Accelerated Fe3+/Fe2+ cycle using atomic H* on Pd/Al\textsubscript{2}O\textsubscript{3}: A novel mechanism for an electrochemical system with particle electrode for iron sludge reduction in the Fe2+/peroxydisulfate oxidation process

Zeng Huabin, Zhao Xu, Zhao Feiping, Park Yuri, Sillanpää Mika

This is a Post-print version of a publication published by Elsevier in Chemical Engineering Journal

DOI: 10.1016/j.cej.2019.122972

Copyright of the original publication: © Elsevier 2019

Please cite the publication as follows:

Zeng, H., Zhao, X., Zhao, F., Park, Y., Sillanpää, M. (2020). Accelerated Fe3+/Fe2+ cycle using atomic H* on Pd/Al\textsubscript{2}O\textsubscript{3}: A novel mechanism for an electrochemical system with particle electrode for iron sludge reduction in the Fe2+/peroxydisulfate oxidation process. Chemical Engineering Journal, vol. 382. DOI: 10.1016/j.cej.2019.122972

This is a parallel published version of an original publication. This version can differ from the original published article.
Accelerated Fe$^{3+}$/Fe$^{2+}$ Cycle using Atomic H* on Pd/Al$_2$O$_3$: A Novel Mechanism for an Electrochemical System with Particle Electrode for Iron Sludge Reduction in the Fe$^{2+}$/Peroxydisulfate Oxidation Process

Huabin Zeng a*, Xu Zhao b, Feiping Zhao a, Yuri Park a, Mika Sillanpää a

a Department of Green Chemistry, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Sammonkatu 12, FI-50130 Mikkeli, Finland

b State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

*Corresponding author:
Department of Green Chemistry
LUT University
Sammonkatu 12, FI-50130 Mikkeli, Finland
E-mail address: Huabin.zeng@lut.fi
<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>Benzoic acid</td>
</tr>
<tr>
<td>PDS</td>
<td>Peroxydisulfate</td>
</tr>
<tr>
<td>Fe$^{2+}$/PDS process</td>
<td>PDS oxidation process activated by Fe$^{2+}$</td>
</tr>
<tr>
<td>Fe$^{3+}$/PDS process</td>
<td>PDS oxidation process activated by Fe$^{3+}$</td>
</tr>
<tr>
<td>Electro/Fe$^{3+}$/PDS</td>
<td>PDS oxidation with addition of Fe$^{3+}$ and applying current</td>
</tr>
<tr>
<td>Pd/Fe$^{3+}$/PDS</td>
<td>PDS oxidation process with the addition of Fe$^{3+}$ and Pd/Al$_2$O$_3$ catalyst</td>
</tr>
<tr>
<td>Electro/Pd/PDS</td>
<td>PDS oxidation process with the addition of the Pd/Al$_2$O$_3$ catalyst and applying current</td>
</tr>
<tr>
<td>Electro/Pd/Fe$^{3+}$</td>
<td>Fe$^{3+}$ oxidation process with the addition of the Pd/Al$_2$O$_3$ catalyst and applying current</td>
</tr>
<tr>
<td>Pd-EFP system</td>
<td>Pd/Al$_2$O$_3$-enhanced electro/ Fe$^{3+}$/PDS oxidation process</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>AOPs</td>
<td>Advanced oxidation processes</td>
</tr>
<tr>
<td>3D</td>
<td>Three-dimensional</td>
</tr>
<tr>
<td>ESR</td>
<td>Electron spin resonance</td>
</tr>
<tr>
<td>ICP-OES</td>
<td>Inductively coupled plasma-optical emission spectroscopy</td>
</tr>
<tr>
<td>TBA</td>
<td>Tert-butyl alcohol</td>
</tr>
<tr>
<td>H$_2$/Pd/PDS</td>
<td>PDS oxidation process with the addition of the Pd/Al$_2$O$_3$ catalyst in an atmosphere of H$_2$</td>
</tr>
</tbody>
</table>
Abstract
The high cost associated with the disposal of iron sludge in Fe^{2+} activated oxidation systems significantly limits their widespread use. In this study, we constructed a trace iron-based peroxydisulfate (PDS) oxidation system (Pd-EFP) using Pd/Al_{2}O_{3} as the particle electrode and externally added PDS as an oxidant. At an initial solution pH of 3.0 and a current density of 3.33 mA/cm^2, with the addition of 10 mM PDS, 50 mg Pd/Al_{2}O_{3}, and 2 mg/L Fe ions, 80.12% of 180 µM benzoic acid (BA) was degraded within 120 min. The Pd/Al_{2}O_{3} catalyst provided sufficiently large surface area for atomic H* production from the adsorption of electrogenerated H_2 or H^+ conversion via electro-induction on the Pd/Al_{2}O_{3} surface, which subsequently accelerated the transformation from Fe^{3+} to Fe^{2+}. Using this method, organics could be degraded by both SO_4^- and ·OH via the Fe^{2+}-activated PDS process. In the Pd-EFP process, the optimal dosage of Fe ions was determined to be 36 µM (2 mg/L). Correspondently, the optimal current density and PDS concentration in the Pd-EFP system were 3.33 mA/cm^2 and 20 mM, respectively. Furthermore, degradation of BA was efficiently promoted by the N_2 atmosphere, which could steer the reaction on the surface of Pd/Al_{2}O_{3} in the right direction toward Fe^{3+} reduction by atomic H*, by dispelling accumulated H_2 above the reaction liquid and suppressing oxygen reduction. Finally, the Pd/Al_{2}O_{3} catalyst was found to be durable in the Pd-EFP system according to reusability experiments and X-ray diffraction patterns of the fresh and used Pd/Al_{2}O_{3} catalyst. This research provides an environmentally benign system for recycling Fe^{3+} in Fe^{2+}/PDS processes and for suppressing iron sludge production.

