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Abstract

A thermal discrete element method is introduced in granular packs. This method is applicable to

3D packing in either static or dynamic states coupled with the ordinary discrete element method

code. This method resolves the local heat fluxes and temperature of particles relying on particles

conductivity and the deformation of particles at various contact points. Using this method, the

time evolution of temperature is studied within packed beds under various compressive forces. Our

results match very well with the analytical solution as if the value of the effective conductivity is

properly adjusted, which is found to be related to the pressure exponentially. We have also shown

that the compression of the granular packing exponentially increases the thermal characteristic time

of the bed.

Keywords: Energy Equation, Discrete Element Method, Granular Packed Bed, Temperature

Distribution, Heat Conduction

1. Introduction

Granular materials are found extensively in nature as well as industrial processes from energy,

food processing, manufacturing and chemical technologies. In the technologies related to the energy

production in packed beds or fluidized beds, the thermal performance of plants is directly linked

to the behavior of the particulate medium as the main carrier of thermal energy controlled by the5

known mechanisms of conduction, convection and radiation.

∗Corresponding author
Email addresses: mehran.kiani@lut.fi (Mehran Kiani-Oshtorjani), payman.jalali@lut.fi (Payman Jalali)

Preprint submitted to International Journal of Heat and Mass Transfer September 18, 2019



Nomenclature

αT thermal diffusivity [m
2

s ]

m̄ reduced mass [kg]

Q̄jP flux on contact j of particle P

[W ]

αi angular acceleration [ 1
s2 ]

ai linear acceleration [ms2 ]

en unit vector in n direction

et unit vector in t direction

g gravity acceleraton [ms2 ]

vr relative velocity [ms ]

vs relative slip velocity [ms ]

δm mean overlap [m]

δn normal overlap [m]

δt tangential displacement [m]

ηn damping coefficient in n direction

[N.sm ]

ηt damping coefficient in t direction

[N.sm ]

κP heat conductivity of particle P

[ W
m.K ]

κeff effective thermal conductivity of bed

[ W
m.K ]

µ friction coefficient

φ angle [rad]

ρ particle density [kg/m3]

σ Poisson’s ratio

θ angle [rad]

cP specific heat capacity [ J
kg.K ]

d particle diameter [m]

E Young’s modulus [Pa]

G shear modulus [Pa]

Ii moment of inertia [kg.m2]

Kn spring stiffness in n direction

[Nm ]

Kt spring stiffness in t direction

[Nm ]

L length of bed [m]

mi particle mass [kg]

Pf Legendre polynomials

Pfg associated Legendre polynomials

q heat flux [ Wm2 ]

Rc packed bed radius [m]

RP particle radius [m]

Si surface area of contact i [m2]

T temperature [K]

T 0
P temperature at the center of particle P

[K]

T iP temperature at contact i of particle P

[K]2



Granular materials have been theoretically studied using both the Eulerian and Lagrangian ap-

proaches. The Eulerian approach treats the granular medium as a continuum. The interactions

of existing phases (gas-solid or solid-solid) within a control volume are represented by proper cor-

relations that specify an average volumetric estimation of forces. There have been a number of10

studies adopting Eulerian methods, e.g. Jalali et al. [1] for modelling the hydrodynamics of circu-

lating fluidized beds using multiphase Eulerian method, as well as Kiani-Oshtorjani and Jalali [2]

for modelling the hydrodynamic and thermal characteristics of packed beds using a novel lattice

Boltzmann method. Other alternatives to the Eulerian approach to simulate heat transfer between

granular particles are finite element method (FEM) [3, 4] and lattice element method (LEM) [5, 6].15

Unlike the continuum description of particulate systems in Eulerian approach, the Lagrangian

approach sees individual particles and tracks them every time step. The well-known Lagrangian

approach applied extensively in simulations of granular materials is the discrete element method

(DEM) that is used to build static packs, Suikkanen et al. [7] , or to analyze the dynamics of

particle mixtures, Jalali and Hyppanen [8].20

The thermal analysis of packed beds is performed by solving the energy equation for particles

configuration subject to proper boundary conditions. Siu and Lee [9] assigned each particle a

uniform temperature given at its center. In this approach known as the thermal network, a number

of heat pipes are assumed between particles through which heat fluxes transport to other particles.

There is a thermal resistance for each connection (contact). As Feng et al. [10] mentioned, this25

model mostly relies on an ad-hoc manner, not on a theoretical base.

