LAPPEENRANTA-LAHTI UNIVERSITY OF TECHNOLOGY LUT

School of Engineering Science
Software EngineeringndDigital Transformation

Masterds Thesi s

Ville Hartikainen

DEFINING SUITABLE TESTING LEVEL S, METHODS AND PRACTICES FOR
AN AGILE WEB APPLICATION PROJECT

Examiners Prof. Jari Porras
Associate Professor Ari Happonen
Supervisors: Associate Professor Ari Happonen
M.Sc. (Tech.)Ikka Toivanen

ABSTRACT

Lappeenrantdahti University of Technology

School ofEngineering Science

Sditware Engineeringnd Digital Transformation

Ville Hartikainen

Defining suitable testing leves, methods and practices for an agile web application
project

Masterds Thesis 2020

84 pages, 22igures, 1 table, 2 apperugis

Examiners: Prof. Jari Porras
Associate Professor Ari Happonen

Supervisors: Associate Professor Ari Happonen
M.Sc. (Tech.) llkka Toivanen
Keywords: web application, testing, testing definition

This thesis discusses how to define suitable testingslewethods angractices for an agile

web application project. Literature review, questionnaire and-seottured interviews

were selected as the research methods. The research is conducted in collaboration with the
product creation services unit of Visma Consulting I the research, the factors that affect
testing decisions in web application projects are identified and the suitability of different
testing practices for different project contexts are modelled by investigating the benefits and
drawbacks of the praces. The research concludes that project budget, criticality, schedule,
personnel knowow and complexity especially affect testing considerations. In the
definition of suitable testing practices, risk analysis and direction of the available resources
to the critical parts of the application, are essential. The research highlights the definition of
a testing plan, utilization of a wide range of testing methods and supportive practices. The
resul ts of the thesis can b e rojedtsi dnd thes d i
development of testing maturity.

TIIVISTELMA

Lappeenrannahahdenteknillinen yliopistoLUT
School ofEngineering Science
Tietotekniikankoulutusohjelma

Ville Hartikainen

Sopivien testaustaojen,-menetelmienja -kaytanteiden maarittAminen ketteraan
web-sovellusprojektii n
Diplomity6

84 sivua 22 kuvaa, 1 taulukkq 2 liitetta

Tyon tarkastajat ProfessoriJari Porras
TutkijaopettajaAri Happonen
Tyon ohjaajat TutkijaopettajaAri Happonen
DI Ilkka Toivanen
Hakusanat: web-applikaato, testaustestalesen maarittdminen

Tassa tyossa tutkittiin, kuinkadaritetaan sopivdestaustagp-menetelmat jakaytanteet
ketteraan web-sovellusprojektiin. Tybn tutkimusmenetelmina kaytettiin
kirjallisuuskatsausta, kyselytutkimusta seka puolistrukturoituja haastattelujaTy6
toteutettiin yhteistyéssa Visma ConsultinQy:n tuotekehityspalveluyksikén kanssa
Tutkimuksen tuloksina tunnistettii webapplikaatiopojektin testauksen maaritykseen
vaikuttavia tekijoitésekamallinnettiin eritestauskaytanteiden hyogyj ja haasteiden kautta
niiden soveltuvuuttatietyn tyyppisiin projektikonteksteihin.Tydssa havaittiin projektin
budjetin, aikataulun, kriittisyyden henkiléston osaamisenseka kompleksisuuden
vaikuttavan erityisesti testkseen Sopivien testausmenetelmien maarityksedséllista on
arvioida projektirriskit ja keskitta&aytettaviss@élevat testausresurssirkeisiinkohteisiin
Tyon tuloksinakorosuu testaussuunnitelman laatimindaajaalainen kehitysprosessiin
integroitu testaus seka testausta tukevien kaytanteiden hyddyntamigén. tuloksia
voidaan hyddyntaa yrityksdulevissa projekteisssekatestauskaytanteiden kehittamisessa.

ACKNOWLEDGEMENTS

Firstly, I would like to thankAri Happonerand llkkaToivanen or brilliant guidance on my
academiendeavars. | would also liketo express my gratitude fthe managemendf the
PCSunit of Visma CasultingOy for enablingme toconduct the resear@ndto constantly
learn more about softwamngineering Many thanksto all the research participants for
devoting their time andxpertiseLast by not least,would like to thankall the members of

my family for the continuous suppor

TABLE OF CONTENTS

1 INTRODUCTION e 4
1.1 GOALS AND DELIMITATIONS «vuitttteeeteeeeeneestenseemaseesensenaeessssenaessensenmeeesaenseneennes 5
1.2 STRUCTURE OF THE THESIS. « .t tenententnteeente e eaeeaemaeneeaenee e ee e ee e seaammaenseeneeaenees 6

2 AGILE SOFTWARE DEVELOPMENT AND TESTING ...coeoiiiiiieeeiie e 7
2.1 OVERVIEW OF AGILE SOFTWARE DEVELOPMETcuveuienienseeeneesessemeesensensenenneennid
2.2 TESTING IN AN AGILE ENVIRONMENT ...t ettt et e e e eee e eemaeee e eeaee e eeaeeneenenasemanees 9
2.3 AGILE TESTING LEVELS ACTIVITIES AND SUPPORTING PRACTICES.....ccuvvveennnnn. 15

2.3.1 Agile Testing QUAAIANT..........cuiiiiiiiiiiie e 15
2.3.2 TeStNQ IEVEIS.....uueiii e 17
2.3.3 SUPPOITIVE PraCliCES.....cevvrrrrriiiiiiie e e s ceeetiee e e e e e e e e e e e e e s aeeer s s e e e e e e aaaeaaas 23
2.4 TESTING MATURITY LEVELS. . e n ettt ittt e eeee e et e e e e e e e e e e vammeaeenenaneens 25

3 WEB APPLICATION DEVELOPMENT AND TESTINGooviiveiiiiiiiieeen, 28
3.1 OVERVIEW OF WEB APPLICATIONS .. ettt tatee st eeee e emes e e e se s eereneensemaneenas 28
3.2 VWEB APPLICATION DEVELOPMENT .. tutttutsttntestsssensssemssnseensessnsenesesenssimnmenns 30
3.3 VWEB APPLICATION TESTING. .. e e ettt e et e e et e e e e e e e e e e e e e eaeaeen 33

3.3.1 TeStNG IEVEIS......uuiiiiiiiieiiie e 35
3.3.2 Performance load and Security teStiNg............uueeviiriiiiiiieeeiiieiieieeeeeeenn 37

4 EMPIRICAL RESEARCH ... 39

4.1 RESEARCH METHODS AND BACKGROUND ... cututuenieeneeensessmemnsesnsenensenensenensen 39
g O R @ 10 1S3 1T o = U = 40
4.1.2 SemHSITUCIUIE INTEIVIEWS ... e aans 43

4.2 QUESTIONNAIRE ON PROJECT FACTORS THAT AFFECT TESTING DECISIONS......45

4.3 INTERVIEWS ON TESTING PRACTICES IN WEB APPLICATION PROJECTS............. 48
4.3.1 Significance Of teSHINGcooeriiiiiiiiii e 48
4.3.2 Testing coverage in different levels...........cccccvviiiieeeiiiiiiiee 50
4.3.3 Automated and manual system teSting..........cccvveiieiiieemeeeieiice e, 51

4.3.4 NorHunctional teSHING.........coveiieiiiiiie e 52

4.3.5 SUPPOITIVE PraCtCES.ciiiiiiiiiiiiiee et ieeeiii bbb e e e e e e e eser e e e e e e eeeaeeeeas 54
4.4 INTERVIEWS ON PROJECT FACTORS IMPACT ON TESTING......ccsvtrrereeessnnnrinnnene 56
o R = T o o = OSSR 56
4.4.2 CrIUCANTY ..o e 56
4.4.3 SChEUIR.......cccooiieeeeee e 57
4.4.4 KNOWNOW.....ooiiiiiiiii et e e e e e e e e s eeme s 57

v T Y=o o1 o] [0 | V2RSS 58
4.5 OTHER THEMES THAT EMERGED DURING INTERVIEWS.....cccuuuiiiiiiiiiiieeeaeeneene 59
4.5.1 TESHNG CURUIE ...t ee e e e e e e e e e e e e 59

ST 1Y 1515 1]\ PP 60
5.1 DEFINING TESTING PRACTICES FOR AN AGILE WEB APPLICATION PROJECT........ 60
5.1.1 Project factors affecting testing deciSions..............ooooeiiiiieere i 60

5.1.2 Defining suitable testing practices for an agile web application praject61

52 RELATION TO THE LITERATURE. ...ttt tutentttentnsenenseseumamssensssensssensnsensssensmannensnsen 62

5.3 SOFTWARE DEVELOPMENT PROCESS CONSEQUENCES......cuivniiiieeneeiemeeennns 64

54 M ANAGERIAL IMPLICATIONS .ttt ettt ettt eeee et et e e aema e e e enens 64

55 RESEARCH LIMITATIONS . .o e ettt ettt ee e et e e e e e eeme e e e e e e e enens 65

5.6 FUTURE RESEARCH DIRECTIONS ..« ettt ettt ettt e e e e e e e e e e vameaenanas 65
B CON CLUSION ... e e e e 67
T REFERENCES ... oo e e e e e 69
APPENDICES

LIST OF SYMBOLS AND ABBREVIATIONS

AJAX
API

CD

Cl

CSS
DevOps
DoD
DOM
E2E
HTML
HTTP
OWASP
SPA
TDD

ul

XML
XP

XXS
XXE

Asynchronous JavaScript @xXML
ApplicationProgramming Interface
Continuous Deployment
Continuous Integration

Cascading Style Sheets
Development & Operations
Definition of Done

Document Object Model
Endto-end

Hypertext Markup Language
Hypertext Transfer Protocol

Open Web Application Security Project
Single Page Application
TestDriven Development

User Interface

Extensible Markup Language
Extreme Programming

Crosssite Scripting

XML Exterral Entities

1 INTRODUCTION

In the domain ofoftwareproduct creation servicesd consultingthe projectshanded out
by customersarediverse It is acomplextask todefineasuitable testing level arsipportive
practices for each of themThe dversty of the projectss due to their characteristics, such
as requirement complexity, estimated lifecycle ankisri€larke et al. 202). In addition,
utilization of agile development practicesroduceshe challenge ofntegraing the testing
activitiesto the iterative developmeprocessand shorter release cycl@®esting setuglso
controls to what extertheagile practicessuch as continuous software developmea, be
utilized (Mé&kinen et al. 2019 The domain ofoftwaretesting is widely populan academic
research and thers a multitude ofstudies and publications a@he theoretical background
of software testingThe industry practitionershavealso laid out modelsthat outline and
discuss the optimagesting setugCohn 2009; Fowler 201Mimick 2014). However, the
modeling of suitable testingactivities on projectbasisin software consulting context

remains quite unresearched.

