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Abstract 

In the literature, researchers and practitioners can find a manifold of algorithms to perform a 

classification task. The similarity classifier is one of the more recently suggested classification 

algorithms. In this paper, we suggest a novel similarity classifier with multiple ideal vectors per class 

that are generated with k-means clustering in combination with the jump method. Two approaches for 

pre-processing, via simple standardization and via principal component analysis in combination with 

the MAP test and parallel analysis, are presented. On the artificial data sets, the novel classifier with 

standardization and with transformation power Y = 1 for the jump method results in significantly higher 

mean classification accuracies than the standard classifier. The results of the artificial data sets 

demonstrate that in contrast to the standard similarity classifier, the novel approach has the ability to 

cope with more complex data structures. For the real-world credit data sets, the novel similarity classifier 

with standardization and Y = 1 achieves competitive results or even outperforms the k-nearest neighbour 

classifier, the Naive Bayes algorithm, decision trees, random forests and the standard similarity 

classifier.  
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1 Introduction 

1.1 Background 

One common type of problem in machine learning is classification, which means using characteristics 

of observations to assign these observations to discrete classes (Bishop, 2006). Classification algorithms 

support the decision-making for enterprises and individuals in numerous applications, including medical 

diagnostics (Luukka, 2008), product positioning (Lei & Moon, 2015), recommendation systems (Jiang, 

Shang, & Liu, 2010) and sentiment analysis in social media (Figini, Bonelli, & Giovannini, 2017). A 

common interest in these algorithms in finance is with respect to the evaluation of the creditworthiness 

of customers and for the credit granting decision (Figini et al., 2017; Huang, Chen, Hsu, Chen, & Wu, 

2004; Tsaih, Liu, Liu, & Lien, 2004). 

In the literature, researchers and practitioners can find a manifold of algorithms to conduct a 

classification tasks, which include, but are not limited to, the well-known neural networks, support 

vector machines, decision trees, k-nearest neighbours, random forests and numerous more. One of the 

more recently developed and applied classifiers is the similarity classifier (Luukka, Saastamoinen, & 

Könönen, 2001). The first results for the similarity classifier were published in Luukka et al. (2001). 

Since then, the classifier has been applied to several medical data sets (Luukka, 2008; Luukka & 

Leppälampi, 2006) and to two bankruptcy data sets (Luukka, 2010), showing high classification 

accuracies. Moreover, Luukka & Leppälampi (2006) demonstrated that the similarity classifier 

outperforms classifiers such as linear discriminant analysis, the C4.5 algorithm (J. R. Quinlan, 1992) 

and multi-layer perceptron neural networks on the medical data sets in their study. Luukka (2009b) even 

deployed the classifier on linguistic statements that were transformed into fuzzy numbers. Overall, the 

advantages of the similarity classifier are that it is comparably computationally inexpensive and requires 

only a small amount of observations to achieve high classification results (Luukka, 2008).  

The similarity classifier is premised on the idea to represent each class in the data by one so-called ideal 

vector, which can be, for instance, determined with a generalized mean. Each ideal vector is essentially 

a point in the feature space and the class assignment is conducted based on the highest similarity of an 

observation with one of these points that represent the classes. The idea of similarity is closely related 
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to the concept of distance (Formato, Gerla, & Scarpati, 1999) and the similarity classifier can be regarded 

as a distance-based technique. Luukka & Lampinen (2015) pointed out that distance-based techniques 

may face difficulties to classify complex data structures. Hence, Luukka & Lampinen (2015) introduced 

the differential evolution based multiple vector prototype classifier (MVDE). Their approach included 

defining multiple vectors that represent each class. This approach demonstrated to be able to handle data 

structures for which a simple distance-based technique was not sufficient (Luukka & Lampinen, 2015). 

However,  Luukka & Lampinen (2015) highlighted that the choice of the number of vectors per each 

class is pivotal for the accuracy of the classifier performance. The reason behind this is that too few 

ideal vectors per class may not be sufficient to appropriately capture the data complexity while too many 

will result in overfitting. As a final remark, these authors stated that a subject for future research is to 

optimize for a given data structure a suitable number of representative class vectors.   

1.2 Objectives 

In this paper, the idea of using multiple representatives, as presented in Luukka & Lampinen (2015) in 

the context of their MVDE classifier, will be transferred to the context of the similarity classifier. The 

aim is to define a novel similarity classifier that uses multiple ideal vectors for the classification. This 

should enable to classify more complex data structure, including those that are characterized by multiple 

decision regions for each class, better than the standard similarity classifier as presented in Luukka et 

al. (2001). As a second contribution, the authors in this paper clearly address the research need 

mentioned by Luukka & Lampinen (2015) to provide a framework for the choice of the number of 

representatives of a class, which is in case of the similarity classifier the number of ideal vectors. The 

number and position of these ideal vectors is pivotal for the classification since the distance-based 

classifier’s ability to capture complex data structures but at the same time not to overfit the data depends 

on it. In this paper, a novel approach for the similarity classifier will be presented, where k-means 

clustering in combination with the jump method is conducted to determine suitable multiple deal vectors 

for each class. The multiple ideal vectors are then used within the similarity classifier to assign class 

labels to observations. The novel similarity classifier aims to overcome the problem of classifying 

observations with complex data structures.  
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In particular, we will illustrate the inability of the standard similarity classifier to cope with more 

complex data structures with artificial data sets and contrast its result to the novel similarity classifier.  

The remaining paper is structured as follows: in section 2 the methods deployed for the novel similarity 

classifier approach will be introduced and the artificial and real-world data sets will be depicted, on 

which the standard and the novel classifier are applied in order to compare their performances. 

Moreover, the training procedure for the classifiers will be described. In section 3, the results of the 

comparison will be presented, which will subsequently be discussed in detail in section 4.  

2 Methods 

2.1 K-means clustering 

Clustering in general is concerned with finding clusters that encompass observations that are similar to 

one another and dissimilar to those observations in other clusters (Dougherty, 2013). In other words, 

observations in a cluster have small inter-point distances in relation to the distance to observations in 

other clusters (Bishop, 2006). The k-means clustering algorithm is one of the first and widely applied 

hard clustering algorithms (Dougherty, 2013; Koutroumbas & Theodoridis, 2003). The process behind 

k-means clustering is rather simple. Initially, one observation for each cluster is chosen randomly and 

used as the centroid for the initial cluster (Dougherty, 2013). In an iterative procedure, each observation 

is assigned first to the nearest cluster and, second, the cluster centre is adjusted to represent all 

observations in the cluster (Bishop, 2006). The assignment of an observation i to the cluster with the 

closest cluster centre can be expressed as (Bishop, 2006; Duda, Hart, & Stork, 2000): 

𝑢𝑖𝑗 = { 1 𝑖𝑓 ‖𝑥𝑖 − 𝜇𝑗‖
2

< ‖𝑥𝑖 − 𝜇𝑗′‖
2

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗′ ≠ 𝑗

 0    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                       
  (1) 

For the second step, the centre of the closest cluster is adapted for the new additional observation. A 

cluster centre 𝜇𝑗 is updated as (Bishop, 2006): 

𝜇𝑗 =  
∑ 𝑢𝑖𝑗𝑥𝑖𝑖

∑ 𝑢𝑖𝑗𝑖

 (2) 
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The objective function that will be minimized with respect to the membership coefficients and cluster 

centres is (Bishop, 2006; Koutroumbas & Theodoridis, 2003): 

𝐽 =  ∑ ∑ 𝑢𝑖𝑗‖𝑥𝑖 − 𝜇𝑗‖
2

𝑘

𝑗=1

𝑁

𝑖=1

 (3) 

This function represents the sum of squared distances of each observation to its cluster centre (Bishop, 

2006).  