Feng et al. [10, 11] suggested a 2D model based on the boundary element method (BEM),

which first resolved the steady state and then the transient condition inspired by the thermal

network method. They presented an analytical solution to the energy equation at steady state for

an individual particle subject to the Neumann boundary condition. Then they assigned an accurate30

temperature to the particle using a boundary integral method. The heat fluxes were obtained from

the contacts of particle with neighbouring particles. Their work was limited to 2D space as they

admitted they could not find any integral solution for 3D geometries.

He et al. [12] proposed a numerical manifold method (NMM) to model transient heat conduction

in granular materials. In this model, some elementary geometries like circles, squares, or their35

combinations are defined to inscribe the particles known as mathematical covers. Then using the

intersections between particles and mathematical covers, some manifold elements are extracted.
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The manifold elements are defined without any overlap between the elements. It is argued in that

paper that unlike FEM as a continuum approach, and thermal discrete element method (TDEM)

as a discrete approach, the NMM can describe both continuum and discrete views to the problem.40

In other words, this model resembles the FEM, where, the temperature step changes at contact

interfaces are included in the model, too.

In the studies of heat conduction in granular materials, the effective thermal conductivity (ETC)

of the packed bed is a characteristic quantity. There are a number of studies to obtain this parameter

theoretically [13, 14, 15], computationally [3], or experimentally [16, 17, 18].45

Liang [19, 14] utilized the thermal resistance presented by Feng et. al. [10] to derive a theoretical

formula for the ETC. They applied the formula to a 2D packed bed under a uniform strain. This

formula was obtained based on a parallel-column model in which the granular bed was constructed

by particle columns. Then the ETC of each column was obtained from the corresponding thermal

resistance. The ETC of entire bed was calculated from the ETC of each column.50

Kovalev and Gusarov [20] presented theoretical relation for ETC based on statistical mechanics.

They also simulated the thermal behaviour of different packed beds consisted of different particle

shapes. They employed the thermal resistance proposed by Feng et al. [10] for 2D problems to

calculate the heat flux between particles.

The aim of the present paper is to introduce a thermal DEM approach for resolving transient55

heat conduction in 3D granular packing. The results of this study present the propagation of heat

in different packed beds under various compressive pressures.

2. Thermal discrete element method

This section contains the derivation of TDEM. It starts with finding a steady-state solution to

the heat conduction equation. By adding the transient term to the balance equation, the transient60

heat transfer equation will be obtained.

2.1. Solution of heat conduction equation

Our starting point for TDEM is to find an analytical solution to the Laplace equation (heat

conduction) in spherical coordinate system. This equation is written with the Neumann boundary
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condition on the boundary ∂Ω in the spherical domain Ω as:65

κP∇2T = 0 in Ω

κP
∂T

∂r
= q(θ, φ) on ∂Ω

(1)

where, θ and φ are the spherical angular coordinates as depicted in Fig. (1a), q is heat flux, and κ

stands for the thermal conductivity of particles. The solution of the Laplace equation in spherical

coordinate system can be obtained based on separation of variables as:

T (r, θ, φ) =

∞∑
f=0

f∑
g=0

(
Afr

f +
Bf
rf+1

)
Pfg(cosφ)

(
Cgsin(gθ) +Dgcos(gθ)

)
+ T 0

P (2)

where, f and g are the summation indices, T 0
P is the temperature at the center of particle P , and

the functions Pfg are Legendre polynomials.70

Considering the azimuthally symmetric case where T does not depend on θ, i.e. g = 0, and the

boundary condition at the center of sphere leading to Bf = 0, Eq. (2) is simplified as:

T (r, φ) =

∞∑
f=0

Afr
fPf (cos(φ)) + T 0

P (3)

where, the coefficients Af should be determined based on the boundary condition on ∂Ω which

finally yields:

Af =
2f + 1

2fRf−1
P κ

∫ π

0

q(ψ)Pf (cos(ψ))sin(ψ)dψ (4)

By substituting Eq. (4) into (3), we obtain:75

T (r, φ) =
RP
κP

∫ π

0

q(ψ)sin(ψ)

∞∑
m=1

2m+ 1

2m

( r

RP

)m
Pm(cosψ)Pm(cosφ) dψ + T 0

P (5)

The mean temperature T iP on the i-th contact, and the flux Q̄jP on any contact j can be

calculated as:

T iP =
1

Si

∫
Si

T iP (θ, φ)dS =
2πR2

P

Si

∫ φi

0

T iP (φ)sin(φ)dφ (6)

Q̄jP = 2πR2
P

∫ φj2

φj1

qjP (φ)sinφdφ (7)
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where, Si is the surface area of contact i, and φj1 and φj2 are the angles characterizing the influential

region of contact j in the direction φ. In Eq. (6), T iP (φ) is the temperature distribution over the

contact surface i of particle P obtained from Eq. (5) after substituting r = RP and breaking the80

integral to the summation over influential regions of all the contacts (covering the entire surface of

particle), which yields:

T iP (φ) =
RP
κP

k∑
j=1

∫ φj2

φj1

qjP (ψ)sin(ψ)

∞∑
m=1

2m+ 1

2m
Pm(cosψ)Pm(cosφ) dθdψ + T 0

P (8)

As a result, the mean temperature on contact i can be estimated by combining Eqs. (8) and

(6):

T iP =
2πR2

P

Si

RP
κP

k∑
j=1

∫ φi

0

∫ φj2

φj1

qjP (ψ)sin(ψ)sin(φ)

∞∑
m=1

2m+ 1

2m
Pm(cosψ)Pm(cos(φ)) dψdφ+ T 0

P

(9)

By assuming a constant flux for each contact qjP (ψ) = q̄jP , Eq. (7) will be:85

Q̄jP = Sj q̄jP = 2πR2
P q̄jP

(
cos(φj1)− cos(φj2)

)
(10)

and using the identity of cos(2x) = 1− 2sin2(x) we have:

Q̄jP = 4πR2
P q̄jP

(
sin2(

φj2
2

)− sin2(
φj1
2

)
)

= 4πR2
P q̄jP

(
sin(

φj2
2

)− sin(
φj1
2

)
)(
sin(

φj2
2

) + sin(
φj1
2

)
)

(11)

then, by considering φj2 = φj1 + ∆φj and using the identity of sin(
φj2
2 ) = sin(

φj1
2 +

∆φj
2 ) =

sin(
φj1
2 )cos(

∆φj
2 ) + sin(

∆φj
2 )cos(

φj1
2 ) u sin(

φj1
2 ) +

∆φj
2 cos(

φj1
2 ), Eq. (11) simplifies to:

Q̄jP = 2πR2
P q̄jP∆φjcos(

φj1
2

)
(
sin(

φj2
2

) + sin(
φj1
2

)
)

(12)

Substituting q̄jP from Eq. (12) into Eq. (9) yields:

T iP =

k∑
j=1

[ RP Q̄jP

κPSi∆φjcos(
φj1
2 )
(
sin(

φj1
2 ) + sin(

φj2
2 )
)×

∫ φi

0

∫ φj2

φj1

sin(ψ)sin(φ)

∞∑
m=1

2m+ 1

2m
Pm(cosψ)Pm(cosφ) dψdφ

]
+ T 0

P

(13)
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Christoffel-Darboux identity [21] guarantees that
∑∞
m=1(2m + 1)Pm(cosψ)Pm(cosφ) converges90

to −1, hence,
∑∞
m=1

2m+1
2m Pm(cosψ)Pm(cosφ) will converge to a negative constant λ, which is

computationally obtained as −0.6846. Consequently, Eq. (13) can be simplified as:

T iP =

k∑
j=1

RP Q̄jPλ

κPSi∆φjcos(
φj1
2 )
(
sin(

φj1
2 ) + sin(

φj2
2 )
) ∫ φj2

φj1

sin(ψ)

∫ φi

0

sin(φ)dφdψ + T 0
P (14)

Eventually, by using Si = πR2
P sin

2(φi) u πR2
Pφ

2
i and

∫ φi
0
sin(φ)dφ = 1−cos(φi) = 2sin2(φi2 ) u

φ2
i

2 , we can reduce Eq. (14) to:

T iP =

k∑
j=1

Q̄jPλ

2κPπRP∆φjcos(
φj1
2 )
(
sin(

φj1
2 ) + sin(

φj2
2 )
) ∫ φj2

φj1

sin(ψ)dψ + T 0
P (15)

(a) (b)

Figure 1: Schematic of (a) contacting particles in spherical coordinate system (b) the pipe model connecting contact

areas to the center of particles.