The decisiors on the agile software project desting setupare often based on expert
knowledgeand previous eperiencegDrury-Groganret al.2017). The quality othese testing
level decisios might result in undetestingor overtestingthe software productBoth of
which have consequencesthesuccess of thproject, former more criticallyas undefined
unclear or insufficientestingscopemight resultin low-quality software producbr extened
project timeline (Patton 2005 The siccess of the project from the business perspective
revolves around delivergmafit product with enough qualityithin the scat of the budget.
Therefore, it is of the essence to succeestaling the testingctivitiesto a suitable level
within the projectand productontext (Black 2009)

Digitalization has transformedariousindustries Existing operations anmodernized aah
digitalized by using the latest technologiemd mediums (Kortelainen et al. 2017
Consequently, waresurroundedy web applicationssomeof which arehandling citical

business functions argknsitiveuser informationothers require high level ofquality to

4

compete in the markedn the other hand, somebapplicationsare less critical anblenefit
from rapid release tthe market. Testingweb applications is a difficult tasttue to their
varying complexity and diverse features (Brandon 2008 Layered architectureand
technological instabilityfurther convolute thedevelopment antkestingactivities (Kappel

20096. In sucha context consideation ofthetestingsetupis paramount.

1.1 Goals and delimitations

The main objective of this thesis is¢onduct academic research on how to select suitable
software testing levednd to identify methods and practices that support tesfiag agile
web application software project. To support achieving the research object, the following

research questionsill be answered:

1. Which projectfactorsshould be taken into account when considetiiregesting level of
web application in an agilengironment?
2. How to define sufficient testing level for web application projects relatitheetgproject

factor®

As an outcome of this thesis, thignificantprojectfactorsaffecting testinglecisionsn web
application projectareidentifiedand consideratioof suitabletesting activities relative to
these projectactorsis producedThe research is conducted imlaboration withVisma
ConsultingOy, more specifically withts Product Creation ServicBCS)unit. The unit

is offering software product creation servigesvarious fieldsandworking onmultiple
diverseand often faspacedagile softwargrojects oncurrently.Based ortheinformation
gathered during the reseayeéhmodel is constructed, that suppahtsdecisioamaking of
testing activities irfuture web applicatiordevelopment projects in Visma Consulting Oy.
Academially, the thesis contributée moddling and discussingurrentindustrialpractices

and issue the field of software testing.

1.2 Structure of the thesis

Section 2 outlineghe high-level project context of the thesis, agile software development,
and discussethe testing considetians andactivities thatare of the essen@ecording to
literature In Section 3 an overview tie application context of the thesis, web application
development, is given aritle general testingonsiderationsn theweb applicatio context

are discussd. Section 4presents thempirical researcfor the thesisSection5 is reserved

for synthetization andiscussiorof theresearch results. Finally, in sectiénthe research

conclusionsarepresented.

2 AGILE SOFTWARE DEVELOPMENT AND TESTING

The folowing chaptediscussesesting inagile software developmeobntext Thechapter
outlines theesting levels, methods and practitiest are depicted in literature. Also,

testing maturity levels are discussed.

2.1 Overview of agile software cevelopment

Agile Manifesto(Agile Manifesto 2001)publishedn 2001by a group of software industry
figures outlined the generalaluesand principlesof agile software developmerih agile

software development, the followingrevalues areof the utmost imposance

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboratin over contract negotiation

Responding to change over following a plan

To this day,a wide rage of differentagile sotware development methodologies and
frameworlshave emergednd evolvedsuch as Scrum, Kanban, Xtreme Programrii).

All these differentnethodologies and frameworkkerish the agile values atiterefore aim

to focus ondeliveiing valuable software ta@ustomers (State of Agile 2019)The key
principles of agile software developméntus ornteamand customecollaboration iterative
development andhortening the release cycky these meansgde software development

responds to chang@gile Manifesto2001)

For comparison, in traditional software developmehtre are clear structured and
documentedphasesfor planning, designing, implementingesting and deployingthe
software Moving to the next phase requires the completion of the preMiotis project
goals and customer needse not clearat the beginning of the projecthe traditional

approachesnight not work.In agile software developmenthese phases are completed

7

iterationswith short intervalgFigure 1) The iteration lengtloftenvariesfrom one to four
weeks lterativenessand continuous feedback cychth the customeenablethe project
teamto respond to changgDouglas 2016)

Figure 1 Agile development cycle (Goodman 2019)

According tothe respondents of3" Annual State of Agilesurvey(State of Agile 2019)
agile software developmens wildly popularin the software industrand continuously
adopted by organization®nly 4 % of the respondentid not have agile teams in their
organization.Scrumframework is currently the leading agipgocessframework inthe
industry.However, n practicejt is not uncommon torganize heday-to-day agile software
developmenby combining activities from several methodologies and framewtorlss
called hybrid methodologie8y adopting agile methodologies and practicesms are
trying to accelerate software delivery, mandgequently changing requirements and
increase productivityThe main benefits of developing software in an agile manner include
the ability to managechanging prioritiesand to improveproject visbility andbusiness/IT

alignment

Iterativenes®f agile software developmeittascreateda need for extensive automatioh
quality assurancand release pipelings achievehigh-quality andcontinuous workflownas
well as releasesn DevOps(Developmeh & Operations)methodology development and
operatios, depicted in Figure reintegratedandexercised aajoint effort. (Kvhan 2017)

Emphasis shall be put oautomatingdevelopment andesting activities as well as

8

configuration andenvironment margement.To achieve such featsrgetices such as
continuous integration and deployment are embra8&sd such meanshigherquality

software is developeahd released with eagd@.oivanen 2019)

Figure 2 DevOps(Kvhan 2017)

2.2 Testing in an agile environment

Testingis an integral pardf softwarequality assurare Testingis an activity thagaims to
detect failuresn thes y st e mé s ¢ o d e(Casteleynaet al. 12009 256293 e
Planningof thetestinglevel and compleness ofhetestingactivities are driven by the initial
risk assessmenEach software systetmas an acceptable level of quality, meaning that
software type angroject context dctate therequirement for testing completeness
general, @sting advities aim tovalidate productiuality andmitigate project riskfGraham
et al. 208; Hambling 2010)The ISO (ISO/IEC 25010: 2011¥oftware product quality
characteristics(Figure 3) outlines the necessaryaspects forquality evaluationand
consequentlguide the testing activities

System/Software Product Quality

Functional Performance Compatibility Usability
Suitability Efficiency
Co-existence Appropriateness
Completeness Time-behaviour Interoperability Recognisability
Correctness Resource utilization lg;?;?:l?illli‘tt;
Appropriateness Capacity User error protection
User interface
aesthetics
Accessibility
Reliability Security Maintainability Portability
Maturity Confidentiality Modularity Adaptability
Availability Integrity Reusability Installability
Fault tolerance Non-repudiation Analysability Replaceability
Recoverability Accountability Modifiability
Authenticity Testability

Figure 3 Software product quality characteristics (ISO/IEC 25010: 2011)

According to Patton (2005jhere isan optimal testing effort for every softwapgoject
(Figure4). Theaim of the project management viewpoirns to hit the optimal testingeffort
during the project executioAn additional layer of complexity is introduced by the fact that
testinginfluencesall conflicting areasn projectlevel, time, costs and qualifKappel 206,

pp. 173. In Blackd $2009) view, especially in agile software projectfie amountand
rightness ofedures is another dimension tHatther convoluteshe context of testings
depicted in Figure 5.

10

Number of Cost of
Missed Bugs Testing

Optimal Amount
of Testing

Quantity

Under
Testing
Over
Testing

Amount of Testing

Figure 4 Software project test effort (Patton 2005, pp. 4C

~ >

"

O <

Budget

Figure 5 Project elements (Btk 2009)

An organization carlefineits testing activities formallyn a high level with testing policy
andstratgy as well as on project level via test plghasurinen 2010)If testing policies

and/or strategies ardefined they guide the definitiorof the projectspecific plans

11

(Veenendaal 2019) n Ka s ur i sstedg éf swultipl@ dfiware organizatignswas
concludedhattwo different approaches exist for test plan definition, debagedand risk
based approachds. addition, tiangego the testing process are ofteiggeredby the need

to correct probleminstead ofleveloping the process for quality and efficiency attributes.

Defining the testing objectives, scope, approach and focukedesting activities is a
necessity to enabtbe project tearnto deliverahigh-quality product in the given timefme.
However, in agile developmerthe objective is not to deliver comprehensivel detailed
test documentation. Instead, the focus should beutiming and definingthe necessary
testing activitiedor the projecin the projecinitialization phase(Crispin et al2009,p. 86-
88) The documentation for thtesting activitiesat a highlevel is viewed to beessential in
anagile environmenfThehigh-leveltesting plarshoulddiscusghetestinglevels, types and
quadrantsthat slall be exercised during the projeeixecution (Veenendaal 2019)
Formulating such a testing plan is not e&&yntext dependency and project unpredictability
are key factors whthe initial testingplan definition is a challenging process that requires
judgment and skill(Crispin et al. 2009, pp. 10As such the project execution should be
monitored to identify the possible need thange thenitial testing approackveenendaal
2019).

Van Den Broek etla(2014)researctfocused on testing in agimpaniesand proposed
best practicedor agile testing based on industry experiencesthe proposalthe frst
iteration of an agile software projestiouldbe allocated for preparation for the projeskt.
testing plan shoulde formulated in conjunction with product characteristics and.risks
Strategies for efect management, test automation and regression testadp also be
considereckarly on. Testingenvironmentsas well as toolingshall beput in phce swiftly
and edy as possibleo mitigatethe possible risk of postponing the testing responsibilities
thus creating @ unnecessarydelay between the development and testing activities.
Furthermorethe general recommendationt include at least @ntesterper project to
maintainproduct quality and to emphasi the customer perspective from inside the team.