2.2 Jump method 

An essential aspect of the k-means algorithm is that the data is partitioned into K clusters. However, K, 

the number of clusters, has to be specified in order to conduct the clustering and the choice of K is 

nontrivial (Bishop, 2006). The problem for choosing K arises from the fact that the total squared 

distance, which is commonly used in the evaluation of a clustering, will always prefer more clusters to 

less. Therefore, using this way of evaluating clusters will end up choosing as many clusters as 

observations are available (Witten & Frank, 2005). In the literature, many approaches to determine a 

suitable number of clusters can be found. These include the ‘Elbow method’, the ‘Gap statistic’ 

(Tibshirani, Walther, & Hastie, 2001), the ‘Jump method’ (Sugar & Gareth, 2003) and the ‘Calinski-

Harabasz index’ (Calinski & Harabasz, 1974). For the novel similarity classifier, the k-means with the 

jump method is chosen since this approach is theoretically motivated, applicable for a wide range of 

problems and mixture distributions, and even performs well when clusters are overlapping to a large 

extent (Sugar & Gareth, 2003). The ‘jump method’ developed by Sugar & Gareth (2003) is related to 

rate distortion theory. Distortion is a measure for the dispersion within clusters (Dougherty, 2013). The 

minimum distortion 𝑑𝑘 obtainable with K cluster centres is (Sugar & Gareth, 2003): 

𝑑𝐾 =
1

𝑝
min

𝑐1,…,𝑐𝐾

𝐸[(𝑋 − 𝑐𝑋)𝑇Γ−1(𝑋 − 𝑐𝑋)] (4) 

Where 𝑋 is a p-dimensional random variable with a mixture distribution with G components and 

covariance matrix Γ for X. In addition, 𝑐1, … , 𝑐𝐾 are the candidates for the K cluster centres, 𝑐𝑋 is the 

cluster centre that is closest to X, and T indicates the transpose. For the use in practice, the distortion 𝑑𝐾 
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can be estimated based on the minimum distortion 𝑑̂𝐾 obtained in the k-means clustering (Sugar & 

Gareth, 2003). The covariance matrix Γ might in practice not be known. However, Sugar & Gareth  

(2003) stress that the identity matrix can be used as a simplification, which makes 𝑑̂𝐾 the mean squared 

error. They deployed this approach and found it to be robust concerning the shape of the distortion curve 

for different covariance matrices (Sugar & Gareth, 2003). Consequently, the minimum distortions can 

easily be obtained given the observations and K clusters. The ‘jump method’ can be stated as follows 

(Sugar & Gareth, 2003): 

1. Conduct k-means clustering with a different number of clusters from 1 to K and determine the 

values for 𝑑̂𝐾, the distortions that correspond to the number of clusters 

2. Choose the parameter called ‘transformation power’ denoted by Y, where Y > 0, which is 

required for the calculation of the ‘jumps’ in the next step. A common choice is Y = p/2 

3. Transform the distortions with the transformation power Y by computing 𝑑̂𝐾
−𝑌. Calculate ’jumps’ 

as  𝐽𝐾 = 𝑑̂𝐾
−𝑌 − 𝑑̂𝐾−1

−𝑌  , which is the difference between the transformed distortions of k-means 

clustering with K clusters compared to K-1 clusters 

4. Determine the estimated number of clusters denoted 𝐾∗ as the k corresponding to the largest 

‘jump’, which is the maximum 𝐽𝐾. In order to be able to obtain as a result 𝐾 = 1, the distortion 

for no clusters is defined as 𝑑̂0
−𝑌 = 0 

The choice of the Y parameter, the transformation power, is no straight forward. For uncorrelated 

features and Gaussian clusters, Sugar & Gareth (2003) suggest choosing Y = p/2, where p is the number 

of dimensions of the data. However, features are often correlated to a certain extent and do not need to 

be in Gaussian clusters. If it is impractical to analyse the cluster distribution, Sugar & Gareth (2003) 

recommend to either use a relatively low value for the transformation power Y (e.g. 1 or even lower) or 

to determine Y with the help of the ‘effective’ dimension of the data set. In this paper, two approaches 

will be considered, selecting Y premised on the ‘effective’ dimensionality or simply setting it to 1.  
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2.3 ‘Effective Dimensionality’ 

In an example, Sugar & Gareth (2003) explain that the effective dimensionality of a data set is lower 

than the dimensionality of the feature space if there are features that are highly correlated. In this paper, 

we will use principal component analysis to transform the data into uncorrelated principal components 

(Abdi & Williams, 2010; Jackson, 1991). We will keep only a subset of all principal components, since 

the first principal components are often enough to represent the overall data set and its variance well 

(Dougherty, 2013). Since the new features are uncorrelated, their effective dimension should be equal 

to their dimension. Yet, the choice of how many of the principal components should be retained is not 

trivial (O’Connor, 2000b; Velicer, 1976). Extracting too few principal components will result in a loss 

of information while extracting too numerous principal components might include irrelevant 

information or noise (Cangelosi & Goriely, 2007; Zwick & Velicer, 1986). 

In the literature, various methods to determine a suitable number of principal components can be found 

(Cangelosi & Goriely, 2007). These methods include, but are not limited to, the modified broken stick 

model (Cangelosi & Goriely, 2007), the Guttman-Kaiser criterion (Guttman, 1954; Kaiser, 1961), the 

SCREE test (Cattell, 1966), the Minimum Partial Average (MAP) test (Velicer, 1976), Bartlett’s test 

(Bartlett, 1950) and Parallel Analysis (Horn, 1965).  Of these methods, the MAP and Parallel analysis 

demonstrated the highest performance across different data complexities (O’Connor, 2000b; Zwick & 

Velicer, 1982, 1986). The minimum average partial (MAP) test is based on conducting a PCA and 

subsequently analyse the matrix of partial correlations (Cangelosi & Goriely, 2007; O’Connor, 2000b; 

Velicer, 1976; Zwick & Velicer, 1982). The idea behind this procedure is that the average squared partial 

correlation will decline until a ‘unique’ component would be removed (Velicer, 1976; Zwick & Velicer, 

1982). Therefore, the stopping point is reached at the minimum average squared partial correlation 

