

LAPPEENRANTA-LAHTI UNIVERSITY OF TECHNOLOGY LUT

School of Engineering Science

Software Engineering and Digital Transformation

Masterôs Thesis

Ville Hartikainen

DEFINING SUITABLE TESTING LEVEL S, METHODS AND PRACTICES FOR

AN AGILE WEB APPLICATION PROJECT

Examiners: Prof. Jari Porras

 Associate Professor Ari Happonen

Supervisors: Associate Professor Ari Happonen

 M.Sc. (Tech.) Ilkka Toivanen

ii

ABSTRACT

Lappeenranta-Lahti University of Technology

School of Engineering Science

Software Engineering and Digital Transformation

Ville Hartikainen

Defining suitable testing levels, methods and practices for an agile web application

project

Masterôs Thesis 2020

84 pages, 22 figures, 1 table, 2 appendices

Examiners: Prof. Jari Porras

 Associate Professor Ari Happonen

Supervisors: Associate Professor Ari Happonen

 M.Sc. (Tech.) Ilkka Toivanen

Keywords: web application, testing, testing definition

This thesis discusses how to define suitable testing levels, methods and practices for an agile

web application project. Literature review, questionnaire and semi-structured interviews

were selected as the research methods. The research is conducted in collaboration with the

product creation services unit of Visma Consulting Oy. In the research, the factors that affect

testing decisions in web application projects are identified and the suitability of different

testing practices for different project contexts are modelled by investigating the benefits and

drawbacks of the practices. The research concludes that project budget, criticality, schedule,

personnel know-how and complexity especially affect testing considerations. In the

definition of suitable testing practices, risk analysis and direction of the available resources

to the critical parts of the application, are essential. The research highlights the definition of

a testing plan, utilization of a wide range of testing methods and supportive practices. The

results of the thesis can be utilized in the companyôs subsequent projects and the

development of testing maturity.

iii

TIIVISTELMÄ

Lappeenrannan-Lahden teknillinen yliopisto LUT

School of Engineering Science

Tietotekniikan koulutusohjelma

Ville Hartikainen

Sopivien testaustasojen, -menetelmien ja -käytänteiden määrittäminen ketterään

web-sovellus-projektii n

Diplomityö

84 sivua, 22 kuvaa, 1 taulukko, 2 liitettä

Työn tarkastajat: Professori Jari Porras

 Tutkijaopettaja Ari Happonen

Työn ohjaajat: Tutkijaopettaja Ari Happonen

 DI Ilkka Toivanen

Hakusanat: web-applikaatio, testaus, testauksen määrittäminen

Tässä työssä tutkittiin, kuinka määritetään sopivat testaustasot, -menetelmät ja -käytänteet

ketterään web-sovellus-projektiin. Työn tutkimusmenetelminä käytettiin

kirjallisuuskatsausta, kyselytutkimusta sekä puolistrukturoituja haastatteluja. Työ

toteutettiin yhteistyössä Visma Consulting Oy:n tuotekehityspalveluyksikön kanssa.

Tutkimuksen tuloksina tunnistettiin web-applikaatioprojektin testauksen määritykseen

vaikuttavia tekijöitä sekä mallinnettiin eri testauskäytänteiden hyötyjen ja haasteiden kautta

niiden soveltuvuutta tietyn tyyppisiin projektikonteksteihin. Työssä havaittiin projektin

budjetin, aikataulun, kriittisyyden, henkilöstön osaamisen sekä kompleksisuuden

vaikuttavan erityisesti testaukseen. Sopivien testausmenetelmien määrityksessä oleellista on

arvioida projektin riskit ja keskittää käytettävissä olevat testausresurssit tärkeisiin kohteisiin.

Työn tuloksina korostuu testaussuunnitelman laatiminen, laaja-alainen kehitysprosessiin

integroitu testaus sekä testausta tukevien käytänteiden hyödyntäminen. Työn tuloksia

voidaan hyödyntää yrityksen tulevissa projekteissa sekä testauskäytänteiden kehittämisessä.

iv

ACKNOWLEDGEMENTS

Firstly, I would like to thank Ari Happonen and Ilkka Toivanen for brilliant guidance on my

academic endeavours. I would also like to express my gratitude for the management of the

PCS unit of Visma Consulting Oy for enabling me to conduct the research and to constantly

learn more about software engineering. Many thanks to all the research participants for

devoting their time and expertise. Last by not least, I would like to thank all the members of

my family for the continuous support.

1

TABLE OF CONTENTS

1 INTRODUCTION ... 4

1.1 GOALS AND DELIMITATIONS ... 5

1.2 STRUCTURE OF THE THESIS ... 6

2 AGILE SOFTWARE DEVELOPMENT AND TESTING 7

2.1 OVERVIEW OF AGILE SOFTWARE DEVELOPMENT ... 7

2.2 TESTING IN AN AGILE ENVIRONMENT .. 9

2.3 AGILE TESTING LEVELS, ACTIVITIES AND SUPPORTING PRACTICES 15

2.3.1 Agile Testing Quadrant .. 15

2.3.2 Testing levels .. 17

2.3.3 Supportive practices .. 23

2.4 TESTING MATURITY LEVELS .. 25

3 WEB APPLICATION DEVELOPMENT AND TESTING 28

3.1 OVERVIEW OF WEB APPLICATIONS .. 28

3.2 WEB APPLICATION DEVELOPMENT .. 30

3.3 WEB APPLICATION TESTING .. 33

3.3.1 Testing levels .. 35

3.3.2 Performance-, load- and security testing .. 37

4 EMPIRICAL RESEARCH .. 39

4.1 RESEARCH METHODS AND BACKGROUND ... 39

4.1.1 Questionnaire ... 40

4.1.2 Semi-structured interviews .. 43

4.2 QUESTIONNAIRE ON PROJECT FACTORS THAT AFFECT TESTING DECISIONS 45

4.3 INTERVIEWS ON TESTING PRACTICES IN WEB APPLICATION PROJECTS 48

4.3.1 Significance of testing .. 48

4.3.2 Testing coverage in different levels ... 50

4.3.3 Automated and manual system testing ... 51

2

4.3.4 Non-functional testing .. 52

4.3.5 Supportive practices .. 54

4.4 INTERVIEWS ON PROJECT FACTORS IMPACT ON TESTING 56

4.4.1 Budget .. 56

4.4.2 Criticality ... 56

4.4.3 Schedule ... 57

4.4.4 Know-how .. 57

4.4.5 Technology ... 58

4.5 OTHER THEMES THAT EMERGED DURING INTERVIEWS .. 59

4.5.1 Testing culture ... 59

5 DISCUSSION ... 60

5.1 DEFINING TESTING PRACTICES FOR AN AGILE WEB APPLICATION PROJECT 60

5.1.1 Project factors affecting testing decisions ... 60

5.1.2 Defining suitable testing practices for an agile web application project 61

5.2 RELATION TO THE LITERATURE ... 62

5.3 SOFTWARE DEVELOPMENT PROCESS CONSEQUENCES ... 64

5.4 MANAGERIAL IMPLICATIONS .. 64

5.5 RESEARCH LIMITATIONS ... 65

5.6 FUTURE RESEARCH DIRECTIONS .. 65

6 CONCLUSION ... 67

7 REFERENCES .. 69

APPENDICES

3

LIST OF SYMBOLS AND ABBREVIATIONS

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CD Continuous Deployment

CI Continuous Integration

CSS Cascading Style Sheets

DevOps Development & Operations

DoD Definition of Done

DOM Document Object Model

E2E End-to-end

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

OWASP Open Web Application Security Project

SPA Single Page Application

TDD Test-Driven Development

UI User Interface

XML Extensible Markup Language

XP Extreme Programming

XXS Cross-site Scripting

XXE XML External Entities

4

1 INTRODUCTION

In the domain of software product creation services and consulting, the projects handed out

by customers, are diverse. It is a complex task to define a suitable testing level and supportive

practices for each of them. The diversity of the projects is due to their characteristics, such

as requirement complexity, estimated lifecycle and risks (Clarke et al. 2012). In addition,

utilization of agile development practices introduces the challenge of integrating the testing

activities to the iterative development process and shorter release cycles. Testing setup also

controls to what extent the agile practices, such as continuous software development, can be

utilized (Mäkinen et al. 2019). The domain of software testing is widely popular in academic

research and there is a multitude of studies and publications on the theoretical background

of software testing. The industry practitioners have also laid out models that outline and

discuss the optimal testing setup (Cohn 2009; Fowler 2012; Mimick 2014). However, the

modelling of suitable testing activities on project-basis in software consulting context

remains quite unresearched.

The decisions on the agile software projectsô testing setup are often based on expert

knowledge and previous experiences (Drury-Grogan et al. 2017). The quality of these testing

level decisions might result in under-testing or over-testing the software product. Both of

which have consequences to the success of the project, former more critically, as undefined,

unclear or insufficient testing scope might result in low-quality software product or extended

project timeline. (Patton 2005) The success of the project from the business perspective

revolves around delivering a fit product with enough quality within the scale of the budget.