Discussiorof such topic®arly in theproject initializatiorphasas beneficial from theesign

12

and coding standpoint, especiallif the testing need forthe load, performance, security,
usabilityandreliability of the systenare considere(Crispinet al. 2009, p. 18)

Automation is one of the key concepts in agile tesfdgspin et al. 2009Fowler 2012.
According to Van Den Broek et §2014)andLeotta et al(2013) the decision tautilize or
not to utilizeautomation should be made early on, as automation yields more¢haloager
it has been in placeThis is emphasized in Figuré (Kyryk 2018). As the costs of
implementing test @omation arehefty andautomation practice efficiency is application
contextdependentproper consideratioon test automation utilizatiois necessaryAs a
general guidelinet is proposedhat test automation should be considered wtherproject
lif espansg at least 3 monthg est automation is alsmtest enablerasfor example load and
stress testingf the systenis possibé only via automatiorfCrispin et al 2009, pA.03,283).

In Kasurinenet al. (2010 researchit was discovered thainly 26 % of the test casas
software developmendrganizations are automatedowever,according tothe State of
Testing survey (2019hreequartersof therespondergentify test automation & scripting
aspart of their jobwhich indicates that the autonmat practices aradopted more and mare
Additionally, it was discovered that organizatioase wildly differentin regard totesing
automationemploymentas depited in Figure7 1 the majority of organizations hav
automated.0-50 % of thefunctional tescases.

13

Manual Testing
A

Initial Investment .
Cumulative Cost Saving

-
s

—
———-———"_—

- Automated Testing

Cumulated Costs (S)

Time

Figure 6 Time and cost of automated and manual testing (Kyryk 2018)

37 40 39

23 92

21

20 19

4 3 4
N

26
8 8

32 3¢ 2
3 S 2 3
3% c c c c 2 0
S 25 35 g = 55
L [} 0o = c _cc.o
] 3-0 3-0 7] o]
far}) 7 O o o0
> o C o C o o
O Lo ke 2 e =E
W 2010 M 2018 2017

Figure 7 Test automation employmergtate of Testing 2019)

14

In agilesoftware development, maintaining the quality of the software product is continuous
and collective in natre. Testing is the responsibility of the whole team; any project
participant can act as a tester and complete tasks that have relevance to tegtinduard
quality. (Crispinetal. 2009,p-P5) I n todaydés software deve
such as DevOps, further emphasize the necessity of implementing and exercising testing
activities continuously and sharing the testing responsibilityinvitie team. According to
Veenendaal (2019), testing should be kot the iterations. Definition of @ne (DoD) and

the acceptance criteria for the individual features should discuss the necessary testing
activities. These activities are usually deriven the highlevel testing plan but depending

on the type of the feature, it could be necessary todenthe testing actities from other

viewpoints, such as nefiunctional requirements.

2.3 Agile testinglevels, activities and supporting practices

In agile software developmerdgelivering valable softwaras the keyconcept Fromthe
testing perspectiveevaluating and extractinthe value of the softwares achieved by
combining various testing methodand critiquing the product from different aspect
Automation holds great value agile testinditerature, butthe role of manual testing should
not be underestimatedTo support thedevelopmentand executionof an agile testing
portfolio, the utilization of supportive practices suchcasmtinuous integration and test

driven development should be considef&itispin et al. 2009)

2.3.1 Agile Testing Quadrant

Agile testing quadrantd-igure8) published by Crispin et al. (2008ijvide the agile testing
activities into four different sectiongach of the quadrant®lds different typesand levels
of testingas wellasenclosehe supportive agilpracticesand methodsThese quadrants can
be used aa guideline and referender testing activity definitioron a projecbr feature

level.

15

Agile Testing Quadrants

Automated

Business-Facin
& Marosd S Manual
Functional Tests Exploratory Testing
Examples Scenarios
Story Tests Usability Testing
£ Prototypes UAT (User Acceptance Testing)
o Simulations Alpha/Beta o
b= =
© o
5 Q2 Q3 5
o
c 3
2 Q1 | Q4 o
Q g
s a
2. Unit Tests Performance & Load Testing
Component Tests Security Testing
“ility” Testing
Automated Tools

Technology-Facing

Figure 8 Agile Testing Quadrants (Crispin et al. 2009, pp. 98)

In the first quadrant, the focisondeveloperdriventeding, including unit and component
testing. Tests in quadranbne should beautomated,and the practice of testriven
developmenshould beemphasizedTesting in the first quadrasuppors the testability of
the system as a whole and rewawdth highercode quality.In the second quadrarthe
focus is orsatisfying the user stogcceptanceriteria andgenerabusiness conditionsThis
guadrantincludes functional tests, examples, story tests, prototyped simulationsThe
testing activities in gudrant two drive the design of the systdvtost of thetechnological
testingin quadrant one and twbave great potenfidor automationas they should be
executeccontinuously to achieve quick feedbamkthe condition of the producilo enable

this, the pactice of continuous integratiamould be usedCrispin et al. 2009, pp. 9%08)
16

Activities in thethird quadrant are focused amanual testing that validates the acceptability
of the feature or theystem The focus should be on exploratory testind scenarios as well
as usability Useracceptancand alpha/beta testingpuld be utlized depending on project
type. The tests inthe fourth quadrant aréighly technicalas they often are enabled by
automation andequirespecialexpertise as well as sable tools(Crispin et al.2009, pp.
97-108)

2.3.2 Testing levels

Generally,in softwae developmentiesting carand shoulde executed on various levels.
There are usuallthreeprimitive testing levelsdepicted in literatureunit, integrationand
systemtesting (Chemuturi 2011, pp. 712, SWEBOK 2014. It must be notedhat in
practice the software testing terminologyconvoluted and varies between pitactiers and
organizationgFowler 2018; Vocke 2018This was evident during tHigerature reviewFor
example, théermsunit, integratiom and system levelre in some coekts described asnall,
medium and large testdndroid Developers 20)9Tarlinder(2016 underlines the fact that
even though theerminology mighdiffer between pradionersand publicationghetesting

conceptsand categorizationgmainsimilar.

The st pyramid, originally introduced by Cohn (2009) and later revamped various software
practitioners, is a representation thesetesting levels and test quantiiFigure 9). By
implementingtestingon various levelsthe confidencan the systemand its qualityis
improved debugging is made easiandthe risk of introducing regressiatecreases.e.
breaking existing functionality by introducing néd®@ohn 2009311; Fowler2012; Vocke

2018. The est pyramid wasitially developedto guide test automation effort but later it

has been expanded to represent and guide software testing effort in general. The general
principle of the model is to focus on builditige testing efbrt from the ground up and to
emphasize automation. The aties described in the pyramid shall be automated. Unit tests
form the foundation as they are fast to develop and exeCiiemiddle layer consists of

integration testing activities. The top &yconsists of systetevel testing. Lastlyall the
17

automaed activities depicted by the pyramid should be accompanied by manual testing. The
further up we go in the levels and activities, the more costly and slow the testing is. (Fowler
2012; Scott)

Time A
W ERDE]L
Testing

API| Tests

Integration Tests

Component Tests

Unit Tests

< >
Quantity

Figure 9 Testing pyramidCohn 2009; Fowler 2012; Vocke 2018

The opposite othetest pyramid, testing ieeream cone (Figur&0), is viewed as an anti
pattern that should be avoided. In this model, therdeaver unit and integration tests and
emphasisareon automated and manual functional testing through the Ul. Similarly, as in
thetest pyramid, cost and slowness increase as we move up in the figure. Consequently, in
this model large quantity of tests are costly to implement and execute. (FowleG2p;

18

Therefore the responsiveness, maintainability and reliability of the testasetliminished
(Vocke 2018). In practice, testing quantiteslifferent levels var on project and product
basis and might not exactly follow either of the modelsadeg in literature and by software

engineering practitioners (Contan et al. 2018).

Time A A Cost
Manual
Testing
API Tests
Integration Tests
Component Tests
< >

Quantity
Figure 10 Inverted testing pyramid=pwler 2012 Scott)

Developer written unit tests enable identifying faults in the earliest phase. Td#sting
smallest subsets @iplementation constructs, such as functiomgthods and classeis
isolation allowsverifying their expected operatioccording toStack Overflow(2019)
developer survey, less thhalf of organizations employnit testing as part of their process

19

(Figure 11). In theintegration layerthe testing range is widas integrations happen on low
level as well as imigh-level. In component testinghe proper integration of unite form
largerentities, such as sacesand view componentare under scruteering.(Crispin et al.
2009, pp. 109.27; Mark 2007 o verify specificallythattheunits and components arely
operating correctly, isolation is keisolation can be achieved by mocking theluded
dependenciesi.e. creating dummy implementationsf the dependencieso avoid
introducing side effects to thestableunit or component(Mark 2007 Vocke 2018§.

Yes, it's part of our process 41.8%

Yes, it's not part of our process but the 20.5%
developers do it on their own

No, but | think we should 33.2%

No, and I'm glad we don't 4.4%

Figure 11 Answers toquestion" Does your ¢ omp an (Stack @yeidflavy u n |
2019)

Depending on the system, furthategrationsmight be requiredintegration testing refers

to thevalidation ofinteroperatiorbetweerparts services anthodulesof the systengFowler

2018; Vocke 2018) n Fowl er 6s (2018) hasbreadgndnarmow e gr a
scopegqFigure 2). In broad ntegration testingnultiple modules are activend innarrow

integration testingothermodules are substituted by tesiublesor mocks

20

Integration Testing
commonly refers to
broad tests done with

many modules active...