Keywords: Fe^{2+}/PDS process, Pd/Al_{2}O_{3}, atomic H*, iron cycle, iron sludge reduction
1. Introduction

By producing strongly oxidising \(\cdot \text{OH} \), advanced oxidation processes (AOPs) are appealing treatment options for removing non-biodegradable, recalcitrant and toxic organic contaminants from water [1-4]. Among AOPs, the Fenton reaction (reaction 1) has been widely applied in wastewater treatments for its high oxidation ability, low operating cost, and controllability [5]. In parallel to the Fenton reaction, the reaction between Fe\(^{2+}\) and peroxydisulfate (PDS, S\(_2\)O\(_8^{2-}\)) (Fe\(^{2+}\)/PDS reaction, reaction 2) shares similar advantages with the Fenton reaction while sulfate radical (SO\(_4^{\cdot-}\)) demonstrate a longer lifetime than hydroxyl radical (\(\cdot \text{OH} \)) in water [6-8].

\[
\begin{align*}
\text{Fe}^{2+} + \text{H}_2\text{O}_2 & \rightarrow \text{Fe}^{3+} + \cdot \text{OH} + \text{OH}^- \\
\text{Fe}^{2+} + \text{S}_2\text{O}_8^{2-} & \rightarrow \text{Fe}^{3+} + \text{SO}_4^{\cdot-} + \text{SO}_4^{2-} \\
\text{S}_2\text{O}_8^{2-} + \text{SO}_4^{\cdot-} & \rightarrow \text{S}_2\text{O}_8^{\cdot-} + \text{SO}_4^{2-} \\
\text{Fe}^{3+} + \text{S}_2\text{O}_8^{2-} & \rightarrow \text{Fe}^{2+} + \text{S}_2\text{O}_8^{\cdot-} \\
2\text{S}_2\text{O}_8^{2-} + 2\text{H}_2\text{O} & \rightarrow 3\text{SO}_4^{2-} + \text{SO}_4^{\cdot-} + \text{O}_2^- + 4 \text{H}^+ \\
\text{S}_2\text{O}_8^{2-} + 2\text{H}_2\text{O} & \rightarrow 2\text{SO}_4^{2-} + \text{HO}_2^- + 4 \text{H}^+ \\
\text{Fe}^{3+} + \text{O}_2^- & \rightarrow \text{Fe}^{2+} + \text{O}_2
\end{align*}
\]

(reaction 1) [9]

(reaction 2) [10]

(reaction 3) [11]

(reaction 4) [12]

(reaction 5) [13]

(reaction 6) [13]

(reaction 7) [14]

The activation of PDS with dissolved Fe ions as a catalyst has some intrinsic drawbacks [15]. As shown in reaction 2, one mole of added Fe\(^{2+}\) only produce one mole of radicals. Although Fe\(^{2+}\) can be regenerated via reactions 4 and 7, the regeneration rate of Fe\(^{2+}\) remains far lower than their consumption rate via reaction 2 [12, 13]. For efficient production of SO\(_4^{\cdot-}\), engineers normally choose to add more Fe\(^{2+}\). The separation of Fe ions as ferric oxyhydroxides is required before discharging treated wastewater into natural waters, resulting in the production of iron sludge.

Correspondently, the high cost of the disposal of iron sludge significantly limits the widespread
use of the Fe$^{2+}$/PDS reaction. Although PDS oxidation processes initiated by heterogeneous catalysts have the potential to avoid iron sludge formation, the application of some of these catalysts leads to problems, such as leaching of metal ions into the acidic solution [16]. Furthermore, other efforts to accelerate the transformation of Fe$^{3+}$ into Fe$^{2+}$ have been undertaken. Hydroxylamine in the Fenton process and the Fe$^{2+}$/PMS process is reported to enhance the Fe$^{3+}$/Fe$^{2+}$ redox cycles, which leads to steady Fe$^{2+}$ recovery and significantly activated H$_2$O$_2$/PMS with a small addition of Fe ions (1 mg/L) [17, 18]. Hydroxylamine is degraded in oxidation processes, but it also introduces NO$_2^-$/NO$_3^-$ into the wastewater. Anett *et. al* explored H$_2$/Pd pairs as a reductant/catalyst to achieve the fast regeneration of Fe$^{3+}$ back to Fe$^{2+}$ and an accelerated catalytic Fenton reaction with traces of iron [9]. It can be concluded from these studies that the continuous regeneration of Fe$^{2+}$ occurs in the presence of a reductive substance.