Therefore, it is of the essence to succeed in scaling the testing activities to a suitable level

within the project and product context. (Black 2009)

Digitalization has transformed various industries. Existing operations are modernized and

digitalized by using the latest technologies and mediums. (Kortelainen et al. 2017)

Consequently, we are surrounded by web applications, some of which are handling critical

business functions and sensitive user information, others require a high level of quality to

5

compete in the market. On the other hand, some web applications are less critical and benefit

from rapid release to the market. Testing web applications is a difficult task due to their

varying complexity and diverse features (Brandon 2008). Layered architecture and

technological instability further convolute the development and testing activities (Kappel

2006). In such a context, consideration of the testing setup is paramount.

1.1 Goals and delimitations

The main objective of this thesis is to conduct academic research on how to select suitable

software testing level and to identify methods and practices that support testing of an agile

web application software project. To support achieving the research object, the following

research questions will be answered:

1. Which project factors should be taken into account when considering the testing level of

web application in an agile environment?

2. How to define sufficient testing level for web application projects relative to these project

factors?

As an outcome of this thesis, the significant project factors affecting testing decisions in web

application projects are identified and consideration of suitable testing activities relative to

these project factors is produced. The research is conducted in collaboration with Visma

Consulting Oy, more specifically with its Product Creation Services (PCS) unit. The unit

is offering software product creation services in various fields and working on multiple

diverse and often fast-paced agile software projects concurrently. Based on the information

gathered during the research, a model is constructed, that supports the decision-making of

testing activities in future web application development projects in Visma Consulting Oy.

Academically, the thesis contributes to modelling and discussing current industrial practices

and issues in the field of software testing.

6

1.2 Structure of the thesis

Section 2 outlines the high-level project context of the thesis, agile software development,

and discusses the testing considerations and activities that are of the essence according to

literature. In Section 3 an overview of the application context of the thesis, web application

development, is given and the general testing considerations in the web application context

are discussed. Section 4 presents the empirical research for the thesis. Section 5 is reserved

for synthetization and discussion of the research results. Finally, in section 6, the research

conclusions are presented.

7

2 AGILE SOFTWARE DEVELOPMENT AND TESTING

The following chapter discusses testing in agile software development context. The chapter

outlines the testing levels, methods and practices that are depicted in literature. Also,

testing maturity levels are discussed.

2.1 Overview of agile software development

Agile Manifesto (Agile Manifesto 2001), published in 2001 by a group of software industry

figures, outlined the general values and principles of agile software development. In agile

software development, the following core values are of the utmost importance:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

To this day, a wide range of different agile software development methodologies and

frameworks have emerged and evolved, such as Scrum, Kanban, Xtreme Programming (XP).

All these different methodologies and frameworks cherish the agile values and therefore aim

to focus on delivering valuable software to customers. (State of Agile 2019) The key

principles of agile software development focus on team and customer collaboration, iterative

development and shortening the release cycle. By these means, agile software development

responds to change. (Agile Manifesto 2001)

For comparison, in traditional software development, there are clear, structured and

documented phases for planning, designing, implementing, testing and deploying the

software. Moving to the next phase requires the completion of the previous. If the project

goals and customer needs are not clear at the beginning of the project, the traditional

approaches might not work. In agile software development, these phases are completed in

8

iterations with short intervals (Figure 1). The iteration length often varies from one to four

weeks. Iterativeness and continuous feedback cycle with the customer enable the project

team to respond to changes. (Douglas 2016)

According to the respondents of 13th Annual State of Agile survey (State of Agile 2019),

agile software development is wildly popular in the software industry and continuously

adopted by organizations. Only 4 % of the respondents did not have agile teams in their

organization. Scrum-framework is currently the leading agile process framework in the

industry. However, in practice, it is not uncommon to organize the day-to-day agile software

development by combining activities from several methodologies and frameworks to so-

called hybrid methodologies. By adopting agile methodologies and practices, teams are

trying to accelerate software delivery, manage frequently changing requirements and

increase productivity. The main benefits of developing software in an agile manner include

the ability to manage changing priorities and to improve project visibility and business/IT

alignment.

Iterativeness of agile software development has created a need for extensive automation of

quality assurance and release pipelines to achieve high-quality and continuous workflow as

well as releases. In DevOps (Development & Operations) methodology, development and

operations, depicted in Figure 2, are integrated and exercised as a joint effort. (Kvhan 2017)

Emphasis shall be put on automating development and testing activities as well as

Figure 1 Agile development cycle (Goodman 2019)

9

configuration and environment management. To achieve such feats, practices such as

continuous integration and deployment are embraced. By such means, higher-quality

software is developed and released with ease. (Toivanen 2019)

Figure 2 DevOps (Kvhan 2017)

2.2 Testing in an agile environment

Testing is an integral part of software quality assurance. Testing is an activity that aims to

detect failures in the systemôs code or architecture. (Casteleyn et al. 2009, pp. 255-292)

Planning of the testing level and completeness of the testing activities are driven by the initial

risk assessment. Each software system has an acceptable level of quality, meaning that the

software type and project context dictate the requirement for testing completeness. In

general, testing activities aim to validate product quality and mitigate project risks. (Graham

et al. 2008; Hambling 2010) The ISO (ISO/IEC 25010: 2011) software product quality

characteristics (Figure 3) outlines the necessary aspects for quality evaluation and

consequently guide the testing activities.

10

Figure 3 Software product quality characteristics (ISO/IEC 25010: 2011)

According to Patton (2005), there is an optimal testing effort for every software project

(Figure 4). The aim of the project management viewpoint is to hit the optimal testing effort

during the project execution. An additional layer of complexity is introduced by the fact that

testing influences all conflicting areas in project-level; time, costs and quality (Kappel 2006,

pp. 173). In Blackôs (2009) view, especially in agile software projects, the amount and

rightness of features is another dimension that further convolutes the context of testing, as

depicted in Figure 5.

11

Figure 5 Project elements (Black 2009)

An organization can define its testing activities formally on a high level with testing policy

and strategy as well as on project level via test plans (Kasurinen 2010). If testing policies

and/or strategies are defined, they guide the definition of the project-specific plans

Figure 4 Software project test effort (Patton 2005, pp. 40)

12

(Veenendaal 2019). In Kasurinenôs (2010) study of multiple software organizations, it was

concluded that two different approaches exist for test plan definition, design-based and risk-

based approaches. In addition, changes to the testing process are often triggered by the need

to correct problems instead of developing the process for quality and efficiency attributes.

Defining the testing objectives, scope, approach and focus of the testing activities is a

necessity to enable the project team to deliver a high-quality product in the given timeframe.

However, in agile development, the objective is not to deliver comprehensive and detailed

test documentation. Instead, the focus should be on outlining and defining the necessary

testing activities for the project in the project initialization phase. (Crispin et al. 2009, p. 86-

88) The documentation for the testing activities at a high-level is viewed to be essential in

an agile environment. The high-level testing plan should discuss the testing levels, types and

quadrants that shall be exercised during the project execution. (Veenendaal 2019)

Formulating such a testing plan is not easy. Context dependency and project unpredictability

are key factors why the initial testing plan definition is a challenging process that requires

judgment and skill. (Crispin et al. 2009, pp. 107) As such, the project execution should be

monitored, to identify the possible need to change the initial testing approach (Veenendaal

2019).

Van Den Broek et al. (2014) research focused on testing in agile companies and proposed

best practices for agile testing based on industry experiences. In the proposal, the first

iteration of an agile software project should be allocated for preparation for the project. A

testing plan should be formulated in conjunction with product characteristics and risks.

Strategies for defect management, test automation and regression testing shall also be

considered early on. Testing environments, as well as tooling, shall be put in place swiftly

and early as possible to mitigate the possible risk of postponing the testing responsibilities,

thus creating an unnecessary delay between the development and testing activities.

Furthermore, the general recommendation is to include at least one tester per project to

maintain product quality and to emphasize the customer perspective from inside the team.

Discussion of such topics early in the project initialization phase is beneficial from the design

13

and coding standpoint, especially if the testing need for the load, performance, security,

usability and reliability of the system are considered (Crispin et al. 2009, p. 18).

Automation is one of the key concepts in agile testing (Crispin et al. 2009; Fowler 2012).

According to Van Den Broek et al. (2014) and Leotta et al. (2013) the decision to utilize or

not to utilize automation should be made early on, as automation yields more value the longer

it has been in place. This is emphasized in Figure 6 (Kyryk 2018). As the costs of

implementing test automation are hefty and automation practice efficiency is application

context-dependent, proper consideration on test automation utilization is necessary. As a

general guideline, it is proposed that test automation should be considered when the project

lif espan is at least 3 months. Test automation is also a test enabler, as for example load and

stress testing of the system is possible only via automation (Crispin et al 2009, pp. 103, 283).

