5 details the application of SSDC and FSSSD, which was created based on

guidelines from the SSDC in two case studies. The result from the application of the

framework shows it assisted and guided stakeholders on how to derive sustainability goals

at each phase of the SDLC, supported through the use of different software sustainability

concepts, tools and methods. Based on the sustainability goals in each SDLC phase,

stakeholders were able to specify sustainability requirements, identify the measures and

indicators that will be useful in evaluating the sustainability of software systems and

applications. Table 12 shows a sample of how the sustainability requirement template

from the FSSSD was used in the pension application case study. The sustainability

requirement template provided a way to understand how stakeholders involved in the case

study viewed each sustainability dimensions in relation to the software requirements.

Table 12. Sustainability Requirement Template (Oyedeji and Penzenstadler, 2019)

Requirement Sustainability

Dimension

Sustainability Dimension and

Explanation

The pension tracker application

should be accessible online via

web at any branch

Economic and

Technical

It will save us money of using

interstate courier to send, receive

and track pension applications.

(economic)

To achieve this, a good functional

system with no down time that will

satisfy user needs is required

(technical)

5 Results and Evaluation 64

The application should have

ability to enable Managers,

pensioners and other

stakeholders check application

status

Technical, individual

and social

Ease of use (individual) and also

allows everyone using the system to

be up to date about pension

application status (Technical and

social)

Provide automatic status

communication and notification

at each stage of benefit

application

Individual and Social It will keep clients (pension

applicants) up to date about their

application (individual and social)

Allow bulk or single file upload Individual and

Technical

More options to reduce time spent

in uploading application files

(individual, technical)

Provide SMS authorization

from managers in benefit

department

Individual Provide ease of processing and

approval for managers (individual)

Send Incomplete

documentation notification to

benefit department staff

Individual and

economic

Reduce time of processing the

pension application (individual,

economic)

Provide email and SMS

notification as an option for all

users

Individual Provide more options to increase

user preference because some users

might not have access to email

(individual)

Provide option of different

display to magnify fonts for

users with visual problems

Individual This promote inclusiveness

especially with users with visual

problem (individual)

Provide option to preview

pension application and save

electronically

Individual Reduce amount of error in

applications and saves time of

double work (individual)

Add a tag message below each

notification “Save the planet

from environmental waste, print

only when needed”

Environmental Promote sustainability awareness

among staff and clients (pension

applicants)

Provide energy report for

system usage

Environmental and

Technical

This will enable users track the

amount of energy consumed by the

application and discuss how we can

improve it

As shown in Table 13, presenting direct statements of stakeholders involved in using

SSDC and FSSSD for the two case studies, the framework provided the necessary guide

and support to make stakeholders rethink how to design and develop software systems

and using sustainability principles as a core guide in software design. Overall, the

feedback from the stakeholders in the two case studies shows that the application of SSDC

and FSSSD was useful. However, there were some challenges during the application of

FSSSD due to the stakeholders’ lack of understanding of what sustainability means in

software design and development. Using the SSDC guidelines during a discussion with

5.1 Research Evolution and Results 65

stakeholders and providing more explanation of how to use the tools and methods

provided in FSSSD, stakeholders were able to adopt it in their software design and

development project. Table 12 presents a summary of direct statements from stakeholders

in the two case studies.

Table 13. Direct quotes, feedback and comments from participants and stakeholders in the two

case studies (Oyedeji et al., 2019)
Role SDLC Phase Positive Challenges

CTO Project

Definition

1. FSSSD and SSDC provides

new insight for software project

with consideration of

sustainability

2. Guidelines in SSDC and

FSSSD introduces new methods

for evaluating our applications,

especially the environmental

and individual dimensions of

sustainability

3. The Sustainable Business

Canvas brings new factors into

software project definition with

sustainability concepts and

dimensions as guides

1. Very difficult to understand

how to apply some of the

sustainability concepts because

it is new to my team and me

2. We have the challenge to find

concrete examples online to see

how sustainability was applied

to software project definition,

especially in industry

3. It was challenging to give my

staff the additional task of

reading the Framework manual

to understand how to apply it

Software

developer,

Project

coordinator

User

requirement

definition

1. The sustainability

requirement template was useful

as a guide during the

requirement gathering because it

provides us with means of

discussing sustainability with

users and categorising user

requirements based on

sustainability dimensions

1. It was difficult at first to

understand how to explain the

different dimensions of

sustainability to key

stakeholders (users) during

discussion gathering

requirements on how to improve

the existing system

System

analyst,

software

developer

System

requirements

Definition

1. I was able to learn new things

about how sustainability can

influence defining system

requirements and identifying

new system requirements using

the FSSSD

2. The goal model diagram is a

good tool to break down

sustainability goals based on

requirements for business, usage

and system goals

3. The goal model diagram

made it easy to explain, discuss

and improve the project goals

and system requirements using

the business, usage and system

goal diagram

1. The only issue is a lack of

examples to show how

sustainability has been used in

different software requirement

elicitations at the beginning

when using FSSSD, but after a

couple of meetings discussing

sustainability with the research

guy, things became clearer

2. Some of the research,

especially about sustainability in

system requirements I saw on

Google from some researchers,

are too complex to apply

System

analyst,

Programm

Analysis and

Design

1. The sustainability goals and

suggested tools from FSSSD

were a good starting point to

1. Brainstorming how to

connect the first, second and

third order impact in each of the

5 Results and Evaluation 66

ers,

Software

developer

guide us during the analysis and

design phase

2. The sustainability analysis

radar chat was a new interesting

tool because it shows some new

requirements to add after

brainstorming each of the first,

second and third impacts

sustainability dimensions was

not easy because each of us has

different views on what is the

right thing to put, but

eventually, we looked at some

of the examples provided by the

researcher guy in using FSSSD.

5.2 Evaluation of Validity in Design Process

The seven guidelines for design science research (Hevner et al., 2004) provide researchers

with better knowledge and understanding of a design problem, the solution required in

building and the application of the artefact. These seven guidelines were used in this thesis

(detailed in Chapter 3) and serve as the evaluation for validity and quality of the design

science process.

1. Design as an Artefact: The result of design science research is a useful artefact

designed to address a particular organisational problem or challenge. A clear

description of the artefact must be stated effectively to enable better

implementation and application in the appropriate domain or context. Artefacts

created in design science research include constructs, models and methods applied

in the development and use of ISs.

Applied in this research process: This thesis produced four artefacts (see

Publications 1, 2 and 4) to address the challenges of software sustainability design

and development. Chapter 3 details how the design science process for creating

the artefacts was conducted (see Section 3.1) and Chapter 4 presents the results

for each artefact.

2. Problem Relevance: The goal of research in information system is to gain

knowledge and understanding that can aid the development and implementation

of a technology-based solution to solve crucial problems. Design science

approaches this goal through the creation of artefacts relevant to solve the problem

in the application context.

Applied in this research process: A literature review of scientific articles was

conducted as well as discussions with industry stakeholders to investigate the

problems of how to guide and support software developers in the design,

development and measurement of software sustainability. The result of a literature

study for this problem is summarised in Chapter 2 (Section 2.2) and Publications

1- 4.

3. Design Evaluation: The efficacy and quality of a design artefact must be

rigorously demonstrated through an efficient evaluation method. Evaluation is an

5.2 Evaluation of Validity in Design Process 67

important part of the design research process. The application context or

environment sets the requirements upon which the created artefacts are evaluated.

The evaluation requires specification of the right metrics and indicators for

evaluation, such as consistency, completeness, usefulness, performance,

reliability, accuracy, fit in the organisation or application context, functionality

and other metrics for quality evaluation. The design evaluation method includes

Observational (case study, field study) used in Publication 5; Analytical (static

analysis, architecture analysis, optimisation and dynamic analysis), Experimental

(controlled experiment, simulation), Testing (functional [black box]), Structural

[white box] testing), and Descriptive (informed argument and scenarios) used in

Publications 1 and 2.

Applied in this research process: The design of the artefacts was evaluated based

on its usefulness and performance in guiding and supporting stakeholders during

software design and development, as detailed in Chapter 4 (Sections 4.1 and 4.2),

in which scenarios were used, and in Section 4.5 (Publication 5) detailed how case

study was conducted.

4. Research Contributions: Effective design science research must provide a clear

contribution to the areas of the design artefact, design construction knowledge

(foundations), and design evaluation knowledge (methodologies). The main

assessment of any design science research is based on new contributions, which

are categorised into novelty, generality and significance of the design artefacts.

Applied in this research process: The research contributions from this thesis are

detailed in Chapter 1, Section 1.2, and Publication 1- 5.

5. Research Rigour: Rigour addresses how research is conducted. Design science

research is based on the application of the rigorous method in the creation and

evaluation of design artefacts. Furthermore, designed artefacts are often

components of a human-machine problem-solving system. For such artefacts,

knowledge of behavioural theories and empirical work are necessary to construct

and evaluate such artefacts. Constructs, models, methods and instantiations must

be exercised within appropriate environments.

Applied in this research process: The research in this thesis involves the use of

sustainability manifesto principles, known as the Karlskrona Manifesto principles

for sustainability design (Becker et al., 2015) and requirement engineering design

methods for software sustainability (Penzenstadler, 2014)(Penzenstadler, 2016) in

the design of the artefacts.

6. Design as a Search Process: Design science is inherently iterative. The search

for the best or optimal design is often intractable for realistic information system

problems. Heuristic search strategies produce feasible, good designs that can be

implemented in the application environment. Design is essentially a search

5 Results and Evaluation 68

process to discover an effective solution to a problem. Problem-solving can be

viewed as utilising available means to reach desired ends while satisfying laws

existing in the environment

Applied in this research process: The research questions were specified without

a pre-stated solution method to address the research questions. Results from

literature reviews and discussions with stakeholders were used to set requirements

for the artefact design detailed in Publications 1-3 and also in Chapter 4.

7. Communication of Research: Design science research must be presented both

to technology-oriented and management-oriented audiences. Technology-

oriented audiences need sufficient detail to enable the described artefact to be

constructed (implemented) and used within an appropriate organisational context.

Applied in this research process: The research results from this thesis were

published in conferences and journal to reach a wider community of interested

stakeholders.

5.3 Threat to Validity

This section details threat to validity in the research focusing on the construct, internal,

external validity and issue of reliability.

Construct Validity: Threat to construct validity is related to what extent the operational

measures that were studied really represent what the researcher have in mind (Runeson

and Höst, 2009). The research questions are tailored to support the aim of investigating

how to support and guide software sustainability design practices. Publication 1, 2 and 3

provided some of the challenges in software sustainability design practices and proposed

the use of artifacts such as SSDC and FSSSD. Publication 4 presents a template for

documenting software sustainability design best practice validated with industry experts

such as software developers, product tester /integration engineer, requirement engineer

and business analyst. To improve the construct validity, Publication 5 details how artifacts

from this research were applied in case study, the result from the case study further helped

to increase validity of the results from this research.

Internal validity: This is about the validity of results within, or internal to, a study. When

the researcher is investigating whether one factor affects an investigated factor, there is a

risk that the investigated factor is also affected by a third factor (Runeson and Höst, 2009).

Research from literature were first used for the investigation of stakeholder’s challenges

in software sustainability design practices. The results from literature were combine with

feedbacks from stakeholders to improve internal validity. Publication 4 and 5 details the

combination of literature and feedbacks from stakeholders.

External Validity: This aspect is about how findings from research can be generalized

and to what extent the findings are of interest to other people outside the investigated case

(Runeson and Höst, 2009). Case study involving two different kinds of case were used

5.4 Limitation of Research 69

for validation of the artifacts in publication 5. This is to enable analytical generalization

based on the results from the two case studies. Publication 4 also presents a template that

was validated by stakeholders from varying companies which shows interest of

stakeholders from different backgrounds. One limiting factor especially in the validation

of artifacts is that only two case studies were used. Applying more case studies might also

improve variety of feedbacks that can help to establish the general factors affecting

sustainability in software design in the industry and help improve the artifacts to support

software sustainability design practices.

Reliability: This aspect is concerned with to what extent the data and analysis are

dependent on the specific researchers (Runeson and Höst, 2009). To mitigate the issue of

reliability which can occur due to researcher’s bias, triangulation among different

researcher involve in the publications was applied. According to (Creswell and Miller,

2000) triangulation is an approach to ensure reliability of findings. During each stage of

research from literature review, design of artifacts and validation of artifacts, discussion

were held between researcher and supervisors to improve reliability of findings and

results.

5.4 Limitation of Research

This research is carried out with the constraint of designing and developing artefacts to

support and guide stakeholders in software sustainability design, development and

measurement. Based on this scope, the research is limited to software sustainability

design and development, covering only the SDLC phases.

The second limitation of this thesis is the number of design iterations for creating the last

two artefacts (FSSSD and Template for Software Sustainability Requirement Elicitation

Best Practice). The design process would have benefited from a third design and

evaluation test iteration to include more software sustainability tools and methods to

support stakeholders in using the framework and also to improve the template based on

stakeholder feedback. However, the design iteration is currently ongoing, and the results

will be published in a conference or journal article.

The final notable limitation is the number of case studies used in the evaluation of the

design artefacts (SSDC, FSSSD and Template for Software Sustainability Requirement

Elicitation Best Practice). In this thesis two case studies were used to show proof of

concept. More industrial case studies would have provided more information and a wider

context of application on how to improve the artefacts and create more extensive software

sustainability design which can increase awareness for interested stakeholders.

71

6 Conclusion

Sustainability in software design, development and measurement is an area that requires

concentrated effort in providing concrete guidelines for sustainability in software design.

The design science research and case study were applied in this thesis to investigate how

to support and guide stakeholders in software sustainability design, development and

measurement. This chapter highlights the identified problems, proposed solutions and

future research work.

One of the major issue identified from this thesis is the lack of understanding from

practitioners in the industry about what sustainability means in software design and

development. This issue is associated with a crucial challenge from academic research

regarding the provision of common ground on how sustainability can be objectively

engineered into software design and development. Specify practical cases that exemplify

how processes, methods, tools and sustainability concepts are used for software

sustainability engineering, from the requirement phase of SDLC to integration and

maintenance phase. SSDC and FSSSD was created to address this issue in software

sustainability design and development.

Furthermore, there is a challenge of what sustainability design principles to use during

software design. The KMSD serves as a base for solving this problem through the

proposed high-level and abstract principles. In order to make the KMSD principles

applicable in a quantifiable way during software design, there is a need for research that

translates those principles into software sustainability design guidelines. The SSDC

guidelines are an example of using the KMSD to provide software sustainability design

guidelines.

Also, the measures and measurement of software sustainability is an area with less

research attention in providing metrics, indicators and measures that can be used in the

evaluation of software sustainability design and measurement. There is a need for a

software sustainability measurement framework that will provide a different scale of

measurement and interpretation of the scales of software sustainability measures.

Overall, the research output from this thesis using the design science process are the

created artefacts, namely, the Sustainable Business Goal Question Metric approach

(Publication 1), SSDC and FSSSD, for Sustainability of Software System Design

(Publication 2) and Template for Software Sustainability Requirement Elicitation Best

Practice (Publication 4) to address the aforementioned problems in this thesis and the

research questions.

Finally, in order to fully achieve software sustainability by design, there is a need for a

knowledge base with practical examples of how sustainability has been applied in

different software projects especially in industry. This can serve as a backbone for

interested stakeholders to use and learn how to apply sustainability during software design

and development.

6 Conclusion 72

6.1 Addressing Research Questions

 Research Question 1 (RQ1): How to elicit software sustainability requirements

in software design?

The S-BGQM approach, SSDC and FSSSD artefacts provide a structural guide

on how stakeholders can elicit software sustainability requirements during

software design. The application of the three artefacts is detailed in Chapter 5,

Section 5.1, and Publication 1, 2 and 5.

 Research Question 2 (RQ2): How to measure and evaluate software system

sustainability?

FSSSD provides support and guidance for creating and selecting indicators,

metrics and measures to evaluate software sustainability, as summarised in

Publication 5 and Chapter 4. Publication 3 also details measures that have been

used in the measurement of software sustainability.

 Research Question 3 (RQ3): How to record good practices for software

sustainability design and development?

The template for Software Sustainability Requirement Elicitation Best Practice,

detailed in Chapter 5 and Publication 4, is a good example of how to document

software sustainability design and development best practices.

6.2 Future Research

The artefacts created in this thesis will benefit from more extensive and comparative

evaluation to improve their usefulness in supporting and guiding stakeholders through

software sustainability design and development. Using more case studies from different

application environments and contexts will provide a better understanding of the effects

of applying the artefacts in software sustainability design. Transfer of research to industry

via company collaboration in future will improve the current artefacts and enable a more

user-friendly framework to support software sustainability design practices.

There is also a need for an additional design iteration to incorporate feedbacks on the

current design artefacts to improve their effectiveness and efficiency during software

sustainability design, development and measurement. This additional iteration will also

improve the overall understanding of software sustainability design in the long term.

Currently, there is not enough scientific data on how to objectively create software

sustainability measures with different scales of measurement and the interpretation of

those scales of measurement. Hence, there is a need for a framework or model that can

support the grounding of software sustainability measures in general software

measurement theories.

6.2 Future Research 73

Furthermore, there is need for interdisciplinary research towards grounding the meanings

and perception of software sustainability design in research and theory with a common

ground that consolidates existing research and extend current understanding software

design in software engineering. In addition, to foster better application of different

research theories and proposed methods for software sustainability design, a cross

disciplinary collaboration with industry for transfer of research to practice will further

enhance software sustainability design with feedback from practitioners in industry. This

collaboration can also help to provide a common understanding for the role of

stakeholders in software sustainability design both in research and practice.

References

Abdulsalam, S. et al. (2015) ‘Using the Greenup, Powerup, and Speedup metrics to

evaluate software energy efficiency’, in Proceedings of Sixth International Green and

Sustainable Computing Conference (IGSC). doi: 10.1109/IGCC.2015.7393699.

Albertao, F. et al. (2010) ‘Measuring the Sustainability Performance of Software

Projects’, 2010 IEEE 7th International Conference on E-Business Engineering, pp. 369–

373. doi: 10.1109/ICEBE.2010.26.

Amsel, N. et al. (2011) ‘Toward sustainable software engineering (NIER Track)’, 2011

33rd International Conference on Software Engineering (ICSE), pp. 976–979. doi:

10.1145/1985793.1985964.

Becker, C. (2014) ‘Sustainability and longevity: Two sides of the same quality?’, in

Proceedings of Third International Workshop on Requirements Engineering for

Sustainable Systems (RE4SuSy), pp. 1–6. doi: 10.13140/2.1.2214.0800.

Becker, C. et al. (2015) ‘Sustainability Design and Software: The Karlskrona Manifesto’,

Proceedings of the 37th International Conference on Software Engineering, 2, pp. 467–

476. doi: 10.1109/ICSE.2015.179.

Becker, C. et al. (2016a) ‘Requirements: The key to sustainability’, IEEE Software, 33(1),

pp. 56–65. doi: 10.1109/MS.2015.158.

Becker, C. et al. (2016b) ‘Requirements: The key to sustainability’, IEEE Software, 33(1),

pp. 56–65. doi: 10.1109/MS.2015.158.

Ben-Eli, M. (2015) ‘Sustainability: definition and five core principles’, Sustainability

Science, 13(5), pp. 1337–1343. doi: 10.1007/s11625-018-0564-3.

Benyus, J. M. (1997) ‘Biomimicry: Innovation Inspired by Nature’, Governance

International Journal Of Policy And Administration, (2002), p. 308. Available at:

http://books.google.com/books?id=mDHKVQyJ94gC&pgis=1.

Bonini, S. and Görner, S. (2011) ‘The business of sustainability : Putting it into practice’,

Insights & Publications, p. 6. Available at: www.mckinsey.com.

Bourque, P. and Fairley, R. E. (Dick) (2014) ‘Guide to the Software Engineering Body

of Knowledge SWEBOK, 3rd edition’, IEEE Computer Society Press. Available at:

https://cs.fit.edu/~kgallagher/Schtick/Serious/SWEBOKv3.pdf%0A.

Bozzelli, P., Gu, Q. and Lago, P. (2013) ‘A systematic literature review on green software

metrics’, VU Technical Report. Available at:

http://www.sis.uta.fi/~pt/TIEA5_Thesis_Course/Session_10_2013_02_18/SLR_Green

Metrics.pdf.

Calero, C., Bertoa, M. F. and Angeles Moraga, M. (2013) ‘A systematic literature review

for software sustainability measures’, in Proceedings of the 2nd International Workshop

on Green and Sustainable Software, pp. 46–53. doi: 10.1109/GREENS.2013.6606421.

Calero, C., Moraga, M. A. and Bertoa, M. F. (2013) ‘Towards a Software Product

Sustainability Model’, in WSSSPE’1: First workshop on sustainable software for science:

practice and experiences, SC’13, Denver, CO, USA., p. 4. Available at:

http://arxiv.org/abs/1309.1640.

Calero, C. and Piattini, M. (2015) ‘Introduction to Green in software engineering’, Green

in Software Engineering, pp. 1–327. doi: 10.1007/978-3-319-08581-4.

Chitchyan, R. et al. (2015) ‘Evidencing sustainability design through examples’, in

Proceedings of the Fourth International Workshop on Requirements Engineering for

Sustainable Systems co-located with the 23rd IEEE International Requirements

Engineering Conference (RE 2015), pp. 45–54.

Chitchyan, R. et al. (2016) ‘Sustainability design in requirements engineering: state of

practice’, 38th International Conference on Software Engineering Companion (ICSE

’16), pp. 533–542. Available at: http://eprints.hud.ac.uk/28747/.

Cohen, N., Robbins, P. and Denault, J.-F. (2012) ‘Social Return on Investment [pdf]

Available at :

http://www.socialvalueuk.org/app/uploads/2016/03/The%20Guide%20to%20Social%2

0Return%20on%20Investment%202015.pdf [Accessed on 20-04-2019]’, (January). doi:

10.4135/9781412973793.n132.

Cortese, A. D. and Rowe, D. (2000) ‘Higher Education and Sustainability Overview [pdf]

Available < https://uwosh.edu/sirt/wp-content/uploads/sites/86/2017/08/Definitions-of-

Sustainability.pdf>[Accessed on 03-01-2019]’.

Council, N. R. (2011) Sustainability and the U.S. EPA. National Research Council.

Washington, DC [online] Available < https://doi.org/10.17226/13152> [Accessed on 02-

02-2019], National Academies Press. The National Academies Press. doi:

10.5860/choice.49-4423.

Creswell, J. W. and Miller, D. L. (2000) ‘Determining validity in qualitative inquiry’,

Theory into Practice, pp. 1–130. doi: 10.1207/s15430421tip3903_2.

Degrees, S. (2019) ‘What is Sustainability. Sustainability Degrees. [online] Available <

https://www.sustainabilitydegrees.com/what-is-sustainability/> [Accessed on 29-04-

2019]’.

Diesendorf, M. (2000) ‘Sustainability and sustainable development’, in Dunphy, D,

Benveniste, J, Griffiths, A and Sutton, P (eds) Sustainability: The corporate challenge of

the 21st century, Sydney: Allen & Unwin, chap. 2, 19-37’, pp. 19–37. doi:

10.4324/9781315442044-11.

Ehrenfeld, J. R. (2008) Sustainability by Design: A Subversive Strategy for Transforming

Our Consumer Culture. Yale University Press New Haven and London.

EITO, E. I. T. O. (2002) ‘The impact of ICT on sustainable development’, pp. 250–283.

Enterprise, F. (2019) ‘Flourishing Business Canvas [onlin] Available at:

http://www.flourishingbusiness.org/the-toolkit-flourishing-business-canvas/ [Accessed

on 14-03-2019]’, p. 2016.

Erdélyi, K. (2013) ‘Special factors of development of green software supporting eco

sustainability’, Proceedings of IEEE 11th International Symposium on Intelligent Systems

and Informatics -SISY 2013, pp. 337–340. doi: 10.1109/SISY.2013.6662597.

Erdmann, L. et al. (2004) ‘The Future Impact of ICTs on Environmental Sustainability’,

IPTS Publications, p. 68. Available at: ftp://ftp.jrc.es/pub/EURdoc/eur21384en.pdf.

Ericsson (2014) ‘Technology for Good [pdf] Available online

<https://www.ericsson.com/assets/local/about-ericsson/sustainability-and-corporate-

responsibility/documents/2015-corporate-responsibility-and-sustainability-report.pdf>

[Accessed on 30-11-2017]’. doi: 10.1089/SUS.2013.9868.

Freeman, P. (1980) ‘The Central Role of Design in Software Engineering: Implications

for Research’, Software Engineering: Research Directions, pp. 121–132.

Giovannoni, E. and Fabietti, G. (2013) ‘What Is Sustainability? A Review of the Concept

and Its Applications’, (2010), pp. 21–41. doi: 10.1007/978-3-319-02168-3.

Glaser, B. G. and Strauss, A. L. (1967) The Discovery of Grounded Theory Strategies for

Qualitative Research.

Goodland, R. (2002) Encyclopedia of Global Environmental Change, chapter

Sustainability: Human, Social, Economic and Environmental. Wiley & Sons.

Gordieiev, O., Kharchenko, V. and Fusani, M. (2016) Software Quality Standards and

Models Evolution: Greenness and Reliability Issues, Information and Communication

Technologies in Education, Research, and Industrial Applications. ICTERI 2015.

Communications in Computer and Information Science. doi: 10.1007/978-3-319-13206-

8.

Groher, I. and Weinreich, R. (2017) ‘An Interview Study on Sustainability Concerns in

Software Development Projects’, in proceedings of 43rd Euromicro Conference on

Software Engineering and Advanced Applications, pp. 350–358. doi:

10.1109/SEAA.2017.70.

Guinée, J. (2016) ‘Life Cycle Sustainability Assessment: What Is It and What Are Its

Challenges?’, Springer International Publishing, pp. 45–65. doi: 10.1007/978-3-319-

20571-7.

Heinberg, R. (2010) ‘What Is Sustainability? [pdf] Available

<http://www.postcarbon.org/publications/what-is-sustainability/> [Accessed on 29-04-

2019]’, Watershed Media. Available at: http://www.postcarbon.org/publications/what-is-

sustainability/.

Hevner, A. and Chatterjee, S. (2010) Design Research in Information Systems. Springer

New York Dordrecht Heidelberg London. doi: 10.1007/978-1-4419-5653-8.

Hevner, A. R. et al. (2004) ‘Design Science in Information Systems Research’, MIS

Quarterly, 28(1), pp. 75–105. doi: 10.2307/25148625.

IBM (2010) ‘Global CEO Study: The enterprise of the future’, Available online:

Https://www-935.ibm.com/services/uk/gbs/pdf/ibm_ceo_study_2008.pdf Accessed on 11-

10-2017, p. 76.

Idio, M. R. (2014) ‘Measuring Sustainability Impact of Software’, International Journal

of Computer Trends and Technology (IJCTT), 16(1), pp. 5–7.

Ilstedt, S., Eriksson, E. and Hesselgren, M. I. A. (2017) ‘Sustainable Lifestyles – How

Values Affect Sustainable Practises’, 7(7).

Jannat, U. K. (2016) ‘Green Software Engineering Adaption In Requirement Elicitation

Process’, International Journal of Scientifc & Technology Research, 5(08), pp. 94–98.

Johann, T. et al. (2012) ‘How to measure energy-efficiency of software: Metrics and

measurement results’, in Proceedings of 1st International Workshop on Green and

Sustainable Software, GREENS, pp. 51–54. doi: 10.1109/GREENS.2012.6224256.

Kern, E. et al. (2013) ‘Green Software and Green Software Engineering – Definitions ,

Measurements , and Quality Aspects’, pp. 87–94.

Kocak, S. A. (2013) ‘Green Software Development and Design for Environmental

Sustainability’, in ESEM-IDOISE Doctoral Symosium.

Koçak, S. A., Alptekin, G. I. and Bener, A. B. (2014) ‘Evaluation of software product

quality attributes and environmental attributes using ANP decision framework’, in

Proceedings of the Third International Workshop on Requirements Engineering for

Sustainable Systems co-located with 22nd International Conference on Requirements

Engineering (RE 2014), pp. 37–44. Available at:

http://www.scopus.com/inward/record.url?eid=2-s2.0-

84908292804&partnerID=40&md5=03d9e18dfe2eb69745df0031fc89be23.

Koziolek, H. (2011) ‘Sustainability evaluation of software architectures: A systematic

review’, in Proceedings of the joint ACM SIGSOFT conference on quality of software

architectures. Boulder, Colorado, USA, pp. 3–12. doi: 10.1145/2000259.2000263.

Kuhlman, T. and Farrington, J. (2010) ‘What is sustainability?’, Sustainability, 2(11), pp.

3436–3448. doi: 10.3390/su2113436.

Lago, P. et al. (2015) ‘Framing Sustainability as a Property of Software Quality’,

Communications of the ACM, 55(11), pp. 56–64. doi: 10.1021/ac60289a702.

Lami, G. and Buglione, L. (2012) ‘Measuring software sustainability from a process-

centric perspective’, in Proceedings of the 2012 Joint Conf. of the 22nd Int. Workshop on

Software Measurement and the 2012 7th Int. Conf. on Software Process and Product

Measurement, IWSM-MENSURA 2012, pp. 53–59. doi: 10.1109/IWSM-

MENSURA.2012.16.

Macdonald, C. (2012) ‘Understanding Participatory Action Research: A Qualitative

Research Methodology Option.’, The Canadian Journal of Action Research, 13(2), pp.

34–50.

Mahaux, M. and Canon, C. (2012) ‘Integrating the Complexity of Sustainability in

Requirements Engineering’, First International Workshop on Requirements Engineering

for Sustainable Systems (RE4SuSy).

Mahaux, M., Heymans, P. and Saval, G. (2011) ‘Discovering Sustainability

Requirements: An Experience Report’, Proceedings of Requirements Engineering:

Foundation for Software Quality - 17th International Working Conference, REFSQ,

(January), pp. 247–261. doi: https://doi.org/10.1007/978-3-642-19858-8_3.

Mann, S. (2007) ‘Computing for Sustainability [online] Available at

https://computingforsustainability.com/2007/08/27/biomimicry-in-software-

engineering-a-super-system-metaphor/ [Accessed on 23-01-2019]’.

Microsoft (2015) ‘Microsoft 2015 Citizenship Report. [PDF] Available at:

http://download.microsoft.com/download/7/3/6/736CED21-9D8B-4CBB-98E8-

DCBAE7026251/Microsoft%202015%20Citizenship%20Report.pdf’.

Mohajan, H. K. (2018) ‘Qualitative Research Methodology in Social Sciences and

Related Subjects’, Journal of Economic Development, Environment and People,

7(85654), pp. 23–48. Available at: https://mpra.ub.uni-

muenchen.de/85654/1/MPRA_paper_85654.pdf.

Moir, S. and Carter, K. (2012) ‘Diagrammatic representations of sustainability - A review

and synthesis’, Association of Researchers in Construction Management, ARCOM 2012

- Proceedings of the 28th Annual Conference, 2(September), pp. 1479–1489.

Musthaler, L. (2014) ‘Energy-aware software design can reduce energy consumption by

30% to 90% [online] Available

<https://www.networkworld.com/article/2861005/energy-aware-software-design-can-

reduce-energy-consumption-by-30-to-90.html > [Accessed on 15-04-2019]’, Network

World. Available at: http://www.networkworld.com/article/2861005/green-it/energy-

aware-software-design-can-reduce-energy-consumption-by-30-to-90.html.

Nations, U. (2005) ‘World Summit Outcome. General Assembly’, (October), pp. 1–38.

Available at: https://generalassemb.ly/design.

Naumann, S. et al. (2011) ‘The GREENSOFT Model: A reference model for green and

sustainable software and its engineering’, Sustainable Computing: Informatics and

Systems, 1(4), pp. 294–304. doi: 10.1016/j.suscom.2011.06.004.

Nidumolu, R., Prahalad, C. . and Rangaswami, M. . (2013) ‘Why sustainability is now

the key driver of innovation’, IEEE Engineering Management Review. doi:

10.1109/EMR.2013.6601104.

Noureddine, A. et al. (2012) ‘Runtime monitoring of software energy hotspots’, in

Proceedings of the 27th IEEE/ACM International Conference on Automated Software

Engineering, pp. 160–169. doi: 10.1145/2351676.2351699.

Oyedeji, S. et al. (2019) ‘Validation Study of a Framework for Sustainable Software

System Design and Development’, in Proceedings of 6th International Conference on

ICT for Sustainability, (ICT4S).

Oyedeji, S. and Penzenstadler, B. (2018) ‘Karlskrona Manifesto: Software requirement

engineering good practices’, Proceedings of the 7th International Workshop on

Requirements Engineering for Sustainable Systems (RE4SuSy 2018) co-located with the

26th International Conference on Requirements Engineering (RE 2018), 2223, pp. 15–

23.

Oyedeji, S. and Penzenstadler, B. (2019) ‘Experiences from Applying the Karlskrona

Manifesto Principles for Sustainability in Software System Design’, in Proceedings of

the 8th International Workshop on Requirements Engineering for Sustainable Systems

(RE4SuSy 2018) co-located with the 27th International Conference on Requirements

Engineering (RE 2019).

Oyedeji, S., Seffah, A. and Penzenstadler, B. (2017) ‘Sustainability Quantification in

Requirements Informing Design’, 6th International Workshop on Requirements

Engineering for Sustainable Systems, i. Available at: http://ceur-ws.org/Vol-

1944/paper6.pdf.

Oyedeji, S., Seffah, A. and Penzenstadler, B. (2018a) ‘A catalogue supporting software

sustainability design’, Sustainability, 10(7), pp. 1–30. doi: 10.3390/su10072296.

Oyedeji, S., Seffah, A. and Penzenstadler, B. (2018b) ‘Classifying the Measures of

Software Sustainability’, Proceedings of the 4th International Workshop on Measurement

and Metrics for Green and Sustainable Software Systems co-located with 12th

International Symposium on Empirical Software Engineering and Measurement (ESEM

2018).

Peffers, K. et al. (2007) ‘A Design Science Research Methodology for Information

Systems Research’, Journal of Management Information Systems, 24(3), pp. 45–78. doi:

10.2307/40398896.

Penzenstadler, B. (2014) ‘Infusing green: Requirements engineering for green in and

through software systems’, 3rd Intl. Workshop on Requirements Engineering for

Sustainable Systems, 2014, 1216(1), pp. 44–53.

Penzenstadler, B. (2015) ‘Sustainability and Requirements: A Manifesto’, IEEE

Software, 32(5), pp. 90–92. doi: 10.1109/MS.2015.114.

Penzenstadler, B. (2016) ‘Goal Model Requirements Engineering for Sustainability’,

Lect. slides guest course Softw. Eng. Sustain. Lappeenranta Univ. Technol. Slides

available online at http//birgit.penzenstadler.de/teach/LUT.html.

Penzenstadler, B. et al. (2018) ‘Software engineering for sustainability’, in Requirements

Engineering Conference (RE) 2018 IEEE 26th International, pp. 304–314. doi:

10.9774/gleaf.9781315465975_13.

Penzenstadler, B. and Femmer, H. (2013) ‘A generic model for sustainability with

process- and product-specific instances’, in Proceedings of the 2013 Workshop on Green

in Software Engineering, Green by Software Engineering, pp. 3–7. doi:

10.1145/2451605.2451609.

Penzenstadler, B., Mahaux, M. and Salinesi, C. (2014) ‘RE4SuSy’, in 3rd International

Workshop on Requirements Engineering for Sustainable Systems. Available at:

http://ceur-ws.org/Vol-1944/preface.pdf.

Penzenstadler, B., Mahaux, M. and Salinesi, C. (2015) ‘RE4SuSy’, in 4th International

Workshop on Requirements Engineering for Sustainable Systems, Part of the GREENS

Alliance, pp. 4–7. Available at: http://ceur-ws.org/Vol-1944/preface.pdf.

Penzenstadler, B., Salinesi, C. and Ruzanna, C. (2017) ‘RE4SuSy’, in 6th International

Workshop on Requirements Engineering for Sustainable Systems. Available at:

http://ceur-ws.org/Vol-1944/preface.pdf.

Penzenstadler, B., Tomlinson, B. and Richardson, D. (2012) ‘RE4ES: Support

Environmental Sustainability by Requirements Engineering’, First International

Workshop on Requirements Engineering for Sustainable Systems (RE4SuSy). Available

at:

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:RE4ES+:+Support+E

nvironmental+Sustainability+by+Requirements+Engineering#0.

Penzenstadler, B. and Venters, C. C. (2018) ‘Software engineering for sustainability’,

Digital Technology and Sustainability, pp. 103–121. doi:

10.9774/gleaf.9781315465975_13.

Robillard, M. P. (2016) ‘Sustainable Software Design’, in Proceedings of the 2016 24th

ACM SIGSOFT International Symposium on Foundations of Software Engineering, pp.

920–923. doi: 10.1145/2950290.2983983.

Rondeau, E., Lepage, F. and Georges, J. (2015) ‘Measurements and Sustainability, Green

Information Tech- nology. A Sustainable Approach’, Elsevier, p. pp.29-59.

Runeson, P. and Höst, M. (2009) ‘Guidelines for conducting and reporting case study

research in software engineering’, Empirical Software Engineering, 14(2), pp. 131–164.

doi: 10.1007/s10664-008-9102-8.