Based on its excellent performance in the reductive dechlorination of various by-products, electrochemical systems with Pd-modified particle electrodes, namely three-dimensional (3D) electrochemical systems, are also promising systems for the acceleration of Fe$^{3+}$/Fe$^{2+}$ recycling [21, 22]. Pd catalysts have the unique ability to activate H$_2$ to form continuously adsorbed atomic H*, which has been confirmed to be a strong reducing agent in catalytic reduction process [23]. Furthermore, compared to an electro-reduction system with a traditional two-dimensional (2D) cathode, a 3D electrochemical system provides a larger surface area and more active sites, significantly improving the electro-reduction capacity [24, 25]. In the work by Qin *et. al*, it was deduced that Fe$^{2+}$ continuously came from the reduction of Fe$^{3+}$ by chemisorbed atomic H* on Au/Pd particle electrodes [26]. However, no direct evidence was provided in their study and, to our knowledge, no study has quantified the accelerating effect of a 3D electrochemical system on Fe$^{2+}$ regeneration and sludge reduction.
In this work, benzoic acid (BA) was used as a probe for \(\text{SO}_4^{2-} \) and \(\cdot\text{OH} \) because BA is highly reactive with these two radicals [27, 28]. First, a trace iron-based electro/Fe\(^{3+}/\)PDS system was constructed using Pd/Al\(_2\)O\(_3\) as the particle electrode and by externally added PDS as the oxidant. The oxidation performance of this new system was assessed by comparing it with other systems and the radicals in this process were confirmed via electron spin resonance (ESR) analysis and quenching experiments. Thereafter, the influencing factors such as PDS concentration, current density, iron concentration and gas atmosphere were investigated to evaluate the radical utilisation efficiency. Finally, the stability of Pd/Al\(_2\)O\(_3\) was studied and the application potential of this system was discussed.

2. Experimental Section

2.1 Chemicals and Materials

Benzoic acid (BA), sodium peroxydisulfate (PDS), ferric sulfate (Fe\(_2\)(SO\(_4\))\(_3\)), sodium sulfate (NaSO\(_4\)), methanol, tert-butyl alcohol (TBA), and 5,5-dimethyl-1-pyrroline N-oxide (DMPO) were purchased from Sigma Aldrich (Finland). The Pd/Al\(_2\)O\(_3\) catalyst was purchased from Sigma Aldrich (Finland), which had 10\% Pd loading on Al\(_2\)O\(_3\).

2.2 Experimental Procedures

The solutions in this study were prepared using deionised (DI) water (resistivity of 18.2 M\(\Omega\), Arium® Pro System). The solution pH was adjusted using either 100 mM NaOH or 50 mM H\(_2\)SO\(_4\). Experiments were conducted in a two-cell electrochemical reactor, a schematic diagram of which is presented in Figure SM-2 (Supplementary Material). Before the reactor was used, N\(_2\) was used to flush out the air in the cathode cell. The hydrogen produced from the cathode was sealed in the cathode cell during the experiment. To prevent further oxidation of BA in the sample, an
ethanol solution was added once the sample was removed from the reactor.

2.3 Analytical Methods

The concentration of BA was measured by high-performance liquid chromatography (HPLC, Shimadzu LC-20AD, Tokyo, Japan) using a C18 column and ultraviolet detector. The mobile phase was maintained at a flow rate of 1.0 mL/min with a constant ratio (50:50) of 25 mM acetic acid and methanol; the temperature of the column was kept at 35 °C, and the maximum absorption wavelength at 228 nm was selected. The PDS concentration was determined colorimetrically using potassium titanium oxalate solution at a wavelength of 352 nm using an ultraviolet spectrophotometer (Lambda 45, PerkinElmer). This detection method was described in detail by Zeng et al [29]. The Pd leaching concentration was analysed by inductively coupled plasma-optical emission spectroscopy (ICP Agilent 5110).

The formation of reactive oxygen radicals was identified using an electron spin resonance (ESR) spectrometer (CMS 8400, Adani). For the OH- and SO\textsubscript{4}2- measurements, the sample was immediately mixed with DMPO to form adducts. The phase composition of the synthesised catalyst was studied using an X-ray diffractometer (XRD, PANalytical) using Co-K\textalpha\ radiation (\lambda=0.1789 nm, at 40 kV and 40 mA) over a 2\theta range of 10-120° with a step size of 0.02° and scan speed of 2°/min.

3. Results and Discussion

3.1 Enhancement of the Electro/Fe3+/PDS process using Pd/Al\textsubscript{2}O\textsubscript{3}

Initially, we conducted an experiment to degrade BA (C\textsubscript{0}=180 µM) in a Pd/Al\textsubscript{2}O\textsubscript{3}-enhanced electro/Fe3+/PDS system (Pd-EFP system), i.e. in addition to PDS (10 mM) and Fe3+ (2 mg or 36 µM), the reaction suspension contained Pd/Al\textsubscript{2}O\textsubscript{3} as the particle electrode catalyst and cathode (3.33 mA/cm2, pH of 3.0, and N\textsubscript{2} atmosphere). As shown in Figure 1a, 80.12% of BA was
degraded within 120 min. The Pd/Al₂O₃ catalyst in this experiment showed almost no adsorption towards BA or Fe ions.