..but it can be done with
narrow tests of interactions
with individual Test ..supported by Contract

lests to ensure the

faithfulness of the double

c

Figure 12 Integration testing scopes (Fowler 2018)

For example, usuahtegrationtest targets are thimteracton with databasg external
systemslarger modules andPls (Application Programming Interfacéhtegration testing
activities require further effort as the need for planning increases and tests thquire
implementation of test doubles and possibly ahehestration of live parts of the system,
such as dabasdFowler 2012)Regardless of thierminologyinterpretationthe integration
layer of the pyramid isa widespreadand important layer that validates thanit and
component interaction and therefdimits the extentand loadon which thesystem level

endto-end testing or manual testing is requifgdcke 2018)

Additionally, to verify the systenoperationas a wholeendto-end(E2E) systemtesting is
required (Tarlinder 2016 p. 34. In automatéd or manualendto-end testing, the
functionalitiesand usabilityof the systenare verifiedby having all subsystems activiee.
all systems integrated (Vocke 201Byoductiondatabases should be cloned or emulated to
mimic actual usescenariogCrispin et al. 2009, pp. 309\utomation of eneto-end testss
depicted to bdifficult and timeconsumindCrispin et al. 2009; Vocke 2018hcorporating
all parts of the systenespecially the GULo the testingcould result in fragile testghich
are nouse(Vocke 2018) Consequentlyas wecansee from the pyramiFigure9), the

quantity of automatede2E testingshould remainlow. In endto-end testing, the most
21

valuableuser interactionshould be mimicke@vocke 2018)Additionally, consideration of
whether to execute E2tests automatically amanually is necessaryhe cecision on this
shouldbebased on project risk artde coverage afinit and integrationests(Crispin et al.
2009, pp293.

Manual testing is a primitive testing type that enabllsfect detectiomndevaluation othe
syst embs fauwelt ds usabiliggHon nmanual testinghere are two fundamental
testing techniques describiedthe literaturetestcasebasedand exloratory testing. Inest
case based testing the maniesting is orchestrated Ipre-designed anevell-documented
testcases i.e. scenarias Therefore the test executionis an easily reproducible and
mechanical taskexploratory testingocuses on experimentaticand learningnsteadand
do not emphagetest case documentatidn.exploratory testingystem is testefileely and
possibleinconsistencies arm®llowed and reported(ltkonen et al. 2014Ysually, a certan
theme for testing is selectedtestingis executedrom the viewpoint oflifferent uer roles
(Crispin et al. 2009, pp. 26402) Exploratory testing iziewed as anoresuitable manual
testing method for agile projectsiagits situations wher@roduct documentation iscarce,
features are changin@gpidly, and the projectis timelimited The dfectivenessof both
methodshas been researchadd there is no clear evidence of either being more effective in
detecting defectd-owever, due to its lightwelgness exploratory testingits into a wide
range of projectand is proved to be fifient. (Afzal 2015;Itkonen et al. 201¢4In the
software testing field, anual exploratory testing is viewedhe a time-effectiveandcod-
effectiveway to test aystem However|ts effectivenes$o detect regression is questionable.
(Ghazi et al. 205)

According to Crispiret al. (2009, pp. 22239), depending on the systefarther validation
of its robustnessould bebeneficial. Performance, loahd security testingnable to test
whether the systemand its desigaresound enough to fulfil theon-functional requirements
Additionally, testing of the following aspects could be beneficial some application

domains

22

Maintainability
Interoperability
Compatibility
Reliability

= =2 4 A -

Installability

2.3.3 Supportive practices

Along with test automationgortinuous integration and tedtiven development are key
activitiesthat support agile testingrispin et al. 2009)in continuous integratioiCl), the
codebase is inspected, built amdomated tests are executedtinuouslyin build serveion
every newmerge to themainline (Figure B). These actions are taken éosure thathe
integration routinas executedht the build serverinstead of onlyat thedeveloper machine
Additionally, CI ensures thabuild stays green, i.epossible faults are identifie
automaticallyby the integration routinandthe proposed¢odemerge is rejected untihe
identified issues are fed The dfectiveness of continuous integratiorbesed otthe quality
of the integration routineComprehensive and rapidly executingtteoutineenables the
developmenteam toefficiently get notifiedof integration faultsgefectsandregression that
might be introduced by neghanges(Fowler 2006jClerisy 2019Meyer 2014Martensson
et al. 2017; Stahl et ak013 Furthermore, coimiuous integration enablesontinuous
deployment(CD) asthe builds that pass continuous integrationtiresare ready to be
passed for the deployment pipelina continuous deployment, the target is to achieve
automaticreleass to the production envirament.Contiruousintegration and deployment
have been adopted by software piteaners asccording ¢ State of Testing2019)survey

81 % of the respondds haveemployedsome level ofCI/CD-practicesn their projects.

23

Test

Report Build
Continuous

integration

Developer Source control Release

Figure 13 Continuous integrain routine (iClerisy 2019)

The technigue oftestdriven development(TDD) can be utilized tosupport the
implementation o comprehensive test suif€he purestconcept of TDDdefinesthatunit
and componentests should belesigned andwritten before he implementatiorcode
Additionally, high testing coverage is emphasiz€te wsage of TDDis stated taesult in
higher code quality anbwer project costAlthough, there is evidence that its impact
software development is debatalfRorle et al. P18, Kara et al. 2018Mark 2007 This is
mostlydue to the contexdependencyasin the realworld, thetasks applicatiorsetting,and
developer skilivary (Causevic et al. 201XKarac et al. 2018)For developerghe adoption
of TDD is experienced adifficult and chasing high coveragaimbers might nabetter the
quality of the productMark 2007. Additionally, TDD might slow the developmeand its
adoptioncould be limited byot havingclear design or requiremer{tSausevicet al. 2012)
Approacling legacy code with thgractice of TDD is also found out to be difficuigusevic
et al. 2011 Mark 2007)in practicethebenefits of TDD include confidenée system design
as the features are planned more thoughtfully to erddsyning andvriting tests prior
implementatio. In addition, refactoring and changing code is more stréigivMard as the
existing test suite can verify correct operation after charflyesk 2007)

24

2.4 Testing maturity levels

Variousmodels fortesting maturity levels have be&id out bythe software engineering
community Such modelsusually discusghe maturity of testingat five different levels.
Ammann et al. (2018)iscussed theesting maturityin layman termsy referencingBeizer

(1990:

There is no difference betee testing and debugging
The purpose of testing is to show correctness

The purpose of testing is to show that the software does not work

=4 =2 =4 =2

The purpose of testing is not to prove anything specific, but to redacesthof
using the software
1 Testing is a mdal discipline that helps all IT professionals develop highetlity

software

In TMMi Foundatior® €019) testing maturitgnodel,the levels are calleditial, managed,
defined measured andptimisation The model is processorientedand as such more
traditionalbut the concepts arapplicableto agile developmeriVeenendaal019. At the
initial-level, the testing process is unmanag&d. achieve managddvel, the testing
policies should be in placén ddined-level, the organization should hadefined testing
standards and procedw® enableutilization of common practiceis all of the projects.
Also, nonfunctional testing aspects are required to be considétedneasuredevel,
measurement should be utilizedinimize defects. Lastly, thaptimizationlevel requires
advanced utilization of the measurement to enhance the testing p(@dagk.Foundation
2019)

Recently,due to the emergence of thgile continuous software engineering practjdbe
maturity ofsuch operations has been midel by a multitude of industry pradioners and
organizationsin continuous deploymemhaturity models autiored by Rehn et al. (2013)
andMimick (2014) various aspectsf continuous deploymermtre depictedThese models

25

are suitedor identifying the arrent state of operatiommdsupportin the feat taadvance to
the next levelln Mimickd s 014) @odel the following five maturity levels adescribed

Base
Beginner
Intermediate
Advanced

Extreme

= =/ =42 4 I

Additionally, such maturity model categorize continuais deployment intofour

components:

Building
Testing
Deploying

= =2 =4 =4

Reporting

Thematuritylevels of testing are depictedkiigure 14 In base levelthefirst steps towards
automated testing are taken by implementing some unit tetaegmrajority of thetesting
activities still remain manualAt the beginner level, some of the igtation tests are
automategdshifting the testing effort twards automatioand the test portfolio consists of
fast testsln theintermediate levekystem testingffort swifts toward automation asritical
user paths are automatéd theadvanced levethetest portfolio consists of automated tests
and issupplementednly by risk-based exploratory testingdditionally, thenonfunctional
aspects of the system, such agqgrenanceand securityare validated by automated testing.
In suchsetup, the critical pathsf the systemare covered by automation and acceptance
testing and consequentlygontinuous releaseare a breezdxtreme levekhares the same
characteristicas advanced level but emphasiegen more extremeesting coverage and
generation of usable information expected business resul{Rehn et al. 2013; Minick
2014)

26

Generally, n testing maturity modelghe overalltesting coverage antthe efficiency to
detect regression increadbe more advanceddhevel.Consequentlythe lead time toew
release dcreases at each level asmore comprehensive test portfolio executed
automatically and efficientlfMakinen et al. 2019)Suchfeatsimprove overallproduct
quality andcontributeto the more efficent release process armbntinuous deployment
pipeline. From the models, it can be observed, that-functional testing activitiesre

introduced at the more advanced levels.

Currently,according taMimick (2014, the base level maturity is an indusstandarcand
the intermediatdevel is thetargeted level of operations most software project®\s to
discuss the testing quantity modedative to thanaturity mode| thebase layergo hand
in-hand wth the icecreamconemodeland thdevels in theextremeendfollow the pyramid
model As the former highlights manual testing @hdlatterencourageautomation.