(Velicer, Eaton, & Fava, 2000; Zwick & Velicer, 1982). According to Velicer (1976) the method results 

in an exact stopping point for the selection of principal components. Velicer et al. (2000) find that the 

average of the partial correlations to the fourth power outperforms the initial approach with average 

squared partial correlations for continuous data. A disadvantage of the MAP is that it can in certain 

situations underestimate the number or principal components to select (Zwick & Velicer, 1982). 
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The second highly recommended approach is Parallel Analysis developed by Horn (1965) (Velicer et 

al., 2000; Zwick & Velicer, 1982). It is based on the criticism that the proof for another well-known 

approach for choosing the number of principal components, the Guttman-Kaiser criterion (also referred 

to as K1 rule), is concerned with population statistics and, therefore, not applicable for samples (Garrido, 

Abad, & Ponsoda, 2013; Horn, 1965). Essentially, Parallel Analysis is concerned with finding those 

principal components that account for a larger amount of variance than a counterpart based on random 

data (O’Connor, 2000b). An alternative approach for Parallel Analysis is to deploy an upper percentile 

(commonly the 95th) for the distribution of the eigenvalues as explained by Glorfeld (1995). Using this 

approach decreases the tendency of Parallel Analysis to extract too numerous components (Glorfeld, 

1995).  

MAP and Parallel Analysis usually lead to the selection of the same principal components to retain 

(O’Connor, 2000b). However, since results may differ, applying both approaches is beneficial since 

MAP and Parallel Analysis complement each other given that the first may extract too few components 

and the second too many (O’Connor, 2000b; Zwick & Velicer, 1986).  

2.4 Novel classification algorithm 

The idea of the similarity classifier originates in fuzzy theory. Fuzzy theory is based on the idea that a 

number of non-mathematical properties cannot be reflected by crisp sets since they solely indicate 

whether a certain property is present or not (Klawoon & Castro, 1995). In contrast to that, fuzzy sets 

reflect a membership degree to a class or property (Zadeh, 1965). Using membership degrees allows to 

model partial memberships. This is of interest for classification since it allows partial membership of an 

observation to classes (Luukka et al., 2001). As a consequence, the similarity measure can be used as a 

classifier using the partial membership values of an observation to classes in order to assign an 

observation to the class it is most similar to. This type of classification is referred to as supervised 

classification since the class label of observations is known (Bishop, 2006; Webb, 2002).  

The similarity classifier presented by Luukka et al. (2001) was premised on the idea to compute for each 

class one so-called ‘ideal vector’ that is supposed the represent that class well. There are several ways 

of computing ideal vectors, of which arithmetic mean is one of the earliest methods used. To classify an 
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observation, it is compared to the ideal vector of each class and, eventually, a similarity value is 

calculated. The similarity embodies a membership degree for an observation to a class. The class 

assignment is then simply conducted based on the highest similarity, meaning that the observation is 

assigned to the class for which is shows the highest membership degree (between [0,1]). For more 

details, please see Luukka et al. (2001) and Luukka (2008).   

The novel similarity classifier algorithm is premised on the idea to represent each class by multiple ideal 

vectors. The k-means clustering algorithm with the jump method will be deployed in order to determine 

the ideal vectors per class and gives a clear answer to the question how many ideal vectors per class 

should be constructed. An observation is then assigned to the class that corresponds to the ideal vector 

it is closest to. This approach seems suitable in case that classes have one or more decision regions that 

can be represented by one or more clusters. It should be even adequate when the clusters representing 

the decision regions overlap since using the jump method has demonstrated to perform well even when 

clusters overlap to a large extent (Sugar & Gareth, 2003). The idea is related to the K-Nearest Neighbour 

(KNN) algorithm but attempts to be more robust for classification by finding the nearest cluster instead 

of the nearest neighbours to conduct the class assignment. Opposed to KNN, it is not necessary to define 

the number of nearest neighbours / clusters, since the nearest cluster aims at representing the nearest 

region where observations of a class are located.  

The novel algorithm can be characterized by several distinct steps, which are illustrated in a flow chart 

in Figure 1 and depicted in detail subsequently. 
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Figure 1: Flowchart of the similarity classifier with multiple ideal vectors 

 

Step 1: Data pre-processing. Before the novel similarity classifier algorithm is applied, the input data 

require pre-processing. We examined two different setups: one based on simple standardization to the 

compact interval [0,1] and using the original features of the data set, and, a second one, based on 

normalization of the raw data, so that that they follow a standard normal distribution and using PCA to 

extract new features from the existing features in the data. For the second approach, a combination of 

MPA and PA can be used to select a suitable number of principal components, as recommended by 

O’Connor (2000b), and subsequently standardize them to the compact interval [0,1] in order for the 

similarity classifier to be applicable.  

Step 2: Division of the data set. The available data is divided into a training set and a test set via the 

hold-out method (e.g. 70% training samples and 30% test samples).  

Step 3: Conduct k-means clustering for each class. For the training data, the k-means clustering is 

performed for each class. The clustering is performed for each suggested number of clusters from 1 to 
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K, where K is a user-specified number. For each number of clusters K, the average distortion over the 

observations 𝑥𝑖 from i = 1 to N is estimated as:  

𝑑̂𝐾 =
1

𝑁
∑ ∑

𝑢𝑖𝑘 ∗ (𝑥𝑖 − 𝑐𝑘)𝑇Γ−1(𝑥𝑖 − 𝑐𝑘)

𝑝

𝐾

𝑘=1

𝑁

𝑖=1

 

 

(5) 

where 𝑢𝑖𝑘 shows the membership of an observation 𝑥𝑖 to cluster 𝑐𝑘, which takes for the cluster with the 

closest cluster centre the value 1 and otherwise 0: 

𝑢𝑖𝑘 = {
 1 𝑖𝑓 ‖𝑥𝑖 − 𝑐𝑘‖2 < ‖𝑥𝑖 − 𝑐𝑘′‖2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘′ ≠ 𝑘

 0    𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                       
  (6) 

This notation differs in certain elements from the one presented above from Sugar & Gareth (2003). 

First, the minimization of the distortion with respect to the cluster centres for a given K is conducted 

already in the k-means algorithm, so that is not present in this formula any more. Second, we use the 

membership to a cluster in our formula and include all clusters in it since it appeared more straight-

forward for the implementation then using 𝑐𝑋 for the notation as the closest cluster centre. The 𝑥𝑖 denotes 

a p-dimensional observation and Γ is the covariance matrix for X, the data set, but can for reasons of 

simplicity be the identity matrix, as explained before. The cluster centre candidates are denoted 𝑐1, … , 𝑐𝐾 

and T indicates the transpose. The distortion estimate 𝑑̂𝐾 is obtained by summing for each observation 

𝑥𝑖 over the cluster centres from 1 to K and then summing over the observations themselves and taking 

the average over the observations. The outcome for the class-specific clustering is a distortion vector 

with each element being a value of 𝑑̂𝐾 corresponding to a specific number of clusters K.  