2.2. Two particle pipe model95

For a central particle making several contacts with its neighboring particles, we note that Eq.

(15) determines the temperature of any contact area i based on all the contacts of the central
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particle. The main idea behind the two-particle pipe thermal model is to take into account the ac-

cumulative effects from the contacting particles on the temperature of contact i. In other words, the

heat is exchanged between contact areas and the center of particle P , where all the fluxes contribute100

in building up any of heat fluxes exchanged between the contact area i and the central particle P as

shown in Fig. (1b). In the pipe model, a pipe is attached to each contact through which a heat flux

is transferred between the neighbouring particle and the central particle. In addition, the share of

any contact j on T iP depends on the contact position represented by

∫ φj2
φj1

sin(ψ)dψ

cos(
φj1
2 )
(
sin(

φj1
2 )+sin(

φj2
2 )
) in

Eq. (15) assuming that Q̄jP and ∆φj are in the same order for all contacts. Thus, effective values105

of these two quantities can be introduced for the contact i and taken out of the summation. This

simplifies Eq. (15) to the following equation:

T iP =
Q̄LPλ

2κPπRP∆φi

k∑
j=1

∫ φj2
φj1

sin(ψ)dψ

cos(
φj1
2 )
(
sin(

φj1
2 ) + sin(

φj2
2 )
) + T 0

P (16)

in which the value of
∑k
j=1

∫ φj2
φj1

sin(ψ)dψ

cos(
φj1
2 )
(
sin(

φj1
2 )+sin(

φj2
2 )
) is computationally calculated to be π. Note

that φj1 and φj2 correspond to the contact j.

Eventually, Eq.(16) reaches to a final form after substituting the summation by π, which results110

in :

T iP =
Q̄LPλ

2κPRP∆φi
+ T 0

P (17)

As a result, one can consider a pipe with the heat flow Q̄LP and thermal resistance of ReP =

−λ
2κPRP∆φi

in the particle P side connecting the centers of two particles. According to this definition

of the thermal resistance ReP , it is inversely proportional to the deformation angle characterized

by ∆φi. Equivalently, the effective conductivity between particles increases proportional to the115

deformation angle.

Consider two particles P and L assuming T 0
P > T 0

L and write the conservation equation for

thermal energy. The direction of energy flux is from particle P toward particle L across the contact

areas i and m of particles P and L, respectively. Thus the temperature at the i-th contact of

particle P , T iP , due to the heat flux from particle L can be determined from Eq. (17) as,120

T iP = −ReP Q̄PL + T 0
P

(18)

On the other hand, the temperature at the m-th contact of particle L, TmL , due to the flux from

8



particle P is calculated as,

TmL = ReLQ̄PL + T 0
L

(19)

where ReP = −λ
2κPRP∆φi

and ReL = −λ
2κLRL∆φm

. Obviously, we have T iP = TmL and ∆φi = ∆φm.

By subtracting Eq. (19) from Eq. (18), we reach to the following equation for heat flux:

kPL

 1 −1

−1 1

T 0
P

T 0
L

 =

 QPL

−QPL

 (20)

where kPL = 1/(ReP +ReL).125

Balancing the steady and transient terms in the heat conservation equation will yield the tran-

sient energy equation. Therefore, the energy equation governing the transient heat conduction in

any individual particle p can be presented by,

CP Ṫ
0
P (t) +

N∑
J=1

QPJ = 0 (21)

where J stands for the neighbour particles having contact with particle P . In addition, using Eq.

(20) we have QPJ = kPJ(T 0
J −T 0

P ), and CP = 4
3πρR

3cP . This equation can be solved by marching130

in time.

3. Discrete Element Method

In the discrete element method (DEM), the trajectory of any individual particle is calculated

through successive time steps. Starting from an initial non-overlapping configuration of particles

with certain initial velocity distribution, particle-particle and wall-particle overlaps are created in135

time. The overlaps create normal forces as well as history-dependent frictional forces and torques in

all contact areas. As a result of having forces and torques at each time step, the translational and

angular accelerations are known, which in turn, the velocity and position of particles are determined

by proper integrations in time. It is worth mentioning that the contact forces are represented by a

spring-dashpot model [22]. The Hertzian theory [13] relating the force and deformation of particles140

is employed to calculate the normal and tangential force components for a linear spring-dashpot

model at contact points as [23, 8]:

Fn =
(
−Knδ

3
2
n − ηnvr.en

)
en (22)

