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This thesis examines pairs trading opportunities in OMX Helsinki Stock Exchange. Pairs
trading is a self-financing trading strategy, where trader enters a long position and offsetting
short position simultaneously in two correlated or otherwise related assets. It draws from the
relative value between the assets and ought, in theory, provide positive returns independent
of market returns. In practice, this strategy is executed by selling the overvalued asset and
purchasing the undervalued asset.

The performance of pairs trading rules is compared between distance-based, cointegration-
based and copula-based trading signal generation. Data consists of companies listed at OMX
Helsinki main list between 2004 and May 2020. To overcome survivor bias, few compa-
nies that went bankrupt during the time period were added to the pool of possible pairs.
Pairswere limited to allow only companieswithin the samemain industry classification group.

In general, pairs that are made of different share classes of one company are quite suitable
for pairs trading. Both distance-based and cointegration-based screening criteria favored
such pairs over pairs formed of two separate companies. Copula method seemed to be
the weakest both in terms of the number of trading opportunities and the average profit
per trade. In general, only the five most cointegrated or closely related pairs at the fitting
period are suitable for trading. Distance method seems to create more consistent returns than
cointegration method.
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Tutkielmassa selvitetään parikaupankäynnin mahdollisuuksia Helsingin pörssissä. Parikau-
pankäynti on itse itsensä rahoittava kaupankäyntistrategia, jossa samanaikaisesti avataan
toisensa kumoava lyhyt ja pitkä positio korreloituneissa tai muuten toisistaan riippuvissa
kohteissa. Strategia perustuu kaupankäynnin kohteena olevien arvopapereiden tai hyödykkei-
den suhteelliseen arvoon, ja tarjoaa siten periaatteessa markkinoista riippumatonta tuottoa.
Strategiassa siis myydään yliarvostettua ja ostetaan aliarvostettua hyödykettä samanaikaisesti.

Parikaupankäynnin kannattavuutta tutkitaan etäisyyspohjaisen, yhteisintegraatiopohjaisen
ja copulapohjaisen kaupankäyntisignaalien luonnin kautta. Data sisältää päälistalle listatut
yritykset vuoden 2004 alusta vuoden 2020 toukokuuhun. Selviytyjävinouman vuoksi dataan
lisättiin pörssistä konkurssin vuoksi poistuneita yrityksiä. Parien muodostusta rajoitettiin
siten, että molempien osakkeiden on oltava samalta pääsektorilta.

Käytännössä saman yrityksen eri osakesarjoista muodostuvat parit osoittautuivat hyviksi
parikaupankäynnin kohteiksi. Nämä parit valikoituivat muita useammin sekä etäisyyteen et-
tä yhteisintegraatioon perustuvassa valintatavassa. Copula-menetelmä osoittautui huonoim-
maksi sekä kaupankäyntimahdollisuuksien että keskimääräisen voiton perusteella mitattuna.
Käytännössä kaupankäyntiin soveltuu vain viisi lähiten toisiaan seuraavaa paria. Etäisyys-
menetelmä vaikuttaa tarjoavan hieman vakaammat tuotot kuin yhteisintegraatioon perustuva
menetelmä.
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1 Introduction

The Finnish Stock market has been struggling to keep up with other developed economies
in recent decades, and 12 years since the previous crash in 2007, the market indices barely
rose above the level prior to the financial crises of 2007 before the COVID-19 pandemic
struck. The overall economy had been slowing down in Euro area and China even before the
pandemic. The government debt of Finland has doubled since the financial crisis of 2007,
and we might be on the edge of yet another recession, this time likely far worse than the
previous one. To boost the economy after COVID-19, the government plans to increase the
budget by 33%, or 18,8 billion euros, funded entirely by debt. (HE 88/2020, p. 37). This
serves as a strong incentive for investors to seek market-neutral trading strategies that are
profitable independent of the current market conditions.

Regulating the markets limits volatility in the name of stability and pushes risks further to
the tails, making the economy more fragile. When it crumbles, it crumbles big time, as we
saw globally in 2007 and in Egypt in 2011. (Taleb and Blyth 2011). To protect themselves
from economic downturn, investor can choose from two strategies. The first one is tail risk
hedge, discussed in Litterman (2011). Tail hedge can be thought of as an insurance - it has
low constant expected negative return, the price of the insurance, but in rare cases when tail
risk realizes it gives a substantial one-time positive return. The other is identifying trading
strategies that are market neutral.

Market-neutrality refers to trading strategies that draw from the relative performance of the
assets instead of the absolute performance, as in conventional trading strategies. The total
return of the portfolio is a function of the return differential between long and short assets.
For a perfectly balanced market-neutral portfolio, gains in one asset are offset by losses in
another asset, and therefore, total portfolio returns equal to zero. For a managed market-
neutral portfolio, gains on the long asset are expected to outperform losses in the shorted
asset in rising markets, and the short to outperform the long in falling markets, thus creating a
consistently positive return regardless of the overall market direction. (Ehrman 2006, pp. 3–5,
27–33).

In Sharpe’s capital asset pricing model (CAPM) terms, market-neutrality refers to portfolios
that have zero beta. The CAPM decomposes portfolio returns to two components – one indi-
cating the overall market returns, the systematic component, and other indicating independent
returns of the assets, described by the residual and refereed to as nonsystematic component.
The CAPM equation is usually written as A? = VA< + \?, where A? is portfolio excess returns,
A< is excess market return component and \? is the residual. Gradient V describes the leverage
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of the portfolio over the market. A one percent increase in market returns increases returns
of the systematic component by beta times one percent. Key assumptions of CAPM state that
those two components are uncorrelated, and that mean value of residual is zero. This implies
that the residual series must be mean-reverting and oscillate around zero. (Vidyamurthy
2004, pp. 3–7).

A key concept in creating market independent trading strategies is statistical arbitrage. Per
Krauss, Do, and Huck (2017), statistical arbitrage refers to quantitative trading strategies
often used by hedge funds and characterized by the following features: trading signals are
systematic, as opposed to driven by fundamentals, constructed portfolio is market-neutral,
and the mechanism for generating excess returns is statistical. Systematic refers to algorithm-
based signals drawn from the data ignoring the fundamental characteristics.

Given the significant improvements in communications during the past few decades, investors
are struggling to keep up with the speed at which new information is absorbed by the markets.
An article in The Economist (2019) states that nowadays only 10% of institutional trading
in America is done by traditional equity fund managers. Most floor traders have faced job
extinction and been replaced by computers.

The world is very different for independent investors, often operating with relatively small
cash amounts. While stock market operators and large institutional investment companies
have built a high-speed network to enable fast and direct market access suitable for high-speed
trading, their offering to individuals is very slim. Some companies, such as Lynx do provide
computers direct access to the markets by exposing the market prices in machine-readable
formats through application programming interfaces (APIs), but it can cost thousands of
dollars per year.

Even though not officially marketed as API services, technologically inclined traders can
level the playing field by converting any data source used to populate public web pages to
machine-readable data streams through reverse engineering. These sources include pages
drawing graphs about historic stock prices as well as stock brokers’ official web pages and
their mobile applications. Some brokers allow computers to place bids independently, others
can be exploited to allow algorithmic trading through robot frameworks that parse HTML
pages and emulate user actions by sending keystrokes and mouse clicks to a headless browser
instance. To run trading algorithms, any computer connected to the internet would suffice.
This brings algorithmic trading within the reach of most traders willing to commit enough
effort to climb the learning-curve in basic programming and statistics.

Pairs trading is one of the possible trading methods aiming to find short-term statistical
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arbitrages and exploit them for profit chasing. It is by construction market-neutral, as it draws
from the relative performance of assets instead of market trends or fundamental factors. It is
an investing strategy based on an assumption that there are long-run equilibrium levels in the
valuation of two somehow related securities. Essentially, these stocks move in same direction
by approximately same magnitude over time. In short term, there are random deviations from
this equilibrium level. When such deviations occur, arbitragers are trying to capitalize on
them by going long on the undervalued security and going short on the overvalued security.
If the equilibrium level truly exists, relative values of those two securities will converge back
to the equilibrium level. Two of the most cited publications related to pairs trading are Gatev,
Goetzmann, and Rouwenhorst (1999; 2006).

Previously, pairs trading has been studied in OMX Helsinki by Kupiainen (2008), Harju
(2016), and Rinne and Suominen (2017). Kupiainen focused only on distance method, but
found it lucrative. Harju expanded previous research by including cointegration method and
copula method, but he made some unorthodox choices regarding the fitting and trading period
length and did not provide much insight to pair selection. Rinne and Suominen found an
average transaction return of 2.4% for an arbitrary pair in OMX Helsinki using the distance
method but did not proceed to examine the returns of other possible pairs.

Contrary to Harju (2016), this thesis aims to replicate the setting in Gatev et al. (1999; 2006)
by using similar window lengths and aggregating the results to form multiple trading periods.
It explores the uncharted territories of Kupiainen (2008) and Harju (2016) by applying
distance-based trading rules to pairs selected by distance criterion and cointegration-based
trading rules to pairs formulated by cointegration criterion.

1.1 Objectives and Restrictions

This research focuses on examining market-neutral trading strategies and testing if such
strategies are feasible for small and large investors after transaction costs. This thesis tries
to find statistical arbitrages in the Finnish stock markets and aims to construct a profitable
beta-neutral portfolio using pairs trading strategies. The main research question in this thesis
is:

Is it possible to construct market neutral, consistently profitable portfolios using pairs
trading in Finnish stock markets?
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Supporting research questions are:

What are the main methods of pairs trading?

Is some method superior to others in OMX Helsinki stock exchange?

1.2 Structure of the Thesis

This thesis begins with introduction, is followed by literature review discussing the most
common methods of pairs trading, continues with empirical part applying those methods to
OMX Helsinki and ends with a brief summary of findings. Literature review focuses around
three main methods of pairs trading. These are distance method, cointegration method and
copula method. All of these have been studied extensively in American stock markets. This
section also examines briefly other emerging methods of pairs trading, such as stochastic
control theory and machine learning.

The empirical section discusses about implementing those three main methods in the OMX
Helsinki stock exchange and presents a summary of results when those methods are applied
to the same market. Results are discussed in terms of what kinds of pairs different selection
criteria favors, how many trading opportunities they create and what is the average return per
opened trade. The empirical section discusses how the results obtained in this thesis compare
with results presented by Harju (2016) and Rinne and Suominen (2017) as well as what could
be some future research directions.

At the end of this thesis there are some supporting material, listing the trading periods and
companies used, for which periods the data was available for each of those companies and
what chart patterns typical pairs look like.
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2 Literature review

This chapter examines the previous literature on pairs trading. It formulates an overall
understanding on what types of trading strategies exist and how trading signals can be
generated in this domain. The main focus of this chapter revolves around three of the most
established signal-creation methods - the distance method, cointegration method and copula
method.

2.1 Theoretical background

Focardi, Fabozzi, and Mitov (2016) argue that attractive investments attract investors and
thus their prices increase. Progressively, this yields to less attractive, overpriced investments.
As the investors realize their assets are overpriced, they will try to sell them, pushing the
prices lower. This in turn increases the attractiveness of these investments. Natural price
fluctuations like these are the source of mean reversion and statistical arbitrage in stock
markets. By modelling these fluctuations investors should be able to make consistent profit.

Statistical arbitrage refers to consistently profitable trading rules that generate risk free profits.
(Hogan et al. 2004). It often involves opening related and offsetting positions that can be
closed for profit at a later time. Arbitragers drive the markets to be more efficient by exposing
significant mispricings. For example, index futures arbitragers open positions when absolute
deviation from fair value exceeds the transaction costs of arbitrage. If the contract can be
liquidated early, the value of an option to do so is added to the absolute value of the deviation.
(Neal 1996).

According to Huck and Afawubo (2015) pairs trading strategies can be grouped to three
categories:

• The minimum distance approaches
• Multi-criteria decision methods
• The modelling of mean reversion

Of these three groups, the minimum distance approach was presented in Gatev, Goetzmann,
and Rouwenhorst (1999), which is widely considered as the seminal paper about pairs trading.
While technically also modelling mean reversion, it is therefore considered as a separate
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group often serving as a benchmark for other methods. Multi-criteria decision methods are
the most novel group of these, with little experimental support and no established signal
creation methods. (Huck 2015).

Pairs trading is based on finding a pair of stocks whose prices have moved in harmony
throughout history. When prices diverge, trader takes a short position on winner and goes
long on the loser. When prices converge, the positions are closed. (Gatev, Goetzmann, and
Rouwenhorst 2006). The direction of movement is irrelevant, as the trader speculates only on
the spread of the asset prices. The underlying assumption is that there is an equilibrium level
around which the spread fluctuates, which is why these strategies are sometimes referred to
as relative value based trading strategies. (Triantafyllopoulos and Montana 2011).

According to Krauss (2017), several authors have since built on Gatev’s paper, and enriched
the concept of pairs trading by introducing more complex approaches. These approaches are
listed in Table 1.

Table 1. Pairs trading approaches presented in literature

Approach Description Examples

Distance Pairs are identified by using distance metrics.
This is perhaps the simplest approach.

Gatev, Goetzmann, and
Rouwenhorst (2006)

Cointegration Cointegration tests are applied to identify
pairs and generate signals.

Chiu and Wong (2015),
Yu and Lu (2017)

Copula Trading signals are generated by relative
value drawn from estimating the joint proba-
bility distribution of returns.

Liew and Wu (2013), Xie
et al. (2016)

Time series Focuses on generating trading signals by time
series analysis. Often ignores formation pe-
riod.

Kim and Heo (2017)

Stochastic Uses stochastic control theory in determining C. W. Chen et al. (2017)
control value and policy functions for this portfolio

problem. Ignores formation period.
Göncü and Akyildirim
(2016)

Other Experimental frameworks with less support-
ing literature. These approaches include ma-
chine learning and principal component anal-
ysis.

Huck (2010)

Pairs trading is not limited to the stock markets, and several attempts have been made to
incorporate these practices on other asset classes as well. For example, Göncü andAkyildirim
(2016) applied pairs trading rules on commodity futures markets. As another example,
Montana and Parrella (2009) constructed an artificial asset representing the estimated fair
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market valuation of a real asset and paired it against a tradable ETF. Lintilhac and Tourin
(2017) applied cointegration based strategies to bitcoin markets.

Blázquez, Cruz, and Román (2018) found out that the pair of stocks with the highest correla-
tion is also the one with the least distance between them, indicating that the correlation and
the distance methods systematically choose the same pair of stocks in the same order.

An alternative pairs trading strategy was examined by Bolgün, Kurun, and Güven (2012),
who engaged in long position on a synthetic Turkish ETF and short in Turkish Derivatives
Exchange index futures contract.

2.2 Profitability of pairs trading

In a comprehensive analysis of pairs trading profitability, Jacobs andWeber (2015) studied 34
international stock markets and found abnormal returns to persist across those markets. Their
analysis spanned from January 2000 to December 2013, and they used similar distance-based
method of constructing pairs than Gatev et al. (2006), who had previously found pairs trading
profitable with an average of 11% p.a return in the US markets.

Pairs trading is a self-financing, dollar neutral strategy. Funds obtained from short selling
are used to create a long position on another asset. When the positions are closed, income
from closing the long position is used to close the short position. Provided that the trades
are profitable, this creates leverage as investor can create much more larger portfolios than
conventional long-long portfolios. The size of a long-short portfolio is limited only by the
margin requirements. (Ehrman 2006, pp. 63–65).

Rad, Low, and Faff (2016) studied the profitability of pairs trading in US markets. During
their sample from 1962 to 2014, all three of the common pairs trading methods showed mean
monthly excess returns from 91 to 43 basis points. However, the frequency of pairs trading
opportunities showed significant decline for distance and cointegration methods starting from
2009. Similar observations were presented previously by Do and Faff (2010), who compared
the profitability of Gatev’s trading rule in US markets over three different time periods -
1962 to 1988, 1989 to 2002 and 2003 to 2009. Mean excess returns declined by 57 percent
between the first two periods, and shrank to 0.24 percent in the last period. Tianyong, Ming,
and Liang (2013) found pairs trading profitable in Shanghai stock market during their sample
period from 2003 to 2008.
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In general, profitability ranking of pairs trading methods varies in literature. Lei and J. Xu
(2015) found co-integration based strategies more profitable than distance based strategies in
Chinese stock market using dual-listed Chinese companies as tradable pairs. Smith and X.
Xu (2017) determined that cointegration method was profitable in US markets only back in
the 1980s. Under their parametrization, distance method outperformed cointegration method
from 1980 to 2014. Intuitively, a less diversified portfolio yields higher returns than a larger
portfolio, mainly because the average quality of pairs deteriorates as more and more pairs are
accepted to the portfolio, but the lower number of pairs also bears higher risk.