To clarify the role of PDS, the cathode, Pd/Al₂O₃ catalyst, and Fe³⁺ in the oxidation process, control experiments were conducted by excluding each component. Zero degradation of BA occurred in the absence of PDS (electro/Pd/Fe³⁺ system), which obviously played the role of oxidant in the Pd-EFP system. The addition of the Pd/Al₂O₃ catalyst in the Fe³⁺/PDS system also had a negligible effect on the degradation of BA (Pd/Fe³⁺/PDS system). To our surprise, 2.87% of BA was degraded in the electro/Fe³⁺/PDS system. According to the aforementioned discussion, Fe³⁺ could be reduced on the cathode directly and then led to the subsequent activation of PDS [19]. The low reduction efficiency of Fe³⁺ could be ascribed to the occupation of active sites by H⁺ and subsequent H₂ evolution on the cathode (Figure SM-3a). This was verified by the large amount of bubbles near the cathode. According to the research reported by Anett, generated H₂ can be chemically adsorbed by the Pd/Al₂O₃ catalyst and converted into a strongly reducing agent (Pd-H⁺) (reaction 8), which can reduce Fe³⁺ [9]. To verify our hypothesis for our system, we investigated the variation of the Fe²⁺ concentration in the Pd-EFP system in the absence of BA and PDS (Figure 1b). Because the recycling of Fe³⁺/Fe²⁺ was too fast to detect the variation of the Fe²⁺ concentration, we increased the initial concentration of Fe ions ten-fold. In the absence of the Pd/Al₂O₃ catalyst, no variation in the iron species was observed. With the addition of 50 mg of Pd/Al₂O₃ in the electrochemical cell, 360 µM of Fe³⁺ could be totally reduced, and Fe²⁺ were formed in only 1 min. The results strongly supported our hypothesis that the cathode played the role of electron donor by electro-generating H₂.

\[\equiv\text{Pd-H}_2 \rightarrow 2 \equiv\text{Pd-H}^+ \]

(8)

In summary, this new system exhibited continuously strong oxidation ability when we applied PDS
as the oxidant, a cathode as an electron donor, Pd/Al₂O₃ particles for the catalytic reduction of Fe³⁺, and Fe ions as the one-electron transferring medium. Based on this, it is reasonable to divide the Pd-EFP system into a two-stage process: an accelerated Fe³⁺/Fe²⁺ cycle on the Pd/Al₂O₃ particle electrode and a subsequent Fe²⁺/PDS oxidation process in the bulk solution.

3.2 Active radical analysis

ESR spectroscopy with the spin-trapping reagent of DMPO was applied to directly confirm the generation of radicals. The hyperfine splitting constants for the DMPO radical adducts of DMPO·-OH and DMPO·-SO₄ were representative of ·OH and SO₄⁻, respectively [13, 30-32]. In this study, as shown in Figure 2a, we observed no signal for the Fe³⁺/PDS system. For the Pd-EFP system, as we predicted, slight signals for DMPO·-SO₄ adducts suggested the generation of SO₄⁻. Moreover, a typical four-line ESR spectrum with an intensity of 1:2:2:1 was detected, which indicated the emergence of ·OH.

It is obvious that SO₄⁻ came from the PDS activation via in situ-generated Fe²⁺ (reaction 2) in the Pd-EFP system. The redox potential of SO₄⁻ was confirmed to be 2.5~3.1 V, while the 2.7 V potential of ·OH was detected in acidic solution [33, 34]. Due to the narrow gap of potentials between the two radicals, ·OH could be generated via fast transformation from SO₄⁻ (reaction 9).

\[
\text{SO}_4^- + \text{H}_2\text{O} \rightarrow \text{SO}_4^{2-} + \cdot \text{OH} + \text{H}^+ \quad (9) \quad [12]
\]

Quenching experiments were further conducted to check the importance of SO₄⁻ and ·OH in the oxidation process. Ethanol is well known to be an efficient scavenger for ·OH and SO₄⁻ due to its high reaction constant with these two radicals [34]. As shown in Figure 2b, the degradation of BA was significantly inhibited in the presence of ethanol. More specifically, 80.12% BA was degraded without ethanol within 120 min. With the addition of 0.18 M ethanol, only 30.80% BA degradation
was observed; with a further increase in the ethanol concentration to 1.8 M, the degradation of BA was reduced to 22.82%. The inhibitory effect of ethanol on the BA degradation indicated that \(\text{SO}_4^- \) and its symbiotic radical (\(\cdot \text{OH} \)) were the main oxidation species in the Pd-EFP system.

The reductive effect of Pd-based catalysts in the electrochemistry system has been extensively investigated [21, 22, 35, 36]. Direct electron transfer and atomic H* may be both involved in the accelerated recycling process of \(\text{Fe}^{3+}/\text{Fe}^{2+} \). For a better understanding of the accelerated iron recycling process, we further clarified the importance of the two reductive mechanisms in the reduction process of \(\text{Fe}^{3+} \). Tert-butyl alcohol (TBA) is reported to be an efficient scavenging agent of atomic H* [21]. To minimise the systematic error, the initial \(\text{Fe}^{3+} \) concentration was increased to 360 μM, while the Pd/Al₂O₃ catalyst was set to only 5.0 mg/120 mL. As shown in Figure 3, strong inhibition of \(\text{Fe}^{3+} \) reduction occurred with TBA addition (36 mM and 360 mM). We further fitted the process with pseudo-first-order kinetics. As shown in Figure 3 (insert), with TBA additions of 36 mM and 360 mM, the reduction kinetics constant decreased by 77.81% and 83.97%, respectively. The sharp decrease in the \(\text{Fe}^{3+} \) reduction rate suggested the main role of atomic H* rather than direct electron transfer on the Pd/Al₂O₃ particle electrode (reaction 10, Figure SM-3b), which is identical to the catalytic property of Pd as an atomic H* keeper.