Seacord, R. et al. (2013) ‘Measuring Software Sustainability’, in Proceedings

International Conference on Software Maintenance ICSM 2003. doi:

10.1017/CBO9781107415324.004.

Seyff, N., Betz, S., Groher, I., et al. (2018) ‘Crowd-focused semi-automated requirements

engineering for evolution towards sustainability’, Proceedings - 2018 IEEE 26th

International Requirements Engineering Conference, RE 2018, pp. 370–375. doi:

10.1109/RE.2018.00-23.

Seyff, N., Betz, S., Duboc, L., et al. (2018) ‘Tailoring requirements negotiation to

sustainability’, Proceedings - 2018 IEEE 26th International Requirements Engineering

Conference, RE 2018, pp. 304–314. doi: 10.1109/RE.2018.00038.

Shedroff, N. (2009) Design is the Problem:The Future of Design Must be Sustainable.

Rosenfeld Media. Available at: www.rosenfeldmedia.com.

Spinellis, D. (2017) ‘The Social Responsibility of Software Development’, IEEE

Software, 34(2), pp. 4–6.

Starman, A. B. (2013) ‘The case study as a type of qualitative research.’, Journal of

Contemporary Educational Studies, 64(1), pp. 28–43.

Tainter, J. A. (2006) ‘Social complexity and sustainability’, Ecological Complexity, 3(2),

pp. 91–103. doi: 10.1016/j.ecocom.2005.07.004.

Tate, K. (2005) Sustainable Software Development: An Agile Perspective, Addison-

Wesley Professional.

Thwink.org (2019) ‘Sustainability Definition. [online] Available <

http://thwink.org/sustain/glossary/Sustainability.htm> [Accessed on 06-02-2019]’, Web

Resource.

Tilbury, E. D. et al. (2002) Education and Sustainability: Responding to the Global

Challenge, International Journal of Sustainability in Higher Education. doi:

10.1108/ijshe.2003.24904bae.007.

UN General Assembly (1987) ‘Report of the World Commission on Environment and

Development: Our Common Future’, Report of the World Commission on Environment

and Development: Our Common Future.

United Nations (2013) World Economic and Social Survey 2013. New York: Department

for Economic and Social Affairs. doi: 10.1016/j.compind.2010.10.001.

United Nations (2015) ‘Sustainable Development Goals [online] Available at:

<https://www.un.org/sustainabledevelopment/sustainable-development-goals/>

[Accessed on 28-12-2018]’, (September 2000), pp. 8–23.

Venters, C. C. et al. (2014) ‘Software sustainability: The modern tower of babel’, 3rd

International Workshop on Requirements Engineering for Sustainable Systems.CEUR

Workshop Proceedings, 1216, pp. 7–12. doi: http://ceur-ws.org/Vol-1216/.

Venters, C. C. et al. (2017) ‘Characterising sustainability requirements: A new species

red herring or just an odd fish?’, Proceedings - 2017 IEEE/ACM 39th International

Conference on Software Engineering: Software Engineering in Society Track, ICSE-SEIS

2017, pp. 3–12. doi: 10.1109/ICSE-SEIS.2017.2.

Venters, C. C. et al. (2018) ‘Software sustainability: Research and practice from a

software architecture viewpoint’, Journal of Systems and Software, 138, pp. 174–188.

doi: 10.1016/j.jss.2017.12.026.

Wiersum, K. F. (1995) ‘200 years of sustainability in forestry: Lessons from history’,

Environmental Management. Springer, 19(3), p. 321.

Wolfram, N., Lago, P. and Osborne, F. (2017) ‘Sustainability in Software Engineering’,

2017 Sustainable Internet and ICT for Sustainability (SustainIT). IFIP. doi:

10.1109/CSEET.2011.5876124.

Wu, J. et al. (2018) ‘Information and communications technologies for sustainable

development goals: State-of-the-art, needs and perspectives’, IEEE Communications

Surveys and Tutorials, 20(3), pp. 2389–2406. doi: 10.1109/COMST.2018.2812301.

Yin, R. K. (1984) Case Study Research -Design and Methods. Second Edi. Sage

Publication. doi: 10.1201/b16851-12.

Zainal, Z. (2007) ‘Case Study as a Research Method’, UTM Journal of Humanities, 5, pp.

1–15. doi: 10.4135/9781473915480.n2.

Publication I

S. Oyedeji, A. Seffah, and B. Penzenstadler
Sustainability Quantification in Requirements Informing Design

In: 6th International Workshop on Requirement Engineering for Sustainable System co-
located with the 25th International Conference on Requirements Engineering

Reprinted with permission from
CEUR Workshop Proceedings

Vol. 1944, pp. 34-43, 2017

© 2017, CEUR

Sustainability Quantification in Requirements Informing Design

Shola Oyedeji

Department of Software

Engineering

Lappeenranta University of

Technology

Lappeenranta, Finland

 shola.oyedeji@lut.fi

Ahmed Seffah

Department of Software

Engineering

Lappeenranta University of

Technology

Lappeenranta, Finland

ahmed.seffah@lut.fi

Birgit Penzenstadler

Department of Computer

Engineering and Computer Science

California State University

Long Beach

Long Beach, California, USA

birgit.penzenstadler@csulb.edu

Abstract— Sustainability has been defined with different

perceptions and from diverse dimensions making it an

ambiguous concept to objectively engineer and integrate into

software development lifecycle. Although a large body of

knowledge already exists on what sustainability is and isn’t,

little research has explored how to quantify sustainability. How

can the definitions and perceptions of sustainability from

software engineering and other fields be turned into

requirements, effective measures that quantify sustainability

and most importantly can inform a “sustainability by design”

approach? What are the measures and measurement scale of

sustainability? Our long-term research goal is to answer such

questions and similar ones. In this position paper, we

summarize our investigations and pave the road for a

theoretical ground of sustainability quantification in software

development and measurement. The goal is to foster research

and standardization initiatives on sustainability as a quality

attribute and sustainability by design.

Keywords: Software Sustainability, Sustainability

Requirements, Software Measurement, Software Development,

Sustainability Metrics, Software Design

I. INTRODUCTION

In a broad sense, sustainability is “the capacity to endure”
[1]. In software engineering, sustainability has been
introduced from different dimensions with diverse
perceptions and definitions. Sustainability can be
differentiated into several dimensions including
environmental, human, social, and economic. According to
Becker et al. [2] sustainability dimensions are interdependent
and cumulative - first, second and third order effects from
each dimension will bleed into each other. Sustainability
consideration as a non-functional requirement like security,
usability, reliability can help reduce a software system’s first
order impacts which will also aid reduction of second and
third-order impacts of software systems. By doing so,
developers have the potential to considerably improve
software systems sustainability from the requirement
engineering stage onwards [3]. This also requires measures
informing how well the development process produces
sustainable software [4].

The fundamental question is how to quantify
sustainability not only for software products, systems and
services but also for the entire digital ecosystem created by

the system of software systems? This research aims to serve
different communities, though there is still need to conduct
empirical studies to validate these benefits. Quantifying
sustainability in software systems will encourage software
engineering community to develop processes, tools and new
metrics to assess sustainability of software system like the
other quality attributes. It will help companies, organizations
and managers to easily adopt and institutionalize
sustainability in their mainstream software development and
management processes, assess objectively the cost-benefit
while creating a business model associated with
sustainability of their software system.

Furthermore, it will guide standardization bodies like
ISO and governmental agencies to enact standards and
policies for software system sustainability. For example,
what is the minimum sustainability level of a software
system to get certain accreditation like we do with security
today? It will also make the society and people more aware
about the impact of software systems when developing and
using it; one example is the categorization of a fridge based
on its level of greenness (energy usage) such as A+, A++.
Shall we adopt the same approach in software engineering?

Kocak et al. [5] stated that software development
industry is now getting pressure from regulators to consider
green certification. As an answer to this pressure, green
attributes of software products should be defined as quality
factor. Then, the biggest challenge facing companies is how
to integrate sustainability into their engineering practices
when knowing the lack of consensus on what sustainability
means in software systems and how it can be quantified and
measured.

Quantification of sustainability requires that it should be
considered among the six divisions in ISO standards
SQuaRE Model such as: Quality Management Division,
Quality Model Division, Quality Measurement Division,
Quality Requirements Division, Quality Evaluation Division,
SQuaRE Extension Division [6]. By including sustainability
in such standardization framework, sustainability may be
considered more effectively in the industry. This is not really
the case today. One starting point towards this, is to turn the
current meanings, perceptions, and beliefs into requirements,
factors, measurable criteria and tangible measures.

This paper presents the early results of an ongoing
research that aims to build a theoretical ground for

sustainability requirement quantification in software
development. Hopefully, the paper can stimulate a discussion
as a means of getting feedbacks for further investigations.

The remainder of this paper is as follow. The next section
provides various sustainability definitions for requirements.
Section III traces the research trends and outcomes from
requirement engineering domain. Section IV discusses
sustainability in software measurement and propose an
approach for it. Section V details the proposed approach with
an example. Section VI contains the conclusion with remarks
for future work.

II. SUSTAINABILITY DEFINITIONS FOR REQUIREMENT

The varying definitions of sustainability show there are
diverse opinions about what is sustainability. This makes it
harder to define especially when applied to software systems.
Still, these definitions provide a basis to start grounding
sustainability in software engineering research and practices.
Some clarity is needed as to how to quantify sustainability in
software systems in term of quantifiable variables in order to
be able to access and evaluate sustainability of software
systems.

Sustainable software has been viewed from three angles
[7] as:

(1) Long lasting software which relates to how well a
piece of software will be able to cope with changes;

(2) Lean software that require less hardware and reduces
its own power consumption (energy efficient);

(3) Software for sustainable humans as software that
induces sustainable human behavior.

This definition leads to three measurable concerns that
we should consider during requirement: energy efficiency,
longevity and user experiences.

Venters et al. [8] explore emerging definitions of
software sustainability from different angles in the field of
computational science and engineering in order to contribute
to the question, what is software sustainability? They stated
that in software engineering, longevity and maintenance are
the two most important factors for understanding
sustainability. Their perception is based on the Oxford
English dictionary definition for sustainability ‘the quality of
being sustained’, where sustained can be defined as ‘capable
of being endured’ and ‘capable of being ‘maintained’.

This work highlighted the importance of longevity and
maintenance for the requirement of sustainability.

Heiko Koziolek [9] define sustainability of software
systems from the perspective of software architecture as long
living system that should last for more than 15 years and can
be cost-efficiently maintained and evolved over its entire
life-cycle. This also supports the requirement of longevity
and maintainability.

Tainter [10] introduces sustainability as an active
condition of problem solving, not a passive consequence of
consuming less resources. To define sustainability in specific
context the questions should be to sustain what, for whom,
how long and at what cost? Applying Tainter’s definition to
software systems, it will help frame definition of
sustainability into context in order to understand what the
boundaries are in a system.

Seacord et al. [11] defined software sustainability as the
‘ability to modify a software system based on customer
needs and deploy these modifications,’ which means
sustainability is the quality of conforming to user
specification. Modifiability is the key requirement from this
definition.

Harris and Goodwin [2] describe sustainability as system
that must achieve fairness in distribution and opportunity,
adequate provision of social services, including health and
education, gender equity, and political accountability and
participation. Their definition focus on social sustainability
relating to how well a system can cater for different user
needs irrespective of their condition. The definition
highlights the requirement for accessibility.

Naumann et al. [12] defined sustainable software as
software whose direct and indirect negative impacts on
economy, society, human beings, and environment that result
from development, deployment, and usage of the software
are minimal and/or which has a positive effect on sustainable
development. Base on this definition the main requirements
for sustainability can be derived from the economic,
environment, social and individual dimensions of
sustainability.

Table 1 summarizes the most cited definitions and
identifies the key requirements.

TABLE I. DEFINITION SUMMARY AND REQUIRMENTS

Author Definition Requirement

M. R. Idio [7]

Long lasting and Lean

software, Software for

sustainable humans

Energy efficiency,

Longevity and User

Experiences.

Venters et al.

[8]

Sustainability is the

quality of being sustained.

Longevity and
maintenance are the two

most important factors for

understanding
sustainability

Longevity and

Maintenance

Heiko

Koziolek [9]

Long living system that

should last for more than
15 years and can be cost-

efficiently maintained and

evolved over its entire
life-cycle.

Longevity and

Maintenance

Seacord et al.

[11]

Ability to modify a

software system based on
customer needs and

deploy these

modifications

Modifiability

Harris and

Goodwin [2]

Sustainability as system
that must achieve fairness

in distribution and

opportunity, adequate
provision of social

services

Accessibility

Naumann et
al. [12]

Software whose direct and
indirect negative impacts

on economy, society,

human beings, and
environment that result

from development,

deployment, and usage of
the software are minimal

Economic,

environment, social

and individual

Author Definition Requirement

Tainter [10]

To define sustainability in

specific context the
questions should be to

sustain what, for whom,

how long and at what
cost?

Sustainability is a

requirement within a
certain context. It

requires the

specification of the
context

III. SUSTAINABILITY IN REQUIREMENT

ENGINEERING

The following are some of the research work in the
domain of requirement engineering for sustainability in
software systems.

Raturi et al. [13] focused on how to develop
sustainability as a non-functional requirement (NFR) using
NFR framework informed by sustainability models and how
it can be used to correctly obtain and describe sustainability
related requirements of the software system to be developed.
The sustainability model has five dimensions (Human,
Social, Economic, Environmental and Technical
sustainability).

Penzenstadler et al. [14] also support the consideration of
sustainability as a nonfunctional requirement like safety and
security that are considered as a system quality attribute.

Mahaux et al. [15] highlights the fact that requirements
engineering has a major role to play for making software last
long by reducing the impact of development and disposal
phase.

Roher et al. [16] concerned with the lack of software
engineering teams including environmental sustainability
during software development proposed the use of
sustainability requirement patterns (SRPs) as a guide for
software engineers to elicit sustainability requirements.

Becker et al [3] explains the crucial role of requirements
not only for software systems but also for how requirement
for sustainability can also impact on the social-economic and
natural environment. The two case studies presented by the
authors’ shows the importance of requirement in
sustainability design.

Based on the above research, there are three major issues
for quantifying sustainability during the requirement stage as
seen in the summary in Table I and section III:

 First, different research suggests different
definitions, so there is no consensus definition.

 Second, the proposed definitions are either too
complex or focus mainly a particular dimension of
sustainability.

 Third, there is no central framework that is pivotal
to the quantification of sustainability.

This shows there is need for discussing and coming to a

consensus by researchers interested in sustainability of
software systems. This can enable development of a central
formwork that would support the addition of sustainability
into the SQuaRE Model [6]. We believe this will foster a
focused research towards better quantification of
sustainability for software system. It will also encourage

research on how best to incorporate management goals and
requirements in the adoption of sustainability for software
system design and development.

IV. SUSTAINABILITY MEASURES

Sustainability is still not fully explored in the field of
software measurement. These are the different works on
quantifying sustainability that have been done so far and also
attempts to measure sustainability.

Lami et al. [17] stated there are few studies on ‘what’
aspects of sustainability to measure and ‘how’ to do it.
Calero et al. [18] highlighted that nowadays, sustainability is
a key factor that should be considered in the software quality
models, though there is less research channeled towards it.
Seacord et al. [11] indicated that planning and management
of software sustainment is impaired by a lack of consistently
applied, practical measures. Without these measures, it is
difficult to determine the effect of efforts to improve
sustainment practices.

Johann et al. [19] presents a generic metric to measure
software energy efficiency and a method to apply it in
software engineering process using the formula “Useful
Work Done/Used Energy.”

Krisztina Erdélyi [20] studies the lifecycle activities of
software development with focus on environmental
protection by proposing a formula to calculate software
waste to encourage the development of green software.

Albertao et al. [4] proposed software engineering metrics
based on software quality like reusability, portability,
supportability, performance as a way for measuring the
sustainability performance of software projects.

Bozzelli et al. [21] paper focused on describing and
classifying metrics related to software “greenness” present in
the software engineering literature through systematic
literature review in order to analyze the evolution of those
metrics, in terms of type, context, and evaluation methods
highlighting metric types like energy, performance,
utilization, software energy consumption.

One of the most referenced model for developing and
measuring sustainable software is the Greensoft Model by
Naumann et al. [22]. It is a conceptual reference model for
“Green Software.” The Greensoft model has the objective to
support software developers, administrators, and software
users in creating, maintaining, and using software in a more
sustainable way but lacks the clarity and practical examples
of how this model can be implemented for software system
development. The key to measuring sustainability of
software system requires quantifiable variables that can be
applied to all sustainability dimensions in relation to
software system development.

Thus, a new proposed approach; Sustainable Business
Goal Question Metric (S-BGQM) is introduced here. It
encourages the incorporation of sustainability during the
entire software system development engineering processes.

S-BGQM is influenced by work from [23] and [24]. It
combines results from the software requirement engineering
process [23] into the design and development process. It is
formed by two major components; the Sustainable Business
Assessment and the Goal Question Metric. Figure 1 portrays

Figure 1 Sustainable Business Goal Metric Process Flow (S-

BGQM)

S-BGQM. All artefacts in the sustainable business
assessment component provides support for all activities in
the Goal Question Metric component of S-BGQM.

In the Sustainable Business Assessment, analysis of
information in the sustainable business canvas leads to
creation of sustainability goals. These goals are categorized
into business, usage and system goals with consideration of
sustainability that serve as a requirement for measurement.
Based on this categorization, a set of questions are generated
to characterize all those goals.

System vision and sustainability analysis provide a quick
overview of the software system first, second and third order
impacts based on those goals. And it provides information
useful for specifying the right metric to evaluate the software
system.

The Sustainable Business Assessment component involves
the following (See Figure 1):

 Sustainable Business Model Canvas: The Business
Canvas incorporates sustainability considerations
during business model design. It allows users to
describe, design, challenge, invent, and pivot their
business model with sustainability consideration
[25] [26].

 Goal Model: It shows comprehensive and holistic
goals of the organization or company in relation to
the software under development from the economic,

social and environmental perspective represented in
business goal, usage goal and system goal [27].

 System Vision: It provides an overview of the
whole system and how it interacts with different
external components and its potential users based
on the agreement of all stakeholders [28].

 Sustainability Analysis: Sustainability analysis
describe the system from sustainability perspective
by considering sustainability purpose of the system,
impact the system has on environment as well as
sustainability goal and constraint of the system [29].

The Goal Question Metric (GQM) component covers the
following (See Figure 1):

 Tracing and measurement of system goals based on
the result from the sustainable business assessment.

 Allows software engineers/ managers and company
to define questions that can be used to evaluate their
software system goals

 Choose appropriate metrics that can be used to
measure their software system base the questions
with consideration of sustainability.

These metrics are categorized according the
sustainability dimensions as discussed by Raturi et al. [30]
and Penzenstadler and Femmer [31] (Economic,
Environmental, Social, Individual and Technical
Sustainability).

Table II portrays metrics and their categorization
according to the five dimensions of sustainability. The
metrics samples presented in the GQM component give
managers simple yardsticks to calibrate how well their
company is doing in terms of resource consumption while
extracting more value from their processes. The metrics
support decision-making by providing a mechanism for
benchmarking performance, tracking improvement over
time, evaluating products and processes, and developing
strategies for improvement.

TABLE II. METRIC CATEGORIZATION

Category Metric Description

Technical

BMI=Number of

problems

close/number of
problems arrival

*100

Backlog Management index
(BMI) is a workload statement

for software maintenance. It is

related to both the rate of
defect arrivals and the rate at

which fixes for reported

problems become available.

Rework Metric

The total number of functions

modified per commit related to

adding a new feature/function.
The "extensibility" of a system

is generally the ability of the

system to tolerate additional
features or functionality with

little or no required rework.

Economy

BMI=Number of
problems

close/number of

problems arrival
*100

Same as the above BMI

Defect Density=

Total defects/Size

The value of the total defects

which are known to the size of
the software product

Category Metric Description

calculated.

Net Cost
The Budgeted Capital - Total
Capital Spent

Environment

BMI=Number of

problems
close/number of

problems arrival

*100

Same as the above BMI

Defect Density=

Total defects/Size

Same as the above Defect

Density

Energy efficiency
Useful work done/Used
Energy

Social

Gateway metric

(1=Task success
and 0= Task

failure)

The amount of successful task
completed

Defect Density=

Total defects/Size

Same as the above Defect

Density

Net working hours
Budgeted hours - Total

working hours

Individual
Gateway metric
(1=Task success

and 0= Task

Same as the above Gateway

metric

Category Metric Description

failure)

Defect Density=
Total defects/Size

Same as the above Defect
Density

V. S-BGQM PRELIMINARY STUDY BASED ON

INFORMATION RESEARCHED ONLINE

The preliminary study described here provides an
example of how S-BGQM, as a way of quantifying
sustainability works during requirements. A sample project
where the project team proposed development of car sharing
system called ShareVoyage for students in City of
Lappeenranta is presented. It is an online web platform for
group shopping and also to share unused foods.

The following seven steps process demonstrate how S-
BGQM works while illustrating the different artifacts such as
the Sustainable Business Canvas, Goal Model, System vision
sustainability analysis of the system and metric worksheet.

1. Create Sustainable Busines Canvas. Figure 3 is an example of a canvas created in this study.

Figure 2. Sustainability Business Model Canvas (Sustainable Business Assessment)

2. Measurable management goals are created based on
the information derived from the sustainable
business canvas (see Figure 2). These are the goals
derived based on the contents from the Canvas :

 Reduce C02

 Encourage car sharing

 Reduce food waste by encouraging food
sharing

 Promote sustainable community

3. All the goals from step 2 are divided into three in
the Goal Model phase show the business, usage and
system goal of the software system. This division of
goals serves as a means of proper classification for
easier measurement after system development.
Goal model is the basis for early conflict
identification and resolution in the system
development. Figure 3 shows the details of Goal
Model.

Figure 3. Goal Model (Sustainable Business Assessment)

4. The Biz Goal from Figure 3 represents the business

goals that have direct impact on the system. The
usage goals are those functional objectives of the
system based on how it should behave. The system
goals relates to the systems features. The color
semantics in Figure 3 is only used to different each
section. Based on the Goal Model (see Figure 3), a
set of questions is created to characterize each goal.
Table II details the questions associated with each
goal.

TABLE III. SET QUESTIONS (GQM)

Goals Questions

Reduce C02
Does the application reduce the amount

of carbon emission in Lappeenranta?

Encourage car sharing
Is there an increase in car sharing among

students?

Reduce food waste
What is the percentage of food waste

after the application launch?

Promote sustainable

community

Are students more aware of

Sustainability?

5. System vision created to show the common

understanding of all the stakeholders including
users, management staffs, and developers. It is
usually a pictorial overview of the system. It
portrays how the system functions during operation.

6. Sustainability analysis shows the software system
first, second and third order impact as shown in

Figure 4 with consideration for economic, environment, social, individual and technical
sustainability dimensions. This analysis is based on
the inputs from step 1 (sustainable business
canvass) on contents of the environment, society,

economy, process, value and people. It provides a
holistic view of how different dimension of
sustainability impact each other and their relation.

Figure 4. Sustainability Analysis (Sustainable Business Assessment)

7. Based on the system vision and sustainability
analysis (see Figure 4) the software development
team will be able to generate a metric worksheet
(Table III) to evaluate the software system. To
clarify, benchmark values are calculated based on

the total software project modules and lines of
codes.

TABLE IV. METRIC WORKSHEET (GQM)

Category
Question

Metric
Benchmark

Value

Technical

What is the Backlog Management Index
(BMI)?

BMI=Number of problems close/number of
problems arrival *100

0 or 100

What is the amount of rework? Rework Metric (Total Number of function

modified)

0

Category
Question

Metric
Benchmark

Value

Economy

What is the BMI? BMI=Number of problems close/number of

problems arrival *100

0

What is the software defect density? Defect Density= Total defects/Size < 10.46

Does the actual project cost outweigh

budgeted cost?
Net Cost

Positive Number

Environment

What is the BMI? BMI=Number of problems close/number of
problems arrival *100

0 or 100

What is the defect density? Defect Density= Total defects/Size < 10.46

How much energy does the software
consume?

Energy efficiency = Useful work done/Used
Energy

What is the percentage of car sharing? Total amount of rides /100

What is the percentage of food shared? Total amount of food share /100

Social

Can users successfully complete task? Gateway metric (1=Task success and 0=
Task failure)

7

What is the software defect density? Defect Density= Total defects/Size < 10.46

Are the project teams happy? Net working hours = Budgeted hours - Total
working hours

Positive number

Are the people more aware of

sustainability?
Percentage of food shared

Positive number

Individual

Can users successfully complete task? Gateway metric (1=Task success and 0=

Task failure)

7

What is the software defect density? Defect Density= Total defects/Size < 10.46

The result from Table IV provides a quantifiable result of

the system measurement from the five sustainability
dimensions. It allows for all-inclusive overview of the
system with traces back the questions that are used to
characterize each goals during the initial requirement stage.

The procedures and steps in S-BGQM encourage major
stakeholders to consider sustainability during the software
system development. It can be applied to software
development life cycle using the enhancement model for
sustainable software engineering proposed by Dick et al.
[32]. This model covers sustainability review and preview,
sustainability journal, process assessment and sustainability
retrospect.

S-BGQM does not cover all aspects of sustainability.
There is still need to improve the methodology used in
deriving requirements goals from the business assessment
component. The lack of intermediate stages to transform
sustainability metrics has hinder the ability of S-BGQM to
provide a better metric categorization.

VI. CONCLUSION

As highlighted in this paper, researchers have
concentrated their efforts on the definitions and meanings of
sustainability. Sometimes, definitions are somehow similar
and often they are contradictory or conflicting. There is not
yet a general consensus or a common ground on what
sustainability and software sustainability means and how it
can be quantified objectively. There is an urgent need for the
entire software engineering community including
practitioners and standardization bodies to have a
standardized definition of sustainability, similar to other
software quality factors. This will help to ground it in
software measurement theories and practices.

We identified a set of sustainability requirements from
the most cited definitions. This motivated our research on
quantifying sustainability using those requirements.
Quantification of sustainability means using variables that
are measures of sustainability. We noticed that the biggest
issue is that building a model or framework for sustainability
quantification or/and defining its measurement scale and
measures is already a difficult endeavor. The interpretation
of such measures and their validation is a real challenge that
requires a long-term research investigations and industry
experiments.

Without a standard for software sustainability
requirements, it becomes difficult to identify sustainability
boundaries. A standard will lead to a unifying consensus that
can foster sustainability quantification in software system.

S-BGQM is a modest contribution. We do not claim in
this paper that S-BGQM is by itself a completed validated
approach or framework. It is a kind of foundation that would
be understood as “showing the map or road about what is
need to be done to quantify and measure sustainability”. It’s
not by itself the right and the unique road but it’s just a
possible one.

Our ambition was also to open the doors, or ground the
efforts in a research agenda on how to measure
sustainability. However we found that these concerns are
necessary to overcome the obstacles on this long road for
building a model for sustainability. The model should be
based on a consensus and it can or should be part of ISO
standards. There is a need for software engineering
community to create cross-disciplinary research platform, for
example building a kind of forum for discussing the
definitions, perceptions and understanding of sustainability
quantification. That forum can take the form of a new
workshop or it can be part of an existing workshop of RE

like RE4SuSy or ICSE like the GREENS or it can be a joint
book that bring people together to discuss it. This paper also
calls for a forum that brings together all the different
workshops like GREENS, RE4SuSy, GIBSE, and GinSENG
to create a wider consensus.

Based on all these investigation, our intention is to bring
this to the workshop discussion community with the hope
that it can raise interest among researchers for further
research on sustainability requirements, quantification and
measurement. The following are some of the issues awaiting
for further investigations:

 How to methodically specify sustainability
requirements, meaning to quantify it?

 How can the sustainability requirements be
measured? What are the measurement scales or
measures for those requirements?

 How to categorize the current sustainability
metrics and how they related to the five
sustainability dimension?

Answers to these questions are a major milestone

towards a model of sustainability as a quality attribute. One
next stage in our research is a survey to explore sustainability
perceptions and practices in industry.

Our future work includes carrying out large-scale
industrial case studies to identify the practices of
sustainability in software design and also to test the approach
proposed in this paper. The goal is also to understand the
ways to integrate and measure software sustainability.
Another work is to study the process of issuing sustainability
and green certification to companies. What are the activities
that can be used to improve sustainability practices in the
industry? One of such certification is the Albert Sustainable
Production Certification [33] and Green Business
certification. [34][35].

ACKNOWLEDGMENT

This work is fully supported and funded by DIGI-USER
- Smart Services for Digitalization platform in Lappeenranta
University of Technology (LUT).

REFERENCES

[1] B. Penzenstadler, “What does Sustainability mean in and for

Software Engineering ?,” 1st Int. Conf. ICT Sustain., 2013.
[2] C. Becker et al., “Sustainability Design and Software: The

Karlskrona Manifesto,” Proc. - Int. Conf. Softw. Eng., vol. 2, pp.

467–476, 2015.
[3] B. Christoph et al., “Requirements: The key to sustainability,”

IEEE Softw., vol. 33, no. 1, pp. 56–65, 2016.

[4] F. Albertao, J. Xiao, C. Tian, Y. Lu, K. Q. Zhang, and C. Liu,
“Measuring the Sustainability Performance of Software

Projects,” 2010 IEEE 7th Int. Conf. E-bus. Eng., pp. 369–373,

2010.
[5] S. A. . Koçak, G. I. . Alptekin, and A. B. . Bener, “Evaluation of

software product quality attributes and environmental attributes

using ANP decision framework,” CEUR Workshop Proc., vol.
1216, pp. 37–44, 2014.

[6] ISO, “ISO/IEC 25010,” https://www.iso.org/obp/ui/#iso:std:iso-
iec:25010:ed-1:v1:en, 2001.

[7] M. R. Idio, “Measuring Sustainability Impact of Software,” vol.

16, no. 1, pp. 5–7, 2014.

[8] C. C. Venters et al., “Software sustainability: The modern tower
of babel,” 3rd Int. Work. Requir. Eng. Sustain. Syst. Work. Proc.,

vol. 1216, pp. 7–12, 2014.

[9] H. Koziolek, “Sustainability Evaluation of Software
Architectures : A Systematic Review,” Architecture, pp. 3–12,

2011.

[10] J. A. Tainter, “Social complexity and sustainability,” Ecol.
Complex., vol. 3, no. 2, pp. 91–103, 2006.

[11] R. Seacord et al., “Measuring Software Sustainability,” J. Chem.

Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013.
[12] S. Naumann, M. Dick, E. Kern, and T. Johann, “The

GREENSOFT Model: A reference model for green and

sustainable software and its engineering,” Sustain. Comput.
Informatics Syst., vol. 1, no. 4, pp. 294–304, 2011.

[13] A. Raturi, B. Penzenstadler, B. Tomlinson, and D. Richardson,

“Developing a sustainability non-functional requirements
framework,” Proc. 3rd Int. Work. Green Sustain. Softw. -

GREENS 2014, pp. 1–8, 2014.

[14] B. Penzenstadler, A. Raturi, D. Richardson, and B. Tomlinson,

“Safety, security, now sustainability: The nonfunctional

requirement for the 21st century,” IEEE Softw., vol. 31, no. 3, pp.

40–47, 2014.
[15] M. Mahaux and C. Canon, “Integrating the Complexity of

Sustainability in Requirements Engineering,” First Int. Work.

Requir. Eng. Sustain. Syst., 2012.
[16] K. Roher and D. Richardson, “Sustainability requirement

patterns,” 2013 3rd Int. Work. Requir. Patterns, RePa 2013 -
Proc., pp. 8–11, 2013.

[17] G. Lami, F. Fabbrini, and L. Buglione, “An ISO / IEC 33000-

compliant Measurement Framework for Software Process
Sustainability Assessment,” pp. 50–59, 2014.

[18] C. Calero, M. F. Bertoa, and M. Angeles Moraga, “A systematic

literature review for software sustainability measures,” Green
Sustain. Softw. ({GREENS)}, 2013 2nd Int. Work., pp. 46–53,

2013.

[19] T. Johann, M. Dick, S. Naumann, and E. Kern, “How to measure
energy-efficiency of software: Metrics and measurement results,”

2012 1st Int. Work. Green Sustain. Software, GREENS 2012 -

Proc., pp. 51–54, 2012.
[20] K. Erdélyi, “Special factors of development of green software

supporting eco sustainability,” SISY 2013 - IEEE 11th Int. Symp.

Intell. Syst. Informatics, Proc., pp. 337–340, 2013.
[21] P. Bozzelli, Q. Gu, and P. Lago, “A systematic literature review

on green software metrics,” Sis.Uta.Fi, 2013.

[22] S. Naumann, M. Dick, E. Kern, and T. Johann, “The
GREENSOFT Model: A reference model for green and

sustainable software and its engineering,” Sustain. Comput.

Informatics Syst., vol. 1, no. 4, pp. 294–304, 2011.
[23] B. Penzenstadler, “Infusing green: Requirements engineering for

green in and through software systems,” 3rd Intl. Work. Requir.

Eng. Sustain. Syst. 2014, vol. 1216, no. 1, pp. 44–53, 2014.
[24] V. Basili, G. Caldiera, and H. D. Rombach, “Goal Question

Metric Paradigm,” Encyclopedia of Software Engineering. pp.

528–534, 1994.
[25] “3 Minute Introduction to Strongly Sustainable Business Model

Canvas, https://prezi.com/k5x2civcaw7y/3-minute-introduction-

to-strongly-sustainable-business-model-canvas/ , Accessed on 8-

06-2017,” no. November, p. 2014, 2014.

[26] “Strongly Sustainable Business Model Canvas

Http://www.ssbmg.com/ Accessed on 8-06-2017.”
[27] B. Penzenstadler, “Goal Model Requirements Engineering for

Sustainability,” Lect. slides guest course Softw. Eng. Sustain.

Lappeenranta Univ. Technol. 2016. Slides available online
http//birgit.penzenstadler.de/teach/LUT.html.

[28] B. Penzenstadler, “System Vision Requirements Engineering for

Sustainability,” Lect. slides guest course Softw. Eng. Sustain.
Lappeenranta Univ. Technol. 2016. Slides available online

http//birgit.penzenstadler.de/teach/LUT.html.

[29] B. Penzenstadler, “Requirements Engineering for Sustainability -

Sustainability Analysis,” Lect. slides guest course Softw. Eng.

Sustain. Lappeenranta Univ. Technol. 2016. Slides available
online http//birgit.penzenstadler.de/teach/LUT.html.

[30] Z. Durdik, B. Klatt, H. Koziolek, K. Krogmann, J. Stammel, and

R. Weiss, “Sustainability guidelines for long-living software
systems,” IEEE Int. Conf. Softw. Maintenance, ICSM, pp. 517–

526, 2012.

[31] B. Penzenstadler and H. Femmer, “A generic model for
sustainability with process- and product-specific instances,”

GIBSE 2013 - Proc. 2013 Work. Green Softw. Eng. Green by

Softw. Eng., no. June 2015, pp. 3–7, 2013.

[32] M. Dick and S. Naumann, “Enhancing Software Engineering

Processes towards Sustainable Software Product Design,” vol.
2010, pp. 706–715, 2010.

[33] Bbc, “albert certification . Available at:

http://www.bbc.co.uk/responsibility/environment/albert-plus.”
[34] C. G. B. Network, “Green Business Certification, Available at:

http://www.greenbusinessca.org/.”

[35] G. B. Bureau, “Green Business Available at :
https://greenbusinessbureau.com/how-gbb-certification-works/,”

no. June, pp. 1–6, 2013.

Publication II

S. Oyedeji, A. Seffah, and B. Penzenstadler.
A catalogue supporting software sustainability design

Reprinted with permission from
Sustainability

Vol. 10, pp. 1-30, 2018
© 2018, MDPI

sustainability

Article

A Catalogue Supporting Software
Sustainability Design

Shola Oyedeji 1,* ID , Ahmed Seffah 1 and Birgit Penzenstadler 2 ID

1 LUT School of Engineering Science (LENS), Lappeenranta University of Technology, 53850 Lappeenranta,
Finland; ahmed.seffah@lut.fi

2 Department of Computer Engineering and Computer Science, California State University Long Beach,
Long Beach, CA 90840, USA; birgit.penzenstadler@csulb.edu

* Correspondence: shola.oyedeji@lut.fi; Tel.: +358-4-1369-7708

Received: 30 May 2018; Accepted: 27 June 2018; Published: 3 July 2018
��������	
�������

Abstract: Like other communities, sustainability in and for software design is a grand research and
development challenge. Current research focuses on eliciting the meanings of sustainability and on
building approaches for its engineering and integration into the mainstream software development
lifecycle. However, few concrete guidelines that software designers can apply effectively are available.
A guideline aims to streamline the design processes according to a set of well-known research
routines or sound industry practices. Such guidelines can help software developers in the elicitation
of sustainability requirements and testing software against these requirements. This paper introduces
a sustainability design catalogue (SSDC) comprising a series of guidelines. It aims to assist software
developers and managers in eliciting sustainability requirements, and then in measuring and testing
software sustainability. The catalogue is based on reviews of the current and past research on
sustainability in software engineering, which are the grounds for the development of the catalogue.
Four different case studies were analyzed using the Karlskrona manifesto principles on sustainability
design. A pilot framework is also proposed that includes a set of sustainability goals, concepts and
methods. It exemplifies how to apply and quantify sustainability.