Huck (2015) found the cointegration method superior to the distance based method between
July 2003 and June 2013 when trading the components of the S&P 500 and the Nikkei 225.
Both methods performed well during the 2008 financial crisis, and volatility timing using
VIX index did not improve the performance of the cointegration method. Clegg and Krauss
(2018) note that cointegration is not a permanent phenomenon between two series, which
might explain why the efficiency of the cointegration method varies a lot in literature.

Mikkelsen (2018) compared the profitability of distance and cointegration methods on 18
seafood companies traded on the Oslo Stock Exchange. Neither of the strategies generated
significant excess returns between January 2005 and December 2014.

Stübinger and Bredthauer (2017) examined pairs trading profitability in high frequency
context, and discovered that despite declining profitability, profitable pairs trading strategies
existed among the S&P500 constituents between 1998 and 2015. The best-performing pairs
achieved an annualized Sharpe ratio of 8.14 and returns of 50.50%p.a. after transaction costs.
The relative performance of pairs trading was exceptionally good during market turmoils,
such as dot-com crisis and the global financial crisis.

Rinne and Suominen (2017) argue that pairs trading returns can be justified by the liquidity
pairs traders bring to the markets. When studying the stock prices of two of the largest domes-
tic pulp manufacturers, Stora Enso and UPM, they found pairs trading returns exceptionally
high on days of high trading volume. On those days, nearly 45 percent of traders engaged in
pairs trading.

When trading substitutes in commodity markets, or derivatives using the same underlying
asset, or different share classes of the same company, profitability of pairs trading is often
attributed to enforcing the Law of One Price. Economic substitutes ought to be priced equally
whenmarket frictions are eliminated. To pairs trading this translates as having an equilibrium
price that describes the equal utility of any asset in a given pool of similar assets when costs
attributed to using such assets are factored in. (Hain, Hess, and Uhrig-Homburg 2018).
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2.3 Risks of pairs trading

Since Gatev et al. (1999), authors have selected the assets from the same sectors to remain
consistent with the original paper. Ehrman (2006, p. 65) elaborates on this by defining
sector-neutrality as a condition of market-neutrality. If the assets were from different sectors,
investor would be exposed to sector-specific risk and a sector-wide market swing could have
a major effect on performance.

When entering into long and short positions, a pairs trader is in belief of having identified a
temporary mispricing in relative prices of those assets. This belief is backed up by statistical
probability of mean reversion. The greatest risk of such speculator is nonconvergence, which
happens if trading period ends before convergence occurs, or price generating stochastic
process changes in such way that convergence is no longer statistically likely. An extreme
example of this is the bankruptcy of the statistically undervalued company. Exposure to
nonconvergence can be limited by employing a stop-loss strategy (Shen and Wang 2001).

While market-neutral strategies generally reduce systematic risk, it exposes investors to
different kind of risks. Most dominants of these are model risk and execution risk. Model
risk can be thought of as a sort of black box - the investor relies on trading signals generated
by a machine following a protocol he or she might not understand, essentially making
blind decisions. Therefore, investor has little to no way of knowing whether the model is
faulty or not before they start losing money. Execution risk refers to liquidity concerns,
commission restraints, short sale rules and margin ability issues. Trading often means paying
commissions often, which reduces the gain potential compared to buy-and-forget strategy.
Liquidity problems may prevent the trader exiting the trade and realizing the gains altogether.
(Ehrman 2006, pp. 39–41).

2.4 Distance approaches

The minimum distance approach is perhaps the best known approach to pairs trading. It is
also one of the earliest and the simplest way of selecting pairs and deciding entry points.
While modelling of mean reversion relies on statistical stationarity and cointegration tests,
minimum distance approach selects pairs by minimizing the sum of squared differences and
entry points by comparing the current difference in correlated prices to historical standard
deviation of these prices.
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The distance method is discussed in detail by Gatev et al. (2006) who open long and short
positions when prices diverge more than by two historical standard deviations, and close the
position when prices cross. Authors assume that the pairs are cointegrated of order one and
divisions from the equilibrium are mean reverting.

Distancemethod is based on finding the top pairs that minimize the sum of squared differences
(SSD). Essentially, finding two series that follow each other as closely as possible. Definition
for SSD is given in Equation (1). (Huck 2013; Gatev et al. 2006).

((�8, 9 =

)∑
C=1
(%8C − %

9
C )2 (1)

In Equation (1), %8C and %
9
C are normalized prices for stocks 8 and 9 on day C, ) being

the number of trading days in the formation period. Trading signals are generated when
difference in normalized prices reaches a predefined threshold, usually a multiplication of
historical standard deviations. Trading happens either on the day of trigger signal or the next
possible trading day.

Figure 1 illustrates distancemethod in practice. Solid red and black lines represent normalized
share prices of two pseudorandomly generated assets. At the beginning of the trading window
defined by the black rectangle, short position is opened on relatively overvalued red asset and
long position is opened on relatively undervalued black asset. Trading window is defined by
the spread between the assets. Positions are opened when difference in normalized prices
exceeds two historic standard deviations, and is closed when prices converge. Prices converge
on day 126, and that is when positions are closed. Short position on red asset is closed for
a loss because price of the shorted asset is higher at the end of the trading window than it
was at the beginning of it. Long position on black asset is closed for profit, because the price
of the black asset is higher at the end of the trading period than it was at the beginning of
it. When profits and losses are combined, we see that profit was made as the increase on red
assets value (loss) is smaller than the increase on black assets value.

Ignoring trading costs, profit is always made when short position is opened on a relatively
overvalued asset and long position is opened on a relatively undervalued asset given that
prices eventually converge no matter how small the relative mispricing is. In practice, profits
are determined not only by this convergence but also the costs associated with opening and
closing the positions and holding an open overnight short position (rent for borrowing the
asset). To ensure a better chance of profit, position should be opened only for sufficiently
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large mispricings.

The length of formation period varies in literature, but Gatev’s original length of one year
is frequently used, for example in Rad et al. (2016), but Huck (2013) found Gatev’s original
parametrization to produce less excess returns compared to 6 months or 18 months formation
periods. Some could argue that there are more traders in the markets using Gatev’s method
with standard parametrization, which has competed the excess returns away. In a more recent
paper, Huck (2015) notes that the length of trading period is generally set to six months, as in
the Gatev’s original paper. Although an arbitrary choice, it should allow trades enough time
to occur yet keeping the selection relatively fresh.
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Stübinger and Bredthauer (2017) apply Gatev’s method to high frequency data. In intraday
trading, 2.5 times the standard deviation seems to be a better threshold for generating trading
signals than Gatev’s original two standard deviations. Similar observations were presented
by Huck (2013), who found three and four standard deviations to produce more excess returns
than two standard deviations.

There is no consensus on the impact of fitting and trading period lengths as well as the
optimal opening thresholds to pairs trading returns. In pairs trading literature these are often
set to equal those defined in Gatev’s original paper (Yan-Xia Lin, McCrae, and Gulati 2006).
According to Huck (2013), returns of the distance method are highly sensitive to the length of
the formation period. Appropriately selected length of the formation period yields positive
excess returns even after compensated for data snooping bias. D. Chen et al. (2017) studied
the impact of these parameters in Chinese commodity futures markets and concluded that it
is best to set opening threshold to anything between 1.5 and 2.5 standard deviations and the
length of training period to anything between 250 and 340 trading days, or 1 to 1.4 years.

2.5 Cointegration based approaches

Cointegration, discussed in detail by Engle and Granger (1987), refers to a situation where a
linear combination of nonstationary time series is stationary. That is, series (-1, -2, . . . , -=)
are all integrated of order 3, and the linear combination V1-1+ V2-2+ · · ·+ V=-= is integrated
of order 3 − 1. Major emphasis is put on the special case where 3 = 1, meaning that the
original series are integrated of order one. If such cointegration exists, there is a long run
equilibrium between the series and deviations from equilibrium are stationary with finite
variance.

In time series context, integration means simple difference between two consecutive values of
the series. For series / , first differenceFC = /C−/C−1, second difference @C = FC−FC−1 and so
on. Order of integration refers the ordinal number of the difference. (Roy 1977). Stationarity
in time series refers to a process, which is free of trends, shifts and periodicity. It yields
series that fluctuate around constant mean with finite, time-invariant variance. Therefore,
random shocks will fade away quickly and the series will return to the long-term balance as
time passes. (Watsham and Parramore 1997).

Cointegration trading begins by identifying cointegrated assets. Methods vary, but the Engle-
Granger Augmented Dickey-Fuller test is common. The optimal hedge ratio discussed later
in this chapter can be directly extracted from the first part of EG-ADF test. Regression model
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describes the fair value of one asset relative to the other. It establishes an equilibrium level
around which true market value fluctuates. (D. Chen et al. 2017; Tourin and Yan 2013).

Testing for cointegration begins by examining the order of integration in individual time
series. If they are all integrated of the same order, there might be a cointegrating factor that
makes the linear combination of these series integrated of order less than the individual series.
In practical terms, cointegration method is based on formulas that imply that all deviations
from the theoretical equilibrium level between the prices of two assets will in general revert
back to this equilibrium level as the time passes. (Engle and Granger 1987).

Testing for stationarity is often based on augmented Dickey-Fuller test (ADF) proposed in
Dickey and Fuller (1979). The null hypothesis of ADF is that the unit root is present in a
time series sample, meaning that the sample is nonstationary and integrated of order one.
The alternative hypothesis varies by case, and can either be stationarity, trend-stationarity or
explosive, the fist two of these being more common than the last one.

Plotting the correlation coefficients of autocorrelation function (ACF) yields an autocorre-
lation plot, known as a correlogram. In correlogram, bars decrease quickly for a stationary
series. (Kirchgässner, Wolters, and Hassler 2013).

Engle and Granger (1987) propose a simple, two-step method for testing the cointegration.
First part of this test consists of running an ordinary least squares (OLS) regression of form

.C = V0 + V1-C + IC (2)

to estimate coefficient V1 and enable computing the residual series of IC = .C − V1-C . In
second part, the stationarity of these residuals is assessed by ADF. This is known as the
Engle-Granger Augmented Dickey-Fuller (EG-ADF) test for cointegration.

For assumed cointegrated regression HC = V0 + V1G1,C + · · · + V?G?,C + DC , the Durbin-
Watson (DW) test statistics for first order autocorrelation should not significantly differ from
zero under the null hypothesis of no cointegration, indicating that G1,C is random walk,
V1 = · · · = V? = 0, and D̂C becomes a random walk process with theoretical first order
autocorrelation equal to unity. The process of calculating DW statistic is discussed in detail
by Durbin and Watson (1950) and Durbin and Watson (1951). According to Leybourne and
McCabe (1994), cointegrating regression Durbin-Watson (CRDW) and Augmented Dickey-
Fuller tests (CRADF) both favor the null hypothesis of no cointegration. Thus, they encourage
authors to supplement the results from those tests with their alternative approach, which
defines cointegration as null hypothesis with an alternative hypothesis of no cointegration.
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Vidyamurthy (2004, pp. 75–84) explores cointegration strategies with practical examples. A
cointegrated time series can be decomposed to a stationary component and a nonstationary
component. The cointegrating vector nullifies the nonstationary components, leaving only
the stationary components. For cointegrated time series

HC = =HC + nHC (3)

IC = =IC + nIC

where =HC and =IC are nonstationary randomwalk components, and nHC and nIC are the stationary
components, the linear combination HC − WIC can be expanded and rearranged as

HC − WIC = (=HC − W=IC ) + (nHC − WnIC ) (4)

where nonstationary components must be zero for the series to be cointegrated. This entails
that =HC = W=IC , i.e. the trend component of one series must be a scalar multiple of the trend
component in the other series.

Cointegration model can be applied directly to log-returns, provided that those are non-
stationary. Assuming logarithm of stock returns as random walk is common in literature.
Error-correcting representation of stocks A and B is written in Vidyamurthy (2004, p. 80) as

log(?�C ) − log(?�C−1) = U� log(?�C−1) − W log(?�C−1) + n� (5)

log(?�C ) − log(?�C−1) = U� log(?�C−1) − W log(?�C−1) + n�

where log(?�
C−1) − W log(?�

C−1) is the long-run equilibrium of the cointegrated series. The
model is defined by a cointegration coefficient W and error correction constants U� and U�.
The long-run equilibrium is the scaled difference of the logarithm of price. The return of the
portfolio described in Equation (5) is determined by the change in spread between the assets,
as indicated in Equation (6).

[log(?�C+8) − W;>6(?�C+8)] − [log(?�C ) − W log(?�C )] = B?A403C+1 − B?A403C (6)
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Rearranging the terms in Equation (2) and using log-price notation from previous equations,
the equilibrium value ` emerges as the intercept of first-stage regression in Engle-Granger
cointegration test

log(?�C ) − W log(?�C ) = ` + nC (7)

The intercept value can be thought of as a premium paid for holding stockA over an equivalent
position of stock B. Such premium could be explained by higher liquidity, higher voting power
or the possibility of being a takeover target. (Vidyamurthy 2004, pp. 106–107).

With cointegration, it is possible to generalize the concept of pairs trading to construct
portfolios of more than two securities, often referred to as basket trading. Given that x t =
G1C , . . . , G?C) is a multivariate time series of nonstationary cumulative returns of individual
assets, in cointegrated portfolio of these ? securities, each security is weighted by the
corresponding coefficient in the cointegrating vector b, the resulting basket IC = b′x t is a
stationary time series equal to the total value of the basket at time C, provided that x t follows
geometric Brownian motion. In other words, any deviation of a security’s price from a linear
combination of the prices of other securities is temporary and reverting. If the deviation is
significant enough, it can be exploited to generate trading signals. However, the feasibility
of basket trading is limited by the possibility of a non-zero beta, exposing the investors to
non-diversifiable systematic risk. (Yu and Lu 2017).

Cointegration can be applied to commodity futures markets as well. For example, Hain
et al. (2018) examined cointegration based trading strategies on economic substitutes using
European energy futures. In theory, it does not matter in which form energy is initially stored
as long as it can be converted to a consumable form with reasonable costs. Energy has utility
value equal to the amount of work produced when consuming the energy. By the Law of one
Price, produced utility can be used to determine equilibrium level in raw energy prices when
costs associated with transforming the stored energy to work are factored in. Temporary
deviations from this equilibrium level can be traded for profit. For example, if oil is too cheap
relative to coal, profit can be made by going long on oil futures and short on coal futures.

Clegg and Krauss (2018) applied partial cointegration (PCI) model to S&P 500 constituents.
PCI is a weakened form of cointegration, allowing the residual series to have both mean-
reverting and random walk components. Law, Li, and Yu (2018) propose an alternative,
single-stage fuzzy approach to cointegration-based pairs trading as opposed to conventional
two-stage binary approach.
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Cointegration of prices conflictswith randomwalk hypothesis, because cointegration assumes
that asset specific, or idiosyncratic price shocks are of transient nature but random walk
hypothesis states that all price shocks are permanent. In cointegration setting, prices of assets
should be driven by common factors like the overall demand for produced goods. There are
some evidence on small and short-lived transient shocks, which presents a perfect setting for
pairs trading due to quick convergence. (Farago and Hjalmarsson 2019).

2.6 Copula method

The copula method is based on utilizing bivariate copulas to generate trading signals when
highly correlated securities diverge. Essentially, a copula is a multivariate probability dis-
tribution of a continuous and strictly decreasing convex generator function q from � to
[0,∞) such that q(1) = 0. It describes the relationship between two variables with uniform
probability distributions. (Stander, Marais, and Botha 2013).

According to Sklar’s theorem, anymultivariate distribution function � can be written in terms
of its marginals using a copula representation in Equation (8). (Ané and Kharoubi 2003).