Required test tooling and investment

A\

BASE BEGINNER INTERMEDIATE ADVANCED EXTREME

SYStem |

System

Integration Integration

Integration

Integration

Unit
Lead time for new release

- Automated testing - Manual testing - Non-functional (performance- and security) testing

Figure 14 Testing maturity levels (Rehn et al. 2013; Minick 2014; Mé&kinen et al. 2019)

Integratlon

Unit Unit

<
<

27

3 WEB APPLICATION DEVELOPMENT AND TESTING

The following chapteoutlinesthe general structuref web applicationsandthe diversity
of the developmentrocesses angchnologiesFurthemore theliterature ortestingof

web applicationss summarized

3.1 Overview of web applicatiors

Web applications areastly utilized andcomplex systems thaliffer in functionality, scale
and characteristicsHowever, all veb applications are accesgbdough theweb browser.
(Brandon 2008pp. 5 Kappel2006pp. 2-3) This is emphasized in tHellowing definition
of aweb application byKappel (2006, pp. 2:

AA Web application is a software system be
Wide Web Consortium (W3C) that provides Web specific resources seomtast and

services through a user interface, the Wel

Webapplicationshare the concept of cliesérver architecture and typicatignsisiof three
logicaly separatedayers (Figure 15): presentationapplicationand datalayers (Kappel
2006 pp.73-74; Laine et al. 2011 The pesentation layer defines what kind of vieare
displayed in the browser and controls how the users can interact wiierhervia the
HTTP-protocol (Hypertext Transfer Protocpl The gplication layer contains all ¢h
business logidor the system to functiont handlesthe HTTP-requestsnitiated from the
clients browser andjueries the data layer to retrieve or store necessary informatien
datalayerconsists of thelatdbase(} tables, viewsnd the data acssfunctionalitiesas well
as possible database logic or value manipulation withcedures and trigger6JReport
2019;Mok etal. 2013

28

Web Application

Presentation Layer

HTMLS5, JavaScript, CSS

Application Layer

Java, .NET, C#, Python, C++

Data Layer

MySQL, Oracle, PostgreSQL, SQL Server,
MongoDB

Figure 15 Web application layerand examples of technologi€ikeport 2019)

Web application shars various charaeftistics that makethe development of these
applications difficult and different from other fields of software developmafeb pages
can show static and dynangontent in many formsuch agext, graphics, audio and \&d.
Web applications are often tagted for large userbasemsd the users are using the
applicatiors on various screen siziesvarying networksData intensityof the applications
i.e.content and databaskivennature of the systemtroduces alsintroducesconcerns on

security and pviacyaspects(Murugesan 2008Aroraet al. 2012

29

3.2 Web application development

Web application development is characterizednvylving an abundance gfrogramming
languagesconcepts anttameworks (Murugesan 2008Casteleyn et al. 200®oyle et al.
2017 It is alsotypicalto utilize existinglibrariesand toolgo speed up the development and
to avoidre-writing solutions to already solved issuies, reinventing the whee(Kaluzaet

al. 2019 The wide range of these libraries and tools are egmemceand therefore extremely
accessible(Aleneziet al. 2016 Vemula 2017 The shift pace at whicthese languages,
librariesand framework®volve is al® one of thekey characteristic®f web application
developmentDue to the constarand rapid chages in the technological foundation, web
application development emphasizbee knowledge and experience of individuals instead

of standardized practicéBrandon 2008, pp.-3).

The trends in the toolingnterest and adoption change ydaryear andsome of the
frameworksaremore versatile and easier to work with than otlasrdepicted in Figure6l
(Stack Overflow 2019 hese rapidand possibly unexpectazhangesn the adoption and
support for the specific framewordould complicate the development caitmaintenance
proceses On the other handhis rapiddevelopmenandopensourcingof the development
toolshave madé¢hecreation @ innovative solutionsvith web applications more accessible
(Vemula 2017) Identification ofbeneficialand suitabletools from the sea of optioris
difficult (Kappel2006 pp. 176 Kaluzaet al. 2019.

30

Reactjs 74.5%
Vue.js 73.6%
Express 68.3%
Spring 65.6%
ASP.NET 64.9%
Django 62.1%

Flask 61.1%

Laravel 60.1%
Angular/Angular.js 57.6%
Ruby on Rails 57.1%
jQuery 45.3%

Drupal 30.1%

Figure 16 Percentagef developershat are currently working arexpressed interest to
work with thewebframework in the futuréStack Overflow 2019)

To developthe presentational layesf the web applicatiofor the client browsere.g. front
enddevelop HTML (HypertextMarkup LanguageandCSS(Cascading Style Shegtare
involved in structuring and styling tipage template®ynamiaty and underlying logiare
introduced to the web pages withvaScripscripting languaggJReport 20190 modern
day webapplication developmenthe presentational layes often developedby utilizing
CSSframeworks and JavaScript librarifsameworks Several opersource CSS
frameworks exist, such d@ootstrap Foundation and Materialize CS&dditionally, often
CSS preprocessorsuch asSassor Less is used to extend thieasic CSSunctionalities.
(State of CSS 2019)he most popular JavaScrijpont-end frameworkéibraries curently
includeReact, Angular and Vue.[$llebowitsh 2019) These font-end frameworks enable
andfacilitatethecreation of singlgpage application€SPA) In singlepage applicationshe
page reloads amainimized as the application state and logicesian the browser. The state

is manipulated by executingsynchronas AJAX (Asynchronous JavaScript and XML
31

API-calls under the hoodndstate changeare reflectedlynamicallyto the web pagwith
clientside renderingWith serverside renderingdynanic web page contens constructed

in the serverbased on user ngation and inputt N t oday 6s welientsilee vel o
renderingis utilized in the highest degree due todggpabilities to create more complex,

interactive and fluid applicationgSun 2019pp. 141)

In application and datkyer development, e.g. backeddvelopmentyariousoptionsare
available. Several commonly used programming languagesit well to backend
developmentsuch as PythorRHP,Javaand JavaScripto name a few(Web Developer
Roadmap 2019Backend framework such as Django, Laravel, Spring and Node.js
respectivelyform an ecosystemnalanguage basthat enablsrapidand efficientbackend
development(K a | et@l€2019 The data layer can utilize relatiopalich as PostgreSQL
and MySQL ,or nonrelational database systems, sucMasgoDBand Cassandyar both

in tandem(Web Developer Roadmap 2019)

In addition based on the application requirements and architeth@réchnologgtack can
be enhanced witvarious other tosl For example, éta caching solutionexist, such as
Memcached or Redifn data cachingrefetched datasswith high relevancare storedn
the application layeto improve server response tim@éertz et al.2018. To run the web
application on the server,vaeb server, such as Apache or Nginx, is also requiiweb
Developer Roadmap 201R)is common to utilize containerization and clelb@sed virtual
environmerg to host the applicatian With such meansthe deployment process
configurationmanagemerdnd scalability of the application aahancedCloud computing
servicesincludeactors such a§&oogle App Engine, Microsoft Azure and Amazon AWS
(Albrecht et al. 201y

A combination of thes@ariousprogramming languagesnd frameworksis referredto as
technology stack The selection of framework or programming language for each of the
web application layers is profound the decisions dictate the development ecosystetn

suitable toolsThediverse technology stacK Airbnbis displayed in Figuré?7.

32

JS My
nginx JavaScript React Java MySQL
Amazon EC2 Redis Amazon S3 Ruby Sass
M rais . @ - .
Q A
Amazon
Rails Amazon RDS Hadoop i Amazon EBS
ElastiCache
. _59
:]
(o 1
Airflow Native Navigation Airpal

Figure 17 Technology stack of Amb (StackShare 2019)

3.3 Web application testing

Backin the daytestingof web applicationsvasoftenretroactive i.e.testingwasinitiated

after issues or limitationwere corfronted (Murugesar2008) Currently, web applications

are targeted by even stricter quality requirements as the applications are more complex and
handling critical aspects of our d&yday lives (Fasolino etl.a2013). Consequently, the

broad employmentfaveb applications across various domains and the tendency of having
short release cycles further amplify the need to carefully consider especially the structure of

guality assurance practices (Leotta et al.30

33

Testing web applications isomplicatedas there are various browseand operating
environmentsnvolved (Aroraet al.2012. Currently, thee are variousoteworthyactorsin
the browser market as displayed in Figd& The arrent market leades Chrome witha
market share of over 3®. Numerous browser possibilitie@stroducecomplexitiego testing
as not all browser engines render content similarlgupport allfunctionaliies. This is
emphasized as soma@plicationsmight require support for old, i.e. legacsersions of the
browsersIn addition,websites are used more and more with mobile dewbésh requires
responsiveness from the website cont@NBCounter 2019 he compatibility othe system
for thedifferent deviceand browser variantsirther emphasizthe need for usabilittesting
(Fasolino et al2013).

Chrome 59.2%

Safari 14.6%

Internet Explorer & Edge

Firefox

Opera h

Figure 18 Browser market shares (W3Counter 2019)

Int oday 6 s we hviewss @are renderadtdynanmcally at runtime based on various
inputs fromtheserversideand clientside logicand therefore identifying the mect layer(s)

in which the defeat aregeneated, is challengingArora et al.2012 This is emphasized
dueto the vast incorporation of thirgarty libraries in the application code as there is no
guarantee of proper testing coverage and correct oper&onsequently, the inclusion of
third-party libraries could introduce faults inteeteystem. (Alenezi et al. 20143 stated by
Kappel (2006, pp. 133}he quality of web application is defined by the quality of the
individual components and their indéetions.This emphasizes the fact that various testing
activities and levels should lgractsed to validateand improveapplication quality.The
focus shall be especially put on regression tesiong to theexpectation ofapidly evolving

34

requirementsfeature changemight beabundantRegression tests should be in place to
verify that theinteraction withother parts of the systeramairs correctand subsequently

no new faults are introducediter changing feates or implemeiitig new ones

3.3.1 Testing levels

To support i dent iahdyvalidaging thé quality ef the appliéagmadcha y e r
layer should be tested individually as well as in cohesion. According to Torchiano et al.
(2011 researchthe presentation layer @web application isite most defect prone as about

50 % of web appliation defects trace to the presentational layer. This is speculated to be
due tothe complexity of the presentation logic, immature testing tools and the special
execution environment of the web brows%s.to discuss the test automation efforaweb
application context, research by Contan et al. (2018) showed that the test automation division
between unit, integration and {tHsts vary between web application projects and do not
necessarily follow test pgmid model (Figur®). Although generallythe larger emphasis

was put on unit testingt was observed thautomation of functionakests through the Ul

was avoided due to fragility of executi@md low return of investmentherefore, it is
necessary toonsider test automation designagoroduct basisnstead of following a model

religiously.

In the web application context, the logic is sprinkled to various layers. Therefore,
consideration of unit and component testing for all layers is bene@ighedatabase layer

unit testingtools are scarcédHowever, \alidating the correctness oéchemas, queries and
proceduress key (tSQLt 2019) In theapplication layeresides most of the business logic,
therefoe unit testing isimportant In the presenation layer unit and componentesting
meansrange fromverifying simplefunction implementatiorto comparing snapshots of
rendered DOMDocument Object Modgklementf aUl componenin the browser, i.e.
snapshot testingJest 2019) The latterand mae are made possible bynodern SPA
frameworksand their tooling whictenableconductingawide range of user interface testing

via unitand componentesting practicesCurrently, in web application development the

35

| angua g e @rghirgsparty bchesusually offermeans to writend execute unénd

componentests efficiently(Vocke 2018)

Integration testing refers to the activity ofvalidating the operation ofinits in their
interactionsFor examplethis could includeheactivity of testingparts ofapplicationlayer
logic againsta test databaseor interface ofthird-party service.(Vocke 2018)In web
applications specifically, consideration of integratitasting strategyand necessityis
paramount aghelayer andcomponentbasedstructurecomplicates datlow (Di Lucca, et
al. 2006). In addition,the introduction of actual dependencies, such as datairasehe
testing routineslows down and complicates testi(iguskis 2019) According toVocke
(2018, therecould bea possibilitythat integration testingn web applicationgocuseson

wrongparts, i.e. testing thesedframeworls instead of applicationode.