Keywords: sustainability; software sustainability; information and communication technology;
software design; sustainability requirement; software sustainability analysis; software sustainability
guidelines; Karlskrona manifesto

1. Introduction

Software sustainability and software engineering for sustainability are now recognized as
timely important concerns not only for researchers, but also for the entire software industry and
standardization bodies. A Microsoft report as well as an IBM global chief executive officer (CEO)
study on sustainability showed an increasing growth in the percentage of organizations redesigning
their entire business models to incorporate sustainability [1–3]. The Sustainability and Innovation
Global Executive Study indicates that 48% of respondents out of the 4000 executives and managers
interviewed worldwide agree that sustainability urged them to modify their business models [4,5].
Sustainable development is also driving software innovations for creating new opportunities to cut
costs, adding value and gaining competitive advantage [6]. As software is the catalyst for economic
and social changes today [7] and the pillar for all industries, there is a huge pressure from regulators
and civil society to develop more green software that uses less energy [8].

As a matter of fact, the Ericsson sustainability report shows that information and communications
technology (ICT) could help reduce global greenhouse gas (GHG) emissions by up to 15%. It forecasts
that by 2021, 28 billion devices will be connected to each other [9] which will increase energy

Sustainability 2018, 10, 2296; doi:10.3390/su10072296 www.mdpi.com/journal/sustainability

Sustainability 2018, 10, 2296 2 of 30

consumption drastically. Another energy and carbon report from Ericsson forecasts 90% of the world’s
population to have mobile coverage, and 60% will have the ability to access high-speed long-term
evolution (LTE) data networks [10]. Such reports are clear indicators of the huge sustainability impact
of ICT. Overall, the ICT sector contributes around 2% of the global CO2 emissions. It is also accountable
for approximately 8% of the European Union’s (EU) electricity consumption and 2% of the carbon
emissions from ICT devices and services [6].

It is therefore important to look how to reduce the impact of ICT on the environment and how
sustainability can be incorporated better into the software development lifecycle. However, current
software development practices do not provide sufficient support to all sustainability concerns.
This should not be limited to energy consumption, but it should include also all the other aspects
of sustainability.

For example, [6] provides a more broader perception of sustainability in software engineering.
Sustainability may or should refer also to, for example, electronic waste management and the ecological
impacts of recycling the drastically increasing amount of computing gear. Moreover, it is worth
mentioning that the impact of the cryptocurrency market on energy consumption is also a very serious
problem from a sustainability perspective [11]. The energy consumption of blockchain technologies
has raised environmental concerns. The resulting energy consumption per year is estimated at
12.76 TWh [12]. The digital infrastructure supporting the wide diversity of interactive devices and
services available on the cloud accounts for up to 85% of total environmental impact [13].

Therefore, the meanings and integration of sustainability should cover the five dimensions
of software sustainability [14–16]: economic, social, individual, environmental and technical [17].
The economic, technical and business dimensions are now core aspects of fundamental values in
companies embracing sustainable development [18]. An area that has received less attention is the
social dimension. It entails the well-being of the software users community and developers [14], and is
about changing the human mindset and designing their perceptions and experiences of sustainability.

Practices and processes that are widely used in an industry setting such as agile methodologies
and model-driven approaches lack aspects addressing sustainability challenges [19]. Practitioners
are not prepared for integrating sustainability efficiently and effectively. Where should sustainability
ingredients be considered? Indeed, the different sustainability dimensions have no reference
framework that can assist software developers. Researchers also highlighted the vital need to define
measures of sustainability and search for avenues for their integration in the wider engineering
processes [6,20].

Our research focuses mainly on the integration of sustainability during the software design
stage and into the design practices. Design is a key milestone where supporters and pioneers largely
recognize the importance of sustainability. Varying perspectives have been discussed such as the
design of sustainability and sustainability by design [21]. Sustainability by design is one way to
achieve sustainability and for integrating sustainability perceptions in software engineering [22].

The research discussed in this paper is twofold. First, based on the analysis of the literature and
built on the Sustainability Design Manifesto principles, the paper introduces an original sustainability
design catalogue (SSDC). Then, it describes a pilot framework that exemplifies how the SSDC can be
applied and how the underlying sustainability design principles can be incorporated into the design
practices for all software development life-cycle (SDLC) phases. The SSDC is a set of practical concrete
guidelines and indicators supporting sustainability by design practices. The Karlskrona manifesto
principles are viewed in this research as a set of high-level abstract principles and perceptions for
sustainability design in and for software systems [23,24].

Overall our research addresses the following specific questions and provides the
following contributions:

1. How do the principles detailed in the Karlskrona manifesto relate to the software development
life-cycle phases (SDLC) in general and the design stage especially? SSDC suggests concrete
guidelines to apply the high levels and abstracts principles of sustainability.

Sustainability 2018, 10, 2296 3 of 30

2. How do the SSDC and the underlying perceptions of sustainability relate to the first-, second-
and third-order impacts of software sustainability as well as the five dimensions of sustainability?
SSDC tried to bridge the current gaps between the principles and the indicators of sustainability.

3. How can these principles be applied while ensuring that sustainability is achieved during design?
The SSDC can be viewed as a tool supporting the sustainability by design approach.

4. How should these principles be applied for the wide diversity of software systems that exists
today and those in the future that should consider sustainability as a quality in the same way we
engineer the other quality attributes today of such security and usability? A pilot framework is
described portraying the applicability of the SSDC for diverse software systems.

The remainder of this paper is as follows. Section 2 covers the background and related research
work on sustainability in software design. Section 3 presents the foundation of the Karlskrona
manifesto principles and how these relate to the software development life-cycle phases. Section 4
details the structure and components of the Software Sustainability Design Catalogue (SSDC). Section 5
discusses how the SSDC was derived and can be applied. Section 6 provided a practical example for
the usage of the SSDC and the pilot framework. The benefits of the SSDC and pilot framework are
summarized in Section 7. The conclusion summarizes with comments and future research work.

2. Sustainability in Software Design: Background and Related Research

Sustainability is one of the grand challenges of our civilization because of its pervasiveness.
The way we design, and consequently use, software-intensive systems has a significant impact and can
influence human perceptions of sustainability greatly [25]. Although design is a central phase of any
software development process [22], there has been limited research work on software sustainability
design. The most relevant related works are listed and described in the following.

Currently there is no single point of reference for researchers or practitioners where the
sustainability measures are gathered and exemplified [26]. The perception of professionals
about sustainability affects the way sustainability has been applied in software development [27].
However, the pathway to a sustainable society is unclear since sustainability means different things to
different people [28]. People’s different lifestyles, values and practices also affect how sustainability
is treated [29]. Furthermore, one of the major problems for software designers is that even with a
systems approach, there are few existing tools that wrap core principles of sustainability together.
Instead, designers must learn to patch together a series of disparate sustainability understandings,
and frameworks in order to address the different dimensions of sustainability [30]. An alternative
design solution is based on the sustainable design practices that use the least energy over ICT’s life
cycle [31]. The global Sustainable Development Goals formally adopted by the United Nations (UN)
in 2015 can serve as an inspiration. They have the potential to guide software practitioners, especially
human–computer interaction (HCI) specialists [32]. In the area of cloud computing, there is not enough
awareness about the value benefits of sustainability especially when selecting and deploying cloud
computing software among organizations [33].

Software design as a key factor can help reduce energy consumption by 30% to 90% because
software provides the real energy saving that tells hardware what to do and how to function [34].
A catalogue of sustainability guidelines has been proposed in [35]. It incorporates all phases of
the system development life cycle while providing specific support to project managers, software
architects, and developers during the entire system design, development, operation, and maintenance.
However, it is not as detailed as the SSDC proposed in this article as it does not cover all the
different sustainability dimensions (economic, environmental, social, individual, and technical), nor the
first, second and third order of impacts of software systems and metrics/indicators to evaluate the
effectiveness of guidelines in the catalogue.

The International Organization for Standardization (ISO) and Institute of Electrical and Electronics
Engineers (IEEE) series of software engineering standards provide little guidance on sustainability.
While there has been some increase in literature about the environmental and social dimension of

Sustainability 2018, 10, 2296 4 of 30

sustainability for software systems, there is less attention on sustainability in software development and
use [36]. The effects of software systems are getting less attention and work to formalize sustainability
as part of software engineering process is still not considered in the official standards and models
of software systems [37]. The concept of sustainability for software design, and its integration into
the existing catalogue of design quality attributes is needed to achieve sustainable software [38] and
sustainability should also be considered as a quality of software systems like security and usability [39].
Sustainability in software design requires a multidimensional and interdisciplinary approach [40–43].
Kern et al. [44] developed a model for green software based on sustainability criteria, although there
are still several software design quality models that include attributes like flexibility and reusability,
with no attribute that captures how cost-efficient are the set of design decisions over time.

A life-cycle model that uses a cradle-to-cradle approach to analyse impacts of each software
product life-cycle phase can help to develop green and sustainable software products [45].
Another proposed generic model for sustainability was proposed with instances for companies and
projects based on different cases studies. The proposed process helps requirements engineers to
properly analyse projects during software design based on different sustainability dimensions [17].
An experience report from a case of applying standard requirements engineering methods to analyse
sustainability aspects shows how requirements can impact software design [46]. Another generic
model for improving the general software development process for sustainable software product
design is the process enhancement model, which includes activities and artefacts such as sustainability
reviews and previews, ongoing process assessments, a sustainability retrospective, and a sustainability
journal. Although the model does not currently cover sustainability benchmarks, it provides a sound
basis for future integration [47].

A description of how to support different aspects of sustainability in software development
processes, software system analysis for production, and usage phases of the life cycle can also provide
an understanding of what sustainability means in software engineering [19]. In the same vein,
a study of the life-cycle activities of software development with a focus on environmental protection
provided a guide through a formula to calculate software waste to encourage the development of
green software [48]. The author highlights key activities during software design and development
with key factors at each stage of software design and how each of these factors relates to a green aspect
in software development. Also highlighted is the fact that thoroughly designed and implemented
software uses energy efficiently through computational and data efficiency [48].

Researchers from different disciplines tried to tackle the issue of sustainability through
collaborative work via organizing interdisciplinary conferences and workshops [24]. One common
focus is sustainability in requirements. Sustainability requirements were treated as first-class quality
requirements, and as such systematically elicited, analysed and documented with the goal of showing
that small and easy steps during requirement can lead to the design and development of more
sustainable systems [46]. This is corroborated by another research work [49] stating the need to
characterize software sustainability as a quality factor in requirements elicitation. In addition,
a sustainability requirements checklist and guide approach demonstrate how to include the objective of
environmental sustainability from the very early steps of software development [50]. It also shows how
green requirements engineering may be conducted within the scope of general purpose requirements
engineering and accommodate the new objective of improving environmental sustainability [50].

The use of sustainability requirement patterns (SRPs) is another approach that provides software
engineers with guidance on how to write specific types of sustainability requirements. The aim is to
overcome the barriers of incorporating environmental sustainability into the requirements engineering
process [51]. Sustainability requirements can also be a non-functional requirement (NFR) using an
NFR framework informed by sustainability models and how it can be used to correctly obtain and
describe sustainability related requirements of the software system to be developed.

Sustainability 2018, 10, 2296 5 of 30

The impact of ICT on the world’s CO2 emissions can be reduced through improved
software-energy efficiency on multi-core systems [52] although there are few studies and suggestions
about ‘what’ aspects of sustainability to measure and ‘how’ to do it with regards to ICT [53].

Sustainability should be considered in software quality models, although there has been less
research channelled towards it [54]. Planning and management of software sustainability as a quality
attribute is impaired by a lack of consistently applied, practical measures [55]. Without these measures,
it is impossible to determine the effect of efforts to improve sustainment practices.

The following are the main conclusions from the background and related work:

1. There is no single reference point where measures of software sustainability are gathered
and exemplified.

2. Design is key to achieve software sustainability, thus the need to show how software designers can
incorporate sustainability during software design to improve ICT energy usage and CO2 emission.

3. The need for a framework or model to assist and guide developers during software design to
incorporate sustainability requirements.

These conclusions are the reasons for initiating the creation of a SSDC that can be used by
researchers and developers to create new frameworks, tools, guidelines and practices for software
design and development. An example of such framework is the proposed pilot framework in section
five of this article as guide for both experienced and infant software designers during software design
and development.

One last clarification that needs to be made here is the fact that the concepts of sustainable
and green are often used interchangeably, in many communities including software engineering.
This article considers that “green software” and “sustainable software” is not the same. Green is
usually defined as “products, systems and services that have limited negative impact on human health
and environment”.

As defined in the article at hand, sustainability includes green and it goes beyond green. It is
represented by five pillars for environmental, social, economic, human and technical sustainability.

3. The Foundations of Sustainability by Design: The Karlskrona Manifesto

The Karlskrona Manifesto for Sustainability Design (KMSD) has its roots in the Third International
Workshop on Requirements Engineering for Sustainable Systems (RE4SuSy) [56], held at RE’14 in
Karlskrona, Sweden. Christoph Becker’s paper [57] about the relationship between the concerns of
sustainability and longevity provided one of the motives for the creation of the manifesto.

The key goal was to blend the diverse aspects of sustainability to clarify its scope, objectives and
challenges of the perceptions of sustainability leading to an interdisciplinary platform for researching
sustainability [57]. The manifesto brings together input from researchers of various disciplines in
the field of software engineering with sustainability research interests as the creators of the design
manifesto [23,58].

The Karlskrona Manifesto for Sustainability Design includes nine principles of sustainability
design [23]. Those principles provide the basis for creating a reference point that can be applied
during software design by different stakeholders (Table 1). The manifesto is accessible via the web [58],
where those interested in supporting the manifesto can sign it.

Sustainability 2018, 10, 2296 6 of 30

Table 1. Description of the Karlskrona manifesto principles, adapted from [23].

Principle
Number Principle Description

P1 Sustainability is systemic

Sustainability is never an isolated property.
It requires transdisciplinary common ground of
sustainability as well as a global picture of
sustainability within other properties.

P2 Sustainability has
multiple dimensions.

We have to include those dimensions into our
analysis if we are to understand the nature of
sustainability in any given situation.

P3 Sustainability transcends
multiple disciplines.

Working in sustainability means working with
people from across many disciplines, addressing the
challenges from multiple perspectives.

P4
Sustainability is a concern
independent of the purpose of
the system.

Sustainability has to be considered even if the
primary focus of the system under design is
not sustainability.

P5 Sustainability applies to both a
system and its wider contexts.

There are at least two spheres to consider in system
design: the sustainability of the system itself and
how it affects the sustainability of the wider system
of which it will be part.

P6
System visibility is a necessary
precondition and enabler for
sustainability design.

Strive to make the status of the system and its
context visible at different levels of abstraction and
perspectives to enable participation and informed
responsible choice.

P7 Sustainability requires action on
multiple levels.

Seek interventions that have the most leverage on a
system and consider the opportunity costs:
whenever you are taking action towards
sustainability, consider whether this is the most
effective way of intervening in comparison to
alternative actions (leverage points).

P8

Sustainability requires meeting
the needs of future generations
without compromising the
prosperity of the
current generation

Innovation in sustainability can play out as
decoupling present and future needs. By moving
away from the language of conflict and the trade-off
mindset, we can identify and enact choices that
benefit both present and future.

P9 Sustainability requires
long-term thinking.

Multiple timescales, including longer-term indicators
in assessment and decisions, should be considered.

The Karlskrona manifesto principles aim to be a practical guide to the entire community like
the Agile manifesto [59], the Business Rules manifesto [60], the Service-oriented architecture (SOA)
manifesto [61,62], and the Recomputation manifesto [63]. It supports stakeholders in industry and
academia (companies, standardization organization, software practitioners, researchers and students)
for promoting and developing sustainability design and practices in software development [23,57].
The Karlskrona manifesto also serves as a facilitator for thinking about the broad effects of software on
society and the need to embody longer-term thinking, ethical responsibility, and an understanding of
how to integrate sustainability into the design of software systems [24].

Table 2 shows how these Karlskrona principles can be related to software development phases [64].
Relating these principles to the software development phases will provide an avenue for using these
principles especially for different software systems.

Sustainability 2018, 10, 2296 7 of 30

Table 2. Karlskrona manifesto principles in relation to software development life-cycle (SDLC) phases.

SDLC Phases Karlskrona Manifesto Principles

Phase 1.
Project Definition

P1- This ensures that the project initiation considers sustainability in the overall
project definition from the beginning.
P2- Software sustainability has different dimensions that have to be considered from
the beginning for better project management with different stakeholders.
P3- Software project usually involves stakeholders from different domains,
incorporating their sustainability concerns provides better management of those
concerns from multiple perspectives which can help the incorporation of
sustainability for the software.

Phase 2.
User Requirements

Definition

P2- It is important to take note of user requirements in relation to each of the
sustainability dimensions in order to have better sustainability analysis during the
analysis and design phase

Phase 3.
System Requirements

Definition

P4- During elicitation of system requirements, requirement engineers should
consider sustainability concerns for the system during the requirements definition
even when it is not a core part of the user requirements.
P5- Cross evaluate the consequential impacts of the system sustainability
requirements and the environment in which the system will function.

Phase 4.
Analysis and Design

P2- Applying this principle provides a blueprint for system evaluation from all
sustainability dimensions (economic, environment, social, individual and technical).
P4- At this phase, this principle helps to encourage analysis of system design based
on sustainability in order to facilitate better sustainable system.
P6- Application of this principle enables better visual and visible overview of the
system from different levels of abstraction.
P8- This will provide better understanding during analysis to make better choices
that will help the potential users of the system in present and in future when the
system evolves.

Phase 5.
Development

P2- This will encourage developers during this phase to consider different
sustainability dimensions, especially technical, social and individual dimensions.
P4- Encourage the search for better avenues to make the system sustainable from the
development perspective (developers) and also the functions of the system to
aid longevity.

Phase 6.
Integration and Testing

P2- Provides integration and for test team to have a sustainability template that can
be used to test the system for all sustainability dimensions based on the sustainability
requirement output from phases 2, 3 and 4.
P4- Application of this principle will aid consideration of sustainability in this phase
even if the primary focus of system is not about sustainability.

Phase 7.
Implementation

P5- Provides beforehand reasoning for the development team to consider the
sustainability of the system, its production environment and when pushing it live
for use.
P7- Based on principle 5 (P5), this principle will aid consideration of seeking the
involvement of different stakeholders to make the actualization of the system
sustainability possible in the production environment and when pushed live.

Phase 8.
Sustainment/Maintenance

P9- This principle at this stage help to create the conscious awareness so that when
the system is in a live environment, there will be continuous evaluation to assess the
system sustainability and think of ways for optimizing and improving the
sustainability of the system from the different dimensions.

Table 2 highlights some avenues for putting the Karlskrona manifesto principles into practices.
Relating these principles to the software development phases will provide an avenue for better
understanding of how these principles relates to software development. However, the Karlskrona
manifesto focused on high-level principles, not techniques [24], which means there is a need to
exemplify the principles to show their practical usage with techniques. The following are the limitations
of the manifesto that motivate the development of the SSDC:

1. The principles are abstract and generic to serve all the possible stakeholders interested in
sustainability in all the stages of the software development and management phases.

Sustainability 2018, 10, 2296 8 of 30

2. The principles are at a high level of abstraction, missing many details for their practical usage.
3. The principles are closely related, making a trade-off among them difficult, especially for a novice

in the field of sustainability.
4. The principles are not connected to tangible measures but serve as a guide to create measures.

4. Structure of the Proposed Software Sustainability Design Catalogue (SSDC)

The SSDC serves as a tool that can facilitate the integration of sustainability into design practices
as well as lead to a better understanding of sustainability by practitioners. The Software Sustainability
Design Catalogue (SSDC) is a set of criteria derived from the nine Karlskrona manifesto principles
based on cross analysis of different systems. For each criteria, indicators of sustainability are also
derived. The structure of the software sustainability design catalogue is detailed in Figure 1.

Figure 1. Flow of the derivation of Software Sustainability Design Catalogue (SSDC).

The SSDC distinguishes mainly two components. The first is the sustainability analysis of systems,
which is mainly a set of criteria for evaluating the sustainability of software systems. Each criterion is
characterized by the following core elements used for evaluating software systems:

1. One or more Karlskrona principle (the 9 principles in Table 1) is used in the evaluation of each
system category. Not all principles necessarily can be applied to all systems. The principles are
identified using a tag of P1 to P9 (Principle 1 to 9).

2. Goal/requirement: this highlights the desired end result for each system category based on
sustainability consideration.

3. Stakeholders: those responsible for implementing the goals/requirement.
4. Questions characterizing each goal. From each goal, a set of questions are derived that will

determine if each goal is being met.

Sustainability 2018, 10, 2296 9 of 30

5. Indicators are used to answer the questions as a way to evaluate if the goals were achieved.
6. Current principle usage in software: this covers the current application of the principle

in existing system design and development, even if it is not explicitly stated in current
system documentation.

7. Future principle usage in software: based on the evaluation of the current principle application
in existing system design and development, a potential usage of the principle in future system
enhancement and design is suggested.

The second component are the indicators of sustainability associated with each criteria.
These indicators are related to the sustainability dimensions and their order of impacts.

The orders of impact [65,66], cover all the positive and negative effects of software on the
environment which are decomposed into three orders of magnitude. The first order impacts (Immediate
effects) are about the direct effects of the development and use of software system. The second order
impacts (enabling effects) are about the indirect impacts related to the effects of using the software
system in its application domain. The third order impacts (structural effects) are the cumulative
long-term effects resulting from accumulating first and second order impacts over time.

The sustainability dimensions include [24]:

• The individual dimension covers individual freedom and agency (the ability to act in an
environment), human dignity, and fulfilment. It includes individuals’ ability to thrive, exercise
their rights, and develop freely.

• The social dimension covers relationships between individuals and groups. For example,
it covers the structures of mutual trust and communication in a social system and the balance
between conflicting interests.

• The economic dimension covers financial aspects and business value. It includes capital growth
and liquidity, investment questions, and financial operations.

• The technical dimension covers the ability to maintain and evolve artificial systems (such as
software) over time. It refers to maintenance and evolution, resilience, and the ease of
system transitions.

• The environmental dimension covers the use and stewardship of natural resources. It includes
questions ranging from immediate waste production and energy consumption to the balance of
local ecosystems and climate change concerns.

5. How the SSDC Have Been Derived and Can Be Used

The SSDC was developed using four case studies (see Table 3). Data were gathered for analysing
the four different case studies using also the Karlskrona manifesto principles and the orders of impacts.
The second and third authors then cross-validated the data collected. Based on the aggregated data,
a first draft of catalogue was developed. Then, the proposed software sustainability design catalogue
was refined using other types of systems.

Table 3. System categories and types used in case studies.

System Category System Type

Cyber physical system Smart home system
Embedded system Washing machine

Gaming Angry bird
Desktop application Microsoft office

The types of systems used in the case studies are summarized in eight tables, Tables 4 and 5 (Cyber
physical systems—Smart Home) and Tables A1–A6 detailed in the Appendix cover the following types
of systems:

Sustainability 2018, 10, 2296 10 of 30

1. Embedded systems that are composed of electrical and mechanical components completely
encapsulated by the device they control. The sample case study used in this category is a
“Washing Machine” [67–72] (see Tables A1 and A2 in Appendix).

2. Mobile games as an application design that runs on mobile devices. The game case study used in
this category is “Angry Bird Game” [73–77] (see Tables A3 and A4 in Appendix).

3. Desktop applications that run on standalone computers. The sample application used in this
category is “Microsoft Office” [78–81] (see Tables A5 and A6 in Appendix).

To illustrate how the SSDC works and what the guidelines look like, Tables 4 and 5 present the
guidelines for cyber physical system (CPS). CPS are defined here as the integrations of computation,
networking, and physical processes that are tightly connected with its users. The sample system
used in the catalogue is “Smart Home”. The presented guidelines can assist companies and software
developers identify key areas that relate to sustainability and recognize strategic avenues on how
current and future smart home solutions should be designed in a more sustainable manner. This enables
them to make good sustainability decisions during and after the design of smart home solutions.

Table 4 highlights one important issue that standardization authorities in this domain can work
on, which is the cross-platform compatibility for smart home devices. Smart home appliances should
be compatible with other devices from different manufacturers based on standards to avoid increase
in energy usage. Smart home solutions should provide meaningful graphical information that can
educate users, thereby encouraging users to behave more sustainably.

Table 5 of the SSDC for cyber physical system (smart home) provides different insights on the
direct, indirect and structural impact of home automation design and deployment from the different
dimension of sustainability. From Table 3, companies and stakeholders will be able to incorporate the
following sustainability goals for the design and development of home automation solutions:

1. Environment: reduce household energy consumption.
2. Economic: reduce household cost on energy.
3. Individual: provide user friendly solution for home users with easy to use user interface and

information to induce sustainable behaviour among users.
4. Technical: provide good security for user personal data and avoid technical glitch that could

lead high energy usage.
5. Social: encourage users to form communities to share data as a way of encouraging each other to

be energy conscious and environmentally aware of the consequences of their actions and inaction
while using smart home solutions.

The application of these principles from the catalogue offers explicit goals and opportunities
for sustainability integration in system design through multiple perspectives for systems with
sustainability as their core goal and those system without sustainability as their main goal. The below
are detailed descriptions of the principles used in providing information on how best to engineer and
think of sustainability for smart home solution (see Tables 4 and 5) from the catalogue.

Su
st

ai
na

bi
lit

y
20

18
,1

0,
22

96
11

of
30

Ta
bl

e
4.

Su
st

ai
na

bi
lit

y
an

al
ys

is
of

cy
be

r
ph

ys
ic

al
sy

st
em

(s
m

ar
th

om
e)

ba
se

d
on

K
ar

ls
kr

on
a

pr
in

ci
pl

es
[8

2–
85

].

K
ar

ls
kr

on
a

Pr
in

ci
pl

e
an

d
G

oa
l

Pr
in

ci
pl

e
U

sa
ge

St
ak

eh
ol

de
rs

Q
ue

st
io

n
In

di
ca

to
r

(P
2)

C
ro

ss
pl

at
fo

rm
co

m
pa

ti
bi

lit
y

C
ur

re
nt

:S
m

ar
th

om
e

ap
pl

ia
nc

es
ar

e
co

m
pa

ti
bl

e
w

it
h

on
ly

fe
w

ot
he

r
m

an
uf

ac
tu

re
rs

’d
ev

ic
es

in
th

e
m

ar
ke

t.
Fu

tu
re

:S
m

ar
th

om
e

ap
pl

ia
nc

es
sh

ou
ld

be
co

m
pa

ti
bl

e
w

it
h

ot
he

r
de

vi
ce

s
fr

om
di

ff
er

en
tm

an
uf

ac
tu

re
rs

ba
se

d
on

st
an

da
rd

in
te

rf
ac

e
to

av
oi

d
in

cr
ea

se
s

in
en

er
gy

us
ag

e.
Th

is
ca

n
be

ac
hi

ev
ed

by
en

fo
rc

in
g

de
vi

ce
st

an
da

rd
s

th
at

ca
n

be
us

ed
fo

r
cr

os
s-

pl
at

fo
rm

co
m

pa
ti

bi
lit

y.
H

om
e

au
to

m
at

io
n

ap
pl

ia
nc

es
sh

ou
ld

be
ec

on
om

ic
an

d
at

sa
m

e
ti

m
e

en
vi

ro
nm

en
ta

lf
ri

en
dl

y.

Bu
si

ne
ss

an
al

ys
t

C
an

de
vi

ce
fu

nc
ti

on
w

it
h

ot
he

r
de

vi
ce

fr
om

di
ff

er
en

tm
an

uf
ac

tu
re

r?

D
ev

ic
e

cr
os

s-
pl

at
fo

rm
co

m
pa

ti
bi

lit
y

(P
4)

Ed
uc

at
e

U
se

rs

C
ur

re
nt

:S
m

ar
th

om
e

so
lu

tio
ns

pr
ov

id
es

gr
ap

hi
ca

li
nf

or
m

at
io

n
ab

ou
t

en
er

gy
us

ag
e

bu
tn

ot
ne

ce
ss

ar
ily

ed
uc

at
e

us
er

s
on

ho
w

to
be

en
er

gy
co

ns
ci

ou
s

ba
se

d
on

th
ei

r
da

ily
ha

bi
to

ve
r

a
pe

ri
od

of
ti

m
e.

Fu
tu

re
:U

se
r

da
ta

fr
om

sm
ar

th
om

e
so

lu
ti

on
sh

ou
ld

be
us

ed
fo

r
ed

uc
at

in
g

us
er

s
th

er
eb

y
en

co
ur

ag
in

g
us

er
s

to
be

ha
ve

m
or

e
su

st
ai

na
bl

y
by

pr
es

en
ti

ng
en

er
gy

us
ag

e
in

an
in

fo
rm

at
iv

e
an

d
ed

uc
at

iv
e

m
an

ne
r

(f
or

ex
am

pl
e,

re
la

te
en

er
gy

us
ag

e
to

th
e

am
ou

nt
of

ki
lle

d
tr

ee
s)

.
U

se
r

da
ta

co
ul

d
al

so
be

us
ed

fo
r

pr
ed

ic
ti

on
ai

m
ed

at
op

ti
m

iz
in

g
th

e
us

e
re

so
ur

ce
s

su
ch

as
w

at
er

an
d

en
er

gy
w

it
hi

n
a

ho
us

eh
ol

d
or

co
m

pa
ny

.
Th

e
so

lu
ti

on
s

co
ul

d
he

lp
in

te
rc

on
ne

ct
ot

he
r

sy
st

em
s

th
at

ca
n

he
lp

sa
ve

re
so

ur
ce

s
lik

e
w

at
er

an
d

el
ec

tr
ic

it
y

in
a

ho
us

eh
ol

d
or

co
m

pa
ny

.

So
ft

w
ar

e
de

ve
lo

pe
rs

Bu
si

ne
ss

an
al

ys
t

A
re

us
er

s
aw

ar
e

of
th

ei
r

ac
ti

on
s

re
la

ti
ng

to
el

ec
tr

ic
al

ap
pl

ia
nc

es
in

th
e

ho
us

e
or

co
m

pa
ny

?

U
sa

ge
da

ta
ov

er
ti

m
e

to
de

te
ct

ch
an

ge
s

in
us

er
ha

bi
ts

(P
9)

R
ed

uc
e

pr
od

uc
ti

on
an

d
so

lu
ti

on
co

st

C
ur

re
nt

:T
he

re
ar

e
cu

rr
en

tl
y

fe
w

co
st

-e
ff

ec
ti

ve
so

lu
ti

on
s

th
at

w
ill

en
co

ur
ag

e
us

er
s

to
ad

op
th

om
e

au
to

m
at

io
n

so
lu

ti
on

s
in

th
e

lo
ng

te
rm

.
Fu

tu
re

:U
se

ch
ea

p,
en

vi
ro

nm
en

ta
lly

fr
ie

nd
ly

re
so

ur
ce

s
in

th
e

pr
od

uc
ti

on
of

ho
m

e
au

to
m

at
io

n
de

vi
ce

(h
ar

dw
ar

e)
th

at
ca

n
re

du
ce

pr
od

uc
ti

on
co

st
.

If
th

e
co

st
of

pr
od

uc
ti

on
re

du
ce

s,
th

e
ov

er
al

lc
os

to
fs

m
ar

th
om

e
so

lu
ti

on
w

ill
al

so
re

du
ce

w
hi

ch
w

ill
in

cr
ea

se
it

s
af

fo
rd

ab
ili

ty
am

on
g

us
er

s.
Th

er
e

ca
n

al
so

be
lo

w
-c

os
ts

ol
ut

io
ns

fo
r

po
or

co
un

tr
ie

s
to

as
si

st
in

th
e

us
e

of
w

at
er

an
d

en
er

gy
ju

di
ci

ou
sl

y
(r

ed
uc

e
w

as
te

).

Bu
si

ne
ss

A
na

ly
st

D
id

w
e

m
an

ag
e

to
re

du
ce

co
st

s
co

m
pa

re
d

to
pr

ev
io

us
ye

ar
s

(b
ef

or
e

so
lu

ti
on

w
as

a
sm

ar
th

om
e)

?

N
et

co
st

of
sm

ar
t

ho
m

e
so

lu
ti

on

Su
st

ai
na

bi
lit

y
20

18
,1

0,
22

96
12

of
30

Ta
bl

e
5.

Su
st

ai
na

bi
lit

y
di

m
en

si
on

s
or

de
r

of
im

pa
ct

s
fo

r
cy

be
r

ph
ys

ic
al

sy
st

em
(s

m
ar

th
om

e)
[8

2,
86

–8
9]

.

O
rd

er
of

Im
pa

ct
s

En
vi

ro
nm

en
t

Ec
on

om
ic

Te
ch

ni
ca

l
So

ci
al

In
di

vi
du

al

1s
t

In
cr

ea
se

in
th

e
us

e
of

na
tu

ra
l

re
so

ur
ce

s
in

th
e

pr
od

uc
tio

n
of

ha
rd

w
ar

e
fo

r
sm

ar
th

om
e

de
vi

ce
s

an
d

po
llu

ti
on

of
th

e
en

vi
ro

nm
en

tf
ro

m
to

xi
c

m
at

er
ia

lu
se

d
in

pr
od

uc
ti

on
.

C
re

at
es

ne
w

bu
si

ne
ss

op
po

rt
un

it
ie

s
fo

r
th

os
e

in
th

is
se

ct
or

(s
et

up
an

d
in

st
al

la
ti

on
of

de
vi

ce
s

at
ho

m
e)

.

Pa
ve

w
ay

fo
r

im
pr

ov
in

g
ex

is
ti

ng
te

ch
no

lo
gi

es
an

d
de

ve
lo

pm
en

to
fn

ew
to

ol
s

to
m

ee
tn

ew
m

ar
ke

td
em

an
ds

fo
r

su
st

ai
na

bl
e

us
ag

e
of

th
es

e
te

ch
no

lo
gi

es
.

Br
ee

ds
ne

w
co

m
m

un
it

ie
s

of
us

er
s

an
d

su
pp

lie
rs

.

U
se

rs
re

ly
on

de
vi

ce
s

to
co

nt
ro

ls
om

e
as

pe
ct

s
of

th
ei

r
liv

es
at

ho
m

e
an

d
in

of
fic

es
.

2n
d

R
ed

uc
e

ho
us

eh
ol

d
en

er
gy

co
ns

um
pt

io
n.

R
ed

uc
e

ho
us

eh
ol

d
bi

ll
fo

r
en

er
gy

co
ns

um
pt

io
n.

H
ig

h
de

m
an

d
fo

r
se

cu
ri

ty
of

us
er

pe
rs

on
al

da
ta

(p
ri

va
cy

).

In
cr

ea
se

co
m

fo
rt

,s
af

et
y,

fle
xi

bi
lit

y,
an

d
se

cu
ri

ty
of

us
er

.

D
em

an
d

fo
r

su
st

ai
na

bl
e

us
er

-f
ri

en
dl

y
so

lu
ti

on
fo

r
ho

m
e

us
er

s.

3r
d

In
cr

ea
se

in
th

e
us

e
of

to
xi

c
m

at
er

ia
lf

or
pr

od
uc

ti
on

of
ha

rd
w

ar
e.

Le
ss

en
er

gy
co

ns
um

pt
io

n
ov

er
a

lo
ng

pe
ri

od
of

ti
m

e.

D
ec

re
as

e
co

st
of

en
er

gy
th

ro
ug

h
op

ti
m

iz
ed

so
lu

ti
on

ov
er

ti
m

e.

Ef
fic

ie
nt

pr
ov

is
io

n
of

so
un

d
te

ch
ni

ca
ls

ol
ut

io
ns

to
av

oi
d

te
ch

ni
ca

lg
lit

ch
th

at
co

ul
d

le
ad

to
hi

gh
en

er
gy

us
ag

e.
En

co
ur

ag
e

in
no

va
tio

n
on

ho
w

to
cr

ea
te

co
st

-e
ff

ec
ti

ve
te

ch
no

lo
gi

es
an

d
de

vi
ce

s
to

re
du

ce
ho

us
eh

ol
d

an
d

co
m

pa
ny

en
er

gy
us

ag
e

En
co

ur
ag

e
us

er
s

to
fo

rm
co

m
m

un
iti

es
to

sh
ar

e
da

ta
as

a
w

ay
of

en
co

ur
ag

in
g

ea
ch

ot
he

r
to

be
en

er
gy

co
ns

ci
ou

s

In
du

ce
s

su
st

ai
na

bl
e

be
ha

vi
ou

r
am

on
g

us
er

s.

Sustainability 2018, 10, 2296 13 of 30

Sustainability has multiple dimensions (P2): the application of this principle provides an
overview of the fundamental issues and positive opportunities that could encourage stakeholders in
the smart home domain to cross reference in the design and development of smart home solutions,
especially during solution requirements from users and choosing appropriate boundaries.