� (G1, G2, . . . , G=) = � [�1(G1), �2(G2), . . . , �= (G=)] (8)

where �8 is an arbitrary marginal distribution function defined as

�8 (G8) = %(-8 ≤ G8) 5 >A1 ≤ 8 ≤ = (9)

and
� (D1, D2, . . . , D=) = %(*1 ≤ D1,*2 ≤ D2, . . . ,*= ≤ D=). (10)

Assuming that the marginal distributions �8 are continuous, then � has an unique copula �,
which is defined by the cumulative distribution functions 58 (G8) of marginals �8 when the
copula � and marginals �8 are differentiable. The joint density 5 (G8, G2, . . . , G=) is of form

5 (G8, G2, . . . , G=) = 58 (G1) × 52(G2) × · · · × 5= (G=) × 2[�8 (G1), �2(G2), . . . , �= (G=)] (11)
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and

2(D1, D2, . . . , D=) =
m= (D1, D2, . . . , D=)
mD1mD2 . . . mD=

, (12)

which states that the joint density can be evaluated as a product of the marginal densities
and the copula density. It is apparent, that the copula density � (D8, D2, . . . , D=) contains
information about the dependence structure of the -8s while the 58s describe the marginal
behaviors. (Ané and Kharoubi 2003)

Of all the copulas, bivariate Archimedean copulas are the most relevant in finance. (Stander
et al. 2013). According to Nelsen (2006, p. 110), the Archimedean copula function � for
generator function q is given as � (D, E) = q[−1] (q(D) + q(E)), where q[−1] is the pseudo-
inverse of q, defined as

q[−1] (C) =

q(−1) (C) , 0 ≤ C ≤ q(0)

0 , q(0) ≤ C ≤ ∞.

Some commonly used generator functions for Archimedean copulas include

Gumbel: q(C) = (− ln C)U , U ∈ [−1,∞)
N14: q(C) = (C−1/U − 1)U , U ∈ [1,∞)
Clayton: q(C) = 1/U(C−U − 1) , U ∈ [−1,∞)/{0}
Joe: q(C) = − ln (1 − (1 − C)U) , U ∈ [−1,∞).

The true formof the generator function is usually unknown, andmust be estimated. Estimation
procedures are discussed in Genest and Rivest (1993). Their proposed solution is based on
decomposing Kendal’s tau, trying copula functions from different families and relying on j2

goodness-of-fit statistics. An alternative, graphical estimation procedure based onDeheuvels’
empirical copula is proposed in Kharoubi-Rakotomalala and Maurer (2013).

Other relevant copulas include elliptical copulas, most notably the Gaussian copula and the
Student t-copula. The Gaussian copula relates closely to the Pearson correlation, and as such
represents the dependence structure of two normal marginal distributions. (C.-W. Huang,
Hsu, and Chiou 2015).



27

Nelsen (2006) defines Gaussian copula as

� (G, H) =
Φ−1 (G)∫
−∞

3B

Φ−1 (H)∫
−∞

3C
1

2c
√

1 − d2
exp

{
− B

2 − 2dBC + C2
2(1 − d2)

}
= Φd (Φ−1(G),Φ−1(H))

(13)

where Φ is the univariate standard normal distribution function and Φd denotes the joint
distribution function of the bivariate standard normal distribution with correlation coefficient
−1 ≤ d ≤ 1.

According to Huang et al. (2015), the Student t-copula captures the tail dependence much
better than the Gaussian copula when d ≠ 1. It is defined as a differential equation using
multivariate t-distribution in Equation (14).

�CE,d (G, H) =
C−1
E (G)∫
−∞

C−1
E (H)∫
−∞

1
2c

√
1 − d2

{
1 + B

2 − 2dBC + C2
E(1 − d2)

}− E+2
2

3B3C (14)

where CE : R→ R+ is the Student t-distribution function, C−1
E is the inverse of CE and Cd,E is the

bivariate t-distribution with parameters d ∈ [−1, 1] and E ∈ R+. For untransformed series,
parameter d is the linear correlation coefficient between the two series. For lognormal returns
which are obtained by applying a nonlinear transformation, linear correlation between the
series is not preserved and d becomes less than the linear correlation coefficient. (Krauss
and Stübinger 2017). In such situation, rank correlation coefficient such as Kendall’s tau is
more useful in describing the dependence between the series. (Kendall 1938).

Joe (1996) and Joe and Hu (1996) define three lesser known families of bivariate copulas.
Nikoloulopoulos, Joe, and Li (2012) call themBB1, BB4 and BB7. These families are similar
to t-copulas but they introduce asymmetries to tail dependence.

In copula based trading, conditional probability functions are used to determine over- and
under-valuation. The conditional probability functions %(* ≤ D |+ = E) and %(+ ≤ E |* = D)
are defined as partial derivatives of the copula with respect to D and E in Equations (15) and
(16). Stocks are identified as relatively undervalued when the conditional probability is
less than 0.5, and overvalued when it is greater than 0.5. (Aas et al. 2009; Liew and Wu
2013). Positions should be taken when one of the values is close to 1, as the magnitude
above 0.5 can be interpreted as how likely the stock is overvalued relative to the other. In
general, positions are opened when (D, E) falls outside both confidence bands derived by
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%(* ≤ D |+ = E) = 0.05 and %(+ ≤ E |* = D) = 0.95 or vice versa. The position should be
closed when the conditional probability decreases back to 0.5. (Ferreira 2008; Krauss and
Stübinger 2017).

%(* ≤ D |+ = E) = m� (D, E)
mE

(15)

%(+ ≤ E |* = D) = m� (D, E)
mD

(16)

The partial derivative of t-copula in Equation (14) with respect to H is given in Equation (17).

m

mH
�d,E (G, H) = CE+1

©« C
−1
E (G) − dC−1

E (H)√
1 − d2

√
E + 1

E + C−1
E (H)2

ª®¬ (17)

The rational behind copulas in finance is that securities’ empirical returns are not Gaussian,
unlike classical financial theories assume. In a non-Gaussian universe, where skewness
and/or kurtosis of returns exceeds the limitations set by the normal distribution, copulas
are the simplest way of modelling multivariate probability distributions. As an additional
benefit, the dependence structure conveyed by a copula function is preserved under non-
linear strictly increasing transformations, such as logarithmic transformation of return series.
(Kharoubi-Rakotomalala and Maurer 2013).

Ané and Kharoubi (2003) notes that tail dependence plays an important role in modelling
stock returns, and it is often overlooked by other methods. The issue with tails is that most
methods assume thin tails and therefore tend to underestimate the impact of extreme values
(Haug and Taleb 2011). Xie et al. (2016) demonstrate that although quite similar to Gaussian
distribution, Student’s t distribution as a marginal and joint distribution better captures the
tail dependence of returns due to commonly having fatter tails than the Gaussian distribution.

Figure 2 displays the contour plots of the most common copula types under standard normal
marginals. It illustrates the elliptical nature of Gaussian and Student’s t-copula, as well as the
asymmetrical nature of Clayton, Gumbel, Joe and BB-copulas. Figure 3 displays the density
plots of the same copulas and gives perhaps a little better illustration of independence copula
and the difference between Frank and independence copula. Asymmetric copulas can be
rotated to obtain a better fit in some situations. BB-copulas introduced by Joe and Hu (1996)
are modifications of Joe-copula and appear thus seemingly similar.



29

Student−t

z1

z 2

 0.01 

 0.025 

 0.05 

 0.1 

 0.15 

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

Gaussian

z1

z 2
 0.01 

 0.025 

 0.05 

 0.1 

 0.15 

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

Clayton

z1

z 2

 0.01 

 0.025  
0.05 

 0.1 

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

Gumbel

z1

z 2

 0.01 

 0.025 

 0.05 

 0.1 

 0.15 

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

Joe

z1

z 2

 0.01 

 0.025 

 0.05 

 0.1 

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

BB1

z1

z 2

 0.01 

 0.025 

 0.05 

 0.1 

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

BB7

z1

z 2

 0.01 

 0.025 

 0.05 

 0.1 

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

Frank

z1

z 2

 0.01 

 0.025 

 0.05 

 0.1 

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

Independence

z1

z 2

 0.01 

 0.025 

 0.05 

 0.1 

−3 −2 −1 0 1 2 3

−
3

−
1

1
2

3

Figure 2. Contour plots of different copula types
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Figure 3. Density plots of different copula types
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Krauss and Stübinger (2017) tested the goodness-of-fit of five Archimedean copulas, two
elliptical copulas and four extrema value copulas on DAX 30 constituents (435 pairs) and
found out that in 71,26% of cases t-copula ranks first and Gaussian copula is clearly the
second best choice winning 9,20% of cases making the elliptical family superior to other
copula families. In non-elliptical copulas, there is no clear winner that is superior to other
non-elliptical copulas most of the time. A non-elliptical copula might be the perfect choice
for an individual pair, but one can safely assume t-copula to be the best choice in most of
pairs and perform rather well in remaining pairs.

Table 2. Selected copulas in Krauss and Stübinger (2017). The column Average denotes the average
rank a copula achieves, ranging from 1 to 11. The column Winner denotes the empirical probability
for each copula to achieve the first rank.

Copula Average Winner
Archimedean copulas
Ali-Mikhail-Haq 6.55 4.60%
Clayton 6.40 0.69%
Frank 4.26 4.37%
Gumbel 7.50 0.92%
Joe 10.51 0.00%
Elliptical copulas
Gaussian 2.63 9.20%
Student’s t 1.23 71.26%
Extreme value copulas
Galambos 6.66 2.35%
Hüsler-Reiss 8.85 0.00%
Tawn 4.06 5.52%
t-EV 7.35 1.15%

Copula strategies can be divided to two groups. The more common, returns-based version,
such as Liew and Wu (2013), loses the time structure as entry and exit signals are generated
based on the last return without assessing how each pair trades subsequent to such signals.
The other, level-based method, as in Rad et al. (2016), tries to generate some sort of return
indices based on accumulated mispricings. (Krauss and Stübinger 2017).

2.7 Other approaches

Multi-criteria decision methods consist of ensembles of different selection criteria and neural
network-based selection methods. For example, Huck (2010) used Electre III method to rank
S&P 100 stocks by expected returns and form pairs by going long on the highest ranked
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shares and shorting the lowest ranked shares. This method does not require estimation of
equilibrium levels and is, by construction, dollar neutral.

Triantafyllopoulos andMontana (2011) extended state-space framework for modelling spread
processes to introduce time-dependency in the model parameters. Their model was mainly
motivated by exploiting temporary market inefficiencies through high-frequency trading.

Montana and Parrella (2009) used data stream analysis techniques to generate an artificial
asset, which would be paired against a real, tradable asset. They paired the tradable asset
against an artificial proxy composed of prices of other assets, market indices etc. that possess
some explanatory power in relation to the real asset. By regarding the artificial asset as the
fair price of the real asset, one could exploit the short-term divergences of the asset price from
the computational, fair value of the asset. In commodity futures based approach, Göncü and
Akyildirim (2016) assumed an Ornstein–Uhlenbeck Lévy process for the spread and gained
relatively good results by trading crude oil and gasoline futures.

Experimental approaches with various success rates include Bayesian Neural Networks
(Ruxanda and Opincariu 2018), ARMA based linear state space models with the Kalman
filter (de Moura, Pizzinga, and Zubelli 2016) and quasi-variational inequalities (Song and
Zhang 2013). All of these have been proven to be profitable within a single time frame at
a specific marketplace, but the literature is rather limited and no generalizations on their
profitability can be made.
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3 Methodology and Data

This chapter describes data and introduces different statistical methods used in this thesis. It
outlines and justifies the limitations set for pair selection and discusses how these methods
were implemented in selected statistical software.

3.1 Data

Historical Finnish stock prices were fetched from Nasdaq Nordic database. The data consists
of time series of all currently traded Finnish companies’ stock prices from 2004 to mid 2020.
In September 2019, there were 143 shares listed on the main list of OMX Helsinki. The total
number of possible pairs at that time point can easily be calculated as 2-combination of 143
assets.
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Figure 4. Number of tradable securities by year

http://www.nasdaqomxnordic.com/osakkeet/historiallisetkurssitiedot
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Of all currently listed stocks, 78 were listed before year 2000, 30 were listed between 2000
and 2010 and remaining 35 were listed in 2010 or later. Thus, the true value of available
pairs varies over time throughout the sample period. For each period, there is an ample pool
of possible pairs from which to select the best 20 pairs.

This thesis aggregates results from partially overlapping trading windows. Each window
consists of one year fitting periods followed by a 6-month trading period. Using a 3-month
interval, there are 66 of these windows. Rolling windows are illustrated in Figure 5.

time2009 2010 2011 2012 2013

Fitting period

Trading period

Figure 5. Overlapping training periods

Figure 6 displays overall market performance from 2004 to 2020. Market returns for each
period are shown in Figure 7, which reveals that most trading periods provided medium to
low returns, and some periods significant losses. Of all 66 periods, 68% provided profits.
Unannualized mean return per period was 2,44%. Largest loss was −64,88% and biggest
gain was 36,46 %. Several institutions provide OMXH 25 based index funds, so this index
will be used as a market benchmark for buy and hold strategy.

To overcome survivor bias, a list of companies removed from the main list was extracted
from a blog post by Osakekeisari (2018). This list is presented in Appendix A2.1. It mostly
contains companies that were acquired by some other company or merged with another
company. It also contains some companies that went bankrupt during the period. Past data
was still available at Nasdaq Nordic Database for some of these companies. Those are listed
in Table 3.

Of all companies traded during the observation period, five were identified to have been
declared bankrupt. These are listed in Table 4. For marketing communications agency Evia
and paperboard manufacturer Stromsdal data was no longer available.

Daily closing prices adjusted for dividends and splits were used in the analysis. All prices
are nominated in Euros. Stock data is combined with Industry Classification Benchmark
(ICB) table to divide instruments to different bins based on their industry. This classification
was extracted from Nasdaq’s list of companies listed on Nasdaq Helsinki. Full list of used

http://www.nasdaqomxnordic.com/shares/listed-companies/helsinki
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Table 3. List of removed companies for which data was available

Company Date Symbol Sector Reason

Ahtium Oyj 2018-03-15 AHTIUM Industrials bankruptcy
Affecto Oyj 2018-02-21 AFFECTO Technology acquisition
Lemminkäinen Oyj 2018-01-31 LEM1S Industrials merger
PKC Group 2017-07-09 PKC1V Industrials acquisition
Comptel 2017-06-29 CTL1V Technology acquisition
Norvestia 2017-06-09 NORVE Financials merger
Okmetic 2016-08-11 OKM1V Industrials acquisition
Biotie Therapies 2016-09-30 BTH1V Health Care acquisition
Turvatiimi 2015-04-09 TUT1V Consumer Services acquisition
Vacon 2015-05-18 VAC1V Industrials acquisition
Oral Hammaslääkärit 2014-12-19 ORA1V Health Care acquisition
Tiimari 2013-10-10 TII1V Consumer Goods bankruptcy
Nordic Aluminium 2012-12-15 NOA1V Industrials acquisition
Aldata Solution 2012-08-08 ALD1V Technology acquisition
Elcoteq SE 2011-11-17 ELQAV Industrials bankruptcy
Salcomp 2011-09-23 SAL1V Technology acquisition
Pohjola 2006-06-14 POH1S Financials acquisition

Table 4. List of bankrupt companies

Bankrupt date Company Data available

2018-03-15 Ahtium Oyj True
2013-10-10 Tiimari True
2011-11-17 Elcoteq SE True
2009-02-07 Evia False
2008-11-12 Stromsdal False
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companies, their ticker symbols and main business sectors per ICB classification is found in
Appendix A1.1.

Cointegration is often restricted to allow only pairs composed of stocks belonging to the
same GICS sector, to improve computational feasibility. Clegg and Krauss (2018) estimate
that even after this sector restriction, it would take approximately 15 days to process all
possible pairs in S&P 500 using parallel processing on an Intel i7-4790K with 8 threads
and clock speed of 4 GHz. However, required computational resources decrease sharply
when the universe of possible shares shrinks, as the number of possible combinations is a
combinatorially increasing function of the batch size.

Although not necessary for computational reasons, similar restriction is placed here, as
employed in Gatev’s original paper. This limitation was motivated by the assumption that
firms operating under the same sector share industry risk as well as market risk and it was
also applied by Figuerola-Ferretti, Paraskevopoulos, and Tang (2018) on their research about
cointegration in STOXX Europe 600 constituents. After imposing this limitation, the number
of possible pairs in the OMX Helsinki decreases from 10 153 to 1 600 (Table 5). This allows
to examine different time frames and aggregate results frommultiple periods to obtain a more
robust estimate of model performance.

Industrials is the largest sector, with 43 different securities. Besides Utilities and Oil & Gas,
all sectors are large enough for intrasector trading. Neste and Fortum will be excluded from
the study for being the only companies in those to sectors.