Step 4: Determine optimal number of clusters for each class. For the jump method, the transformation 

power Y is then used in the exponent of the distortions 𝑑̂𝐾 to obtain 𝑑̂𝐾
−𝑌. Afterwards, the ‘jumps’, 

meaning the differences between subsequent values of these transformed distortions 𝑑̂𝐾
−𝑌, are calculated 

as: 

𝐽𝐾 = 𝑑̂𝐾
−𝑌 − 𝑑̂𝐾−1

−𝑌  (7) 
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where 𝐽𝐾 is the jump between the distortions of using K and K-1 clusters on the training data. The number 

of clusters where the maximum jump 𝐽𝐾 can be observed, is the candidate for the optimal number of 

clusters. The cluster centres that correspond to the candidate for the optimal number of clusters is 

recorded / saved. To choose the optimal number of clusters for each class, the k-means clustering (Step 

3) and the Jump method (Step 4) are repeated n times (e.g. n = 10). This eventuates in n candidates for 

the optimal number of clusters for the class. The number of clusters for a class is then chosen as the 

most frequent candidate number of clusters suggested (mode-value).  

Step 5: Record ideal vector candidates. For future steps, the cluster centres of all of the n repetitions 

of Step 3 and Step 4 that also led to the optimal number of clusters are recorded / saved. Therefore, for 

each class, there are one or more sets of ideal vector candidates.  

Step 6: Training with ideal vector candidates. For each class, a randomly selected set of ideal vector 

candidates from those saved in the previous step is chosen and they are used together for the similarity 

classifier. The calculations in this step correspond to a large extent to those of the original similarity 

classifier with the difference that each set of ideal vector candidates contains multiple ideal vectors. 

First, for each feature d the similarity between each ideal vector candidate 𝑣𝑜 and each sample (vector), 

for simplicity of the index notation denoted x instead of 𝑥𝑖, of the training set is calculated as: 

𝑆(𝑥𝑑 , 𝑣𝑜,𝑑) = √1 − |𝑥𝑑
𝑝

− 𝑣𝑜,𝑑
𝑝

|
𝑝

 (8) 

where 𝑥𝑑 denotes the d-th element of the vector of observation x and 𝑣𝑜,𝑑 is the d-th element of the ideal 

vector 𝑣𝑜. Moreover, p is a parameter for the similarity that is in the most basic case set to 1. Afterwards, 

the generalized mean from this similarity vector is computed by summing over all features d and then 

dividing by the number of features denoted by D to obtain the similarity of the observation x with the 

entire ideal vector candidate 𝑣𝑜: 

𝑆(𝑥, 𝑣𝑜) = (
1

𝐷
∑ 𝑆(𝑥𝑑 , 𝑣𝑜,𝑑)𝑚

𝐷

𝑑=1

)

1
𝑚

 (9) 
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where m is a parameter for the applied mean function and 𝑆(𝑥, 𝑣𝑜) represents the scalar similarity value 

of the observation x with the ideal vector 𝑣𝑜. This is repeated for all ideal vectors to obtain for the 

observation x the similarity with all clusters (for all classes). Finally, observation x is assigned to a 

cluster based on the highest similarity value that the observation has with the ideal vector (candidate) of 

a cluster: 

𝐶𝑙(𝑥) = arg max
𝑜=1,….𝑂

𝑆(𝑥, 𝑣𝑜) (10) 

Since the cluster to which x is assigned, belongs to one of the classes, the observation is assigned to the 

corresponding class. This can be formally expressed as a simple mapping from the cluster Cl of the 

observation x to the class C: 

𝐶(𝑥) = 𝑓(𝐶𝑙(𝑥)) (11) 

Repeating these calculations of Step 6 for each observation gives all the predicted class labels. These 

are compared to the target class labels in the training data set and the classification accuracy (or another 

evaluation criterion) is calculated. The evaluation criterion can be specified by the user, for instance also 

the False-Positive-Rate (FPR) or the False-Negative-Rate (FNR) on the training set can be chosen as 

evaluation criterion. For the given combination of sets of ideal vector candidates for each class, this 

evaluation criterion is computed. The calculations in this step are repeated (e.g. 50 times) and for each 

run a different combination of sets of ideal vectors are used and the value for the evaluation criterion 

and the corresponding ideal vector candidates (for all classes) are recorded. 

Step 7: Choice of ideal vectors. The combination of sets of ideal vector candidates that resulted in the 

best value for the evaluation criterion for the training set, e.g. the highest performance, are chosen as the 

ideal vectors for the similarity classifier. This allows to customize the choice of ideal vectors to the 

evaluation criterion. The authors suggest for instance to choose the ideal vectors to maximise the mean 

accuracy or minimize the False-Negative-Rate or False-Positive-Rate, depending on the application and 

objective.  
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Step 8: Calculation of the test set performance. The ideal vectors obtained from the previous Step 7 

are deployed with the similarity classifier on the test data set from Step 2. The calculation of the 

similarities, the assignment of classes and of the performance are conducted with the formulas (8) to 

(11) from Step 6.   

2.5 Data 

For this paper, three artificial data sets are generated to investigate the difference between the original 

and novel similarity classifier approaches. In addition to that, three real-world data sets were obtained 

from the UCI Machine Learning Repository (Lichman, 2013) to compare the performance of these 

approaches with other well-known supervised classification algorithms.  

The three artificially composed data sets are all characterized by multiple decision regions for each class. 

This setup is supposed to demonstrate the novel similarity classifier’s ability to use multiple ideal vectors 

to cope with more complex decision regions than the original similarity classifier using only a single 

ideal vector. Moreover, the performance with different pre-processing and Y parameters is investigated. 

The specific features for each of the three artificial datasets A, B and C is depicted in Table 1. 

Table 1: Characteristics of the three artificial data sets 

Cases Observations Class Feature 1 Feature 2 Feature 3 

Case A 900 1 N(1,0.2) N(1,0.2) - 

    1 N(2,0.2) N(2,0.2) - 

    1 N(3,0.2) N(3,0.2) - 

    2 N(3,0.2) N(2,0.2) - 

    2 N(2,0.2) N(1,0.2) - 

    2 N(1,0.2) N(3,0.2) - 

    3 N(3,0.2) N(1,0.2) - 

    3 N(1,0.2) N(2,0.2) - 

    3 N(2,0.2) N(3,0.2) - 

Case B 1000 1 [0, 0.5) [0, 0.5) [0, 1] 
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1 [0.5, 1] [0.5, 1] [0, 1] 

2 [0, 0.5) [0.5, 1] [0, 1] 

2 [0.5, 1] [0, 0.5) [0, 1] 

Case C 1000 

1 N(2,0.1) N(2,0.1) N(2,0.1) 

1 N(6,0.5) N(6,0.5) N(6,0.5) 

2 N(6,0.1) N(6,0.1) N(2,0.1) 

2 N(2,0.5) N(2,0.5) N(6,0.5) 

3 N(2,0.5) N(6,0.5) N(2,0.5) 

3 N(6,0.1) N(2,0.1) N(6,0.1) 

4 N(6,0.5) N(2,0.5) N(2,0.5) 

4 N(2,0.1) N(6,0.1) N(6,0.1) 

 

The first data set, Case A, normally distributed features with small variations are generated that form 

two-dimensional clusters for each class. In this data set small overlap of classes is present, but the feature 

space can almost distinctly be divided into the multiple decision regions for each class. The second 

artificial data set, referred to as Case B, is related to the binary XOR problem with the three-dimensional 

feature space being divided into two distinct decision regions for each class (overall 4 decision regions). 

