

Lappeenranta-Lahti University of Technology LUT

School of Engineering Science

Degree Programme in Software Engineering

Juuso Hautapaakkanen

IMPROVING INFORMATION RETRIEVAL IN A COMPANY

INTRANET

Examiners: Associate Professor Jouni Ikonen

 M.Sc. (Tech.) Ari Hämäläinen

Supervisors: Associate Professor Jouni Ikonen

 B.Eng. Matti Jaatinen

ii

ABSTRACT

Lappeenranta-Lahti University of Technology LUT

School of Engineering Science

Degree Programme in Software Engineering

Juuso Hautapaakkanen

Improving information retrieval in a company intranet

Master’s Thesis

2020

94 pages, 8 figures, 16 tables, 9 listings, 2 appendices

Examiners : Associate Professor Jouni Ikonen

 M.Sc. (Tech.) Ari Hämäläinen

Keywords: information retrieval, search engine, intranet

Companies accumulate large amounts of information in their day-to-day operations and store

it in various formats. With the rising amount of information, the efficiency of its retrieval

should keep up. Often, though, the organization of the information becomes increasingly

difficult, and retrieving it more and more troublesome. At such time it becomes necessary to

look for ways to improve the retrieval of information at the least. This master’s thesis

identifies the development needs of a Finnish company in regard to information retrieval,

investigates alternative solutions for fulfilling those needs and implements the deployment

of one of these alternatives. The deployed intranet search engine improves the company’s

information retrieval from the server’s network drives. The identified development needs

reveal shortcomings in the management of knowledge, information and documents as well,

the development of which the company is recommended to invest in in the future.

iii

TIIVISTELMÄ

Lappeenrannan-Lahden teknillinen yliopisto LUT

School of Engineering Science

Ohjelmistotuotannon koulutusohjelma

Juuso Hautapaakkanen

Tiedonhaun parantaminen yrityksen sisäverkossa

Diplomityö

2020

94 sivua, 8 kuvaa, 16 taulukkoa, 9 katkelmaa, 2 liitettä

Työn tarkastajat: Tutkijaopettaja Jouni Ikonen

 Diplomi-insinööri Ari Hämäläinen

Hakusanat: tiedonhaku, hakumoottori, sisäverkko

Keywords: information retrieval, search engine, intranet

Yritykset kerryttävät suuria määriä tietoa päivittäisten toimintojensa lomassa ja tallettavat

sitä monenlaisiin muotoihin. Tiedon määrän kasvaessa sen haun tehokkuuden on syytä pysyä

perässä. Monesti tiedon organisoinnista tulee kuitenkin entistä haastavampaa, ja sen haku

vaikeutuu enenevässä määrin. Tällöin tarpeelliseksi tulee etsiä keinoja vähintäänkin

tiedonhaun parantamiseksi. Tässä diplomityössä selvitetään suomalaisen yrityksen

tiedonhaun kehitystarpeet, etsitään vaihtoehtoisia ratkaisuja tarpeiden täyttämiseksi, sekä

otetaan käyttöön yksi näistä vaihtoehtoisista ratkaisuista. Käyttöönotettu sisäverkon

hakukone parantaa yrityksen tiedonhakua palvelimen verkkolevyiltä. Tunnistetut

kehitystarpeet paljastavat puutteita myös tietämyksen-, tiedon- ja dokumenttienhallinnassa,

joiden kehittämiseen yrityksen suositellaan panostavan tulevaisuudessa.

iv

ACKNOWLEDGMENTS

I want to thank Norelco and Ari Hämäläinen for the opportunity to do this thesis, and both

Jouni Ikonen and Matti Jaatinen for their guidance.

Most of all I want to thank the people closest to me for their tireless support and compassion

during both this thesis work and the whole of my studies.

1

CONTENTS

1 INTRODUCTION ... 5

1.1 BACKGROUND... 5

1.1.1 The company and the problem ... 5

1.1.2 Knowledge, information and documents ... 7

1.2 GOALS AND DELIMITATIONS ... 8

1.3 RESEARCH METHODOLOGY ... 9

1.4 STRUCTURE OF THE REPORT .. 10

2 REQUIREMENTS FOR A SOLUTION ... 11

2.1 INTERVIEW PROCESS AND ANALYSIS ... 11

2.2 RESULTS ... 14

3 ALTERNATIVE SOLUTIONS .. 17

3.1 DOCUMENT MANAGEMENT SYSTEMS .. 17

3.2 INFORMATION RETRIEVAL SYSTEMS .. 19

3.2.1 Text acquisition .. 21

3.2.2 Text transformation .. 22

3.2.3 Index creation .. 23

3.2.4 User interaction ... 24

3.2.5 Ranking and evaluation ... 25

3.3 CONCLUSIONS ON ALTERNATIVE SOLUTIONS .. 26

4 TESTING AND DESIGN .. 27

4.1 SETTING UP A TESTING ENVIRONMENT .. 27

4.2 EXPLORING, COMPARING AND TESTING SEARCH ENGINES 31

4.3 DESIGNING THE OPENSEARCHSERVER IMPLEMENTATION 36

4.3.1 Indexes ... 38

4.3.2 Schema ... 38

4.3.3 Analyzers .. 40

4.3.4 Crawler .. 42

4.3.5 Query template ... 43

4.3.6 Renderer ... 44

4.3.7 Authentication .. 46

4.3.8 Scheduler ... 48

5 DEPLOYMENT ... 50

2

5.1 THE ENVIRONMENT AND SCHEDULING .. 50

5.2 OPENSEARCHSERVER SETUP ... 52

5.2.1 Analyzers .. 52

5.2.2 Crawler .. 53

5.2.3 Renderer ... 53

5.2.4 Authentication .. 54

5.3 USING AND MAINTAINING OPENSEARCHSERVER .. 56

6 EVALUATION .. 58

6.1 SURVEY AND ANALYSIS .. 58

6.2 IMPROVEMENTS .. 63

7 RESULTS, DISCUSSION AND CONCLUSIONS ... 65

7.1 RESULTS ... 65

7.2 DISCUSSION .. 66

7.3 CONCLUSIONS ... 67

REFERENCES ... 68

APPENDICES

3

SYMBOLS AND ABBREVIATIONS

ACL Access Control List

API Application Programming Interface

CAD Computer-Aided Design

CIFS Common Internet File System

CLI Command Line Interface

CSS Cascading Style Sheets

CSV Comma-Separated Values

DMS Document Management System

DWG “Drawing”, file format used by CAD software

GNU GNU’s Not Linux

GPL General Public License

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IP Internet Protocol

IR Information Retrieval

IRS Information Retrieval System

IT Information Technology

JPEG Joint Photographic Experts Group

LAN Local Area Network

MD5 Message-Digest algorithm 5

NTLM New Technology LAN Manager

OSS OpenSearchServer

PC Personal Computer

PDF Portable Document Format

PNG Portable Network Graphics

RC Run Command

RHEL Red Hat Enterprise Linux

SELinux Security-Enhanced Linux

SMB Server Message Block

SSO Single Sign-On

TCP Transmission Control Protocol

4

URL Universal Resource Locator

VM Virtual Machine

VPN Virtual Private Network

WAFFLE Windows Authentication Functional Framework (Light Edition)

WLAN Wireless Local Area Network

XML Extensible Markup Language

5

1 INTRODUCTION

This master’s thesis describes the research done for identifying the information retrieval

challenges of a Finnish company, investigating alternative approaches for solving those

challenges and implementing an artefact to alleviate some of them. This section provides an

overview of the thesis background, its goals and delimitations, the research methodology

used as well as the structure of the report.

1.1 Background

The amount of information companies accumulate over time can be staggering. Successfully

managing this information to make efficient use of it is not a trivial matter. It is not only the

information that needs to be managed, either, but also the knowledge from which it emerges

and the documents or other formats to which it is stored. This section introduces the client

company and their current practices in regard to information sharing, and goes over the

terminology required to understand the thesis’ subject.

1.1.1 The company and the problem

Norelco Oy is a Finnish company that develops and manufactures electric distribution

systems at home and abroad. Like any other company, they produce large quantities of

information in a variety of formats, including electronic documents and other data. To store

and share this information within the intranet at their home offices, they have a server which

is used in various ways. The server’s storage drives are used to store numerous types of files

related to the company’s internal operations, and a database located on the server is used to

store information about a multitude of items related to the company’s customer processes.

A document management system handles the storage of documents attached to the latter.

Information and file sharing between the company’s server and workstations is enabled by

Samba, which is a suite of programs for facilitating interoperability between the Windows

and Linux/Unix operating systems (Anon 2020a). In effect, the server’s drives are mapped

to the Windows workstations as network drives. Additionally, multiple tailored applications

are used to access the information contained in the database. In practice, an employee at the

company using a Windows workstation connected to the intranet can browse the network

6

drives via Windows File Explorer and view information contained in the database via the

applications.

On the network drives, there are various types of documents. The most important ones are

the typical office files such as PDF (Portable Document Format) and Microsoft Office files.

Naturally, the contents of these files also vary. They range from instructions and templates

to brochures, spreadsheets and more. As for the database, information contained in it relates

to clients, designs, offers and others.

While information related to key customer processes is stored in the database and the

document management system, many of the internal documents remain scattered on the

server directories. Employees search for the files on the network drives by navigating from

one folder to the next, relying on memorization of the drives’ folder structure and naming.

The organization of these drives is sometimes unclear, with employees reportedly often

struggling to find files they are looking for. Using the Windows search function is at best

impractical due to the large number of files and due to there not being a reliable naming

scheme in place. While the search functions available on the server itself might be capable

enough, their usability for the average employee is limited. Information contained within the

database can be searched with various search terms depending on the application being used.

There may be significant overlap in what kind of information the different applications

present. Quite often an employee has to access multiple applications at once due to not being

certain of where a specific piece of information can be found from.

In the initial meeting with the company’s representatives, an artefact was described that

could be implemented to alleviate these information retrieval issues, at least for the network

drives. In their mind, in an ideal situation an employee could search for information by

opening a separate search application and inputting an arbitrary search term. The look of the

application could be similar to that of the familiar web search engines. Various information

about the results could be displayed, for example a snippet of a file’s contents, hit highlights

and the file’s location. The employee could then open the file or the folder it is located in

directly from the search window. Many of the drives’ files would not be necessary to include

in the search system and some of them should even be explicitly excluded. Importantly, file

and folder permissions should be preserved in the hypothetical search system. Access to the

7

folders and files is restricted with user accounts, which are identical both on Windows and

the server. In principle, each employee has their own account. To log in to the applications,

other accounts are used.

1.1.2 Knowledge, information and documents

The concept of information retrieval (IR) is familiar to most people in the modern world

largely due to the rise of the world wide web and its search engines. IR as a field of science

has its roots in the 1940s. The idea of automatically accessing large amounts of stored data

was birthed already in 1945, but the term itself was coined in 1951 (Saracevic 1999; Singhal

2001). Gerard Salton, a long-time leading figure considered by some to be the father of

information retrieval, later proposed a definition for the term (Saracevic 1999; quoted in

Croft et al. 2015):

“Information retrieval is a field concerned with the structure, analysis, organization,

storage, searching and retrieval of information.”

In an organizational context, IR is closely related to, or in fact part of, the management of

knowledge, information and documents. The exact meaning of these terms can be

ambiguous. In their article on the interrelationships between knowledge, information and

document management, Chen et al. (2005) recognize this ambiguity and the need for

clarifying these fundamental concepts. There are no commonly accepted definitions, but they

have formulated one for knowledge as follows:

“Knowledge is a combination of contextual information and the individual awareness and

understanding of facts, truth or information acquired through reasoning, experience and

learning. In organizations, knowledge often becomes embedded not only in documents or

repositories but also in organizational routines, processes, practices, and norms. […] It is

delivered through structured media such as documents, and person-to-person connections.

New knowledge is created/acquired through experience, interacting and learning.”

Knowledge can be tacit (hidden) or explicit. Tacit knowledge is intangible, but may become

tangible in the form of information, and vice versa. Knowledge and information affect one

8

another. Information can be seen as a representation of knowledge, and especially for an

organization it is also a resource and a commodity. Information can exist in a variety of

formats, such as documents and data. Indeed, Chen et al. (2005) succinctly summarize: “A

document is the container of written information, and people create [one] by putting

information in [it] together with their knowledge”.

The processes of managing knowledge, information and documents within an organization

are similarly intertwined. The aim of knowledge management is to make knowledge

available to the people of the organization in order to achieve business objectives. It

encompasses the management of both information and people. Information management,

then, involves effectively managing different information resources and technologies at

different levels of the organization. One type of information resource is the paper or

electronic document, which belongs to the domain of document management. (Chen et al.

2005)

Understanding these concepts is crucial when determining the goals, delimitations and focus

of the research. Though they consist of somewhat distinct activities, implementing changes

to one level of management almost inevitably necessitates a more holistic synthetization of

them all, which requires investment of another degree entirely.

1.2 Goals and delimitations

The goal of this thesis is to improve the company’s information retrieval. This goal is reached

by answering the following research questions:

1. What are the development needs related to the company’s information retrieval?

2. What alternative solutions could fulfill some or all of these needs?

3. How can one of the alternative solutions be implemented?

By gathering qualitative data from communications and interviews with the company

personnel, the development needs are identified. The requirements for a solution are

formulated based on these needs and the delimitations of the research. These requirements

guide the investigation into alternative solutions as well as best practices on implementing

9

them. Based on the findings, an alternative solution is chosen and implemented. In addition,

suggestions for further possible development and research are made.

The research has a couple of practical delimitations. Most of the research is done remotely

as only a limited number of visits can be arranged on-site. This poses restrictions on data

gathering and other practical work. It is for this reason that the research questions

purposefully narrow the focus of the research into information retrieval only. The broader

concepts of knowledge, information and document management are touched upon, but

otherwise largely left out of consideration.

The company’s interests are focused on the practical benefits of the research. It is assumed

that as a practical outcome of this thesis, a technological artefact is designed, developed and

deployed. Due to the aforementioned delimitation, the scope of such an artefact and the work

required to incorporate it has to remain restricted.

1.3 Research methodology

Design science is a research methodology that focuses on the process of developing and

evaluating information technology artefacts to solve organizational problems. Artefacts can

include instantiations, constructs, methods and models. As one of the aims of this research

is to design and deploy an artefact, design science was chosen as the research methodology.

The design science research process is illustrated in Figure 1. (Hevner et al. 2004)

Problem

identification and

motivation

Objectives of a

solution

Design and

development

Demonstration Evaluation Communication

Figure 1. Design science research process (adapted from Peffers et al. 2006).

10

The steps of the design science research process are carried out in the research as follows:

• The research problem is defined, the value of a solution is justified and preliminary

requirements for a solution are identified by communications with the company’s

representatives.

• The requirements are validated by gathering qualitative data from the company

personnel.

• The requirements guide the literature review, which in turn provides background

information as well as alternative solutions and guidance for implementing them.