Smart home design and deployment in this domain requires getting inputs for the effect of
design solutions on the environment from natural resources used in building hardware devices,
energy consumption of the devices, social behaviour and interaction between people in a family
(household), company and other places where these solutions will be deployed. This means all
sustainability dimensions (environment, economic, social, individual, technical) will be analysed for
better design output.

Sustainability is a concern independent of the purpose of the system (P4): the goal of most
smart home solutions is to provide comfort and reduce energy consumption for its users, but it is
important to consider an encompassing view of sustainability. This is to be able to get even more
benefits such as reducing pollution through the use of environmental friendly materials in producing
hardware devices used for smart home solutions. The smart home solution can be used to educate
and inform users about the negative consequential effect of their behaviour and habits. This can help
induce sustainable behaviour among users. For a smart home solution design to be effective and meet
user needs, it will require the expertise of a psychologist or at least an adequately educated interaction
designer to help provide information according to the level of comfort and technical expertise of those
in manufacturing, transportation, electrical, business and ICT discipline.

Sustainability requires long-term thinking (P9): it is important to think of how the smart home
solution provided today will evolve to meet the requirements of current users and be adaptive enough
to satisfy future user needs. This will require looking at measures to capture user behaviours over time
through computational intelligence to predict future actions of users through data generated from
time to time.

Based on the SSDC, a pilot framework to guide stakeholders involved in the design and
development of a software system is proposed. Figure 2 provides a detailed flow of the
pilot framework.

Figure 2. Pilot framework for sustainability of software system design based on SSDC.

The pilot framework is the first derivative from the SSDC to assist developers incorporate
sustainability during system design and development covering the software development life-cycle
(SDLC) phases. For a better understanding, the pilot framework is presented below in a tabular form
to show contents that are involved in the framework. Table 6 contains all contents of the framework.
It is important to highlight that the indicators used in the framework (Table 6) are influenced by the
nine Karlskrona manifesto principles mapped to each of the software development life-cycle phases
(see Table 2) and the work of Kem-Laurin Kramer [90].

Su
st

ai
na

bi
lit

y
20

18
,1

0,
22

96
14

of
30

Ta
bl

e
6.

C
on

te
nt

s
of

pi
lo

tf
ra

m
ew

or
k

fo
r

su
st

ai
na

bi
lit

y
of

so
ft

w
ar

e
sy

st
em

de
si

gn
.

SD
LC

Ph
as

es
an

d
K

ar
ls

kr
on

a
M

an
if

es
to

Pr
in

ci
pl

es
Su

st
ai

na
bi

li
ty

G
oa

ls
Su

st
ai

na
bi

li
ty

C
on

ce
pt

s,
M

et
ho

ds
an

d
To

ol
s

In
di

ca
to

rs

Ph
as

e
1.

Pr
oj

ec
tD

efi
ni

ti
on

,
P1

,P
2

an
d

P3

Tr
an

sm
at

er
ia

liz
at

io
n,

de
si

gn
fo

r
su

st
ai

na
bl

e
ef

fic
ie

nc
y,

re
us

ab
ili

ty
.

C
ra

dl
e

to
cr

ad
le

,b
io

m
im

ic
ry

,s
us

ta
in

ab
le

bu
si

ne
ss

ca
nv

as
.

C
ar

bo
n

fo
ot

pr
in

t,
m

at
er

ia
lf

oo
tp

ri
nt

,e
nd

of
lif

e
fo

ot
pr

in
t.

Ph
as

e
2.

U
se

r
R

eq
ui

re
m

en
ts

D
efi

ni
ti

on
,

P2

In
cr

ea
se

su
st

ai
na

bi
lit

y
aw

ar
en

es
s

am
on

g
us

er
s.

H
el

ix
of

su
st

ai
na

bi
lit

y.
To

ta
ln

um
be

r
of

su
st

ai
na

bi
lit

y
re

qu
ir

em
en

ts
,p

ri
or

it
y

as
si

gn
to

su
st

ai
na

bi
lit

y
re

qu
ir

em
en

ts
.

Ph
as

e
3.

Sy
st

em
R

eq
ui

re
m

en
ts

D
efi

ni
ti

on
,

P4
,a

nd
P5

D
es

ig
n

fo
r

ef
fic

ie
nc

y,
su

st
ai

na
bi

lit
y

aw
ar

en
es

s
an

d
in

te
ro

pe
ra

bi
lit

y.
Bi

om
im

ic
ry

,c
ra

dl
e

to
cr

ad
le

,g
oa

lm
od

el
.

To
ta

ln
um

be
r

of
sy

st
em

go
al

s
re

la
ti

ng
to

su
st

ai
na

bi
lit

y
di

m
en

si
on

s.

Ph
as

e
4.

A
na

ly
si

s
an

d
D

es
ig

n,
P2

,P
4,

P6
an

d
P8

D
es

ig
n

fo
r

re
us

e
an

d
ef

fic
ie

nc
y,

lo
ca

liz
at

io
n,

in
te

ro
pe

ra
bi

lit
y

Bi
om

im
ic

ry
,h

el
ix

of
su

st
ai

na
bi

lit
y,

Li
fe

-c
yc

le
su

st
ai

na
bi

lit
y

as
se

ss
m

en
t,

so
ci

al
re

tu
rn

on
in

ve
st

m
en

t,
su

st
ai

na
bi

lit
y

an
al

ys
is

ra
da

r
ch

ar
t.

N
um

be
r

of
fir

st
-,

se
co

nd
-a

nd
th

ir
d-

or
de

r
im

pa
ct

s
of

sy
st

em
id

en
ti

fie
d.

Ph
as

e
5.

D
ev

el
op

m
en

t,
P2

an
d

P4

D
es

ig
n

fo
r

re
us

e,
de

si
gn

fo
r

m
od

ul
e

re
pl

ic
ab

ili
ty

,d
es

ig
n

fo
r

ef
fic

ie
nc

y,
de

si
gn

fo
r

su
st

ai
na

bi
lit

y
aw

ar
en

es
s,

de
si

gn
fo

r
ef

fic
ie

nc
y,

de
si

gn
fo

r
ea

sy
se

rv
ic

e
an

d
m

ai
nt

en
an

ce
.

Bi
om

im
ic

ry
,c

ra
dl

e
to

cr
ad

le
.

N
um

be
r

of
co

di
ng

ch
oi

ce
s

in
flu

en
ce

d
by

su
st

ai
na

bi
lit

y,
nu

m
be

r
of

fe
at

ur
es

(f
un

ct
io

ns
)a

dd
ed

to
sy

st
em

s
to

in
fo

rm
us

er
s

ab
ou

t
su

st
ai

na
bi

lit
y

th
ro

ug
h

fu
nc

ti
on

s
lik

e
ec

o
fe

ed
ba

ck
.

Ph
as

e
6.

In
te

gr
at

io
n

an
d

Te
st

in
g,

P2
an

d
P4

D
es

ig
n

fo
r

ea
sy

as
se

m
bl

y
an

d
di

sa
ss

em
bl

y,
de

si
gn

fo
r

du
ra

bi
lit

y,

C
ra

dl
e

to
cr

ad
le

,s
us

ta
in

ab
ili

ty
an

al
ys

is
ra

da
r

ch
ar

t,
lif

e-
cy

cl
e

su
st

ai
na

bi
lit

y
as

se
ss

m
en

t.

H
ow

m
uc

h
in

fo
rm

at
io

n
fr

om
su

st
ai

na
bi

lit
y

an
al

ys
is

ch
ar

tw
as

us
ed

du
ri

ng
in

te
gr

at
io

n
an

d
te

st
in

g
su

ch
as

th
e

nu
m

be
r

of
sy

st
em

s
fu

nc
tio

ns
te

st
ed

ag
ai

ns
ts

us
ta

in
ab

ili
ty

co
nc

er
ns

su
ch

as
th

e
fir

st
-o

rd
er

(i
m

m
ed

ia
te

)i
m

pa
ct

an
d

po
ss

ib
le

se
co

nd
-o

rd
er

(e
na

bl
in

g)
im

pa
ct

s
of

th
e

sy
st

em
.

Ph
as

e
7.

Im
pl

em
en

ta
ti

on
,

P5
an

d
P7

D
es

ig
n

fo
r

ea
sy

us
e,

de
si

gn
to

in
du

ce
co

ns
ci

ou
s

su
st

ai
na

bi
lit

y
aw

ar
en

es
s,

de
si

gn
to

ed
uc

at
e

us
er

s
ab

ou
t

su
st

ai
na

bi
lit

y,
de

si
gn

fo
r

ea
sy

re
cy

cl
e.

Bi
om

im
ic

ry
,c

ra
dl

e
to

cr
ad

le
.

Th
e

pr
io

ri
ty

as
si

gn
to

su
st

ai
na

bi
lit

y
by

de
ve

lo
pe

rs
an

d
th

e
sy

st
em

ow
ne

rs
/u

se
rs

du
ri

ng
af

te
r

im
pl

em
en

ta
ti

on

Ph
as

e
8.

Su
st

ai
nm

en
t/

M
ai

nt
en

an
ce

,
P9

Pr
op

er
de

si
gn

fo
r

se
rv

ic
ea

bi
lit

y,
de

si
gn

fo
r

ea
sy

re
pl

ac
em

en
to

fc
od

e
m

od
ul

es
,

de
si

gn
fo

r
co

nt
in

uo
us

us
er

en
ga

ge
m

en
t

th
ro

ug
h

su
st

ai
na

bi
lit

y
aw

ar
en

es
s.

Li
fe

-c
yc

le
su

st
ai

na
bi

lit
y

as
se

ss
m

en
t,

su
st

ai
na

bi
lit

y
an

al
ys

is
ra

da
r

ch
ar

t,
cr

ad
le

to
cr

ad
le

.

N
um

be
r

of
im

pr
ov

em
en

ts
to

sy
st

em
ba

se
d

on
su

st
ai

na
bi

lit
y

re
qu

ir
em

en
ts

ei
th

er
fr

om
us

er
s’

fe
ed

ba
ck

or
de

ve
lo

pe
rs

.

Sustainability 2018, 10, 2296 15 of 30

6. Application of the SSDC and the Pilot Framework

In order to exemplify the application of SSDC and the pilot framework, an excerpt from a cyber
physical system (smart home) is used here. We consider the following scenario:

“A software engineer called Henry has the task of eliciting and documenting the requirements for
a new smart home system. Being aware of his responsibility for the software system sustainability
he creates, and its impacts, he takes the template of the sustainability analysis of the five dimensions
and the three orders of effects from the design catalogue with him to the customer during their first
meeting. The customer is curious about these additional analysis ideas, and Henry explains to his
client what they mean and gives his client a couple of examples. Then, together with the customer, he
fills out the template applying the concepts from the design catalogue (SSDC) to find out what those
dimensions and orders of impact mean for the smart home system the customer wants for his house.
The information from the activity goes into the requirements analysis that is subsequently conducted
and used as a measurement yardstick during the smart home system development and deployment.”

To showcase the use of the framework in the above scenario, the following explanation breakdown
how the pilot framework for software sustainability design was used in creating the smart home system
from the planning to requirement phase and finally delivery of system.

Phase 1 (project definition) with Karlskrona principles 1, 2 and 3: Henry uses the sustainable
business canvas to show value that can be generated through sustainability consideration and how it
can help improve the product. Henry was able to pinpoint two sustainability goals from this phase,
which is design for sustainable efficiency and to create sustainability awareness through the smart
home system by facilitating a community of users willing to share their energy usage to motivate
each other.

Phase 2 (user requirements definition) with Karlskrona principle 2: from the information
gathered in phase one and a discussion with the client, Henry was able to identify the goal of increasing
the sustainability awareness among users of the system once it is created based on the sustainability
helix concept. These were the indicators from this phase: percentage of reduced energy usage of the
household, amount of feedback on the environmental impact of energy used (CO2) by the family
through eco feedback, number of suggestions provided on how to improve household energy usage
based on usage patterns.

Phase 3 (system requirements definition) with Karlskrona principles 4 and 5: the goal in the
phase of system requirements is to design for efficiency and sustainability awareness based on the
overall system goal from phase 1. He uses the goal model to showcase how the system goals were
broken into smaller piece based on the system requirements in order to identify requirement conflicts
that might occur. Some of the smaller goals based on the overall goal in this phase include: reduce
energy consumption, reduce CO2 emissions, establish community of users sharing energy usage data,
ensure high availability of system, and provide eco-feedback.

Phase 4 (analysis and design) with Karlskrona principles 2, 4, 6 and 8: in this phase, the main
goals are design for easy usage, efficiency and sustainability awareness. Using the sustainability
analysis diagram according to [24], Figure 3 portrays the sustainability analysis of the smart home
system design for the first, second and third (immediate, enabling, and structural) impacts of smart
home solutions from the different sustainability dimensions. Information from the analysis provides
avenue for evaluating while guiding different stakeholders (managers, developers and users) on the
benefits to aspire for sustainability in smart home solutions.

Sustainability 2018, 10, 2296 16 of 30

Figure 3. Immediate, enabling and structural effects of smart home solution in sustainability dimension.

The impacts described in Figure 3 are then taken into account during the requirements refinement
phase in such a way that they can be implemented. The indicators from this phase are the immediate,
enabling and structural impacts of the system identified in the sustainability analysis diagram.

Phase 5 (development) using Karlskrona principles 2 and 4). The goal of this phase is to
implement a smart home system that induces sustainability awareness among users. The sustainability
sub-attribute that influences developers during this stage is biomimicry. This concept encourage
developers to rethink how to create functionality of the system that can reduce energy consumption,
while providing eco-feedback that improves users’ sustainability awareness and as an enabler for
reducing household energy consumption. The biomimicry is made visible using an energy user
interface (UI) dashboard for the smart home system where a fully grown tree is used to mimic energy
consumption. As the energy consumption increases, the tree leaf starts to change colour to brown
(indicating that is dead), when energy consumption decreases, the tree becomes greener (indicating
the tree is back to life).

The following are functions added to the system which are used as indicators in this phase:
percentage of energy saved during system usage, the accuracy in the eco-feedback based on the energy
usage pattern of users, total number of times users shared their energy usage percentage with friends
on social media, the level of user comprehension and understanding of the displayed information on
CO2 emission and indicator for amount of saved trees based on reduce energy usage over time.

Sustainability 2018, 10, 2296 17 of 30

Phase 6 (integration and testing) with Karlskrona principles 2 and 4: at this stage, the goal is to
assembly and disassembly using the sustainability analysis chart (see Figure 3) including the indicators
from the other phases as guide for integrating and testing the smart home system.

Phase 7 (implementation) with Karlskrona principles 5 and 7: the goals of this phase are design
for easy use, induce conscious sustainability awareness and educate users about sustainability, which is
influenced by the sustainability concept of biomimicry. These are used as indicators: the change
in developers coding practice based on the effectiveness of functions added due to sustainability
requirements such as percentage of energy saved during system usage, accuracy in the eco-feedback
based on the energy usage pattern of users, understandability of presented information on CO2

emission as well as amount of saved trees based on reduced energy usage over time.
Phase 8 (sustainment/maintenance) with Karlskrona principle 9): this phase covers the

long-term goal of the smart home system such as serviceability and continuous user engagement.
The indicators used in this phase are the efficiency of data generated in optimizing the smart home
system, the effectiveness of the eco-feedback to improve user behaviour, as well as the total percentage
of energy saved over time and the backlog management index (BMI).

One important question here is what the effects of the principles detailed in the SSDC for the
smart home solution (see Tables 4 and 5) mean for a process engineer. For improving the software
development process, the principles considered relevant for the example at hand were principles 2
(multi-dimension), 4 (independent of purpose), and 9 (long-term thinking). Principles 2, 4 and 9 are
further explained here as a way to show how the Karlskrona manifesto principles influence decisions
made during the development of the smart home example.

Principle 2 from the SSDC highlights the need for cross platform compatibility, which should
be considered during the project definition of the software development life cycle (SDLC). It is
also relevant during the user requirements elicitation phase when collecting their perceptions
of sustainability.

Principle 4 emphasizes the need to educate smart home users about how their actions and
reactions affect the environment when using smart home devices. Even if the users are not interested
in sustainability, as software developers, designers and engineers it is their responsibility to inform
users about the benefits of sustainability during the requirement gathering [91]. Efforts to educate
users are also addressed during the documentation processes. The developer needs to create user
documentation that include information about energy usage, as well as ways of saving other natural
resources such as waste paper when printing.

Principle 9, which is about reducing production and solution costs, plays a vital role. It is
important to identify choices that benefit both the current and future users, as well as how the solution
can be cost beneficial when encouraging a wider population of users. The business analyst takes
charge of this before moving on to the user requirements stage and this issue is monitored throughout
the whole project development.

To illustrate how these principles are used, we consider the following second scenario:

A company named Energy Life, based on the SSDC analysis, provides a game like menu to control
smart home devices for a family named Miralles. The family only wants to reduce household energy
cost. Mark, the deployment manager, after reading the SSDC for smart homes (see Tables 4 and 5),
pilot framework (see Figure 2), Table 6 (framework description) and the sustainability analysis for
smart home solution (see Figure 3), realizes that the best way to reduce the energy cost of the Miralles
is to implement a game-like menu for the Miralles to control their smart home devices. This provides
information about the energy consumption of each home device. Within a few days the Miralles were
able to see the flow of their energy usage and how their daily habits impact the unnecessarily high
energy use within their household with impacts on the environment. The game also provides the
family with tips on how they can save energy and the amount of CO2 emissions. Members of the
family are able to identify the amount of energy consumed by their washing machine. They decided
not to run a half empty washing machine again as they can see that this happens almost every day,

Sustainability 2018, 10, 2296 18 of 30

and even with the half-load mode it would make more sense to run a full one every two days instead.
The Miralles also started a new habit of reminding each other to switch off the computer, TV and other
household appliances when they are not in use.

Later on, when the company wants to update their system, developers revisit those orders of effect and
the different dimensions. Developers also thought about what may and may not have changed in order
to improve their system to be more efficient and effectively with regards to sustainability.

Using the definition of a smart home proposed by Nicholl et al. [92] “dwellings that use integrated
communication systems to monitor and manage the performance of the home, and to support
the lifestyle choices of the occupants”, this scenario illustrates the following features to support
sustainability in a smart home solution:

1. Automatic analysis of users’ data to educate them and induce sustainable behaviour among users.
2. Alerting users through notification when electrical devices or appliances are running without

being used.
3. Automatic scheduling of task such as washing cloths and dishes when energy rate is low during

the day.
4. Planning when to turn on/off heating and lighting based on season and user behaviour (prediction).

7. Discussion

The SSDC provides a comprehensive overview of sustainability design considerations and
requirements for systems and applications in different domains. SSDC guidelines are based on
the analysis of information around the impact of different kinds of system on its application for
sustainability dimensions-environment, society, individual, economy, technical and an overview of
potential long-term consequences as seen in Tables 4 and 5, Tables A1 and A6 in the Appendix.

Table 4 for sustainability analysis for a cyber physical system (smart home) indicates areas
where sustainability improvement can applied in smart home system design such as cross-platform
compatibility and design for user awareness about sustainability. Indicators to evaluate these changes
are also provided for stakeholders in this domain. Table 5, which presents all the sustainability
dimensions order of impacts for cyber physical system (smart home), gives insight into the holistic
overview of sustainability effects for smart home systems design and development. Tables A1–A6
in the Appendix includes other system types in the SSDC with information for how to better design
those systems and evaluate their sustainability impacts. The SSDC as a catalogue that can inspire
the development of tools and framework as shown in this article encourages the development of the
pilot framework.

The pilot framework for sustainability of software system design exemplifies the use of the SSDC.
The example for smart home in Section 6 shows how each of the development phases mapped with
the Karlskrona manifesto and the sustainability goal inspired by different sustainability concepts
such as biomimicry, sustainability helix provides better understanding of how sustainability can
be centre of software design and development. The indicators from each phase of the SDLC while
applying the pilot framework provide a way to evaluate the process and derivatives from each of the
SDLC phase influenced by different sustainability concepts. The application of sustainability methods
and tools used illustratively, such as sustainability business canvass, goal model and sustainability
analysis diagram, provides software developers and requirements engineers with a way to structurally
elicit and manage sustainability requirements and monitor system impacts (immediate, enabling
and structural).

Specifically, in Section 6 we use the template for sustainability analysis by [24], where Figure 3
depicts an instance of such a sustainability analysis diagram for the smart home solution. During the
analysis phase of SDLC, it provides a variety of information for different stakeholders for the direct,
indirect and structural effects of sustainability in smart home design and deployment. This information

Sustainability 2018, 10, 2296 19 of 30

can then be used to create or enhance processes, methods and tools that can automate the incorporation
of sustainability into the design of smart home solutions.

The software sustainability design catalogue and the underlying pilot framework can be beneficial
for the following stakeholders interested in sustainability, its engineering and its integration in/for
software systems design and development:

1. For companies and software developers, it serves as guide on how sustainability can be
incorporated into software design and development. It can also enable them to identify the
effects of their project on technical, economic, social, individual, and environmental sustainability.
Furthermore, we support the current revision of the Association for Computing Machinery (ACM)
code of ethics and propose to incorporate sustainability principles and explicitly acknowledge
the need to consider sustainability as part of professional practice [23].

2. Standardization organizations can benefit from it to create future standards for software and
organizational sustainability. SSDC shows areas where software applications can impact
the environment and humans, and this information can help create standards that would
encourage companies and stakeholders to improve existing and new applications and policies to
promote sustainability.

3. Public authorities will be able to use the information from the catalogue to enact new laws
persuading industry practitioners to design software systems, applications and devices in a more
sustainable manner.

4. Academic institutions can identify avenues to advance research on sustainability by design,
sustainability design patterns and tools to support, among others.

8. Conclusions

Effective sustainability engineering and integration requires clarifying the current perceptions
of sustainability and defining a concrete framework for its engineering and measurement. As a first
milestone, this paper presented a catalogue that quantifies sustainability via a series of guidelines that
can be used for incorporating sustainability into the design loop.

By analysing how the principles defined in the Karlskrona Manifesto for Sustainability Design
can be applied for some specific systems, we were able to identify a series of guidelines and develop
the foundations for a “sustainability by design” approach. First, we reviewed the current perceptions
of sustainability for various types of systems. Furthermore, based on how sustainability has been
perceived in different software engineering disciplines, the SSDC has been defined. Each guideline is
defined as a set of principles, dimensions of sustainability, orders of impact, and indicators. The usage
and applicability of the catalogue have been demonstrated for four types of systems.

Future research includes examining other types of systems and the application of the guidelines
in an industry setting. This will give better insights for the development of the guidelines for
different types of systems and its usage by diverse stakeholders in the software development life
cycle. An important aspect of its validity is that the catalogue was created based on the expertise
of the wide set of researchers involved in the sustainability design manifesto. Considering the fact
that sustainability in software engineering is still evolving, the SSDC provides common ground for
further research.

An important limitation of the SDLC is its validity in industry. Consequently, the theoretical
validation of the methodological aspects underlying the proposed guidelines will be considered beyond
the industry evaluation to be conducted in future. The Appraisal of Guidelines for Research and
Evaluation (AGREE) instrument [93], which is the appropriate tool that assesses the methodological
rigor and transparency in which the guidelines is being developed, will used for this purpose.

The SSDC also has automation potential in the future. The design catalogue can become the
basis for a recommender system. This would help developers to identify and apply effectively the
sustainability guidelines. However, this requires more case studies for building a knowledge base
required by a recommender system. The automation will provide a practical guide to enable developers

Sustainability 2018, 10, 2296 20 of 30

during each stage of design and development to understand and incorporate the Karlskrona manifesto
principles, sustainability goals, concepts, tools and methods with indicators that can help in the
evaluation of a software system.

Finally, this paper provides a foundation (via the SSDC and pilot framework) for the software
engineering community to design and engineer sustainability into their systems.

Author Contributions: S.O. conceived the idea of the paper; S.O. and B.P. designed the research methodology;
investigation and data collection: S.O.; data validation: B.P. and A.S.; S.O. wrote the paper and all authors
contributed to reviewing all sections; review and editing supervision: B.P. and A.S.

Funding: This research received no external funding.

Acknowledgments: The authors are grateful to the researchers who initiated the Karlskrona manifesto principles
which were used in this article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Tables A1 and A2 provide information on sustainability analysis of an embedded system (washing
machine) using the Karlskrona principles and sustainability dimensions based on usage of order of
impacts. Based on output from Tables A1 and A2, water and energy efficiency are key objectives of
sustainability for a washing machine.

Tables A3 and A4 covers information about sustainability analysis for a mobile game (Angry Bird)
centred on the Karlskrona principles and sustainability dimensions based on order of impacts. Table A3
provides points of energy efficiency, reduction of wear and tear of hardware and creating a sense
of belong to community among users as key goals of sustainability for stakeholders. In addition,
details from Table A4 prompt the need to aspire for these goals from all sustainability dimensions:

• Environment: optimize energy and computing resource consumption during game development
and when users are playing game.

• Economic: provide continuous innovation on the game features to encourage current users to
keep playing the game and attract new users and ensure game is maintainable (longevity).

• Technical: ensure that game does not encourage quick hardware wear and tear and at same time
has the ability to evolve with new demands of the market.

• Individual: good user experience while interacting with the game and serves as a medium of
inducing sustainable behaviour.

• Social: create good community sense among angry bird users and educate them
about sustainability.

Tables A5 and A6 presents information on sustainability analysis of desktop application (Microsoft
Office) using the Karlskrona principles and sustainability dimensions based on order of impacts.

Su
st

ai
na

bi
lit

y
20

18
,1

0,
22

96
21

of
30

Ta
bl

e
A

1.
Su

st
ai

na
bi

lit
y

an
al

ys
is

of
em

be
dd

ed
sy

st
em

(w
as

hi
ng

m
ac

hi
ne

)b
as

ed
on

K
ar

ls
kr

on
a

pr
in

ci
pl

es
.

K
ar

ls
kr

on
a

Pr
in

ci
pl

es
an

d
G

oa
l

C
ur

re
nt

Pr
in

ci
pl

e
U

sa
ge

Fu
tu

re
Pr

in
ci

pl
e

U
sa

ge
St

ak
eh

ol
de

rs
Q

ue
st

io
n

In
di

ca
to

r

(P
9)

Ef
fic

ie
nt

w
at

er
us

ag
e

C
ur

re
nt

w
as

hi
ng

m
ac

hi
ne

ha
s

so
m

e
de

si
gn

fe
at

ur
es

to
he

lp
re

du
ce

w
at

er
w

as
ta

ge
du

ri
ng

w
as

hi
ng

ci
rc

le
.

G
oo

d
m

ec
ha

ni
sm

w
it

hi
n

th
e

w
as

hi
ng

m
ac

hi
ne

to
ai

d
ef

fic
ie

nt
us

e
of

w
at

er
du

ri
ng

w
as

hi
ng

cy
cl

e
an

d
al

so
di

sp
la

y
th

e
am

ou
nt

of
w

at
er

sa
ve

d
to

us
er

s.
Th

is
w

ill
se

rv
e

as
m

ea
ns

of
ed

uc
at

in
g

us
er

s
ab

ou
tw

at
er

w
as

ta
ge

.T
hi

s
w

ill
ai

d
po

si
ti

ve
im

pa
ct

on
th

e
am

ou
nt

of
w

at
er

us
ag

e
in

a
ho

us
eh

ol
d.

So
ft

w
ar

e
de

ve
lo

pe
r

D
oe

s
th

e
w

as
hi

ng
m

ac
hi

ne
re

du
ce

w
at

er
us

ag
e?

W
as

hi
ng

cy
cl

e/
to

ta
l

am
ou

nt
of

w
at

er
us

ed
.

(P
6,

8)
En

er
gy

Ef
fic

ie
nc

y

So
m

e
cu

rr
en

ts
et

s
of

w
as

hi
ng

m
ac

hi
ne

ha
ve

ec
o-

fr
ie

nd
ly

fe
at

ur
es

to
re

du
ce

en
er

gy
us

ag
e.

O
ne

go
od

fe
at

ur
e

to
re

du
ce

en
er

gy
us

ag
e

of
w

as
hi

ng
is

to
tu

rn
of

fo
r

hi
be

rn
at

e
au

to
m

at
ic

al
ly

af
te

r
w

as
hi

ng
cy

cl
e

if
id

le
fo

r
2

m
in

.I
tw

ill
he

lp
re

du
ce

en
er

gy
co

st
(P

6)
an

d
al

so
re

du
ce

re
so

ur
ce

us
ag

e
in

th
e

lo
ng

te
rm

(P
8)

.T
hi

s
w

ill
he

lp
re

du
ce

en
er

gy
co

ns
um

pt
io

n
w

he
n

m
ac

hi
ne

is
id

le
.

In
co

rp
or

at
e

th
e

us
e

of
sc

he
du

le
r

to
th

e
w

as
hi

ng
m

ac
hi

ne
as

a
w

ay
to

ti
m

e
w

he
n

th
e

w
as

hi
ng

cy
cl

e
sh

ou
ld

st
ar

t
du

ri
ng

th
e

pe
ri

od
of

th
e

da
y

w
he

n
en

er
gy

co
st

is
le

ss
.

So
ft

w
ar

e
de

ve
lo

pe
r

D
oe

s
th

e
m

ac
hi

ne
us

e
to

o
m

uc
h

en
er

gy
fo

r
a

si
ng

le
w

as
hi

ng
cy

cl
e?

En
er

gy
ef

fic
ie

nc
y

(w
as

hi
ng

cy
cl

e/
to

ta
l

am
ou

nt
of

en
er

gy
us

ed
).

(P
8,

9)
W

at
er

ef
fic

ie
nc

y

A
llo

w
s

co
lle

ct
io

n
of

gr
ey

w
at

er
fr

om
w

as
hi

ng
m

ac
hi

ne
.

En
co

ur
ag

e
re

us
e

of
gr

ey
w

at
er

(w
it

h
bi

od
eg

ra
da

bl
e

la
un

dr
y

de
te

rg
en

t)
in

ga
rd

en
w

at
er

in
g.

Bu
si

ne
ss

an
al

ys
t

H
ow

m
uc

h
of

th
e

gr
ey

w
at

er
ge

ts
re

us
ed

af
te

rw
ar

ds
?

Pe
rc

en
ta

ge
(%

)o
f

re
us

ed
w

at
er

.

Su
st

ai
na

bi
lit

y
20

18
,1

0,
22

96
22

of
30

Ta
bl

e
A

2.
Su

st
ai

na
bi

lit
y

di
m

en
si

on
s

or
de

r
of

im
pa

ct
s

fo
r

em
be

dd
ed

sy
st

em
(w

as
hi

ng
m

ac
hi

ne
).

O
rd

er
of

Im
pa

ct
s

En
vi

ro
nm

en
t

Ec
on

om
ic

Te
ch

ni
ca

l
So

ci
al

In
di

vi
du

al

1s
t

In
cr

ea
se

in
th

e
us

e
of

na
tu

ra
l

re
so

ur
ce

s
in

th
e

pr
od

uc
ti

on
of

w
as

hi
ng

m
ac

hi
ne

co
m

po
ne

nt
s

su
ch

as
ir

on
,c

op
pe

r,
m

ed
iu

m
-d

en
si

ty
fib

re
bo

ar
d,

et
hy

le
ne

pr
op

yl
en

e
di

en
e

m
on

om
er

(E
PD

M
)r

ub
be

r.

H
ig

h
de

m
an

d
fo

r
na

tu
ra

l
re

so
ur

ce
s

bo
os

ts
th

e
ec

on
om

ie
s

of
co

un
tr

ie
s

w
it

h
th

os
e

na
tu

ra
l

re
so

ur
ce

s.

In
cr

ea
se

de
m

an
d

fo
r

ne
w

te
ch

no
lo

gi
es

,t
oo

ls
an

d
eq

ui
pm

en
tf

or
ex

tr
ac

ti
ng

ra
w

m
at

er
ia

ls
.

N
ew

jo
b

op
po

rt
un

it
ie

s
fo

r
pe

op
le

.

In
cr

ea
se

th
e

ri
sk

of
ha

vi
ng

sk
in

di
se

as
es

du
e

to
to

xi
c

m
at

er
ia

le
xp

os
ur

e.

2n
d

In
cr

ea
se

in
w

at
er

an
d

en
er

gy
us

ag
e

w
he

n
us

in
g

a
w

as
hi

ng
m

ac
hi

ne
as

op
po

se
d

to
m

an
ua

lw
as

hi
ng

.

H
ig

h
en

er
gy

co
st

fo
r

ho
us

eh
ol

d
as

a
re

su
lt

of
in

cr
ea

se
in

en
er

gy
us

ag
e

du
e

to
ea

se
of

w
as

hi
ng

cl
ot

hs
(c

on
ve

ni
en

ce
fa

ct
or

an
d

lit
tl

e
m

an
ua

ll
ab

ou
r)

.

D
em

an
d

fo
r

en
er

gy
an

d
w

at
er

sa
vi

ng
m

ec
ha

ni
sm

in
w

as
hi

ng
m

ac
hi

ne
.

M
or

e
jo

b
op

po
rt

un
iti

es
fo

r
te

ch
ni

ci
an

s
w

it
h

kn
ow

le
dg

e
of

w
as

hi
ng

m
ac

hi
ne

te
ch

no
lo

gi
es

.

In
cr

ea
se

th
e

ea
se

of
w

as
hi

ng
fo

r
us

er
s.

3r
d

O
ve

r
a

lo
ng

ti
m

e
it

le
ad

to
in

cr
ea

se
w

at
er

us
ag

e
an

d
a

cu
lt

ur
e

of
w

as
hi

ng
a

lo
t

(e
.g

.,
C

al
if

or
ni

a)
.I

n
tu

rn
,

th
at

le
ad

s
to

a
hi

gh
er

w
ea

r
an

d
te

ar
of

th
e

ha
rd

w
ar

e.

In
cr

ea
se

in
pr

ofi
tf

or
w

as
hi

ng
m

ac
hi

ne
pr

od
uc

ti
on

co
m

pa
ni

es
w

it
h

hi
gh

de
m

an
d

fo
r

w
as

hi
ng

m
ac

hi
ne

fr
om

us
er

s.

O
ve

r
ti

m
e

th
er

e
w

ill
be

pr
es

su
re

to
bu

ild
a

m
or

e
en

er
gy

an
d

w
at

er
ef

fic
ie

nt
w

as
hi

ng
m

ac
hi

ne
fr

om
m

an
uf

ac
tu

re
rs

to
ha

ve
a

co
m

pe
ti

ti
ve

ed
ge

ov
er

ot
he

r
co

m
pe

ti
to

rs
.

In
cr

ea
se

jo
b

cr
ea

ti
on

ov
er

ti
m

e
bo

th
fr

om
in

du
st

ry
fo

r
sk

ill
ed

w
or

ke
rs

an
d

in
ho

us
eh

ol
d

fo
r

te
ch

ni
ci

an
s

to
fix

m
in

or
is

su
es

of
w

as
hi

ng
m

ac
hi

ne
.

O
ve

r
a

lo
ng

ti
m

e
it

le
ad

s
to

in
cr

ea
se

d
w

at
er

us
ag

e
an

d
a

cu
ltu

re
of

w
as

hi
ng

a
lo

t(
e.

g.
,C

al
if

or
ni

a)
.

In
tu

rn
,t

ha
tl

ea
ds

to
a

hi
gh

er
w

ea
r

an
d

te
ar

of
th

e
ha

rd
w

ar
e

Su
st

ai
na

bi
lit

y
20

18
,1

0,
22

96
23

of
30

Ta
bl

e
A

3.
Su

st
ai

na
bi

lit
y

an
al

ys
is

of
m

ob
ile

ga
m

es
(A

ng
ry

Bi
rd

)b
as

ed
on

K
ar

ls
kr

on
a

pr
in

ci
pl

es
.

K
ar

ls
kr

on
a

Pr
in

ci
pl

es
an

d
G

oa
l

C
ur

re
nt

Pr
in

ci
pl

e
U

sa
ge

Fu
tu

re
Pr

in
ci

pl
e

U
sa

ge
St

ak
eh

ol
de

rs
Q

ue
st

io
n

In
di

ca
to

r

(P
1)

En
er

gy
Ef

fic
ie

nt

C
ur

re
nt

ly
ga

m
e

de
ve

lo
pm

en
t

fo
cu

s
m

or
e

on
us

ab
ili

ty
an

d
fu

n
fa

ct
or

as
pe

ct
th

an
su

st
ai

na
bi

lit
y

as
pe

ct
.

C
re

at
e

th
e

m
ob

ile
ga

m
e

ar
ch

ite
ct

ur
e

w
ith

su
st

ai
na

bi
lit

y
co

ns
id

er
at

io
n.

Si
nc

e
su

st
ai

na
bi

lit
y

is
sy

st
em

ic
,i

ts
ho

ul
d

be
co

re
of

th
e

ap
pl

ic
at

io
n

st
ru

ct
ur

e.
C

on
si

de
r

en
er

gy
ef

fic
ie

nc
y

du
ri

ng
ga

m
e

de
ve

lo
pm

en
t.

In
co

rp
or

at
e

gr
ee

n
pa

tt
er

ns
to

ga
m

e
ap

pl
ic

at
io

n
de

ve
lo

pm
en

t.

So
ft

w
ar

e
de

ve
lo

pe
r

Is
th

e
m

ob
ile

en
er

gy
Ef

fic
ie

nt
?