Table 5. Distribution of companies by sector

Sector Count Combinations

Industrials 43 903
Financials 19 171
Technology 18 153
Consumer Goods 17 136
Consumer Services 16 120
Basic Materials 13 78
Health Care 9 36
Telecommunications 3 3
Utilities 1 0
Oil & Gas 1 0

Total 140 1600
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Naïve extrapolation will be used to account for missing values - for those days that did not
see a trade, the price is assumed to be unchanged. Similar assumption is made in Mikkelsen
(2018).

3.2 Methodology

For each training period, only stocks that had data for the entire period were considered.
This eliminates shares that entered or exited the main list during the fitting period. However,
stocks that exited during the trading period were included in the sample, as this represents
future information which cannot be known by the trader when selecting the pairs.

Although Mikkelsen (2018) included all pairs that were found cointegrated at a 10 % signifi-
cance level, only the best 20 pairs were considered in this thesis for each trading period. This
restriction is placed to enforce computational feasibility over multiple trading periods and it
should provide enough insight to the profitability of less than optimal pairs.

3.3 Normalization of prices

Because nominal prices vary a lot between different assets, prices must be normalized for
methods relaying on distance between the asset prices. As in Rad et al. (2016) and Do and
Faff (2010), the normalized price is defined as the cumulative return index.

For small G, such as daily stock returns, Kirchgässner et al. (2013, p. 7) states that

HC − HC−1
HC−1

≈ ln(1 + G) ≈ G (18)

This holds when changes are at most ±20%. For larger deviations, properties of log-returns
hold but interpretation is not as straightforward. For example, ln(1 + (−0.7)) ≈ −1.2.
However, log-returns aggregate easily over time as the total logarithmic return is always the
sum of individual log returns. (Equation 19). For computational purposes this is far better
than the multiplicative approach required by simple returns. (Cryer and Chan 2008, p. 99).

=∑
8=1

'log,8 = 'log,1 + 'log,2 + 'log,3 + · · · + 'log,= (19)
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Combining above information, it can be stated that

ln(HC) − ln(HC−1) ≈
HC − HC−1
HC−1

∼ # (`308;H, f2
308;H) (20)

and that logarithmic, or continuously compounded returns can be calculated as a natural
logarithm of terminal price divided by the initial price (see Equation 21), log normalization
was selected for the basis of normalization.

'log = ln( %C
%C−=
) (21)

3.4 Computation of returns

Returns are computed using themethod presented in Gatev et al. (2006) and Clegg andKrauss
(2018). In this method, one Euro is allocated at the beginning of the trading period for each
pair that opens during the trading period. This is known as the fully invested capital method.

For each pair there are two sources of cash flows. The first source is randomly distributed
throughout the trading period, occurring every time the pair closes. The second source is
cash flows at the end of the trading period when still open positions are closed because of
termination of trading period. The excess return on a pair during a trading interval is the sum
of the payoffs during the interval. This is a conservative approach because it ignores the fact
that some returns are obtained during the trading period instead of at the end of it. (Gatev
et al. 1999).

The formula for calculating the excess returns is defined in Xie et al. (2016) based on Gatev’s
paper as

A%,C =
Σ8n%F8,CA8,C

Σ8n%F8,C
(22)

F8,C = F8,C−1(1 + A8,C−1) = (1 + A8,1) . . . (1 + A8,C−1)

where A denotes returns and F weights, and daily returns are compounded to obtain monthly
returns.

Win ratios are calculated for each method as suggested in D. Chen et al. (2017). Win ratio



40

describes the percentage of profitable trades. Lower win ratio requires higher profit per trade
to match the profitability of better win ratio.

Because multiple overlapping periods are used, returns of the individual periods are averaged
to obtain overall performance of each trading method. Because log-returns aggregate over
time but not over different assets, log-returns must be converted to simple returns before
aggregating them. Annualized simple returns also give a better understanding of profitability
to most people when compared to continuously compounded alternative.

3.5 Data snooping bias

Extensive searching of potential trading rules within a data set is prone to spurious relation-
ships. Seemingly profitable strategies often emerge when data is mined long enough, yet only
few, if any of them are valid in out-of-the sample predictions. (Kuang, Schröder, and Wang
2014). For example, Yang, Cabrera, and Wang (2010) noted that adjusting for data-snooping
bias using White’s Reality Check substantially weakens otherwise strong predictability of
ETF returns.

One of the best known tests was formulated by White (2000). He presents two approaches,
Monte Carlo Reality Check and Bootstrap Reality Check, because analytical approaches are
not feasible to obtain a consistent estimate of a ?-value for �0 : � ( 5 ∗) ≤ 0 due to the
unknown extreme value of a vector of correlated normals for the general case. Bootstrap
method is discussed in Sullivan, Timmermann, and White (1999) based on White’s then
to-be-published working paper on Reality Check.

Data snooping bias can be tested with StepM test introduced in Romano and Wolf (2005).
Stepwise Multiple testing framework extends White’s (2000) method, and by design rejects
all hypotheses that Bootstrap Reality Check rejects.

Hansen (2005) highlights some flaws in White’s approach, and presents an alternative test
known as superior predictive ability test (SPA). Hsu, Hsu, and Kuan (2010) argue that
Hansen’s test is more powerful than White’s reality check.
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3.6 Measures of profitability

Profitability of the trading methods was evaluated using a similar procedure than Gatev used
in his original paper, as it seems to serve as a some sort of baseline in pairs trading literature.

Other methods considered for evaluating the profitability of trading rules include Jensen’s
alpha, historic Sharpe ratio and Omega ratio. Omega ratio was discarded due to the re-
quirement of taking a stance on required rate of return, but it is discussed here because of
similarities in assumptions to copula-based trading rules.

Omega ratio, presented by Keating and Shadwick (2002) was inspired by the empirical obser-
vation that joint distribution of returns form individual securities is not normally distributed.
Thus, higher moments than simple mean and variance are required for complete description
of returns. Note that this observation is similar to the one copula method is based on. Omega
ratio acknowledges the information that the Sharpe ratio discards. While Sharpe ratio and
its refinements minimize the potential for loss (and also the gains), Omega ratio adjusts to
the individual preferences of required return. The ratio in Equation (23) is defined as a
probability weighted ratio of gains to losses relative to a desired rate of return A.

Ω(A) =
∫ 1

A
(1 − � (G))3G∫ A

0
� (G)3G

(23)

where � (G) is empirical probability density function of returns and 0 and 1 are the lower
and upper boundaries of the returns. At mean `, Omega ratio makes no difference between
portfolios asΩ(`) = 1. The Sharpe ratio would select the security with the lowest f, and the
lowest gain potential.

Of the legacy measures, Jensen’s alpha, defined in Jensen (1968), is calculated from theoret-
ical return '8 of the portfolio using the estimated V8" of the portfolio and risk free rate ' 5
and market return '" as defined in Equation (24).

U� = '8 − (' 5 + V8" · ('" − ' 5 )) (24)

Jensen’s alpha has been criticized mainly for its sensitiveness to the choice of benchmark
model. It yields different results when arbitrage pricing theory is used instead of the capital
asset pricing model. (Murthi, Choi, and Desai 1997).
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According to Grau-Carles, Doncel, and Sainz (2019), Jensen’s alpha and Sharpe ratio have
very low Spearman and Kendall correlation, indicating that they favor different types of
investments. The Sharpe ratio, Gaussian Value-at-Risk analysis and partial moments based
measures such as Sortino Ratio and Omega Ratio yield very similar results.

The historic, or ex post, Sharpe ratio, originally published in Sharpe (1966) and revised in
Sharpe (1994) is defined as the square root of average differential return �̄ of portfolio returns
'�C and benchmark returns '�C divided by the historic standard deviation f� , as presented
in Equation (25).

(ℎ =

√
�̄

f�
(25)

where

f� =

√∑)
C=1(�C − �̄)2
) − 1

(26)

�̄ =
1
)

)∑
C=1

�C (27)

�C = '�C − '�C (28)

The Sharpe ratio relies on assumption of an elliptical return distribution. It is thus biased in
the case of non-normally distributed returns. (Grau-Carles et al. 2019).

3.7 Modelling squared differences

The distancemethod is perhaps the simplest of all threemajormethods presented in this thesis,
and it is relatively straightforward to implement in Python using Pandas and NumPy. Pandas
is an open source, panel data focused, software library offering indexable on-memory data
structures similar to data frames in R. With datetime indexing, slicing observation windows
and calculating log returns is a breeze. NumPy is another open source library focusing
on numerical computing and linear algebra. It provides efficient functions for logarithmic
transformations in vectors. Both of these libraries have mappings to lower level C functions
and can utilize multiple processor cores to increase processing speed.

The data was sliced to partially overlapping fitting periods of 12 months, each separated by
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12 weeks. These periods were then looped over to obtain the ranking of pairs for each period.
Ranking is based on minimizing the sum of squared differences in return index. For each
training period, best 10 pairs were selected, visualized and their profitability was evaluated
during the following trading period.

Trades were performed when the spread between the normalized asset prices exceeded two
historic standard deviations to either direction from the mean value of the spread. Positions
were closed when the spread minus the mean value of the spread changed in sign.

Pairs formed of different share classes of the same companies are often good choices for
distance based trading. Figure 8 illustrates the structure of return series in pairs selected by
minimizing the sum of squared differences. In general these series follow each other very
strictly, but temporary deviations occur at random intervals.

Trading strategy is explained here with SSAB Class A and Class B shares. Figure 9 displays
the spread between SSAB Class A and SSAB Class B shares, as well as the mean value and
the general trigger levels of two times the spread’s standard deviation. The spread fluctuates
around its mean. The mean value is slightly positive, indicating that, in general, Class A
shares have been a bit more expensive. Although not tested for statistical significance, this
would be a reasonable assumption as each Class A share entitles holder to have one vote in
general meeting, but each Class B share gives holder only 1/10th of a vote (SSAB 2020).

Table 6. Summary statistics of SSABAH and SSABBH returns

SSABAH SSABBH spread
count 262 262 262
mean 1.099 1.084 0.015
std 0.084 0.081 0.014
min 0.914 0.924 -0.029
25% 1.037 1.012 0.009
50% 1.111 1.092 0.016
75% 1.163 1.144 0.024
max 1.285 1.272 0.051
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Figure 8. Illustration of typical distance pairs formed of different share classes of one company.
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Figure 9. Spread of SSABAH and SSABBH with mean and opening thresholds at two standard
deviations.

3.8 Modelling cointegration

The cointegration strategy was implemented as presented in D. Chen et al. (2017). This is
consistent with Figuerola-Ferretti et al. (2018) and roughly follows the method defined in
Vidyamurthy (2004, pp. 82–84).

1. Identify pairs that could be cointegrated. This can be based on the stock fundamentals
or statistical approach from historical data. Vidyamurthy suggests using fundamental
information for pair selection. This thesis uses fundamental selection criterion as
described in Gatev et al. (1999).

2. Verify the proposed hypotheses of cointegration by applying statistical tests to historical
data. Determine the cointegrating coefficient and examine the spread series to ensure
it is stationary and mean-reverting.

3. Examine cointegrated pairs to determine suitable level for delta and start trading.
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A cointegrated pair �, � satisfies the condition �C − V�C = DC where DC is stationary. This
can be rearranged to say that the fair price of � at time C is V�C + DC . The following example
if purely fictional, uses nominal prices for the ease of understanding and is intended for
illustrational purposes only.

Suppose that we have estimated from historic data that

Cointegration Ratio V = 1.5
Premium DC on asset A = 0 e
Trading threshold ±0.8 e

And we know that

Price of A at time C = 20.30 e
Price of B at time C = 14.10 e

The computed fair price for � at time C is 1.5 × 14.10 e + 0e = 21.15 e. Because this is
higher than the actual market price of � at time C, it can be said that � is undervalued relative
to �, or � is overvalued relative to �. The magnitude of this deviation 20.30−21.15 = −0.85
is compared to the trading threshold, which is set at two times the standard deviation of past
deviations. Since |−0.85| > 0.80, trader buys � and shorts � in cointegrating ratio of 1 to
1.5.

Now suppose that prices develop so that at time C + 1

Price of A at time C + 1 = 20.79 e (+2.4%)
Price of B at time C + 1 = 13.86 e (-1.7%)

The positions are then closed, because the prices have converged to the equilibrium level
where 1.5 × 13.86 e = 20.79 e.

The total profit from the trade is the profit on � plus V times the profit on �:

= (20.79 e − 20.30 e) + 1.5 × (14.10 e − 13.86 e)
≈ 0.85 e

And the return, ignoring all costs and margin requirements, is

= ln( 20.79 e
20.30 e ) + 1.5 × ln( 14.10 e

13.86 e )
≈ 0.0239 + 1.5 × 0.0172
≈ 4.1%
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For cointegration tests, Engle-Granger Augmented Dickey-Fuller test was implemented in
Python using statsmodels package. To obtain the optimal hedge ratios and residual series,
simple OLS regression was fitted first. Because statsmodels does not include constant by
default, a user must remember to add a vector of ones to the matrix of exogenous variables.
If one does not remember to do so, the residuals of the OLS regression will be biased and
therefore ADF test might yield incorrect results. OLS regression was followed by ADF test
on residual series, using AIC for determining the optimum number of lags. Tests were run
for each of the qualifying pairs present during the fitting period.

After running the cointegration tests, several cointegrated pairs emerged with a negative
cointegrating coefficient. Such pairs are diverging and violate dollar-neutrality, as those
would imply long-long or short-short portfolios. The test were run again this time considering
only pairs with positive cointegrating relationship.

The best 10 pairs for each period were selected by approximating MacKinnon’s p-values for
t-values from ADF regressions. This procedure is discussed in details in MacKinnon (1994).
MacKinnon aims to solve the problem of nonstandard asymptomatic distributions in ADF
tests for which only few critical values have been tabulated, mainly by Fuller in his book
Introduction to Statistical Time Series (1976). MacKinnon’s p-values are drawn from his
approximations of the asymptotic distribution functions for these tests.

After ranking each pair, trades were performed on the best 10 pairs of each time frame. In
this phase, the cointegrating parameter of the model was used to calculate the fair value of the
first asset based on the current value of the second asset by assuming a long-run equilibrium
to exist between the assets. The current value of the first asset was then compared to the
computed fair value for the asset to obtain the relative value of the first asset. Positions
were opened when the current value differed enough from the computed value and closed
when the relative value changed from overpriced to underpriced or vice versa. For opening
threshold, two standard deviations were used based on recommendations in D. Chen et al.
(2017). Trades were closed at convergence.

Cointegration strategy is illustrated here with the most cointegrated pair from an arbitrarily
chosen trading period, in this case period 56 where the fitting range was from from August
2016 to August 2017 and the trading period from August 2017 to February 2018. The most
cointegrated pair for that range based on MacKinnon’s statistic was Oriola Oyj A - Oriola
Oyj B. Log-prices for that pair are presented in Figure 10.

The price of both share classes shows significant decline during the fitting period, and this
decline steepens during the trading period. Cointegrating linear relationship between the two
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Figure 10. The most cointegrated pair for trading period 56

share classes is displayed in Figure 11. Class A shares trade at a small premium, which is
most likely explained by higher voting power at general meetings (Oriola 2020).

Figure 12 illustrates cointegration based trading strategy on that pair. Positions are opened at
vertical solid green lines, and closed at the red lines following these green lines. Dotted line
represents computed equilibrium price of Class A shares. The direction of opening trade is
illustrated with a green triangle pointing to desired direction of price movement i.e. down for
short position and up for long position. Red × marks the price at which positions are closed
at convergence. Profit is made when either both prices move in desired direction or one of
the prices moves to desired direction more than the other does in undesired direction.

Detailed description of each trade in Figure 12 is presented in Table 7. Asset prices are
represented as natural logarithms, and can be converted to real prices by raising 4 to the
power of log-price if desired. For most though, log-representation in Table 7 is likely more
understandable as (41.31 − 41.28)/41.31 = 1.31 − 1.28 ≈ 3%.

On November 6th spread changed sign and caused the open positions to be closed due to the
convergence and the reverse position to be simultaneously opened due to significant change
in opposite direction. Because of declining trend during the trading period, practically all of
the profits were made through selling short the overvalued asset.
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Figure 11. Fit of pair in Figure 10
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Figure 12. Trades on trading period 56 for pair in Figure 10
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3.9 Modelling copulas

Copulas are best illustrated with some examples. By choosing arbitrarily Orion Corporation
Class A and Class B shares for this purpose, let us first plot the adjusted closing prices for
arbitrary time interval from October 2016 to November 2019 (Figure 13).