• The artefact is chosen from among the alternatives based on the requirements and

delimitations, and its implementation is designed.

• The artefact is deployed, and then evaluated by gathering quantitative and qualitative

data from the company personnel.

• The results of the research are communicated via this thesis.

1.4 Structure of the report

The report roughly follows the structure of the design science research process. In this first

section, the problem and the motivation for the research was identified, and the preliminary

requirements for a solution were described. The second section describes the process of

gathering qualitative data for specifying and validating the requirements, and presents its

results. The third section presents the results of the literature review into alternative

solutions, and the fourth section describes the process of exploring and testing the alternative

artefacts as well as designing one for implementation. The fifth section describes the

demonstration i.e. deployment of the artefact, and the results of its evaluation are presented

in the sixth section. In the seventh and final section the results of the research are presented,

the research is discussed and its conclusions are drawn.

11

2 REQUIREMENTS FOR A SOLUTION

The problem definition formed during the initial meeting and the subsequent

communications with the company’s representatives had to be validated in order to establish

the requirements for a solution. Qualitative data was gathered for this purpose by

interviewing the company’s employees. The following individuals were interviewed: two

from design, three from production and two from sales, seven individuals in total. The

representatives themselves represented the administrative department, which was excluded

from the interviews. Individual interview sessions were organized, and 30 minutes of time

was allotted to each session. The following questionnaire was sent out to each interviewee

beforehand:

1) What is your job title and description?

2) What kind of information or files do you regularly need in your job?

3) How often do you search for files from the server or the database?

4) What kind of files do you search for?

5) Specifically, from where and how do you search for the files?

6) How much time does searching for the files take? Do you need assistance from

others?

7) Do you yourself produce or add files onto the server or database? What kind of files?

8) Do you have local files on your own workstation that other employees may need?

What kind of files?

The questionnaire was designed to help reiterate and verify prior information. It was not

designed as a formal, rigid framework for the interviews but instead was meant to help the

interviewees to prepare. This also allowed new information to be uncovered organically.

2.1 Interview process and analysis

Almost all of the interviews were conducted at the company’s headquarters. One of the

planned interviewees was unexpectedly not available, but their stand-in was interviewed in

their stead. Six of now eight interviewees, including the one unavailable and their stand-in,

had written down answers to the presupplied questionnaire, along with some miscellaneous

12

thoughts. As a result, the time reserved for the interviews was in many cases spent on

clarifications and demonstrations in a free-form manner. The audio of five of the six

interviews held on-site was recorded. One interview that could not be conducted on the day

due to an unforeseen scheduling conflict was arranged to be held remotely at a later date.

Seven of the eight total interviewees used their workstations for demonstrating. Video

footage was recorded only for the one remote interview. In total, a little over two hours of

audio and video footage was recorded. The shortest session lasted around 11 minutes, the

longest around 38 minutes and the average session length was around 21 minutes.

The recordings were afterwards transliterated, though not word for word. Only the sections

relevant to the topic were included, and individual pieces of information or dialogue were

summarized. In vague cases, reasonable assumptions were made about the intent of the

interviewee. The findings were compiled and have been summarized here.

Though the work tasks of the three departments differed greatly, the information retrieval

practices were virtually identical. Consequently, all of the interviewees expressed very

similar thoughts on information retrieval at the company. One key difference was that the

interviewees from design especially had more issues with the tailored applications, likely

due to the fact that they used them more actively.

Additional types of files the employees use in their daily work were listed. In terms of

documents, these ranged from product brochures, standards and instructions to diagrams,

tables and images. The file extensions were similarly varied. Other common filetypes in

addition to the ones listed previously included JPEG (Joint Photographic Experts Group),

PNG (Portable Network Graphics) and DWG (from “drawing”), commonly used by CAD

(Computer-Aided Design) software. In terms of information stored in the database, no new

types of items were discussed.

Almost all of the interviewees reported that they search for information or files on a daily or

at least a weekly basis, sometimes multiple times a day. The retrieval methods and their

issues were reiterated. At this point, it turned out that there are multiple applications that

access the database, each designed for a different purpose. Due to their naming scheme, they

are referred to as the N-programs. These applications have been listed in Table 1. The N-

13

programs handle information, including documents, related to business operations, whereas

the documents in the network drives are for internal use only. The functions of these

applications may overlap, which can cause extra work when trying to find a specific piece

of information. For instance, if a client requests a list of components for an electrical center,

the center’s information may be found in one application, but the components’ information

in another. While separating these pieces of information may be reasonable, searching for

them is highly inefficient. Some information may even have to be retrieved from e-mails.

Many other individual issues related to the N-programs were described, especially by one

interviewee from the design department. All of these issues related to the general problem

of decentralization of information.

Table 1. The tailored applications or N-programs.

Application Use case

NCurmix Customer relationship management

NAsi Tracking of design and production

NOffer Offer system

NProppu Design, tracking and reporting of production

NDes Electrical center design

NLask CAD-based offer calculation

The time taken up by searching varies. Most interviewees reported that it usually doesn’t

take too long to find what they are looking for, but sometimes it could take “a while”. This

is especially the case when the information or file is older, more rarely used or otherwise

unrelated to the usual daily or weekly tasks. In an outlier worst case, an interviewee reported

that they spent an hour a day on average searching for information or files. Some employees

reported that they occasionally need help with searching for information, while only a few

reported that they are the ones helping.

The amount of time spent searching for information depends on the method. Finding

information via the N-programs isn’t always a problem despite the discussed issues because

the employees have gotten mostly used to the way information is organized. According to

some interviewees, the most severe problems arise when having to navigate the network

drives and rely on the memorization of file names and locations.

14

Most of the interviewees reported that they occasionally update or store information on the

network drives or database. The conventions for storing files onto the network drives are

either non-existent or not documented. Within a single department or team there may be a

consensus about where and how to store files, but this is not guaranteed. Especially

problematic are the cases where a file’s information is relevant to multiple departments, but

the naming conventions may differ so much that one department can’t find a file stored by

another.

Although a couple interviewees reported that there is a company-wide policy in place to

prohibit storing non-personal files locally for security reasons, some interviewees reported

that they do have such files on their workstations. Usually these files are for personal

professional use and possibly specific to one project, but occasionally they may turn out to

be relevant to others as well. At such occasions, the files are transferred to the network

drives.

The questionnaire didn’t include a question on access rights, but some issues related to them

were uncovered. Different departments and even individuals have different access rights to

folders and files on the network drives. Most of the time employees have access to the

information they need, but in relatively rare cases they might not. Usually such problems are

resolved easily by either requesting access or the specific file directly from a coworker, but

not always.

As for improving information retrieval at the company, the interviewees expressed a desire

for a system where information is more centralized and logically organized within the

network drives, and more logically presented via the N-programs. Some interviewees felt

that having a search interface that would enable searching for files on the network drives

would be “extremely useful”, while others weren’t as certain.

2.2 Results

The aim of the interviews was to validate the information gathered so far and further the

understanding of the development needs in regard to information retrieval at the company in

15

order to answer the first research question. The company’s challenges were summarized as

follows:

• There are unclear guidelines for storing or organizing documents on the network

drives, which makes searching for them troublesome.

• Finding documents on the network drives is reliant on memorization and the tacit

knowledge of other employees.

• Some locally stored documents that should be shared with others are not.

• Some documents that should be available to a specific user or group are not.

• In some cases, information contained in the database needs to be pieced together

from multiple applications and searches.

It was determined that these challenges were related to all levels of management (knowledge,

information and documents) and information retrieval. Though it has been established that

the different levels of management are closely intertwined and thus separating these needs

into distinct categories may be questionable, development needs were identified and

categorized according to these four aspects as follows:

• Knowledge management

o N1: Tacit and explicit knowledge possessed by employees needs to be made

available to others.

• Information management

o N2: Workflows and guidelines for managing documents and other

information need to be created.

• Document management

o N3: Managing documents needs to be systematic and organized.

• Information retrieval

o N4: Documents need to be searchable via a search interface.

o N5: Information needs to be presented in a more centralized way via the N-

programs, while preserving the required level of access control.

The identified needs N4 and N5 answer the first research question. Due to the practical

delimitations of the research, altering the management practices of the company and

16

redesigning the N-programs were deemed infeasible. As such, the investigation into

alternative solutions focused on information technology artefacts that could enable searching

of documents on the network drive.

17

3 ALTERNATIVE SOLUTIONS

This section describes the alternative solutions found for fulfilling the company’s

information retrieval needs. The two types of alternatives are document management

systems (DMS) and information retrieval systems (IRS). The architecture of both kinds of

systems is described, steps required to implement each types of systems are briefly

discussed, and one alternative type is chosen for further investigation.

3.1 Document management systems

Document management is the automated control of documents through each stage in their

lifecycle (Cleveland 1995). The number and naming of the stages varies depending on the

source, but at least the following can be included: inception or creation, publishing or

storage, distribution or retrieval, workflow, and archiving or deletion (Cleveland 1995; van

Brakel 2003; Chen et al. 2005). This section will go through each of these stages and the

components of a DMS that allow performing the relevant functions. The steps required to

implement a DMS will also be presented.

Creation

A DMS may include authoring tools to support document creation. The desktop application

in which the document is created may be integrated with the DMS itself to allow storing the

document and capturing its metadata directly. Of course, an existing document can also be

received from an external source and inserted into the system. (Cleveland 1995; Adam 2007)

Storage

A prerequisite to supporting a DMS is an appropriate underlying infrastructure (Cleveland

1995). This may include servers and workstations connected over a LAN (Local Area

Network) or WLAN (Wireless Local Area Network). Storage can be handled in either a

centralized or a distributed manner with one or multiple servers. A document repository may

contain the documents themselves, while a separate database may be used for the documents’

metadata. In the repository, a folder structure may be set up to reflect the organizational

structure and/or other classifications. (Sathiadas and Wikramanayake 2003; Adam 2007)

18

Retrieval

Besides storage, the document repository provides distribution and retrieval functionality. A

document may be distributed in different formats, and a number of ways to retrieve them

should be available, such as browsing the folder structure as well as basic and advanced

search. The data structures, components and functions that enable this kind of search

functionality are examined later in this section, when information retrieval and information

retrieval systems are discussed in detail. (Cleveland 1995; Adam 2007)

Workflow

Once the document has been created and stored, it has entered the workflow. A workflow is

“the movement of a document through a series of steps to achieve a business objective“

(Sathiadas and Wikramanayake 2003). A workflow may define a number of actions to take

at each step of the document’s path. Security may be implemented in the system by allowing

users to only view and edit files they have permissions for, and administrative users to set

security settings even on a per-folder or per-file basis. Check-in and check-out features may

ensure that no more than one person edits a document at any time, and after a document has

been edited, the made changes may be tracked by version control. Audit tools may allow

authorized users to view the changes that have been made, as well as who made them and

when. (Adam 2007)

Archiving or deletion

At the end of a document’s lifecycle, it may be determined to have depleted its usefulness to

the business objectives, and archived or outright deleted.

Hernad and Gaya (2013) describe a six-step methodology for implementing a document

management system:

1. Definition of document requirements

2. Evaluation of existing systems

3. Identification of document management strategies in the organization

4. Design of the DMS

5. Implementation of the DMS

6. Maintenance and continuous improvement of the DMS

19

Document requirements refer to the types of documents and the workflow that must be

established for them to serve the organization and its business objectives. Existing systems

both within and without the organization must be evaluated to determine if or how they meet

these requirements. After this, an appropriate document management strategy must be

identified and adopted, of which four are the most usual (Hernad and Gaya 2013):

• Establishment of principles that set the procedures on document management

• Development of mandatory standards

• Using market IT (information technology) solutions

• Implementation of specific ad-hoc solutions

Considerably different measures can be taken depending on the selected strategy.

Regardless, the design of the DMS must be global, that is, it must involve people, processes,

tools and technology. The design includes changes to the current systems, processes and

practices, the adaption or integration of technological solutions, and the definition of the best

way to incorporate these changes. Users are engaged in the design process in order to

compare its elements to its requirements. Careful planning is required when implementing

the designed system, and besides the implementation, the plan itself has to be developed and

maintained to ensure that the most appropriate techniques are used, with minimal disruption

caused to the organization. Afterwards, the system’s performance must be monitored and

corrective measures taken to continuously improve it. (Hernad and Gaya 2013)

3.2 Information retrieval systems

Information retrieval systems, more familiarly known as search engines, can be found

everywhere. They can exist as standalone applications or as integrated functionality in

others, such as document management systems. According to Croft et al. (2015), the

components of a search engine enable two primary functions, namely indexing and querying.

These can be further split into subfunctions which are illustrated in Figure 2 and Figure 3,

respectively. Indexing consists of acquiring the document text, transforming it and finally

creating the index itself. The index is the data structure that enables fast querying, and will

be discussed later. Querying comprises the user interaction with the query tool and query

processing, as well as ranking the search results and evaluating the engine’s performance.

20

Though not all of these functions are necessarily part of every search engine (Croft et al.

2015), each of them will be examined.

Figure 2. Indexing process (adapted from Croft et al. (2015)).

Figure 3. Querying process (adapted from Croft et al. (2015)).

Document data

store

IndexText acquisition Index creation

Text

transformation

Document

Document data

store

IndexUser interaction Ranking

Evaluation

User

Log data

21

Though most people are familiar with web search engines, these concepts are usually

applicable to other types of search engines as well, such as the ones found in desktop or

enterprise environments. Indexing other types of content is possible, but only text content

will be considered here.

3.2.1 Text acquisition

In order for any text to be indexed, the documents containing it need to be acquired first. The

term crawler is often used to describe a component which scours the web, usually to find

and index documents, i.e. web pages (Cho and Garcia-Molina 2002). The same idea is

applicable to file systems, where instead of traversing web pages through hyperlinks, the

crawler navigates the directories and perhaps other computers on the network as well (Croft

et al. 2015). To make document acquisition more efficient, multiple crawlers can be

deployed simultaneously (Cole 2005). After the initial indexing, the crawlers’ job is to

update the existing documents and add new ones to the index, preferably in real-time (Cole

2005).

Croft et al. (2015) point out several unique aspects of desktop crawling. Finding documents

in a desktop or even an enterprise environment is arguably simpler than in the web, but

crawlers face other challenges in these situations. The speed at which changes in the

documents are reflected in the index and thus search results is expected to be high, yet it is

unreasonable to continuously recrawl the file system. In addition, it wouldn’t make sense to

store copies of the already local documents like a web crawler would, so the documents need

to be loaded into memory and indexed dynamically. Security is a critically important aspect

to consider, and access rights to folders and documents should be preserved in the indexing

process.

Unlike web pages, desktop data can be quite non-uniform. Since all documents may not be

“pure” text files, they have to be converted to a consistent format. This includes the text

itself, as well as metadata on the document (Cole 2005). To convert PDF or Microsoft Office

files, for instance, external utilities may be needed. The converted documents, along with

their metadata and other possible information, can then be compressed and stored for quick

access and processing later (Croft et al. 2015).