The last case, Case C, is characterized by a three-dimensional feature space for a 4-class classification 

problem. For each class, there exist two clusters, one cluster with small variation in the data and the 

other with moderate variation. None of the clusters shows an overlap with another cluster of the same 

or another class. All features are scaled into the compact interval [0,1]. The three artificial data sets are 

plotted in Figure 2 

 

Figure 2.  

 

Figure 2: Artificial data sets 
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The real-world data sets discussed in this paper are all related to the approval and quality of credit 

borrowers. It seemed reasonable to use these data sets since we assumed that distinct decision regions 

for good and bad applicants exist and that they can be characterized rather well in form of multiple 

clusters. Moreover, the class imbalance that is common for many credit default / approval problems, 

meaning that one class can be considerably larger than the other, is assumed to be more effectively 

addressed with a classifier based on clusters than e.g. simply based on nearest neighbours. However, we 

want to remark, that our selection for real-world data sets is by no means exhaustive and knowing in 

advance in what real-world data sets this is useful is not possible.  

The subject of credit approval is essential for financial institutes since they require approaches to support 

the decision-making for loan applications as well as for the ongoing monitoring of the financial situation 

of their clients (Tsaih et al., 2004; West, Dellana, & Qian, 2005). The credit granting decision copes 

with the risk of granting credits to not suitable applicants and the non-acceptance of credits for solvent 

clients (Lee, Chiu, Chou, & Lu, 2006). The classification of clients is particularly important since a 

credit scoring that is conducted effectively will most likely lead to savings in the future (Yu, Wang, Lai, 

& Zhou, 2008).  

The first credit data set is available at the UCI Machine Learning Repository as ‘Credit Approval Data 

Set’. It is listed as a ‘Financial’ data set and neither the date of donation nor the author are known. The 

data set contains 690 observations of 15 features related to credit card applications. Six features are 

continuous. The remaining attribute values in the data set have been adjusted to meaningless symbols 
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by the donor. We changed these symbols for the similarity classifier into discrete integer values. The 

class label is binary and indicates whether a credit was granted to a client or if the credit proposal was 

rejected. The features characterize the client and represent properties of the credit decision. The ‘Credit 

Approval’ data set contains missing values, which have been removed for this study, which leaves 653 

complete observations for the classification task.  

The second real-world data set is the numeric version of the ‘Statlog (German Credit Data) Data Set’. 

The original data set was donated by Professor Dr. Hans Hofmann in 1994 and adjusted by Strathclyde 

University by changing categorical features into numeric integer-valued ones. This data set encompasses 

1000 observations with 24 numeric features. It does not contain any missing values. The data are 

characterized by two classes, which represents the evaluation if a person is a good or bad credit-taker 

and the 24 features embody characteristics of the credit borrower. In contrast to all other data set, the 

imbalance in this data set was high with 70% belonging to the first group and 30% to the second.  

The third and last real-world data set is the ‘Statlog (Australian Credit Approval) Data Set’, which is an 

adapted form of the ‘Credit Approval Data Set’. Neither the donor nor the date of donation for this data 

set are known. This financial data set is also related to credit card applications. The data set contains 

690 observations without missing values. The 14 features, of which 6 are continuous and 8 are discrete, 

represent the characteristics of a credit applicant. The binary class label indicates whether the credit 

decision was positive or negative.  

2.6 Data pre-processing and training process 

As mentioned above, one out of two approaches for the pre-processing in this paper is based on principal 

component analysis and choosing a suitable number of principal components as new features. For the 

choice of the number of principal components, Parallel Analysis (with 1000 random data sets) as the 

upper bound for the number of components, and MAP will be used. If the result differs between MAP 

(Velicer et al., 2000) and PA, it will be investigated whether the MAP decision was ‘close’. Since the 

authors did not find a specification for what constitutes a ‘close call’ (O’Connor, 2000b), it is defined 

as an increase of the average partial correlations per step of less than 70 percent points. The reasoning 

behind this choice is that in the regarded cases in this paper, changes per additional component that 
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showed a difference of up to 70 percent points appeared small compared to larger changes that were 

characterized by increases of at least 100% for an additional component. Therefore, the 70 percent points 

threshold for an additional component appears to be justified.  

For the k-means clustering, we suggest K, the maximum number of clusters that k-means is performed 

with, to be set as the maximum of, first, 10 clusters and, second, of the number of observations contained 

in the smallest class divided by 20. This should ensure that the number of clusters K is only set larger 

than 10 if on average 20 or more observations will be contained in a cluster. If the data set is small or 

the minority class(es) encompass few observations, the minimum number of clusters might have to be 

reduced below 10 to avoid a potential overfit. On the other hand, if the data set is large, the average 

number of observations per cluster to allow additional clusters can be set higher to capture all pattern 

contained in the data.  

For the classification, the data is divided with the holdout method and using stratified sampling. For all 

algorithms in this paper the observations were split into 70% training data and the remaining 30% for 

testing. For all classifiers, despite the standard and novel similarity classifiers, 1000 iterations are 

performed during the training of the classifiers.   

For the standard and novel similarity classifiers, the entire algorithm is run for different combinations 

of the p- (varied from 1 to 8) and m-parameter (varied from 1 to 6) to find the values for p and m with 

which highest mean accuracy for the given dataset can be reached. This is referred to as ‘optimal value 

search’ and for each combination of p and m, 100 iterations of the algorithm are performed before the 

mean performances are computed. In general, conducting the optimal value search increases the number 

of required computations to improve the mean classification accuracy. In order to avoid increasing the 

computational complexity notably, 100 iterations are conducted with optimal value search as opposed 

to 1000 iterations for the remaining classification algorithms.  

For the novel similarity classifier, the number of clusterings n (in Step 3 and 4 of the algorithm) was set 

to 10 and the random combinations for the ideal vector candidates was chosen to be 50 (Step 6 of the 

algorithm).  
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For the simplified artificial data sets with known structure using the standard parameters p = 1 

(parameter for similarity) and m = 1 (parameter for the generalized mean) for all similarity classifiers is 

sufficient, since the data structures are simple enough to find very good solutions without an optimal 

value search.  

For the real-world data sets, the performance of the novel and original similarity classifiers is compared 

to the K-nearest neighbour algorithm (Cover & Hart, 1967), the Naive Bayes classifier (Russell & 

Norvig, 2009), decision trees (Quinlan, 1986) and the ensemble learning algorithm called random forest 

(Breiman, 2001). All calculations are implemented with the MATLAB™- software. The code for the 

MAP and PA are based on Matlab-files provided by O’Connor (2000a).  