According to Vocke (2018xutomatecendto-end testing of web applications is diffiqult
especiallythrough Ul Browser quirks, itning issues animations and unexpected popups
complicae the testing process and a lot of time is spent on debugging the $dets.
execution time andigh maintenance cost furthsteertesters tautomate onlyhetesting
of user paths that are consicl most wluable A wide variety of opersourceand
commercial testing toolexists thatenabls browserbasedendto-end testing automation
According toLeotta et al(2013), automatd endto-endtests are eithgsrogrammableor
capturereplaytests In programmable testthetest is programmehanuallyand in capture
replay testing the testgenerated automatically froma recording of user actions.
Consequently, the implementation time for programmable testhigher but the
maintenance is easierdathereforenith subsequent releases programmable tastaph in
costeffectivenessThese mintenance activitiesonsistof responding t@resentatioal or

logical changesf theuser interface.

Manual eneto-end testing enablagetectingsystem issuein a straightforward, albeitin a
repetitiveand possily costinefficient mannerespeciallywhen consideringomplex web
applicationsHowever thedetection olisabilityissuesand smellss difficult withouttesting

the systemendto-end manually (Grigera et al. 2017%enerally, usability testing begin
36

from the wireframeand prototypingophases andxtendsto endto-end testingDepending
on the systenand project context, alpha and beta testsgwvell asiseracceptance testing
could be viableptionsto further gain feedbacknd support entb-end testing activitieby

utilizing the endusers (Crispin et al. 209)

3.3.2 Performance, load- and security testing

Performance of weaipplicationconcerns allayers database, application, apesentabnal
layers According toParzych (2016andLoadster (2019)80% of waiting time is fronend
based and 28 backend basedHowever suchgeneralizations are contestependent and
during peak loadswait time ratio swifts more towards backen@lLoadster 2019)
Additionally, the server anchetwork infrastructureaffect web application performance
Structure of tableghe efficiency of database queriemdcomplexity and efficiency of the
application logicas well as the servarchitecturedefinethe pae and efficiencyat which
the backend can handle requesiginated from the user@Parzych 2016furthermore, the
size of thefront-end applicatiorbundk, e.g.template script andmediafiles, defines how
quickly userscaninteract with the systenmitially. In addition,generalbrowserrendering
performance can be majorly affected ibgfficient code and memory leak@rontEnd
Checklist 2019Mediocre performancemposes the possibility of users not reaching the

service havng long wait timesr interacting withanunresponsive system

By the means operformancetesting such issuesan beidentified, and performance
requirements validateédccording toMatamet al. (2017)oad testingallows inspectingthe
performance ofweb applicatiors. Load and stress testing fosuon inspecting system
behaviar with different loadssuch aexpected opeakload. Consequently,dad testing is

a mean to identify t heefegedte asecapactdy tesimg/ebmu m cC
application load testing toolinenablstheexecution ofmnassive amounts &fTTP-requests
towardsthe applicatiorserverandlogging performanceeportsof them (Tikhanski 2018)
Additionally, front-end performance can be inspected with developer tools-ibuiti

browser or externalotware.

37

A wide variety of security issudgunt web applicationsOWASP (Open Web Application
Security Project2019 is acommunity thatprovidesinformationrelated to web security.

Currently, most fundamental security issues concerning web applisadi@n

Injection

Broken authentication
Sensitive data exposure
XML external entities (XXE)
Broken access control
Security misconfiguration
Crosssite scripting (XSS)

Using component with known vugrabilities

=4 =2 =42 4 A4 A4 -4 45 -2

Insufficient logging & monitoring

These issuemight arise from faulty desigorimplementationThese faultgould becreated
in-house due taneglecting security aspects oby exercising faulty third-party code
Additionally, a faulty server configurationor software execution environmerould
introduce vulnerabilities(OWASP 2017 In security testing, théocus should not be in
penetration testing activities, efgying to exploit the systemand detect vulnerabilities
Instead, possible security issig®uld be mitigated by takirggcurity gpedsinto account
during designdevelopmentgdeployment and maintenance sta@WASP2015 pp. 24 A
wide varietyof opensource and commercial tools are available that enable identification of
possible security issueShese toolsupportmanualsecuritytesting enable automatic issue
detectiorby static code analysis aigpecting executing softwat®©@WASP2015 pp. 214
216

38

4 EMPIRICAL RESEARCH

In the following chapter, theonstructionexecutiorandresultsof theempiricalresearclare
outlined The qualitative multi-method research consisting ofinitial literature review,
questionnaire and interviewsas conducted iApril andMay of 202Q Due to theCOVID-

19 pandemictheinterviews were conducted remotely.

4.1 Research mehodsand background

The literature reviewof software development and testingagile and web application
contextis the theoretical backgrountbr the development oan empirical survey The
empiricalsurveyof the thesigonsisgs ofaquestionnairand interviewsAccordingto Meyer

et al. (2001, pp. 45) expert judgemens a common method to model and solve technical
problems. It is especially suitable for interpreting decismaking processes and modelling

the current state of ansige Meyer et al. 2001pp. 45). Bothof which are ofhigh interest

in the context of the thesis. In an agile context, the level of cooperation is high, and testing
is a joint effort. Therefore, the evaluation needs to account for various viewpointfieve

and testing oriented project membeas well as project managers overseeingpleeation

all haveexperiences on benefits and possible issues of testing from different viewpoints.

The researchfindings of the thesisare qualitative By researchingvith a multi-method
approachtrianguhltion is achievedTriangulation is avay to increase the creditabilityf
qualitative researchy utilizing various research metho@ohen et al. 20Q7The research
methods of the thesistdrature revew, questionnaireand interviewsall contribute ¢ the
understanding aihe researched phenomen8y combiningvariousresearch methodsd
consequentlyutilizing multiple sources of informatiorcomprehensive answers to the

research questior@d maniféd discussiorcan be created.

The research procesesembld waterfall as the stagewere completecconsecutively.

Firstly, the phenomenon wasesearched from literaturé&Secondly, theamost significant

39

project factors affecting testing decisionwere extractedvia questionnaire. Thirdly, the
literaturereview and the questionnaire resuitsre utilized in the development of the semi
structured interviewsAfter conducting the interviewshecollected datavas analyzednd

conclusionsas well as discussionere derived

The datdor thesurveyis acquredin collaboration withVisma Consultingy, specifically

in the context ofits Product Creation Servicd®CS)unit. Titled OCTO3 Oy beforethe

business acquisition by Visma Consulting @y2017, the unit focuseson designing and
developing custonsoftware solutions that catéo the various needs of bothublic and

private sector clientsMaj or i ty of t hdaf approximatély80 emmaydes o r cC ¢
consists of developarriented software engineemsith varying specializations. Tke
developers arecaompanied byales angroject manageras well asuser experiencand

service desigprofessionalsMost ofthe softwaredesigned andeveloped by the unit fer

webor mobile platforms Categorization othe projects that are executadPCSs difficult

sincethe projects rangdrom shortlived and small projects to muHyear projects witha

high number ofnvolved personnelAlso, the company offers subcontractinnowledge
transferhas been emphasi z eadinfashpacecpeojeawork itwbgd st r a
be beneficial tautilize the previously identified best practiceand solutionsn subsequent
projects The researcthemeoriginated fromsuch need and ttarget of the research is to

model thetesting practiceshat are deemed worthwhiland to extract thinformation on

howthe pradcesshouldscale within different project contexts.

4.1.1 Questionnaire

A questionnaire is a commonly usé@tstrument in survey researclihe questionnaire
instrumentfor the researchwas developedn conjuncton with the bestpractices of
guestionnaire developmelitrobia2008, pp.652655 Additionally, the target was to create
as minimalistic questionnaire as possible to enable higher respons@uaséionnaires are
straightforward to conduct and analyamd they reach large audience with small effort.

These were the primary drivers why the factors were extracted via questioAtsorehe

40

questionnaire enabled eveinyterestedndividual from the collaborating company to take
part in the research.

The conducted ge#ionnaire isin Appendix 1.The questionnaireformat consisted of
introduction, instructions,and questionsThree demographic questions were included
Currentrole in the organizatigras well as the experiente software industry and web
application developmenof the respondentyere gatheredOnly one primary questionag
included. Theprimary question was opeanded and requiretb namefive to tenmost

significant factors that affect the testing decisionaeb application projects.