(E
ne

rg
y

ef
fic

ie
nc

y)
us

ef
ul

-w
or

k
do

ne
/e

ne
rg

y
us

ed
.

(P
1)

R
ed

uc
e

w
ea

r
an

d
te

ar
of

ha
rd

w
ar

e

A
lt

ho
ug

h
su

st
ai

na
bi

lit
y

is
no

t
th

e
co

re
of

cu
rr

en
tg

am
e

de
ve

lo
pm

en
tp

ra
ct

ic
es

,
al

th
ou

gh
ga

m
e

de
ve

lo
pe

r
tr

ie
s

to
en

su
re

op
ti

m
al

us
e

of
ha

rd
w

ar
e

re
so

ur
ce

s
to

m
ak

e
ga

m
e

ru
n

fa
st

er
an

d
be

tt
er

on
ha

rd
w

ar
e

(p
ho

ne
,

co
m

pu
te

r,
ta

bl
et

s)
.

En
su

re
th

at
th

e
m

ob
ile

ga
m

e
du

ri
ng

op
er

at
io

n
us

es
ha

rd
w

ar
e

re
so

ur
ce

s
(m

em
or

y,
C

PU
et

c.
)

in
ef

fic
ie

nt
an

d
su

st
ai

na
bl

e
m

an
ne

r
to

re
du

ce
w

ea
r

an
d

te
ar

.

So
ft

w
ar

e
de

ve
lo

pe
r

W
ha

ti
s

th
e

im
pa

ct
of

th
e

ga
m

e
on

ha
rd

w
ar

e
co

m
po

ne
nt

s
lik

e
C

PU
an

d
R

A
M

?

D
oe

s
th

e
ga

m
e

us
e

to
o

m
uc

h
ha

rd
w

ar
e

re
so

ur
ce

s?

(P
2)

Se
ns

e
of

be
lo

ng
in

g
to

a
co

m
m

un
it

y
an

d
co

nn
ec

te
dn

es
s

to
ot

he
r

pe
op

le

C
ur

re
nt

ga
m

e
de

ve
lo

pm
en

t
pr

ov
id

e
so

rt
of

co
m

m
un

it
y

fo
r

it
us

er
s

in
fo

rm
of

fo
ru

m
s

an
d

gr
ou

ps
on

lin
e.

Th
er

e
is

a
di

gi
ta

lc
om

m
un

it
y

su
rr

ou
nd

in
g

m
os

tg
am

es
an

d
th

e
qu

es
ti

on
is

ho
w

it
co

m
pa

re
s

to
fa

ce
to

fa
ce

co
m

m
un

it
ie

s
fo

r
ga

m
er

s.
C

re
at

e
a

co
m

m
un

it
y

th
at

m
ak

e
ga

m
er

s
fe

el
co

nn
ec

te
d

to
bo

th
th

e
di

gi
ta

la
nd

re
al

w
or

ld
s.

M
ak

e
ga

m
er

s
fe

el
lik

e
th

ey
ar

e
pa

rt
of

so
m

et
hi

ng
(p

eo
pl

e
al

w
ay

s
w

an
tt

o
be

lo
ng

to
a

tr
ib

e)
.

Bu
si

ne
ss

an
al

ys
ts

,
so

ft
w

ar
e

de
ve

lo
pe

r

Is
th

er
e

a
se

ns
e

of
co

m
m

un
it

y
am

on
gs

t
pl

ay
er

s?

C
on

ne
ct

ed
ne

ss
in

co
m

m
un

it
y?

N
um

be
r

of
‘fr

ie
nd

s’
in

a
pa

rt
ic

ul
ar

ga
m

in
g

co
m

m
un

it
y?

(P
9)

G
oo

d
us

er
ex

pe
ri

en
ce

C
ur

re
nt

ga
m

e
de

ve
lo

pm
en

t
in

co
rp

or
at

es
us

er
ex

pe
ri

en
ce

in
to

th
ei

r
pr

od
uc

ti
on

to
ga

in
m

or
e

us
er

ba
se

an
d

pr
ofi

t.

G
am

e
sh

ou
ld

us
e

re
as

on
ab

le
lig

ht
in

g
ef

fe
ct

fo
r

th
e

ga
m

e
di

sp
la

y
w

hi
ch

ca
n

he
lp

re
du

ce
en

er
gy

us
ag

e
an

d
al

so
in

co
rp

or
at

e
su

st
ai

na
bi

lit
y

co
nc

ep
ti

n
th

e
to

ta
lo

ve
ra

ll
de

si
gn

of
th

e
ga

m
e.

It
ca

n
al

so
ad

d
fe

at
ur

es
th

at
w

ill
ed

uc
at

e
us

er
s

ab
ou

ts
us

ta
in

ab
ili

ty
.

U
se

r
ex

pe
ri

en
ce

(U
X

)
en

gi
ne

er
an

d
so

ft
w

ar
e

de
ve

lo
pe

r

C
an

us
er

s
co

m
pl

et
e

th
ei

r
ta

sk
ea

si
ly

?
G

at
ew

ay
m

et
ri

cs
.

Su
st

ai
na

bi
lit

y
20

18
,1

0,
22

96
24

of
30

Ta
bl

e
A

4.
Su

st
ai

na
bi

lit
y

di
m

en
si

on
s

or
de

r
of

im
pa

ct
s

fo
r

m
ob

ile
ga

m
es

(A
ng

ry
Bi

rd
).

O
rd

er
of

Im
pa

ct
s

En
vi

ro
nm

en
t

Ec
on

om
ic

Te
ch

ni
ca

l
So

ci
al

In
di

vi
du

al

1s
t

In
cr

ea
se

in
en

er
gy

us
ag

e
fr

om
co

m
pu

te
rs

an
d

m
ob

ile
de

vi
ce

s
us

ed
fo

r
de

ve
lo

pi
ng

an
d

te
st

in
g

ga
m

e
ap

pl
ic

at
io

n.

C
os

to
fp

ro
du

ct
io

n
fo

r
ga

m
e

de
ve

lo
pm

en
t

co
m

pa
ni

es
.

In
cr

ea
se

in
de

m
an

d
fo

r
so

ph
is

ti
ca

te
d

ha
rd

w
ar

e
an

d
so

ft
w

ar
e

fo
r

ga
m

e
de

ve
lo

pm
en

t.

O
pe

n
jo

b
op

po
rt

un
it

ie
s

fo
r

ga
m

e
de

ve
lo

pe
rs

.
Pr

ov
id

es
av

en
ue

s
fo

r
le

is
ur

e
ac

ti
vi

ti
es

fo
r

us
er

s.

2n
d

In
cr

ea
se

in
en

er
gy

us
ag

e
be

ca
us

e
us

er
s

ar
e

us
in

g
m

ob
ile

ph
on

e,
la

pt
op

s,
iP

ad
to

pl
ay

ga
m

e.
Th

er
e

w
ill

al
so

be
ne

ed
fo

r
ch

ar
gi

ng
of

th
es

e
de

vi
ce

s
co

up
le

d
w

it
h

th
e

en
er

gy
co

ns
um

pt
io

n
w

he
n

pl
ay

in
g

th
e

ga
m

e.

C
om

pa
ny

m
ak

e
pr

ofi
t

fr
om

ga
m

e
pu

rc
ha

se
.

In
cr

ea
se

de
m

an
d

an
d

us
er

co
st

fo
r

ha
rd

w
ar

e
(c

om
pu

te
rs

,p
ho

ne
s

an
d

ta
bl

et
s)

.

D
em

an
d

fo
r

be
tt

er
gr

ap
hi

cs
an

d
qu

ic
k

ga
m

e
re

sp
on

se
fr

om
us

er
s.

C
re

at
e

co
m

m
un

it
y

se
ns

e
am

on
g

A
ng

ry
Bi

rd
us

er
s.

D
em

an
d

fo
r

go
od

us
er

ex
pe

ri
en

ce
w

hi
le

in
te

ra
ct

in
g

w
ith

th
e

ga
m

e.

3r
d

O
ve

r
ti

m
e

le
ad

s
to

ha
rd

w
ar

e
w

ea
r

an
d

te
ar

be
ca

us
e

of
co

nt
in

uo
us

ga
m

e
ti

m
e

fr
om

us
er

si
de

on
co

m
pu

te
r/

ph
on

es
an

d
co

nt
in

uo
us

ga
m

e
de

ve
lo

pm
en

tf
ro

m
ga

m
e

pr
od

uc
ti

on
co

m
pa

ny
si

de
.

In
cr

ea
se

in
pr

ofi
tf

ro
m

hu
ge

us
er

an
d

fa
n

ba
se

fo
r

th
e

ga
m

e
co

m
pa

ny
.

D
em

an
d

fo
r

ne
w

er
fe

at
ur

es
an

d
in

no
va

ti
on

fr
om

cu
st

om
er

s

In
cr

ea
se

th
e

se
ns

e
of

be
lo

ng
in

g
in

fo
rm

of
co

m
m

un
it

y
am

on
g

us
er

s.

Le
ad

to
ga

m
e

ad
di

ct
io

n
an

d
la

ck
of

so
ci

al
in

te
ra

ct
io

n
w

it
h

ou
ts

id
e

w
or

ld
.

Su
st

ai
na

bi
lit

y
20

18
,1

0,
22

96
25

of
30

Ta
bl

e
A

5.
Su

st
ai

na
bi

lit
y

an
al

ys
is

of
de

sk
to

p
ap

pl
ic

at
io

n
(M

ic
ro

so
ft

O
ffi

ce
)b

as
ed

on
K

ar
ls

kr
on

a
pr

in
ci

pl
es

.

K
ar

ls
kr

on
a

Pr
in

ci
pl

es
an

d
G

oa
l

C
ur

re
nt

Pr
in

ci
pl

e
U

sa
ge

Fu
tu

re
Pr

in
ci

pl
e

U
sa

ge
St

ak
eh

ol
de

rs
Q

ue
st

io
n

In
di

ca
to

r

(P
1)

In
co

rp
or

at
e

su
st

ai
na

bi
lit

y
in

to
de

ve
lo

pm
en

tp
ro

ce
ss

.

C
ur

re
nt

de
ve

lo
pm

en
t

fr
am

ew
or

k
al

lo
w

th
e

us
e

of
sc

ru
m

an
d

ve
rs

io
n

co
nt

ro
l.

Pr
ov

id
e

a
de

ve
lo

pm
en

tf
ra

m
ew

or
k

th
at

su
pp

or
ts

us
ta

in
ab

ili
ty

fo
cu

si
ng

on
th

e
so

ft
w

ar
e

an
d

th
os

e
de

ve
lo

pi
ng

th
e

so
ft

w
ar

e
it

se
lf

.

(D
ev

el
op

m
en

t)
pr

oc
es

s
en

gi
ne

er
A

re
gu

id
el

in
es

av
ai

la
bl

e?
Bo

ol
ea

n
(Y

es
or

N
o)

.

(P
8)

O
ff

er
re

as
on

ab
le

am
ou

nt
of

fe
at

ur
es

.

C
ur

re
nt

ly
al

lo
ffi

ce
ap

pl
ic

at
io

n
co

m
es

w
ith

al
l

th
e

fe
at

ur
es

w
hi

ch
so

m
et

im
es

ar
e

ra
re

ly
us

ed
by

us
er

s.

Pr
ov

id
e

al
lb

as
ic

fe
at

ur
es

fo
r

of
fic

e
ap

pl
ic

at
io

n
an

d
al

lo
w

us
er

s
to

ad
d

ot
he

r
fe

at
ur

es
w

he
n

ne
ed

ed
.

Bu
si

ne
ss

an
al

ys
ta

nd
so

ft
w

ar
e

de
ve

lo
pe

r

W
ha

ti
s

th
e

nu
m

be
r

of
ch

an
ge

s
to

be
m

ad
e

to
ad

d
ne

w
fe

at
ur

es
?

R
ew

or
k

m
et

ri
c.

(P
9)

A
dd

gr
ee

n
pr

in
t(

an
d

le
t

us
er

kn
ow

ho
w

m
an

y
pa

ge
s

th
ey

sa
ve

ov
er

ti
m

e)
.

U
se

rs
ca

n
pr

in
ta

ny
do

cu
m

en
ta

s
th

ei
r

ne
ed

re
qu

ir
es

.

In
co

rp
or

at
e

gr
ee

n
pr

in
tt

o
of

fic
e

ap
pl

ic
at

io
n

th
at

in
fo

rm
us

er
s

w
he

ne
ve

r
th

ey
w

an
tt

o
pr

in
ta

do
cu

m
en

tf
or

th
e

se
co

nd
ti

m
e

th
at

th
ey

ca
n

sk
ip

fe
w

pa
ge

s
be

ca
us

e
ch

an
ge

s
w

er
e

no
tm

ad
e

on
th

os
e

pa
ge

s.

So
ft

w
ar

e
de

ve
lo

pe
r

D
o

pe
op

le
pr

in
tl

es
s

by
us

in
g

th
is

gr
ee

n
pr

in
tb

ut
to

n?

N
um

be
r

of
pa

ge
s

pr
in

te
d

co
m

pa
re

d
to

if
th

er
e

w
as

no
gr

ee
n

bu
tt

on
.

Ta
bl

e
A

6.
Su

st
ai

na
bi

lit
y

di
m

en
si

on
s

or
de

r
of

im
pa

ct
s

fo
r

de
sk

to
p

ap
pl

ic
at

io
n

(M
ic

ro
so

ft
O

ffi
ce

).

O
rd

er
of

Im
pa

ct
s

En
vi

ro
nm

en
t

Ec
on

om
ic

Te
ch

ni
ca

l
So

ci
al

In
di

vi
du

al

1s
t

R
ed

uc
e

th
e

am
ou

nt
of

m
an

ua
lw

ri
ti

ng
on

pa
pe

rs
w

hi
ch

in
tu

rn
re

du
ce

s
th

e
am

ou
nt

of
pa

pe
r

us
ed

by
pe

op
le

fo
r

w
ri

ti
ng

.

O
pe

n
ne

w
po

te
nt

ia
l

m
ar

ke
tf

or
co

m
pa

ny
to

ex
pl

or
e.

En
su

re
th

e
ab

ili
ty

of
W

or
d

ap
pl

ic
at

io
n

to
m

ee
tn

ew
m

ar
ke

t
de

m
an

ds
fr

om
th

e
te

ch
ni

ca
l

im
pl

em
en

ta
ti

on
as

pe
ct

.

C
re

at
es

ne
w

jo
b

op
po

rt
un

it
ie

s
fo

r
th

os
e

th
at

ar
e

ex
pe

rt
w

it
h

m
os

t
of

th
e

of
fic

e
ap

pl
ic

at
io

ns
.

Pr
ov

id
e

ef
fic

ie
nt

w
ay

of
do

in
g

da
ily

ta
sk

su
ch

as
do

cu
m

en
ta

ti
on

,p
ro

je
ct

m
an

ag
em

en
ta

nd
de

si
gn

.

2n
d

R
ed

uc
e

pa
pe

r
re

so
ur

ce
w

as
ta

ge
.

In
cr

ea
se

in
pr

ofi
tf

or
M

ic
ro

so
ft

an
d

ot
he

r
pa

rt
ne

r
co

m
pa

ni
es

th
ro

ug
h

sa
le

s
of

of
fic

e
ap

pl
ic

at
io

n.

In
cr

ea
se

in
us

e
of

co
m

pu
te

rs
fo

r
de

ve
lo

pm
en

to
fa

dd
-o

ns
an

d
pl

ug
in

s
fo

r
of

fic
e

ap
pl

ic
at

io
ns

.

Pr
ov

id
es

a
co

m
m

un
it

y
fe

el
in

g
am

on
g

us
er

s.

G
ua

ra
nt

ee
th

at
us

er
w

ill
ea

si
ly

fin
is

h
th

ei
r

ta
sk

w
hi

le
us

in
g

th
e

ap
pl

ic
at

io
n

fo
r

th
ei

r
da

y-
to

-d
ay

w
or

k.

3r
d

It
w

ill
in

cr
ea

se
en

er
gy

us
ag

e
ov

er
ti

m
e

du
e

to
ea

se
of

do
in

g
da

ily
ta

sk
on

co
m

pu
te

rs
,p

ho
ne

s
an

d
ta

bl
et

s.

R
is

e
in

co
m

pa
ny

’s
pr

ofi
t

th
ro

ug
h

pr
od

uc
t

in
no

va
ti

on
as

de
m

an
ds

ch
an

ge
fr

om
ge

ne
ra

tio
n

to
ge

ne
ra

ti
on

.

D
em

an
d

fo
r

ne
w

fe
at

ur
es

to
m

ee
tn

ew
de

m
an

ds
.

Im
pr

ov
es

co
nn

ec
te

dn
es

s
am

on
g

us
er

s
th

ro
ug

h
co

lla
bo

ra
ti

on
on

lin
e.

Im
pr

ov
es

th
e

ov
er

al
l

ab
ili

ty
of

us
er

s
co

m
pl

et
in

g
th

ei
r

ta
sk

(d
oc

um
en

ta
ti

on
,p

ro
je

ct
m

an
ag

em
en

ta
nd

de
si

gn
).

Sustainability 2018, 10, 2296 26 of 30

References

1. Microsoft. Microsoft 2015 Citizenship Report Letter from Our CEO. 2015. Available online:
http://download.microsoft.com/download/7/3/6/736CED21-9D8B-4CBB-98E8-DCBAE7026251/
Microsoft%202015%20Citizenship%20Report.pdf (accessed on 20 March 2018).

2. IBM. Global CEO Study: The Enterprise of the Future. Available online: https://www-935.ibm.com/
services/uk/gbs/pdf/ibm_ceo_study_2008.pdf (accessed on 11 October 2017).

3. Nidumolu, R.; Prahalad, C.K.; Rangaswami, M.R. Why sustainability is now the key driver of innovation.
IEEE Eng. Manag. Rev. 2013, 41, 30–37. [CrossRef]

4. Firstcarbon Solutions. Constructing Sustainable Business Models. Available online: http:
//www.firstcarbonsolutions.com/resources/newsletters/january-2014-constructing-sustainable-business-
models/constructing-sustainable-business-models/ (accessed on 18 June 2018).

5. Knut, H.; Martin, R.; Ingridvon, S.; Michael, A.; David, K.; Nina, K. Sustainability Nears a Tipping Point
Sustainability Nears a Tipping Point. MIT Sloan Manag. Rev. 2012, 53, 69–74.

6. Calero, C.; Piattini, M. Introduction to Green in software engineering. Green Softw. Eng. 2015, 3–27. [CrossRef]
7. Becker, C.; Betz, S.; Chitchyan, R.; Duboc, L.; Easterbrook, S.M.; Penzenstadler, B.; Ssyff, N.; Venters, C.C.

Requirements: The key to sustainability. IEEE Softw. 2016, 33, 56–65. [CrossRef]
8. Koçak, S.A.; Alptekin, G.I.; Bener, A.B. Evaluation of software product quality attributes and environmental

attributes using ANP decision framework. CEUR Workshop Proc. 2014, 1216, 37–44.
9. Ericsson. Technology for Good. Available online: https://www.ericsson.com/assets/local/about-ericsson/

sustainability-and-corporate-responsibility/documents/2015-corporate-responsibility-and-sustainability-
report.pdf (accessed on 30 November 2014).

10. Ericsson. Energy and Carbon Report. 2013. Available online: http://www.ericsson.com/res/docs/2013/
ericsson-energy-and-carbon-report.pdf (accessed on 11 November 2017).

11. Digiconomist. Bitcoin Energy Consumption Index. Available online: https://digiconomist.net/bitcoin-
energy-consumption (accessed on 18 June 2018).

12. Elbahrawy, A.; Alessandretti, L.; Kandler, A.; Pastor-satorras, R. Evolutionary dynamics of the cryptocurrency
market. R. Soc. Open Sci. 2017, 1–16. [CrossRef] [PubMed]

13. Chris, P.; Dan, S.; Eli, B. Understanding and Mitigating the Effects of Device and Cloud Service Design
Decisions on the Environmental Footprint of Digital Infrastructure. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems (CHI’16), San Jose, CA, USA, 7–12 May 2016;
ACM/IEEE: New York, NY, USA, 2016; pp. 1324–1337.

14. Al Hinai, M.; Chitchyan, R. Engineering Requirements for Social Sustainability. 2016. Available online:
http://www.cs.le.ac.uk/people/rc256/ict4s2016_hinai_chitchyan.pdf (accessed on 20 June 2018).

15. Penzenstadler, B. Software Engineering for Sustainability. Available online: https://www.ics.uci.edu/~djr/
DebraJRichardson/SE4S.html (accessed on 20 June 2018).

16. Blevis, E.; Preist, C.; Schien, D.; Ho, P. Further Connecting Sustainable Interaction Design with Sustainable
Digital Infrastructure Design. In Proceedings of the 2017 Workshop on Computing Within Limits (LIMITS’17),
Santa Barbara, CA, USA, 22–24 June 2017; ACM/IEEE: New York, NY, USA, 2017; pp. 71–83.

17. Penzenstadler, B.; Femmer, H. A Generic Model for Sustainability with Process-and Product-Specific
Instances. In Proceedings of the 2013 workshop on Green in/by software engineering (GIBSE’13), Fukuoka,
Japan, 26 March 2013; ACM: New York, NY, USA, 2013; pp. 3–7.

18. Jeanette Schwarz, E.B.; Beloff, B. Use Sustainability Metrics to Guide Decision Making. CEP 2002, 98, 58–63.
19. Penzenstadler, B. What does Sustainability mean in and for Software Engineering? In Proceedings of the 1st

International Conference on ICT for Sustainability (ICT4S), Zurich, Switzerland, 14–16 February 2013.
20. Venters, C.C.; Jay, C.; Lau, L.M.S.; Griffiths, M.K.; Holmes, V.; Ward, R.R.; Austin, J.; Dibsdale, C.E.; Xu, J.

Software sustainability: The modern tower of babel. In Proceedings of the Third International Workshop
on Requirements Engineering for Sustainable Systems Co-Located with 22nd International Conference on
Requirements Engineering (RE 2014), Karlskrona, Sweden, 26 August 2014.

21. Ehrenfeld, J.R. Sustainability by Design: A Subversive Strategy for Transforming Our Consumer Culture;
Yale University Press: New Haven, Ct, USA; London, UK, 2008.

22. Freeman, P. The Central Role of Design in Software Engineering: Implications for Research. Softw. Eng.
Res. Dir. 1980, 121–132. [CrossRef]

Sustainability 2018, 10, 2296 27 of 30

23. Becker, C.; Chitchyan, R.; Duboc, L.; Easterbrook, S.; Mahaux, M.; Penzenstadler, B.; Rodriguez-Navas, G.;
Salinesi, C.; Seyff, N.; Venters, C.; et al. The Karlskrona manifesto for sustainability design. Softw. Eng. 2014,
20, 2014.

24. Becker, C.; Chitchyan, R.; Duboc, L.; Easterbrook, S.; Penzenstadler, B.; Seyff, N.; Venters, C.C. Sustainability
Design and Software: The Karlskrona Manifesto. In Proceedings of the 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, Florence, Italy, 16–24 May 2015.

25. Saval, G.; Mahaux, M.; Heymans, P. Discovering Sustainability Requirements: An Experience Report.
In Proceedings of the 20th International Working Conference on Requirements Engineering: Foundation for
Software Quality, Essen, Germany, 7–10 April 2014.

26. Chitchyan, R.; Betz, S.; Duboc, L.; Penzenstadler, B.; Ponsard, C.; Venters, C.C. Evidencing Sustainability
Design Through Examples. 2015. Available online: http://eprints.hud.ac.uk/id/eprint/25699/1/
Session2Paper3.pdf (accessed on 28 June 2018).

27. Groher, I.; Weinreich, R. An Interview Study on Sustainability Concerns in Software Development Projects.
In Proceedings of the 2017 43rd Euromicro Conference on Software Engineering and Advanced Applications
(SEAA), Vienna, Austria, 30 August–1 September 2017.

28. Pargman, D.; Eriksson, E.; Höjer, M.; Östling, U.G.; Borges, L.A. The (Un)sustainability of Imagined Future
Information Societies. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems
(CHI’17), Denver, CO, USA, 6–11 May 2017; ACM: New York, NY, USA, 2017; pp. 773–785.

29. Ilstedt, S.; Eriksson, E.; Hesselgren, M.I.A. Sustainable Lifestyles–How Values Affect Sustainable Practises.
2017. Available online: http://www.nordes.org/nordes2017/assets/full_papers/nordes17a-sub1039-cam-
i26_ILSTEDT_v2.pdf (accessed on 28 June 2018).

30. Shedroff, N. Design is the Problem: The Future of Design Must be Sustainable. 2009, p. 582.
Available online: https://designethosandaction.files.wordpress.com/2015/01/design-is-the-problem.pdf
(accessed on 28 June 2018).

31. Bibri, M. Sustaining ICT for Sustainability. 2009. Available online: https://www.diva-portal.org/smash/
get/diva2:833352/FULLTEXT01.pdf (accessed on 28 June 2018).

32. Eriksson, E.; Pargman, D.; Bates, O.; Normark, M.; Gulliksen, J.; Anneroth, M.; Berndtsson, J. HCI and
UN’s Sustainable Development Goals: Responsibilities, Barriers and Opportunities. In Proceedings
of the 9th Nordic Conference on Human-Computer Interaction (NordiCHI’16), Gothenburg, Sweden,
23–27 October 2016; ACM: New York, NY, USA, 2016; pp. 140:1–140:2.

33. Vister, K.K.; Evans, R.D. Identifying Contributing Factors to Sustainability Awareness in the Norwegian
Software Industry. In Proceedings of the 2017 IEEE 4th International Conference on Knowledge-Based
Engineering and Innovation (KBEI), Tehran, Iran, 22 December 2017.

34. Musthaler, L. Energy-Aware Software Design Can Reduce Energy Consumption by 30% to 90%. Network
World. 2014. Available online: https://www.networkworld.com/article/2861005/green-it/energy-aware-
software-design-can-reduce-energy-consumption-by-30-to-90.html (accessed on 28 June 2018).

35. Durdik, Z.; Klatt, B.; Koziolek, H.; Krogmann, K.; Stammel, J.; Weiss, R. Sustainability Guidelines for
Long-Living Software Systems. In Proceedings of the 2012 28th IEEE International Conference on Software
Maintenance (ICSM), Trento, Italy, 23–28 September 2012; pp. 517–526.

36. Malik, M.N.; Khan, H.H. Investigating Software Standards: A Lens of Sustainability for Software
Crowdsourcing. IEEE Access 2018, 6, 5139–5150. [CrossRef]

37. Nina, W.; Patricia, L.; Francesco, O. Sustainability in Software Engineering. 2017. Available online: http:
//dl.ifip.org/db/conf/ifip6-3/sustainit2017/08_P08_S21_SustainIT2017.pdf (accessed on 28 June 2018).

38. Robillard, M.P. Sustainable Software Design. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, Seattle, WA, USA, 13–18 November 2016; ACM:
New York, NY, USA; pp. 920–923.

39. Lago, P.; Koçak, S.A.; Crnkovic, I.; Penzenstadler, B. Framing Sustainability as a Property of Software Quality.
Commun. ACM 2012, 55, 56–64. [CrossRef]

40. Chitchyan, R.; Duboc, L.; Becker, C.; Betz, S.; Penzenstadler, B.; Venters, C.C. Sustainability Design in
Requirements Engineering: State of Practice. In Proceedings of the 2016 IEEE/ACM 38th International
Conference on Software Engineering Companion (ICSE-C), Austin, TX, USA, 14–22 May 2016.

Sustainability 2018, 10, 2296 28 of 30

41. Calienes, G.G. Requirements Prioritization Framework for developing Green and Sustainable Software
Using ANP—Based Decision Making. 2013. Available online: http://enviroinfo.eu/sites/default/files/
pdfs/vol7995/0327.pdf (accessed on 28 June 2018).

42. Penzenstadler, B. RE4ES: Support Environmental Sustainability by Requirements Engineering. 2012.
Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.382.9172&rep=rep1&type=
pdf (accessed on 28 June 2018).

43. Bozzelli, P.; Gu, Q.; Lago, P. A Systematic Literature Review on Green Software Metrics. 2013. Available online:
http://dare.ubvu.vu.nl/bitstream/handle/1871/52417/SLR?sequence=1 (accessed on 28 June 2018).

44. Kern, E.; Dick, M.; Naumann, S.; Guldner, A.; Johann, T. Green Software and Green Software
Engineering—Definitions, Measurements, and Quality Aspects. In Proceedings of the First International
Conference on Information and Communication for Sustainability, Zurich, France, 14–16 February 2013;
pp. 87–94.

45. Johann, T.; Dick, M.; Kern, E.; Naumann, S. Sustainable Development, Sustainable Software, and Sustainable
Software Engineering: An Integrated Approach. In Proceedings of the 2011 International Symposium on
Humanities, Science and Engineering Research, Kuala Lumpur, Malaysia, 6–7 June 2011; pp. 34–39.

46. Sawyer, P.; Paech, B.; Heymans, P. (Eds.) Requirements Engineering: Foundation for Software Quality.
In Proceedings of the 13th International Working Conference (REFSQ 2007), Trondheim, Norway,
11–12 June 2007; pp. 247–261.

47. Dick, M.; Naumann, S. Enhancing Software Engineering Processes Towards Sustainable Software Product Design.
2010. Available online: https://pdfs.semanticscholar.org/98d0/4de0318b252f273e3cf36cc385253542b924.pdf
(accessed on 28 June 2018).

48. Erdélyi, K. Special Factors of Development of Green Software Supporting Eco Sustainability. In Proceedings
of the 2013 IEEE 11th International Symposium on Intelligent Systems and Informatics (SISY), Subotica,
Serbia, 26–28 September 2013.

49. Oyedeji, S.; Seffah, A.; Penzenstadler, B. Sustainability Quantification in Requirements Informing Design.
2017. Available online: http://ceur-ws.org/Vol-1944/paper6.pdf (accessed on 28 June 2018).

50. Penzenstadler, B. Infusing Green: Requirements Engineering for Green in and through Software Systems.
2014. Available online: http://ceur-ws.org/Vol-1216/paper8.pdf (accessed on 28 June 2018).

51. Roher, K.; Richardson, D. Sustainability Requirement Patterns. In Proceedings of the 2013 3rd International
Workshop on Requirements Patterns (RePa), Rio de Janeiro, Brazil, 15–19 July 2013.

52. Colmant, M.; Rouvoy, R.; Seinturier, L. Improving the Energy Efficiency of Software Systems for
Multi-Core Architectures. In Proceedings of the 11th Middleware Doctoral Symposium, Bordeaux, France,
8–9 December 2014.

53. Lami, G.; Buglione, L. Measuring Software Sustainability from a Process-Centric Perspective. In Proceedings
of the 2012 Joint Conference of the 22nd International Workshop on Software Measurement and the
2012 Seventh International Conference on Software Process and Product Measurement, Assisi, Italy,
17–19 October 2012.

54. Calero, C.; Bertoa, M.F.; Moraga, M.A. A Systematic Literature Review for Software Sustainability Measures.
In Proceedings of the 2013 2nd International Workshop on Green and Sustainable Software (GREENS),
San Francisco, CA, USA, 20 May 2013.

55. Seacord, R.; Elm, J.; Goethert, W.; Lewis, G.A.; Plakosh, D.; Robert, J.; Wrage, L.; Lindvall, M. Measuring
Software Sustainability. In Proceedings of the International Conference on Software Maintenance,
Amsterdam, The Netherlands, 22–26 September 2003.

56. Penzenstadler, B.; Martin, M.; Camille, S. RE4SuSy: Requirements Engineering for Sustainable Systems.
J. Syst. Softw. 2013, 995. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.415.
8601&rep=rep1&type=pdf (accessed on 28 June 2018).

57. Christoph, B. Sustainability and longevity: Two sides of the same quality? CEUR Workshop Proc. 2014,
1216, 1–6.

58. Becker, C. Website for The Karlskrona Manifesto for Sustainability Design. 2014. Available online: http:
//sustainabilitydesign.org/karlskrona-manifesto/ (accessed on 10 October 2017).

59. Fowler, M.; Highsmith, J. The agile manifesto. Softw. Dev. 2001, 9, 28–35.
60. Bussiness Rules Group. The Business Rules Manifesto. Available online: http://www.businessrulesgroup.

org/brmanifesto.htm (accessed on 12 November 2017).

Sustainability 2018, 10, 2296 29 of 30

61. Arsanjani, A.; Booch, G.; Boubez, T.; Brown, P.; Chappell, D.; de Vadoss, J.; Loesgen, B. The SOA Manifesto.
SOA Manifesto 2009, 35, 82–88.

62. Felikson, L. The SOA Manifesto: Establishing a Common Understanding about SOA and Service-Orientation
History of The SOA Manifesto. 2010. Available online: http://2010.secrus.org/wp-content/uploads/
download/Felikson.pdf (accessed on 28 June 2018).

63. Gent, I. The Recomputation Manifesto. Available online: https://www.software.ac.uk/blog/2016-10-05-
recomputation-manifesto (accessed on 12 November 2016).

64. Langer, A.M. Guide to Software Development—Designing and Managing the Life Cycle. 2016, p. 402.
Available online: https://www.springer.com/la/book/9781447167976 (accessed on 28 June 2018).

65. Berkhout, F.; Hertin, J. Impacts of Information and Communication Technologies on Environmental
Sustainability: Speculations and Evidence. Available online: http://www.oecd.org/sti/inno/1897156.pdf
(accessed on 28 June 2018).

66. Hilty, L.M.; Aebischer, B. ICT for Sustainability: An Emerging Research Field. In ICT Innovations for
Sustainability; Advances in Intelligent Systems and Computing; Hilty, L., Aebischer, B., Eds.; Springer: Cham,
Switzerland, 2015; Volume 310.

67. ETH Sustainability Summer School 2011. Washing Machine. 2011. Available online: http://
webarchiv.ethz.ch/sustainability-v2/lehre/Sommerakademien/so2011/washies_report.pdf (accessed on
10 December 2017).

68. Consumer Reports. Washing Machines That Save Water and Money. 2017. Available online: https://www.
consumerreports.org/cro/news/2015/04/washing-machines-that-save-water-and-money/index.htm
(accessed on 28 June 2018).

69. National Geographic. Washing Machines Buying Guide. 2017. Available online: http://environment.
nationalgeographic.com/environment/green?guide/washing?machine?buying?guide/environmental?
impact/ (accessed on 5 May 2017).

70. Jack, T. The dirt on clothes: Why washing less is more sustainable. J. Home Econ. Inst. Aust. 2013, 20, 44.
71. Ross, C. The Damage I Cause When I Wash My Clothes. 2015. Available online: https:

//theswatchbook.offsetwarehouse.com/2015/07/16/environmental-impact-of-the-washing-machine/
(accessed on 28 June 2018).

72. Markham, D. How to Reuse Grey Water in the Home and Yard. 2017. Available online: https://www.
treehugger.com/green-home/how-reuse-grey-water-home-and-yard.html (accessed on 28 June 2018).

73. R Entertainment. UN Honours ‘Angry Birds, Happy Planet’ Campaign. 2017. Available online: http://www.
goodnewsfinland.com/un-honours-angry-birds-happy-planet-campaign/ (accessed on 28 June 2018).

74. Deloittte, G. 2016 Mobile Industry Impact Report: Sustainable Development Goals. 2016. Available online:
https://www.gsma.com/betterfuture/wp-content/uploads/2016/09/_UN_SDG_Report_FULL_R1_WEB_
Singles_LOW.pdf (accessed on 28 June 2018).

75. Arndt, H.; Dziubaczyk, B.; Mokosch, M. Information Technology in Environmental Engineering; Springer
International Publishing: Cham, Switzerland, 2014; pp. 13–24.

76. Sony Pictures. Make the Angry Birds Happy! Take Climate Actio Send a Tweet, Record a Vine, Take a Photo
That Shows Raising Your Voice for Good Cause. Available online: http://www.angrybirdshappyplanet.net/
(accessed on 13 October 2017).

77. Sony Pictures. The Angry Birds Movie Themed Angry Birds for a Happy Planet. Available online: http://www.
sonypicturesgreenerworld.com/articles/angry-birds-for-a-happy-planet (accessed on 14 October 2017).

78. Accenture. Microsoft, Accenture and WSP Environment & Energy Study Shows Significant Energy and
Carbon Emissions Reduction Potential from Cloud Computing. Available online: https://newsroom.
accenture.com/article_display.cfm?article_id=5089 (accessed on 20 November 2017).

79. Microsoft. Microsoft Products Our Products are Empowering People and Organizations to Achieve More
While Improving Efficiency and Reducing Carbon Emissions. Cloud Services. Available online: https:
//www.microsoft.com/about/csr/environment/solutions/cloud/ (accessed on 11 November 2017).

80. Ahmad, I.; Ranka, S. (Eds.) Handbook of Energy-Aware and Green Computing–Two Volume Set; Chapman and
Hall/CRC: New York, NY, USA, 2012.

81. Accenture. Cloud Computing and Sustainability: The Environmental Benefits of Moving to the
Cloud. Available online: http//download.microsoft.com/download/A/F/F/AFFEB671-FA27-45CF-9373-
0655247751CF/CloudComput.Sustain.-Whitepaper-Nov2010.pdf (accessed on 22 August 2017).