30

40

50

2017 2018 2019

stock ORNAV ORNBV

Figure 13. Adjusted closing prices

The prices are highly correlated and have Pearson coefficient of 0.876 and Spearman co-
efficient of 0.827. Log-returns plotted in Figure 14 are seemingly stationary and random.
When plotted against each other, a dependency structure appears as indicated by correlation
coefficients. (Figure 15).

In order to fit copulas, returns must first be scaled to interval [0,1]. After that, selection of
copula family is rather straightforward. The resulting object indicates that based on Akaike
information criteria, Student’s t-copula would be the best fit to Orion shares. The density
function of the fitted Student’s t-copula is plotted in Figure 16. This resulting 3-dimensional
plot can be converted to a contour plot, which clearly demonstrates the elliptical nature of
Student’s t-copula. (Figure 17).

Now this copula can be used to sample more observations with similar statistical properties
than the original log-return series. For a better visualization, 10 000 points were sampled in
Figure 18 based on the copula.
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Figure 16. Density plot of the fitted Student’s t-copula
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Figure 17. Contour plot of the fitted Student’s t-copula
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Figure 18. Sampled values from fitted Student’s t-copula

After converting back to the original scale, these sampled values can be plotted to Figure 15
and compared to the original observed values to illustrate how copula captures the dependency
structure between those two share classes. Figure 19 shows that the fitted copula yields rather
similar observations, but fails to capture the most extreme events. Visually, trading signals
would be indicated by those independent dots that deviate significantly from the dependency
structure indicated by the dense cloud.

Like Krauss and Stübinger (2017), copulas were modelled in R. Copulas can be modelled
in R using package VineCopula written by Technical University of Münich mathematical
statistician Thomas Nagler et al. Nagler’s research interests include applying vine copulas
to portfolio optimization problems, discussed in Nagler et al. (2019a). Fundamentally, vine
copulas are a collection of joint bivariate copulas, each of which may be parameterized
differently. This allows modelling the dependency structure of a large portfolio decomposed
to dependencies between each pair of securities in the portfolio. Because bivariate copulas
are the building blocks of vine copulas, this package contains all of the required methods
for selecting, fitting and sampling bivariate copulas. For example, it provides a function
for selecting the appropriate family of copulas based on AIC, BIC and log-likelihood. This
method tests for all common copula families, including the Gaussian, Student (t-copula),
Clayton, Gumbel, Frank and Joe copula families. Functions provided by the package are
described in detail in Nagler et al. (2019b).

Serieswere first forced inside the unit square by applying the empirical cumulative distribution

https://cran.r-project.org/web/packages/VineCopula/VineCopula.pdf
https://tnagler.github.io/
ab:AIC
ab:BIC
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Figure 19. Fitted vs. observed values

function (CDF) to each series. This yields values with uniform distribution * (0, 1). These
values could then be converted to any distribution, including the original, by applying the
inverse CDF of that distributution. Once inside the unit square, best fitting copula can be
selected.

R function BiCopSelect() for Selection and Maximum Likelihood Estimation of Bivariate
Copula Families from package VineCopula is defined as

BiCopSelect(u1,u2, familyset = NA, selectioncrit = "AIC",

indeptest = FALSE, level = 0.05, weights = NA,

rotations = TRUE, se = FALSE, presel = TRUE,

method = "mle"

),

where u1 and u2 are data vectors of equal length with values in [0,1], familyset is a vector
of bivariate copula families to select from. The vector has to include at least one bivariate
copula family that allows for positive and one that allows for negative dependence. Default
value NA indicates that selection among all possible families is performed. The most relevant
encodings are listed in Table 8.

selectioncrit accepts values "AIC" for Akaike information criterion, "BIC" for Bayesian
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Table 8. List of copula encodings in package VineCopula

Encoding Copula
0 Independence
1 Gaussian
2 Student t
3 Clayton
4 Gumbel
5 Frank
6 Joe

information criterion and "logLik" for log-likelihood. Pairs were selected based on Akaike
information criterion. method defaults to maximum likelihood estimation "mle", but inver-
sion of Kendall’s tau "itau" could also be used. Copulas were selected based on maximum
likelihood estimation.

To generate trading signals, partial derivatives of the copula functions are required. Nowadays
those are rather easy to obtain, for example, with package Deriv, thanks to recent advances
in symbolic computation.

Package VineCopula contains first and second order derivatives for Copula functions defined
in the package. Function BiCopHfunc() can be used to evaluate partial derivatives with
respect to data vectors D and E for previously selected BiCop object. For a previously trained
BiCop object obj, partial derivative with respect to normalized current trading data series D
at point (DC , EC) is given as BiCopHfunc1(u, v, obj) and trading signal is generated if the
returned value is greater than 0.95 or smaller than 0.05.

As there are very few known universal goodness-of-fit tests for copulas, pairs were chosen
based on the selections in previous two methods. This serves as a validation criterion for pair
selection in those two methods, as seeing independence copula emerge in copula selection is
often an indication of a flaw in pair selection when pairs were chosen by assumed statistical
dependency.

Copulaswere fitted on the selected pairs and the profitability of copula-based trading ruleswas
evaluated and compared to the profitability of non-copula approaches. Huang and Prokhorov
(2014) have proposed a new rank-based goodness-of-fit test built on White’s information
criterion, but its reliability has not been validated and the procedure has not yet implemented
by any of the common statistical software.

Trades were performed using the returns-based approach of Liew and Wu (2013), meaning
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that each trading signal was created purely based on the preceding return. Trigger values for
opening trades were above 0.95 and below 0.05, and positions were closed when both of the
partial derivatives crossed 0.5.
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4 Results

This chapter discusses observations in pair selection and profitability of different trad-
ing strategies. It compares the number of times each pair was selected in distance and
cointegration-based selection as well as discusses the amount of trading opportunities cre-
ated by each of the four signal creation methods and compares the magnitude of returns
provided by each of the methods.

4.1 Selected pairs

The distance method identified 423 unique pairs within the best 20 pairs of each trading
period suitable for trading. All theoretical pairs composed of two different share classes in
the underlying company are represented among these pairs. A visualization of typical pairs
selected by distance method is presented in Appendix A4.1 and A4.2. In Appendix A4.1
there are four pairs that consist of different classes of shares in the same companies among
the the top five pairs with the lowest sums of squared differences. These are Orion, Oriola,
Stockmann and Kesko. At positions 7, 8 and 9 there are three more of such companies -
Ålandsbanken, Stora Enso and SSAB.

Table 9. Number of times in top 20 (distance)

Stockmann Oyj Abp A - Stockmann Oyj Abp B 56
Orion Oyj A - Orion Oyj B 53
Kesko Oyj B - Kesko Oyj A 50
Oriola Oyj A - Oriola Oyj B 39

Stora Enso Oyj A - Stora Enso Oyj R 39
Metsä Board Oyj A - Metsä Board Oyj B 30
Stora Enso Oyj R - UPM-Kymmene Oyj 29

Ålandsbanken Abp A - Ålandsbanken Abp B 22
Stora Enso Oyj A - UPM-Kymmene Oyj 19

Sampo Oyj A - Nordea Bank Abp 17
SSAB A - SSAB B 17

Elisa Oyj - Telia Company 15
Ilkka-Yhtymä Oyj 2 - Keskisuomalainen Oyj A 13

Citycon Oyj - Technopolis Oyj 11
Apetit Oyj - Rapala VMC Oyj 11
Citycon Oyj - Sampo Oyj A 10



59

Table 9 lists number of times each pair ranked within the best 20 pairs. During the 66 periods,
Stockmann was selected 56 times, Orion 53 times and Kesko 50 times. The most reliably
selected pair not composed of different share classes of the same company was Stora Enso -
UPM-Kymmene, which was selected 19 times. Pairs that were selected fewer than 10 times
were excluded from the table.

Table 10. Number of times in top 20 (cointegration)

Orion Oyj A - Orion Oyj B 31
Stora Enso Oyj A - Stora Enso Oyj R 29

Oriola Oyj A - Oriola Oyj B 28
Metsä Board Oyj A - Metsä Board Oyj B 22

Ålandsbanken Abp A - Ålandsbanken Abp B 18
Stockmann Oyj Abp A - Stockmann Oyj Abp B 16

Kesko Oyj B - Kesko Oyj A 14
Elecster Oyj A - Uponor Oyj 9
Citycon Oyj - Technopolis Oyj 8

Lassila & Tikanoja Oyj - SRV Yhtiöt Oyj 7
Konecranes Oyj - Vaisala Oyj A 7
Sampo Oyj A - Nordea Bank Abp 7
Elecster Oyj A - Vaisala Oyj A 7

Stockmann Oyj Abp A - Viking Line Abp 7
Wulff-Yhtiöt Oyj - Lassila & Tikanoja Oyj 6

Elecster Oyj A - Tikkurila Oyj 6

Similar observations were found in cointegration based selection. Table 10 lists the most
commonly selected pairs based on MacKinnon’s p-value. The order at the top changes
slightly, and no single pair was selected in more than 50% of the periods. This time, pairs
that were selected less than 6 times were excluded from the table. In cointegration based
selection, all 20 pairs were on average, significantly cointegrated at the significance level of
0.1%. However, the cointegration-based selection resulted in 641 unique pairs among the 20
selected pairs during each of the 66 periods. This is an increase of 52% to the distance-based
selection.

The variability seems to be much higher when using the cointegration method. In total, 382
unique pairs made it to the top-10 in cointegration method. This is significantly more than
the 212 pairs selected in the top-10 based on distance.

Tables 11 and 12 list pairs with most trades by selection method. Although pair Stockmann A
- Stockmann B was selected on more periods than any other pair based on distance criterion,
it did not create as many trading opportunities than pairs that were selected 2nd and 5th most
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often. On the other hand, the most often selected cointegrated pairs provided the greatest
number of trading opportunities.

By cointegration method, Orion A - Orion B is the most suitable pair for trading. In distance
method it ranks second. However, when only the first places are considered, Orion A - Orion
B ranks significantly more often as the most cointegrated or most closely matching pair than
any other pair in either of the selection methods. (Tables 13 and 14).

Orion A - Orion B provided the greatest number of trading opportunities using both trading
strategies. Interestingly, this pair provided only 8% less trading opportunities using coin-
tegration method although it was selected 42% less often. For this pair, the cointegration
method seems to provide more trading opportunities per period.
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Table 11. Pairs with most trades (distance)

Orion Oyj A - Orion Oyj B 342
Stora Enso Oyj A - Stora Enso Oyj R 313

Stockmann Oyj Abp A - Stockmann Oyj Abp B 266
Oriola Oyj A - Oriola Oyj B 229
Kesko Oyj B - Kesko Oyj A 196

Metsä Board Oyj A - Metsä Board Oyj B 142
Ålandsbanken Abp A - Ålandsbanken Abp B 112

SSAB A - SSAB B 104
Stora Enso Oyj R - UPM-Kymmene Oyj 64

Ilkka-Yhtymä Oyj 2 - Keskisuomalainen Oyj A 53
Stora Enso Oyj A - UPM-Kymmene Oyj 52

Elecster Oyj A - Tikkurila Oyj 46
Elisa Oyj - Telia Company 36

Citycon Oyj - Technopolis Oyj 34
Viking Line Abp - Keskisuomalainen Oyj A 34

Sampo Oyj A - Nordea Bank Abp 34
Fiskars Oyj Abp - Rapala VMC Oyj 30

Citycon Oyj - Sampo Oyj A 28
Citycon Oyj - Nordea Bank Abp 28
Apetit Oyj - Rapala VMC Oyj 28

Rapala VMC Oyj - Marimekko Oyj 24
Ålandsbanken Abp B - eQ Oyj 22
Elecster Oyj A - Vaisala Oyj A 22
Wärtsilä Oyj Abp - Aspo Oyj 22
Cramo Oyj - Ramirent Oyj 20

Ponsse Oyj 1 - Yleiselektroniikka Oyj 20
Finnair Oyj - Viking Line Abp 20

Ilkka-Yhtymä Oyj 2 - Pohjois-Karjalan Kirjapaino 20
Finnair Oyj - Sanoma Oyj 20

Sampo Oyj A - Aktia Bank Abp 20
Pohjois-Karjalan Kirjapaino - Keskisuomalainen ... 20
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Table 12. Pairs with most trades (cointegration)

Orion Oyj A - Orion Oyj B 315
Stora Enso Oyj A - Stora Enso Oyj R 274

Oriola Oyj A - Oriola Oyj B 250
Stockmann Oyj Abp A - Stockmann Oyj Abp B 172

Metsä Board Oyj A - Metsä Board Oyj B 134
Ålandsbanken Abp A - Ålandsbanken Abp B 74

Kesko Oyj B - Kesko Oyj A 52
Lassila & Tikanoja Oyj - SRV Yhtiöt Oyj 40
Stockmann Oyj Abp A - Viking Line Abp 40

Ramirent Oyj - Wulff-Yhtiöt Oyj 32
Konecranes Oyj - Vaisala Oyj A 32
Elecster Oyj A - Uponor Oyj 30
Citycon Oyj - Technopolis Oyj 26
Elecster Oyj A - Vaisala Oyj A 26

Sampo Oyj A - Nordea Bank Abp 24
Ålandsbanken Abp A - CapMan Oyj 24

Apetit Oyj - Rapala VMC Oyj 24
Finnair Oyj - Viking Line Abp 24

Wulff-Yhtiöt Oyj - Glaston Oyj Abp 23
Elecster Oyj A - Tikkurila Oyj 22

Nurminen Logistics Oyj - Lehto Group Oyj 21
YIT Oyj - SRV Yhtiöt Oyj 20
Aspo Oyj - Wulff-Yhtiöt Oyj 20
Technopolis Oyj - eQ Oyj 20

Table 13. Number of times with the lowest SSD (distance)

Orion Oyj A - Orion Oyj B 39
Stora Enso Oyj A - Stora Enso Oyj R 14

Oriola Oyj A - Oriola Oyj B 4
SSAB A - SSAB B 4

Stockmann Oyj Abp A - Stockmann Oyj Abp B 3
Kesko Oyj B - Kesko Oyj A 2

Table 14. Number of times with the lowest MacKinnon p-value

Orion Oyj A - Orion Oyj B 18
Stora Enso Oyj A - Stora Enso Oyj R 11

Oriola Oyj A - Oriola Oyj B 9
Ålandsbanken Abp A - Ålandsbanken Abp B 3

Stockmann Oyj Abp A - Stockmann Oyj Abp B 3
Keskisuomalainen Oyj A - Sanoma Oyj 2
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4.2 Returns of the distance method

The distance method generated 2349 unique trades during the 16-year period. Table 15 lists
summary statistics for distance-based trades. On average, each trade provided a return of 3%.
Worst trade provided a loss of 53% and best trade yielded a gain of 91%. These are simple
returns indicating the average profit or loss made when position is closed. The returns are not
annualized here because some positions stay open for longer and some positions are realized
sooner. The average duration of an open position is discussed later in this chapter.

Table 15. Summary statistics for distance trades

long profit short profit total profit

count 2349 2349 2349
mean 0.02 0.02 0.03
std 0.12 0.12 0.11
min -0.60 -0.47 -0.53
25% -0.02 -0.03 -0.00
50% 0.02 0.02 0.04
75% 0.07 0.07 0.10
max 0.74 1.13 0.91

Table 16 lists win ratios of distance trades per position determined at the end of the fitting
period. The pair which has the lowest sum of squared differences ranks first, the second
lowest SSD ranks second and so on. The best two pairs per each period seem to provide more
consistent profit than pairs that have, on average, more distance between them. A win ratio
of 94% is stunningly good and only 17 bad trades during 66 trading periods, or 33 years of
trading, is extraordinary. The average quality of pairs dwindles after best two pairs, but all
20 pairs win more frequently than they lose.