In Kasurinen et al. (2010) research, it was discovered that only 26 % of the test cases in

software development organizations are automated. However, according to the State of

Testing survey (2019), three-quarters of the responders identify test automation & scripting

as part of their job, which indicates that the automation practices are adopted more and more.

Additionally, it was discovered that organizations are wildly different in regard to testing

automation employment as depicted in Figure 7 ï the majority of organizations have

automated 10-50 % of the functional test cases.

14

Figure 6 Time and cost of automated and manual testing (Kyryk 2018)

Figure 7 Test automation employment (State of Testing 2019)

15

In agile software development, maintaining the quality of the software product is continuous

and collective in nature. Testing is the responsibility of the whole team; any project

participant can act as a tester and complete tasks that have relevance to testing and product

quality. (Crispin et al. 2009, p. 9-15) In todayôs software development, agile methodologies

such as DevOps, further emphasize the necessity of implementing and exercising testing

activities continuously and sharing the testing responsibility within the team. According to

Veenendaal (2019), testing should be built into the iterations. Definition of Done (DoD) and

the acceptance criteria for the individual features should discuss the necessary testing

activities. These activities are usually derived from the high-level testing plan but depending

on the type of the feature, it could be necessary to consider the testing activities from other

viewpoints, such as non-functional requirements.

2.3 Agile testing levels, activities and supporting practices

In agile software development, delivering valuable software is the key concept. From the

testing perspective, evaluating and extracting the value of the software is achieved by

combining various testing methods and critiquing the product from different aspects.

Automation holds great value in agile testing literature, but the role of manual testing should

not be underestimated. To support the development and execution of an agile testing

portfolio, the utilization of supportive practices such as continuous integration and test-

driven development should be considered. (Crispin et al. 2009)

2.3.1 Agile Testing Quadrant

Agile testing quadrants (Figure 8) published by Crispin et al. (2009) divide the agile testing

activities into four different sections. Each of the quadrants holds different types and levels

of testing as well as enclose the supportive agile practices and methods. These quadrants can

be used as a guideline and reference for testing activity definition on a project or feature

level.

16

Figure 8 Agile Testing Quadrants (Crispin et al. 2009, pp. 98)

In the first quadrant, the focus is on developer-driven testing, including unit and component

testing. Tests in quadrant one should be automated, and the practice of test-driven

development should be emphasized. Testing in the first quadrant supports the testability of

the system as a whole and rewards with higher code quality. In the second quadrant, the

focus is on satisfying the user story acceptance criteria and general business conditions. This

quadrant includes functional tests, examples, story tests, prototypes, and simulations. The

testing activities in quadrant two drive the design of the system. Most of the technological

testing in quadrant one and two have great potential for automation as they should be

executed continuously to achieve quick feedback on the condition of the product. To enable

this, the practice of continuous integration should be used. (Crispin et al. 2009, pp. 97-108)

17

Activities in the third quadrant are focused on manual testing that validates the acceptability

of the feature or the system. The focus should be on exploratory testing and scenarios as well

as usability. User acceptance and alpha/beta testing could be utilized depending on project

type. The tests in the fourth quadrant are highly technical as they often are enabled by

automation and require special expertise as well as suitable tools. (Crispin et al. 2009, pp.

97-108)

2.3.2 Testing levels

Generally, in software development, testing can and should be executed on various levels.

There are usually three primitive testing levels depicted in literature; unit, integration and

system testing (Chemuturi 2011, pp. 71-72; SWEBOK 2014). It must be noted that, in

practice, the software testing terminology is convoluted and varies between practitioners and

organizations (Fowler 2018; Vocke 2018). This was evident during the literature review. For

example, the terms unit, integration and system level are in some contexts described as small,

medium and large tests (Android Developers 2019). Tarlinder (2016) underlines the fact that

even though the terminology might differ between practitioners and publications, the testing

concepts and categorizations remain similar.

The test pyramid, originally introduced by Cohn (2009) and later revamped various software

practitioners, is a representation of these testing levels and test quantity (Figure 9). By

implementing testing on various levels, the confidence in the system and its quality is

improved, debugging is made easier and the risk of introducing regression decreases, i.e.

breaking existing functionality by introducing new (Cohn 2009, 311; Fowler 2012; Vocke

2018). The test pyramid was initially developed to guide test automation effort but later it

has been expanded to represent and guide software testing effort in general. The general

principle of the model is to focus on building the testing effort from the ground up and to

emphasize automation. The activities described in the pyramid shall be automated. Unit tests

form the foundation as they are fast to develop and execute. The middle layer consists of

integration testing activities. The top layer consists of system-level testing. Lastly, all the

18

automated activities depicted by the pyramid should be accompanied by manual testing. The

further up we go in the levels and activities, the more costly and slow the testing is. (Fowler

2012; Scott)

Figure 9 Testing pyramid (Cohn 2009; Fowler 2012; Vocke 2018)

The opposite of the test pyramid, testing ice-cream cone (Figure 10), is viewed as an anti-

pattern that should be avoided. In this model, there are fewer unit and integration tests and

emphasis are on automated and manual functional testing through the UI. Similarly, as in

the test pyramid, cost and slowness increase as we move up in the figure. Consequently, in

this model large quantity of tests are costly to implement and execute. (Fowler 2012; Scott)

19

Therefore the responsiveness, maintainability and reliability of the test setup are diminished

(Vocke 2018). In practice, testing quantities at different levels vary on project and product

basis and might not exactly follow either of the models depicted in literature and by software

engineering practitioners (Contan et al. 2018).

Figure 10 Inverted testing pyramid (Fowler 2012; Scott)

Developer written unit tests enable identifying faults in the earliest phase. Testing the

smallest subsets of implementation constructs, such as functions, methods and classes, in

isolation allows verifying their expected operation. According to Stack Overflow (2019)

developer survey, less than half of organizations employ unit testing as part of their process

20

(Figure 11). In the integration layer, the testing range is wider as integrations happen on low-

level as well as in high-level. In component testing, the proper integration of units to form

larger entities, such as services and view components, are under scrutineering. (Crispin et al.

2009, pp. 109-127; Mark 2007) To verify specifically that the units and components are truly

operating correctly, isolation is key. Isolation can be achieved by mocking the included

dependencies, i.e. creating dummy implementations of the dependencies to avoid

introducing side effects to the testable unit or component. (Mark 2007; Vocke 2018).

Figure 11 Answers to question "Does your company employ unit tests?ò (Stack Overflow

2019)

Depending on the system, further integrations might be required. Integration testing refers

to the validation of interoperation between parts, services and modules of the system (Fowler

2018; Vocke 2018). In Fowlerôs (2018) view, integration testing has broad and narrow

scopes (Figure 12). In broad integration testing, multiple modules are active and in narrow

integration testing, other modules are substituted by test doubles or mocks.

21

Figure 12 Integration testing scopes (Fowler 2018)

For example, usual integration test targets are the interaction with databases, external

systems, larger modules and APIs (Application Programming Interface). Integration testing

activities require further effort as the need for planning increases and tests require the

implementation of test doubles and possibly the orchestration of live parts of the system,

such as database (Fowler 2012). Regardless of the terminology interpretation, the integration

layer of the pyramid is a widespread and important layer that validates the unit and

component interaction and therefore limits the extent and load on which the system level

end-to-end testing or manual testing is required (Vocke 2018).

Additionally, to verify the system operation as a whole, end-to-end (E2E) system testing is

required (Tarlinder 2016, p. 34). In automated or manual end-to-end testing, the

functionalities and usability of the system are verified by having all subsystems active, i.e.

all systems integrated (Vocke 2018). Production databases should be cloned or emulated to

mimic actual use-scenarios (Crispin et al. 2009, pp. 309). Automation of end-to-end tests is

depicted to be difficult and time-consuming (Crispin et al. 2009; Vocke 2018). Incorporating

all parts of the system, especially the GUI, to the testing, could result in fragile tests which

are no use (Vocke 2018). Consequently, as we can see from the pyramid (Figure 9), the

quantity of automated E2E testing should remain low. In end-to-end testing, the most

22

valuable user interactions should be mimicked (Vocke 2018). Additionally, consideration of

whether to execute E2E-tests automatically or manually is necessary. The decision on this

should be based on project risk and the coverage of unit and integration tests (Crispin et al.

2009, pp. 293).

Manual testing is a primitive testing type that enables defect detection and evaluation of the

systemôs functionality as well as usability. For manual testing, there are two fundamental

testing techniques described in the literature; test-case based and exploratory testing. In test-

case based testing the manual testing is orchestrated by pre-designed and well-documented

test-cases, i.e. scenarios. Therefore, the test execution is an easily reproducible and

mechanical task. Exploratory testing focuses on experimentation and learning instead and

do not emphasize test case documentation. In exploratory testing system is tested freely and

possible inconsistencies are followed and reported. (Itkonen et al. 2014) Usually, a certain

theme for testing is selected or testing is executed from the viewpoint of different user roles.