3 Results 

3.1 Results for the artificial data sets 

First, the results for the artificial datasets are presented in Table 2. For the first artificial dataset, Case 

A, the standard classifier in the three-class problem shows a mean accuracy of only 32.47%. In contrast 

to that, the mean accuracy of the novel similarity classifiers are 96.97% and 96.87% respectively. It has 

to be stressed, that for the two-dimensional Case A transformation power Y = p/2 is also equal 1 (since 

p is in the context of the jump method the dimensionality). Consequently, the results in Case A are for 

both novel classifiers essentially equal. Using the one-sided version of the Welch’s test with unequal 

variance to test whether one population mean is larger than another, the means for the novel similarity 

classifier with both transformation powers are highly significantly larger than that of the standard 

classifier (with more than 99.99% confidence). Clearly, for the two remaining 3-dimensional cases, Y 

= p/2 and Y = 1 do not take the same values. For Case B the highest result is accomplished with the 

novel similarity classifier with Y = 1 with 96.53%. For the novel similarity classifier with transformation 

power of Y = p/2 the mean accuracy is 90.49%, which is highly significantly lower than that of the same 

classifier with Y = 1. However, only the standard classifier reaches a mean accuracy of close to 50%. 

On account of this, the novel similarity classifiers both perform highly significantly better on Case B 

than the original similarity classifier with a single ideal vector. For the last data set, Case C, the standard 

similarity classifier reaches for the four-class problem a mean accuracy of 34.93% while the novel 
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similarity classifier with Y = 1 and Y = p/2 accomplishes a 100% performance on the non-overlapping 

class clusters of the data set. This result is once again highly significant compared to the standard 

classifier (with more than 99.99% confidence).  

Table 2: Performance for artificial data sets with standard parameters 

Data Set Similarity 

Mean 

Accuracy 

Variance runs Y 

Case A Standard 0.3247 0.0037 100 - 

Case A Novel 0.9697 0.0001 100 p/2 

Case A Novel 0.9687 0.0001 100 1 

Case B Standard 0.5142 0.0006 100 - 

Case B Novel 0.9049 0.0009 100 p/2 

Case B Novel 0.9653 0.0004 100 1 

Case C Standard 0.3493 0.0081 100 - 

Case C Novel 1 0 100 p/2 

Case C Novel 1 0 100 1 

 

The performance of the novel similarity classifier and the standard similarity classifier are also tested 

with the suggested pre-processing with PCA. The mean accuracies obtained with this pre-processing are 

highlighted in  

Table 3. The magnitude of the performances for the artificial data sets is comparable with those without 

PCA. For Case 3 both transformation powers for the novel classifier eventuate in a 100% mean accuracy. 

Overall, the results for all artificial data sets show that the novel similarity classifier with and without 

PCA as pre-processing clearly outperforms the standard similarity classifier with the mean accuracy 

being in all cases highly significantly larger (with more than 99.99% confidence). However, the 

difference in the performances with the two transformation powers Y can be significant, as was observed 

for Case B. Overall, these artificially created classification problems clearly show the advantage of the 

proposed novel method compared to the standard similarity classifier. 
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Table 3: Performance for artificial data sets after optimal value search 

Data Set Similarity PC 

Mean 

Accuracy 

Variance Y 

Case A Standard-PCA 2 0.3116 0.0039 - 

Case A Novel - PCA 2 0.9912 0.0000 p/2 

Case A Novel - PCA 2 0.9913 0.0000 1 

Case B Standard-PCA 3 0.4824 0.0005 - 

Case B Novel - PCA 3 0.9028 0.0011 p/2 

Case B Novel - PCA 3 0.9613 0.0001 1 

Case C Standard-PCA 3 0.3135 0.0085 - 

Case C Novel - PCA 3 1 0 p/2 

Case C Novel - PCA 3 1 0 1 

 

The results for the artificial data sets are calculated only for the default parameters for the similarity of 

p = 1 and m = 1, since the results of the novel similarity classifier are already high and only a marginal 

improvement could be expected for these data sets.  

3.2 Results for the real-world data sets 

In this next step, the results of the real-world credit data sets achieved with the similarity classifiers and 

different pre-processing methods are presented and compared with the performances of the KNN 

algorithm, the Naive Bayes classifier, decision trees and random forests on these credit data sets.  

The performance of all classifiers on the first real-world data sets, the ‘Credit Approval’ data set, is 

highlighted in Table 4. The first seven classifiers presented there are the standard and novel similarity 

classifier with different pre-processing methods. The remaining 9 classifiers are different setups for the 

remaining benchmark algorithms. For KNN the result on the test set with a single nearest neighbour, the 

10 nearest neighbours and for the optimal number k are displayed. To obtain the optimal number for k, 

the KNN algorithm was run for all k from 1 to the training sample size and the result on the test data set 

for the setup leading to the best mean accuracy on the training data set was chosen and is displayed in 
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the table. For the Naive Bayes classifier two setups were used: the first assumed normal gaussian 

distributions, the second used a kernel with normal smoothing. The random forest is composed of 50 

decision trees and is implemented in the first setup with minimum leafsize of 1. The second setup 

displays the mean performance on the test data set based on the minimum leafsize (from 10 to 100 by 

steps of 10) that showed the highest mean training performance. The same procedure was deployed for 

the two decision tree setups. The different leafsizes are tried since too small leafsizes may incorporate 

noise and harm the generalization ability while too large leafsizes can result in a classifier that only 

captures the broadest patterns.  

For the ‘Credit Approval’ data set, the highest performance of 87.33% is reached with the ensemble 

learning algorithm random decision forest with minimum leafsize = 1. This performance is closely 

followed by the random decision forest with minimum leafsize = 10 with mean accuracy 87.08% and 

the novel similarity classifier with transformation power Y = 1 leading to mean performance of 87.06%. 

Three aspects of this result are noteworthy. First, the novel similarity classifier with Y = 1 achieves a 

performance that is competitive to the one of the ensemble learning algorithm, random forest, and 

possesses the highest mean accuracy for all classifiers that are based on a single learning algorithm. 