22

3.2.2 Text transformation

The raw text in and of itself is not very useful for the purposes of searching. It needs to be

processed into index terms, or features, which are used to essentially describe the contents

of the documents. These can be not only words but also phrases, names and dates, for

example. Usually the text passes through several processing stages, such as tokenization,

stopping and stemming, in order to be transformed into index terms (Croft et al. 2015). The

transformation process should improve efficiency, but may produce query results that the

user might not expect (Baeza-Yates and Ribeiro-Neto 1999).

Tokenization chops the text into individual pieces (Manning et al. 2009). It often produces

individual words similar to the final index terms, but in this stage the treatment of special

characters, including capital letters, needs to be considered (Croft et al. 2015). Normally

words are separated by spaces, but for example it may not be clear whether to treat the words

“were” and “we’re” in the same way or not. Tokenization also needs to take the language of

the text into account. Goker and Davies (2009) give the example of German and Finnish, in

which compound words are common, and external information such as lexicons (collections

of known words in the language) are needed to segment or tokenize such words.

Stopping refers to the removal of common words, also called stopwords, from among the

tokens. A predefined list of stopwords, similarly to a lexicon, may be used. The size of the

index may be significantly reduced by the removal of stopwords, but if the list is too

exhaustive, it can even prevent the use of simple search phrases, such as “over there”. (Croft

et al. 2015)

Stemming, or suffix stripping, reduces words derived from a common stem into their root

form (Büttcher et al. 2010). For example, the words “hand”, “handler” and “handling” could

be replaced with the shortest one, “hand”. The stem doesn’t necessarily have to be a

recognizable word (Croft et al. 2015). Stemming generally improves recall, but if done too

aggressively can decrease precision, similarly to stopping (Kowalski 2011; Manning et al.

2009). In other words, a larger portion of the retrieved documents may be relevant, but fewer

of the relevant documents were retrieved in the first place. The language of the text has to

be considered as well, since the complexity of different languages’ morphology (formation

23

and structure of words) varies greatly, and for some languages stemming can be ineffective

(Croft et al. 2015). The Porter stemmer (Porter 2006) is a popular choice, but according to

Porter himself, “there is no point in applying [it] to anything other than text in English.”

(quoted in Grehan 2002).

Other aspects of text transformation include extraction of meta-information and

classification. Extraction refers to the meta-information being indexed separately from the

actual content. Meta-information can include links to web pages, phrases, names, dates,

locations and others. Classifiers can identify the type of the document’s content and group

and rank the search results accordingly. Notably, they can also detect spam and other non-

content. (Croft et al. 2015)

3.2.3 Index creation

The index is arguably the core of the search engine. It is the data structure that enables fast

searching, or as Witten et al. (1999) put it, the “mechanism for locating a given term in a

text”. There are a number of index types, but the most common is the inverted index, which,

according to Zobel and Moffat (2006), is the superior method in terms of retrieval speed.

The inverted index in its simplest form, illustrated in Table 2, is constructed of inverted lists,

which are mappings “from a single word to a set of documents that contain that word” (Zobel

and Moffat 2006). In other words, given a query, the index “tells” which documents contain

the query terms. The descriptor “inverted” comes from the fact that it is the opposite of a

traditional or a forward index, like one found in a book, which lists all the index terms (and

usually their locations) that the document contains.

Table 2. Basic example of an inverted index.

Term Document(s)

lorem 1, 2

ipsum 2

dolor 3, 4, 5

sit 6

amet 7

24

For the index to be created, statistics of the index terms and the documents related to them

need to be gathered. According to Croft et al. (2015), these statistics generally include the

counts of index term occurrences, the positions of the terms in the documents, and the

document lengths as numbers of tokens. Index terms are weighted to describe their relative

importance on a per document basis (Kowalski 2011). The weights can be calculated either

at index creation or during querying, but the latter degrades query performance (Croft et al.

2015). There are a number of ways to calculate the weights, though many algorithms are

variations of the so-called term frequency-inverse document frequency algorithm, which

uses the combination the number of occurrences in a document and the number of documents

with that term to calculate weights (Göker and Davies 2009).

Inversion is the part of the process where the index terms and the statistics related to them

are used to build the index itself. In other words, the document-term information is

transformed into term-document information (Croft et al. 2015). This might at first seem like

a trivial task, but the volume of data can easily be too large to be held in memory (Zobel and

Moffat 2006). For this reason, disk-based index construction is usually utilized, while in-

memory construction is reserved only for relatively small collections (Büttcher et al. 2010).

Inversion needs to be done efficiently not only at index creation, but also when the index

updated (Croft et al. 2015).

The index is usually compressed. Multiple indexes can be distributed across several

computers to enhance query performance. The indexes can be replicated or distributed for a

subset of documents or terms, which can reduce communication delays and enable parallel

processing, respectively. (Croft et al. 2015)

3.2.4 User interaction

Once the index has been created, the user can query it. For this the user needs to be provided

an interface for input. A parser will process the user’s input according to a specific query

language. In this process the query terms will need to be transformed (similarly to the

original text) so that they can be compared to the index terms (Kowalski 2011). Advanced

query processing may include spell checking, suggestions and other analysis, but these are

more often seen in web search engines than in desktop or enterprise environments (Croft et

25

al. 2015). After the query has been processed, the results are displayed in a ranked order.

The results may include any information stored about the results, such as snippets of their

contents.

3.2.5 Ranking and evaluation

For the results to be displayed in order of relevance, they need to be ranked. The ranking

algorithm (or whether one is used at all) is based on the retrieval model used, but in any case

the score given to a document essentially reflects its relevance to the given query. This is

achieved in many retrieval models by giving weights to both the query and index terms.

There are numerous different retrieval models, but they won’t be covered in this thesis.

Suffice to say that a retrieval model is a formal representation of the process of matching a

query and a document. (Croft et al. 2015)

Once a search engine is up and running (and being used), its performance may be monitored,

evaluated and improved. According to van Rijsbergen (1979) and Croft et al. (2015), the two

key qualities of a search engine are effectiveness and efficiency. The engine is effective

when it retrieves the most relevant documents possible, and efficient when it does this in as

little time as possible. Numerous metrics as well as logging and analyzing the users’

interactions with the engine can be used to evaluate the engine’s effectiveness and efficiency.

The effort that goes into deploying a search engine largely depends on the engine. As

Bancilhon (1999) puts it, “some search engines are literally ‘turnkey’”, while others can be

rather complex to implement. Deploying a search engine can be as straightforward as

downloading, running and configuring a server instance. Some engines are actually used as

platforms for building bespoke search engines or adding search functionality into other

applications. Implementing a search engine with these platforms may require a substantial

amount of configuration and technical know-how, but the control over the end result is much

greater.

26

3.3 Conclusions on alternative solutions

In terms of improving information retrieval only, both document management and

information retrieval systems are suitable artefact candidates. The company has a DMS in

use, but it is currently not utilized for the internal documents on the network drives. A DMS

may offer a more holistic solution that addresses the underlying document management

issues on the network drives as well, but planning and executing its implementation demands

a significant amount of effort. In the context of this research and its delimitations, this was

deemed too large an undertaking.

An information retrieval system consists of numerous components and algorithms, which

could in theory be implemented in a bespoke search engine. In reality, building a search

engine is an enormous project, with many existing ones having been in development for

several years. The company was interested in exploring existing alternatives that could

provide a cost-effective solution in the present. As such, the investigation proceeded with

exploring existing search engines and their feature sets, which were then compared with the

requirements in order to find suitable candidates for testing and eventual implementation.

27

4 TESTING AND DESIGN

In order to effectively test the search engines prior to choosing one for implementation, an

environment that resembled the real one as closely as possible was set up. With the relevant

components present in the environment, the functionality of the search engines could then

be simulated. Candidate search engines were explored, compared to each other and with the

requirements, and tested. One engine was chosen for implementation and its deployment

was designed. This section describes the testing and design process.

4.1 Setting up a testing environment

The Red Hat Enterprise Linux (RHEL) Server operating system used on the company’s

server is a commercial product. The developer Red Hat offers a free 30-day trial for RHEL

8, as well as a completely free developer version as a disc image file (Red Hat Inc. 2020).

This file may be used to install the operating system on a real or a virtual machine (VM). To

create a virtual machine, the free version of VMware Workstation Player was used

(VMWare, Inc. 2020). Basic settings for hardware simulation, such as the amount of memory

available and the type of network connection used, were set.

Figure 4. VMWare interface.

28

After launching the virtual machine from the host Windows through VMWare as seen in

Figure 4, the operating system was installed from the disc image file. In order to enable the

installation of packages, the free subscription was attached to the installation. At this point

the virtual RHEL was ready for Samba to be installed. This was done with the following

commands (a dollar sign indicates a CLI (command line interface) command). These

commands install the packages for Samba and the optional Samba client, start and enable

relevant services so that they run at startup, and ensure that traffic through the necessary

ports is allowed (Docile 2019).

$ yum install samba samba-client

$ systemctl enable --now {smb, nmb}

$ firewall-cmd --permanent --add-service=samba

$ firewall-cmd –reload

By default, SELinux (Security-Enhanced Linux) may interfere with external machines trying

to access a Samba share. This can be circumvented in a number of ways. For the virtual

machine, SELinux can be temporarily disabled with the command (Mutai 2019)

$ setenforce 0

Access to Samba shares is allowed or restricted according to usernames and group names.

The users were created on RHEL and added to Samba explicitly. To do this, the following

commands were used (Anon 2020b). Placeholder parameters are signified with square

brackets (for example [parameter]). The first command creates the user without a home

directory and prevents them from logging in. This may be useful in the case that the accounts

are only used for authenticating access to the Samba shares.

$ useradd -M -s /sbin/nologin [username]

$ passwd [username]

Adding the user to Samba and enabling that user:

$ smbpasswd -a [username]

$ smbpasswd -e [username]

29

Creating a group and adding the user to that group:

$ groupadd [groupname]

$ usermod -aG [groupname] [username]

Next a share folder was created, and an access control list (ACL) was defined for it. Various

flags can be used to add or remove access rights for specific users or groups. Default rights

can be set, so that any files or folders created within the folder inherit those rights. ACLs

can be checked with the command getfacl.

$ mkdir -p [path]

$ setfacl [flags] \

user/group/other:[username/groupname/empty]:[rights] [path]

$ getfacl [path]

As an example, to give the group other (i.e. everyone else but the owning user and group)

full permissions to the folder public, and to make new files and folders inherit those rights,

the following commands can be used:

 $ setfacl -d -m o::rwx public

And the output from getfacl:

 # file: public

 # owner: search

 # group: search

 user::rwx

 group::rwx

 other:rwx

 default:user::rwx

 default:group::rwx

 default:other::rwx

To create the Samba shares themselves, the file /etc/samba/smb.conf was edited. In Listing

1 an example of smb.conf can be seen, which defines two shares with minimum

configuration. The global section defines parameters that apply to Samba as a whole (here

square brackets signify sections or shares). Only connections from the local network are

allowed. The first share, public, is open to all users (though not guests), while the second,

30

notpublic, is only accessible to users who belong to the group notpublic. There are dozens if

not hundreds of parameters that can be set in smb.conf, but these will not be discussed.

Listing 1. Example of smb.conf.

[global]

 hosts allow = 127. 192.

[public]

 path = /home/user/Samba/public

 read only = no

[notpublic]

 path = /home/user/Samba/notpublic

 read only = no

 valid users = @notpublic

Each time smb.conf is edited and saved, the configuration needs to be reloaded with the

command

$ smbcontrol all reload-config

To access the Samba shares from the host Windows, insecure guest logons had to be enabled,

even if a user account was used to log in. This was done via Windows’ Local Group Policy

Editor. In order to test multiple user accounts on the same host machine, multiple hostnames

needed to be mapped to the same server IP (internet protocol) address. This was done by

modifying the file C:\Windows\System32\drivers\etc\hosts. For example, to map the

hostnames public and notpublic to the IP address 192.168.1.164, the following lines can be

added:

192.168.1.164 public

192.168.1.164 notpublic

On the host Windows, the Samba shares were mapped as network drives using the defined

hostnames as seen in Figure 5. For convenience, the hostnames referred to the user that the

mapped drive was accessed with, though any credentials could have been used. The mapping

had to be done to a specific share (public or notpublic), but different shares could be accessed

(if available) with the same credentials by typing the appropriate URL (Uniform Resource

31

Locator) into the Windows Explorer address bar. After the mapping, the drive is accessible

from Windows File Explorer’s This PC (Personal Computer) section, as seen in Figure 6.

Figure 5. Mapping a network drive.

Figure 6. Mapped network drive.

When a share is accessed through the mapped network location, any new files or folders are

created with the used credentials, and inherit any default ACLs. Parameters in smb.conf can

be set to further tune default permissions. With the Samba shares up and running, search

engines could be installed and tested.

4.2 Exploring, comparing and testing search engines

In this section available search engines are explored and their features are compared to the

requirements. To narrow down the search, functional and non-functional requirements for

the engines were identified based on three things: the problem definition and other

communications with the company’s representatives, the established requirements based on

32

the company’s needs, and the list of factors by Bancilhon (1999) below. The search engine

requirements are listed in Table 3, and were approved by the company’s representatives. The

requirements are prioritized according to the so-called MoSCoW method. The priority levels

(Must have, Should have, Could have, Won’t have) are denoted with the letters M, S, C and

W. The viable search engines that were found and matched at least most of the requirements

are listed in Table 4. Each engine is described briefly.

Bancilhon (1999) lists the following factors to consider when choosing an intranet search

engine:

• Server dependability

o What platform and type of server will the engine run under?

o Are there multiple servers or just one?

• Types of documents to be indexed

• Types of searches

• Security

o How are access rights implemented in the intranet?

• Platform dependability

o On which platforms should the engine be able to index documents?

• Search interface

• Speed

• Costs

• Indexing and timeliness

o How up-to-date should the index be?

• Accuracy and relevance

• Administration and degrees of control

o How much administrative functions does the search engine provide?

• Ease of implementation

• Disc space and directory consideration

o How much memory does the engine require?

o How much disk space does the index require?

• Size of organization and expected importance of intranet

o How decentralized is the organization and its information?

33

o How fault-tolerant should the engine be?

• Reporting functions

o Should the engine provide logs of its usage, performance or other aspects?

• Employee training

o How difficult is the search interface to use for an employee?

o How much resources are available for training personnel?

• Convincing management

o How reluctant is the company’s management to implementing the engine?

These factors were considered together with the aforementioned aspects when identifying

the functional and non-functional requirements.

Table 3. Functional and non-functional search engine requirements.

ID Name Priority Description

R1 Open source M

Preferably open source software to make testing

easier and early commitment to any one solution

unnecessary, and to keep costs low.

R2 RHEL M
Support for Red Hat Enterprise Linux (or Linux in

general).

R3 Enterprise S Built for enterprise search purposes.