Sustainability 2018, 10, 2296 30 of 30

82. Queensland Department of Public Works. Smart and Sustainable Homes Design Objectives. 2016.
Available online: http://www.hpw.qld.gov.au/construction/sustainability/smartsustainablehomes/Pages/
Default.aspx (accessed on 28 June 2018).

83. Wilson, C.; Hargreaves, T.; Hauxwell-Baldwin, R. Benefits and risks of smart home technologies. Energy Policy
2017, 103, 72–83. [CrossRef]

84. Bhati, A.; Hansen, M.; Chan, C.M. Energy conservation through smart homes in a smart city: A lesson for
Singapore households. Energy Policy 2017, 104, 230–239. [CrossRef]

85. Monaghan, A. Seven Things You Need to Know about the UK Economy. Available online: https://www.
theguardian.com/sustainable-business/2015/apr/17/things-need-know-sustainable-smart-technology
(accessed on 18 December 2017).

86. Solanki, V.K.; Muthusamy, V.; Katiyar, S. Think Home: A Smart Home as Digital Ecosystem. Circuits Syst.
2016, 7. [CrossRef]

87. Li, R.Y.M. The Usage of Automation System in Smart Home to Provide a Sus-Tainable Indoor Environment:
A Content Analysis in Web 1.0. Int. J. Smart Home 2013, 7, 47–60.

88. Barker, S.; Mishra, A.; Irwin, D.; Cecchet, E.; Shenoy, P.; Albrecht, J. Smart*: An Open Data Set and Tools for
Enabling Research in Sustainable Home. 2012. Available online: http://www.ecs.umass.edu/~deirwin/
sustkdd12.pdf (accessed on 28 June 2018).

89. Makonin, S.; Bartram, L.; Popowich, F. A Smarter Smart Home: Case Studies of Ambient Intelligence.
IEEE Pervasive Comput. 2013, 12, 58–66. [CrossRef]

90. Kramer, K.-L. User Experience in the Age of Sustainability; Morgan Kaufmann: Burlington, MA, USA, 2012.
91. Spinellis, D. The Social Responsibility of Software Development. IEEE Softw. 2017, 34, 4–6. [CrossRef]
92. Nicholl, A.; Perry, M. Smart Home Systems and the Code for Sustainable Homes: A BRE Guide; IHS BRE Press:

Bracknell, UK, 2009; ISBN 9781848061125.
93. Brouwers, M.C.; Kho, M.E.; Browman, G.P.; Burgers, J.S.; Cluzeau, F.; Feder, G.; Fervers, B.; Graham, I.D.;

Grimshaw, J.; Hanna, S.; et al. AGREE II: Advancing guideline development, reporting and evaluation in
healthcare. Can. Med. Assoc. J. 2010, 182, E839–E842. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Publication III

S. Oyedeji, A. Seffah, and B. Penzenstadler
Classifying the Measures of Software Sustainability

In: 4th International Workshop on Measurement and Metrics for Green and Sustainable
Software Systems co-located with 12th International Symposium on Empirical Software

Engineering and Measurement (ESEM 2018)

Reprinted with permission from
CEUR Workshop Proceedings

Vol. 2286, pp. 19-25, 2018

© 2018, CEUR

Classifying the Measures of Software Sustainability

Shola Oyedeji

LUT School of Engineering (LENS)

Lappeenranta University of Technology

Lappeenranta, Finland

shola.oyedeji@lut.fi

Ahmed Seffah

LUT School of Engineering (LENS)

Lappeenranta University of Technology

Lappeenranta, Finland
ahmed.seffah@lut.fi

Birgit Penzenstadler

Department of Computer Engineering

and Computer Science California State

University Long Beach (CSULB) Long

Beach, California, USA
birgit.penzenstadler@csulb.edu

Abstract— Energy efficiency is one of the very few

measures widely used for evaluating green and sustainable

software systems. This paper investigates the current measures

of software sustainability from the four different software

sustainability perceptions: Sustainability in Software

Development, Green Software Systems, Software for

Sustainability, Sustainability of the Software Eco System and

Software Sustainability Dimensions (Economic, Social,

Individual, Technical and Environment). While exploring the

literature on green and sustainable software systems, measures

of green software and software sustainability were identified,

compiled and classified according to the four sustainability

perceptions.

Keywords— green software, sustainable software, measures,

sustainability, sustainability perceptions, green measures,

software measurement.

I. INTRODUCTION

Sustainability is now one of the world major challenge
[1][2]. The United Nations Sustainable development Goals
(SDGs) shows the importance of sustainability in all facet of
human lives and development. Today’s economy rely on
information and communications technology (ICT) in which
software is a key factor and catalyst for all economic
activities and a major driver linking all sectors. As stated in
an Ericsson report that ICT can help reduce the global
greenhouse gas (GHG) emissions by 15% [3]. Currently ICT
itself contributes an estimated 2% to the global CO2
emissions and accountable for approximately 8% of the
European Union (EU) electricity consumption [4]. This
shows ICT has a huge potential to help support sustainability
and Green [5] but at same time it is important to explore
avenues to make ICT domain more green and sustainable
because of its huge impact on sustainability. Finding ways to
properly evaluate software in regards to green and
sustainability will provide avenues to reduce the current
negative impacts of ICT.

This research explores the ongoing perceptions in the
software engineering domain with the goal to identify the
current and future measures used in the evaluation of green
and sustainable software. Via triangulation of data from
diverse sources, the measures are clustered into the four
perceptions of sustainability in software engineering and
sustainability dimensions. The long term goal of this research
is to answer the following challenging questions: what are
the current measures used in evaluating green and
sustainability aspects of software systems and how can these
measures be grounded in the software sustainability
measurement theory.

II. BACKGROUND

A. Sustainability in Software Development

As a measurable attribute, software sustainability is more
than the perceptions of capacity to endure [6]. Sustainable
software measures should include the direct and indirect
negative impacts on economy, society, human beings, and
environment that result from development, deployment, and
usage of the software [7]. It is also beyond the current focus
of sustainability in requirements engineering where
sustainability is considered as a nonfunctional requirement
(NFR) by some [8][9][10]. In [2], the authors reported on a
software project in which sustainability requirements were
treated as quality requirements, and systematically elicited
and documented. Another work also proposed an approach to
tackle sustainability during software systems development
and maintenance that decomposes sustainability into four
aspect in software development life cycle such as the
development process, maintenance process, system
production and system usage [11]. This approach is useful
for a process engineer who instantiates this approach for a
software development company or requirements engineer
who instantiates it for a specific system under development.

The Software Sustainability Design Catalogue (SSDC)
that quantifies sustainability via a series of guidelines used
for incorporating sustainability into the design loop for
software system. The SSDC is created to promote effective
sustainability engineering and integration in phases of
software development life cycle. Design according to the
authors Oyedeji et al. [12] is a good way to achieve
sustainability in software development.

Furthermore a checklist and guide approach that
demonstrates how to include the objective of environmental
sustainability from the very early steps of software
development can assist in identifying key stakeholders. This
will facilitate the ability to accommodate new objectives of
improving the environmental sustainability of software
systems [13]. Roher et al. [14] suggests the use of
sustainability requirement patterns (SRPs), which will
provide software engineers with guidance on how to write
specific types of sustainability requirements with the goal to
overcome the barriers of incorporating environmental
sustainability into the requirements engineering process.

B. Green software system

Green software is an environmentally friendly software that

consumes less energy, provides less impacts on environment

and support carbon management [15]. It is also software that

fulfils high level requirements, ensuring the software

engineering process, maintenance, and disposal saves and/or

reduces resource waste [16] [17]. Green software is divided

into four parts: software that is energy efficient during

execution, software that are embedded to execute and

support smart operations in green manner, software to

produce environment viable products and policies [18]. The

goal of green software engineering is to provide supports for

efficient consumption of natural resources while

continuously monitoring, evaluating and optimizing the

aftermath effects caused during the software system life

cycle [19].

Erdélyi [20] paper provides an overview of different

activities and advice on what to do in order to develop green

software which uses energy efficiently and produce less

waste. The paper highlights three ways software engineering

can be green such as: produce green software, produce

software to support environmentally consciousness (green by

software) and produce less waste during development.

Dick et al. [21] provides basis for the right way to
engineer green software systems using development process
that ensures that the positive and negative effects of the
software is continuously monitored and evaluated in order to
optimize the software over its life cycle to be more green
(environmental friendly).

Colmant et al. [22] presented researches on to improve
the software-energy efficiency on multi-core systems.
Colmant et al. [28] motivations were driven by the huge
impact of the ICT on the world CO2 emissions which
represents 2%. Calero et al. [4] highlights some of the
meanings of green software notably a software that
consumes less energy to run and produces as little waste as
possible during its development and operation. Largely,
research on green software has focused more on energy
consumption and environmentally friendly software systems.

C. Software for Sustainability

There has been some interest in various domains such as
manufacturing, energy sector, transportation and for different
application in recycling, product packaging, data center
setup, gas emissions. Some of the good examples are in grid
computing, in Human Computer Interaction (HCI) to change
the habit of people.

In [23], authors presented a software system that support

sustainable lifestyles with an example of a domestic plant

guild to show how sustainable human systems can

effectively support a sustainable lifestyle, which can reduce

the cost of living as well as the ecological footprint.

Penzenstadler et al. [24] highlights vision for systems that

will be supporting sustainability in the future (2029) with a

set of fictional abstracts around the concepts of

sustainability, complexity, collapse, and resilience of ICT

systems.

Software can also provide support for sustainability in

different domains such as:

 The use of software systems for tracking gas

emissions

 Software for climate and disaster prediction

 Smart infrastructural management software

 Enterprise carbon and energy management software

 Smart transportation software to reduce CO2

emissions.

 Sustainability Knowledge and Learning
Management software

 Software for environmental awareness on wildlife
and plants

D. Sustainability of the software ecosystem

Today software systems are the pillars of the economy,
the software eco system is probably the biggest system in the
world we human created. Software eco system has been
defined according to Jansen et al. [25] as a set of actors
functioning as a unit and interacting with a shared market for
software and services, together with the relationships among
them. These relationships are frequently underpinned by a
common technological platform or market and they operate
through the exchange of information, resources and artifacts.

Thus, the sustainability of software ecosystem involves
the sustainment of the global system of software systems and
services covering aspect of how different sub systems form a
huge interconnected system and all the interactions. It covers
all different components such as hardware, software and
network that is used to resolve complex relationships among
companies/organizations in all the different sectors and
industries [26].

Sustainability of the software ecosystem entails how can
the system of software systems endure with the evolving user
requirements and usage overtime with less negative impact
on the environments, social, technical and humans. This
means the ability of software ecosystem to continue to
function and evolve irrespective of any glitch is some part of
the ecosystem and should continuously fulfil users’ needs.

III. PERCEPTIONS OF SUSTAINABILITY IN/FOR SOFTWARE

SYSTEMS

In this research, we defined sustainability as a quality

construct in the same ways other factors are defined (see, for

example, the ISO 25 000 family of standards). In our

perception sustainability aims to create balance in the way

humans live, produce, and use products and services

(resources) with the objective to have less negative impact on

the environment and promote the wellbeing of all living

species. This means the capacity of software systems to

endure in certain ecosystems under current and future

conditions while satisfying the needs of users today and

tomorrow with minimum negative impact on the

environment; at the same time supporting business growth

and societal values.
Currently, the dimensions of software sustainability are

known and classified into five: economic, environment,
social, individual and technical [27] but there is currently no
clear categorisation for the perceptions of sustainability
in/for software engineering. This section explains the
categorization of software sustainability perceptions based
on the literature review from the background section.
Software sustainability evolution today can be perceive from
one of the following perception (see Figure 1); Sustainability
in Software Development, Software for Sustainability, Green
Software Systems, Sustainability of Software Ecosystems.

 Sustainability in software development
(Development): this refers to the processes
involve in the development of software
(software development life cycle).

 Software for sustainability (Usage): how
software are used to support sustainability, an
example is a software in fridge to minimize
energy wastage (embedded software).

 Green software systems (Focused impact):
software systems that uses less energy resource
and promotes policies that supports green
awareness.

 Sustainability of software ecosystems (Net
effect): This is the total impact of the entire
software ecosystem (systems of system)

The advancement of software sustainability from the four
perceptions has received different level of research attention
and contributions. Sustainability in software development,
Green Software system we observed has the most important
advancement in research compared to software for
sustainability and sustainability of software ecosystem that
were not fully explored.

Figure 1 portrays the categorization of software

sustainability perceptions.

Figure 1. Sustainability Perceptions in/for Software Engineering

IV. MEASURES AND MEASUREMENT OF GREEN AND

SUSTAINABILITY IN/FOR SOFTWARE SYSTEMS

This section presents different research work relating to
green and sustainable software system measures and
measurement. According to Britannica [28], measurement is
the science of assigning of a quantity, either quantitative or
qualitative, to a characteristic of an object or event, while
making it comparable to other objects or events. Here object
is the software and event is the development process.
Sustainability measurement is still a new idea [29] [30] [31]
[32]. Indeed, Lami et al. [31] stated that there are few studies
about ‘what’ aspects of sustainability to measure and ‘how’
to do it. Calero et al. [33] highlighted that nowadays,
sustainability is a key factor that should be considered in the
software quality models, though there has less research
channelled towards sustainability measurement. Seacord et
al. [29] stated that planning and management of software
sustainment is impaired by a lack of consistently applied,
practical measures, and there is no central theoretical
framework on measurement of software sustainability.

One of the most referenced sustainability measurement
model for software system is the GREENSOFT Model [7]. It
is a conceptual reference model for “Green and Sustainable
Software”, which has the objective to support software
developers, administrators, and software users in creating,
maintaining, and using software in a more sustainable way
[34]. Another software sustainability measurement approach
is the Sustainable Business Goal Question Metric (S-BGQM)
[35]. It encourages the incorporation and measurement of
sustainability during the entire software system development
processes. Kramer [36] also wrote about sustainability
measurement by proposing some set of questions that should
be addressed by any sustainability framework.

A study for monitoring software energy hotspot proposed
power model for software energy cost formula as Esoftware
= Ecomp +Ecom +Einfra, where Ecomp is the computational
cost (i.e., CPU process- ing, memory access, I/O operations),
Ecom is the cost of exchanging data over the network, and
Einfra is the addi- tional cost incurred by the OS and runtime
platform (e.g., Java VM) [37]. The study focused on energy
consumption of CPU and network demanding software at
different levels of granularity. Also, the formula proposed for
software energy efficiency (EF) is
UsefulWorkDone/UserdEnergy [38]. This generic measure
provide a way for evaluating the energy consumption of
different software parts and modules using white box testing
to measure which parts are consuming more energy and to
see which parts can be optimized for efficient energy usage.

In order to facilitate research on energy usage attribution,
software energy footprint lab was setup to provide insight on
energy footprint measurements with results interpreting
hardware dissipation profiles for various servers under
different kinds of software stress [39]. This shows the
relations between different hardware resource and the
amount of resource required by the running software in
relation to the power consumption.

Furthermore, a support tool is presented to analyze
legacy systems in order to estimate the energy consumption
and detect parts of the system with higher energy
consumption. Using the profiling technique, the tool
instrument legacy Java systems in order to keep track of its
execution. This information, together with the energy
consumption, enables the engineer to analyze legacy system
consumption detecting energy peaks in the system [40].

Additionally, a modular Energy-Aware Computing
Framework (EACOF) is proposed as a way to allow access
to energy consumption information of software through API
calls. The EACOF is separated into two task for collection
and utilization of dynamic energy consumption data which
reduce development and maintenance overhead required for
the successful completion of each task[41]. Another
approach is also proposed for monitoring power
consumption of software in order to assist software designers
and developer to reduce software power consumption and
have better energy efficiency [42]. This approach currently
monitors power consumption at source code level, this
approach will provide better insights on software energy
consumption if extended to the hardware running the
software.

As summarized in Table 1 and the research work detailed
in [43] [44] [45] and [46], other measures of green and
sustainable software have been on software and hardware

energy consumption with less research for measures
covering software sustainability dimensions such as
individual, social, economic and software sustainability
perceptions (Software for sustainability and Software
ecosystem).

The measures detailed in Table 1 are structure based on
categorization of software sustainability and green measures
for software sustainability dimensions and the four
sustainability perceptions. Each column after the main title

has a “YES or No” to indicate if the proposed measure in the
research paper cover any of the categories listed in Table 1.
Most of the measures descriptions does not explicitly
indicate that the authors considered sustainability
dimensions. Base on the descriptions and explanations of the
authors for all measures, we have categorized those measures
according to the right sustainability dimension (Economic,
Social, Individual, Technical and Environment) to show how
it relates to the four sustainability perceptions.

TABLE I. MEASURES FOR GREEN AND SUSTAINABLE SOFTWARE LINKED TO SUSTAINABILITY DIMENSIONS AND PERCEPTIONS

Name Definition Formula Software

Development

Lifecycle

Green

Software

Software for

sustainability

Software

ecosystem

Sustainability

Dimensions

[37] Software
energy cost

The computational cost of
performing task involving

CPU processing, memory

access, I/O operations and
exchanging data over the

network.

Esoftware = Ecomp
+Ecom +Einfra where

Ecomp is the

computational cost
(i.e., CPU process- ing,

memory access, I/O

operations), Ecom is

the cost of exchanging

data over the network,

and Einfra is the addi-
tional cost incurred by

the OS and runtime

platform (e.g., Java
VM)

Yes Yes No No Environment

[39] Software

energy
footprint

Not stated Experimental lab setup

details can be found in
[39]

No Yes No No Environment

Energy

Efficiency (EF)
[47]

Not stated Energy Efficiency =

UsefulWorkDone

/UsedEnergy

No Yes No No Environment,

Technical

Performance

Efficiency (PE)

[48]

Not stated, sub-

characteristics measure

listed as Time behavior,
Resource utilization,

capacity

 Yes Yes No No Environment

Power Usage

Effectiveness

(PUE) [49]

The ratio of facilities

energy (supply side) to IT

equipment energy

(demand size)

PUE= Total Facility

Energy/IT equipment

Energy

No Yes No No Environment,

Technical

Performance
[50]

Not stated Not available No Yes No No Environment,
Technical

Efficiency [50] Not stated, third level

indicators provided as:
Time Behaviour,

Resource Utilization

Not available Yes Yes No No Environment,

Technical

Resource usage
[50]

Not stated, third level
indicators provided as:

CPU Usage, I/O Usage,

Memory Usage, Storage
Usage

Not available Yes Yes No No Technical

Energy impact

[50]

Not stated, third level

indicators provided as:
Energy Consumption,

CO2 Emission, Green

Energy Usage

Not available Yes Yes No No Environment

Energy
efficiency

(Speedup

Greenup,
Powerup, and)

[51]

Speedup is defined as the
ratio of serial code
runtime over parallel code
runtime.

Greenup is the ratio of the
total energy consumption
of the non-optimized code
(Eφ) over the total energy
consumption of the
optimized code (Eo).

Powerup implies the
power effects of an
optimization. A less than

Speedup=Tφ/To where
Tφ is the total
execution time of non-
optimized code, and
To is the total
execution time of the
optimized code.

Greenup = Eφ/Eo
Assuming, Pφ is the
average power
consumed by the non-
optimized code and Po
is the average power
consumed by the

No Yes No No Environment,
Technical

1 Powerup implies power
savings while a greater
than 1 Powerup indicates
that the optimized code
consumes more power in
average.

optimized code

Powerup =Po /Pφ=

Speedup /Greenup

Software

Project’s

Footprint [30]

Natural resources and

environ- mental impact

used during software
development.

Transportation from/to
the office, and Long-
haul trips. Example
used in the article:

Work-From-Home
Days: 2 days out of
165 total team- days
(33 project days * 5
team members)=1.21%

Long-Haul Roundtrips:
By airplane: 6; By

train: 0.

Yes No No No Environment

Functional

Suitability (FS)
[48]

Functional Completeness,

Functional correctness,
Functional

appropriateness

Not available Yes Yes No No Technical

Compatibility

[48]

Not stated, sub-

characteristics measure

listed as Co-existence,

Interoperability

Not available Yes Yes No No Technical

Usability [48] Not stated, sub-
characteristics measure

listed as Appropriateness
recognizability,

Learnability, Operability,

User error protection,
User interface eesthetics

Not available Yes Yes No No Technical,
Individual

Reliability [48] Not stated, sub-

characteristics measure

listed as Maturity,
Availability, Fault

tolerance, Recoverability

Not available Yes Yes No No Technical

Portability [48] Not stated, sub-
characteristics measure

listed as Adaptability.

Installability,
Replaceability

Not available Yes Yes No No Technical

V. DISCUSSION

Table 1 provides details of measures attributed to green

and sustainable software. From Table 1, it can be identified

that most measures focused on energy efficiency or power

consumptions. With most focus on green software, there is a

limitation on having a holistic approach towards software

sustainability measurement. The measures of software

sustainability should consider the following:

 Human (End users) system interaction: involves the

measures of the system sustainability based on how it

impacts on users and their level of awareness about

sustainability and green. It entails the well-being of the

software users’ community and the changing of the

human mindset.

 Software system developers: evaluate the sustainability

of the processes and practices for the development and

integration of sustainability in software systems.

One of the key question/concern that should be clearly
answered by a sustainability measurement framework is the
difference between the different scales of software
measurement and the interpretation of these scales of
measurement for sustainability. The problem of software
sustainability measurement is not only in measuring but

rather giving meaningful interpretation of what the
measurement means. For example today, fridges are
categorized using A+, A++ and A+++ for quantifying and
measuring its energy efficiency. Normally A+ consumes less
energy, A++ has better energy efficiency than A+ and A++
has the best energy efficiency in today market. According to
the EU Directive 92/75/EC which established an energy
consumption labelling scheme [52], there are different
descriptions of the measures that quantify why Fridge is
labelled A+, A++ or A+++ based on its energy consumption.
In the same line, there is need for a foundation or framework
to ground the different measures for software sustainability
measures and measurement with clear interpretation.

Currently, there is not enough firm scientific basis for
important choices on how sustainability related factors
should be defined and measured, the varying purposes for
which the measures are used. This makes it difficult to
effectively and efficiently evaluate software sustainability
using the right measures.

VI. CONCLUSION

In this position paper, we summarized the research
results on the categorization of software sustainability
perceptions. Using the identified four perceptions of software
sustainability, we referenced the current measures to each of

the four perceptions. The major focus of all identified green
and sustainable software measures are on green software.
Energy efficiency has received the most attention. Research
work is needed to identify and assess the validity of other
measures related to the other perceptions. Research on
measures of sustainability has to be grounded in the tradition
and theory of software measurement. This requires
considering software sustainability as a quality attribute and
define it in the same way other attributes are defined.

REFERENCES

[1] United Nations, World Economic and Social Survey

2013. 2013.

[2] G. saval Martin, mahaux, patrick heymans,

“Requirements Engineering: Foundation for

Software Quality,” Requir. Eng. Found. Softw.

Qual., vol. 4542, no. January, pp. 247–261, 2007.

[3] Ericsson, “Technology for Good,” Available online:

https://www.ericsson.com/assets/local/about-

ericsson/sustainability-and-corporate-

responsibility/documents/2015-corporate-

responsibility-and-sustainability-report.pdf

Accessed on 30-11-2017, 2014.

[4] C. Calero and M. Piattini, “Introduction to Green in

software engineering,” Green Softw. Eng., pp. 1–

327, 2015.

[5] N. Condori-Fernandez, G. Procaccianti, and N. Ali,

“Metrics for green and sustainable software:

MeGSuS 2014,” in Proceedings - 2014 Joint

Conference of the International Workshop on

Software Measurement, IWSM 2014 and the

International Conference on Software Process and

Product Measurement, Mensura 2014, 2014, pp.

62–63.

[6] B. Penzenstadler and A. Fleischmann, “Teach

Sustainability in Software Engineering?,” in 24th

IEEE-CS Conference on Software Engineering

Education and Training (CSEE&T), 2011.

[7] S. Naumann, M. Dick, E. Kern, and T. Johann, “The

GREENSOFT Model: A reference model for green

and sustainable software and its engineering,”

Sustain. Comput. Informatics Syst., vol. 1, no. 4, pp.

294–304, 2011.

[8] A. Raturi, B. Penzenstadler, B. Tomlinson, and D.

Richardson, “Developing a sustainability non-

functional requirements framework,” Proc. 3rd Int.

Work. Green Sustain. Softw. - GREENS 2014, pp.

1–8, 2014.

[9] C. C. Venters et al., “The Blind Men and the

Elephant Towards an Empirical Evaluation

Framework for Software Sustainability,” vol. 2, no.

1, pp. 1–6, 2014.

[10] B. Penzenstadler, A. Raturi, D. Richardson, and B.

Tomlinson, “Safety, security, now sustainability:

The nonfunctional requirement for the 21st

century,” IEEE Softw., vol. 31, no. 3, pp. 40–47,

2014.

[11] B. Penzenstadler, “Supporting Sustainability

Aspects in Software Engineering,” 3rd Int. Conf.

Comput. Sustain., pp. 1–4, 2013.

[12] S. Oyedeji, A. Seffah, and B. Penzenstadler, “A

catalogue supporting software sustainability

design,” Sustainability, vol. 10, no. 7, pp. 1–30,

2018.

[13] B. Penzenstadler, “Infusing green: Requirements

engineering for green in and through software

systems,” 3rd Intl. Work. Requir. Eng. Sustain. Syst.

2014, vol. 1216, no. 1, pp. 44–53, 2014.

[14] K. Roher and D. Richardson, “Sustainability

requirement patterns,” 2013 3rd Int. Work. Requir.

Patterns, RePa 2013 - Proc., pp. 8–11, 2013.

[15] S. Murugesan and G. Gangadharan, Harnessing

Green IT : Principles and Practices, no. September.

John Wiley & Sons, Ltd, 2012.

[16] T. Juha, “Good, bad, and beautiful software. In

search of green software quality factors,” CEPIS

Upgrad. XII 422–27, no. July, 2011.

[17] L. Erdmann Hilty, L., Goodman, J., Arnfalk, P. and

L. Erdmann Hilty, L., Goodman, J., Arnfalk, P.,

“The Future Impact of ICTs on Environmental

Sustainability,” IPTS Publ., no. August, p. 68, 2004.

[18] M. N. Malik and H. H. Khan, “Investigating

Software Standards: A Lens of Sustainability for

Software Crowdsourcing,” IEEE Access, vol. 6, pp.

5139–5150, 2018.

[19] J. T. Kern Eva, Markus Dick, Naumann Stefan,

Guldner Achim, “Green software and green

software engineering - definitions, measurements,

and quality aspects,” Proc. First Int. Conf. Inf.

Commun. Technol. Sustain. ETH Zurich, Febr. 14-

16, 2013, no. January, pp. 175–182, 2013.

[20] K. Erdélyi, “Special factors of development of green

software supporting eco sustainability,” SISY 2013 -

IEEE 11th Int. Symp. Intell. Syst. Informatics, Proc.,

pp. 337–340, 2013.

[21] M. Dick and S. Naumann, “Enhancing software

engineering processes towards sustainable software

product design,” 24th Int. Conf. Informatics

Environ. Prot. (EnviroInfo 2010), vol. 2010, pp.

706–715, 2010.

[22] M. Colmant, R. Rouvoy, and L. Seinturier,

“Improving the energy efficiency of software

systems for multi-core architectures,” Proc. 11th

Middlew. Dr. Symp. MDS 2014 - co-located with

ACM/IFIP/USENIX 15th Int. Middlew. Conf., pp. 2–

5, 2014.

[23] J. Norton, A. J. Stringfellow, J. J. L. Jr, B.

Penzenstadler, and B. Tomlinson, “Domestic Plant

Guilds : A Software System for Sustainability,” vol.

i, 2013.

[24] B. Penzenstadler et al., “ICT4S 2029 : What will be

the Systems Supporting Sustainability in 15

Years ?,” 2014.

[25] S. Jansen and M. Cusumano, “Defining software

ecosystems: a survey of software platforms and

business network governance : Software Ecosystems

Analyzing and Managing Business Networks in the

Software Industry,” Softw. Ecosyst. Anal. Manag.

Bus. Networks Softw. Ind., pp. 13–28, 2013.

[26] J. V. Joshua, D. O. Alao, S. O. Okolie, and O.

Awodele, “Software Ecosystem: Features, Benefits

and Challenges,” Int. J. Adv. Comput. Sci. Appl.,

vol. 4, no. 8, pp. 1–6, 2013.

[27] B. Penzenstadler and H. Femmer, “A generic model

for sustainability with process- and product-specific

instances,” GIBSE 2013 - Proc. 2013 Work. Green

Softw. Eng. Green by Softw. Eng., no. June 2015,

pp. 3–7, 2013.

[28] E. Britannica, “Measurement instruments and

systems. Accessed on 7-12-2017 from:

https://www.britannica.com/print/article/371701,”

pp. 1–2, 2017.

[29] R. Seacord et al., “Measuring Software

Sustainability,” J. Chem. Inf. Model., vol. 53, no. 9,

pp. 1689–1699, 2013.

[30] F. Albertao, J. Xiao, C. Tian, Y. Lu, K. Q. Zhang,

and C. Liu, “Measuring the Sustainability

Performance of Software Projects,” 2010 IEEE 7th

Int. Conf. E-bus. Eng., pp. 369–373, 2010.

[31] G. Lami and L. Buglione, “Measuring software

sustainability from a process-centric perspective,”

Proc. 2012 Jt. Conf. 22nd Int. Work. Softw. Meas.

2012 7th Int. Conf. Softw. Process Prod. Meas.

IWSM-MENSURA 2012, pp. 53–59, 2012.

[32] M. R. Idio, “Measuring Sustainability Impact of

Software,” vol. 16, no. 1, pp. 5–7, 2014.

[33] C. Calero, M. F. Bertoa, and M. Angeles Moraga,

“A systematic literature review for software

sustainability measures,” Green Sustain. Softw.

({GREENS)}, 2013 2nd Int. Work., pp. 46–53, 2013.

[34] S. Naumann, M. Dick, E. Kern, and T. Johann, “The

GREENSOFT Model: A reference model for green

and sustainable software and its engineering,”

Sustain. Comput. Informatics Syst., vol. 1, no. 4, pp.

294–304, 2011.

[35] S. Oyedeji, A. Seffah, and B. Penzenstadler,

“Sustainability Quantification in Requirements

Informing Design,” 6th Int. Work. Requir. Eng.

Sustain. Syst., vol. i, 2017.

[36] K.-L. Kramer, User Experience in the Age of

Sustainability. 2012.

[37] a Noureddine, A. Bourdon, R. Rouvoy, and L.

Seinturier, “Runtime monitoring of software energy

hotspots,” in Automated Software Engineering

(ASE), 2012 Proceedings of the 27th IEEE/ACM

International Conference on, 2012, pp. 160–169.

[38] T. Johann et al., “How to measure energy-efficiency

of software : Metrics and measurement results,” no.

April 2015, pp. 51–54, 2012.

[39] M. A. Ferreira, E. Hoekstra, B. Merkus, B. Visser,

and J. Visser, “Seflab: A lab for measuring software

energy footprints,” in 2013 2nd International

Workshop on Green and Sustainable Software,

GREENS 2013 - Proceedings, 2013, pp. 30–37.

[40] V. Cordero, I. G. R. De Guzmán, and M. Piattini,

“A first approach on legacy system energy

consumption measurement,” in Proceedings - 2015

IEEE 10th International Conference on Global

Software Engineering Workshops, ICGSEW 2015,

2015, pp. 35–43.

[41] H. Field, G. Anderson, and K. Eder, “EACOF: A

Framework for Providing Energy Transparency to

enable Energy-Aware Software Development,” pp.

1194–1199, 2014.

[42] S. Cagri, C. Furkan, C. James, K. Fouad, P. Lori,

and W. Kristina, “Towards Power Reduction

Through Improved Software Design,” pp. 1–8,

2007.

[43] P. Bozzelli, Q. Gu, and P. Lago, “A systematic

literature review on green software metrics,”

Sis.Uta.Fi, 2013.

[44] E. Kern, M. Dick, S. Naumann, A. Guldner, and T.

Johann, “Green Software and Green Software

Engineering – Definitions , Measurements , and

Quality Aspects,” pp. 87–94, 2013.

[45] T. Debbarma and K. Chandrasekaran, “Green

measurement metrics towards a sustainable

software: A systematic literature review,” 2016 Int.

Conf. Recent Adv. Innov. Eng. ICRAIE 2016, 2017.

[46] R. V. O. Connor and A. D. Eds, Software Process

Improvement and Capability Determination, vol.

155, no. June. 2011.

[47] T. Johann, M. Dick, S. Naumann, and E. Kern,

“How to measure energy-efficiency of software:

Metrics and measurement results,” 2012 1st Int.

Work. Green Sustain. Software, GREENS 2012 -

Proc., pp. 51–54, 2012.

[48] G. Oleksandr, K. Vyacheslav, and F. Mario,

“Software Quality Standards and Models Evolution:

Greenness and Reliability Issues,” vol. 469, pp.

277–299, 2016.

[49] E. Rondeau, F. Lepage, J. Georges, E. Rondeau, F.

Lepage, and J. Georges, “Measurements and

Sustainability,” 2015.

[50] S. A. . Koçak, G. I. . Alptekin, and A. B. . Bener,

“Evaluation of software product quality attributes

and environmental attributes using ANP decision

framework,” CEUR Workshop Proc., vol. 1216, pp.

37–44, 2014.

[51] S. Abdulsalam, Z. Zong, Q. Gu, and M. Qiu, “Using

the Greenup, Powerup, and Speedup metrics to

evaluate software energy efficiency,” 2015 6th Int.

Green Sustain. Comput. Conf., 2016.

[52] A. Michel, S. Attali, and E. Bush, “Energy

efficiency of White Goods in Europe : monitoring

the market with sales data,” no. June, pp. 1–53,

2015.

Publication IV

S. Oyedeji, A. Seffah, and B. Penzenstadler
Karlskrona Manifesto: Software requirement engineering good practices

In: 6th International Workshop on Requirement Engineering for Sustainable System co-
located with the 25th International Conference on Requirements Engineering

Reprinted with permission from
CEUR Workshop Proceedings

Vol. 2223, pp. 15-23, 2018

© 2018, CEUR

Karlskrona Manifesto: Software Requirement

Engineering Good Practices

Shola Oyedeji

School of Engineering Science (LENS)

Lappeenranta University of Technology (LUT)

Lappeenranta, Finland

shola.oyedeji@lut.fi

Birgit Penzenstadler

Department of Computer Engineering and Computer Science

California State University Long Beach (CSULB)

Long Beach, California, USA

birgit.penzenstadler@csulb.edu

Abstract—Manifestos in the history of computer science and

software engineering have framed guiding principles upon which

processes, methods and tools were developed. The Karlskrona

Manifesto for Sustainability Design serves this same purpose as a

guide for designing and developing sustainable software systems.

The goal of this paper is to explore the derivation of good prac-

tices by applying the Karlskrona principles in sustainability re-

quirements elicitation. How can the Karlskrona manifesto be

translated into methods, processes and tools in the software re-

quirements engineering domain? The result is a proposed list of

best practices for software sustainability requirements elicitation.

This will facilitate the application of the Karlskrona manifesto

for sustainability requirements elicitation and engineering.

Index Terms—Karlskrona Manifesto, requirements

engineering, sustainable software, sustainability, best practice,

best practice documentation, software requirements,

sustainability requirement elicitation, sustainability design

I. INTRODUCTION

Sustainability has become one of the major issues of society

today because of the impact of human activity on our planet –

this includes interactions in between individual persons, within

communities, and between companies and users. Bonini et al.

[1] report that sustainability is an important element in the pro-

gram of many companies, but their environmental, social and

governance activities are disconnected from their core strategy.

The challenge for most companies is that there is little under-

standing of how sustainability can be understood by software

and requirements engineering professionals to facilitate sus-

tainability design as an established part of the software devel-

opment process and, specifically, the requirements engineering

process [2][3][4].

Users these days are willing to pay more for sustainable

software products and services because of the increased aware-

ness from different worldwide initiatives. One central initiative

and set of guiding goals are the United Nations Sustainable

Development Goals (SDGs), which state initiatives to tackle

different crucial sustainability problems humanity faces [5].

Nielsen’s global online study [6] shows the percentage of con-

sumers willing to pay extra for products and services from

companies dedicated to positive environmental and social im-

pact increased from 55% in 2014 to 72% in 2015.

Software is a core of all human activities today and a major

facilitator in the way humans produce and use products and

services [7]. The way the software is designed, the require-

ments to ensure sustainability are factors in software design

and how software can support sustainability are still areas that

are evolving with different challenges on how best to elicit

sustainability requirements for software systems [8].

Consequently, requirements engineering has a major role to

play in ensuring the sustainability of software in its broadest

understanding. The challenge is that, compared to other types

of software requirements like usability and security require-

ments, which have a well-defined systematic structure and

principles on how to elicit system requirements [9], there is still

less support on how sustainability requirements can be derived

systematically.