9



Ft =
(
−Ktδt − ηnvs

)
(23)

Here, Kn and Kt stand for spring normal and tangential stiffnesses, ηn and ηt are for damping

coefficients of dashpots in the normal en and tangential et directions, respectively. In addition, the145

direction of Fn always relies on the unit vector en which is along the centerline of two particles i

and j. The normal overlapping δn vector is simply calculated from the position of the centers of

contacting particles and tangential displacement δt is obtained from δt = Ft/Kt. Moreover, the

direction of frictional (tangential) force Ft is determined from the direction of relative slip velocity

vs. The relative velocities of vs and vr are as follows:150

vr = vi − vj (24)

vs = vr − (vr.n)en + 0.5(diωi + djωj)× en (25)

where d and ω are the diameter and angular velocity of a particle, respectively. It should be

emphasized that Eq. (23) is only valid for sliding condition. In static condition, the tangential

component of force should be calculated by Ft = −µ|FCnij |et in which µ is the friction coefficient.

It should be mentioned that the normal and tangential spring stiffnesses Kn, Kt are obtained155

using the Hertzian contact theory for contacting spheres as follows:

Kn =
4
√
RiRj

3
( 1−σ2

i

Ei
+

1−σ2
j

Ej

)√
Ri +Rj

(26)

Kt =
8
√
RiRj

3
( 1−σ2

i

Gi
+

1−σ2
j

Gj

)√
Ri +Rj

δ
1
2
n (27)

Here, σ, E, and G = E(1 + σ)/2 are Poisson’s ratio, Young’s modulus, and shear modulus, respec-

tively. It is worth mentioning that the contact of particles and wall can be resolved using the same

normal stiffness expression in which the radius of wall tends to infinity. On the other hand, the

normal and tangential dashpot coefficients may be taken equal as:160

ηn = ηt = α(m̄Kn)
1
2 δ

1
4
n (28)
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where m̄ = ( 1
mi

+ 1
mj

)−1 is the reduced mass. α is a function of restitution coefficient e as:

α =
−
√

5ln(e)√
π2 + ln2(e)

(29)

The net force and torque on a particle is the summation on all contacts as follows:

Fi =
∑
j

(Fnij + Ftij) (30)

Ti =
1

2

∑
j

(dien × Ftij) (31)

Consequently, the linear and angular accelerations can be calculated as:

ai =
Fi

mi
+ g (32)

αi =
Ti

Ii
(33)

where g is gravitational acceleration and Ii is the moment of inertia of particle i.

4. Results and Discussion165

In this section, a comparison is performed between the current model and other models in

literature including the FEM. Then the packed beds under investigation are described and in

continuation, the code is validated by comparing the results of simulations with analytical solution.

Finally, the impact of compressive pressure on thermal conductivity is presented in different packed

beds under various compressive pressures.170

4.1. Present model versus existing ones

Considering two colliding particles, Batchelor and O’Brien [24], Carslow [25] and Yovanovich [26]

have independently presented the following analytical formula for thermal conductivity assuming

the same physical properties for both particles as:

kBOB = 2κP
(3Fn(1− σ2)RP

4E

) 1
3 (34)

where, Fn is the magnitude of normal contact force. In addition, Argento and Bouvard [27] have175

argued that Batchelor and O’Brien (BOB) formula is confined to small deformations. They tried to

11



modify the BOB relation by introducing a fitting parameter calculated based on FEM simulations.

Their proposed formula is:

kAB =
π

2β
κP
(3Fn(1− σ2)RP

4E

) 1
3 (35)

in which the fitting parameter β is reported as 0.899. Later, Ott [28, 29] used the same analogy

by performing other FEM simulations and reported 0.952 as the value of parameter β. It is worth180

mentioning that according to Refs. [30, 31, 32], the basis of these models relies on uniform tempera-

ture distribution assumption inside particles which needs some modifications. They considered the

conductivity of surrounding fluid as a reason to make the temperature distribution inside particles

as non-uniform. Then they modified the thermal resistance by adding an additional term for a

non-uniform temperature distribution. This additional term is only characterized by the surround-185

ing fluid properties. Moreover, another source for non-uniform temperature distribution inside an

individual particle is different contacts through which various heat fluxes coming in or going out of

particle.