R4 On-premises M Deployed on-premises.

R5 File formats M Support for indexing contents of various file formats.

R6 Setup and forget C
Easy installation, and minimal configuration and

maintenance required during and after deployment.

R7 Ready UI S

Readily usable (and optionally customizable) UI

accessible from any modern browser, including

mobile ones.

R8 Access control M
Support for login functionality and handling access

rights.

R9 Real-time M Real-time or almost real-time indexing.

R10 Administration S
Includes administration tools for monitoring,

configuration, and others.

R11 Documentation S
Sufficient documentation to aid deployment and

maintenance. On-going development is a plus.

34

R12 Queries S
Supports multiple types of queries, for example fuzzy

and wildcard queries.

R13 Results S
Results view includes content snippets, hit

highlighting and others.

R14 Finnish C Support for the Finnish language.

Table 4. Matches between the search engines' features and the requirements.

 Requirement

Search

engine

O
p

en
 so

u
rce

R
H

E
L

E
n

terp
rise

O
n

-p
rem

ises

F
ile fo

rm
ats

S
etu

p
 an

d
 fo

rg
et

R
ead

y
 U

I

A
ccess co

n
tro

l

R
eal-tim

e

A
d

m
in

istratio
n

D
o

cu
m

en
tatio

n

Q
u

eries

R
esu

lts

F
in

n
ish

Ambar ~ ~ ✓ ✓ ✓ ✓ ✓ ? ✓ ? ~ ✓ ✓ 

Apache Solr ✓ ✓ ✓ ✓ ✓  ~ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Datafari ~ ~ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ?

Elasticsearch ~ ✓ ✓ ✓ ✓ ~  ~ ✓ ✓ ✓ ✓ ✓ 

Everything ✓   ✓ ✓ ✓ ✓ ? ✓ ? ✓ ✓  ?

OpenSearchSe

rver
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ~ ✓ ✓ ✓

Open Semantic

Search
✓ ? ✓ ✓ ✓ ✓ ✓ ? ✓ ✓ ✓ ~ ✓ ~

Searchblox ~ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Yacy ✓ ✓ ✓ ✓ ✓ ~ ✓ ? ✓ ✓ ~ ✓ ✓ ?

Ambar

Ambar is based partially on Elasticsearch and is deployed with Docker (Docker Inc. 2020).

A paid enterprise version of Docker is required for RHEL. It’s unclear how access control

may be implemented with the engine, and its development doesn’t seem particularly active.

(Ambar LLC 2020)

35

Apache Solr

Apache Solr is a popular search platform that is highly extensible and can be tailored to

many use cases. Many other search engines, including some listed here, are based on Solr.

While it provides all of the desired features, deploying and configuring it may be too

complex while other less complicated engines may produce similar results. The certainty of

continued support and development is a definite advantage. (Apache Solr Software

Foundation 2020)

Datafari

Datafari is based on Solr which, akin to Ambar, utilizes Docker. Although otherwise a strong

candidate, a paid enterprise edition is required for RHEL. (France Labs 2020)

Elasticsearch

Similarly to Apache Solr, Elasticsearch seems to be more often used as a platform for other

search engines. Its feature set is exhaustive, but some critical components are restricted to

paid editions. (Elasticsearch B.V. 2020)

Everything

Everything is perhaps the most straightforward search engine to set up on this list. While it

supports indexing network drives, it is only available for Windows. The index would have

to be stored locally on each workstation, which is not ideal. Another disadvantage is that the

engine cannot index file contents. (Carpenter 2020)

OpenSearchServer

OpenSearchServer is an open source search engine with a complete feature set and a simple

setup process. Though development is somewhat active with the website being updated in

preparation for the upcoming new version, the engine’s documentation is severely lacking.

Nevertheless, it is still a strong candidate to consider. (OpenSearchServer, Inc. 2020a)

Open Semantic Search

Open Semantic Search is based on both Apache Solr and Elasticsearch, and its functionality

is comparable to Ambar and Datafari. However, its support for RHEL is unclear. (Mandalka

2020)

36

Searchblox

Searchblox is also based on Elasticsearch. It’s simple to set up and a free license is available,

though it can only be used for one collection. This means that a single index of only 10 000

documents can be created, which is a severely limiting factor. (SearchBlox Software, Inc.

2020)

Yacy

Yacy is an open source engine that is focused on decentralization and P2P (peer-to-peer)

networks for web indexing, but also usable as an intranet search engine. It almost has a

complete feature set but its interface is confusing, it doesn’t seem to support access control,

and its documentation is practically nonexistent. (Christen 2020)

Not all of the search engines listed in Table 4 were properly tested in the virtual machine

due to the fact that either installing them proved unsuccessful or significant problems were

encountered during setup. Ambar and Datafari were successfully installed but indexing a

network share turned out to be impossible. OpenSearchServer, SearchBlox and Yacy were

successfully used to index a Samba share. SearchBlox’s limit of 10 000 documents proved

prohibitive, but the other two engines were showcased to the company’s representatives.

OpenSearchServer was chosen for further testing and ultimately implementation.

4.3 Designing the OpenSearchServer implementation

Once OpenSearchServer was chosen for further testing, its implementation was designed

within the test environment. This section describes the main features of the engine and how

they were utilized in the implementation. This section will not serve as documentation for

the engine’s interface or each of its components’ settings, but will instead focus on the design

choices on a higher level.

OpenSearchServer (OSS) is an open source enterprise-class search engine developed by

OpenSearchServer Inc. and licensed under the GNU (GNU’s Not Unix) GPL (General

Public License) v3 (Free Software Foundation, Inc. 2020). It enables the integration of

search capabilities into existing applications and can also function as a standalone search

application via its web user interface. It requires only that the system has a Java runtime

37

installed (version 7 or later) and can be downloaded as a tar.gz archive and unpacked

anywhere. Scripts are provided for starting and stopping the server, which runs on the TCP

(Transmission Control Protocol) port 9090 by default. The web user interface can be

accessed from another system using any modern browser. (OpenSearchServer, Inc. 2020d;

OpenSearchServer, Inc. 2020b)

The design of the OSS implementation started with the company’s representatives describing

the desired end result. They expressed that the interface should resemble the ones found in

popular web search engines, with simplicity and clarity as the main priorities. It was

determined that the interface should include the following elements:

• Company logo

• Login page and logout button

• Search bar with autocompletion

• Search results

o Exact filename, which links to the file on the network drive

o Path to the folder, which links to the folder on the network drive

o Snippet of content with hit highlighting

o Date

• Filters

o Date

o File extension

o Language

o Share

o Type (directory or file)

• Sorting

o Relevance

o Date (ascending)

o Date (descending)

The admin interface of OSS provides functionality for defining all the necessary components

for customizing the search engine. These include the indexes, the index schemas, the

38

analyzers, the crawlers, the query template, the renderer, the schedules and the

authentication.

4.3.1 Indexes

Setting up an OSS instance starts off with creating an index. An index can be given a name,

and a couple of templates are provided for a quick setup. These include templates intended

for web or file crawling, as well as for storing user credentials.

Two indexes were created; one main index for the documents using the file crawler template,

and another index using the credentials template. The following sections mostly describe

components defined for the main index.

4.3.2 Schema

A schema describes the structure of a database and the information it contains. An index is

essentially a database, and its schema lists the fields that are stored for each document. These

fields contain pieces of information like the document’s name, path and extension, as well

as its content, date, permissions and others. The index fields’ names can be arbitrarily

chosen, so they have to be mapped to the real file fields. For example, the document’s

filename may be mapped to the fileName field.

In OSS, the schema defines whether a specific field’s contents are indexed or not, and how.

Prior to indexing, the field’s contents can be processed with a so-called analyzer. A field’s

original contents can also be stored separately. A list of terms, such as a document’s access

rights or contents, can be stored as a term vector. The term vector’s offset information can

be stored as well, which enables the use of snippets. A field’s contents can also be a copied

off another field. Copying is done prior to processing, so the contents are equal before they

are processed by any analyzers.

The schema needed to at least include the fields that are displayed in the search results, the

fields that the queries are executed within, as well as the ones used for filtering and sorting.

Table 5 lists all of the indexed fields and their properties that were included in the schema.

39

No new mappings to the real file fields had to be added. Some of the fields are quite self-

explanatory, but those that are not are further explained.

Table 5. Schema of the main index.

Field name Stored Term vector Analyzer

(copy of field)

lang No No

title No No TextAnalyzer

content Yes (compress) Yes (offsets) TextAnalyzer

url No No

fileName Yes No TextAnalyzer

autocomplete No No AutoCompletionAnalyzer

(copy of fileName and content)

directory No No

crawlDate No No

fileSystemDate No No

fileExtension No No

fileType No No

fileSize No No LongAnalyzer

userAllow No Yes AccessAnalyzer

userDeny No Yes AccessAnalyzer

groupAllow No Yes AccessAnalyzer

groupDeny No Yes AccessAnalyzer

winURL No No WinURLAnalyzer

(copy of url)

winDir No No WinURLAnalyzer

(copy of directory)

share No No ShareAnalyzer

(copy of url)

The fields title and fileName may seem like they represent the same thing, but in fact the

former refers to the metadata title of the document, which may be different from the actual

filename. The fileName field is also stored as is to allow displaying the exact filename in the

search results.

40

To allow displaying snippets of the documents’ original contents in the search results, the

content field is indexed as a term vector with offset information, as well as compressed and

stored in its original form. The autocomplete field is copied from the fileName and content

fields and processed separately.

The url field is the file’s path. The winURL field is the same path, but in Windows format

and with the IP address replaced with the name of the mapped network drive. The two

formats compare as follows:

smb://192.168.1.1/share/folder/file

file:\\mappedshare\share\folder\file

The fields directory and winDir follow the same logic. Both winURL and winDir were used

in the search results as hyperlinks for the filename and filepath, respectively. Practically

every employee and workstation uses Windows, so including links compatible with other

operating systems wasn’t necessary.

The names of the fileExtension and fileType fields can be misleading. The former is the file’s

format, while the latter states whether the document is a file or a directory. The fields

userAllow, userDeny, groupAllow and groupDeny contain the allowed or denied users or

groups as lists of terms. In reality, the deny fields are rarely if ever used but are included

nonetheless.

4.3.3 Analyzers

The content of some fields (such as lang) can be indexed as is, though for other fields the

contents may need to be processed in order to save disk space and make querying more

efficient. Analyzers can be defined to process the fields’ contents prior to indexing. These

can be defined for each desired language separately. An analyzer first tokenizes the field’s

contents and then (optionally) runs the tokens through various filters. This is the step of the

process where stop words can be removed and stemming can be performed. Custom lists of

stop words for each language can be added. An arbitrary number of predefined filters with

41

numerous parameters can be added to each analyzer. The end result of an analyzer depends

on what kind of information should be stored for a specific field.

Five distinct analyzers were defined, and one of these analyzers was defined for a couple of

languages; Finnish and English. The analyzers and examples of their input and output are

listed in Table 6. Each analyzer is used both during indexing and querying, meaning that a

user’s query is processed in the same way as a field’s content. Only two kinds of tokenizers

have been used for all of the analyzers. The standard tokenizer is used for text. It strips the

text of special characters like commas, periods and white space, and treats each word as a

separate token. The keyword tokenizer, on the other hand, treats the whole input as a single

token and does not process it in any way. This is useful for fields where the content is not

typical text.

Table 6. Created analyzers.

Analyzer Tokenizer Input example Output example
Access Keyword unix user\username username

AutoCompletion Standard this is text this is, this is text, is text, text

Share Keyword smb://ip/public/file.txt public

Text Standard this is text tex, text

WinURL Keyword smb://ip/public/file.txt file:\\mappedshare\public\file.txt

The AccessAnalyzer simplifies how the names of users and groups are presented. The

keyword tokenizer is used, and the names are stripped of any special prefixes using regular

expression (regex) replace filters. Special users and groups that are extracted by the file

parsers but are not needed are excluded with another regex filter.

The AutoCompletionAnalyzer is used to generate suggestion snippets from the files’ names

and contents. The standard tokenizer is used. The tokens are transformed into lower case,

any file extensions are removed, and a filter is used to generate shingles from them. Shingles

can be thought of as varying groups of words. Lastly, stop words are removed so that there

are no suggestions like “this is a”.

The ShareAnalyzer is used to extract the share name from the document’s URL. The

keyword tokenizer and two regex replace filters are used to achieve this.

42

The TextAnalyzer is perhaps the most important analyzer. It transforms the contents of the

three most important fields (fileName, content, title) into a form that saves disk space and is

more efficient to query. A separate analyzer has been defined for each language used,

including an “undefined” language which is used when a parser cannot determine the

document’s language. The standard tokenizer separates the words into tokens, and the tokens

are filtered several times. The exact filters depend on the language. First, the tokens are

transformed into lower case. Stop words are removed using custom stop word lists. Umlauts

like Ä and Ö are transformed to A and O. Either a snowball or a stem filter is used to stem

the tokens. Lastly an edge n-gram filter is used to produce partial tokens of varying length,

similarly to the shingle filter, but for each individual word. This allows the end user to search

with only partial or even mistyped search terms.

The WinURLAnalyzer uses the keyword tokenizer and two regex replace filters to transform

both the document and the folder paths to Windows format.

The LongAnalyzer seen in Table 5 is a predefined analyzer that transforms the file size

information into a format used internally by OSS.

4.3.4 Crawler

OSS supports crawling of various sources including the web, databases and mailboxes, as

well as local and remote file systems. Depending on the crawl target, a number of settings

can be set to include and exclude resources. The crawl process can be set to run once or

indefinitely and scheduled to run automatically. OSS includes a multitude of parsers that are

able to handle most of the popular file extensions during crawling and indexing, such as PDF

and the Microsoft Office formats. The parsers’ settings can be changed but this is rarely

necessary.

In the case of crawling a file system (including a network drive), so-called “locations” are

defined. Locations include information like the root of the crawl, exclusion patterns and the

type of permissions that are extracted from the documents. A single location was defined as

for each Samba share that was indexed. The crawler needed to be provided credentials which

it used to access the share. To avoid having to create multiple locations with different

43

credentials for each share, a “super user” with access to all shares and their files was used.

An example of a location definition for a Samba share is as follows:

• Type: SMB (Server Message Block)/CIFS (Common Internet File System)

• Username: superusername

• Password: superuserpassword

• Security permissions: File & share permissions

• Host: 192.168.1.1

• Path: /share/

• Exclusion patterns: */notindexedfolder/*

The crawl process can be started as soon as the schema, analyzers and crawl locations have

been defined. If authentication is going to be used, the relevant fields need to have been

included in the schema.

4.3.5 Query template

A query template defines what happens when an end user enters a search term into the search

bar. Most importantly this includes which fields the query is executed within and which

fields are returned. Queried fields can be given different weights, so for example the

document’s name can be given a greater importance over its content. The returned fields

essentially comprise the information displayed for each search result. Fields that are going

to be used for snippets and filters are also defined in the query template.