One known guiding framework for software sustainability

design is the Karlskrona Manifesto for Sustainability Design

(KMSD). Following in the footsteps of other successful mani-

festos such as the Agile manifesto [10], the Business Rules

manifesto [11] and the Recomputation manifesto [12], the

Karlskrona Manifesto proposes principles that aim to serve as a

guide – in this case on how to think of sustainability when it

comes to software systems design.

Manifestos like the Agile manifesto are one example that

has transitioned into processes, methodologies and tools to help

practitioners using Agile in software development. Dick et al.

[13] showed how the Agile method was used in software engi-

neering processes to develop “greener” software systems sup-

ported by Agile software project management. Agile has dif-

ferent frameworks and approaches such as Scrum, Kanban, and

Lean. Agile also has some best practices such as test-driven

development (TDD), refactoring, continuous integration, and

Pair programing [14].

Relating Agile to requirement engineering, Paetsch et al.

[15] have studied the similarities and difference between tradi-

tional requirements engineering and agile approaches in order

to complement agile with some methods from requirements

engineering. Up to now, the Karlskrona Manifesto for Sustain-

ability Design has put forward only limited research on trans-

forming these principles into processes, methods and tools that

can support software designers and developers during software

systems development.

This paper explores a starting point for such a transition of

the principles into processes and methods that can educate and

encourage software system designers and developers in elicit-

ing software sustainability requirements.

Section 2 covers the background on the Karlskrona Mani-

festo and best practice documentation. Section 3 presents the

research design for the paper. Section 4 sketches the relation

between the Karlskrona Manifesto and software development

life cycle phases. Section 5 highlights the proposed method for

documenting requirements engineering best practices. Section

6 covers the discussion and Section 7 provides concluding

thoughts and future work.

II. BACKGROUND

A. The Karlskrona Manifesto

The Karlskrona Manifesto for Sustainability Design

(KMSD) was initiated through an initiative to create a common

ground and a point of reference for the global community of

research and practice in software and sustainability to effective-

ly communicate major issues, goals, values and principles of

sustainability for the design and development of software sys-

tems [16]. KMSD has its roots in the Third International Work-

shop on Requirements Engineering for Sustainable Systems

(RE4SuSy) [17]. The motive for creating the KMSD was as a

result of Christoph Becker’s contribution [18] on the relation-

ship between the concerns of sustainability and longevity.

The first stakeholders that contributed, drafted and signed

the manifesto were a number of researchers from various areas

in the field of software engineering with sustainability research

interests as described in [19] [20].

The Karlskrona Manifesto was conceived based on the fol-

lowing guidance [16]:

 Principles not techniques as a guide for building,

developing and improving new/old techniques and

tools to support sustainability design.

 Provide a broader scope to be all-inclusive and en-

compassing all aspects of sustainability.

 Bottom up approach to cover all emerging struc-

ture from contributions of all participants in-

volved in the initiation of the manifesto.

 Discussion through participation and transpar-

ency to encourage broader engagement of differ-

ent experts of sustainability and interested partici-

pants.

 Conversation over consensus to enable dialogue

among the community of stakeholders and all in-

terested participants.

 Minimal and adaptive process focussed on

emergent content and structure.

 Synchronous collaboration. Contents of the man-

ifesto were written through synchronous collabo-

ration.

 Iterative evolution. A common vision was formu-

lated to guide the incremental evolution of the

manifesto.

Table 1 covers all the Karlskrona Manifesto principles and

description for each principles.

TABLE 1. KARLSKRONA MANIFESTO

Principles Description

P1. Sustainability is sys-

temic

Sustainability is never an isolated prop-

erty. It requires transdisciplinary com-

mon ground of sustainability as well as a

global picture of sustainability within

other properties.

P2 Sustainability has mul-

tiple dimensions

All the different dimensions of sustaina-

bility has to be included into our analy-

sis if we are to understand the nature of

sustainability in any given situation.

P3 Sustainability trans-

cends multiple disciplines

Working in sustainability means work-

ing with people from across many disci-

plines, addressing the challenges from

multiple perspectives.

P4. Sustainability is a

concern independent of the

purpose of the system.

Sustainability has to be considered even

if the primary focus of the system under

design is not sustainability.

P5. Sustainability applies

to both a system and its

wider contexts

There are at least two spheres to consid-

er in system design: the sustainability of

the system itself and how it affects the

sustainability of the wider system of

which it will be part of.

P6. System visibility is a

necessary precondition and

enabler for sustainability

design

Strive to make the status of the system

and its context visible at different levels

of abstraction and perspectives to enable

participation and informed responsible

choice.

P7. Sustainability requires

action on multiple levels

Seek interventions that have the most

leverage on a system and consider the

opportunity costs: Whenever you are

taking action towards sustainability,

consider whether this is the most effec-

tive way of intervening in comparison to

alternative actions (leverage points).

P8. Sustainability requires

to meet the needs of future

generations without com-

promising the prosperity of

the current generation

Innovation in sustainability can play out

as decoupling present and future needs.

By moving away from the language of

conflict and the trade-off mind-set, we

can identify and enact choices that bene-

fit both present and future.

P9. Sustainability requires

long-term thinking

Multiple timescales, including longer-

term indicators in assessment and deci-

sions should be considered.

The Karlskrona Manifesto as a guide has helped in increas-

ing sustainability awareness amongst those interested in soft-

ware systems design and development. However, the core chal-

lenge is how to exemplify these principles through practical

application in software development. Requirements engineer-

ing as a starting point in any software development has a cru-

cial role to play in exemplifying the use of the manifesto prin-

ciples in software systems requirements elicitation and engi-

neering. There have already been research strides on sustaina-

bility in requirements engineering stating the need for sustaina-

bility requirements in software systems such as the following

research in chronological order:

Mahaux et al. [23] present an experience report about pro-

jects that treated sustainability as a first class quality require-

ments. The authors assessed the current techniques used in sys-

tematically eliciting, analyzing and documenting sustainability

requirements and pointed at the need for a sustainability

toolbox to support requirements engineers to better elicit sus-

tainability requirements.

Roher et al. [21] are concerned with the lack of software

engineering teams including environmental sustainability dur-

ing software development proposed the use of sustainability

requirements patterns (SRPs).

Penzenstadler et al. [9] support the consideration of sustain-

ability as a nonfunctional requirement like safety and security

that are considered as a system quality attribute.

Raturi et al. [22] focused on how to develop sustainability

as a non-functional requirement (NFR) using NFR framework

informed by sustainability models.

Becker et al. [24] explain the crucial role of requirements

not only for software systems but also for how requirements for

sustainability can impact the social-economic and natural envi-

ronment.

Hinai et al. [25] proposed the use of requirements engineer-

ing methodology using social values to elicit social sustainabil-

ity requirements for software systems.

As highlighted by Becker et al. [16], there are different

concerns and dimensions of sustainability, software engineers

focusing on the concerns of software qualities, business stake-

holders looking at how to make profit and keep business afloat.

Furthermore, there is the aspect of social wellbeing of people to

ensure better living standards. This, at times, makes the global

concern of sustainability difficult to elicit and engineer. Also,

quoting Becker et al. [16] offering a way forward: “Rather than

asking whether it is appropriate to balance these concerns, we

should instead be asking What methods and tools are needed to

explore inter-dependencies between these concerns, and to

foster more integrated and long-term thinking?”

Oyedeji et al. [7] support this further, stating that without a

standard for software sustainability requirements, it becomes

difficult to identify the boundaries of the sustainability of soft-

ware systems. A standard will lead to a unifying consensus that

can foster sustainability quantification in software systems.

Software sustainability has also gained attention as a quality

attribute in which there is a proposal to extend the ISO/IEC

quality model 25010 to address sustainability [26].

Therefore it is important to follow up on the Karlskrona

Manifesto principles and propose examples of how these prin-

ciples can be applied in software systems requirements elicita-

tion and engineering. This could lay the foundation for a stand-

ard template that can encourage and educate requirements en-

gineers for software sustainability requirements.

B. Best practice documentation and templates

A “best practice” (BP) is a practice that is not only good but

has proven to work well and produce good results and therefore

is recommended as a model. According to Schatten et al.[27], a

BP is the transfer of knowledge based on years of success, mis-

takes and failures from experienced developers to novice de-

velopers. These BP can be some good and bad decisions (anti-

patterns) from concrete projects that are presented as abstracted

scenarios. Designing and developing well-structured software

is a challenge especially for young and novice developers. With

the use of BP, such challenges can be eased for them with

knowledge of how best to develop well-designed software sys-

tems from proven procedures.

Fricker at al. [28] presented the best requirements tech-

niques that became industrial best practice based on a survey of

a large number of industry projects. One of their core findings

showed that projects incorporated stakeholder workshops, the

study of existing systems, and re-using specifications. Work-

shops dominated requirements elicitation practice. Only few

projects used techniques like observation, ethnography, sur-

veys, or data mining.

Mike Perks [29] from IBM describes best practices for

software development projects from development processes,

requirements, architecture, design, construction of code, peer

reviews, testing, quality and defects management, deployment,

system operations and support, project management, and meas-

uring software project success.

In requirements documentation, one best practice is to use a

single and consistent template that all development team mem-

bers should adhere to in requirements gathering and software

development [30].

Parker et al. [31] identified the best practices for managing

requirements as the following:

 Naming conventions. Defining and maintaining

conventions for identifying releases from the ap-

proved requirement set through to the baselined

release to the emergency fix or patch.

 Baseline requirements. Requirements, like soft-

ware releases, must be baselined and those base-

lines must map directly to the releases they pro-

duce.

 Well-defined and understood change control pro-

cess. Once a baseline is created, changes must be

controlled, tracked, traced, approved, and re-

viewed.

 Requirements review. There must be a require-

ments review process, and it must be enforced

 Expectation of changes. Make sure changes can be

made easily, but under strict access control rules

(that include having full traceability).

 Version management. Requirement history should

be maintained using methods that make it easy for

analysts to look back.

 Requirements traceability. Without the ability to

trace a requirement from the idea through to its de-

fined implementation, there is no ability to under-

stand the impact of a proposed change.

 Information maintenance. Maintain attributes for

dependencies, relationships, owners, stakeholders,

users, funder, dates, costs, models, prototypes, di-

agrams, and governance about the requirement.

 Collaboration. Provide easy access to requirements

information and automatically notify stakeholders

of any change of status or change of the require-

ment to foster collaboration.

 Requirements in a single location. Keep require-

ments in a single location, preferably in a database

designed to manage them.

For companies and organizations, BP are a key way for

sharing knowledge and improving the quality of their operation

processes [32]. Alwazae et al. [32] introduced the use of a best

practice document template (BPDT) as a way for creating high

quality documentation within organizations.

Learning from outside the software and requirements engi-

neering domain, the United Nations food and agriculture organ-

ization (FAO) presented some good criteria for good practice

which also considers sustainability [33].

This body of existing work around best practice documen-

tation and templates was used as a foundation to develop the

template presented in the paper at hand.

III. RESEARCH DESIGN

The first author performed a mapping of the Karlskrona

Manifesto principles onto the Software Development Life Cy-

cle (SDLC) phases and the second author reviewed the map-

ping.

Based on existing literature on best practice templates [28]

[31] [32] [33], the first author developed a first version of the

best practice template to document how those Karlskrona man-

ifesto principles can be used in software development activi-

ties. This template and some example instances were presented

and assessed in an expert evaluation with 15 software develop-

ers with at least 3 years of experience in industrial software

development at a workshop in the Lappeenranta University of

Technology. The workshop is a mentoring program to educate

young developers interested in software development career.

The feedback from the developers (more straight-forward,

more concrete examples) was incorporated and then presented

to the experts again for re-evaluation. Table 2 provide back-

ground details of the expert evaluators.

TABLE 2. EXPERT EVALUATORS BACKGROUND

Expert Background Company Type Years of

Experience

1 Software Tester Software Develop-

ment

5

2 Requirement Engi-

neer

Software Develop-

ment

3

3 Programmer Software Develop-

ment

4

4 UI Designer Software Develop-

ment

3

5 Business Analyst Software Develop-

ment

3

6 Software Developer Software Develop-

ment

4

7 Programmer Software Develop-

ment

3

8 IT Manager Software Develop-

ment

4

9 CEO / Software

Developer

Startup Software

Development

3

10 ICT Engineer Telecom 4

11 Programmer Finance 3

13 Product Tester /
Integration Engineer

HR 3

14 Project Manager /
UX expert

Software Develop-
ment

4

15 Not Provided Not Provided Not Pro-
vided

IV. KARLSKRONA MANIFESTO FOR SUSTAINABILITY DESIGN

AND SOFTWARE DEVELOPMENT

This section provides an overview of how the Karlskrona

Manifesto principles can be mapped onto software develop-

ment life cycle phases.

Table 3 shows the exemplary mapping. There may be addi-

tional matches where further principles can be applied within a

specific SDLC phase but this mapping is sufficiently extensive

for exploring the concepts.

TABLE 3. KARLSKRONA MANIFESTO PRINCIPLES IN RELATION

TO SDLC PHASES (adopted from [34])

SDLC Phases Karlskrona Manifesto Principles

Phase 1.

Project Definition

P1- This ensures that the project initiation

considers sustainability in the overall project

definition from the beginning.

P2- Software sustainability has different

dimensions that have to be taken into account

from the beginning for better project

management with different stakeholders.

P3- Software projects usually involve

stakeholders from different domains,

incorporating their sustainability concerns

provides better management of those concerns

from multiple perspectives which can help the

incorporation of sustainability for the software.

Phase 2.

User Requirements

Definition

P2- Recording and documenting user feedback

on their perception of sustainability during

requirements elicitation will foster better

sustainability analysis during the system

analysis and design phase.

Phase 3.

System Requirements

Definition

P4- During elicitation of system requirements

to consider sustainability concerns for the

system during the requirements definition even

when it is not a core part of the user

requirements.

P5- Cross evaluate the consequential impacts of

the system sustainability requirements and the

environment in which the system will function.

Phase 4.

Analysis and Design

P2- Applying this principle provides a blueprint

for system evaluation from all sustainability

dimensions (Economic, environment, social,

individual and technical).

P4- This principle provides a rethink of how to

conduct analysis of system design with

consideration of sustainability in order to

facilitate development of sustainable system.

P6- Application of this principle enables better

visual and visible overview of the system from

different levels of abstraction.

P8- This will provide better understanding

during analysis to make better choices that will

help the potential users of the system in present

and in future when the system evolves.

Phase 5.

Development

P2- This will encourage developers during this

phase to consider different sustainability

dimensions especially technical, social and

individual dimensions

P4- Encourages the search for better avenues to

make the system sustainable from the

development perspective (developers) and also

the functions of the system to aid longevity.

Phase 6.

Integration and Testing

P2- Provides integration and test team to have a

sustainability template that can be used to test

the system for all sustainability dimensions

based on the sustainability requirement output

from phase 2, 3, and 4.

P4- Application of this principle will aid

consideration of sustainability in this phase

even if the primary focus of system is not about

sustainability.

Phase 7.

Implementation

P5- Provides a beforehand reasoning for the

development team to consider sustainability of

the system, its production environment and

when push live for use.

P7- The use of this principle will aid

consideration of seeking the involvement of

different stakeholders to make the actualization

of the system sustainability possible in the

production environment and when pushed live.

Phase 8.

Sustainment /

Maintenance

P9- At this stage, this principle helps to create

the conscious awareness so that when the

system is in live environment, there will be

continuous evaluation to assess the system

sustainability and think of ways for optimizing

and improving sustainability of the system from

the different dimensions.

There has been progress on how to design the maintainabil-

ity of software during/after development and how the security

and usability can be improved over time. One thing lacking is

how to consider the external impact of the software on the dif-

ferent dimensions of sustainability and engineering those con-

siderations into the software. This is why it is important to con-

duct proper software sustainability requirements elicitation.

The sustainability requirements process needed during SDLC is

still evolving in terms of finding the most effective way to elic-

it software sustainability requirements.

After mapping the Karlskrona Manifesto principles to all

the SDLC phases, the next section exemplifies the use of the

Karlskrona principles during user and system requirements

gathering in the first three phases of the SDLC. This will serve

as a benchmark for the remaining SDLC phases because re-

quirements are the first part of any system’s design, develop-

ment and improvement.

V. METHOD FOR DOCUMENTING SOFTWARE SUSTAINABILITY

REQUIREMENTS BEST PRACTICE

This section covers details of the method for collecting and

disseminating best practice for software sustainability require-

ments elicitation and engineering. Figure 1 shows the process

flow of this method.

Figure 1. Method for documenting software sustainability requirement

elicitation best practice

The proposed method is the first attempt towards exempli-

fying how the Karlskrona Manifesto principles can serve as a

guide for eliciting sustainability requirements for software sys-

tems and how such process can be documented as good prac-

tice. Such documented good practice can then be reused or

followed by software developers and different stakeholders

interested in software sustainability.

The first step is to select from the nine Karlskrona princi-

ples a principle that relates to the system to be developed or

improved. Table 3 shows our mapping of the Karlskrona mani-

festo to each software development phase.

The second step is to use the selected principle in generat-

ing sustainability goals for the system. These goals will serve

as a base for creating the system requirements.

The third step involves deriving software sustainability re-

quirements based on all the sustainability goals. These re-

quirements must be measurable and tangible.

The fourth step involves tagging each of the derived sus-

tainability requirements with each sustainability dimension

(economic, environment, social, individual and technical).

The fifth step involves using the template that will be pro-

posed in this paper to document the requirements using the

good requirement practice template.

The sixth step validates the saved requirement practice us-

ing the following criteria [33]:

 Effective and successful: A “good practice” has

proven its strategic relevance as the most effective

way in achieving a specific objective; it has been

successfully adopted and has had a positive impact

on individuals and/or communities.

 Environmentally, economically and socially sus-

tainable: A “good practice” meets current needs, in

particular the essential needs of the world’s poor-

est, without compromising the ability to address

future needs.

 Technically feasible: Technical feasibility is the

basis of a “good practice”. It is easy to learn and to

implement.

 Inherently participatory: Participatory approaches

are essential as they support a joint sense of own-

ership of decisions and actions.

 Replicable and adaptable: A “good practice”

should have the potential for replication and

should therefore be adaptable to similar objectives

in varying situations.

 Reducing disaster/crisis risks, if applicable: A

“good practice” contributes to disaster/crisis risks

reduction for resilience.

Based on these criteria, the collected requirements are

validated, and if all necessary good practice criteria are

satisfied the requirements are published as good re-

quirements practice. If there is need for improvement,

the requirements are refined again and cross-validated

before being published as good requirements practice.

Table 4 provides the best practice template. Table 5

presents an example of the instantiated template for the

sustainability best practice - how the Karlskrona Mani-

festo principles influenced the requirements elicitation

process between the requirements engineer, the end us-

er, the programmer, and the business analyst.

The field ‘requirements’ uses sample requirements

from the illustrative case study of a web application for

online hospitality service to rent homes for short stays.

Table 4. DESCRIPTION OF TEMPLATE FOR SOFTWARE SUSTAINABILITY REQUIREMENT ELICITATION BEST PRACTICE

Element Description

Title Which title best describes the best practice?

Date What month and year is the “good practice” published or documented?

Authors Who wrote the good practice document?

Target Audience Who is the target group?

To whom is this document useful?

Objective What is the goal or aim of the best practice?

Location What is the geographic location in which this practice can be applied for software system (country, region, town or

village)? Examples: system for a country’s, state, province health care system or banking system or a commercial

software application

Stakeholders Beneficiaries of this best practice?

Who are the users, institutions and implementing agencies of the best practice?

Methodology What methodology was used in documenting the best practice?

What were the process steps involved?

Selected Karlskrona

manifesto principles

What are the principles that served as guide for creating the best practice for requirement elicitation?

Requirements What were the requirements used in the best practice?

How was sustainability considered in the requirement?

Validation How was the best practice validated?

Did the best practice fulfil the best practice criteria?

Impact What there an impact in the application of the best practice?

Lessons Learnt What are the key take away from the application the best practice?

Sustainability What are the dimensions of sustainability covered in the best practice application?

Contact Details What is contact details of those responsible for the best practice?

Table 5. TEMPLATE OF SOFTWARE SUSTAINABILITY REQUIREMENT ELICITATION BEST PRACTICE

Element Description

Title Sustainability user awareness best practice of online hospitality service for short term house renting and sharing

Date 11-06-2018

Authors Shola Oyedeji, Birgit Penzenstadler

Target

Audience

Requirement engineers, Web developers, Business analyst

Objective Document best practice in requirement elicitation for a web system in order to:

 Create awareness among web application developers on how to elicit sustainability requirements

 Encourage development of web systems with consciousness of sustainability for end users while using the web
application

Location Applicable worldwide for any web system

Stakeholders Software requirement engineer, Programmers and Business analyst

Methodology Discussion among software development team on what sustainability means to them by going through the
Karlskrona manifesto principles

 Use the Karlskrona manifesto principles as guide during requirement elicitation during discussion with the end
user with aid of the sustainability analysis chat

 Record all the requirements in the user requirement specification (URS) and software requirements specification

(SRS)

 Dialogue about which requirements can better influence end user awareness about sustainability in the user and
software requirements specification (URS and SRS) document.

 Selected identified requirements

 Discussion between with the requirement engineer, end user and programmers about these sustainability re-
quirements to see if implementation is possible or if there is need for modification

 Modify requirement in URS and SRS with a set of new requirements targeted towards sustainability based on
discussion between the requirement engineer, end user and programmer

Selected

Karlskrona
manifesto

principles

Principle 2: Sustainability has multiple dimensions

Principle 6: System visibility is a necessary precondition and enabler for sustainability design
Principle 7: Sustainability requires action on multiple levels

Requirements Functional Requirement

REQ 1 –Registration (user must be able to register using web form and receive a notification via email)

 Sustainability requirement added to this general registration requirement is to include short sustainability
tips/links in the registration notification email such as how to recycle common grocery items, use home energy,

water, heater and nearest cycling station for getting bicycle commuting

REQ 2- UI Search Results (Display search results for all homes with prices and availability to users)

 The requirement for sustainability added to this search requirement is to include the CO2 emission for all homes

based on the user (searcher location) to the search home (destination) and also add green level label for all

homes based on user feedback on how easy to recycle, access to path way for walking or bicycle or public trans-
portation and energy usage during their stay in a home

Non-Functional Requirements

REQ 3 – Performance (ensure good response time)

 The sustainability consideration for this requirement is write good compact design codes during development

that can determine the exact CPU usage for specific components of the web application and optimize them for
less CPU usage

 Create effective and efficient algorithm for data structures to help use minimum system resource which can in
turn improve respond time and reduce application energy usage

Validation Programmer, Business analyst and requirement engineer cross validate those requirements with the best practice criteria

Impact Promote sustainability awareness among software developers and end users

Provide opportunity to rethink how software requirement are elicited with consideration of sustainability

Lessons Learnt 1. Software developers don’t like too much documentation, so this template has been simplified
2. Requirement engineers appreciated the mapping of Karlskrona manifesto with software development phases

3. Software developers said they would appreciate more documentation on software sustainability for agile devel-

opment process though they find the mapping in Table 3 useful for them to understand how each of the Karls-
krona manifesto relates to each of the software development phases

4. Developers started discussing about coming to office by bicycle or public bus transport instead of their car to re-
duce CO2 emission

Sustainability The requirements in this template covers:

Social Sustainability

Environment Sustainability
Individual Sustainability

Contact Details shola.oyedeji@lut.fi , birgit.penzenstadler@csulb.edu

VI. DISCUSSION

The systematic mapping of the Karlskrona Manifesto aids

requirements engineers and software developers in understand-

ing how the Karlskrona Manifesto for software sustainability

design relates to the software development life cycle (see Table

3). The template (see Tables 4 and 5) provides a typical exam-

ple of how best practices for software sustainability require-

ments can be documented. Table 4 provides details of what is

expected in the template and Table 5 shows the template usage

for documenting both functional and non-functional require-

ments. This best practice uses the example of an online hospi-

tality web application.

In addition, with the work presented in this paper, we par-

tially respond to research challenges identified by Chitchyan et

al. [2] from the state of practice for software sustainability de-

sign in requirement engineering. They noted the following:

There is a lack of methodological support for sustainability

design in requirement engineering because it is not part of most

companies practice [2]. The method presented in this paper

serves as support for helping requirements engineers, software

developers and all stakeholders in documenting best practices

from sustainability design in requirements engineering using a

structured methodology.

They also noted a need for a mentality change to make peo-

ple transition from their old ways of eliciting requirements and

developing software to new way of sustainability design in

requirements engineering. Documenting best practices using

the proposed template presented here educates and promotes

awareness among those involved in the requirements engineer-

ing process of software development. This can be one way of

persuading them to see benefits of eliciting software require-

ments and developing software system in a new way with sup-

port for sustainability design.

Overall, the mapping of the Karlskrona Manifesto princi-

ples in Table 3, the method (see Figure 1), and the template for

documenting (see Table 4) provide guidance to support re-

quirements engineers and software developers in software sus-

tainability requirements elicitation and in documenting best

practices from the requirements process.

In our opinion, instantiating the Karlskrona Manifesto for

sustainability design for software processes, practices and

methods will go a long way to create awareness about software

sustainability and increase broader engagement for different

stakeholders within academia and industry.

The following are some of the limitations of our work:

 The mapping of the Karlskrona Manifesto principles

to software development process phases in this current

version may be incomplete as of now and require a

further iteration of the mapping process (meaning:

there could be principles that are not listed for a spe-

cific phase despite being applicable), but the mapping

is sufficiently complete to provide solid grounds for

discussion.

 The template may be too restrictive and not capture all

relevant information potentially provided by those

documenting the best practice. However, if templates

get too lengthy, which can easily occur when trying to

accommodate all possibilities, they are less likely to

be picked up by practitioners (see next point).

 If structure and guidance become too detailed, engi-

neers may refuse to use them, find them too specific to

apply, or apply the principles without putting suffi-

cient critical thought into it. Consequently, that is why

the template for documenting best practices has been

simplified for straightforward and self-explanatory

documentation.

VII. CONCLUSION

This paper presents a mapping of the application of the

Karlskrona Manifesto principles to software development ac-

tivities and a template for documenting their usage in best prac-

tices, supported by an example instance of its usage. An expert

group evaluated this template in two iterations.

The proposed approach can be used as guide by require-

ments engineers during software requirements elicitation and

documenting software sustainability requirements best practic-

es. Furthermore, software developers can also benefit from

using it for rethinking how they develop software using the

mapped Karlskrona Manifesto principles as guide during each

stage of the software development life cycle.

Future work includes the application of the proposed meth-

odology in industrial case studies and using the template to

document best practices from those case studies. Specifically,

during the evaluation, the expert group requested a mapping of

the Karlskrona Manifesto to agile software development meth-

od, especially to Scrum. Consequently, we plan this mapping

and adaptation for the first industry case study.

REFERENCES

[1] S. Bonini and S. Görner, “The business of sustainability :

Putting it into practice,” Insights Publ., p. 6, 2011.

[2] R. Chitchyan, L. Duboc, C. Becker, S. Betz, B.

Penzenstadler, and C. C. Venters, “Sustainability Design in

Requirements Engineering : State of Practice,” pp. 533–542,

2016.

[3] M. Mahaux and C. Canon, “Integrating the Complexity of

Sustainability in Requirements Engineering,” First Int.

Work. Requir. Eng. Sustain. Syst., 2012.

[4] U. K. Jannat, “Green Software Engineering Adaption In

Requirement Elicitation Process,” vol. 5, no. 08, pp. 94–98,

2016.

[5] United Nations, “Sustainable Development Goals Available

at: http://www.undp.org/content/undp/en/home/sustainable-

development-goals.html . Accessed on 25-04-2018,” no.

September 2000, pp. 8–23, 2015.

[6] Nielsen, “Nielsen global online study. Available online at:

http://www.nielsen.com/eu/en/insights/news/2015/green-

generation-millennials-say-sustainability-is-a-shopping-

priority.html Accessed on 3-03-2018,” Web Rep., 2015.

[7] S. Oyedeji, A. Seffah, and B. Penzenstadler, “Sustainability

Quantification in Requirements Informing Design,” 6th Int.

Work. Requir. Eng. Sustain. Syst., vol. i, 2017.

[8] G. saval Martin, mahaux, patrick heymans, “Requirements

Engineering: Foundation for Software Quality,” Requir.

Eng. Found. Softw. Qual., vol. 4542, no. January, pp. 247–

261, 2007.

[9] B. Penzenstadler, A. Raturi, D. Richardson, and B.

Tomlinson, “Safety, security, now sustainability: The

nonfunctional requirement for the 21st century,” IEEE

Softw., vol. 31, no. 3, pp. 40–47, 2014.

[10] M. Fowler and J. Highsmith, “The agile manifesto,” Softw.

Dev., vol. 9, no. August, pp. 28–35, 2001.

[11] B. R. Group, “The Business Rules Manifesto,” Bus. Rules

Group. Version Available online

http//www.businessrulesgroup.org/brmanifesto.php

Accessed 12-11-2017, no. c, pp. 1–2, 2003.

[12] I. Gent, “THE RECOMPUTATION MANIFESTO,”

Available online: https://www.software.ac.uk/blog/2016-10-

05-recomputation-manifesto Accessed on 12-11-2017, p.

9479.

[13] M. Dick, J. Drangmeister, E. Kern, and S. Naumann, “P66-

Green software engineering with agile methods,” 2013 2nd

Int. Work. Green Sustain. Software, GREENS 2013 - Proc.,

pp. 78–85, 2013.

[14] A. R. & D, “Agile Project Management: Best Practices and

Methodologies,” Altexsoft, 2015.

[15] F. Paetsch and F. Maurer, “Requirements Engineering and

Agile Software Development,” pp. 1–6, 2003.

[16] C. Becker et al., “Sustainability Design and Software: The

Karlskrona Manifesto,” Proc. - Int. Conf. Softw. Eng., vol. 2,

pp. 467–476, 2015.

[17] B. Penzenstadler, M. Martin, and S. Camille, “RE4SuSy:

Requirements engineering for Sustainable systems,” CEUR

Work. Proceedings, Retrieved from Http//ceur-ws.org/Vol-

1216/, vol. 995, 2013.

[18] B. Christoph, “Sustainability and longevity: Two sides of the

same quality?,” CEUR Workshop Proc., vol. 1216, pp. 1–6,

2014.

[19] C. Becker et al., “Website for The Karlskrona manifesto for

sustainability design,” arXiv1410.6968 [cs] Available online

Http//sustainabilitydesign.org/karlskrona-manifesto/

Accessed 10-10-2017, vol. 20, no. May, p. 2014, 2014.

[20] C. Becker et al., “The Karlskrona manifesto for

sustainability design,” arXiv1410.6968 [cs], vol. 20, no.

May, p. 2014, 2014.

[21] K. Roher and D. Richardson, “Sustainability requirement

patterns,” 2013 3rd Int. Work. Requir. Patterns, RePa 2013 -

Proc., pp. 8–11, 2013.

[22] A. Raturi, B. Penzenstadler, B. Tomlinson, and D.

Richardson, “Developing a sustainability non-functional

requirements framework,” Proc. 3rd Int. Work. Green

Sustain. Softw. - GREENS 2014, pp. 1–8, 2014.

[23] G. Saval, M. Mahaux, and P. Heymans, “Discovering

Sustainability Requirements: An Experience Report,”

REFSQ, 2013.

[24] B. Christoph et al., “Requirements: The key to

sustainability,” IEEE Softw., vol. 33, no. 1, pp. 56–65, 2016.

[25] M. Al Hinai and R. Chitchyan, “Engineering Requirements

for Social Sustainability,” Proc. ICT Sustain. 2016, 2016.

[26] G. A. García-mireles, “Exploring Sustainability from the

Software Quality Model Perspective,” in 13th Iberian

Conference on Information Systems and Technologies

(CISTI).

[27] A. Schatten, S. Biffl, M. Demolsky, E. Gostischa-Franta, T.

Östreicher, and D. Winkler, Best Practice Software-

Engineering: Eine praxiserprobte Zusammenstellung von

komponentenorientierten Konzepten, Methoden und

Werkzeugen. 2010.

[28] S. A. Fricker, R. Grau, and A. Zwingli, “Requirements

Engineering : Best Practice Requirements Engineering State-

of-Art,” 2015.

[29] M. Perks and IBM, “Best practices for software

development projects. Available online :

https://www.ibm.com/developerworks/websphere/library/tec

harticles/0306_perks/perks2.html. Accessed on 18-06-

2018,” 2006.

[30] altexsoft, “Software Documentation Types and Best

Practices. Available online :

https://www.altexsoft.com/blog/business/software-

documentation-types-and-best-practices/ Accessed on 18-06-

2018,” 2017.

[31] P. Kevin and S. Serena, “Requirements Engineering : Best

Practice,” no. July, 2015.

[32] M. Alwazae, E. Perjons, and P. Johannesson, “Applying a

Template for Best Practice Documentation,” Procedia

Comput. Sci., vol. 72, pp. 252–260, 2015.

[33] FAO, “Good practices template,” Food Agric. Organ.

United Nations, no. July, pp. 1–5, 2014.

[34] S. Oyedeji, B. Penzenstadler, and A. Seffah, “Proposal for a

Software Sustainability Design Catalogue,” no. May, pp. 1–

28, 2018.

Publication V

S. Oyedeji, B. Penzenstadler, M. O. Adisa and A. Wolf
Validation Study of a Framework for Sustainable Software System Design and

Development

In: 6th International Conference on ICT for Sustainability, ICT4S

Reprinted with permission from
CEUR Workshop Proceedings

2019

© 2019, CEUR

Validation Study of a Framework for Sustainable

Software System Design and Development

Shola Oyedeji

LUT School of Engineering Science (LENS)

LUT University

Lappeenranta, Finland

shola.oyedeji@lut.fi

Mikhail .O. Adisa

IT Service Management Consultant

IT Solutions

 Abuja, Nigeria

olamikhx@gmail.com

 Birgit Penzenstadler

Department of Computer Engineering and Computer Science,

California State University Long Beach

Long Beach, USA

LUT School of Engineering (LENS)

LUT University

Lappeenranta, Finland

birgit.penzenstadler@csulb.edu

Annika Wolf

LUT School of Engineering Science (LENS)

LUT University

 Lappeenranta, Finland

annika.Wolff@lut.fi

Abstract—Sustainability in software design is an evolving area

that requires more practical guidance on how software engineers

and businesses could innovate and design software systems that

consider sustainability as a guiding principle for supporting a

sustainable environment, reducing the negative impact of ICT

and at the same time promoting software system design for sus-

tainability. This paper presents our early results for validating a

Framework for Sustainability of Software System Design

(FSSSD) based on the Software Sustainability Design Catalogue

(SSDC). The SSDC exemplifies the use of Karlskrona Manifesto

principles for sustainability design and how to promote sustaina-

bility design principles for software systems.

Index Terms—Sustainable design, sustainability, software

sustainability, information and communication technology,

Karlskrona manifesto, Sustainability design principles

I. INTRODUCTION

Sustainability is receiving a wide range of research from

different sectors. Currently, there is not enough research results

with guidelines and frameworks to support software designers

and companies on how to design and develop software with

sustainability at the core [1]. One of the main problems for

sustainability in software design is that for software designers

there are few existing tools that wrap core principles of sustain-

ability together which can support effective software sustaina-

bility design and development [2]. For companies, the chal-

lenge is that there is little understanding of how sustainability

can be understood by software and requirements engineering

professionals to facilitate sustainability design as an established

part of the software development process within companies

[3][4][5].

The sustainable development goals (SDGs) [6] in 2015 got

signed by more than 190 world leaders, this shows the im-

portance of sustainability today in all aspects of our lives.

Though there is no direct mention of software sustainability in

the 17 SDGs, software as a catalyst for all sectors of the econ-

omy [7] serves as a key element for the implementation and

actualization of those SDGs. According to the 2016 mobile

industry impact report [8], the United Nations Sustainable De-

velopment Goals provide the opportunity for engagement to

address the most pressing global challenges, but they cannot be

realized without the business community. The report stresses

the need for companies to implement the SDGs, working with

governments and the international community to expand con-

nectivity, lower barriers to access, and build a future of dignity

and opportunity, where no one is left behind and ensure that

tools and applications are developed with vulnerable communi-

ties in mind [8].

Sustainable development is also driving software innova-

tions for creating new opportunities of cutting costs, adding

value and for gaining competitive advantage [9]. García-Berna

et al. [10] points out the practices applied by practitioners in

companies for sustainability and the need for standards as a

way of seeking more sustainable software businesses. The im-

portance of sustainability as a driving force for companies is

further highlighted in these reports: Sustainability Nears a Tip-

ping Point [11]; Ericsson energy and carbon report [12]; Mi-

crosoft 2015 Citizenship Report [13]. In summary, software is

a core of all human activities today and a major facilitator in

the way humans produce and use products and services [14].

The way software is designed and the requirements to ensure

sustainability in software design are factors that are challenging

for software designers, requirement engineers and companies

[15].

The Karlskrona Manifesto for Sustainability Design

(KMSD) [16] was initiated as a starting point for tackling this

challenges in software engineering. Based on these KMSD

principles and the Software Sustainability Design Catalogue

(SSDC) [1], the Framework for Sustainability of Software Sys-

tem Design (FSSSD) was created [1]. This paper presents the

first results of applying the Framework for Sustainability of

Software System Design (FSSSD) [1].