The hightest ranked pairs provide an average a return of 3% and win 94% of trades. Returns
of the best two pairs are very consistent, the worst loss was -11% and the greatest gain was
14%. The best pair opens, on average, 4.68 times per trading period, indicating a return of
32% p.a. ignoring the trading costs and rent paid for shorted assets. The second best pair
provides an average return of 4% and opens, on average, 3.2 times per period for a total return
of 28% p.a. The 20th pair provides an average return of 1% per trade and opens 1.5 times per
period, yielding only 3% p.a. before subtracting the costs associated with trading. Only the
first 7 pairs appear suitable for profitable trading using the distance method. (Table 18)
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Table 16. Distance win ratio by position

rank loss win ratio

1 17 289 .94
2 13 195 .94
3 25 108 .81
4 29 119 .80
5 31 92 .75
6 28 93 .77
7 33 77 .70
8 31 64 .67
9 30 61 .67
10 34 51 .60
11 26 68 .72
12 35 56 .62
13 28 84 .75
14 28 59 .68
15 32 50 .61
16 37 57 .61
17 37 42 .53
18 32 59 .65
19 32 53 .62
20 41 57 .58

Table 17. Duration of distance trades before convergence

all pairs best 5 pairs pairs 6-10 pairs 11-20

count 2349 925 503 921
mean 52 days 30 days 63 days 67 days
std 52 days 42 days 53 days 53 days
25% 7 days 3 days 16 days 19 days
median 30 days 10 days 45 days 56 days
75% 90 days 37 days 114 days 114 days
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Better pairs converge more quickly. 50% of the best 5 pairs converge within 10 days, while
for pairs 6 to 10 median is 45 days and for pairs 11 to 20 it is 56 days. Mean duration is high
for all pairs because some trades do not converge, which results in duration of 170 days or
longer. Converge within 10 days is in line with observations made in Rinne and Suominen
(2017).

Table 18. Summary statistics of absolute returns from an individual distance trade by position

rank count mean std min 25% 50% 75% max

1 309 0.03 0.02 -0.10 0.02 0.02 0.04 0.13
2 212 0.04 0.03 -0.11 0.02 0.04 0.05 0.14
3 133 0.04 0.07 -0.32 0.02 0.04 0.07 0.25
4 148 0.04 0.07 -0.33 0.01 0.04 0.08 0.23
5 123 0.03 0.08 -0.25 0.05 0.09 0.18
6 122 0.05 0.14 -0.40 0.01 0.07 0.11 0.91
7 110 0.03 0.11 -0.37 -0.01 0.05 0.12 0.32
8 95 0.03 0.11 -0.30 -0.03 0.05 0.12 0.23
9 91 0.02 0.16 -0.53 -0.05 0.05 0.14 0.30
10 85 0.02 0.11 -0.42 -0.03 0.03 0.11 0.22
11 95 0.04 0.14 -0.41 -0.01 0.07 0.14 0.31
12 92 0.04 0.12 -0.36 -0.04 0.07 0.13 0.31
13 113 0.06 0.12 -0.39 0.08 0.13 0.44
14 89 0.03 0.13 -0.37 -0.04 0.05 0.12 0.26
15 83 0.04 0.14 -0.29 -0.04 0.07 0.13 0.37
16 94 0.03 0.16 -0.44 -0.09 0.06 0.15 0.35
17 79 0.01 0.16 -0.44 -0.06 0.02 0.14 0.27
18 91 0.04 0.15 -0.42 -0.04 0.04 0.15 0.35
19 86 0.03 0.13 -0.27 -0.07 0.06 0.12 0.25
20 99 0.01 0.14 -0.31 -0.07 0.02 0.10 0.36

4.3 Returns of the cointegration method

In total, 2 456 trades were made for a mean profit of 4% per trade. The worst trade lost 84%
of the initial value and the best trade yielded 199%. (Table 19).

The win ratio of the most cointegrated pair is almost as good as the win ratio of the pair with
smallest SSD. After best five pairs, win ratio quickly decays to ≈ 60%. As with the distance
method, all 20 pairs win on more trades than they lose. (Table 20).

Table 21 lists cointegration trades by position. It is apparent that the most cointegrated pairs
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Table 19. Summary statistics for cointegration trades

long profit short profit total profit

count 2456 2456 2456
mean 0.02 0.03 0.04
std 0.13 0.15 0.16
min -0.85 -0.83 -0.84
25% -0.02 -0.02 -0.02
50% 0.01 0.02 0.05
75% 0.06 0.08 0.11
max 0.94 1.99 1.99

open more often and provide more reliable returns. Compared to the distance method though,
returns of the most cointegrated pairs vary a lot more than returns of the pairs with the least
sum of squared differences between them.

Table 20. Cointegration win ratio by position

rank loss win ratio

1 20 272 .93
2 26 174 .87
3 27 133 .83
4 34 106 .76
5 30 88 .75
6 36 68 .65
7 35 66 .65
8 36 65 .64
9 37 54 .59
10 33 90 .73
11 41 69 .63
12 29 83 .74
13 34 53 .61
14 36 69 .66
15 31 70 .69
16 31 59 .66
17 36 64 .64
18 37 54 .59
19 41 61 .60
20 36 80 .69

The most cointegrated pair provides an average return of 3% and opens 4.44 times per
period. This means an annualized return of 30% before subtraction of costs. The 2nd most
cointegrated pair provides a mean return of 4%, opens 3.1 times per period and yields 27%
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p.a. Average annualized returns of pairs 10 to 20 vary between 3% and 30%.

Table 21. Summary statistics of absolute returns from a cointegration trade by position

count mean std min 25% 50% 75% max

1 293 0.03 0.06 -0.37 0.02 0.03 0.05 0.63
2 203 0.04 0.11 -0.84 0.02 0.04 0.06 0.59
3 162 0.04 0.09 -0.50 0.02 0.04 0.08 0.27
4 143 0.05 0.14 -0.55 0.05 0.11 0.70
5 118 0.06 0.22 -0.49 0.06 0.12 1.99
6 105 0.04 0.18 -0.73 -0.04 0.05 0.11 0.66
7 101 0.06 0.19 -0.46 -0.05 0.08 0.14 0.61
8 101 0.07 0.20 -0.30 -0.04 0.07 0.13 0.82
9 91 0.01 0.16 -0.46 -0.08 0.06 0.11 0.31
10 123 0.04 0.14 -0.38 -0.01 0.05 0.12 0.42
11 110 0.02 0.18 -0.75 -0.07 0.07 0.13 0.36
12 112 0.08 0.15 -0.34 -0.01 0.08 0.12 0.56
13 88 0.06 0.23 -0.55 -0.06 0.05 0.16 0.82
14 105 0.03 0.16 -0.81 -0.07 0.05 0.13 0.45
15 101 0.04 0.18 -0.60 -0.03 0.08 0.14 0.59
16 90 0.02 0.15 -0.63 -0.04 0.05 0.11 0.38
17 100 0.05 0.26 -0.60 -0.07 0.07 0.13 1.61
18 91 0.01 0.15 -0.40 -0.09 0.03 0.11 0.41
19 103 0.01 0.15 -0.34 -0.07 0.05 0.10 0.55
20 116 0.05 0.17 -0.45 -0.03 0.05 0.13 0.68

Table 22. Duration of cointegration trades before convergence

all pairs best 5 pairs pairs 6-10 pairs 11-20

count 2456 919 521 1016
mean 58 days 33 days 71 days 73 days
std 57 days 46 days 59 days 57 days
25% 8 days 3 days 18 days 22 days
median 34 days 10 days 50 days 60 days
75% 104 days 45 days 128 days 123 days
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4.4 Returns of copula method

Tables 23 and 24 list selected copulas per pair formation method. The t-copula proved
to be the best fitting copula in most cases using either of the formation methods. This is
consistent with results for Cramér-von Mises goodness-of-fit test on the DAX 30 constituents
from January 2005 until December 2014 listed in Table 2 where most favorable values are
highlighted in bold. If one were to fit a single copula type to all pairs, t-copula would be the
best choice. In this thesis though, copula trades were performed using the best fitting copula.

Table 23. Copula selections in distance pairs

Copula family n % cum%
t 531 40.2 40.2
Gumbel 155 11.7 52.0
Gaussian 150 11.4 63.3
Survival Gumbel 141 10.7 74.0
Survival Joe 82 6.2 80.2
Joe 64 4.8 85.1
Clayton 48 3.6 88.7
Rotated Tawn type 1 180 degrees 46 3.5 92.2
Tawn type 1 26 2.0 94.2
Survival Clayton 25 1.9 96.1
Rotated Joe 270 degrees 12 0.9 97.0
Rotated Joe 90 degrees 8 0.6 97.6
Rotated Clayton 90 degrees 7 0.5 98.1
Rotated Gumbel 270 degrees 7 0.5 98.6
Rotated Tawn type 1 270 degrees 6 0.5 99.1
Rotated Clayton 270 degrees 5 0.4 99.5
Rotated Tawn type 1 90 degrees 5 0.4 99.8
Rotated Gumbel 90 degrees 2 0.2 100.0
Total 1320 100.0 100.0

Tables 25 and 26 list summary statistics of the returns for individual copula trades in distance-
based and cointegration-based selection strategies. Because per-trade returns of copula
approach are much smaller than the returns of previous trading strategies, copula strategy
should create significantly more trading opportunities to be able to compete with profitability
of distance and cointegration strategies.

However, the copula method combined with either of the pair selection criteria results in
fewer trades than cointegration- and distance-based trading signal generation. The annualized
returns of the best distance-selected pairs reach only 6% before deducting trading costs. For
the best cointegration-selected pairs, the annualized return is only 4%.
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Table 24. Copula selections in cointegrated pairs

Copula family n % cum%
t 359 27.2 27.2
Gaussian 201 15.2 42.4
Survival Gumbel 169 12.8 55.2
Survival Joe 128 9.7 64.9
Gumbel 105 8.0 72.9
Clayton 70 5.3 78.2
Tawn type 1 55 4.2 82.3
Joe 53 4.0 86.4
Rotated Tawn type 1 180 degrees 51 3.9 90.2
Survival Clayton 44 3.3 93.6
Rotated Joe 90 degrees 24 1.8 95.4
Rotated Clayton 270 degrees 13 1.0 96.4
Rotated Joe 270 degrees 11 0.8 97.2
Rotated Tawn type 1 90 degrees 11 0.8 98.0
Rotated Gumbel 270 degrees 8 0.6 98.6
Rotated Gumbel 90 degrees 7 0.5 99.2
Rotated Tawn type 1 270 degrees 6 0.5 99.6
Rotated Clayton 90 degrees 5 0.4 100.0
Total 1320 100.0 100.0

Table 25. Absolute returns from copula trades (distance) by position

rank count mean std min 25% 50% 75% max

1 188 0.01 0.01 -0.05 0.01 0.01 0.07
2 161 0.01 0.02 -0.06 0.01 0.02 0.09
3 158 0.01 0.03 -0.05 0.02 0.10
4 108 0.01 0.03 -0.05 0.01 0.03 0.18
5 145 0.01 0.03 -0.08 0.02 0.15
6 89 0.01 0.05 -0.17 0.01 0.03 0.18
7 81 0.01 0.03 -0.06 -0.01 0.01 0.02 0.08
8 81 0.01 0.03 -0.10 -0.01 0.02 0.10
9 86 0.04 -0.13 -0.01 0.02 0.19
10 83 0.01 0.04 -0.23 -0.01 0.03 0.15
11 85 0.01 0.05 -0.10 -0.01 0.02 0.27
12 80 0.05 -0.23 -0.01 0.02 0.18
13 91 0.01 0.05 -0.18 -0.02 0.03 0.11
14 74 0.02 0.05 -0.05 0.01 0.03 0.26
15 95 0.05 -0.24 -0.01 0.02 0.14
16 61 0.04 -0.11 -0.01 0.03 0.18
17 71 0.01 0.03 -0.08 0.02 0.15
18 71 0.01 0.04 -0.05 0.01 0.03 0.17
19 50 0.02 0.06 -0.10 0.02 0.04 0.34
20 64 0.04 -0.07 -0.02 0.02 0.16
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Table 26. Absolute returns from copula trades (cointegration) by position

rank count mean std min 25% 50% 75% max

1 131 0.01 0.03 -0.06 0.01 0.02 0.15
2 103 0.04 -0.15 0.01 0.02 0.16
3 102 0.01 0.04 -0.14 0.01 0.03 0.11
4 73 0.01 0.06 -0.19 -0.01 0.01 0.03 0.30
5 74 0.01 0.06 -0.11 -0.01 0.04 0.25
6 72 0.05 -0.18 -0.02 0.03 0.18
7 61 0.01 0.06 -0.13 -0.02 0.01 0.04 0.18
8 67 0.01 0.06 -0.14 -0.02 0.01 0.03 0.18
9 74 -0.01 0.10 -0.70 -0.02 0.02 0.18
10 94 0.07 -0.46 -0.01 0.03 0.17
11 63 0.01 0.04 -0.09 -0.02 0.01 0.03 0.12
12 53 0.01 0.05 -0.12 -0.02 0.03 0.14
13 64 0.06 -0.19 -0.01 0.03 0.14
14 73 0.01 0.04 -0.16 0.01 0.03 0.12
15 77 0.05 -0.24 -0.01 0.01 0.02 0.13
16 57 0.04 -0.10 -0.01 0.03 0.11
17 69 0.01 0.12 -0.57 -0.01 0.01 0.03 0.66
18 97 0.01 0.06 -0.18 -0.01 0.03 0.31
19 85 0.01 0.05 -0.11 -0.02 0.02 0.17
20 72 0.01 0.04 -0.07 -0.01 0.01 0.03 0.15

Win ratios for both selection methods are presented in Table 27 by position. As with other
approaches, copula trades seem to win more often than they lose. However, in copula method
the win ratio is less dependent on the quality of the pair and averages to ≈ 60% independent
of the ranking in pair selection.

Because copula trades used a returns-based signal creation method as opposed to value-based
method in distance and cointegration strategies, positions are more responsive to noise and
tend to stay open for much shorter period of time. (Tables 28 and 29). This creates a smaller
window for deviations to occur, and limits the potential of gains and losses. Therefore,
the minimum and maximum returns per trade are significantly smaller than in distance and
cointegration strategies.
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Table 27. Copula win ratios

(a) Distance

rank loss win ratio

1 44 143 .76
2 42 114 .73
3 55 99 .64
4 36 71 .66
5 45 91 .67
6 31 57 .65
7 29 50 .63
8 29 50 .63
9 35 49 .58
10 39 43 .52
11 31 49 .61
12 33 44 .57
13 39 49 .56
14 24 49 .67
15 42 50 .54
16 27 33 .55
17 27 42 .61
18 22 48 .69
19 11 38 .78
20 32 30 .48

(b) Cointegration

rank loss win ratio

1 36 93 .72
2 32 68 .68
3 29 71 .71
4 24 46 .66
5 29 44 .60
6 29 42 .59
7 24 35 .59
8 29 37 .56
9 34 37 .52
10 38 53 .58
11 24 37 .61
12 24 29 .55
13 28 34 .55
14 21 49 .70
15 33 44 .57
16 27 30 .53
17 21 46 .69
18 35 60 .63
19 35 48 .58
20 27 43 .61

Table 28. Duration of copula trades (distance) before convergence

all pairs best 5 pairs pairs 6-10 pairs 11-20

count 1922 760 420 742
mean 7 days 8 days 7 days 6 days
std 7 days 7 days 7 days 6 days
25% 2 days 2 days 2 days 2 days
median 5 days 6 days 5 days 5 days
75% 10 days 11 days 9 days 8 days

Table 29. Duration of copula trades (cointegration) before convergence

all pairs best 5 pairs pairs 6-10 pairs 11-20

count 1561 483 368 710
mean 6 days 7 days 7 days 6 days
std 6 days 6 days 7 days 6 days
25% 2 days 2 days 3 days 2 days
median 5 days 6 days 5 days 5 days
75% 9 days 10 days 9 days 9 days
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4.5 Empirical testing

To test the real-life performance of pairs trading, simulations were run with the most com-
monly selected pair Orion Class A - Orion Class B. This pair was the best suitable pair for
pairs trading by both the cointegration criterion and the minimum distance criterion. Trading
strategy was formed based on rolling windows – parameters of the trading system were ad-
justed each day based on the values of previous days. Both trading signal generation methods
provided approximately equal number of trading opportunities, about 115 during the 12-year
period for which data was available for both of the stocks.

The distance method provided a bit higher returns than the cointegration method. Often the
trades opened on the same day, but the closing dates differed. Ignoring the transaction costs,
the distance method yielded 1 400% and the cointegration method returned 900% during the
12 years. For that period, the market benchmark OMX Helsinki 25 yielded approximately
50%. (Figure 20). Annualized Sharpe ratio was 1.36 (distance) and 1.16 (cointegration).
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Figure 20. Trading Orion A - Orion B with no transaction costs.