On the other hand, by using the definition of thermal resistance, we can derive a new thermal

conductance formula as:190

kNew =
−2κP
λ

1
1

RP∆φi
+ 1

RL∆φm

(36)

By considering the same radius for particles, RP∆φi = RL∆φm. Then Eq. (36) will be reduced to:

kNew =
−κP
λ

RP∆φi (37)

The value of RP∆φi can be calculated using Euclid’s formula which is: [RP∆φi]
2 = (R2

P −

(RP − δn
2 )2) = RP δn. The normal deformation δn will be obtained by assuming two particles at

rest and using Eq. (22) as δn = ( FnKn )
2
3 . As a result, we can conclude that:195

RP∆φi =
√
RP (

Fn
Kn

)
1
3 (38)

On the other hand, Eq. (26) will be simplified to the following equation by considering the same

physical properties for both contacting particles:

Kn =
4E

6(1− σ2)

√
RP
2

(39)

By substituting Eq. (39) into (38) and Eq. (38) into (37), the thermal conductivity will be obtained

as:

kNew = 2.066κP
(3Fn(1− σ2)RP

4E

) 1
3 (40)

12



The thermal conductivity obtained in Eq. (40) is similar to the BOB equation presented in200

Eq. (34). The thermal conductivity of a contacting pair of particles, with the physical properties

tabulated in Table (1), are plotted versus the imposed load in Fig. (2b). As this figure illustrates,

the new equation is pretty close to the BOB model (∼ 3 percent difference). However, the difference

with other equations could be due to the fact that the effects of all contacts are accumulated in the

new model. As a result, a higher heat flux makes a higher thermal conductance.205

By introducing ζ =
( 3Fn(1−σ2)RP

4E

) 1
3 and two dimensionless parameters of RP

ζ and ξ = κPRP
2κPL

,

the new model is compared with other models, including FEM simulations of [29], in Fig.(2b). This

figure depicts the new model is fairly close to the BOB model as well as FEM simulations.

(a) (b)

Figure 2: Comparison of various models for (a) thermal conductivity versus normal compressive force (b) dimension-

less parameter ξ versus dimensionless parameter RP
ζ

.

4.2. Case study

The studied case is a cylindrical packed bed built using the DEM code in which a non-overlapping210

dilute particle configuration settles down under gravitational force to create a dense packed bed.

The radius of packed bed is Rc = 30.5 mm which contains 7500 particles with the physical properties

of aluminium listed in Table (1). It is worth mentioning that the performance of the model should

not be dependent of physical properties including the range of thermal conductivity.

To construct the packed bed, the position of non-overlapping particles are generated randomly215
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inside the cylindrical chamber. Then they fall down under gravity and eventually stack a dense

pack. After completion of particles settlement, the system is compressed by moving the upper plate

downward with the rate of 4 mm
s for a certain time to deliver a desired compressive force. The

granular packed bed is illustrated in Fig. (3). This figure demonstrates two packed beds under

the compressive forces of 4770 N (left) and 1.184 × 105 N (right). The corresponding pressures220

are 16 bar and 405 bar, respectively. The particles configuration under the achieved compressive

force is taken to perform the calculations of the conduction problem, which will be presented in

Sec. 4.4. The height of the bed is decreased by 12.1 mm (3.025 d) and 2.9 mm (0.725 d) due to

the compressive forces of 1.184× 105 N and 4770 N , respectively. It can be directly observed from

the two stacks that compression leads to highly ordered packing. The detailed analysis of packing225

structures with their connection to the compression and heat conduction will be studied in future

works.

Figure 3: Packed beds used in simulations; (left) the compressive force of 4770 N (pressure of 16 bar) exerted on

the bed and (right) the compressive force of 1.184 × 105 N (pressure of 405 bar). Colors of particles represent their

temperatures at t = 0.5 s.

The force exerted on the upper plate during the compression is plotted versus time in Fig (4).

In fact, this force is obtained while the upper plate moves downward with a uniform rate of 4 mm
s .

Before looking into the dependence of the ETC on the compressive pressure, one may have an insight230

into the possible role of structural characteristics. For this purpose, we find the azimuthal angle of

contacts, shown by φc, which is measured for each contact of the central particle in the coordinate
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system attached to the particle as shown in Fig. (1a). Figure (5) demonstrates the probability

distribution function (PDF) of φc in the two packs compressed with 16 and 405 bars. Interestingly,

the fingerprint of high compression can be observed as a peak appearing at φc ≈ π/3 for the high235

pressure of 405 bar. Moreover, the PDF at high pressure relatively drops in π/6 < φc < π/3.