The queries can be executed with the terms being treated as one of the following

(OpenSearchServer, Inc. 2020b):

• Pattern

o No processing is done to the search terms.

• Term

o Special characters are removed, and the query is executed with each term

individually.

• Phrase

44

o Special characters are removed, and the query is executed with the phrase as

a whole.

• Term & phrase

o Combination of the previous two.

A single query template was defined. The searched or queried fields were title, content,

fileName and url. Within each field, the query is executed both as separate terms and a single

phrase. The fields title and fileName were given a weight twice that of content and url. Each

field was given a phrase slop value of three, which made it possible to match phrases even

if their terms are in a slightly different order.

The returned fields comprise the information that is displayed for each search result. These

are fileName, winURL, winDir, content and fileSystemDate. though winURL is not displayed

by itself but instead used as a hyperlink for fileName. Content is the only snippet field. The

filter fields are lang, fileExtension, share and fileType.

4.3.6 Renderer

A renderer defines a search interface, including its appearance and the information it

displays. A specific query template can be attached to a specific renderer. Basic renderer

templates using basic HTML (Hypertext Markup Language) and the Bootstrap framework

(Bootstrap Core Team 2020) are provided. The styling of the interface can be further altered

with CSS (Cascading Style Sheets). A header, a footer and labels as well as filters and sorts

can be defined within the renderer settings. The renderer also determines the authentication

type used, if any.

A single renderer was defined, and the created query template was attached to it. The

Bootstrap HTML template was used, basic text labels were defined and a test logo was

included in the header with the following HTML element:

45

The renderer fields, listed in Table 7, were almost the same as the returned fields in the query

template. The content field was defined as a snippet. The winURL and winDir fields were

used as links. Each of the fields used a different CSS class for styling. Dates were formatted

as dd.MM.YYYY.

Table 7. Renderer fields and their settings.

Field/Snippet URL field URL decode CSS class Widget type
fileName winURL False filename Text

winDir winDir True location URLwrap

content False content Text

fileSystemDate False small-text-muted Datetime

The same filters defined in the query template were added to the renderer, and three different

sorts were added; relevance, date (ascending) and date (descending). Most of the default

styles were kept as is, but a couple styles were altered and a couple new classes were defined

as seen in Listing 2. The aim was to make the color scheme resemble the one used by the

company. The final look of the interface has been visualized in Figure 7.

Listing 2. Modified and added CSS styles.

1. a {
2. color: #2065C0;
3. }
4.
5. .ossfieldrdr3 {
6. color: black;
7. }
8.
9. #oss-header{
10. margin-bottom: 20px;
11. }
12.
13. .filename {
14. font-weight: bold;
15. color: #2065C0;
16. }
17.
18. .content {
19. color: black;
20. }
21.
22. .location {
23. color: blue;
24. }

46

Figure 7. Designed search interface.

4.3.7 Authentication

To authenticate end users connecting to the search interface and only display results they

have access to, a couple of things are needed. First, the schema needs to include fields for

the allowed and denied users and groups, and those fields need to be mapped to the

corresponding real file fields. Second, authentication needs to be enabled in the renderer.

OSS provides the following authentication types:

• HTTP (Hypertext Transfer Protocol) header

• NTLM (New Technology LAN Manager)/NTLM with login

• Index with login

• WAFFLE (Windows Authentication Functional Framework (Light Edition))/SSO

(Single Sign-On)

As seen in Table 5, the fields for access rights were added to the schema and the

AccessAnalyzer was set to process the extracted rights into a form understood by OSS. In

47

addition, authentication was enabled in the renderer’s settings. The simplest form of

authentication available was used; an index containing the users’ credentials. The schema of

the credentials index can be seen in Table 8. The CryptAnalyzer encrypts the password

during indexing. It appears to use the MD5 (message-digest algorithm 5) hash function, and

accepts a custom salt as input.

Table 8. Credentials index schema.

Field name Stored Term vector Analyzer

(copy of field)

username No No

password No No CryptAnalyzer

groups No Yes

OSS has two kinds of users; those that are inserted into the credentials index and can log in

to the search interface, and those that can login to the admin interface itself. Both kinds of

users are needed to access a defined renderer, i.e. search interface. An individual API

(Application Programming Interface) key is generated for each admin interface user, which

needs to be used to access the search interface. In practice the end user accesses the search

interface with a URL in the following format:

http://[IP address]:[port]/renderer

?use=[index]

&login=[username]

&key=[API key]

&name=[renderer]

An admin user and a normal user were created for the admin interface. Privileges for

querying the main index were given to the normal user. The normal user’s API key was used

to create a URL that the company personnel could use to access the search interface. With

authentication enabled, a page with a login form as seen in Figure 8 was shown prior to

accessing the search interface itself. After logging in, the end users are brought to the search

interface seen in Figure 7.

48

Figure 8. OSS search interface login form.

4.3.8 Scheduler

Scheduled jobs, which can include various tasks, can be automatically executed at

predetermined dates and/or times. These are defined with cron expressions. A cron

expression is a string that consists of five to seven fields that together describe the schedule.

A number of values or special characters can be used for each field. The fields and their

allowed values and characters are listed in Table 9, and the special characters are explained

in Table 10. (Terracotta, Inc. 2020)

Table 9. The fields of a cron expression and their allowed values and characters.

Name Allowed values Allowed special characters

Seconds 0-59 , - * /

Minutes 0-59 , - * /

Hours 0-23 , - * /

Day of month 1-31 , - * / L W

Month 0-11 or JAN-DEC , - * /

Day of week 1-7 or MON-SUN , - * ? / L #

Year Empty or 1970-2099 , - * /

Table 10. Explanations for the cron expression special characters.

Special character Explanation

, Used to specify multiple values

- Used to specify a range of values

* “All values”

49

/ Used to specify increments

? “Any value”

L “Last”

W “Weekday”

“Nth weekday of the month”

Running a crawl indefinitely needlessly takes up system resources. Because of this, the

crawler was initially run once manually, and a scheduled job was defined to run the crawl

automatically. It includes a single task, which is starting the file crawler and running it once.

The cron expression seen in Table 11 was used. The expression translates to “every year,

every day of the week every month, every hour”, or in other words, “every hour”.

Table 11. Cron expression used to schedule automatic crawling.

Seconds Minutes Hours Day of

month

Month Day of

week

Year

0 0 * ? * * *

The company supplied material representative of the real network drives’ content and

structure for testing the designed OSS instance. The test instance successfully crawled the

shares on the virtual machine and the search results were successfully opened from the host

Windows. With this, the design was deemed ready for implementation in the real

environment.

50

5 DEPLOYMENT

After a successful implementation in the test environment was demonstrated to the

representatives, the deployment was done on-site within a four-day period. This section

describes the deployment process, the challenges encountered during it and how they were

solved.

5.1 The environment and scheduling

A new user had been created on the RHEL server for the sole purpose of handling the

administration of OSS. The OSS archive was downloaded into the user’s home directory and

unpacked into its own folder. The OSS folder includes the server’s files and scripts for

starting and stopping the server. The scripts were modified to ensure that there is only one

instance of the server running at any one time. This is done by forcefully stopping all Java

processes in the stopping script, and running it before starting the server. The modified

scripts can be found in Listing 3 and Listing 4, respectively.

Listing 3. Modified server starting script.

1. #!/bin/sh
2. /home/[ossuser]/opensearchserver/stop.sh
3.
4. # Move to the directory containing this script
5. cd `dirname "$0"`
6. #
7. LANG=en_US.UTF-8
8. export LANG
9. JAVA_OPTS="$JAVA_OPTS -Dfile.encoding=UTF-8 -Djava.protocol.handler.pkgs=jcifs"
10.
11. # The directory containing the indexes (must be exported)
12. OPENSEARCHSERVER_DATA=data
13. export OPENSEARCHSERVER_DATA
14.
15. # The TCP port used by the server
16. SERVER_PORT=9090
17.
18. # Any JAVA options. Often used to allocate more memory. Uncomment this line to al

locate 1GB.
19. JAVA_OPTS="$JAVA_OPTS -Xms6G -Xmx6G"
20.
21. # Starting the server
22. eval java $JAVA_OPTS -jar opensearchserver.jar \
23. -extractDirectory server \
24. -httpPort ${SERVER_PORT} \
25. -uriEncoding UTF-8 \
26. >> "logs/oss.log" 2>&1 "&"
27.
28. # Writing the PID

51

29. echo $! > "logs/oss.pid"

Listing 4. Modified server stopping script.

1. #!/bin/sh
2. # Move to the directory containing this script
3. cd `dirname "$0"`
4.
5. # The location of the PID file
6. OSS_PID_FILE=logs/oss.pid
7. if ! [-f "$OSS_PID_FILE"]; then
8. echo "PID file not found. Stop aborted."
9. killall -9 java
10. exit 1
11. fi
12.
13. #Extract the PID
14. OSS_PID=`cat "$OSS_PID_FILE"`
15.
16. # Check if the process exists
17. kill -0 $OSS_PID >/dev/null 2>&1
18. if [$? -gt 0]; then
19. echo "No matching process was found. Stop aborted."
20. killall -9 java
21. exit 1
22. fi
23.
24. # Stopping the process and removing the PID file
25. kill $OSS_PID & rm $OSS_PID_FILE
26. killall -9 java

To reboot the OSS server every day at 6:30 o’clock, the following crontab was defined (Hess

2019):

30 06 * * * /home/[ossuser]/ossreboot.sh

The crontab points to the reboot script in Listing 5 which runs the stop script, waits a few

seconds and then runs the start script.

Listing 5. Server reboot script.

1. #!/bin/sh
2. sh /home/[ossuser]/opensearchserver/stop.sh
3. sleep 15
4. killall -9 java
5. sh /home/[ossuser]/opensearchserver/start.sh

52

To start and stop the OSS server with the server machine itself, init or RC (Run Command)

scripts can be defined. These scripts run automatically at different states or runlevels of the

system, depending on which RC folder they were added to. The first one, in Listing 6, runs

the start script when the server starts, and was added into the folder /etc/rc3.d/. The other

script, in Listing 7, runs the stop script when the server is shutting down, and was added into

the folder /etc/rc6.d/. The naming of the scripts determines the parameters with which they

are run (K for stop, S for start) and in which order they are run (01 first, 99 last). (Hussain

2013)

Listing 6. Automatic starting script K01osserver.sh.

1. #!/bin/sh
2. su [ossuser] -c "/home/[ossuser]/opensearchserver/start.sh"

Listing 7. Automatic stopping script S99ossserver.sh.

1. #!/bin/sh
2. su [ossuser] -c "/home/[ossuser]/opensearchserver/stop.sh"

5.2 OpenSearchServer setup

The OSS instance was for the most part set up as per the design presented in the previous

section. Some challenges were encountered, however, and deviations from the original plan

had to be made. These changes are examined in this section.

5.2.1 Analyzers

The WinURLAnalyzer was slightly modified. Whereas before the Samba file/folder paths

were transformed into the following Windows format

 file:\\mappedshare\share\folder\file

it was discovered that in place of the mapped name, the IP address of the server could be

used instead. Additionally, it was discovered that the format didn’t work in Mozilla Firefox,

which was widely used in the company. Firefox requires five forward slashes in the

beginning of the path, so the final format looked like the following:

53

 file:\\\\\192.168.1.1\share\folder\file

Modern browsers prevent opening local file links (even ones pointing to mapped network

drives) by default for security reasons. This functionality can be enabled both on Chrome

and Firefox by installing an extension. On Chrome the links could then be opened in the

browser itself, while Firefox could open them in Windows Explorer or a default application.

The links could also be copied and pasted into the address bar of Windows File Explorer,

but this is quite inconvenient and presented another problem, which couldn’t be solved. File

paths that contain spaces or umlauts are displayed correctly in the search results, but will be

mangled when copied to File Explorer.

5.2.2 Crawler

A single crawl location was defined for each share. The credentials of a user with access to

all of the shares and all of their files were used to define the crawl locations. Several folders

were manually excluded from the crawl at the discretion of one of the company’s

representatives.

When running the crawl for a single share, it was noticed that the crawl process would

abruptly stop and leave most of the files unindexed. Upon rerunning the crawl and reviewing

OSS’s log files, it became apparent that a single folder containing several PowerPoint files

was the cause of the issue. At first it seemed that the large size of some of the files resulted

in the parser not being able to read their metadata, though the parser should have ignored the

abnormally large files in the first place. Increasing the file size limit for the specific parser

didn’t solve the issue. Inspecting the file permissions, it seemed that the crawler should have

had no problems accessing the files. In the end, the issue was resolved by changing the

permissions that the crawlers extracted from file & share permissions to just file permissions.

5.2.3 Renderer

The company logo was transferred to the OSS images folder and was used in the header of

the renderer. By default, the renderer included a viewer element for each search result that

could be used to open the file. This feature didn’t work reliably and was disabled. The file

path winDir had to be URL decoded in order to display spaces and umlauts correctly, and a

regex pattern was used to shorten it. A file path stored as

54

 file:\\\\\192.168.1.1\share\folder\file

was displayed in the search results as

 share\folder\file

The link points to the same file, but the displayed path is much more compact and readable.

For an unknown reason, the first forward slash had to be omitted for this to work.

5.2.4 Authentication

With authentication otherwise set up as per the design, the credentials could be inserted into

the credentials index. This turned out to be a non-trivial task. Since the end users should

have had access to the same files that they would have on the Samba shares, the index should

have included the same users as the RHEL server itself. There were dozens of users, and

many of them belonged to multiple groups. No fully automated approach was found for

extracting the users’ credentials from the server.

To insert user credentials into the index manually, OSS’s manual update feature was used.

There are three ways to insert new documents into an index; either by using a form or

uploading a text file in XML (Extensible Markup Language) or CSV (Comma-Separated

Values) format. Using the form would’ve been impractical, since each of the values for the

fields need to be inserted manually, and there is no way to add or change the value or values

of a single field later. Using shell scripts, it is possible to export unix usernames and the

groups they belong to. These could then be formatted into either XML or CSV. Parsing the

CSV format turned out to be difficult, and XML was deemed to be the best option. A single

user would be described in XML format as seen in Listing 8. The XML file describing one

or more users would then be uploaded to OSS.

Listing 8. User credentials definition in XML.

1. <index>
2. <document>
3. <field name=”username”>
4. <value>username</value>
5. </field>
6. <field name=”password”>

55

7. <value>password</value>
8. </field>
9. <field name=”groups”>
10. <value>group1</value>
11. </field>
12. <field name=”groups”>
13. <value>group2</value>
14. </field>
15. </document>
16. </index>

The issue of password extraction still remained. In an ideal situation the user’s password

would be exported from the server in an encrypted form and stored in the credentials index.