\[\equiv \text{Pd-H*} + \text{Fe}^{3+} \rightarrow \equiv \text{Pd} + \text{H}^+ + \text{Fe}^{2+} \] \hspace{1cm} (10)

TBA is also an effective screening agent for \(\cdot \text{OH} \) because it exhibits a low reactivity towards \(\text{SO}_4^- \) [34]. Consequently, the inhibitory effect of TBA on organic degradation is normally not stronger than that of ethanol for normal oxidation processes. Interestingly, the screening effect of TBA on BA degradation in our system was stronger than the influence of ethanol (Figure 2b) [18]. This contradiction can be ascribed to the simultaneous inhibition of both \(\cdot \text{OH} \) and atomic H*. The results further confirmed the importance of atomic H* for the reduction of \(\text{Fe}^{3+} \).
Atomic H* may originate from the adsorption of electrogenerated H2 or H+ conversion via electroinduction on the Pd surface [9]. Plenty of atomic H* in the bulk solution accelerated the transformation of Fe3+ to Fe2+ considerably. The Pd-EFP system provided continuous Fe2+ for the Fe2+/PDS oxidation process. Thus, organics could be degraded by both SO4− and ·OH from the Fe2+-activated PDS process.

3.3 Sludge production

Fe ions bridged as a single electron-transferring medium between the electron-donor and PDS-oxidation process. Additionally, Fe ions are significant for this system because they are removed from water as a sludge, which is the focus of our research. We then investigated the effect of varying the initial iron concentration on the efficiency of BA. As shown in Figure 4, with the addition of 180 μM Fe3+ (10 mg/L), the degradation efficiency of BA was determined to be 86.89% within 120 min. When we further decreased the initial Fe3+ concentration to 36 μM (2 mg/L), the removal efficiency was kept at 80.12%.

To quantitatively compare the iron sludge production in various systems, we standardized the iron sludge production by dividing the iron dosage (C0(Fe)) by the organic removal (ΔC(pollutant)) in the Fe2+/PDS process. Depending on the organic contaminants, the ratio varied from 5.1 to 238 for the Fe2+/PDS process (Table 1) [37-43]. As shown in reactions 2-7, one mole of Fe2+ can produce one mole of ·OH, which can subsequently oxidize up to one mole of organics. Thus, a ratio of C(Fe)/ΔC(pollutant) in the Fe2+-activated PDS process below 1.0 indicates the recycling of Fe ions in the system. We checked the C(Fe)/ΔC(BA) in the Fe2+/PDS oxidation process of BA (Table 1), and the ratio was 87.2 when the ratio was decreased to 0.2 in the Pd-EFP system, suggesting trace production of iron sludge in the post-treatment process.

For conventional Fenton processes or Fe2+/PDS processes, excess Fe2+ has been reported to have
a detrimental effect on the oxidation of contaminants owing to their quenching effect toward ·OH and SO₄²⁻ (reactions 11-12). According to studies on Fe²⁺/PDS processes (Table 1), an optimal ratio of C(Fe)/C(PDS) for organic degradation has generally been determined to be in the range of 0.16-1.0 [37-43]. With higher Fe²⁺ addition than the optimal dosage, excess Fe²⁺ will result in decreasing the degradation efficiency of organics. We checked the BA degradation in the Fe²⁺/PDS system, and the optimal ratio was obtained when the iron concentration was 1.5 times the PDS concentration (Figure SM-4). In the Pd-EFP process, the Fe²⁺/PDS ratio was no more than 0.0036, indicating that Fe²⁺ was mainly used for PDS activation instead of radical quenching. The addition of trace iron not only benefited the post treatment of the dissolved iron, but also improved the contaminant oxidation efficiency of the Fe²⁺/PDS process.

\[
\text{Fe}^{2+} + \cdot \text{OH} \rightarrow \text{Fe}^{3+} + \text{OH}^- \quad (11) [9]
\]

\[
\text{Fe}^{2+} + \text{SO}_4^{2-} \rightarrow \text{Fe}^{3+} + \text{SO}_4^{2-} \quad (12) [7]
\]

Another mechanism for decreasing the iron dosage in the Fe²⁺-activating oxidation process is the reduction of Fe³⁺ on the cathode (reaction 13), which has been widely investigated for the electro-Fenton process. By accurately controlling the applied potential on the cathode, such as graphite or carbon felt, fast reduction of Fe³⁺ can be achieved.

\[
\text{Fe}^{3+} + e^- \rightarrow \text{Fe}^{2+} \quad (13)
\]

To better compare the performance of this new system and electro-Fenton system on the iron sludge reduction, the iron concentration in electro-Fenton processes are summarised in Table SM-1. Obviously, the electro-Fenton process requires iron dosages according to the different cathode materials. To continuously provide Fe²⁺ and activate H₂O₂, iron concentrations are required to be higher than 0.2 mM (11.2 mg/L). In contrast, the iron dosage was 36 μM (2 mg/L) in the Pd-EFP system (limitation of Fe in EU and US). The further decrease in the need for iron can be ascribed
to the strong reduction ability of atomic H* and large surface area of the Pd/Al₂O₃ catalyst.

3.4 Radical consumption analysis

The effects of the applied current density and PDS concentration were investigated to optimize the parameters and explore side reactions. As shown in Figure 5a, under a current density of 0.66 mA/cm², the degradation efficiency of BA was only 20.63% within 120 min. With an increase in the current density to 3.33 mA/cm², the degradation efficiency was improved to 80.12%. Interestingly, a further increase in the current density to 6.66 mA/cm² led to a counterproductive effect on BA degradation.