The decrease of contacts in this range of φc can reduce the vertical heat flux (the direction of

imposed temperature gradient). This leads to the reduction of the effective conductivity in vertical

direction. Note that the decay of PDF within π/2 > φc > 2π/5 for high pressure is not as important

as that within π/6 < φc < π/3. This is because the role of horizontally oriented contacts is of less240

importance as they are perpendicular to the temperature gradient carrying insignificant heat fluxes.

Figure 4: Variation of the force exerted on the upper plate

versus time during compression.

Figure 5: Probability distribution function (PDF) of az-

imuthal angular position of contacts measured in coordi-

nates attached to central particles.

4.3. Comparison to analytical solution

The results of the TDEM code is performed are compared to the analytical predictions presented

in Appendix A. Two distinguished thermal cases are considered, in both of which the temperature

at the bottom of bed is kept at 500 K. In the first case, the top wall and initial temperatures of245

entire particles are set to 300 K and 400 K, respectively. In the second case, the top wall and

initial temperatures of entire particles are set to 400 K and 300 K, respectively. The temperatures

of the top and bottom walls are kept fixed in time for both cases.
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Table 1: Simulation parameters.

particle density ρ 2500 kg
m3

particle radius RP 0.002m

Radius of packed bed Rc 0.0305m

Poissons ratio of particle σ 0.2

restitution coefficient e 0.865

modulus of longitudinal elasticity E 5× 1010Pa

friction coefficient µ 0.3

gravity Acceleration g 9.81ms2

thermal conductivity κ 205 W
m.K

specific heat cP 900 J
kg.K

(a) (b)

Figure 6: Temperature profile at different times for analytical (dash line) and TDEM (solid line) results for (a) first

case and (b) second case. (a) Temperature of the bottom and top walls are 500 K and 300 K, respectively. Initial

temperature of particles is 400 K. Different lines represent the times of t = 0.2, 0.5, 1.0, 2.0 s. (b) Temperature of

the bottom and top walls are 500 K and 400 K, respectively. Initial temperature of particles is 300 K. Different

lines for the times of t = 0.2, 0.5, 1.0, 2.0, 3.5, 5.0, 7.0 s. The arrows show the direction of time increase in both parts.

Figure (6a) depicts the temperature profile along the bed for the first case obtained from the
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analytical solution and the TDEM. For TDEM, the mean temperature is calculated for any bin250

centered at a cross section of given heights. Mean temperature of a bin is calculated as the weighted

average of particles temperatures within the bin weighted by the partial volume of particles lying

in the bin. The results shown in Fig. (6a) indicate that the TDEM results matches closely to the

analytical solution. Additionally, the results corresponding to the second case are demonstrated in

Fig. (6b). These results also confirm that the TDEM data closely match to those of the analytical255

solution in various times.

It should be noted that in the analytical solution presented in Appendix A, the ETC of the bed

is present in the formulas. The ETC can be assumed proportional to the particle conductivity as

κeff = γκP , in which κP is the particle thermal conductivity and γ is the coefficient of propor-

tionality [33, 34, 35]. This coefficient γ can be obtained by matching the TDEM and analytical260

results in any packing under a certain compressive pressure, which is shown in Fig. (7). This figure

indicates that γ depends on the compressive pressure exponentially, which means it drops sharply

with pressure by an order of magnitude with little changes within a wide range of pressure increase.

4.4. Effect of compressive pressure on thermal conduction

In this section, the compressive pressure on the packed bed is varied and it is demonstrated how265

it affects on the thermal conduction features. First, the profiles of temperature are shown in Figs.

(8a)-(8d) at different times for 4 different pressures ranging from 0.28 bar to 405 bar. The boundary

values of temperature are 500 K and 400 K for the bottom and top walls, respectively. The initial

temperature of bed particles is 300 K. As Fig. (8) illustrates, the compressive pressure delays

the evolution of temperature profile to the steady one. The temperature profile already develops270

to the steady one at t = 2 s for the pressure of 0.28 bar, while it is still under development for

the greater pressures. It is evident that as pressure rises, the delay in developing the temperature

profile increases. The thermal response of the system becomes fairly similar for the compressive

pressures of 155 bar and 405 bar.