This would be convenient for the end users since they would only need to memorize one

password. In theory using the same password wouldn’t have been a problem on its own since

an intruder wouldn’t have access to the files themselves even if they had access to the search

interface. RHEL and OSS use different encryption algorithms for password encryption. As

such, a password typed in by an end user in the search interface wouldn’t have matched the

one exported from the server into the credentials index. Approaches to circumvent this issue

were explored (such as overloading OSS’s encryption function) but none were successful.

In the end, the script seen in Listing 9 was used to export user credentials from the server.

The script took a username and a password as inputs and output the user’s credentials into a

text file in XML format. The password was stored in plain text in the file, and encrypted by

the CryptAnalyzer during indexing. The password used for OSS needed to be different from

the one used on the server, and the XML file needed to be deleted immediately after

uploading it to OSS.

Listing 9. User credentials export script.

1. #!/bin/sh
2.
3. read -p "Enter username: " username
4. read -s -p "Enter password: " password
5. echo ""
6. {
7. echo "<index>"
8. echo "<document>"
9.
10. echo "<field name='username'>"
11. echo "<value>$username</value>"
12. echo "</field>"
13.
14. echo "<field name='password'>"
15. echo "<value>$password</value>"

56

16. echo "</field>"
17.
18. for j in $(groups $username | cut -d: -f2); do
19. echo "<field name='groups'>"
20. echo "<value>$j</value>"
21. echo "</field>"
22. done
23.
24. echo "<field name='groups'>"
25. echo "<value>everyone</value>"
26. echo "</field>"
27.
28. echo "</document>"
29. echo "</index>"
30. } > ./userxml/$username.txt

One issue with authentication still remained: it was discovered that documents that should

have been visible to everyone were not. This turned out to be a trivial problem: for these

kinds of documents, OSS extracted the term “everyone” into the field groupAllow. In other

words, only a group called “everyone” had permission to view the documents. Each user had

to be added to this group. This was hardcoded into the user export script seen in Listing 9.

5.3 Using and maintaining OpenSearchServer

The search interface was designed to be as straightforward as possible for the end user. Short

instructions on accessing and using it were written. The original instructions written in

Finnish can be found in Appendix 1. A translated version follows:

“The search engine OpenSearchServer has been deployed within the company, and can be

accessed from [link redacted]. The same link can be found in the [share name redacted]

network drive.

[screenshot of the network drive redacted]

You can log into the search interface using your own credentials (for example [username

redacted]).

You can search for files and folders by name and content. You can only see results that you

have permissions to. All material within the share is not searchable, however. If you feel that

the search doesn’t find something that it absolutely should, send feedback (email below).

57

The search results include links to the file and its folder. You can copy these links and paste

them into Windows File Explorer’s address bar (not all links work, for example ones with

umlauts or spaces).

Browsers prevent opening local file links by default, but you can alternatively open the file

or folder depending on your browser:

- Chrome: add this extension [link redacted]

- Firefox: add this extension [link redacted] and download and install a small program

according to its instructions (requires computer restart to work properly)

Note that Chrome opens the file/folder in the browser, whereas Firefox opens it either with

the default application or in File Explorer.“

In addition, instructions for maintaining the OSS instance were written in English. These

instructions can be found in Appendix 2.

58

6 EVALUATION

As per the design research process, once the artefact i.e. search engine was deployed, it had

to be evaluated. While a search engine can be evaluated with various performance metrics,

it was decided that the performance and utility of the search interface would be evaluated by

surveying the end users (Croft et al. 2015). As such, a survey for gathering quantitative and

qualitative data from the users was planned. This section describes the survey, the analysis

of its results and the improvements made to the implementation based on the results.

6.1 Survey and analysis

13 employees from different departments were selected by a company representative. The

instructions on the usage of OSS were sent to them, and they were given two weeks to test

the search interface. After the two-week period, an anonymous survey was sent to the them,

and a week’s time was given to respond. Open feedback was also accepted via e-mail. Seven

of the 13 testers responded to the survey, and three individuals sent feedback via e-mail.

The survey’s questionnaire consisted of five sections and 30 questions in total. Open

feedback was accepted at the end of each section. A scale of one to five was used for 23 of

the 27 closed questions. The answers to these 23 questions are summarized from Table 12

to Table 16. For most of these questions, a score of 1 signified the most negative and a score

of 5 signified the most positive response. A score of 3 was reserved for a neutral, unsure or

middle ground response. Other answers and feedback are analyzed for each section.

Instructions

Table 12. Questions on the instructions and their results.

Question Lowest (1) Average Highest (5)

I understood how I

could access the

search engine.

Not at all 4.3 Fully

I understood what I

could search and how

I could search.

Not at all 4.1 Fully

59

I understood how I

could open the

document or folder

from the search

results.

Not at all 4.0 Fully

Installing the

extension was
Difficult 3.5 Easy

The instructions were Incomprehensible 3.6 Clear

The instructions were Too long 3.3 Too short

Open feedback on the instructions:

“Clear instructions, installing the extension was a little troublesome but this was more likely

due to hardware issues.”

“Installing the extension itself was easy, but at least for Mozilla Firefox another file had to

be downloaded before the results could be opened.”

The instructions were deemed mostly appropriate and understandable. All of the respondents

used Mozilla Firefox as their browser of choice, and 6 of the 7 respondents installed the

extension as per the instructions. Challenges with the extension were encountered by some

respondents, but overall installing it was deemed easy enough.

Logging in

Table 13. Questions on logging in and their results.

Question Lowest (1) Average Highest (5)

I could access the

search interface (even

remotely)

Never 3.7 Always

I understood which

credentials I had to

use to log in

Not at all 4.0 Fully

There were problems

with logging in
Constantly 4.0 Never

Logging in was Irritating 4.9 Effortless

60

Open feedback on logging in:

“After installing the extension using the search interface was straightforward.”

“If the search interface wasn’t used for a while, the user was automatically logged out. It

would be better if it stayed logged in.”

“At the beginning of the test period there were constant problems with logging in, though

later these problems disappeared.”

For the most part accessing and logging into the search interface worked well enough. Some

unknown causes resulted in the interface not being available for some respondents, though

these issues were resolved on their own. Some respondents worked remotely and had to use

a VPN (Virtual Private Network) to connect to the company’s private network. Most

respondents reported that their remote connection worked as expected. Only one respondent

claimed they couldn’t access the search interface at all, but they also paradoxically said that

they had no problems logging in.

There were two ways to initially access the search interface: using the link in the instructions

or using the link in the network drive. Three respondents said that creating a bookmark was

the most convenient way to access the interface, while three others said that the link in the

instructions was the most convenient. Only one respondent felt the link in the network drive

was the most convenient.

Searching

Table 14. Questions on the search functionality and their results.

Question Lowest (1) Average Highest (5)

Searching was Slow 4.3 Fast

Suggestions in the

search bar were
Useless 3.6 Useful

Different search terms

worked
Poorly 3.7 Well

The search results

were
Irrelevant 3.6 Appropriate

61

The search found

what I expected it to

find

Never 3.6 Always

The number of search

results on one page

was

Too large 3.0 Too small

The snippet of content

in the search results

was

Useless 4.3 Useful

I managed to open

files or folders from

the search results

Not at all 3.6 Easily

Opening a file or

folder from the search

results was

Useless 4.1 Useful

Filtering or sorting

the search results was
Useless 4.0 Useful

Open feedback on searching:

“There were duplicate file extensions in the filters, for example .DWG and .dwg. Could these

be combined?”

“Searching was easy, could have been even faster.”

“Searching with a partial word should work, and the same file extensions regardless of case

should be combined.”

“You had to remember the filename very closely, for example if you forgot an underscore,

the search couldn’t find the file.”

Most respondents said that searching was fast. Suggestions in the search bar weren’t entirely

useful. Not all search terms worked as anticipated, though the results were mostly expected

and relevant. Some expected individual files or folders couldn’t be found, but later it was

determined that these folders were excluded altogether. The amount of search results per

page was appropriate, and the content snippets were deemed highly useful. The links were

more often used to open files or folders. This feature was seen as very useful but didn’t

62

always work. The filtering and sorting features were mostly appreciated. One of the

respondents said they wanted to sort the search results by date, which was already possible.

Utility

Table 15. Questions on the utility of the search engine and their results.

Question Lowest (1) Average Highest (5)

I felt the search

interface was useful
Not at all 4.0 Very much

I could use the

(improved) search

interface regularly in

my work

No way 4.3 Surely

Open feedback on improving the search interface:

“Searching with just the start of the word should be more accurate.”

“Searching with a partial filename would be good.”

“If possible, the search interface could be accessible with something else besides a browser.”

“Searching with a partial word should work, and the same file extension should be combined

in the filters.”

“During the short test period I couldn’t find any obvious improvements to be made.”

“I couldn’t open the search interface directly from the link, this should be fixed.”

“The search could be more accurate.”

The utility of the search interface was perceived as quite high. Most respondents felt that

they could use it regularly, provided that the suggested improvements were implemented.

Appearance

Table 16. A question on the appearance of the search interface and its result.

Question Lowest (1) Average Highest (5)

I liked the appearance

of the search interface
Not at all 3.4 A lot

63

Open feedback on the appearance of the interface was sparse, with just one respondent

raising clarity as an important aspect. The appearance was received neutrally for the most

part, which can perhaps be interpreted as a success.

Other feedback received via e-mail included several testers reiterating other points raised in

the survey. Many wished there was a way to search with any partial search term. One tester

stated that the search engine reduced the amount of time spent on redundant browsing,

though this required careful storage and naming of documents on the server.

6.2 Improvements

Based on the feedback received from the survey and via e-mail, some improvements to be

made were determined:

• Enabling searching with any partial search term

• Improving relevancy with query template settings

• Combining similar extensions in the filter list

• Communicating clearly which drives, folders and files are included in the search

Initially, an edge n-gram filter was added into the TextAnalyzer. As it turned out, this only

allowed the users to search with partial search terms that started at the beginning of a word.

To rectify this, the filter was replaced with an n-gram filter. The difference is illustrated in

the following:

search → sea, sear, searc, search

search → sea, ear, arc, rch, sear, earc, arch, searc, earch,

search

To try and improve relevancy of search results, the schema and the query template were

modified slightly. A new field named full was added to the schema as a copy of the fields

title, content, fileName and url. It was set to be processed by the TextAnalyzer and was added

to the searched fields in the query template. In the template settings, the default operator OR

was coupled with a mirror AND filter. What this effectively meant was that the search result

64

scores were based on the OR operator, but the results were filtered with the AND operator,

combining the “best of both worlds” (OpenSearchServer, Inc. 2020c).

Initially, no analyzer had been defined for the fileExtension field. This resulted in duplicate

file extensions, only with different capitalization, in the filter list. This problem was solved

by defining an ExtensionAnalyzer for the field, which transformed the file extensions into

lower case.

Due to the changes made, the size of the index was expected to rise. Whereas before the disk

space taken up by the index of over 40 thousand documents amounted to around 1.3

gigabytes, afterwards this climbed up to 3.3 gigabytes, which was still satisfactory.

The end users should be kept informed about which folders and files are included in the

search system and which are not. Folders and files can be included or excluded arbitrarily at

any point, but it is unlikely that this will happen often. No elegant solution to this was found,

but one straightforward one could be to have a document listing the exclusions in the root of

the network shares where the link to the search interface is located as well.

Unrelated to the survey itself, it was discovered that after the OSS server was restarted

automatically and the automatic crawl job was executed, the file crawler kept running

indefinitely. To prevent the crawl process from constantly taking up system resources, a

scheduled job was defined that stopped the file crawler shortly after the server was restarted.

In addition, running the file crawl every hour was deemed excessive. The crawl was instead

scheduled to start one hour after the server restarted each day. This level of timeliness was

acceptable, since not too many documents are added to the network drives each day and it is

unlikely that the newest files would be the ones that the users search for.

After implementing the improvements based on feedback, the instructions on the usage of

the search interface were ready to be distributed to the rest of the personnel. Further testing

and feedback would be required to determine whether the made changes were effective and

if any additional ones would be needed, but the implementation was considered to be ready

for real use.

65

7 RESULTS, DISCUSSION AND CONCLUSIONS

This section lists the results of the research, and reflects upon both the results and the

research process itself. Possibilities for further development and research are considered,

and the conclusions of the research are presented.

7.1 Results

As a result of the research, the company’s development needs related to information retrieval

were identified. It turned out that these needs were not only related to information retrieval,

but also to the underlying activities of knowledge management, information management

and document management. The tacit and explicit knowledge possessed by some employees

was not made available to others, and the lack of defined workflows and guidelines made

sharing and retrieving information inefficient. In addition, having no document management

or a robust search system in place resulted in employees struggling to find documents, and

the N-programs presented problems of their own.

As another result of the research, alternative solutions for fulfilling the company’s needs

related to information retrieval were identified. These included two types of information

technology artefacts: document management systems and information retrieval systems.

Though an existing DMS is in use at the company, it is not utilized for the internal documents

on the network drives. While the application of these systems was mostly considered with

the improvement of information retrieval in mind, a DMS could have presented a more

holistic solution and addressed some of the underlying issues. Though a DMS was not

utilized to improve document management on the network drives as part of this research, the

company may be interested in doing so in the future.

As the practical result of the research, an implementation of an existing open source search

engine instance was designed and deployed in the company intranet. The first iteration of

the implementation was evaluated and improvements were made based on the feedback.

Overall the search engine was received well by the test users and was seen as potentially

useful. After making the necessary adjustments, the instructions on the usage of the search

66

engine were sent to the rest of the company personnel. Additional improvements may be

implemented based on further testing and feedback.

7.2 Discussion

At the beginning of the research a search engine was already suggested as a candidate

solution for addressing the company’s information retrieval challenges. While this may have

been justified, it may have narrowed the focus of the research too much. Though other

alternatives were explored, a strong preference for implementing a search engine remained

throughout the research process. Significant contributing factors to this were the practical

delimitations of the research, as it was assumed early on that implementing a more

demanding alternative, such as a document management system, would not have been

feasible. One factor that compensated the limitations caused by remote work was the test

environment, which enabled the design of the artefact to approximate the final

implementation very closely.

Search engines are readily available but finding promising open source candidates and

testing them takes time. While commercial alternatives may have proved to be more capable,

they had to be excluded due to cost restrictions. The open source alternatives were often

dated and had poor documentation, which made testing even more difficult. Significant

hindrances were encountered with many of the tested alternatives, and determining whether

to try and solve these issues or move on to another candidate was challenging. With

OpenSearchServer, the tradeoffs between the ease of implementation and level of

sophistication and control were deemed acceptable.

Though there are numerous metrics that may have been used to evaluate the artefact, it was

decided that user feedback would be the most valuable and efficient form of evaluation in

order to quickly improve the implementation. Though the results from the initial evaluation

were positive and suggest that the search engine may be effective, the success of the made

changes can only be confirmed with further testing and user feedback. The performance of

the engine and especially the relevance of the search results may be improved further by

utilizing some of the features that were not discussed in this thesis, such as the learner and

classifier components.