When capital gains taxes are subtracted from the returns, previously reported 1 400% de-
creases to only 500% for the distance method and 900% reduces to 350%. (Figure 21). This
is much closer to the reality, and shows how much capital gains taxes reduce the returns of
frequent trading.
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Figure 21. Trading Orion A - Orion B with 34 % capital gains tax.

When trading costs are added to the already high tax burden, returns decline quite sharply. Just
1% of transaction costs per opened position reduces the 12-year gains of the distance-method
to 180% and to 140%. (Figure 22).
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Figure 22. Trading Orion A - Orion B with 34 % capital gains tax and 1% transaction costs per
opened position.
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4.6 Summary

Table 30 presents annualized return of an equally weighted portfolio composed of the best
five pairs per trading period per trading strategy with reference to corresponding OMXH 25
index return. The most significant periods are 12-19, from July 2007 to August 2009. Those
periods contain the financial crisis of 2007-2008 and periods 12-15 show significant −30%
p.a. market decline, periods 16 and 17 experience a −70% p.a. market crash and period 19 a
107% market gain. All trading strategies did protect the investor from those steep declines,
often yielding double-digit gains period.

Table 30. Annualized returns of a portfolio consisting the best five pairs per period per method
compared to the market returns (OMXH 25)

period cointcop distcop cointegration distance omxh25

1 0.14 0.06 0.32 0.13 0.25
2 0.28 0.03 0.02 0.32
3 0.17 0.06 0.25 0.15 0.24
4 0.06 0.15 0.16 0.10 0.45
5 0.12 0.54 0.30 0.12 0.24
6 -0.05 0.96 0.67 0.09 -0.05
7 0.15 0.77 1.04 0.10 0.46
8 0.06 0.11 0.37 0.09 0.50
9 0.02 0.05 -0.01 -0.04 0.37
10 0.10 0.14 0.29 0.05 0.09
11 0.06 0.33 0.09 0.07 0.04
12 0.08 0.42 0.44 0.08 -0.32
13 0.09 0.60 0.34 0.16 -0.31
14 0.11 4.66 0.47 0.11 -0.32
15 0.15 0.55 0.97 0.08 -0.29
16 0.34 0.98 2.13 0.05 -0.69
17 0.10 1.38 1.09 0.08 -0.73
18 0.50 1.45 0.59 0.20 0.22
19 0.09 0.29 0.04 0.09 1.07
20 0.03 0.57 0.04 0.08 0.41
21 -0.07 -0.02 0.06 0.04 0.25
22 0.10 0.31 0.28 -0.01 0.47
23 0.14 0.20 0.17 -0.04 0.20

Continues on next page
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period cointcop distcop cointegration distance omxh25

24 0.01 -0.00 0.06 0.09 0.20
25 -0.05 0.34 0.21 0.11 0.53
26 -0.08 -0.13 0.01 0.03 0.23
27 -0.00 0.31 -0.00 0.09 -0.26
28 0.02 0.14 0.52 0.03 -0.43
29 -0.11 0.53 0.38 0.11 -0.35
30 -0.04 0.21 0.16 0.20 0.43
31 0.13 0.21 0.09 0.11 -0.03
32 -0.09 -0.03 -0.01 0.19 -0.21
33 -0.04 0.09 0.37 0.04 0.09
34 -0.01 0.35 0.03 0.11 0.37
35 0.01 -0.10 0.14 -0.02 0.31
36 0.11 0.19 0.13 -0.00 0.00
37 0.06 0.43 0.07 0.03 0.34
38 0.01 0.03 0.06 0.09 0.51
39 -0.01 0.49 0.04 -0.00 0.16
40 0.04 0.38 0.28 0.03 0.15
41 0.06 0.29 0.39 0.02 0.09
42 -0.01 0.09 0.13 -0.01 0.05
43 0.11 0.12 0.19 0.03 0.38
44 0.03 0.10 0.18 0.03 0.28
45 0.00 0.29 0.14 0.02 -0.01
46 0.06 0.26 0.54 0.04 0.01
47 0.06 0.67 0.39 0.04 -0.11
48 0.11 0.29 0.23 0.10 -0.05
49 0.08 0.23 0.34 0.07 0.18
50 0.24 -0.23 0.34 0.05 0.25
51 0.30 0.18 0.09 0.06 0.29
52 0.04 0.14 0.06 0.06 0.20
53 -0.04 0.05 0.25 0.00 0.25
54 -0.01 0.16 0.26 0.00 0.07
55 -0.07 0.20 0.12 0.02 -0.08
56 0.06 0.19 -0.01 0.06 0.16
57 0.04 0.59 0.11 0.05 0.17
58 0.00 0.80 0.11 0.14 0.13

Continues on next page
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period cointcop distcop cointegration distance omxh25

59 0.05 -0.14 0.06 0.10 -0.08
60 0.06 0.71 0.19 0.04 -0.09
61 0.03 0.51 0.02 0.05 0.10
62 0.02 0.13 0.18 0.07 0.05
63 0.12 0.70 0.25 0.03 -0.15
64 0.04 0.19 0.08 -0.01 0.13
65 0.08 0.32 0.22 0.04 -0.42
66 0.03 -0.02 0.52 0.12 -0.03

Figure 23 displays annualized returns of each trading strategy per ranking in pair selection.
The best two pairs in the distance method and the cointegration method provide consistent
profit, but all copula strategies provide insufficient or negative expected returns.
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4.7 Future Work

This thesis establishes a foundation on which profitable pairs trading strategies can be
constructed using either distance or cointegration based pair selection. Yet it failed to
create a feasible trading strategy using the returns-based copula method with thresholds
%(* ≤ D |+ = E) > 0.95 and %(+ ≤ E |* = D) < 0.05 or vice-versa. Further research is
required on parametrization of the copula method to determine if a higher signal creation
threshold would yield better trades and on how level-based strategy discussed in Liew and
Wu (2013) would perform.

The real-life feasibility of trading strategies presented in this thesis remains to be tested. Gen-
erated pairs are theoretical and assume that any security can be sold short. Such assumption
may not be realistic, as most brokers have a relatively small list of the most liquid assets
that they let investors to short. Real-life returns may also be hindered by the realization of
the execution risk - investor may not be able to find a buyer or seller for the asset when the
position ought to be opened or closed.
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5 Conclusions

This thesis proves that the observations made in Rinne and Suominen (2017) using a single
pair (Stora Enso - UPM) are more widespread in the OMX Helsinki stock exchange and
that the distance-method based transaction returns for a holding-period of approximately one
week are indeed in the range of 2.4% or higher, with return volatility of 4.2% or lower, for a
more optimal pair than Stora Enso - UPM. It also concludes that similar returns are achievable
using cointegration-based trading, but the volatility of those returns is much higher, as is the
risk of a stochastic change leading to the disappearance of mean-reversion.

Findings regarding the amount of trading opportunities generated by the copula method are
in line with Harju (2016). While Harju used only cointegration criterion for selecting the
pairs, this thesis combined copula method also with distance-based pair selection. Distance-
based selection seems to create more trading opportunities, resulting in slightly better win
ratio, and providing more consistent returns than cointegration-based selection. However, the
magnitude of returns achieved through copula-based trading signal generation is not sufficient
enough to compete with distance-based or cointegration-based trading signal creation.

This thesis confirms the assumptions made in previous literature about what types of pairs
are suitable for pairs trading. When pair formation is limited to allow only pairs consisting of
companies from the same industry, distance-based and cointegration-based selection favors
pairs formed of different share classes of one company. An example of this is Orion Class A
- Orion Class B. Such pairs provide more trading opportunities than other types of pairs (e.g.
Stora Enso - UPM).

A trading system was simulated using the most frequently suggested pair Orion Class A -
Orion Class B. From late 2007 to mid 2020, this pair yielded significant positive returns using
both the cointegration and the distance method. However, the returns are highly sensitive to
the costs associated with trading.



80

REFERENCES

Aas, Kjersti, Claudia Czado, Arnoldo Frigessi, and Henrik Bakken (2009). ”Pair-Copula
Constructions of Multiple Dependence”. In: Insurance: Mathematics and Economics vol.
44 (2), pp. 182–198. Link (visited on 05/01/2020) (cit. on p. 27).

Ané, Thierry and Cécile Kharoubi (2003). ”Dependence Structure and Risk Measure”. In:
The Journal of Business vol. 76 (3), pp. 411–438 (cit. on pp. 25, 26, 28).

Blázquez, Mario Carrasco, Carmen De la Orden De la Cruz, and Camilo Prado Román
(2018). ”Pairs Trading Techniques: An Empirical Contrast”. In: European Research on
Management and Business Economics; Madrid vol. 24 (3), pp. 160–167. Link (visited on
04/06/2019) (cit. on p. 16).

Bolgün, Kaan Evren, Engin Kurun, and Serhat Güven (2012). ”Adaptive Pairs Trading
Strategy Performance in Turkish Derivatives Exchange with the Companies Listed on
Istanbul Stock Exchange”. In: Journal of Derivatives & Hedge Funds; Basingstoke vol.
18 (2), pp. 113–126. Link (visited on 05/11/2019) (cit. on p. 16).

Chen, Cathy W.S., Zona Wang, Songsak Sriboonchitta, and Sangyeol Lee (2017). ”Pair
Trading Based on Quantile Forecasting of Smooth Transition GARCH Models”. In: The
North American Journal of Economics and Finance vol. 39, pp. 38–55. Link (visited on
04/06/2019) (cit. on p. 15).

Chen, Danni, Jing Cui, YanGao, and LeileiWu (2017). ”Pairs Trading in Chinese Commodity
Futures Markets: An Adaptive Cointegration Approach”. In: Accounting & Finance vol.
57 (5), pp. 1237–1264. Link (visited on 08/06/2019) (cit. on pp. 21, 22, 39, 45, 47).

Chiu, Mei Choi and Hoi Ying Wong (2015). ”Dynamic Cointegrated Pairs Trading:
Mean–Variance Time-Consistent Strategies”. In: Journal of Computational and Ap-
plied Mathematics vol. 290, pp. 516–534. Link (visited on 04/06/2019) (cit. on p. 15).

Clegg, Matthew and Christopher Krauss (2018). ”Pairs Trading with Partial Cointegration”.
In: Quantitative Finance vol. 18 (1), pp. 121–138. Link (visited on 08/06/2019) (cit. on
pp. 17, 24, 37, 39).

Cryer, Jonathan D. and Kung-sik Chan (2008). Time Series Analysis: With Applications in R.
2nd ed. Springer Texts in Statistics. New York: Springer. 491 pp. (cit. on p. 38).

De Moura, Carlos Eduardo, Adrian Pizzinga, and Jorge Zubelli (2016). ”A Pairs Trading
Strategy Based on Linear State Space Models and the Kalman Filter”. In: Quantitative
Finance vol. 16 (10), pp. 1559–1573. Link (visited on 08/06/2019) (cit. on p. 32).

Dickey, David A. andWayne A. Fuller (1979). ”Distribution of the Estimators for Autoregres-
sive Time Series With a Unit Root”. In: Journal of the American Statistical Association
vol. 74 (366), pp. 427–431 (cit. on p. 22).

http://www.sciencedirect.com/science/article/pii/S0167668707000194
http://search.proquest.com/docview/2099398302/abstract/217330C6EBF04AAEPQ/1
http://search.proquest.com/docview/1009342515/abstract/DDA79B8A5C7244D2PQ/1
https://linkinghub.elsevier.com/retrieve/pii/S1062940816301358
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=128709016&site=ehost-live
https://linkinghub.elsevier.com/retrieve/pii/S0377042715003234
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=126638054&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=119058916&site=ehost-live


81

Do, Binh and Robert Faff (2010). ”Does Simple Pairs Trading Still Work?” In: Financial
Analysts Journal; Charlottesville vol. 66 (4), pp. 83–95. Link (visited on 05/26/2019)
(cit. on pp. 16, 38).

Durbin, J. and G. S. Watson (1950). ”Testing for Serial Correlation in Least Squares Regres-
sion: I”. In: Biometrika vol. 37 (3/4), pp. 409–428 (cit. on p. 22).

— (1951). ”Testing for Serial Correlation in Least Squares Regression. II”. In: Biometrika
vol. 38 (1/2), pp. 159–177 (cit. on p. 22).

Economist, The (2019). ”March of theMachines”. In:TheEconomist; London vol. 433 (9163),
pp. 23–24, 26. Link (visited on 05/03/2020) (cit. on p. 11).

Ehrman, Douglas (2006). TheHandbook of Pairs Trading: StrategiesUsing Equities, Options,
and Futures | Wiley. Hoboken, NJ: John Wiley & Sons. 272 pp. (cit. on pp. 10, 16, 18).

Engle, Robert F. and C. W. J. Granger (1987). ”Co-Integration and Error Correction: Rep-
resentation, Estimation, and Testing”. In: Econometrica vol. 55 (2), pp. 251–276 (cit. on
pp. 21, 22).

Farago, Adam and Erik Hjalmarsson (2019). ”Stock Price Co-Movement and the Foundations
of Pairs Trading”. In: Journal of Financial & Quantitative Analysis vol. 54 (2), pp. 629–
665. Link (visited on 08/06/2019) (cit. on p. 25).

Ferreira, Luan (2008). ”New Tools for Spread Trading”. In: Futures; Chicago vol. 37 (12),
pp. 38–41. Link (visited on 12/30/2019) (cit. on p. 28).

Figuerola-Ferretti, Isabel, Ioannis Paraskevopoulos, and Tao Tang (2018). ”Pairs-Trading and
Spread Persistence in the European Stock Market”. In: Journal of Futures Markets vol.
38 (9), pp. 998–1023. Link (visited on 05/24/2020) (cit. on pp. 37, 45).

Focardi, Sergio M., Frank J. Fabozzi, and Ivan K. Mitov (2016). ”A New Approach to
Statistical Arbitrage: Strategies Based on Dynamic Factor Models of Prices and Their
Performance”. In: Journal of Banking & Finance vol. 65, pp. 134–155. Link (visited on
02/10/2019) (cit. on p. 14).

Gatev, Evan, William N. Goetzmann, and K. Geert Rouwenhorst (1999). ”Pairs Trading:
Performance of a Relative Value Arbitrage Rule”. In: NBER Working Paper Series;
Cambridge vol. P. 7032. Link (visited on 05/11/2019) (cit. on pp. 12, 14, 18, 39, 45).

— (2006). ”Pairs Trading: Performance of a Relative-Value Arbitrage Rule”. In: The Review
of Financial Studies vol. 19 (3), pp. 797–827. Link (visited on 02/10/2019) (cit. on pp. 12,
15, 16, 19, 39).

Genest, Christian andLouis-PaulRivest (1993). ”Statistical Inference Procedures forBivariate
Archimedean Copulas”. In: Journal of the American Statistical Association vol. 88 (423),
pp. 1034–1043 (cit. on p. 26).

Grau-Carles, Pilar, Luis Miguel Doncel, and Jorge Sainz (2019). ”Stability in Mutual Fund
Performance Rankings: A New Proposal”. In: International Review of Economics &
Finance vol. 61, pp. 337–346. Link (visited on 02/16/2020) (cit. on p. 42).

http://search.proquest.com/docview/744487407/abstract/860DE7AB3C4C4A3FPQ/1
http://search.proquest.com/docview/2300871103/abstract/26B352ABBFFD4DDFPQ/11
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=135430265&site=ehost-live
http://search.proquest.com/docview/235301208/abstract/85215A171C7A444APQ/1
http://onlinelibrary.wiley.com/doi/abs/10.1002/fut.21927
http://www.sciencedirect.com/science/article/pii/S0378426615002824
http://search.proquest.com/docview/1690156662
https://www.jstor.org.ezproxy.cc.lut.fi/stable/3844014
https://linkinghub.elsevier.com/retrieve/pii/S1059056017306986


82

Göncü, Ahmet and Erdinc Akyildirim (2016). ”A Stochastic Model for Commodity Pairs
Trading”. In: Quantitative Finance vol. 16 (12), pp. 1843–1857. Link (visited on
08/06/2019) (cit. on pp. 15, 32).

Hain, Martin, Julian Hess, and Marliese Uhrig-Homburg (2018). ”Relative Value Arbitrage
in European Commodity Markets”. In: Energy Economics vol. 69, pp. 140–154. Link
(visited on 08/05/2019) (cit. on pp. 17, 24).

Hansen, Peter Reinhard (2005). ”A Test for Superior Predictive Ability”. In: Journal of
Business & Economic Statistics; Alexandria vol. 23 (4), pp. 365–371 (cit. on p. 40).