(Crispin et al. 2009, pp. 201-202) Exploratory testing is viewed as a more suitable manual

testing method for agile projects as it fits situations where product documentation is scarce,

features are changing rapidly, and the project is time-limited. The effectiveness of both

methods has been researched and there is no clear evidence of either being more effective in

detecting defects. However, due to its lightweightness, exploratory testing fits into a wide

range of projects and is proved to be efficient. (Afzal 2015; Itkonen et al. 2014) In the

software testing field, manual exploratory testing is viewed to be a time-effective and cost-

effective way to test a system. However, its effectiveness to detect regression is questionable.

(Ghazi et al. 2015)

According to Crispin et al. (2009, pp. 217-239), depending on the system, further validation

of its robustness could be beneficial. Performance, load and security testing enables to test

whether the system and its design are sound enough to fulfil the non-functional requirements.

Additionally, testing of the following aspects could be beneficial in some application

domains:

23

¶ Maintainability

¶ Interoperability

¶ Compatibility

¶ Reliability

¶ Installability

2.3.3 Supportive practices

Along with test automation, continuous integration and test-driven development are key

activities that support agile testing (Crispin et al. 2009). In continuous integration (CI), the

codebase is inspected, built and automated tests are executed continuously in build server on

every new merge to the mainline (Figure 13). These actions are taken to ensure that the

integration routine is executed at the build server instead of only at the developer machine.

Additionally, CI ensures that build stays green, i.e. possible faults are identified

automatically by the integration routine and the proposed code merge is rejected until the

identified issues are fixed. The effectiveness of continuous integration is based on the quality

of the integration routine. Comprehensive and rapidly executing test routine enables the

development team to efficiently get notified of integration faults, defects and regression that

might be introduced by new changes. (Fowler 2006; iClerisy 2019; Meyer 2014; Mårtensson

et al. 2017; Ståhl et al. 2013) Furthermore, continuous integration enables continuous

deployment (CD) as the builds that pass continuous integration routines are ready to be

passed for the deployment pipeline. In continuous deployment, the target is to achieve

automatic releases to the production environment. Continuous integration and deployment

have been adopted by software practitioners as according to State of Testing (2019) survey,

81 % of the respondents have employed some level of CI/CD-practices in their projects.

24

Figure 13 Continuous integration routine (iClerisy 2019)

The technique of test-driven development (TDD) can be utilized to support the

implementation of a comprehensive test suite. The purest concept of TDD defines that unit

and component tests should be designed and written before the implementation code.

Additionally, high testing coverage is emphasized. The usage of TDD is stated to result in

higher code quality and lower project cost. Although, there is evidence that its impact on

software development is debatable. (Borle et al. 2018, Karac et al. 2018, Mark 2007) This is

mostly due to the context-dependency, as in the real world, the tasks, application setting, and

developer skill vary (Causevic et al. 2012; Karac et al. 2018). For developers, the adoption

of TDD is experienced as difficult and chasing high coverage numbers might not better the

quality of the product (Mark 2007). Additionally, TDD might slow the development and its

adoption could be limited by not having clear design or requirements (Causevic et al. 2012).

Approaching legacy code with the practice of TDD is also found out to be difficult (Causevic

et al. 2011; Mark 2007) In practice, the benefits of TDD include confidence in system design

as the features are planned more thoughtfully to enable designing and writing tests prior

implementation. In addition, refactoring and changing code is more straight-forward as the

existing test suite can verify correct operation after changes. (Mark 2007)

25

2.4 Testing maturity levels

Various models for testing maturity levels have been laid out by the software engineering

community. Such models usually discuss the maturity of testing at five different levels.

Ammann et al. (2016) discussed the testing maturity in layman terms by referencing Beizer

(1990):

¶ There is no difference between testing and debugging

¶ The purpose of testing is to show correctness

¶ The purpose of testing is to show that the software does not work

¶ The purpose of testing is not to prove anything specific, but to reduce the risk of

using the software

¶ Testing is a mental discipline that helps all IT professionals develop higher-quality

software

In TMMi Foundationôs (2019) testing maturity model, the levels are called initial, managed,

defined, measured and optimisation. The model is process-oriented and as such more

traditional but the concepts are applicable to agile development (Veenendaal 2019). At the

initial-level, the testing process is unmanaged. To achieve managed-level, the testing

policies should be in place. In defined-level, the organization should have defined testing

standards and procedures to enable utilization of common practices in all of the projects.

Also, non-functional testing aspects are required to be considered. At measured-level,

measurement should be utilized to minimize defects. Lastly, the optimization-level requires

advanced utilization of the measurement to enhance the testing process. (TMMi Foundation

2019)

Recently, due to the emergence of the agile continuous software engineering practices, the

maturity of such operations has been modelled by a multitude of industry practitioners and

organizations. In continuous deployment maturity models, authored by Rehn et al. (2013)

and Mimick (2014), various aspects of continuous deployment are depicted. These models

26

are suited for identifying the current state of operations and support in the feat to advance to

the next level. In Mimickôs (2014) model the following five maturity levels are described:

¶ Base

¶ Beginner

¶ Intermediate

¶ Advanced

¶ Extreme

Additionally, such maturity model categorizes continuous deployment into four

components:

¶ Building

¶ Testing

¶ Deploying

¶ Reporting

The maturity levels of testing are depicted in Figure 14. In base level, the first steps towards

automated testing are taken by implementing some unit testing. The majority of the testing

activities still remain manual. At the beginner level, some of the integration tests are

automated, shifting the testing effort towards automation and the test portfolio consists of

fast tests. In the intermediate level, system testing effort swifts towards automation as critical

user paths are automated. At the advanced level, the test portfolio consists of automated tests

and is supplemented only by risk-based exploratory testing. Additionally, the non-functional

aspects of the system, such as performance and security, are validated by automated testing.

In such setup, the critical paths of the system are covered by automation and acceptance

testing, and consequently, continuous releases, are a breeze. Extreme level shares the same

characteristics as advanced level but emphasizes even more extreme testing coverage and

generation of usable information on expected business results. (Rehn et al. 2013; Minick

2014)

27

Generally, in testing maturity models, the overall testing coverage and the efficiency to

detect regression increases the more advanced the level. Consequently, the lead time to new

release decreases at each level as a more comprehensive test portfolio is executed

automatically and efficiently (Mäkinen et al. 2019). Such feats improve overall product

quality and contribute to the more efficient release process and continuous deployment

pipeline. From the models, it can be observed, that non-functional testing activities are

introduced at the more advanced levels.

Currently, according to Mimick (2014), the base level maturity is an industry-standard and

the intermediate level is the targeted level of operations in most software projects. As to

discuss the testing quantity models relative to the maturity model, the base layers go hand-

in-hand with the ice-cream cone model and the levels in the extreme-end follow the pyramid

model. As the former highlights manual testing and the latter encourages automation.

Figure 14 Testing maturity levels (Rehn et al. 2013; Minick 2014; Mäkinen et al. 2019)

28

3 WEB APPLICATION DEVELOPMENT AND TESTING

The following chapter outlines the general structure of web applications and the diversity

of the development processes and technologies. Furthermore, the literature on testing of

web applications is summarized.

3.1 Overview of web applications

Web applications are vastly utilized and complex systems that differ in functionality, scale

and characteristics. However, all web applications are accessed through the web browser.

(Brandon 2008, pp. 5; Kappel 2006 pp. 2-3) This is emphasized in the following definition

of a web application by Kappel (2006, pp. 2):

ñA Web application is a software system based on technologies and standards of the World

Wide Web Consortium (W3C) that provides Web specific resources such as content and

services through a user interface, the Web browserò

Web applications share the concept of client-server architecture and typically consist of three

logically separated layers (Figure 15): presentation, application and data layers (Kappel

2006, pp.73-74; Laine et al. 2011). The presentation layer defines what kind of views are

displayed in the browser and controls how the users can interact with the server via the

HTTP-protocol (Hypertext Transfer Protocol). The application layer contains all the

business logic for the system to function. It handles the HTTP-requests initiated from the

clientsô browser and queries the data layer to retrieve or store necessary information. The

data layer consists of the database(s), tables, views and the data access functionalities as well

as possible database logic or value manipulation with procedures and triggers. (JReport

2019; Mok et al. 2013)

29

Figure 15 Web application layers and examples of technologies (JReport 2019)

Web application shares various characteristics that make the development of these

applications difficult and different from other fields of software development. Web pages

can show static and dynamic content in many forms such as text, graphics, audio and video.