The primary questionf the questionnaireasleft openended due to the complexity of the
topic. Closeended evaluation opredefinedfactors was consideredut later deemed
unfeasiblesince the questionnaire could have bew® repetitive and taunting érsome
significantfactorscouldhavebeenleft outof considerationHowever thegeneral categories
for the factors were on display to arouse considerafibese categories originated from
Clarkeet al.(2012)comprehensive literature reviewwhich trey identified 44 situational
factors that affect the software development proffégsire B). These factors are grouped
into eight different categories as depicted in Tdbl&lso, these factors are further died
into subfactors, totalling at 17different factors

Table 1 - Situational factors affecting the software proc&darke et al2012)

Category Description

Application Characteristics of the application(s) under development

Business Strategic and tactical business consideration

Management Constitution and characteristics of the software development
management team

Organisation Profile of the organisation

Operation Operational considerations and constraints

Personnel Consttution and characteristics of the nroranagerial persorel
involved in the software development efforts

Requirements Characteristics of the requirements

Technology Profile of the technology being used for the software developn
effort

41

Factors: 44

n
@

Sub Factors: 170

Akl e
@ 3 s
< S
T\ \E13 (L
® ° o €
2\ \z\l 0|8
% \% \%\2\%| & |&
(14 % \% \%\%\2\| 5|
’ ‘o \% \2\% :
BN\ \
- N\, gusiness 33
V
’2/0[[,,.9 'O(\
/] 13'\ -,
il e
b & % ity
Organ; & f& 00““06\
isati i i
sz] S/ Situational Factors \ %\ —— ¢ e
End-users : . S
18 g Affecting Th Devel
Prerequisites o) eC g e velopment Phase
— Software Process OePloyment prog
: e
1@ o aliy,
.‘eams % ég‘ 2 mp,
o s,
o o &, 7on
48 \ o s
<P %,
%\ %
& 2\ %\ 21
%\ %

36

webew3

A3

Factor Classifications: 8

Figure 19 Situational factors affecting the software progg€mnoret al.2016

The questionnaire was created with Google Forfilés was due to the company using
Google's organizational accounts. The questionnaire was anonymous but login with
organizational account was required to avoid duplicate responses podses outside the
target groupBeforedistribution the questionnae was pilot testedith one individual from

the target group to verifigs soundness. Thavitation for the questionnaire was put out via
email and subsequent reminders were sharedstant messaging application Slagke

target group consisted of &idividuals.The questionnaire was open fareoweek

The questionnaire received 17 answersthe one week 11 from developers, 4from
architects/specialis@nd 2from superiorsAll respondents had worked in web application

projects.10 respondents answenedh own words two combined the predefined categories
42

with own wordsandfour selected from the predefined categorise analysis focused on

the responses with own words.

The arswers were codeito categoriesthat naturally semed fit,and the occurrences of
similar answers werquantified The categorieoriginated from the datdut thework of
Clarke et al. (2012yndeniablyinfluenced the answers as well as ta¢egorizatin. With

such a limitedamount of responses, qudative analysiof the datavasnot the primary
interest The significance of the factors was based on the number of similar factors by
different respondents. As such, themberof similar factors was ointerest. Multiple
occurrences of similar factors further validate the significance of the factor.

Overall, he categorization of the answers veashallengelue tothe diverse nature of the
answersAll the responderst éoles were represented i@l the categories, which indicates
that no significant differenceswere due to therole demographicThe demographic
information of r e s p 0 nekmenehce dndicated thanost of the less experienced
respondents did not opt fanswersvith own words. Due to thienited number of responses
andthe consequentsk of identifying individuals the demographic informatiowas not
utilized in the analysis.

4.1.2 Semistructured interviews

The purpose of the serstructured interviewsin the context of the thesigs to exract
information on howweb-applications should be tested amolw different projectontexts
influence the way the testinghould be orchestrate@emistructured interviews enable
extracting various viewpoints in a shortmi period. Additionally, as thenterviewed
individuals stem from various backgrounds and experience levels, thatseatiired nature
of the interviewsenables all to answer with their best abibityd there is room for open

discussionThe anonymity of the interviews also encouragesliscuss matters unfiltered.

Nine individuals from the collaborating companyere interviewedfor the researchrhe

interview group consisted of specialisiigvelopersand project manager$he specialists
43

havea strong background in software devehoent ancalongwith full-stack development
activities they consult thedecisioamaking processes in the companihe professional
software engineeringiorkingexperience of the interviewed personaet¢rageat1l years.
Web application project experiemaveraged at 7 yearBhe interview duration ranged from
40 minutes to 80 minutes, averaging at 66 minditbs.interview material, recordings, and
noteswere destroyed after the analysias finalized.The intewiew structure isncluded in
Appendix 2.

The themes for the interviews were derived from the literature revieer Agile Testing
Quadrantby Crispin et al. (2009j)s the fundamental theoretical origin for the interview
structure.Additionally, the testing level modelas well as the overalltéirature on web

application testingnfluenced the theme$he interview themewerethe following

theoverall significance of testing,
testing levelgunit/ integratiory system,)
manuéand automatedystentesting

nonfunctional testing

= =2 A2 4 -

supportivepracticedor testing(ClI/CD andTDD)

Also, the interviews are focused ohow such themesre affectecby different project
contexts The different projectontexts are defined by the varsolactors extracted with the
guestionnaire. As the timespand esources for the researalere limited, the research
focused onlysomeof the most significant project factorshich were

Budget
Criticality
Schedule

Personnel knovihow

A =2 =4 4 -

Technology(availability and limitation3

44

4.2 Questionnaire on project factors that affect testing decisions

The questionnaireesultedin a wide range of significanproject factors that affect testing
decisions irtheweb application contexfs a result of the questionnaire analyBig factor

categoies were identified

Requirements
Technology
Development team

Management

= =/ =42 4 -3

Customer

Furthermorethefactorsthat occurred in two or more resg@saregroupednto Figure20.
Some of the factorsvere not distinguishable for specific categories and therefo
interpretation okuch factorconcerninghe most fitting categoriesasderived Figure 21
highlights tke recurrenceof budgetin the responses artde overall widespreadness of the

responses.

45

APPLICATION ‘. STAKEHOLDERS
Requirements Technology Devio;::?ent Management Customer
e H N
Budget [Availability] : Understanding the value of testing
L J | \ J
s B
Criticality { Limitations] - Know-how]
L J |
— |
Schedule : Testability
| S — :
Application '
Type :
Y
Application
Usability

Figure 20 Recurring &ctors affecting testing decis®ftom the questionnaire

O

S e —
Understanding the value of testin_
Application type —
Technology limitations _

Testability —

0% 10% 20% 30% 40% 50% 60% 70% 80%

Figure 21 Percentage ajuestionnairgarticipantgesponses containing the recurring
factors

46

The requirementsategoryis dominated by factors budgetriticality and scheduleThe
project budget was included ialmostall the responden srésponsesThe budget and
schedulewere commonlycombinedinto one responseHowever, one response also
identified the length of the project aseparatdactor. Some also specified that the budget

and schedule pressures and the lack dfbtinfluence testing decisions

Thecriticality of the system turned oud beone of the mossignificant factos. In addition
to the general criticality factor, other dimensions were also included, surhieality of
the applicatiorand criticality of the application for the customérhe fourth factorin the
requirements and applicatioalated categorys the application typeThemes such ahe
applicationbeing Ul or serverorientedand client or businesgargetedemergedwith this
factor. Also, the application usability needs seem to pdarple in the tesng decisions.
Further, sme of the singular responses inclagglicationsecurity,estimated lifespan and
therate of requirement changes.

The technology category consiststio¢ availablity of the testing frameworks and tools as
well as the limitatios that the development technology for the prajeatd introduceThe
know-how aspect is also preseasa lack of knowledge on testing tools and practices is
viewed asa significant facto. The development teafactor category iknow-how centric
Multiple answers shared the idea thie experience and knowledgé the individuals
influencing testing decisiondiccompanyinghe general answer on the factamefurther
specified that theleveloperknow-how on testings significant Some ofthe answerslso
went intotechnical details ahedevelopmentAs suchthe testability of the systeemerged

as a factor. This was deemasthe responsibility of thdevelopers.

The management agory consists adwide variety of factorsPrioritization, development
process ad preparedness to maintain tests and their operation are examigle®is that
are distinguishable for managememhemes on testingrchestration emergeds well
Sharedesponsibility and early planning of testidgsign, implementation and materiane
deemedsignificant The recognitiorof testing the most significant parts of the applicatson

also a factorln addition, the number gfersonnel involved in the prajeinfluence testing
47

decisions. According to he questionnaire, ustomesrelated factorsinfluence testing
decisions. In addition to the general customer ansageniple of more insightful responses
were given. Tie willingness of the customer as welllas level of understanding of software

developnentplays a part in testinglecisions

Additionally, some factors matched to multiple categories One of which is the
understanding of the benefits of testititat involves all stakeholder®ne of theeansvers
highlighted thdactor withanegative connotatiothat there is nanderstanding of the long
term benefits and value of testirfeurthermore, the knoswow of the individuals working
on the projecis of interest. Such factors concerned the experjémoeviedge and education
level of the management and development telaastly, singular responseasich as familiar

practicesand appropriateness of testing popped up.

4.3 Interviews on testingpractices inweb application projects

The following section sumarizes theénterviews onthetestingthemeshat were derived
from the liteature reviewDiscussions onignificance of testing, testing coverage in
different levels, automated and manual system testioigfunctionaltesting,and

supportive practicesa summarized.

4.3.1 Significance of testing

Overall thesignificance otestng web applications the researchyroupis considered to
be high The significance of testing web applicatioa stems from various aspects.
Fundamentally, testing enables/adidae thathe softwarés sound against the requirements
and itsquality mees$ the needs of the projedthe significance of testing is highlighted by
the fact thait enables to detect regressi@pecifically,in modernagile web application
projects the features are usuallgievelopedswiftly and built upon previous oneswhich
introduces the risk of breaking existing featurss such, ¢stingis viewed as a methdd
confidently introduce changes to the systesmich inherently is fundamental for agile

sdtware developmentin addition, a comprehensive set of welritten testsact as a
48

documentatiorof the system.Testing also enables the prodtwtadvanceechnically and
from the bugess perspective.

The significanceraries in different projeatontexs, but the benefits o$ystematidesting
aredeemed to be useful any kind of web application projecthis is pronounced by the
fact that the scopef ohe web applicationsould creeplnitially small project scope could
escalate in the future amdthout foundationally solid testingractices, thg@rojectprogress

could be deteriorated.

The complexity and criticality of the systemereconsidered tdurthersignify the needor
testing. In addition, web applications are used warious browser and peration
environments whichhighlights the testing needlhe nonfunctional aspects of web
applications are alsonderlined nowadays which requires validation of them with testing.
Some referred to the fact that the testing significance depends on hamtttie project is

on bugs and issues that emerge inlagpent. One intervieweeaalso discussedhat the

contractual liability for defectshould be considered in the testing decisions.

As to how much project effort should be allocatedtesting the answers varied from 10
50%. Thegenerally optimaéffort wasviewed to be at 20. Such aesting investment was
deemed worthy due to tbevarious benefitof testing Neglecting the testing during the
project execution had been proven costly on manysimes, which further justifies the
testing investmentlowever, smeargued thatoo extensive testingould limit the pace at
which the features are developeé@. thevelocity of the developmentt was highlighted
that customersin many casegxpectnew features and visible changes instead of quality
improvementsand validationAs such, fom the customer perspective, features are the key
deliverabls and the mainarget of the software development proc&sh a theme pushes
the testing into the salines.However, nowadays the customers are becoming more and
more educated about web application development which meangxpect better quality

products as a defaul

49

One of the key concepts in testing significance eemmedo be the accuracy diésystem
and feature specificatiofrcrundamentally, dsting is reliant on theequirements and their
acceptance criteriaVithout an accurate and specifidescription & how the system or

feature should work, the testing rherentlydifficult.