With the increase in the current density, the applied voltage increased and hydrogen bubbles were produced faster, both of which were beneficial to the production of atomic H* on the Pd/Al₂O₃. Thus, as a reductant, atomic H* on the catalyst can act not only as an accelerator of iron recycling but also as a possible quenching agent for ·OH and SO₄⁻ (reactions 14-15). The adverse effect of current density beyond 3.33 mA/cm² verified the hypothesis, i.e. in our system, the optimal current density was 3.33 mA/cm².

\[
\begin{align*}
\equiv \text{Pd-H*} + \cdot \text{OH} & \rightarrow \equiv \text{Pd} + \text{H}^+ + \text{OH}^- \quad (14) \\
\equiv \text{Pd-H*} + \text{SO}_4^{2-} & \rightarrow \equiv \text{Pd} + \text{H}^+ + \text{SO}_4^{2-} \quad (15)
\end{align*}
\]

Similar to the effect of current density on the performance of BA degradation, BA removal was enhanced with an increase in the PDS concentration from 2 to 20 mM; however, a further increase of PDS concentration adversely affected the degradation efficiency of BA (Figure 5b). This was due to the fact that more SO₄⁻ was generated at higher PDS concentrations, but excessive PDS consumed SO₄⁻ via reaction 3 [44].

3.5 Effect of the gas atmosphere

The gas atmosphere above the cathodic cell is another parameter that affects the reaction on the
Pd/Al₂O₃. We concluded that atomic H* is the main species responsible for Fe³⁺ reduction. It has been found that dissolved oxygen can compete with Fe³⁺ for the reaction with atomic H* (reaction 16) [45, 46]. Given the inhibition of dissolved oxygen on atomic H*, oxygen should be prevented in the cathodic cell.

4 ≡Pd-H* + O₂ → 4 ≡Pd + 2 H₂O \hspace{1cm} (16) [47]

In the study by Anett et al., increasing concentration of H₂ above the cathode cell was found to be beneficial to accelerate Fe³⁺ recycling owing to the reductive effect of activated H₂ on the Pd/Al₂O₃ catalyst [9]. By slowly feeding N₂ and H₂, we checked the performance of the Pd-EFP process on BA degradation in N₂ and H₂ atmospheres (Figure 6a). Compared with the *in situ* electro-generated H₂ atmosphere, pure N₂ provided a better atmosphere for the performance of the Pd-EFP system on BA degradation. Interestingly, PDS in the H₂ atmosphere initially displayed a higher degradation rate than in the N₂ atmosphere, but almost no degradation of BA occurred after a retention time of 40 min. This variation can be ascribed to the quick degradation of PDS in the pure H₂ atmosphere. As shown in Figure 6b, the PDS was degraded quickly in the pure H₂ atmosphere, while N₂ and electro-generated H₂ atmospheres showed a relatively slow degradation rate towards PDS. The results indicated a two-electron transfer from H₂ to PDS via reaction 17 rather than one-electron transfer from atomic H* to Fe³⁺, which suppresses the oxidation process via a Pd-H*→Fe³⁺/Fe²⁺→PDS/SO₄²⁻→BA mechanism. To confirm this hypothesis, we checked BA degradation in the H₂/Pd/PDS system, and PDS was completely consumed with zero degradation of BA.

≡Pd-H₂ + S₂O₈²⁻ → ≡Pd + 2 H⁺ + 2 SO₄²⁻ \hspace{1cm} (17)

By dispensing accumulated H₂ above the reaction liquid and suppressing the oxygen reduction, N₂ atmosphere could steer the reaction on the surface of Pd/Al₂O₃ in the right direction toward Fe³⁺.
reduction by atomic H*, further leading to efficient organic degradation.

3.6 Application potential analysis

The aforementioned results indicated that Pd/Al₂O₃ particles, as a famous H* keeper, showed high performance for iron recycling and reduction of iron sludge production in the Fe²⁺/PDS process. According to our catalyst dosage study, even with the addition of only 10 mg Pd/Al₂O₃ catalyst per 120 mL of reaction liquid in the Pd-EFP system, BA degradation could reach the level of 60% (Figure SM-5). However, the stability of the particle electrode is a crucial issue owing to the high cost of noble metals. The Pd/Al₂O₃ catalyst has been extensively used in chemical industries owing to its high stability and outstanding catalytic efficiency [23]. We also monitored the catalyst stability by recycling the Pd/Al₂O₃ catalyst in the Pd-EFP system five times. As shown in Figure 7a, the degradation efficiencies were kept relatively stable between 80.56% and 83.19%, indicating relatively high stability. Simultaneously, the Pd concentration in the effluent was lower than the detection limit of ICP-OES (0.01 mg/L). The variation in the catalytic activity on the Pd/Al₂O₃ catalyst in the Pd-EFP process was evaluated using XRD analysis. XRD patterns of the fresh and used Pd/Al₂O₃ catalyst were recorded, as shown in Figure 7b, where diffraction peaks assigned to (111), (200), and (311) of metallic Pd were observed. The obtained results demonstrated that Pd/Al₂O₃ is stable and could be effectively used for a long period of time, which can produce a considerable economic benefit.