The next section covers related research work. Section III

presents the study design. Section IV covers the first case study

and section V details the second case study. Discussion is in

section VI and concluding remarks in section VII.

II. BACKGROUND

Software development practices and processes that are

widely used in industry for software design and development

lack in addressing sustainability [17]. There is currently no

single point of reference for researchers and practitioners where

the sustainability measures are gathered and exemplified [26].

The issue of lack of understanding on how to effectively and

efficiently integrate the different sustainability dimensions

(economic, social, individual, environmental and technical)

[18] into software design, development and wider engineering

processes [9] [19] has hindered the adoption of sustainability in

software development.

There have been different research efforts suggesting the

need to further research on how sustainability can be supported

in software requirements and design stages for all the different

sustainability dimensions [20] [21] [22]. Further research also

shows sustainability requires multidimensional and interdisci-

plinary approach [3][7][23][24][25] in order to fully achieve

sustainability in software design, development and measure-

ment.

From the requirements engineering phase, sustainability has

been considered as a non-functional requirement [26][27][28],

and Roher et al. [29] suggests the use of sustainability require-

ment patterns (SRPs) as a way to guide software requirements

engineers in eliciting sustainability requirements in the re-

quirements engineering process. However, there is a lack of

examples to show how these are applied in the industry.

Researchers from the Human Computer Interaction (HCI)

community believe sustainable HCI can facilitate and support

sustainability in the design and development of new interfaces

to promote sustainability awareness [30]. Froehlich et al. [31]

show eco feedback can serve as a key way of promoting sus-

tainability awareness among users of software systems. One

key example of an eco-feedback application [32] shows a posi-

tive result in persuading and changing users habit towards sus-

tainability. Successful application of eco feedback is when in-

formation has been tailored to encourage users towards sustain-

ability through user emotional engagement [33] [34].

Some of the design issues in design of sustainability for

better user experience of software systems are highlighted by

Kem-Laurin [35]. Kem-Laurin propose the use of sustainability

user experience framework as a way to guide designers to miti-

gate these problems. The challenge according to Eli Blevis [36]

and Fallman [37] is that sustainability is not yet a core part of

HCI. This has hindered the ability of designers to properly

evaluate design choices for software systems especially with

the different sustainability dimensions.

The challenges covered in this background section motivate

the application of FSSSD to two case studies in order to show

and suggest how to better support sustainability in software

design and development.

III. STUDY DESIGN FOR FRAMEWORK VALIDATION

This section describes the Framework for Sustainability of

Software System Design (FSSSD) and the rationale behind

choosing the two case studies used in the research.

Figure 1. Framework for Sustainability of Software System Design (FSSSD)
[1]

The FSSSD (Figure 1) was created to assist developers to

incorporate sustainability goals and requirements during soft-

ware system design and development covering the software

development life-cycle (SDLC) phases. For the purpose of bet-

ter understanding, the FSSSD (Figure 1) is transformed into

tabular form (Table 1) [1].

TABLE I. FRAMEWORK FOR SUSTAINABILITY OF SOFTWARE SYSTEM

DESIGN (FSSSD) [1]

SDLC phases

and KMSD

principles

Sustainability

goals

Sustainability

concepts, Meth-

ods and Tools

Indicators

Phase 1.

Project Defini-

tion,

P1, P2 and P3

Design for
sustainable

efficiency,

reusability

biomimicry, sus-
tainable business

canvas

Carbon footprint,
material foot-

print, end of life

footprint.

Phase 2.

User Require-

ments Defini-
tion,

P2

Increase sus-

tainability
awareness

among users.

Sustainability

requirement tem-
plate

Total number of

sustainability
requirements,

priority assign to

sustainability
requirements.

Phase 3.

System Re-
quirements

Definition,

P4, and P5

Design for
efficiency,

sustainability

awareness and
interoperability.

Cradle to cradle,
Goal model.

Total number of
system goals

relating to sus-

tainability di-
mensions.

Phase 4.

Analysis and

Design,

P2, P4, P6 and

P8

Design for

reuse and effi-
ciency, locali-

zation, interop-

erability

Life-cycle sustain-

ability assessment,
social return on

investment, sus-

tainability analysis
radar chart

Number of first-,

second- and
third-order im-

pacts of system

identified.

Phase 5.

Development,

P2 and P4

Design for
reuse, design

for module

replicability,
design for

efficiency,

sustainability
awareness,

efficiency,

design for easy

Biomimicry, cra-
dle to cradle

Number of cod-
ing choices

influenced by

sustainability,
number of fea-

tures (functions)

added to systems
to inform users

about sustaina-

bility through

service and

maintenance

functions like

eco feedback.

Phase 6.

Integration and

Testing,

P2 and P4

Design for easy

assembly and
disassembly,

design for

durability

Cradle to cradle,

sustainability
analysis radar

chart, life-cycle

sustainability
assessment

How much in-

formation from
sustainability

analysis chart

was used during
integration and

testing such as

the number of
systems func-

tions tested

against sustaina-
bility concerns

such as the first-

order (immedi-
ate) impact,

possible second-

order (enabling)
and potential

third order

(structural) im-

pacts of the

system

Phase 7.

Implementation,
P5 and P7

Design for easy

use, design to

induce con-
scious sustain-

ability aware-

ness, design to
educate users

about sustaina-

bility, design
for easy recy-

cle.

Biomimicry, cra-

dle to cradle

The priority

assign to sustain-

ability by devel-
opers and the

system own-

ers/users during
after implemen-

tation

Phase 8.

Sustainment/

Maintenance,

P9

Proper design

for serviceabil-

ity, design for
easy replace-

ment of code

modules, de-

sign for contin-

uous user en-

gagement
through sus-

tainability

awareness.

Life-cycle sustain-

ability assessment,

sustainability
analysis radar

chart, cradle to

cradle.

Number of im-

provements to

system based on
sustainability

requirements

either from us-

ers’ feedback or

developers.

The approach applied in the selection of each case study

was to choose two different case studies where one case study

has the ultimate goal of sustainability from the beginning and

the other case study uses the framework to improve an existing

system.

The goal is to see what difference will occur from these two

different case studies in different application context. The first

case study - about a pension benefit tracker application - does

not have sustainability as the central core and the second case

study - about an energy usage display for university staff and

students - is motivated by sustainability.

IV. CASE STUDY ONE: PENSION BENEFIT TRACKER

APPLICATION

The pension benefit tracker is an application from a pension

company in Nigeria that wants to track pension benefit applica-

tions submitted by clients from all over the company’s branch-

es in different states of Nigeria. Currently, the pension applica-

tions are done manually from each branch and those applica-

tions are sent via courier service to the head office. This usually

causes the following problems:

1. Zonal managers don’t have direct access to know the

status of applications submitted through them and

have to directly place phone calls to the Head office to

know the application status.

2. Customer service staff are unable to know why an ap-

plication is pending, unless they contact the benefit

department.

3. Time consumption, as all status updates are through

customer service at the head office alone.

4. Files can go missing in transit because application

files are handled manually.

5. Double application and too much physical involve-

ment because of follow up in person

The company intended to develop a new pension benefit

application tracker application for these key stakeholders, the

benefit department, the customer service unit, the zonal manag-

ers and the clients with the aim of:

1. Identifying ways of improving the pension benefit

application process and enhance communication.

2. Designing and implementing a web-based solution

that will ensure effective and efficient benefit pro-

cessing for users.

The below Figure 2 is the first Use case diagram for the ap-

plication.

Fig 2. Use Case diagram pension benefit tracker

Figure 2 shows the use case diagram of the system for pen-

sion benefit tracker application after initial analysis. Figure 3

presents the process model of the pension benefit application

after a second analysis, factoring in all the aforementioned

problems without using FSSSD. Figure 3 shows that sustaina-

bility was not the core of this case study, based on the process

model, as stakeholders are just interested in solving the prob-

lems stated in the case study.

Table 2 presents the details for applying FSSSD to the pension

benefit tracker application (case study one). The documentation

for this case study using FSSSD covers the project initiation,

user requirements and system requirements phases only (see

Table 2) because that is the current development stage of the

project.

Fig 3. New Process Model for Pension Application after second analysis

TABLE II. APPLICATION OF FSSSD IN CASE STUDY ONE

SDLC Phases and Karlskrona Manifesto Prin-

ciples

Sustainability Goals Sustainability Con-

cepts, Methods and

Tools

Indicators /Measure / Metric

Phase 1. Project Definition

Provide end users with easy to use interface for

tracking pension payment, ensure each module

for tracking can be updated to include new
branches,

Provide flexibility such as bulk and single up-

load, ensure easy integration with other existing
pension systems, present report of system usage

to track energy consumption in a way to educate

users about sustainability, add bug reports

Design for:

Easy integration,

Reusability,

Developers work satisfaction,
Maintainability,

Energy efficiency

Motivated by the

cradle to cradle

approach ensuring

that the pension
tracker application is

design and devel-

oped in a way that it
can be reused for

future pension relat-

ed purposes and
easily integrated

with other bigger

pension system
within the company

1. How many state branches can

easily integrate the systems with

less Backlog Management Index

(BMI)?
2. What is the number of reports

from IT staff about how to im-

prove system energy efficiency?

3. How satisfied are the devel-

opers with the development of

the application

Phase 2. User Requirements Definition

1. Provide tracking of pension benefit payment
application from request submission to payment

2. Status notification should be sent to users after

each stage of the pension benefit application

Reduce development cost,

increase efficiency

Sustainability re-

quirement Template

How efficient is benefit depart-

ment able to track new pension
benefit applications and send

notification successfully

Phase 3. System Requirements Definition

1. The pension tracker application should be

accessible online via web at any branch

2. The application should have ability to enable
Managers, pensioners and other stakeholders

check application status

3. Provide automatic status communication and
notification at each stage of benefit application

4. Allow bulk or single file upload

5. Provide SMS authorization from managers in
benefit department

6. Send SMS notification to applicants

7. Send Incomplete documentation notification to

Design for efficiency, sustain-

ability awareness

Social and individu-

al dimension of

sustainability

1. How satisfied are users with

visual problem with the magni-

fying display?

2. Do users use the option of
email notification and does it

reduce company cost for sending

SMS?

3. How many positive responses

came from users base on the

“Save the planet, Reduce envi-
ronmental waste” tag message?

benefit department staff

8. Provide email notification as an option for all
users

9. Provide option of different display to magnify

fonts for users with visual problems
10. Provide option to preview pension applica-

tion and save electronically

11. Add a tag message below each notification
“Save the planet, Reduce environmental waste”

12. Provide energy report for system usage

4. How many initiatives were

suggested from IT department
base on the system energy re-

port?

After application of the FSSSD with the sustainability de-

sign catalogue (SSDC), see Table 2, the IT department made

some changes to the system requirements such as addition of

the following system requirements in Table 2, SDLC phase 3:

1. Email notification option instead of only SMS func-

tion as seen in Figure 3 in which only SMS is shown

(system requirement 8 in Table 2).

2. Provide option of different display to magnify fonts

for users with visual problems especially older staff

(system requirement 9 in Table 2).

3. Provide option to preview pension application and

save electronically instead of printing and filling lo-

cally to reduce cost, paper waste and energy usage

(system requirement 10 in Table 2)

4. Add a tag message below each notification “Save the

planet, and reduce environmental waste” to raise sus-

tainability awareness among staff and clients (system

requirement 11 in Table 2).

5. An energy report that enables developers to improve

efficiency (system requirement 12 in Table 2).

V. CASE STUDY TWO: ENERGY USAGE AND CARBON EMISSION

DISPLAY FOR UNIVERSITY STAFF AND STUDENTS

This is a university setting project to raise the awareness of

the public (university staff and students) about energy usage

and the carbon emissions through activities in the university.

The project requires a web application interface which will

display the energy usage and carbon emission. The goal is to let

the public know more about the electricity consumption of each

building in the university and understand the relation between

the electricity consumption and carbon emission (CO2).

Using the FSSSD, the involved students and their supervisors

documented the project to show how sustainability was consid-

ered in the project (see Table 3). Figure 4 shows the interface

design for the project and Figure 5 covers an overview of the

sustainability business canvas for the project.

TABLE III. FSSSD APPLICATION IN CASE STUDY TWO (ENERGY USAGE AND CARBON EMISSION DISPLAY FOR STAFF AND STUDENTS)

SDLC Phases and Karlskrona Manifes-

to Principles

Sustainability Goals Sustainability Concepts,

Methods and Tools

Indicators /Measure

Phase 1. Project Definition

Raise awareness from the public (universi-

ty staff and students) about energy usage
and the carbon emissions through activities

in the university.

Design for sustainability

awareness, efficiency,

reusability, easy integra-
tion,

maintainability and

energy efficiency

Sustainable Business Can-

vas was used to breakdown

the project goals and scope
into environment, society,

economy, process, value

and people in order to have
better clarity on the sus-

tainability goals of the

project and derive basic
benchmarks for evaluating

the project at the end.

1. What is the impact of the project

on promoting sustainability aware-

ness within the university?
2. How many users participate in

the weekly sustainability challenge?

3. What are the new initiatives from
departments towards sustainability

based on the application usage?

Phase 2. User Requirements Definition

1. Provide information on energy usage

within the university

2. Show the carbon emission

3. Allow weekly sustainability challenge

and show winners

4. Section for user community to connect
and discuss

5. Provide feature to share things to social

media

Increase sustainability
awareness through ener-

gy usage and carbon

emission information to
users

Sustainability requirement
template (template that

shows the sustainability

analysis of the five dimen-
sions and the three orders

of effects from the design

catalogue) [1]

1. Can users see information about
energy usage and carbon emission?

2. How effective is the weekly

sustainability challenge?

3. How many users participate in

the weekly sustainability challenge?

4. Do users share their experience
via social media portal?

Phase 3. System Requirements Definition

1. Information about energy usage and

carbon emission should be available via

the central display screen and web portal

Design for sustainability
awareness, maintainabil-

ity and

energy efficiency

Environmental, Social and
individual dimension of

sustainability

1. Can users understand the energy
and carbon emission information

presented?

2. How easy can users join the

2. The application should translate the

carbon emission data base on energy usage
into meaningful information for better user

understanding such as distance between

Lappeenranta and other cities

3. The web interface should allow users

participate in the weekly challenge

4. Users are able to share their weekly
challenge results via Facebook and Twit-

ter.

5. The application should allow users form
community of interest for different sus-

tainability goals.

6. Provide API to allow for easy integra-
tion with other applications

 weekly challenge?

3. Does the application to form
community of different sustainabil-

ity goals?

4. Can users successfully share
their weekly challenge on Facebook

and Twitter?

5. Does the API allow easy infor-
mation access?

Phase 4. Analysis and Design

1. Identify the first, second and third order

impact of the application on user energy

usage and sustainability awareness

2. Find areas to improve the application

implementation base on the different sus-
tainability dimensions especially environ-

ment, social and technical dimensions

Design for sustainability

awareness, reuse, effi-

ciency and localization

Sustainability analysis

radar chart was used for

the sustainability analysis
to show the he first, second

and third (immediate,

enabling, and structural)
impacts of the application.

1. What is the potential percentage

of energy usage reduction in the

university?

2. What is the level of user aware-

ness overtime about energy usage

and carbon emission?

3. What is the impact of the user

community for users’ motivation

towards sustainability within the
university?

Phase 5. Development Design for sustainability

awareness, efficiency,
reuse, design for module

replicability, design for

easy service and mainte-
nance

Cradle to cradle concept

influence the development
to develop each module in

the application in a way

that support evolution as
user requirements changes

over time and ensuring

sustainability is the core of
all development

1. What is the defect density of the

application?

2. What is the energy efficiency of

the application?

3. How many modules relating to
sustainability awareness was suc-

cessfully developed?

4. Can users successfully use the
application for all application func-

tions such as join a community,

participate and share weekly sus-
tainability results, understand dis-

played energy usage and carbon

emission information?

Fig 4.Sustainability awareness via energy usage interface

Fig 5. Sustainable Business Canvas for Case Study Two [38]

VI. DISCUSSION

For the project initiation in the first case study, normally

project managers will only evaluate projects by considering

whether the software system meets all user requirements after

development and testing as a yardstick for satisfying all project

requirements. The application of FSSSD in case study one (Ta-

ble 2) shows that indicators used for evaluating the project up

to the current development stage included the level of develop-

er satisfaction (individual dimension of sustainability) and the

number of IT staff reporting on how to improve the system

energy efficiency (environment and technical dimension). This

confirms a new perspective towards software project evaluation

with sustainability dimensions now considered by stakeholders

in case study one. The use of FSSSD also led to new system

requirements (Table 2) with the potential to improve the system

efficiency and consideration of sustainability based on the sys-

tem context.

Based on the initial response from stakeholders in case

study one, it indicates that as a company their major interest

was to check if FSSSD - as guide in the application of sustain-

ability in software system design and development - would

save them cost and improve staff productivity. The use of de-

velopers satisfaction for the pension benefit tracker is one ex-

ample because the company believes if there is means of

checking staff satisfaction, it could offer a means of improving

working conditions which will in turn improve productivity

over time. This will help them reduce the cost of operations

and improve profit margin.

Case study two provides a different use of FSSSD as sus-

tainability is the core of the application design. As noted in [33]

[34], with better tailored information through eco feedback,

user habits can change positively towards sustainability over

time. The second case study (see Table 3, Figures 4 and 5)

shows the presentation of energy usage data converted into

carbon emission. With the use of FSSSD as guide, the applica-

tion in case study two was designed in a way that the carbon

emission information was displayed in order to educate users

about their energy consumption habits in each department. The

system presented the percentage of carbon emission in form of

distance between one city to another with the goal to provide

better understanding for the public about the impact of their

energy consumption on the environment.

Feedback and comments (Table 4) from stakeholders in

case study one and two indicates that developers and engineers

complained there are few industry case studies for software

development that shows how sustainability was applied. The

second challenge was in motivating software requirements en-

gineers and designers to incorporate the use of the new sustain-

ability artifacts for sustainability in requirements and software

development because most of them are used to the old ways of

developing software systems and therefore require extensive

discussion on the usage of the artifacts in FSSSD.

In general, the early feedback and comments (Table 4) from

case study one and two shows that the Framework for Sustain-

ability of Software System Design (FSSSD) provides guidance

and support for sustainability in software design requirements

and development. The tools, methods and concepts provided as

sample in the framework helped in providing new insights into

how sustainability can be incorporated into software project

design and development especially the Sustainable Business

Canvas, Goal model, Sustainability Requirement Template,

Biomimicry, Cradle to cradle concept and Sustainability Anal-

ysis Radar Chat diagram. In addition, FSSSD also persuades

stakeholders to rethink their software project with sustainability

as a means of developing a better product that is cost effective

over a long time and supports good corporate social responsi-

bility. Table 4 summarizes the feedback on the usage of FSSSD

from the case studies.

TABLE IV. DIRECT QUOTES FEEDBACKS AND COMMENTS FROM PARTICIPANTS AND STAKEHOLDERS IN USING FSSSD (CASE STUDY ONE AND TWO)

Role SDLC Phase Positive Challenges

CTO Project Definition 1. The SSDC was good way to understand the differ-

ent aspect of sustainability for different kind of soft-
ware system. The SSDC made it possible for me and

my team to know more about sustainability in soft-

ware development with those guidelines provided for
each software system.

2. The FSSSD provides new insight for sustainability

in software project with consideration of sustainabil-

ity principles

3. Combination of the SSDC and FSSSD provides an

avenue to consider our software impacts and see how
we can minimise it.

4. FSSSD introduces new methods for evaluating our

applications especially the environmental and indi-
vidual dimensions of sustainability

5. The Sustainable Business Canvas brings in a total-

ly new factors into software project definition with
sustainability concepts and dimensions as guide

1. Very difficult to understand how to apply some of the

sustainability concepts because its new to me and my team

2. We have a challenge to find concrete examples online to

see how sustainability was applied to software project defini-

tion especially in industry

3. It was challenging to give my staff additional task of read-

ing the Framework manual to understand how to apply it

Software

developer,
Project coor-

dinator

User requirement

definition

1. The sustainability requirement template was use-

ful as guide during requirement gathering because it
provides us with means of discussing sustainability

with users and categorising user requirements base

on sustainability dimensions

It was difficult at first to understand how to explain the dif-

ferent dimensions of sustainability to key stakeholders (us-
ers) during discussion gathering requirements on how to

improve the existing system

System ana-

lyst, software

developer

System Require-

ments Definition

1. I was able to learn new things about how sustaina-

bility can influence gathering system requirements

and identifying new system requirements using the
FSSSD

2. The goal model diagram is really a good tool to

breakdown sustainability goals base on requirements
into business, usage and system goal.

3. The goal model diagram made it easy to explain,

discuss and improve the project goals and system
requirements using the business, usage and system

goal diagram.

1. The only issue is lack of examples to show how sustaina-

bility has been used in different software requirements elici-

tation at the beginning when using FSSSD but after couple of
meetings discussing about sustainability with the research

guy things became clearer.

2. Some of the research especially about sustainability in
system requirements I saw on google from some researchers

are too complex to apply

System ana-

lyst, Pro-
grammers,

Software

developer

Analysis and

Design

1. The sustainability goals and suggested tools from

FSSSD was a good starting point to guide us during
the analysis and design phase.

2. The sustainability analysis radar chat was a new

interesting tool because it shows some new require-
ments to add after brainstorming on each of the first,

second and third impacts

Brainstorming on how to connect the first, second and third

order impact in each of the sustainability dimensions was not
easy because each of us have different views on what is the

right thing to put but eventually we looked at some of the

examples provided by the researcher guy in using FSSSD.

VII. CONCLUSION

Software design and development in the real world is con-

tinuously changing with the adoption of new software devel-

opment methods and paradigms, such as agile, to reduce the

development time from different SDLC phases and shortened

time to market. However, sustainability is currently not at the

core of the general development methodology in companies.

Sustainability as a main principle and value provides a compet-

itive advantage for companies and software designers

/developers but the major challenge is the lack of understand-

ing on how to institutionalize sustainability in software design

and development projects.

This paper summarizes our early results on applying the

Framework for the Sustainability of Software System Design

(FSSSD) (Figure 1 and Table 1) in two case studies. The

FSSSD provides support for sustainability in software design

through the aspect of promoting sustainability goals at each

stage of a software development life cycle phase with aid from

different sustainability concepts, tools and methods as seen in

case study 1 (Table 2) and case study 2 (Table 3 and Figure 4,

5). It also encourages a sustainability-oriented software devel-

opment mindset over time with usage of FSSSD, because sus-

tainability becomes part of the core fundamental values for

software design and development practice.

Discussions with stakeholders and feedback in each of the

case studies (Table 4) shows the major challenge in application

of sustainability to software design and development is the lack

of readily available software system industry examples and best

practices of how core principles of sustainability are applied

and exemplified in software projects.

 Another challenge is in shifting developers’ mindsets to

adopting sustainability in a way that translates into their soft-

ware design and development decisions and practices. The

concept of sustainability dimensions (social, individual, envi-

ronmental, economic, and technical) only becomes interesting

to apply in software design if it can provide companies with

opportunities for cutting costs and offer a competitive ad-

vantage in one way or another through usage of the framework.

The next phase is to repeatedly apply the FSSSD to differ-

ent kinds of software projects and record best practices from

each of these projects that can then be disseminated to interest-

ed stakeholders. Our template for documenting software sus-

tainability requirement elicitation best practice during software

design and development [39] can serve as template for such

documentation.

ACKNOWLEDGMENT

The authors would like to thank Tom Mistretta and

Alexandre Devinez for their work in the Living Lab at LUT

University to support this research work.

REFERENCES

[1] S. Oyedeji, A. Seffah, and B. Penzenstadler, “A catalogue

supporting software sustainability design,” Sustainability,

vol. 10, no. 7, pp. 1–30, 2018.

[2] N. Shedroff, Design is the Problem:The Future of Design

Must be Sustainable. Rosenfeld Media, 2009.

[3] R. Chitchyan, L. Duboc, C. Becker, S. Betz, B.

Penzenstadler, and C. C. Venters, “Sustainability Design in

Requirements Engineering : State of Practice,” pp. 533–542,

2016.

[4] M. Mahaux and C. Canon, “Integrating the Complexity of

Sustainability in Requirements Engineering,” First Int.

Work. Requir. Eng. Sustain. Syst., 2012.

[5] U. K. Jannat, “Green Software Engineering Adaption In

Requirement Elicitation Process,” vol. 5, no. 08, pp. 94–98,

2016.

[6] United Nations, “Sustainable Development Goals Available

at: https://www.un.org/sustainabledevelopment/sustainable-

development-goals/ Accessed on 28-12-2018,” no.

September 2000, pp. 8–23, 2015.

[7] S. Oyedeji, A. Seffah, and B. Penzenstadler, “Classifying the

Measures of Software Sustainability,” in Proceedings of the

4th International Workshop on Measurement and Metrics

for Green and Sustainable Software Systems co-located with

12th International Symposium on Empirical Software

Engineering and Measurement (ESEM 2018), 2018.

[8] G. Deloittte, “2016 Mobile Industry Impact Report:

Sustainable Development Goals,” 2016.

[9] C. Calero and M. Piattini, “Introduction to Green in software

engineering,” Green Softw. Eng., pp. 1–327, 2015.

[10] J. García-Berna, J. Carrillo de Gea, B. Moros, J. Fernández-

Alemán, J. Nicolás, and A. Toval, “Surveying the

Environmental and Technical Dimensions of Sustainability

in Software Development Companies,” Appl. Sci., vol. 8, no.

11, p. 2312, 2018.

[11] H. Knut, R. Martin, S. Ingridvon, A. Michael, K. David, and

K. Nina, “Sustainability Nears a Tipping Point Sustainability

Nears a Tipping Point,” MIT Sloan Manag. Rev., vol. 53, no.

2, pp. 69–74, 2012.

[12] Ericsson, “Energy and Carbon Report,” no. June, p. 12,

2013.

[13] Microsoft, “Microsoft 2015 Citizenship Report,” 2015.

[14] S. Oyedeji, A. Seffah, and B. Penzenstadler, “Sustainability

Quantification in Requirements Informing Design,” 6th Int.

Work. Requir. Eng. Sustain. Syst., vol. i, 2017.

[15] G. saval Martin, mahaux, patrick heymans, “Requirements

Engineering: Foundation for Software Quality,” Requir.

Eng. Found. Softw. Qual., vol. 4542, no. January, pp. 247–

261, 2007.

[16] C. Becker et al., “Sustainability Design and Software: The

Karlskrona Manifesto,” Proc. - Int. Conf. Softw. Eng., vol. 2,

pp. 467–476, 2015.

[17] B. Penzenstadler, “What does Sustainability mean in and for

Software Engineering ?,” 1st Int. Conf. ICT Sustain., 2013.

[18] B. Penzenstadler and H. Femmer, “A generic model for

sustainability with process- and product-specific instances,”

GIBSE 2013 - Proc. 2013 Work. Green Softw. Eng. Green

by Softw. Eng., no. June 2015, pp. 3–7, 2013.

[19] C. C. Venters et al., “Software sustainability: The modern

tower of babel,” 3rd Int. Work. Requir. Eng. Sustain. Syst.

Work. Proc., vol. 1216, pp. 7–12, 2014.

[20] M. Al Hinai and R. Chitchyan, “Engineering Requirements

for Social Sustainability,” Proc. ICT Sustain. 2016, 2016.

[21] B. Penzenstadler, “Software Engineering for Sustainability.”

[22] E. Blevis, C. Preist, D. Schien, and P. Ho, “Further

Connecting Sustainable Interaction Design with Sustainable

Digital Infrastructure Design,” Proc. 2017 Work. Comput.

Within Limits - LIMITS ’17, pp. 71–83, 2017.

[23] G. G. Calienes, “Requirements Prioritization Framework for

developing Green and Sustainable Software using ANP -

based Decision Making,” pp. 1–9, 2013.

[24] B. Penzenstadler, “RE4ES: Support Environmental

Sustainability by Requirements Engineering,” First Int.

Work. Requir. Eng. Sustain. Syst., 2012.

[25] P. Bozzelli, Q. Gu, and P. Lago, “A systematic literature

review on green software metrics,” Sis.Uta.Fi, 2013.

[26] A. Raturi, B. Penzenstadler, B. Tomlinson, and D.

Richardson, “Developing a sustainability non-functional

requirements framework,” Proc. 3rd Int. Work. Green

Sustain. Softw. - GREENS 2014, pp. 1–8, 2014.

[27] C. C. Venters et al., “The Blind Men and the Elephant

Towards an Empirical Evaluation Framework for Software

Sustainability,” vol. 2, no. 1, pp. 1–6, 2014.

[28] B. Penzenstadler, A. Raturi, D. Richardson, and B.

Tomlinson, “Safety, security, now sustainability: The

nonfunctional requirement for the 21st century,” IEEE

Softw., vol. 31, no. 3, pp. 40–47, 2014.

[29] K. Roher and D. Richardson, “Sustainability requirement

patterns,” 2013 3rd Int. Work. Requir. Patterns, RePa 2013 -

Proc., pp. 8–11, 2013.

[30] L. Bonanni, D. Busse, J. Thomas, E. Blevis, M. Turpeinen,

and N. J. Nunes, “Visible - Actionable - Sustainable:

Sustainable Interaction Design in Professional Domains,”

Proc. CHI 2011, pp. 2413–2416, 2011.

[31] J. Froehlich, L. Findlater, J. Landay, and C. Science, “The

Design of Eco-Feedback Technology,” pp. 1999–2008,

2010.

[32] A. Spagnolli et al., “Eco-feedback on the go: Motivating

energy awareness,” Computer (Long. Beach. Calif)., vol. 44,

no. 5, pp. 38–45, 2011.

[33] R. J. Yun, A. Aziz, and B. Lasternas, “Design Implications

for the Presentation of Eco- feedback Data,” Arch. Des. Res.,

vol. 28, no. 4, pp. 95–106, 2015.

[34] P. Kotzé, G. Marsden, G. Lindgaard, J. Wesson, and M.

Winckler, Interaction – INTERACT 2013 14th IFIP TC 13

International Conference, no. 1. 2013.

[35] K.-L. Kramer, User Experience in the Age of Sustainability.

Available at: http://dx.doi.org/10.1016/b978-0-12-387795-

6.00001-9. 2012.

[36] E. Blevis, “Sustainable Interaction Design : Invention &

Disposal , Renewal & Reuse,” pp. 503–512, 2007.

[37] D. Fallman, “Design-oriented Human — Computer

Interaction,” no. 5, pp. 225–232, 2003.

[38] “Strongly Sustainable Business Model Canvas

Http://www.ssbmg.com/ Accessed on 18-04-2019.”

[39] S. Oyedeji and B. Penzenstadler, “Karlskrona Manifesto:

Software requirement engineering good practices,” CEUR

Workshop Proc., vol. 2223, pp. 15–23, 2018.

ACTA UNIVERSITATIS LAPPEENRANTAENSIS

847. GRADOV, DMITRY. Experimentally validated numerical modelling of reacting
multiphase flows in stirred tank reactors. 2019. Diss.

848. ALMPANOPOULOU, ARGYRO. Knowledge ecosystem formation: an institutional and
organisational perspective. 2019. Diss.

849. AMELI, ALIREZA. Supercritical CO2 numerical modelling and turbomachinery design.
2019. Diss.

850. RENEV, IVAN. Automation of the conceptual design process in construction industry
using ideas generation techniques. 2019. Diss.

851. AVRAMENKO, ANNA. CFD-based optimization for wind turbine locations in a wind
park. 2019. Diss.

852. RISSANEN, TOMMI. Perspectives on business model experimentation in
internationalizing high-tech companies. 2019. Diss.

853. HASSANZADEH, AIDIN. Advanced techniques for unsupervised classification of remote
sensing hyperspectral images. 2019. Diss.

854. POPOVIC, TAMARA. Quantitative indicators of social sustainability applicable in
process systems engineering. 2019. Diss.

855. RAMASAMY, DEEPIKA. Selective recovery of rare earth elements from diluted
aqueous streams using N- and O –coordination ligand grafted organic-inorganic hybrid
composites. 2019. Diss.

856. IFTEKHAR, SIDRA. Synthesis of hybrid bio-nanocomposites and their application for
the removal of rare earth elements from synthetic wastewater. 2019. Diss.

857. HUIKURI, MARKO. Modelling and disturbance compensation of a permanent magnet
linear motor with a discontinuous track 2019. Diss.

858. AALTO, MIKA. Agent-based modeling as part of biomass supply system research.
2019. Diss.

859. IVANOVA, TATYANA. Atomic layer deposition of catalytic materials for environmental
protection. 2019. Diss.

860. SOKOLOV, ALEXANDER. Pulsed corona discharge for wastewater treatment and
modification of organic materials. 2019. Diss.

861. DOSHI, BHAIRAVI. Towards a sustainable valorisation of spilled oil by establishing a
green chemistry between a surface active moiety of chitosan and oils. 2019. Diss.

862. KHADIJEH, NEKOUEIAN. Modification of carbon-based electrodes using metal
nanostructures: Application to voltammetric determination of some pharmaceutical and
biological compounds. 2019. Diss.

863. HANSKI, JYRI. Supporting strategic asset management in complex and uncertain
decision contexts. 2019. Diss.

864. OTRA-AHO, VILLE. A project management office as a project organization’s
strategizing tool. 2019. Diss.

865. HILTUNEN, SALLA. Hydrothermal stability of microfibrillated cellulose. 2019. Diss.

866. GURUNG, KHUM. Membrane bioreactor for the removal of emerging contaminants
from municipal wastewater and its viability of integrating advanced oxidation processes.
2019. Diss.

867. AWAN, USAMA. Inter-firm relationship leading towards social sustainability in export
manufacturing firms. 2019. Diss.

868. SAVCHENKO, DMITRII. Testing microservice applications. 2019. Diss.

869. KARHU, MIIKKA. On weldability of thick section austenitic stainless steel using laser
processes. 2019. Diss.

870. KUPARINEN, KATJA. Transforming the chemical pulp industry – From an emitter to a
source of negative CO2 emissions. 2019. Diss.

871. HUJALA, ELINA. Quantification of large steam bubble oscillations and chugging using
image analysis. 2019. Diss.

872. ZHIDCHENKO, VICTOR. Methods for lifecycle support of hydraulically actuated mobile
working machines using IoT and digital twin concepts. 2019. Diss.

873. EGOROV, DMITRY. Ferrite permanent magnet hysteresis loss in rotating electrical
machinery. 2019. Diss.

874. PALMER, CAROLIN. Psychological aspects of entrepreneurship – How personality and
cognitive abilities influence leadership. 2019. Diss.

875. TALÁSEK, TOMÁS. The linguistic approximation of fuzzy models outputs. 2019. Diss.

876. LAHDENPERÄ, ESKO. Mass transfer modeling in slow-release dissolution and in
reactive extraction using experimental verification. 2019. Diss.

877. GRÜNENWALD, STEFAN. High power fiber laser welding of thick section materials -
Process performance and weld properties. 2019. Diss.

878. NARAYANAN, ARUN. Renewable-energy-based single and community microgrids
integrated with electricity markets. 2019. Diss.

879. JAATINEN, PEKKO. Design and control of a permanent magnet bearingless machine.
2019. Diss.

880. HILTUNEN, JANI. Improving the DC-DC power conversion efficiency in a solid oxide
fuel cell system. 2019. Diss.

881. RAHIKAINEN, JARKKO. On the dynamic simulation of coupled multibody and hydraulic
systems for real-time applications. 2019. Diss.

882. ALAPERÄ, ILARI. Grid support by battery energy storage system secondary
applications. 2019. Diss.

883. TYKKYLÄINEN, SAILA. Growth for the common good? Social enterprises' growth
process. 2019. Diss.

884. TUOMISALO, TEEMU. Learning and entrepreneurial opportunity development within a
Finnish telecommunication International Venture. 2019. Diss.

885
SOFTW

ARE SUSTAIN
ABILITY BY DESIGN

Shola Oyedeji

ISBN 978-952-335-456-2
ISBN 978-952-335-457-9 (PDF)

ISSN-L 1456-4491
ISSN 1456-4491

Lappeenranta 2019

 HistoryItem_V1
 Nup

 Create a new document
 Trim unused space from sheets: no
 Allow pages to be scaled: yes
 Margins and crop marks: none
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Scale by 90.00 %
 Align: centre

 0.0000
 10.0000
 20.0000
 0
 Corners
 0.3000
 ToFit
 0
 0
 1
 1
 0.9000
 0
 0
 1
 0.0000
 1

 D:20191122121557
 841.8898
 a4
 Blank
 595.2756

 Tall
 740
 275
 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 1
 0

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 1

 HistoryItem_V1
 StepAndRepeat

 Create a new document
 Trim unused space from sheets: no
 Allow pages to be scaled: no
 Margins and crop marks: none
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Layout: rows 1 down, columns 1 across
 Align: centre

 0.0000
 10.0000
 20.0000
 0
 Corners
 0.3000
 ToFit
 0
 0
 1
 1
 1.0000
 0
 0
 1
 0.0000
 1

 D:20191122121733
 841.8898
 a4
 Blank
 595.2756

 Tall
 548
 145

 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 0
 0

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0k
 Quite Imposing Plus 3
 1

 1

 HistoryList_V1
 qi2base