Second, using the Welch’s test (with unequal variances), it can be demonstrated that the mean accuracy 

accomplished with the novel similarity classifier with Y = 1 is highly significantly larger than that of 

the standard similarity classifier (p-value < 0.001). Thirdly, in comparison with all other single learning 

algorithm-based classifiers, the mean accuracy of the novel similarity classifier with Y = 1 shows a 

highly significant positive difference in the mean performance. The classifier mean accuracies with the 

4 selected principal components (PCs) in the pre-processing are between 5.42% to 8.09% lower than its 

direct counterpart without PCA and only standardized initial features. It is noteworthy, that the mean 

performance with 4 PCs for the novel similarity classifier with Y = 1 is the largest among the results 

with the selected PCs.  
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Table 4: Results for the ‘Credit Approval’ data set 

Classification Algorithm 

Mean 

Accuracy 

Variance 

Mean 

FNR 

Mean 

FPR 

p m Y 

Standard Similarity Classifier 0.8599 0.0004 0.196 0.072 6 4 - 

Novel Similarity Classifier 0.8525 0.0005 0.133 0.160 1 1 p/2 

Novel Similarity Classifier 0.8706 0.0005 0.056 0.190 6 5 1 

Novel Similarity Classifier (Minimize FPR) 0.8615 0.0003 0.119 0.155 2 6 1 

Standard Similarity Classifier (PCA, 4 PCs) 0.8057 0.0005 0.010 0.284 1 1 - 

Novel Similarity Classifier (PCA, 4 PCs) 0.7716 0.0008 0.243 0.216 1 2 p/2 

Novel Similarity Classifier (PCA, 4 PCs) 0.8076 0.0005 0.324 0.085 4 4 1 

K-Nearest Neighbours, k = 1 0.8184 0.0005 0.207 0.161 - - - 

K-Nearest Neighbours, k = 10 0.8608 0.0004 0.142 0.137 - - - 

K-Nearest Neighbours, best k = 1 0.8184 0.0005 0.207 0.161 - - - 

Naive Bayes (Normal Gaussian distribution) 0.8039 0.0006 0.321 0.093 - - - 

Naive Bayes (Kernel with normal smoothing) 0.6823 0.0012 0.425 0.230 - - - 

Random Decision Forest (Min leafsize = 1) 0.8733 0.0004 0.129 0.125 - - - 

Random Decision Forest (Min leafsize = 10) 0.8708 0.0004 0.126 0.132 - - - 

Decision Tree (Min leafsize = 1) 0.8322 0.0007 0.194 0.147 - - - 

Decision Tree (Min leafsize = 10) 0.8561 0.0005 0.157 0.133 - - - 

In credit scoring and for the evaluation of credit applications, the consequences of misclassification are 

unequal. Consequently, it appears suitable to evaluate the classifiers’ performances also with respect to 

the False-Negative-Rate (FNR) and the False-Positive-Rate (FPR). For all real-world data sets, the FNR 

represents the proportion of falsely rejected customers to the sum of falsely rejected customers and the 

rightfully accepted customers. In other words, it is the share of customers that is falsely classified as bad 

compared to all customers that are actually good. Opposed to that, the FPR is the proportion of falsely 

accepted customers to the sum of falsely accepted customers and the rightfully rejected ones. The FPR 

is with respect to credit decisions more relevant than the FNR. In particular, classifying a bad customer 
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falsely as a good one and giving him/her a credit that may not be repaid (as focused on by FPR) 

outweighs the potential forgone profit of assigning a good customer to the bad customer class (as 

emphasized by FNR) (Berardi & Zhang, 1997; Chuang & Huang, 2011; Tsai & Wu, 2008). 

Since the FPR is of additional relevance for credit scoring, for each real-world data set one novel 

similarity classifier was customized in the choice of ideal vectors with respect to the FNR rate. This 

classifier is referred to as ‘Novel Similarity Classifier (Minimize FPR)’. The lowest FPR rate for the 

‘Credit Approval’ data set of 7.2% is achieved for the standard similarity classifier. On the other hand, 

the FNR for this setup belongs with 19.6% to one of the higher rates and is above the mean and median 

of all classifiers. The FNR of the novel similarity classifier with Y = 1 is with 5.6% one of the lowest, 

while the FPR with 19.0% is above the median of all algorithms. Comparing FPR and FNR stressed that 

the novel similarity classifier with Y = 1 performs very well with respect to avoiding allocating good 

customers in the ‘bad’ class and foregoing profits but worse than the average in recognizing customers 

that should not be assigned to the ‘good’ class and, therefore, avoiding credit default. The ‘Novel 

Similarity Classifier (Minimize FPR)’ with Y = 1 leads to a slight improvement of the FPR from 19.0% 

to 15.5% compared to the novel similarity classifier with Y = 1 that was customized with respect to the 

mean accuracy. This improvement in FPR was accomplished as a trade-off to the mean accuracy. 

However, for this data set the ensemble learner random forest still achieved a better FPR and at the same 

time a higher classification accuracy. The result of the optimal parameter value search for the ‘Credit 

Approval’ data set with the novel similarity classifier with Y = 1 is illustrated in Figure 3. 

Figure 3: Optimal value search for the novel similarity classifier with Y=1 (‘Credit Approval’ data set) 
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The surface for the mean accuracy for the novel similarity classifier appears smooth and high 

classification accuracies are achieved and seem robust with respect to several different setups of the p 

and m parameter.  

The classification performances for the ‘German Credit’ data set are presented in Table 5. The best mean 

accuracy for the ‘German Credit’ data set of 75.84% is again reached with the random forest algorithm. 

Notwithstanding, the highest classification accuracies of single classifier algorithms is once more 

accomplished with the novel similarity classifier with Y = 1. Compared to the remaining single classifier 

algorithms, the novel similarity classifier´s mean classification accuracy is highly significant with the 

single exception of the standard similarity classifier based on 8 PCs. Notably, the performance of the 

standard similarity classifier with and without PCA belongs to the best mean accuracies for all 

algorithms on this data set. However, the novel similarity classifier’s mean accuracy is significantly 

larger than that of the standard similarity classifier (p-value = 0.0193).  

Table 5: Results for the ‘German Credit’ data set 

Classification Algorithm 

Mean 

Accuracy 

Variance 

Mean 

FNR 

Mean 

FPR 

p m Y 

Standard Similarity Classifier 0.7263 0.0003 0.099 0.683 4 1 - 

Novel Similarity Classifier 0.6822 0.0005 0.158 0.691 8 1 p/2 

Novel Similarity Classifier 0.7314 0.0003 0.095 0.674 4 1 1 

Novel Similarity Classifier (Minimize FPR) 0.5750 0.0012 0.535 0.170 2 6 1 

Standard Similarity Classifier (PCA, 8 PCs) 0.7299 0.0004 0.142 0.570 3 5 - 

Novel Similarity Classifier (PCA, 8 PCs) 0.6966 0.0008 0.281 0.355 3 1 p/2 

Novel Similarity Classifier (PCA, 8 PCs) 0.6998 0.0006 0.298 0.304 2 1 1 

K-Nearest Neighbours, k = 1 0.6715 0.0005 0.237 0.543 - - - 

K-Nearest Neighbours, k = 10 0.7164 0.0005 0.162 0.568 - - - 

K-Nearest Neighbours, best k = 1 0.6715 0.0005 0.237 0.543 - - - 

Naive Bayes (Normal Gaussian distribution) 0.7233 0.0006 0.229 0.388 - - - 

Naive Bayes (Kernel with normal smoothing) 0.7068 0.0001 0.013 0.947 - - - 
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Random Decision Forest (Min leafsize = 1) 0.7584 0.0003 0.096 0.581 - - - 

Random Decision Forest (Min leafsize = 10) 0.7516 0.0003 0.069 0.668 - - - 

Decision Tree (Min leafsize = 1) 0.6946 0.0007 0.218 0.510 - - - 

Decision Tree (Min leafsize = 10) 0.7197 0.0006 0.167 0.545 - - - 

 