For practical application, the initial solution pH and the variation of the solution pH with the reaction progress are also important [48, 49]. Owing to the acidification effect of the PDS decomposition process (reaction 17), the Pd-EFP process was confirmed to be an efficient system even with an initial solution pH of 10.0. (Text SM-2).

The Pd-EFP process successfully produced a continuous Fe²⁺/PDS process with trace amounts of
Fe ions. However, this also resulted in some drawbacks, such as a low oxidation rate, high cost for catalyst preparation, and subsequent recovery of the Pd/Al₂O₃ catalyst. The catalyst dosage analysis revealed that the Pd-EFP process exhibited oxidation capacity even when we used a Pd catalyst dosage of 10 mg/120 mL (Figure SM-5). Furthermore, in the research field of electrocatalytic dechlorination, various functional materials have been developed that possess new characteristics while maintaining their capacity as an atomic H* keeper, and they are good alternatives as particle electrodes in this system. To further decrease the Pd dosage in the Pd-EFP system, the catalytic activity of atomic H* formation can be enhanced by changing the morphology so that the Pd(111) facet and defect sites on the Pd crystal are highly active [50, 51]. It has been found that Pd-supported multi-walled nanotubes can act as an excellent H* producer in a 3D electrocatalytic process with only 0.5% loading of Pd [22]. A bimetal catalyst (Pd/In) has also showed strong reductive capacity in a 3D electrochemical process [21]. This research points out the novel approach of reducing the iron sludge in the Fe²⁺-activated peroxide process by accelerating the transformation from Fe³⁺ to Fe²⁺ using surface-bound atomic H* on Pd/Al₂O₃. Other atomic H* keeper materials should be tested to evaluate the application value of this technology in the future.

4. Conclusion

In this study, a trace-iron based electro/Fe³⁺/PDS system was constructed using Pd/Al₂O₃ as the particle electrode and by externally added PDS as the oxidant. At an initial solution pH of 3.0, with the addition of 10 mM PDS, 50 mg Pd/Al₂O₃, and 2 mg/L Fe ions, 80.12% of 180 µM BA was degraded within 120 min. Mechanistic studies showed that the ·OH and SO₄⁻ from Fe²⁺-activated PDS were responsible for the BA degradation, whereas atomic H* was mainly responsible for Fe³⁺ reduction to Fe²⁺. In the Pd-EFP process, the optimal dosage of Fe ions was determined to be 36
μM (2 mg/L) because the extra addition of more than 2 mg/L Fe ions had a positive but negligible influence on BA degradation. Correspondently, the optimal current density and PDS concentration in the Pd-EFP system were found to be 3.33 mA/cm² and 20 mM, respectively. A higher current density or higher PDS concentration had a quenching effect on SO_4^{2-}. The Pd-EFP process is efficient for BA degradation at various initial solution pH levels. Furthermore, the degradation of BA was also efficiently promoted by the N₂ atmosphere, which could steer the reaction on the surface of Pd/Al₂O₃ in the right direction toward Fe³⁺ reduction by atomic H⁺ by dispelling accumulated H₂ above the reaction liquid and suppressing oxygen reduction. Finally, catalyst reusability experiments and the XRD pattern of fresh and used Pd/Al₂O₃ catalyst indicated that the Pd/Al₂O₃ catalyst maintained its high durability in the Pd-EFP system.

Supporting information

Two texts, 5 figures and 1 table are available in the Supplementary Material.

Acknowledgements

The authors are grateful to the Academy of Finland and the European Union for funding this project.

References

[50] R. Liu, H. Zhao, X. Zhao, Z. He, Y. Lai, W. Shan, D. Bekana, G. Li, J. Liu, Defect sites in ultrathin Pd nanowires facilitate the highly efficient electrochemical hydrodechlorination of

https://doi.org/10.1021/acs.est.8b02740.

Tables and Figures

Table. 1 A comparison of pollutant concentration, iron dosage and PDS dosage in the Fe²⁺/PDS system

Figure 1. (a) Degradation efficiency of BA in various systems ([BA], 180 µM; [PDS], 10 mM; [Fe³⁺], 36 µM; [Pd/Al₂O₃], 50 mg/120 mL; current density, 3.33 mA/cm²; initial solution pH, 3.0); (b) Reduction ratio of Fe³⁺ in the Pd-EFP system (initial solution pH, 3.0; C(Fe ions), 360 µM)

Figure 2. (a) ESR spectra of DMPO•-OH and DMPO•-SO4 formed in various systems. (b) Effect of scavengers on the BA degradation in the Pd-EFP system ([BA], 180 µM; [PDS], 10 mM; [Fe³⁺], 36 µM; [Pd/Al₂O₃], 50 mg/120 mL; current density, 3.33 mA/cm²; initial solution pH, 3.0)

Figure 3. Fe²⁺ concentration variation in the Pd-EFP system without PDS and BA ([Fe³⁺], 360 µM; [Pd/Al₂O₃], 50 mg/120 mL; current density, 3.33 mA/cm²; initial solution pH, 3.0)

Figure 4. Effect of initial Fe³⁺ addition on the removal efficiency of BA in the Pd-EFP system ([BA], 180 µM; [PDS], 10 mM; [Pd/Al₂O₃], 50 mg/120 mL; current density, 3.33 mA/cm²; initial solution pH, 3.0)