Web applications are often targeted for large userbases and the users are using the

applications on various screen sizes in varying networks. Data intensity of the applications,

i.e. content and database-driven nature of the system introduces also introduces concerns on

security and privacy aspects. (Murugesan 2008; Arora et al. 2012)

30

3.2 Web application development

Web application development is characterized by involving an abundance of programming

languages, concepts and frameworks. (Murugesan 2008; Casteleyn et al. 2009; Doyle et al.

2017) It is also typical to utilize existing libraries and tools to speed up the development and

to avoid re-writing solutions to already solved issues, i.e. reinventing the wheel. (Kaluza et

al. 2019) The wide range of these libraries and tools are open-source and therefore extremely

accessible. (Alenezi et al. 2016; Vemula 2017) The shift pace at which these languages,

libraries and frameworks evolve, is also one of the key characteristics of web application

development. Due to the constant and rapid changes in the technological foundation, web

application development emphasizes the knowledge and experience of individuals instead

of standardized practices (Brandon 2008, pp. 5-7).

The trends in the tooling interest and adoption change year-by-year and some of the

frameworks are more versatile and easier to work with than others as depicted in Figure 16.

(Stack Overflow 2019) These rapid and possibly unexpected changes in the adoption and

support for the specific framework could complicate the development and maintenance

processes. On the other hand, this rapid development and open-sourcing of the development

tools have made the creation of innovative solutions with web applications more accessible

(Vemula 2017). Identification of beneficial and suitable tools from the sea of options is

difficult (Kappel 2006, pp. 176; Kaluza et al. 2019).

31

Figure 16 Percentage of developers that are currently working and expressed interest to

work with the web framework in the future (Stack Overflow 2019)

To develop the presentational layer of the web application for the client browser, e.g. front-

end develop, HTML (Hypertext Markup Language) and CSS (Cascading Style Sheets) are

involved in structuring and styling the page templates. Dynamicity and underlying logic are

introduced to the web pages with JavaScript scripting language. (JReport 2019) In modern-

day web application development, the presentational layer is often developed by utilizing

CSS-frameworks and JavaScript libraries/frameworks. Several open-source CSS-

frameworks exist, such as Bootstrap, Foundation and Materialize CSS. Additionally, often

CSS pre-processor, such as Sass or Less, is used to extend the basic CSS-functionalities.

(State of CSS 2019) The most popular JavaScript front-end frameworks/libraries currently

include React, Angular and Vue.js (Hlebowitsh 2019). These front-end frameworks enable

and facilitate the creation of single-page applications (SPA). In single-page applications, the

page reloads are minimized as the application state and logic stored in the browser. The state

is manipulated by executing asynchronous AJAX (Asynchronous JavaScript and XML)

32

API-calls under the hood and state changes are reflected dynamically to the web page with

client-side rendering. With server-side rendering, dynamic web page content is constructed

in the server, based on user navigation and input. In todayôs web development, client-side

rendering is utilized in the highest degree due to its capabilities to create more complex,

interactive and fluid applications. (Sun 2019, pp. 141)

In application and data layer development, e.g. backend-development, various options are

available. Several commonly used programming languages suit well to backend

development, such as Python, PHP, Java and JavaScript to name a few. (Web Developer

Roadmap 2019) Backend frameworks, such as Django, Laravel, Spring and Node.js

respectively, form an ecosystem on a language basis that enables rapid and efficient backend

development. (Kaluģa et al. 2019) The data layer can utilize relational, such as PostgreSQL

and MySQL, or non-relational database systems, such as MongoDB and Cassandra, or both

in tandem. (Web Developer Roadmap 2019)

In addition, based on the application requirements and architecture, the technology stack can

be enhanced with various other tools. For example, data caching solutions exist, such as

Memcached or Redis. In data caching pre-fetched datasets with high relevance are stored in

the application layer to improve server response times (Mertz et al. 2018). To run the web

application on the server, a web server, such as Apache or Nginx, is also required. (Web

Developer Roadmap 2019) It is common to utilize containerization and cloud-based virtual

environments to host the applications. With such means, the deployment process,

configuration management and scalability of the application are enhanced. Cloud computing

services include actors such as Google App Engine, Microsoft Azure and Amazon AWS.

(Albrecht et al. 2017)

A combination of these various programming languages and frameworks is referred to as

technology stacks. The selection of framework or programming language for each of the

web application layers is profound as the decisions dictate the development ecosystem and

suitable tools. The diverse technology stack of Air bnb is displayed in Figure 17.

33

Figure 17 Technology stack of Airbnb (StackShare 2019)

3.3 Web application testing

Back in the day, testing of web applications was often retroactive, i.e. testing was initiated

after issues or limitations were confronted (Murugesan 2008). Currently, web applications

are targeted by even stricter quality requirements as the applications are more complex and

handling critical aspects of our day-to-day lives (Fasolino et al. 2013). Consequently, the

broad employment of web applications across various domains and the tendency of having

short release cycles further amplify the need to carefully consider especially the structure of

quality assurance practices (Leotta et al. 2013).

34

Testing web applications is complicated as there are various browsers and operating

environments involved (Arora et al. 2012). Currently, there are various noteworthy actors in

the browser market as displayed in Figure 18. The current market leader is Chrome with a

market share of over 50 %. Numerous browser possibilities introduce complexities to testing

as not all browser engines render content similarly or support all functionalities. This is

emphasized as some applications might require support for old, i.e. legacy, versions of the

browsers. In addition, websites are used more and more with mobile devices which requires

responsiveness from the website content. (W3Counter 2019) The compatibility of the system

for the different device and browser variants further emphasizes the need for usability testing

(Fasolino et al. 2013).

Figure 18 Browser market shares (W3Counter 2019)

In todayôs web applications views are rendered dynamically at runtime based on various

inputs from the server-side and client-side logic and therefore identifying the correct layer(s)

in which the defects are generated, is challenging. (Arora et al. 2012) This is emphasized

due to the vast incorporation of third-party libraries in the application code as there is no

guarantee of proper testing coverage and correct operation. Consequently, the inclusion of

third-party libraries could introduce faults into the system. (Alenezi et al. 2016) As stated by

Kappel (2006, pp. 133), the quality of web application is defined by the quality of the

individual components and their interactions. This emphasizes the fact that various testing

activities and levels should be practised to validate and improve application quality. The

focus shall be especially put on regression testing. Due to the expectation of rapidly evolving

35

requirements, feature changes might be abundant. Regression tests should be in place to

verify that the interaction with other parts of the system remains correct and subsequently

no new faults are introduced after changing features or implementing new ones.

3.3.1 Testing levels

To support identifying the defectôs layer and validating the quality of the application, each

layer should be tested individually as well as in cohesion. According to Torchiano et al.

(2011) research, the presentation layer of a web application is the most defect prone as about

50 % of web application defects trace to the presentational layer. This is speculated to be

due to the complexity of the presentation logic, immature testing tools and the special

execution environment of the web browser. As to discuss the test automation effort in a web

application context, research by Contan et al. (2018) showed that the test automation division

between unit, integration and UI-tests vary between web application projects and do not

necessarily follow test pyramid model (Figure 9). Although generally, the larger emphasis

was put on unit testing, it was observed that automation of functional tests through the UI

was avoided due to fragility of execution and low return of investment. Therefore, it is

necessary to consider test automation design on a product basis instead of following a model

religiously.

In the web application context, the logic is sprinkled to various layers. Therefore,

consideration of unit and component testing for all layers is beneficial. On the database layer,

unit testing tools are scarce. However, validating the correctness of schemas, queries and

procedures is key (tSQLt 2019). In the application layer resides most of the business logic,

therefore unit testing is important. In the presentation layer, unit and component testing

means range from verifying simple function implementation to comparing snapshots of

rendered DOM (Document Object Model) elements of a UI component in the browser, i.e.

snapshot testing (Jest 2019). The latter and more are made possible by modern SPA

frameworks and their tooling which enable conducting a wide range of user interface testing

via unit and component testing practices. Currently, in web application development the

36

languageôs standard or third-party libraries usually offer means to write and execute unit and

component tests efficiently. (Vocke 2018)

Integration testing refers to the activity of validating the operation of units in their

interactions. For example, this could include the activity of testing parts of application layer

logic against a test database or interface of third-party service. (Vocke 2018) In web

applications specifically, consideration of integration testing strategy and necessity is

paramount as the layer and component-based structure complicates data flow (Di Lucca, et

al. 2006). In addition, the introduction of actual dependencies, such as database, into the

testing routine slows down and complicates testing (Duskis 2019). According to Vocke

(2018), there could be a possibility that integration testing in web applications focuses on

wrong parts, i.e. testing the used frameworks instead of application code.

According to Vocke (2018) automated end-to-end testing of web applications is difficult,

especially through UI. Browser quirks, timing issues, animations and unexpected popups

complicate the testing process and a lot of time is spent on debugging the tests. Slow

execution time and high maintenance cost further steer testers to automate only the testing

of user paths that are considered most valuable. A wide variety of open-source and

commercial testing tools exists, that enables browser-based end-to-end testing automation.