67

Maintaining the search engine may prove challenging due to the lack of documentation,

though the implementation itself and the supplied instructions were designed to mitigate this

as much as possible. Another shortcoming is that no safeguards or safety measures were

considered in case of hardware or software failures, though no significant damages should

be suffered by the company even if the search engine was disabled for whatever reason.

Currently the search engine’s practical worth to the company is unknown, but in the future

the engine’s reliability may be improved, for example with the index replication feature.

Even in the case that the search engine proves itself useful, it may only be a temporary

solution. A search engine doesn’t solve the underlying issues related to knowledge,

information and document management. In the future, the company may be interested in at

least implementing a document management system, and perhaps also planning and

executing enhancements to the other management activities as well.

7.3 Conclusions

The goal of this thesis was to improve the company’s information retrieval. The company’s

development needs were identified and a literature review into alternative solutions was

conducted. It was determined that an information retrieval system, or a search engine, was a

more viable option to implement. A test environment was setup and alternative search

engines were explored, compared and tested, and one was chosen for implementation. The

chosen search engine instance was designed and deployed at the company, and preliminary

evaluations suggested that it increased the efficiency of information retrieval from the

server’s network drives, and that its utility for the company was potentially high. Room for

enhancement remains, and utilizing a document management system for the network drives

and improving both knowledge management and information management activities were

suggested as possible future developments for the company.

68

REFERENCES

Adam, A. (2007). Implementing Electronic Document and Record Management Systems.

Auerbach Publications. [online]. Available from:

https://www.taylorfrancis.com/books/9780849380600 [Accessed May 27, 2020].

Ambar LLC. (2020). Ambar - Document Search Engine · An open-source document search

engine with automated crawling, OCR, tagging and instant full-text search. [online].

Available from: https:/ambar.cloud/ [Accessed June 2, 2020].

Anon. (2020a). Samba - opening windows to a wider world. [online]. Available from:

https://www.samba.org/ [Accessed June 6, 2020].

Anon. (2020b). Setting up Samba as a Standalone Server - SambaWiki. [online]. Available

from: https://wiki.samba.org/index.php/Setting_up_Samba_as_a_Standalone_Server

[Accessed June 3, 2020].

Apache Solr Software Foundation. (2020). Apache Solr -. [online]. Available from:

https://lucene.apache.org/solr/ [Accessed June 3, 2020].

Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information Retrieval. New York:

ACM press.

Bancilhon, L. (1999). Steps involved prior to the implementation of an intranet search

engine in a Web-based intranet environment. SA Journal of Information Management,

1(1). [online]. Available from: https://sajim.co.za/index.php/sajim/article/view/67

[Accessed June 2, 2020].

Bootstrap Core Team. (2020). Bootstrap · The most popular HTML, CSS, and JS library in

the world. [online]. Available from: https://getbootstrap.com/ [Accessed June 10, 2020].

van Brakel, P. (2003). In need of document management competencies. South African

Journal of Information Management, 5(4). [online]. Available from:

https://www.researchgate.net/publication/272644087_In_need_of_document_management

_competencies [Accessed May 30, 2020].

Büttcher, S., Clarke, C.L.A. and Cormack, G.V. (2010). Information Retrieval -

Implementing and Evaluating Search Engines. [online]. Available from:

https://pdfs.semanticscholar.org/9d64/eaf01183ccbf3f2921a00ba3388c817bd72b.pdf?_ga=

2.18533177.188150087.1581768184-337340091.1579695328 [Accessed February 15,

2020].

Carpenter, D. (2020). voidtools. [online]. Available from: https://www.voidtools.com/

[Accessed June 3, 2020].

Chen, X.H., Snyman, M. and Sewdass, N. (2005). Interrelationship between document

management, information management and knowledge management. South African

Journal of Information Management, 7(3). [online]. Available from:

https://www.researchgate.net/publication/228617437_Interrelationship_between_document

69

_management_information_management_and_knowledge_management [Accessed May

19, 2020].

Cho, J. and Garcia-Molina, H. (2002). Parallel Crawlers. In Proceedings of the 11th

international conference on World Wide Web. [online]. Available from:

https://oak.cs.ucla.edu/~cho/papers/cho-parallel.pdf [Accessed February 15, 2020].

Christen, M. (2020). Home - YaCy. [online]. Available from: https://yacy.net/ [Accessed

June 3, 2020].

Cleveland, G. (1995). Overview of document management technology. IFLA, Universal

dataflow and telecommunications core programme.

Cole, B. (2005). Search Engines Tackle the Desktop. Computer, 38(3), pp.14–17. [online].

Available from: http://www.dbnet.ece.ntua.gr/~dalamag/pub/r3014.pdf [Accessed

February 15, 2020].

Croft, W.B., Metzler, D. and Strohman, T. (2015). Search Engines - Information Retrieval

in Practice. Addison-Wesley Reading. [online]. Available from:

https://www.semanticscholar.org/paper/Search-Engines-Information-Retrieval-in-Practice-

Croft-Metzler/c029baf196f33050ceea9ecbf90f054fd5654277 [Accessed February 8, 2020].

Docile, E. (2019). How to install and configure samba on RHEL 8 / CentOS 8 -

LinuxConfig.org. [online]. Available from: https://linuxconfig.org/install-samba-on-redhat-

8 [Accessed June 3, 2020].

Docker Inc. (2020). Empowering App Development for Developers | Docker. [online].

Available from: https://www.docker.com/ [Accessed June 4, 2020].

Elasticsearch B.V. (2020). Open Source Search: The Creators of Elasticsearch, ELK Stack

& Kibana | Elastic. [online]. Available from: https://www.elastic.co/ [Accessed June 3,

2020].

France Labs. (2020). Datafari Enterprise Search. [online]. Available from:

https://www.datafari.com/en/ [Accessed June 3, 2020].

Free Software Foundation, Inc. (2020). gnu.org. [online]. Available from:

https://www.gnu.org/licenses/gpl-3.0.html [Accessed June 4, 2020].

Göker, A. and Davies, J. (2009). Information retrieval: searching in the 21st century. John

Wiley & Sons. [online]. Available from:

https://ia600300.us.archive.org/0/items/IrSearchingInThe21stCentury/0470027622_Inform

ation.pdf [Accessed February 15, 2020].

Grehan, M. (2002). How Search Engines Work. In Search Engine Marketing: The

Essential Best Practice Guide. [online]. Available from:

https://www.searchenginewatch.com/wp-content/uploads/sites/25/2016/01/how-search-

engines-work-mike-grehan.pdf [Accessed February 15, 2020].

70

Hernad, J.M.C. and Gaya, C.G. (2013). Methodology for Implementing Document

Management Systems to Support ISO 9001:2008 Quality Management Systems. Procedia

Engineering, 63, pp.29–35. [online]. Available from:

https://linkinghub.elsevier.com/retrieve/pii/S1877705813014380 [Accessed May 19,

2020].

Hess, K. (2019). Automate your Linux system tasks with cron. Enable Sysadmin. [online].

Available from: https://www.redhat.com/sysadmin/automate-linux-tasks-cron [Accessed

June 5, 2020].

Hevner, R. et al. (2004). Design science in information systems research. MIS Quarterly,

28(1), pp.75–105. [online]. Available from:

https://sites.google.com/site/yamilejaime/DESIGNSCIENCEININFORMATION.pdf

[Accessed June 10, 2020].

Hussain, S. (2013). How To Configure a Linux Service to Start Automatically After a

Crash or Reboot – Part 2: Reference. DigitalOcean. [online]. Available from:

https://www.digitalocean.com/community/tutorials/how-to-configure-a-linux-service-to-

start-automatically-after-a-crash-or-reboot-part-2-reference [Accessed June 7, 2020].

Kowalski, G. (2011). Information Retrieval Architecture and Algorithms. Springer Science

& Business Media.

Mandalka, M. (2020). Open Semantic Search: Your own search engine for documents,

images, tables, files, intranet & news. [online]. Available from:

https://www.opensemanticsearch.org/ [Accessed June 3, 2020].

Manning, C., Raghavan, P. and Schuetze, H. (2009). Introduction to Information Retrieval.

Cambridge university press. [online]. Available from:

https://ds.echhost.com/jspui/bitstream/123456789/2452/1/00776216.pdf [Accessed

February 13, 2020].

Mutai, J. (2019). How to Disable SELinux on RHEL 8 / CentOS 8. ComputingForGeeks.

[online]. Available from: https://computingforgeeks.com/how-to-disable-selinux-on-rhel-

8-centos-8/ [Accessed June 3, 2020].

OpenSearchServer, Inc. (2020a). OpenSearchServer | Open Source Search Engine and

Search API. [online]. Available from: https://www.opensearchserver.com/ [Accessed June

3, 2020].

OpenSearchServer, Inc. (2020b). OpenSearchServer Documentation - Discovering the

main concepts. [online]. Available from:

https://www.opensearchserver.com/documentation/tutorials/functionalities.md [Accessed

June 4, 2020].

OpenSearchServer, Inc. (2020c). OpenSearchServer Documentation - Improving relevancy

with ‘Mirror AND filter’. [online]. Available from:

https://www.opensearchserver.com/documentation/faq/querying/improving_relevancy_wit

h_mirrorandfilter.md [Accessed June 4, 2020].

71

OpenSearchServer, Inc. (2020d). OpenSearchServer Documentation - Linux (generic).

[online]. Available from:

https://www.opensearchserver.com/documentation/installation/linux.md [Accessed June 4,

2020].

Porter, M.F. (2006). An algorithm for suffix stripping. Program, 40(3), pp.211–218.

[online]. Available from:

https://www.emerald.com/insight/content/doi/10.1108/00330330610681286/full/html

[Accessed February 15, 2020].

Red Hat Inc. (2020). Red Hat software downloads for developers. Red Hat Developer.

[online]. Available from: https://developers.redhat.com/products/ [Accessed June 4, 2020].

van Rijsbergen, C.J. (1979). Information retrieval. [online]. Available from:

http://www.dcs.gla.ac.uk/Keith/Preface.html [Accessed February 15, 2020].

Saracevic, T. (1999). Information science. Journal of the American Society of Information

Science, 50(12), pp.1051–1063. [online]. Available from:

https://www.scribd.com/document/267953508/87-Saracevic-Information-Science

[Accessed February 15, 2020].

Sathiadas, J.P. and Wikramanayake, G.N. (2003). Document management techniques and

technologies. In Proceedings of the 5th international information technology conference.

pp. 40–48. [online]. Available from:

https://icter.org/conference/icter2016/sites/default/files/icter/IITC2003book.pdf#page=46

[Accessed May 29, 2020].

SearchBlox Software, Inc. (2020). SearchBlox AI-Driven Search. SearchBlox AI-Driven

Search. [online]. Available from: http://www.searchblox.com/ [Accessed June 3, 2020].

Singhal, A. (2001). Modern Information Retrieval: A Brief Overview. IEEE Data Eng.

Bull., 24(4), pp.35–43. [online]. Available from:

http://sifaka.cs.uiuc.edu/course/410s12/mir.pdf [Accessed February 15, 2020].

Terracotta, Inc. (2020). Cron Trigger Tutorial. [online]. Available from:

http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/crontrigger.html

[Accessed June 7, 2020].

VMWare, Inc. (2020). Download VMware Workstation Player | VMware. [online].

Available from: https://www.vmware.com/products/workstation-player/workstation-

player-evaluation.html [Accessed June 4, 2020].

Witten, I.H., Moffat, A. and Bell, T.C. (1999). Managing gigabytes: compressing and

indexing documents and images. Morgan Kaufmann. [online]. Available from:

http://cyber.sibsutis.ru:82/%D0%A1%D0%9F%D0%98/%D0%9F%D0%B5%D1%80%D

0%B2%D0%B0%D1%8F%20%D1%87%D0%B0%D1%81%D1%82%D1%8C/Managing

%20Gigabytes;%20Witten,%20%D0%9Coffat,%20Bell.pdf [Accessed February 15,

2020].

72

Zobel, J. and Moffat, A. (2006). Inverted files for text search engines. ACM Computing

Surveys, 38(2), pp.6-es. [online]. Available from:

http://portal.acm.org/citation.cfm?doid=1132956.1132959 [Accessed February 15, 2020].

APPENDIX 1. Finnish instructions on the usage of OpenSearchServer

OpenSearchServer-hakumoottorin käyttöohjeet

Meillä on nyt otettu käyttöön hakumoottori OpenSearchServer, johon pääset tästä linkistä

[hyperlink redacted]. Sama linkki löytyy myös pikakuvakkeena [network share redacted]-

verkkokansiosta:

[screenshot redacted]

Voit kirjautua hakuun oman koneesi tunnuksilla (esim. [username redacted]).

Voit hakea tiedostoja ja kansioita niiden nimen ja sisällön perusteella. Näet vain sellaiset tulokset,

joihin sinulla on pääsyoikeudet. Kuitenkaan aivan kaikki materiaali jaoissa ei ole haettavissa. Jos

koet ettei haku löydä jotain mitä ehdottomasti pitäisi, anna palautetta (sähköpostiosoite

alempana).

Hakutuloksissa on linkit tiedostoon ja sen kansioon. Voit kopioida linkin Windowsin

resurssienhallinnan osoitepalkkiin (kaikki linkit eivät toimi kopioidessa, esim. ääkköset tai

välilyönnit).

Selaimet estävät tavallisesti linkkien avaamisen suoraan, mutta vaihtoehtoisesti pääset avaamaan

tiedoston tai kansion selaimestasi riippuen:

- Chrome: lisää tämä laajennus [hyperlink redacted] selaimeen

- Firefox: lisää tämä laajennus [hyperlink redacted] selaimeen, ja asenna sen ohjeiden

mukaan pieni ohjelma koneellesi (vaatii koneen uudelleenkäynnistyksen toimiakseen

kunnolla)

Huomaa, että Chrome avaa tiedoston/kansion selaimessa, kun taas Firefox

oletusohjelmalla/resurssienhallinnassa.

APPENDIX 2. Instructions on the maintenance of OpenSearchServer

OpenSearchServer search engine –

admin instructions

This document instructs in the administrative use of the OpenSearchServer (OSS) search engine. It

assumes some familiarity with using the command line interface, Linux, and computers in general.

All of the important functions are covered here, but for more information you can refer to the official

documentation.

The most important tasks the reader should be able to accomplish are:

• Starting/stopping the server (Section 1).

• Adding/deleting/modifying users (Sections 6 and 12).

• Adding/deleting documents (Section 8).

(continues)

https://www.opensearchserver.com/
https://www.opensearchserver.com/documentation/README.md

APPENDIX 2. (continued)

Contents

1. Server files, starting and stopping

2. Logging in and web interface

3. Schema

4. Query

5. Renderer

6. Update

7. Delete

8. Crawler

9. Scheduler

10. Runtime

11. Privileges

12. Exporting Linux users

(continues)

APPENDIX 2. (continued)

1. Server files, starting and stopping

The OSS folder can be accessed by logging in to the company server (using Putty, for example) as

the user [username redacted]. The OSS folder is in the home folder of the user, and contains the

following:

Usually, modifying any of the files is unnecessary.