Figure 5. Effect of current density (a) and initial PDS addition (b) on the removal efficiency of BA in the Pd-EFP system ([BA], 180 µM; [PDS], 10 mM; [Fe³⁺], 36 µM; [Pd/Al₂O₃], 50 mg/120 mL; current density, 3.33 mA/cm²; initial solution pH, 3.0)

Figure 6. Effect of gas atmosphere in a cathode cell on BA degradation (a) and PDS consumption (b) in the Pd-EFP system ([BA], 180 µM; [PDS], 10 mM; [Fe³⁺], 36 µM; [Pd/Al₂O₃], 50 mg/120 mL; current density, 3.33 mA/cm²; initial solution pH, 3.0)

Figure 7. (a) The degradation efficiency of BA in the Pd-EFP system for five recycling times ([BA], 180 µM; [PDS], 10 mM; [Fe³⁺], 36 µM; current density, 3.33 mA/cm²; initial solution pH, 3.0, reaction time, 120 min) (b) XRD spectra of the fresh and used Pd/Al₂O₃ catalysts
Table 1 A comparison of pollutant concentration, iron dosage and PDS dosage in the Fe²⁺/PDS system

<table>
<thead>
<tr>
<th>ΔC(pollutant)</th>
<th>C(Fe)</th>
<th>C(PDS)</th>
<th>C(Fe)/ΔC(pollutant)</th>
<th>C(Fe)/C(PDS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 μM</td>
<td>1.6 mM</td>
<td>2 mM</td>
<td>40</td>
<td>0.16</td>
</tr>
<tr>
<td>10 μM</td>
<td>0.4 mM</td>
<td>0.4 mM</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>4.2 μM</td>
<td>1 mM</td>
<td>5 mM</td>
<td>238</td>
<td>0.2</td>
</tr>
<tr>
<td>0.7 mM</td>
<td>3.6 mM</td>
<td>5 mM</td>
<td>5.1</td>
<td>0.72</td>
</tr>
<tr>
<td>0.84 mM</td>
<td>5.8 mM</td>
<td>20 mM</td>
<td>6.9</td>
<td>0.29</td>
</tr>
<tr>
<td>0.8 mM</td>
<td>8.1 mM</td>
<td>35 mM</td>
<td>10.13</td>
<td>0.23</td>
</tr>
<tr>
<td>25 μM</td>
<td>0.25 mM</td>
<td>1 mM</td>
<td>10</td>
<td>0.25</td>
</tr>
<tr>
<td>50 μM</td>
<td>4 mM</td>
<td>4 mM</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>32 μM</td>
<td>2 mM</td>
<td>2 mM</td>
<td>62.5</td>
<td>1</td>
</tr>
<tr>
<td>172 μM</td>
<td>15 mM</td>
<td>10 mM</td>
<td>87.2</td>
<td>1.5</td>
</tr>
<tr>
<td>144 μM</td>
<td>36 μM</td>
<td>10 mM</td>
<td>0.25</td>
<td>0.0036</td>
</tr>
</tbody>
</table>
Figure 1. (a) Degradation efficiency of BA in various systems ([BA], 180 µM; [PDS], 10 mM; [Fe³⁺], 36 µM; [Pd/Al₂O₃], 50 mg/120 mL; current density, 3.33 mA/cm²; initial solution pH, 3.0); (b) Reduction ratio of Fe³⁺ in the Pd-EFP system (initial solution pH, 3.0; C(Fe ions), 360 µM)
Figure 2. (a) ESR spectra of DMPO·-OH and DMPO·-SO₄ formed in various systems. (b) Effect of scavengers on the BA degradation in the Pd-EFP system ([BA], 180 µM; [PDS], 10 mM; [Fe³⁺], 36 µM; [Pd/Al₂O₃], 50 mg/120 mL; current density, 3.33 mA/cm²; initial solution pH, 3.0)
Figure 3. Fe$^{2+}$ concentration variation in the Pd-EFP system without PDS and BA ([Fe$^{3+}$], 360 µM; [Pd/Al$_2$O$_3$], 50 mg/120 mL; current density, 3.33 mA/cm2; initial solution pH, 3.0)
Figure 4. Effect of initial Fe$^{3+}$ addition on the removal efficiency of BA in the Pd-EFP system ([BA], 180 µM; [PDS], 10 mM; [Pd/Al₂O₃], 50 mg/120 mL; current density, 3.33 mA/cm²; initial solution pH, 3.0)
Figure 5. Effect of current density (a) and initial PDS addition (b) on the removal efficiency of BA in the Pd-EFP system ([BA], 180 μM; [PDS], 10 mM; [Fe^{3+}], 36 μM; [Pd/Al₂O₃], 50 mg/120 mL; current density, 3.33 mA/cm²; initial solution pH, 3.0)
Figure 6. Effect of gas atmosphere in a cathode cell on BA degradation (a) and PDS consumption (b) in the Pd-EFP system ([BA], 180 µM; [PDS], 10 mM; [Fe$^{3+}$], 36 µM; [Pd/Al$_2$O$_3$], 50 mg/120 mL; current density, 3.33 mA/cm2; initial solution pH, 3.0)
Figure 7. (a) The degradation efficiency of BA in the Pd-EFP system for five recycling times ([BA], 180 µM; [PDS], 10 mM; [Fe$^{3+}$], 36 µM; current density, 3.33 mA/cm2; initial solution pH, 3.0, reaction time, 120 min) (b) XRD spectra of the fresh and used Pd/Al$_2$O$_3$ catalysts