According to Leotta et al. (2013), automated end-to-end tests are either programmable- or

capture-replay tests. In programmable tests, the test is programmed manually and in capture-

replay testing the tests generated automatically from a recording of user actions.

Consequently, the implementation time for programmable tests is higher but the

maintenance is easier and therefore with subsequent releases programmable tests triumph in

cost-effectiveness. These maintenance activities consist of responding to presentational or

logical changes of the user interface.

Manual end-to-end testing enables detecting system issues in a straight-forward, albeit in a

repetitive and possibly cost-inefficient manner, especially when considering complex web

applications. However, the detection of usability issues and smells is difficult without testing

the system end-to-end manually. (Grigera et al. 2017) Generally, usability testing begins

37

from the wireframe- and prototyping phases and extends to end-to-end testing. Depending

on the system and project context, alpha and beta testing, as well as user-acceptance testing,

could be viable options to further gain feedback and support end-to-end testing activities by

utilizing the end-users. (Crispin et al. 2009)

3.3.2 Performance-, load- and security testing

Performance of web application concerns all layers, database, application, and presentational

layers. According to Parzych (2016) and Loadster (2019), 80 % of waiting time is front-end

based and 20 % back-end based. However, such generalizations are context-dependent and

during peak loads, wait time ratio swifts more towards backend (Loadster 2019).

Additionally, the server and network infrastructure affect web application performance.

Structure of tables, the efficiency of database queries and complexity and efficiency of the

application logic as well as the server architecture define the pace and efficiency at which

the backend can handle requests originated from the users. (Parzych 2016) Furthermore, the

size of the front-end application bundle, e.g. template, script and media files, defines how

quickly users can interact with the system initially. In addition, general browser rendering

performance can be majorly affected by inefficient code and memory leaks. (Front-End

Checklist 2019) Mediocre performance imposes the possibility of users not reaching the

service, having long wait times or interacting with an unresponsive system.

By the means of performance testing, such issues can be identified, and performance

requirements validated. According to Matam et al. (2017) load testing allows inspecting the

performance of web applications. Load and stress testing focus on inspecting system

behaviour with different loads, such as expected or peak load. Consequently, load testing is

a mean to identify the systemôs maximum capacity, referred to as capacity testing. Web

application load testing tooling enables the execution of massive amounts of HTTP-requests

towards the application server and logging performance reports of them (Tikhanski 2018).

Additionally, front-end performance can be inspected with developer tools built-in to

browser or external software.

38

A wide variety of security issues haunt web applications. OWASP (Open Web Application

Security Project, 2015) is a community that provides information related to web security.

Currently, most fundamental security issues concerning web applications are:

¶ Injection

¶ Broken authentication

¶ Sensitive data exposure

¶ XML external entities (XXE)

¶ Broken access control

¶ Security misconfiguration

¶ Cross-site scripting (XSS)

¶ Using component with known vulnerabilities

¶ Insufficient logging & monitoring

These issues might arise from faulty design or implementation. These faults could be created

in-house due to neglecting security aspects or by exercising faulty third-party code.

Additionally, a faulty server configuration or software execution environment could

introduce vulnerabilities. (OWASP 2017) In security testing, the focus should not be in

penetration testing activities, e.g. trying to exploit the system and detect vulnerabilities.

Instead, possible security issues should be mitigated by taking security aspects into account

during design, development, deployment and maintenance stages. (OWASP 2015, pp. 24) A

wide variety of open-source and commercial tools are available that enable identification of

possible security issues. These tools support manual security testing, enable automatic issue

detection by static code analysis and inspecting executing software. (OWASP 2015, pp. 214-

216)

39

4 EMPIRICAL RESEARCH

In the following chapter, the construction, execution and results of the empirical research are

outlined. The qualitative multi-method research, consisting of initial literature review,

questionnaire and interviews, was conducted in April and May of 2020. Due to the COVID-

19 pandemic, the interviews were conducted remotely.

4.1 Research methods and background

The literature review of software development and testing in agile and web application

context is the theoretical background for the development of an empirical survey. The

empirical survey of the thesis consists of a questionnaire and interviews. According to Meyer

et al. (2001, pp. 4-5) expert judgement is a common method to model and solve technical

problems. It is especially suitable for interpreting decision-making processes and modelling

the current state of an issue (Meyer et al. 2001, pp. 4-5). Both of which are of high interest

in the context of the thesis. In an agile context, the level of cooperation is high, and testing

is a joint effort. Therefore, the evaluation needs to account for various viewpoints. Developer

and testing oriented project members, as well as project managers overseeing the operation,

all have experiences on benefits and possible issues of testing from different viewpoints.

The research findings of the thesis are qualitative. By researching with a multi-method

approach, triangulation is achieved. Triangulation is a way to increase the creditability of

qualitative research by utilizing various research methods (Cohen et al. 2007). The research

methods of the thesis, literature review, questionnaire and interviews, all contribute to the

understanding of the researched phenomenon. By combining various research methods and

consequently utilizing multiple sources of information, comprehensive answers to the

research questions and manifold discussion can be created.

The research process resembled waterfall, as the stages were completed consecutively.

Firstly, the phenomenon was researched from literature. Secondly, the most significant

40

project factors affecting testing decisions were extracted via questionnaire. Thirdly, the

literature review and the questionnaire results were utilized in the development of the semi-

structured interviews. After conducting the interviews, the collected data was analyzed and

conclusions, as well as discussion, were derived.

The data for the survey is acquired in collaboration with Visma Consulting Oy, specifically

in the context of its Product Creation Services (PCS) unit. Titled OCTO3 Oy before the

business acquisition by Visma Consulting Oy in 2017, the unit focuses on designing and

developing custom software solutions that cater to the various needs of both public and

private sector clients. Majority of the unitôs workforce of approximately 80 employees

consists of developer-oriented software engineers with varying specializations. These

developers are accompanied by sales and project managers as well as user experience and

service design professionals. Most of the software designed and developed by the unit is for

web or mobile platforms. Categorization of the projects that are executed at PCS is difficult

since the projects range from short-lived and small projects to multi-year projects with a

high number of involved personnel. Also, the company offers subcontracting. Knowledge

transfer has been emphasized in the unitôs strategy, as in fast-paced project work, it would

be beneficial to utilize the previously identified best practices and solutions in subsequent

projects. The research theme originated from such need and the target of the research is to

model the testing practices that are deemed worthwhile and to extract the information on

how the practices should scale within different project contexts.

4.1.1 Questionnaire

A questionnaire is a commonly used instrument in survey research. The questionnaire

instrument for the research was developed in conjunction with the best practices of

questionnaire development. (Trobia 2008, pp. 652-655) Additionally, the target was to create

as minimalistic questionnaire as possible to enable higher response rate. Questionnaires are

straight-forward to conduct and analyze and they reach a large audience with small effort.

These were the primary drivers why the factors were extracted via questionnaire. Also, the

41

questionnaire enabled every interested individual from the collaborating company to take

part in the research.

The conducted questionnaire is in Appendix 1. The questionnaire format consisted of

introduction, instructions, and questions. Three demographic questions were included.

Current role in the organization, as well as the experience in software industry and web

application development, of the respondent, were gathered. Only one primary question was

included. The primary question was open-ended and required to name five to ten most

significant factors that affect the testing decisions in web application projects.

The primary question of the questionnaire was left open-ended due to the complexity of the

topic. Close-ended evaluation of predefined factors was considered but later deemed

unfeasible since the questionnaire could have become repetitive and taunting and some

significant factors could have been left out of consideration. However, the general categories

for the factors were on display to arouse consideration. These categories originated from

Clarke et al. (2012) comprehensive literature review in which they identified 44 situational

factors that affect the software development process (Figure 19). These factors are grouped

into eight different categories as depicted in Table 1. Also, these factors are further divided

into sub-factors, totalling at 170 different factors.

Table 1 - Situational factors affecting the software process (Clarke et al. 2012)

Category Description

Application Characteristics of the application(s) under development

Business Strategic and tactical business consideration

Management Constitution and characteristics of the software development

management team

Organisation Profile of the organisation

Operation Operational considerations and constraints

Personnel Constitution and characteristics of the non-managerial personnel

involved in the software development efforts

Requirements Characteristics of the requirements

Technology Profile of the technology being used for the software development

effort

42

Figure 19 Situational factors affecting the software process (O'Connor et al. 2016)

The questionnaire was created with Google Forms. This was due to the company using

Google's organizational accounts. The questionnaire was anonymous but login with

organizational account was required to avoid duplicate responses and responses outside the

target group. Before distribution, the questionnaire was pilot tested with one individual from

the target group to verify its soundness. The invitation for the questionnaire was put out via

email and subsequent reminders were shared in instant messaging application Slack. The

target group consisted of 81 individuals. The questionnaire was open for one week.