In short, the OSS server can be started and stopped with the start.sh and stop.sh script files. It will

run on port 9090 by default and its web interface can be accessed with any browser connected to the

private local network by typing the IP and port into the address bar (for example

192.168.160.6:9090). You can find the IP address of the server with the ifconfig command, for

example.

The OSS server has been configured to automatically start and stop along with the server machine

itself, and it restarts every morning at 06:30. The start.sh script will also first run the stop.sh script

so that only a single instance of OSS is running at any time, and stop.sh will forcefully stop any Java

processes, effectively ensuring that OSS shuts down.

The OSS server has been configured to use a maximum of 6 gigabytes of memory. This can be edited

in the start.sh file (JAVA_OPTS=”$JAVA_OPTS -Xms6G -Xmx6G”).

(continues)

APPENDIX 2. (continued)

2. Logging in and web interface

After typing in the address, you should be greeted with the following login screen:

Only two users are available for logging in to the admin interface: admin and haku. The latter is

only used to provide access to the search interface for the end users, and there is usually no reason

to log in as haku here.

Note that these users are not the same as the ones used for logging in to the search interface itself.

This distinction will be made clearer later.

After logging in as admin, you will see the following:

(continues)

APPENDIX 2. (continued)

Tip: since the interface may not always automatically refresh, you can do this manually from the top

right corner of the window.

At this point only three tabs are available:

• Indices

o List of indices. An index is essentially a database that enables fast searching of files.

o Two indices are used, one for the documents themselves and one for the credentials

of the users that can log in to the search interface. No new indices should need to be

created.

• Runtime

o Information about the system and its resources, as well as logs and advanced

features. Can be helpful for troubleshooting.

• Privileges

o Here users such as admin and haku and their privileges can be added. Usually there

is no need to create new users here.

After selecting an index by clicking its row in the list, more tabs will appear:

Most of these will be discussed in detail in the following chapters.

• Schema

o Defines what information is stored for each document in the index and how the

information is processed or analyzed beforehand.

• Query

o Defines templates for querying and returning information from the index.

• Renderer

o Defines the search interface for the end users.

• Update

o Can be used to manually add or update documents in the index. Not necessary for

the document index but will be used for the credentials index.

• Delete

o Can be used to manually delete documents in the index. Again, only used for the

credentials index.

• Crawler

o Defines the crawlers that search and retrieve files for indexing.

• Scheduler

o Defines jobs that are executed automatically at specified dates and times.

• Reports

o Can be used to generate reports.

(continues)

APPENDIX 2. (continued)

• Replication

o Can be used to replicate indices.

• Scripts

o Can be used to create scripts.

3. Schema

This tab defines the information stored for each document in the index and how that information is

retrieved and processed beforehand. It contains the following subtabs:

Fields

Fields are the individual pieces of information stored for each document. These include the filename,

the file type, the file path, the access rights, and others. To individualize each document, a unique

field is needed. The URL (essentially the file path) is a good choice.

Most of the fields are self-explanatory, but a couple can be a bit vague.

• Title

o Metadata title of the document (not necessarily the same as the filename)

• Autocomplete

o Used to provide autocompletion/suggestions in the search bar based on the filename

and the file contents.

• WinDir and WinURL

o The folder and file paths in Windows format, respectively.

• Share

o The share name (for example public)

The field settings determine the following:

• Indexed

o Content of the field is indexed, and queries can be executed within it.

• Stored

o Content of the field is stored as is, i.e. before indexing/processing/analyzing.

o Can be optionally compressed.

o Useful for displaying the exact filenames and snippets of contents in the search

results.

• Term vector

o Indicates that a field is a list of items.

o Useful for storing multiple values, such as access rights.

o Needed for generating snippets (offsets are needed as well).

• Analyzer

o Used to process the content of the field.

(continues)

APPENDIX 2. (continued)

• Copy of

o The initial value for this field is copied from the initial value of some other field or

fields.

Analyzers

Analyzers are (optionally) used to process the contents of the fields. For example, the title, filename

and content fields are processed by the TextAnalyzer to make storing and querying them more

efficient. Analyzing can be done during both indexing and querying. Some analyzers are included by

default, but a few have been created or modified.

An analyzer can be defined for each language separately, and it consists of tokenizers and filters:

• Tokenizing

o Individual pieces of text or characters are identified and separated into so-called

tokens.

o Unwanted characters, such as whitespaces, can be discarded.

o Mainly two tokenizers are used: the standard and the keyword tokenizers.

▪ The former is used for traditional text (“this text” becomes “this” and

“text”).

▪ The latter is used to process the entire contents of the field as a single token

(a file path, for example).

• Filtering

o After tokenizing, the tokens can be filtered. Filtering can help in decreasing the size

of the index and improving the relevance of the search results.

o Some examples include:

▪ Recognizing certain patterns and discarding or replacing those tokens.

▪ Removing stop words (common words such as the).

▪ Removing characters such as Ä and Ö.

▪ Removing prefixes and suffixes such as -lla or -sta.

▪ A significant part of indexing is stemming, which truncates words into their

common form. For example, the words kalastus and kalastaa could both be

stemmed into their common form, kala. Filters for stemming words in

specific languages are available.

In addition to decreasing the size of the index and improving query performance, the analyzers also

help format the search results. The output of an analyzer can be tested while editing.

Parser list

The parsers process the files found by the crawlers and extract the various fields for indexing. You

do not have to worry about how they work, but it may be desirable to increase the file size limit

which is typically around 30 Mb. This limit can be increased on a per parser basis.

(continues)

APPENDIX 2. (continued)

Stop words

Here lists of stop words (common words) for each language can be added. The words are separated

by newlines and there should not be an empty line at the end of the list. Stop words can be used with

a stop filter in an analyzer. This decreases the size of the index.

Autocompletion

Here the field used for autocompletion can be defined and tested. The default settings should be fine.

Authentication

To implement authentication, information about each document’s access rights needs to be stored in

some fields. These fields can be defined here. The rights can be stored in the same index as the rest

of the fields, or in a separate index. If no rights are found for the document, a user or a group could

be given access by default.

4. Query

This tab defines the information that is searched for and returned when the end user types in a search

query. As for the general settings, most of the defaults should work fine, but the default operator OR

could be a better choice in order to return relevant results.

Searched fields

These are the fields that a query is executed within. The user should be able to search for files based

on their title, name, content, and location. The title and filename are given a larger weight, and for

each field inexact queries are allowed with the phrase slop setting.

The mode setting has four options:

• Pattern

o No processing done to keywords: for example, “this text” is a single keyword.

• Term

o Special characters are removed, and each keyword is queried separately.

• Phrase

o Special characters are removed, and the whole phrase is queried.

• Term & phrase

o As above, but both the terms and the whole phrase are queried.

(continues)

APPENDIX 2. (continued)

Returned fields

These are the fields that will be available to display in the search results.

Faceted fields

These are the fields that will be used for filtering. The date filter is available by default and is not

listed here.

Snippet fields

These are the fields that are used for snippets.

Sorted fields

Here some default sorts could be defined. Ordering by relevance is usually desired, so defining any

sorts here should be unnecessary. The user will be able to sort the results in different ways, but these

are defined in the Renderer tab.

Filters

The name of this tab can be a bit misleading. Setting a filter here filters all results and the end user

has no control over it, so only the mirror AND filter is added. Coupled with the default operator OR

in the general setting, this setting should improve the relevance of the search results.

5. Renderer

The renderer defines the search interface. From the list of renderers, selecting view opens up the

search interface, which is also visible to the end users. After you open the interface, note that the

address bar shows which user the interface is being accessed with (for example &login=admin). For

the end users, this would be haku instead. Make sure not to share the admin address with anyone

who should not access the admin interface!

Selecting edit reveals new tabs for editing the renderer. The general settings are used for labels and

appearance.

Fields

These are the pieces of information that will be displayed for each result.

(continues)

APPENDIX 2. (continued)

Filters

These are the filters that the end user can select to filter out results.

Sorts

These are the manual sorts the end user can select to reorder the results. The hyphen (-) sets the

order from highest to lowest.

CSS style

CSS is used to style web pages. In the simplest form, it can be used to change the color and size of

text, as well as positions of the elements that the page consists of. Most of the styles used are the

default ones. Styles with a dot are for classes (for example .osscmnrdr), and styles with a hashtag are

for ids (for example #ossautocomplete). Fields can be given specific classes in the Fields tab.

Authentication

Enabling authentication here makes it so that the end user must login to access the search interface,

and if access rights are stored for the documents, only the allowed results will be displayed. In this

case the authentication type used is the simplest one available: user credentials are stored in an index.

The next chapter will cover adding and modifying credentials.

6. Update

For the main index, accessing this tab is not necessary. For the credentials index, however, this tab

is used to add and modify users. The credentials index contains three fields: username, password,

and groups. The username field is both the unique and the default field. The password is encrypted

using the default analyzer. The user can belong to many groups, so the groups field should be a term

vector.

Select the credentials index from the Index tab and then select the Update tab again.

There are three ways new users (or “documents” in general) can be added manually: with a form, an

XML file, or a CSV file. For the latter two, ordinary text files can be used but their contents are

formatted differently. Any of the methods should work, but XML is preferred.

(continues)

APPENDIX 2. (continued)

Form

Using the form, fields and their values have to added manually. This is not very handy for adding

many users who belong to many groups.

XML

Credentials can also be uploaded in XML format. Following the example available in the XML tab,

here is how the file should look:

<index>

 <document>

 <field name=”username”>

 <value>user</value>

 </field>

 <field name=”password”>

 <value>password</value>

 </field>

 <field name=”groups”>

 <value>group1</value>

 </field>

 <field name=”groups”>

 <value>group2</value>

 </field>

 </document>

</index>

(continues)

APPENDIX 2. (continued)

Here an “index” contains “documents”, i.e. users, which in turn contain the appropriate fields. Using

XML, it is easier to include any number of groups. Generating XML files from Linux users will be

covered later.

7. Delete

This tab is also not necessary for the main index but can be used to delete user credentials. A query

can be executed to check for any matching credentials, which can then be deleted.

For deleting files from the main index, see the next chapter.

8. Crawler

This is one of the most important tabs. Here the crawlers that retrieve files for indexing are defined.

Crawlers can be used for a number of use cases, such as web pages, local or remote files, databases,

and others. In the case of Samba shares, the focus is on the Files tab.

Locations

A location can be thought of as a single share that is going to be indexed. These can be defined as

follows:

(continues)

APPENDIX 2. (continued)

• Type

o The type of location that is going to be indexed. For Samba shares, use SMB/CIFS.

• Username & Password

o The crawler needs to use credentials to access the share and its files. A “super user”

with access to all of the shares and their files should be used.

• Host

o This is the address of the machine Samba is running on. It can be localhost, 127.0.0.1

or the LAN IP (for example 192.168.160.6).

• Path

o This is essentially the name of the share. A subfolder could also be specified, of

course.

o Must end in /.

• Exclusion patterns

o Specific folders or files could be left out of indexing using simple regular

expressions.

o For folders: */dontindex/*

o For files: */*.txt

You can check that a location works with the Check button.

(continues)

APPENDIX 2. (continued)

Crawl process

After defining one or more locations, the crawl can be started. The crawl can be set to run just once

or continuously. By default, a job that builds the autocompletion is ran after each crawl.

The crawl process can be monitored here. The page refreshes automatically every couple of seconds.

It is a good idea to make sure that files are being fetched and committed, though with a large number

of files it may be difficult to know whether everything is working correctly. Log files found in the

Runtime tab may be helpful for this.

File browser

As the files are being processed and indexed, they will be listed here. If no files are listed, try clicking

the Refresh button in the top right corner of the window. Below the list, a number of commands are

available.

• Delete all

o Delete all documents in the index. Also see Commands in the Runtime tab.

• Delete selection

o Delete documents currently listed in the file browser.

o Use filters to list only specific documents.

• Set selection to unfetched

o Forces the crawler to fetch and update the documents when crawling.

Field mapping

This tab should actually be checked before running any crawls, since it defines which fields of the

files are mapped to which fields of the index. The defaults should be just fine, though.

(continues)

APPENDIX 2. (continued)

9. Scheduler

This tab defines jobs that can be executed at will or at specified dates and times. An arbitrary number

of tasks can be added to the job. A job for building autocompletion is defined by default. A job for

automatically starting a crawl every hour could be defined like this:

The jobs are timed using so-called cron expressions. These expressions can be generated, for example

at https://www.freeformatter.com/cron-expression-generator-quartz.html.

Logs are generated for each execution of each job, which can be checked for any errors.

10. Runtime

This tab contains all kinds of information and advanced features.

• Statistics

o Statistics on various operations executed on the index.

• Commands

o Commands for reloading, closing, and emptying the index as well as taking it offline

and putting it online.

• Cache

o The cache, if enabled, stores common queries and their results. Can be flushed here.

• Index

o More statistics on the index.

• Terms

o Lists of terms indexed for each field. Helpful for determining whether certain

documents/folders/fields have been processed and indexed correctly.

(continues)

https://www.freeformatter.com/cron-expression-generator-quartz.html

APPENDIX 2. (continued)

• System

o Information about the system and its resources.

• Logs

o Past and current log files can be read here.

• Advanced

o Settings for character recognition, the mail server, the scheduler, and others.

• Threads

o Information about currently running threads.

11. Privileges

Here users that can access the admin interface can be created. Having a single admin user and one

basic user should suffice. The basic user should only have the right to query the main index.

The end users can access the search interface via the user haku, but they also have to log in

themselves:

Again, note the query strings:

• use=public

o Name of the index.

• login=haku

o Name of the user.

• key=[API key]

o API key of the user.

• name=default-file

o Name of the renderer.

Now this address, including the query strings, can be shared to the end users in the form of a hyperlink

or a shortcut.

(continues)

APPENDIX 2. (continued)

12. Exporting Linux users

The Samba share crawlers extract file permissions into the fields user/group allow/deny (in reality,

the deny field rarely has any values). The permissions are processed (by AccessAnalyzer) to only

include the user or group name. OSS checks whether the name or any of the groups of the logged in

user match the allowed users or groups and displays the results accordingly.

To ensure that each end user has access to the same files as they do in the Samba share, the user’s

groups are needed. The script exportuserxml.sh, located in the home folder of the admin user, asks

for a username and password as inputs, and outputs the user’s credentials in XML format and

redirects the output to a text file.

The script does not check whether the user exists or whether the given password is the same as the

one set for the user. This is preferable since the password is stored in plaintext in the text file. Ideally,

different passwords should be used. After the XML file has been uploaded to OSS, the file must be

deleted immediately.

The XML file needs to be moved to a location that the browser can access. The file can then be

uploaded to OSS via the Update tab (into the credentials index). OSS should inform that new

documents have been added and the user’s credentials should be found in Terms, under the Runtime

tab.