In order to clarify the time evolution of temperature under various compressive pressures, the275

variation of temperature at the middle of the bed is demonstrated with time in Fig. (9) for the

compressive pressures mentioned above. An immediate observation from this figure is that the local

temperature reaches to the steady state value much earlier in the lowest pressure than those in the
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Figure 7: Variation of γ vs. compression pressure. The fitted function for γ is obtained as γ = 0.01039p−0.2919 +

5.353 × 10−4.

higher pressures. Therefore, one may define a conduction characteristic time as,

τ =

∫∞
0

(Tsteady − T )dt

Tsteady − Tinit
(41)

Here, Tsteady is the steady state temperature, Tinit is the initial temperature and T (t) is the280

temperature of the section as a function of time. The variation of the characteristic time in the

packs under different compressive pressures are shown versus the compressive pressure in Fig. (10).

This figure reveals that the characteristic time increases with compressive pressure in a power of

pressure as about 0.1, that is, it increases rapidly in lower pressures below 80 bar and it grows in a

slower rate beyond this pressure.285
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(a) (b)

(c) (d)

Figure 8: Temperature profiles in the packed beds under different compressive pressures at (a) 0.2 s (b) 0.5 s (c) 1 s

(d) 2 s .
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Figure 9: Time evolution of temperature at the middle of

packed bed under different compressive pressures.

Figure 10: Variation of conduction characteristic time

versus compressive pressure. The fitted line is τ =

1.945p0.1084 − 1.332.

5. Conclusion

In this paper, a novel thermal discrete element method (TDEM) is introduced to resolve heat

conduction in the packs of spherical particles, though it can be also extended to any arbitrary shape

of particles. This model can be implemented in both static and dynamic packs with transient heat

conduction. Simulations were performed on various dense packs generated using an in-house code290

of DEM. The dense packs were obtained by releasing non-overlapping particles to settle at the

bottom of a cylindrical container due to the gravity. After the gravity driven settlement, the upper

plate was pushed down with a small constant velocity to exert a desired compressive pressure on

the bed. The compressed bed was then fed to the TDEM code to perform conduction simulations.

First, the code was validated by the analytical solution in which the ratio of medium conductivity295

to the particle conductivity was obtained by matching up the TDEM solution with the analytical

solution. Then the simulation code was utilized to determine how the compressive pressure affects

the conduction by showing the evolution of temperature profiles in time under various pressures.

Also, the conduction characteristic time was calculated based on the local variation of temperature

under different compressive pressures. These results revealed that the effective conductivity of the300

packed bed is proportional to the particle thermal conductivity and the coefficient of proportion-

ality depends on the compressive pressure exponentially. Moreover, it was shown that increasing
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the compressive pressure slows down the heat conduction, which can be connected to the role of

pressure in decreasing the effective conductivity. In this regard, it was demonstrated that the con-

duction characteristic time is described by a power function of the pressure. The decay of effective305

conductivity with pressure may be associated with the changes in contacts and the mean direction

of the centerlines at contact points. This will be investigated in future studies in details.

Appendix A: Analytical solution of energy equation

Here, the energy equation of (A1) is analytically solved for granular packed beds. By averaging

the solid volume fraction (SVF) over each cross section, the 3D problem is simplified to 1D problem310

with the equation as:

∂T

∂t
= αT

∂2T

∂x2
in Ω

(A1)

which is subject to the initial and boundary conditions of:

T (0, t) = T0

T (L, t) = TL

T (x, 0) = Tinit

(A2)

Here, αT =
κeff
ρCp

is the thermal diffusivity and κeff is the effective thermal conductivity of bed.

Introducing T (x, t) = v(x) + w(x, t), the problem can be simplified as:

∂w

∂t
= αT

∂2w

∂x2
in Ω

(A3)

with the initial and boundary conditions of:315

w(0, t) = T0 − v(0)

w(L, t) = TL − v(L)

w(x, 0) = Tinit − v(x)

(A4)

As a result, v(x) should be such that the boundary conditions are homogeneous, i.e., v(x) =

T0 + x
L (TL − T0). Therefore, the final solution for T (x, t) is obtained as:

T (x, t) = T0 +
x

L
(TL − T0) +

∞∑
m=1

Cmexp(−
m2π2αT t

L2
)sin(

mπx

L
) (A5)
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where,

Cm =
2

mπ
Tin
[
1− (−1)m

]
+

2

mπ

[
(−1)mTL − T0

]
(A6)
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