The questionnaire received 17 answers in the one week: 11 from developers, 4 from

architects/specialists and 2 from superiors. All r espondents had worked in web application

projects. 10 respondents answered with own words, two combined the predefined categories

43

with own words and four selected from the predefined categories. The analysis focused on

the responses with own words.

The answers were coded into categories, that naturally seemed fit, and the occurrences of

similar answers were quantified. The categories originated from the data, but the work of

Clarke et al. (2012) undeniably influenced the answers as well as the categorization. With

such a limited amount of responses, quantitative analysis of the data was not the primary

interest. The significance of the factors was based on the number of similar factors by

different respondents. As such, the number of similar factors was of interest. Multiple

occurrences of similar factors further validate the significance of the factor.

Overall, the categorization of the answers was a challenge due to the diverse nature of the

answers. All the respondentsô roles were represented in all the categories, which indicates

that no significant differences were due to the role demographic. The demographic

information of respondentsô experience indicated that most of the less experienced

respondents did not opt for answers with own words. Due to the limited number of responses

and the consequent risk of identifying individuals, the demographic information was not

utilized in the analysis.

4.1.2 Semi-structured interviews

The purpose of the semi-structured interviews, in the context of the thesis, is to extract

information on how web-applications should be tested and how different project contexts

influence the way the testing should be orchestrated. Semi-structured interviews enable

extracting various viewpoints in a short time period. Additionally, as the interviewed

individuals stem from various backgrounds and experience levels, the semi-structured nature

of the interviews enables all to answer with their best ability and there is room for open

discussion. The anonymity of the interviews also encourages to discuss matters unfiltered.

Nine individuals from the collaborating company were interviewed for the research. The

interview group consisted of specialists, developers, and project managers. The specialists

44

have a strong background in software development and along with full -stack development

activities, they consult the decision-making processes in the company. The professional

software engineering working experience of the interviewed personnel averaged at 11 years.

Web application project experience averaged at 7 years. The interview duration ranged from

40 minutes to 80 minutes, averaging at 66 minutes. The interview material, recordings, and

notes were destroyed after the analysis was finalized. The interview structure is included in

Appendix 2.

The themes for the interviews were derived from the literature review. The Agile Testing

Quadrant by Crispin et al. (2009) is the fundamental theoretical origin for the interview

structure. Additionally, the testing level models, as well as the overall literature on web

application testing, influenced the themes. The interview themes were the following:

¶ the overall significance of testing,

¶ testing levels (unit / integration / system),

¶ manual and automated system testing

¶ non-functional testing

¶ supportive practices for testing (CI/CD and TDD)

Also, the interviews are focused on how such themes are affected by different project

contexts. The different project contexts are defined by the various factors extracted with the

questionnaire. As the timespan and resources for the research were limited, the research

focused only some of the most significant project factors, which were:

¶ Budget

¶ Criticality

¶ Schedule

¶ Personnel know-how

¶ Technology (availability and limitations)

45

4.2 Questionnaire on project factors that affect testing decisions

The questionnaire resulted in a wide range of significant project factors that affect testing

decisions in the web application context. As a result of the questionnaire analysis, five factor

categories were identified:

¶ Requirements

¶ Technology

¶ Development team

¶ Management

¶ Customer

Furthermore, the factors that occurred in two or more responses are grouped into Figure 20.

Some of the factors were not distinguishable for specific categories and therefore

interpretation of such factors concerning the most fitting categories was derived. Figure 21

highlights the recurrence of budget in the responses and the overall widespreadness of the

responses.

46

Figure 20 Recurring factors affecting testing decisions from the questionnaire

Figure 21 Percentage of questionnaire participants responses containing the recurring

factors

0% 10% 20% 30% 40% 50% 60% 70% 80%

Testability

Application usability

Technology availability

Technology limitations

Application type

Understanding the value of testing

Schedule

Know-how

Criticality

Budget

47

The requirements category is dominated by factors budget, criticality and schedule. The

project budget was included in almost all the respondentsô responses. The budget and

schedule were commonly combined into one response. However, one response also

identified the length of the project as a separate factor. Some also specified that the budget

and schedule pressures and the lack of budget influence testing decisions.

The criticality of the system turned out to be one of the most significant factors. In addition

to the general criticality factor, other dimensions were also included, such as criticality of

the application and criticality of the application for the customer. The fourth factor in the

requirements and application-related category is the application type. Themes such as the

application being UI or server-oriented and client or business targeted emerged with this

factor. Also, the application usability needs seem to play a role in the testing decisions.

Further, some of the singular responses include application security, estimated lifespan and

the rate of requirement changes.

The technology category consists of the availability of the testing frameworks and tools as

well as the limitations that the development technology for the project could introduce. The

know-how aspect is also present, as a lack of knowledge on testing tools and practices is

viewed as a significant factor. The development team factor category is know-how centric.

Multiple answers shared the idea of the experience and knowledge of the individuals

influencing testing decisions. Accompanying the general answer on the factor, some further

specified that the developer know-how on testing is significant. Some of the answers also

went into technical details of the development. As such, the testability of the system emerged

as a factor. This was deemed as the responsibility of the developers.

The management category consists of a wide variety of factors. Prioritization, development

process and preparedness to maintain tests and their operation are examples of factors that

are distinguishable for management. Themes on testing orchestration emerged as well.

Shared responsibility and early planning of testing design, implementation and material were

deemed significant. The recognition of testing the most significant parts of the application is

also a factor. In addition, the number of personnel involved in the project influence testing

48

decisions. According to the questionnaire, customer-related factors influence testing

decisions. In addition to the general customer answer, a couple of more insightful responses

were given. The willingness of the customer as well as the level of understanding of software

development plays a part in testing decisions.

Additionally, some factors matched to multiple categories. One of which is the

understanding of the benefits of testing, that involves all stakeholders. One of these answers

highlighted the factor with a negative connotation, that there is no understanding of the long-

term benefits and value of testing. Furthermore, the know-how of the individuals working

on the project is of interest. Such factors concerned the experience, knowledge and education

level of the management and development team. Lastly, singular responses such as familiar

practices and appropriateness of testing popped up.

4.3 Interviews on testing practices in web application projects

The following section summarizes the interviews on the testing themes that were derived

from the literature review. Discussions on significance of testing, testing coverage in

different levels, automated and manual system testing, non-functional testing, and

supportive practices are summarized.

4.3.1 Significance of testing

Overall, the significance of testing web applications in the research group is considered to

be high. The significance of testing web applications stems from various aspects.

Fundamentally, testing enables to validate that the software is sound against the requirements

and its quality meets the needs of the project. The significance of testing is highlighted by

the fact that it enables to detect regression. Specifically, in modern agile web application

projects, the features are usually developed swiftly and built upon previous ones, which

introduces the risk of breaking existing features. As such, testing is viewed as a method to

confidently introduce changes to the system which inherently is fundamental for agile

software development. In addition, a comprehensive set of well-written tests act as a

49

documentation of the system. Testing also enables the product to advance technically and

from the business perspective.

The significance varies in different project contexts, but the benefits of systematic testing

are deemed to be useful in any kind of web application project. This is pronounced by the

fact that the scope of the web applications could creep. Initially small project scope could

escalate in the future and without foundationally solid testing practices, the project progress

could be deteriorated.

The complexity and criticality of the system were considered to further signify the need for

testing. In addition, web applications are used in various browser and operation

environments which highlights the testing need. The non-functional aspects of web

applications are also underlined nowadays which requires validation of them with testing.

Some referred to the fact that the testing significance depends on how tolerant the project is

on bugs and issues that emerge in deployment. One interviewee also discussed that the

contractual liability for defects should be considered in the testing decisions.

As to how much project effort should be allocated for testing, the answers varied from 10-

50 %. The generally optimal effort was viewed to be at 20 %. Such a testing investment was

deemed worthy due to these various benefits of testing. Neglecting the testing during the

project execution had been proven costly on many occasions, which further justifies the

testing investment. However, some argued that too extensive testing could limit the pace at

which the features are developed, i.e. the velocity of the development. It was highlighted

that customers, in many cases, expect new features and visible changes instead of quality

improvements and validation. As such, from the customer perspective, features are the key

deliverables and the main target of the software development process. Such a theme pushes

the testing into the sidelines. However, nowadays the customers are becoming more and

more educated about web application development which means they expect better quality

products as a default.

50

One of the key concepts in testing significance was deemed to be the accuracy of the system

and feature specification. Fundamentally, testing is reliant on the requirements and their

acceptance criteria. Without an accurate and specific description of how the system or

feature should work, the testing is inherently difficult .

4.3.2 Testing coverage in different levels

Overall, none of the testing levels was deemed less useful than others. Fundamentally, to

achieve high quality ï all testing levels should be covered. Unit and integration testing were

referred as the more approachable and realistic method, especially in the unitôs context, as

such tests can be implemented by the developers and are easier to integrate to the

development process. The unit and integration tests are also, in most cases, cheaper to

implement and maintain. Generally, the lower level testing was viewed as a beneficial

method to validate the edge cases and as such remove burden from the testing at the higher

levels.