4.3.2 Testingcoverage in different levels

Overall, none of the testing levelsasdeemed less useful than others. Fundamentally, to
achieve high quality all testing levels should be coveré&thit and integration testingeve
referred ashe moreapproachable anegdistic met hod, especially in
such tests can banplemented by the developers and are easier to integrate to the
developmentprocess.The unit and integration tests are also, in most cases, cheaper to
implement and maintainGenerally the lower level testing was viewed aseaneficial
methodto validae the edge cases aasl such removieurdenfrom the testing at the higher

levels.

Interestingly, gstem and E2Besting are viewed to bring great value to the testing,
especially when @womated. System testing level was highlightexsince modern web
applications areusually complex singlepage applicationgnd are composd of several
componentsservices and often require many integratidiie main benefit of systefavel
testing wasdiscussed to be¢he ability to detect regression extremelfficiently. It also

essentiallythe easiest way test the functionalities of the system.

Additionally, ssome distinction was made between the backend and frontend of the web
applicationconcerningthe testing levelsGenerally the lower level testingn the backend

was viewed as straightforward and fundamental practicelowever, in the moderand
complex SPArontend, systentevel testing usually reveals isswficiently. Based on the
researh participants experiencesyiting too compleXow-levd tests for the frontend flow
should bggenerallyavoidedas they yield less value when compared to the implementation
cost. There is also a distinction on whether the web application is built fezmaih or it

is a legacy produckVriting low-level tess to existing software afterwards is difficult and
50

therefore for legacy applications the system testing level might be the only viable option.
With new products, thenclusion of lowerlevel tests isnherently easier as code is written

from scratch.

4.3.3 Automated and manual system testing

Optimally, most of the system testing effort should be automated and complemented with
manual testingHigh emphasis was put on automated system testirigramimizes the
manual labar and issues that arise from humdaetors.It was deemed to be the ¢
solution to detect regression efficienthy.great number of different use cases and paths in
the applications can be tested tonoudy during the developmenfutomation of the
functional tests cases enablesttist effort to focus on other aspeasch as necessary Ron

functional aspects.

However, the automated system testing els to be underutilized in modern web
application development. Many ress ontribute to thisFirstly, theinitial investmentin

setting up the infrastructure of automated system tessingigh Secondly,the test
implementationis usually labar-intensive. Thirdly, automated system testingquires
specific knowhow from the poject individuals.And finally, the benefits of autorted
system testing usualljquidate only in the londghaul Suchtradeoffs usually hinder the
utilization of automated system testiagdinitially, the manuatounterparfeels tempting.
However, vamus research participants discussed that many projects could have benefitted
from automated system testiimghindsight

Also, it was highlighted that great consideration is required as to when impiegntm
automated tests as in agilentext the featuresare often evechangingThe implementation
of anautomated systemestrequires high time investmeand as such theature kouldbe
stable before the implementation of such téatsh initially detailed requirements dast
stabilzation of the changingfeatures, the automatioprocessof the system testing is
streamlinedThe less maintenance the automated system tests require the meféectise

they are.
51

Manual system testing was discussed to be efficient in testing leiyhlylexscenaios that
arehard to automate or in cases where human execrgaps benefitEExamples of such
casednclude complex user interfaces and usability considerati©Optimally, the primary
function of manual system testing was be utilized as aomplemerdry method for
automated system testingith smaller emphasis. However, in variowgb application
projects most ofthe testing efforts still manualIn manual system testing, most loétissues
are humane. Human is rarely consistent in repetitive nhédadu@ur which leads to issues as
the testanight not be executedystematicallyevery time Further,especially if the feature
is tested by its developer, there could be ,dask of exertise or intereswvhich affects the

testingprocess

4.3.4 Non-functional testing

Generally, thanterviewees agreed thegsting of norfunctional aspects ad modernday
web application cannot be neglect8dme discussed that the customers are begomire
and more educated on such aspectsthatefore thespecific requrements towards nen
functional aspects of the application are aot of the ordinaryThe research participants
highlighted especially security and p#ormance #ributes of theapplications Some
participants referred to the fact that in the companytestnservice and user experience
design are stronglpdvocated and integratedtanthe software development process and
therefore the usabilityaspectsusually require less consafation. Additionally, some
discussed thamost ofthe usability issues anasually identified during the development
processi especially if the teanknowst h e a p s Ibusineast domanTde usability

concerns are usually emphasized ifwebapplicaion istargetedor the masses.

The security aspects nfoderndayweb apfication wereconsideredctritical. Usually, in the
simplestof anapplication there isauthenticatiorndpossibly various access levels and user
rights. As suchthe accesstottey s t e mdlisnited ta spacific individualBreaches in
the applicatn logic could jeopardize they s t data.dDgpending on the data criticality,
such aspects could lead to catastropgiinsequencesAlso, it was highlighted, thathe

seemingly external factors should not be underestimated. For examplepdfaional
52

setting, such as how securely and whdreh e s yserter andilatabases residell
contribute to the security of the systehdditionally, the research participants discussed that
the usage othird-party libraries could introduce security issues tosysem and as such
great care andonstant monitoring should be invested into the selection and utilization

process of such libraries.

As to discuss the performance aspedsiesreferred to the fact that modern web application
technologies are performaanid therefore many applications could handle a lot more traffic
with easeAdditionally, thevalidation ofbaselevel performance testing of web applications

was consideredo be quite straighforward in multiple casesln performance testing,
fundamenthy it is advisable to mimic the expected production environments and datasets
during the developmento avoid issues in the productiofhe expected number of
concurrent userand the expected sizes of the databases were discussed to be key indicators
of how beneficibperformance testing is.

The challenges of nefunctional testing are manifolth most cases, the functional aspects
of web applications are usually the primagst targetsThis usually leaves the nen
functional aspects to the sidelin@$ie research participants advocated that efficient testing
of the nonrfunctional attributes of the system requspecialoutlook andexpertiseon
software developmentHowever, in web application projectwith educated project
membersthe base level tasg of such attributess usually coveredduring the functional
testing It was discussed that many of the ffanctional issues can be idemgd during
manual testingvith an educated pair of eyedl/ith special tooling an@utomation,non
functional teshg can be brought to a more advanced lexetomation of norfunctional
testingis difficult since every attribute requsdlifferent tools ad associated expertise.
Therefore, a moradvanced noifunctional testing setug in most casesostly and thexfore
rarely utilized.

As a summary, theonfunctional aspects of the web application boil down telwaving a
sound design andonstantmonitoring. Most of the issues can be avoided when the non

functional aspects areonsideredduring the planning ahdesign of the web application.
53

Consegently, nonitoringof the nonfunctional aspects of the software shouldrtegrated
into the software development process identify the possible issuesarly. In a more
advanced noffunctional testing setup, it islesirable tomake thenumbers such as
performancemetrics visible for the project team tdurther monitor the statef the

application.

4.3.5 Supportive practices

Continuous integratioand deployment weneeferred to be highly significant supportive

pradice for testingThe research participants agreed #&tng up a continuous integration
pipeline should balmostan automatonl t was di scussed that on
oncebd type of pr oj ec t-gpelinecduldbeioitialyttoo loigh.Thee t t i r
more complex the build and test procett® more beneficial it isln addition, it was
discussed that the bigger the development tmaghithe more releases are expedieel more

critical Cl is. The benefits of continuous integrati@me abundant. Firstlysetting up
continuousintegration saves time. Manual deploymeate usually a hassle amwith
automation the humane errorgluring the deploymentan be avoidedSecondly, the
continuous integration pipelimaotivates to st updifferentenvironments for development,

testing ad deploymentand generallyto deploy smaller changes a time As such the

system configurationsind environmentsare managed during the developmend the

manual testing is facilitated with eas€l-pipeline also acts as sedikplanatory
documentatiorof the build and deployment proces®r example,n caseswhereproject

member composition changes doag-standingproject in a maintenancggerational phase
requires further developmensuchsetup is helful. Finally, the continuous integration

pipdine facilitates the continuous execution of the automated tests.

The research participantsd rarely utilized the practice of teliven developmenSome
discussed that the timing of writing leMvel testss highlydependenon t he devel
practices and whether the requirements are stable. Fundamentally, the key point is to write
the testd regardless of whether it's before or after the feature implementekovever,

most of theparticipants discugsl that TDD is essetially a sound practice but requires
54

expertise and certain type of project settingssentially, the practice leads to high testing
coverage However, therequirements and design of the system/feataust be highly
accuratego enablehe development taa to write and design the tests beforehakslsuch,

it was discussed the more realistic use cases for the utilization of TiDEweb application
contextrelateto standardized components anterfaces Generally, the backend logis
usually more fiting for the practices of teskriven developmentAdditionally, some
advacated thatthe utilization of practice such as testven development requires the
collaboration andnvestment of the whole development teatmch further highlghts the

needfor skilled project members.

Various other practicesere discussed that support testing. Firgtygn a smaliesting plan

was discussed to be the fundamental foundation to esgblematic testing. The testing
plan should include the t#&sg focus areaandresponsibilitiesandhow testing is integrated

into the sprintand developmenithe testing plan should be revised and monitored during
the project executiorin addition, the project budget and schedule should account testing
right from start Especially in software consulting contettie salesdeal formulationis
essential in enablinggsting to be considered in the project scégso, atthefeature level

the task estimations shoulttlude the testing effoeind the type of teisty.

Seondly, the management ofenvironments is criticalinclusion of separate testing
environment(s) essentially streamlines the development and testing psessially, if
the application deployments are customsgecifig the significance of progr enviranment
managemenncreasesThirdly, the utilization of peer reviews a straighforwardand an
efficient way to further validate the application. Finally, tm@nitoring of testing could
enhance the proces$iowever, in generalthe research pacipants downplayed the
traditional testing coverage metrics and advocatedocus on monitoring whether the
development team is testing the right things whiiright means.

55