For the ‘German credit’ data set, the novel similarity classifier with Y = 1, eventuates in a FPR of 67.4%, 

which is in absolute terms high but compared to all other algorithms not far from the mean FPR. For the 

FNR, this classifier ends up with a value of 9.5%, which belongs to the better results for FNR, being 

well below the median value. The most accurate classifiers, the random forests, show FPR values of 

58.1% and 66.8%. The tendency of most algorithms to result in high FP rates and lower FN rates appears 

to be the consequence of the high class imbalance with the positive class being with 70% the apparent 

majority. However, the novel similarity classifier that was customized to result in lower FPR values 

shows the opposite behaviour, being with a low FPR of 17% good at avoiding to give credits to ‘bad’ 

customers while with 53.5% FNR being worse at not giving credits to ‘good’ customers. Given that the 

FPR for credit decisions is of higher relevance, this algorithm seems very suitable to reduce potential 

losses. This, however, is achieved at the expense of the classification accuracy. The result of the optimal 

parameter value search for the ‘German Credit’ data set of the novel similarity classifier with Y = 1, is 

illustrated in Figure 4. It again shows a rather stable and smooth surface for the mean classification 

depending on the p and m parameter showing that good classification performances can be reached with 

different setups of these parameters. .  

Figure 4: Optimal value search for the novel similarity classifier with Y=1 (‘German Credit’ data set) 
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The classification results on the third real-world data set, the ‘Australian Credit’ data set, are presented 

in Table 6. The highest mean accuracy on the ‘Australian Credit’ data set is 87.37%, which is achieved 

with the novel similarity classifier with transformation power Y = 1. The performance of the standard 

similarity classifier with 87.27% embodies the second highest mean accuracy. It is remarkable, that the 

mean performance of the novel similarity classifier with Y = 1 not only exceeds the mean performance 

of the ensemble learner random forest, but this difference is even highly significant. On top of that, the 

mean accuracy of the novel similarity classifier with Y = 1 is highly significantly larger than that of 

almost all other algorithms - the KNN classifiers, decision trees, random decision forests, Naive Bayes 

and the novel similarity classifiers – with the sole exception of the standard similarity classifier.  

Table 6: Results for the ‘Australian Credit’ data set 

Classification Algorithm 

Mean 

Accuracy 

Variance 

Mean 

FNR 

Mean 

FPR 

p m Y 

Standard Similarity Classifier 0.8727 0.0004 0.144 0.114 3 3 - 

Novel Similarity Classifier 0.8469 0.0005 0.151 0.155 1 1 p/2 

Novel Similarity Classifier 0.8737 0.0004 0.118 0.133 2 3 1 

Novel Similarity Classifier (Minimize FPR) 0.8478 0.0005 0.229 0.090 2 6 1 

Standard Similarity Classifier (PCA, 3 PCs) 0.8283 0.0005 0.268 0.094 1 2 - 

Novel Similarity Classifier (PCA, 3 PCs) 0.7940 0.0006 0.273 0.152 1 3 p/2 

Novel Similarity Classifier (PCA, 3 PCs) 0.8273 0.0004 0.228 0.128 1 1 1 

K-Nearest Neighbours, k = 1 0.7997 0.0005 0.223 0.182 - - - 

K-Nearest Neighbours, k = 10 0.8513 0.0004 0.177 0.126 - - - 

K-Nearest Neighbours, best k = 1 0.7997 0.0005 0.223 0.182 - - - 

Naive Bayes (Normal Gaussian distribution) 0.8016 0.0005 0.329 0.093 - - - 

Naive Bayes (Kernel with normal smoothing) 0.6877 0.0015 0.417 0.228 - - - 

Random Decision Forest (Min leafsize = 1) 0.8676 0.0004 0.143 0.124 - - - 

Random Decision Forest (Min leafsize = 10) 0.8653 0.0004 0.153 0.120 - - - 

Decision Tree (Min leafsize = 1) 0.8307 0.0006 0.194 0.149 - - - 
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Decision Tree (Min leafsize = 10) 0.8483 0.0005 0.164 0.142 - - - 

 

The lowest FPR rate for the ‘Credit Approval’ data set of 9.0% is accomplished with the novel similarity 

classifier that was customized to result in low FPR rates. Also, this algorithm still leads to a performance 

that is competitive or higher than that of the KNN algorithms, the Naive Bayes and the decision trees. 

The novel similarity classifier with Y = 1, the best performing algorithm on this data set, is with a FPR 

of 13.3% still below the average FPR rate of all classifiers. The FPR of the random forests is with 12.4% 

and 12.0% in magnitude comparable to that of the novel similarity classifier with Y = 1. The result of 

the optimal parameter value search for the ‘Australian Credit’ data set and the novel similarity classifier 

with Y = 1 is illustrated in Figure 5: 

Figure 5: Optimal value search for the novel similarity classifier with Y=1 (‘Australian Credit’ data) 

 

Overall, the novel similarity classifier achieved for all artificial data sets superior classification results 

to the standard similarity classifier with only a single ideal vector per class. For the real-world data sets, 

the novel similarity classifier with Y = 1 was performing at least as accurate as the standard classifier, 

in two data sets it was significantly more accurate than the standard similarity classifier, in one of them 

the difference was even highly significant. Compared to the remaining benchmark algorithms, the novel 

similarity classifier showed in most cases competitive result, often even outperforming the benchmark 

classifiers.  
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4 Discussion 

In this paper, the authors designed a novel similarity classifier based on k-means clustering. The k-

means clustering is deployed in combination with the jump method to determine the number of clusters 

and also the cluster centres themselves for each class. These clusters are then used as the multiple ideal 

vectors for each class in the similarity classifier. It is also possible to a certain extent to customize the 

classifier by the choice of the evaluation criterion during the training to focus on the mean accuracy, the 

False-Positive-Rate (FPR) or another metric. In this research, two methods for pre-processing and for 

the choice of the transformation power Y are proposed. The first one is premised on a simple 

standardization to [0,1] and using simple transformation power Y = 1. This method led on the artificial 

and real-world data sets in most cases to the highest performance accuracy. The second approach based 

on the ‘effective dimensionality’ eventuated in the majority of cases in lower mean accuracies than the 

first method. Therefore, the authors suggest, premised on the observed results, to use the novel similarity 

classifier on standardized data with transformation power Y = 1 since it showed superior results 

compared to the standard similarity classifier. On the real-world data sets, the novel similarity classifier 

with transformation power Y set to 1 achieved in most cases competitive mean accuracies and on the 

Australian Credit Data set even the highest mean accuracy. Except for the ensemble learning technique 

random forest, the novel similarity classifier with Y = 1 was often significantly or highly significantly 

more accurate than the benchmark algorithms in this study. Moreover, the novel similarity classifier 

customized to achieve small FPR reached comparably low FPR values, in two out of three cases even 

accomplishing the lowest FPR of all algorithms. Finally, a future research need is a systematic analysis 

of the transformation power for the novel similarity classifier for different data sets.  
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