Interestingly, system and E2E testing are viewed to bring great value to the testing,

especially when automated. System testing level was highlighted since modern web

applications are usually complex single-page applications and are composed of several

components, services and often require many integrations. The main benefit of system-level

testing was discussed to be the ability to detect regression extremely efficiently. It also

essentially the easiest way to test the functionalities of the system.

Additionally, some distinction was made between the backend and frontend of the web

application concerning the testing levels. Generally, the lower level testing in the backend

was viewed as a straight-forward and fundamental practice. However, in the modern and

complex SPA frontend, system-level testing usually reveals issues efficiently. Based on the

research participants experiences, writing too complex low-level tests for the frontend flow

should be generally avoided as they yield less value when compared to the implementation

cost. There is also a distinction on whether the web application is built from a scratch or it

is a legacy product. Writing low-level tests to existing software afterwards is difficult and

51

therefore for legacy applications the system testing level might be the only viable option.

With new products, the inclusion of lower-level tests is inherently easier as code is written

from scratch.

4.3.3 Automated and manual system testing

Optimally, most of the system testing effort should be automated and complemented with

manual testing. High emphasis was put on automated system testing as it minimizes the

manual labour and issues that arise from humane factors. It was deemed to be the go-to

solution to detect regression efficiently. A great number of different use cases and paths in

the applications can be tested continuously during the development. Automation of the

functional tests cases enables the test effort to focus on other aspects, such as necessary non-

functional aspects.

However, the automated system testing was felt to be underutilized in modern web

application development. Many reasons contribute to this. Firstly, the initial investment in

setting up the infrastructure of automated system testing is high. Secondly, the test

implementation is usually labour-intensive. Thirdly, automated system testing requires

specific know-how from the project individuals. And finally, the benefits of automated

system testing usually liquidate only in the long haul. Such trade-offs usually hinder the

utilization of automated system testing and initially , the manual counterpart feels tempting.

However, various research participants discussed that many projects could have benefitted

from automated system testing in hindsight.

Also, it was highlighted that great consideration is required as to when implementing the

automated tests as in agile context, the features are often ever-changing. The implementation

of an automated system test requires high time investment and as such the feature should be

stable before the implementation of such tests. With initially detailed requirements or fast

stabilization of the changing features, the automation process of the system testing is

streamlined. The less maintenance the automated system tests require the more cost-effective

they are.

52

Manual system testing was discussed to be efficient in testing highly complex scenarios that

are hard to automate or in cases where human execution reaps benefits. Examples of such

cases include complex user interfaces and usability considerations. Optimally, the primary

function of manual system testing was to be utilized as a complementary method for

automated system testing with smaller emphasis. However, in various web application

projects, most of the testing effort is still manual. In manual system testing, most of the issues

are humane. Human is rarely consistent in repetitive manual labour which leads to issues as

the tests might not be executed systematically every time. Further, especially if the feature

is tested by its developer, there could be bias, lack of expertise or interest which affects the

testing process.

4.3.4 Non-functional testing

Generally, the interviewees agreed that testing of non-functional aspects of a modern-day

web application cannot be neglected. Some discussed that the customers are becoming more

and more educated on such aspects and therefore the specific requirements towards non-

functional aspects of the application are not out of the ordinary. The research participants

highlighted especially security and performance attributes of the applications. Some

participants referred to the fact that in the company context, service and user experience

design are strongly advocated and integrated into the software development process and

therefore the usability aspects usually require less consideration. Additionally, some

discussed that most of the usability issues are usually identified during the development

process ï especially if the team knows the applicationôs business domain. The usability

concerns are usually emphasized if the web application is targeted for the masses.

The security aspects of modern-day web application were considered critical. Usually, in the

simplest of an application, there is authentication and possibly various access levels and user

rights. As such the access to the systemôs data is limited to specific individuals. Breaches in

the application logic could jeopardize the systemôs data. Depending on the data criticality,

such aspects could lead to catastrophic consequences. Also, it was highlighted, that the

seemingly external factors should not be underestimated. For example, the operational

53

setting, such as how securely and where the systemôs server and databases reside, all

contribute to the security of the system. Additionally, the research participants discussed that

the usage of third-party libraries could introduce security issues to the system and as such

great care and constant monitoring should be invested into the selection and utilization

process of such libraries.

As to discuss the performance aspects, some referred to the fact that modern web application

technologies are performant and therefore many applications could handle a lot more traffic

with ease. Additionally, the validation of base-level performance testing of web applications

was considered to be quite straight-forward in multiple cases. In performance testing,

fundamentally it is advisable to mimic the expected production environments and datasets

during the development to avoid issues in the production. The expected number of

concurrent users and the expected sizes of the databases were discussed to be key indicators

of how beneficial performance testing is.

The challenges of non-functional testing are manifold. In most cases, the functional aspects

of web applications are usually the primary test targets. This usually leaves the non-

functional aspects to the sidelines. The research participants advocated that efficient testing

of the non-functional attributes of the system require special outlook and expertise on

software development. However, in web application projects with educated project

members, the base level testing of such attributes is usually covered during the functional

testing. It was discussed that many of the non-functional issues can be identified during

manual testing with an educated pair of eyes. With special tooling and automation, non-

functional testing can be brought to a more advanced level. Automation of non-functional

testing is difficult since every attribute requires different tools and associated expertise.

Therefore, a more advanced non-functional testing setup is in most cases costly and therefore

rarely utilized.

As a summary, the non-functional aspects of the web application boil down to one having a

sound design and constant monitoring. Most of the issues can be avoided when the non-

functional aspects are considered during the planning and design of the web application.

54

Consequently, monitoring of the non-functional aspects of the software should be integrated

into the software development process to identify the possible issues early. In a more

advanced non-functional testing setup, it is desirable to make the numbers, such as

performance metrics, visible for the project team to further monitor the state of the

application.

4.3.5 Supportive practices

Continuous integration and deployment were referred to be a highly significant supportive

practice for testing. The research participants agreed that setting up a continuous integration

pipeline should be almost an automaton. It was discussed that only in the small, ódeploy

onceô type of projects, the cost of setting up the CI-pipeline could be initially too high. The

more complex the build and test process, the more beneficial it is. In addition, it was

discussed that the bigger the development team and the more releases are expected, the more

critical CI is. The benefits of continuous integration are abundant. Firstly, setting up

continuous integration saves time. Manual deployments are usually a hassle and with

automation, the humane errors during the deployment can be avoided. Secondly, the

continuous integration pipeline motivates to set up different environments for development,

testing and deployment and generally to deploy smaller changes at a time. As such, the

system configurations and environments are managed during the development and the

manual testing is facilitated with ease. CI-pipeline also acts as self-explanatory

documentation of the build and deployment process. For example, in cases where project

member composition changes or a long-standing project in a maintenance/operational phase

requires further development, such setup is helpful. Finally, the continuous integration

pipeline facilitates the continuous execution of the automated tests.

The research participants had rarely utilized the practice of test-driven development. Some

discussed that the timing of writing low-level tests is highly dependent on the developerôs

practices and whether the requirements are stable. Fundamentally, the key point is to write

the tests ï regardless of whether it's before or after the feature implementation. However,

most of the participants discussed that TDD is essentially a sound practice but requires

55

expertise and a certain type of project setting. Essentially, the practice leads to high testing

coverage. However, the requirements and design of the system/feature must be highly

accurate to enable the development team to write and design the tests beforehand. As such,

it was discussed the more realistic use cases for the utilization of TDD in the web application

context relate to standardized components and interfaces. Generally, the backend logic is

usually more fitting for the practices of test-driven development. Additionally, some

advocated that the utilization of practice such as test-driven development requires the

collaboration and investment of the whole development team which further highlights the

need for skilled project members.

Various other practices were discussed that support testing. Firstly, even a small testing plan

was discussed to be the fundamental foundation to enable systematic testing. The testing

plan should include the testing focus areas and responsibilities and how testing is integrated

into the sprints and development. The testing plan should be revised and monitored during

the project execution. In addition, the project budget and schedule should account testing

right from start. Especially in software consulting context, the sales deal formulation is

essential in enabling testing to be considered in the project scope. Also, at the feature level,

the task estimations should include the testing effort and the type of testing.

Secondly, the management of environments is critical. Inclusion of separate testing

environment(s) essentially streamlines the development and testing process. Especially, if

the application deployments are customer-specific, the significance of proper environment

management increases. Thirdly, the utilization of peer reviews is a straight-forward and an

efficient way to further validate the application. Finally, the monitoring of testing could

enhance the process. However, in general, the research participants downplayed the

traditional testing coverage metrics and advocated to focus on monitoring whether the

development team is testing the right things with the right means.