Harju, Jens (2016). ”Pairs Trading Profitability in the Finnish Stock Market: A Comparison
between Three Methods”. Master’s thesis. Lappeenranta: Lappeenranta University of
Technology. Link (visited on 06/20/2020) (cit. on pp. 12, 13, 79).

Haug, EspenGaarder andNassimNicholas Taleb (2011). ”Option Traders Use (Very) Sophis-
ticated Heuristics, Never the Black–Scholes–Merton Formula”. In: Journal of Economic
Behavior & Organization vol. 77 (2), pp. 97–106. Link (visited on 04/19/2020) (cit. on
p. 28).

HE 88/2020, vp (2020). Hallituksen esitys eduskunnalle vuoden 2020 neljänneksi lisä-
talousarvioksi. Link (visited on 06/12/2020) (cit. on p. 10).

Hogan, Steve, Robert Jarrow, Melvyn Teo, and Mitch Warachka (2004). ”Testing Market
Efficiency Using Statistical Arbitrage with Applications to Momentum and Value Strate-
gies”. In: Journal of Financial Economics vol. 73 (3), pp. 525–565. Link (visited on
04/14/2019) (cit. on p. 14).

Hsu, Po-Hsuan, Yu-Chin Hsu, and Chung-Ming Kuan (2010). ”Testing the Predictive Ability
of Technical Analysis Using a New Stepwise Test without Data Snooping Bias”. In:
Journal of Empirical Finance vol. 17 (3), pp. 471–484. Link (visited on 05/12/2019)
(cit. on p. 40).

Huang, Chin-Wen, Chun-Pin Hsu, and Wan-Jiun Paul Chiou (2015). ”Can Time-Varying
Copulas Improve theMean-Variance Portfolio?” In:Handbook of Financial Econometrics
and Statistics. Ed. by Cheng-Few Lee and John C. Lee. NewYork, NY: Springer, pp. 233–
251. Link (visited on 12/29/2019) (cit. on pp. 26, 27).

Huang, Wanling and Artem Prokhorov (2014). ”A Goodness-of-Fit Test for Copulas”. In:
Econometric Reviews vol. 33 (7), pp. 751–771. Link (visited on 02/16/2020) (cit. on
p. 56).

Huck, Nicolas (2010). ”Pairs Trading and Outranking: The Multi-Step-Ahead Forecasting
Case”. In: European Journal of Operational Research vol. 207 (3), pp. 1702–1716. Link
(visited on 02/10/2019) (cit. on pp. 15, 31).

— (2013). ”The High Sensitivity of Pairs Trading Returns”. In: Applied Economics Letters
vol. 20 (14), pp. 1301–1304. Link (visited on 05/11/2019) (cit. on pp. 19–21).

http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=119304205&site=ehost-live
https://linkinghub.elsevier.com/retrieve/pii/S0140988317303869
https://lutpub.lut.fi/handle/10024/123428
http://www.sciencedirect.com/science/article/pii/S0167268110001927
https://www.eduskunta.fi:443/FI/vaski/KasittelytiedotValtiopaivaasia/Sivut/HE_88+2020.aspx
http://www.sciencedirect.com/science/article/pii/S0304405X04000947
https://linkinghub.elsevier.com/retrieve/pii/S0927539810000022
https://doi.org/10.1007/978-1-4614-7750-1_8
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=94420896&site=ehost-live
http://www.sciencedirect.com/science/article/pii/S0377221710004820
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=88833830&site=ehost-live


83

Huck,Nicolas (2015). ”Pairs Trading:DoesVolatility TimingMatter?” In:AppliedEconomics
vol. 47 (57), pp. 6239–6256. Link (visited on 05/11/2019) (cit. on pp. 15, 17, 20).

Huck, Nicolas and Komivi Afawubo (2015). ”Pairs Trading and Selection Methods: Is Coin-
tegration Superior?” In: Applied Economics vol. 47 (6), pp. 599–613. Link (visited on
08/06/2019) (cit. on p. 14).

Jacobs, Heiko andMartinWeber (2015). ”On theDeterminants of Pairs Trading Profitability”.
In: Journal of Financial Markets vol. 23, pp. 75–97. Link (visited on 02/10/2019) (cit. on
p. 16).

Jensen, Michael C. (1968). ”The Performance of Mutual Funds in the Period 1945-1964”. In:
The Journal of Finance vol. 23 (2), pp. 389–416 (cit. on p. 41).

Joe, Harry (1996). Families of $m$-Variate Distributions with givenMargins and $m(m-1)/2$
Bivariate Dependence Parameters. Institute ofMathematical Statistics, pp. 120–141. Link
(visited on 05/02/2020) (cit. on p. 27).

Joe, Harry and Taizhong Hu (1996). ”Multivariate Distributions from Mixtures of Max-
Infinitely Divisible Distributions”. In: Journal of Multivariate Analysis vol. 57 (2),
pp. 240–265. Link (visited on 05/02/2020) (cit. on pp. 27, 28).

Keating, C. and W. Shadwick (2002). ”A Universal Performance Measure”. In: Journal of
Performance Measurement vol. 6 (3), pp. 59–84 (cit. on p. 41).

Kendall, M. G. (1938). ”A New Measure of Rank Correlation”. In: Biometrika vol. 30 (1/2),
pp. 81–93 (cit. on p. 27).

Kharoubi-Rakotomalala, Cécile and Frantz Maurer (2013). ”Copulas In Finance Ten Years
Later”. In: Journal of Applied Business Research; Laramie vol. 29 (5), n/a. Link (visited
on 05/15/2019) (cit. on pp. 26, 28).

Kim, Saejoon and Jun Heo (2017). ”Time Series Regression-Based Pairs Trading in the
KoreanEquitiesMarket”. In: Journal of Experimental&Theoretical Artificial Intelligence
vol. 29 (4), pp. 755–768. Link (visited on 08/06/2019) (cit. on p. 15).

Kirchgässner, Gebhard, Jürgen Wolters, and Uwe Hassler (2013). Introduction to Modern
Time Series Analysis. Second edition. Springer Texts in Business and Economics. Hei-
delberg: Springer. 319 pp. (cit. on pp. 22, 38).

Krauss, Christopher (2017). ”Statistical Arbitrage Pairs Trading Strategies: Review and Out-
look”. In: Journal of Economic Surveys vol. 31 (2), pp. 513–545. Link (visited on
04/06/2019) (cit. on p. 15).

Krauss, Christopher, Xuan Anh Do, and Nicolas Huck (2017). ”Deep Neural Networks,
Gradient-Boosted Trees, Random Forests: Statistical Arbitrage on the S&P 500”. In:
European Journal of Operational Research vol. 259 (2), pp. 689–702. Link (visited on
04/06/2019) (cit. on p. 11).

Krauss, Christopher and Johannes Stübinger (2017). ”Non-Linear Dependence Modelling
with Bivariate Copulas: Statistical Arbitrage Pairs Trading on the S&P 100”. In: Applied

http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=109906543&site=ehost-live
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=99802392&site=ehost-live
http://www.sciencedirect.com/science/article/pii/S1386418114000809
https://projecteuclid.org/euclid.lnms/1215452614
http://www.sciencedirect.com/science/article/pii/S0047259X96900329
http://search.proquest.com/docview/1473895356/abstract/16794F5E3E8647DEPQ/1
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=123449698&site=ehost-live
http://onlinelibrary.wiley.com/doi/full/10.1111/joes.12153
https://linkinghub.elsevier.com/retrieve/pii/S0377221716308657


84

Economics vol. 49 (52), pp. 5352–5369. Link (visited on 08/06/2019) (cit. on pp. 27, 28,
31, 54).

Kuang, P., M. Schröder, and Q. Wang (2014). ”Illusory Profitability of Technical Analysis
in Emerging Foreign Exchange Markets”. In: International Journal of Forecasting vol.
30 (2), pp. 192–205. Link (visited on 05/12/2019) (cit. on p. 40).

Kupiainen, Jukka (2008). ”Pairs Trading -strategia Suomen osakemarkkinoilla”.Master’s the-
sis. Lappeenranta: Lappeenranta University of Technology. Link (visited on 06/20/2020)
(cit. on p. 12).

Law, K.F., W.K. Li, and Philip L.H. Yu (2018). ”A Single-Stage Approach for Cointegration-
Based Pairs Trading”. In: Finance Research Letters vol. 26, pp. 177–184. Link (visited
on 04/06/2019) (cit. on p. 24).

Lei, Yaoting and Jing Xu (2015). ”Costly Arbitrage through Pairs Trading”. In: Journal of
Economic Dynamics and Control vol. 56, pp. 1–19. Link (visited on 02/10/2019) (cit. on
p. 17).

Leybourne, S. J. and B. P. M. McCabe (1994). ”A Simple Test for Cointegration”. In: Oxford
Bulletin of Economics & Statistics vol. 56 (1), pp. 97–103. Link (visited on 05/05/2019)
(cit. on p. 22).

Liew, Rong Qi and Yuan Wu (2013). ”Pairs Trading: A Copula Approach”. In: Journal
of Derivatives & Hedge Funds; Basingstoke vol. 19 (1), pp. 12–30. Link (visited on
05/11/2019) (cit. on pp. 15, 27, 31, 56, 78).

Lintilhac, Paul Sopher and Agnès Tourin (2017). ”Model-Based Pairs Trading in the Bitcoin
Markets”. In:Quantitative Finance vol. 17 (5), pp. 703–716. Link (visited on 08/06/2019)
(cit. on p. 16).

Litterman, Robert (2011). ”Who Should Hedge Tail Risk?” In: Financial Analysts Journal;
Charlottesville vol. 67 (3), pp. 6, 9–11. Link (visited on 06/14/2020) (cit. on p. 10).

MacKinnon, James G. (1994). ”Approximate Asymptotic Distribution Functions for Unit-
Root and Cointegration Tests”. In: Journal of Business & Economic Statistics vol. 12 (2),
pp. 167–176. Link (visited on 12/01/2019) (cit. on p. 47).

Mikkelsen, Andreas (2018). ”Pairs Trading: The Case of Norwegian Seafood Companies”.
In: Applied Economics vol. 50 (3), pp. 303–318. Link (visited on 08/06/2019) (cit. on
pp. 17, 38).

Montana, Giovanni and Francesco Parrella (2009). ”Data Mining for Algorithmic Asset
Management”. In: Data Mining for Business Applications. Ed. by Longbing Cao, Philip
S. Yu, Chengqi Zhang, and Huaifeng Zhang. Boston, MA: Springer US, pp. 283–295.
Link (visited on 08/05/2019) (cit. on pp. 15, 32).

Murthi, B. P. S., Yoon K. Choi, and Preyas Desai (1997). ”Efficiency of Mutual Funds
and Portfolio Performance Measurement: A Non-Parametric Approach”. In: European

http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=124613974&site=ehost-live
https://linkinghub.elsevier.com/retrieve/pii/S0169207013000964
https://lutpub.lut.fi/handle/10024/38319
https://linkinghub.elsevier.com/retrieve/pii/S1544612317307286
http://www.sciencedirect.com/science/article/pii/S016518891500072X
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=6928420&site=ehost-live
http://search.proquest.com/docview/1320053371/abstract/EF2AFAE7E9CD4859PQ/1
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=122387560&site=ehost-live
http://search.proquest.com/docview/873721154/abstract/9C7B521D4F1F478FPQ/1
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=126227794&site=ehost-live
https://doi.org/10.1007/978-0-387-79420-4_20


85

Journal of Operational Research vol. 98 (2), pp. 408–418. Link (visited on 02/16/2020)
(cit. on p. 41).

Nagler, Thomas, C. Bumann, and C. Czado (2019a). ”Model Selection in Sparse High-
Dimensional Vine Copula Models with an Application to Portfolio Risk”. In: Journal of
Multivariate Analysis vol. 172, pp. 180–192. Link (visited on 08/01/2019) (cit. on p. 54).

Nagler, Thomas, Ulf Schepsmeier, Jakob Stoeber, Eike Christian Brechmann, Benedikt
Graeler, and Tobias Erhardt (2019b). VineCopula: Statistical Inference of Vine Copu-
las. Version of R package 2.3.0. Link (cit. on p. 54).

Neal, Robert (1996). ”Direct Tests of Index Arbitrage Models”. In: The Journal of Financial
and Quantitative Analysis vol. 31 (4), pp. 541–562 (cit. on p. 14).

Nelsen, Roger B. (2006). An Introduction to Copulas. 2nd ed. Springer Series in Statistics.
New York: Springer. 269 pp. (cit. on pp. 26, 27).

Nikoloulopoulos, Aristidis K., Harry Joe, and Haĳun Li (2012). ”Vine Copulas with Asym-
metric Tail Dependence and Applications to Financial Return Data”. In: Computational
Statistics &Data Analysis. 1st Issue of the Annals of Computational and Financial Econo-
metrics vol. 56 (11), pp. 3659–3673. Link (visited on 05/02/2020) (cit. on p. 27).

Oriola (2020). Share Capital and Shares - Oriola. Link (visited on 05/30/2020) (cit. on p. 48).
Osakekeisari (2018). Pörssistä Poistuneet Yhtiöt. Link (visited on 06/03/2020) (cit. on p. 34).
Rad, Hossein, Rand Kwong Yew Low, and Robert Faff (2016). ”The Profitability of Pairs

Trading Strategies: Distance, Cointegration and Copula Methods”. In: Quantitative Fi-
nance vol. 16 (10), pp. 1541–1558. Link (visited on 05/11/2019) (cit. on pp. 16, 20, 31,
38).

Rinne, Kalle and Matti Suominen (2017). ”How Some Bankers Made a Million by Trading
Just Two Securities?” In: Journal of Empirical Finance vol. 44, pp. 304–315. Link (visited
on 04/06/2019) (cit. on pp. 12, 13, 17, 65, 79).

Romano, Joseph P. and Michael Wolf (2005). ”Stepwise Multiple Testing as Formalized Data
Snooping”. In: Econometrica vol. 73 (4), pp. 1237–1282 (cit. on p. 40).

Roy, Roch (1977). ”On the Asymptotic Behaviour of the Sample Autocovariance Function for
an Integrated Moving Average Process”. In: Biometrika vol. 64 (2), pp. 419–421 (cit. on
p. 21).

Ruxanda, Gheorghe and Sorin Opincariu (2018). ”Bayesian Neural Networks with Depen-
dent Dirichlet Process Priors. Application to Pairs Trading”. In: Economic Computation
& Economic Cybernetics Studies & Research vol. 52 (4), pp. 5–18. Link (visited on
08/06/2019) (cit. on p. 32).

Sharpe, William F. (1966). ”Mutual Fund Performance”. In: The Journal of Business vol.
39 (1), pp. 119–138 (cit. on p. 42).

— (1994). ”The Sharpe Ratio”. In: Journal of Portfolio Management; New York vol. 21 (1),
p. 49. Link (visited on 06/02/2019) (cit. on p. 42).

http://www.sciencedirect.com/science/article/pii/S0377221796003566
https://linkinghub.elsevier.com/retrieve/pii/S0047259X18300630
https://CRAN.R-project.org/package=VineCopula
http://www.sciencedirect.com/science/article/pii/S0167947310002951
https://www.oriola.com/investors/share-information-and-shareholders/share-capital-and-shares/
https://osakekeisari.wordpress.com/2018/09/10/porssista-poistuneet-yhtiot/
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=119058915&site=ehost-live
https://linkinghub.elsevier.com/retrieve/pii/S0927539816301499
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=134168809&site=ehost-live
http://search.proquest.com/docview/195581284/abstract/B98F38275FA94014PQ/1


86

Shen, Shih-yu and Andrew Minglong Wang (2001). ”On Stop-Loss Strategies for Stock
Investments”. In: Applied Mathematics and Computation vol. 119 (2-3), pp. 317–337.
Link (visited on 05/03/2020) (cit. on p. 18).

Smith, R. Todd and Xun Xu (2017). ”A Good Pair: Alternative Pairs-Trading Strategies”.
In: Financial Markets and Portfolio Management; New York vol. 31 (1), pp. 1–26. Link
(visited on 04/06/2019) (cit. on p. 17).

Song, Qingshuo and Qing Zhang (2013). ”An Optimal Pairs-Trading Rule”. In: Automatica
vol. 49 (10), pp. 3007–3014. Link (visited on 02/10/2019) (cit. on p. 32).

SSAB (2020). Tietoja osakkeesta. Link (visited on 01/05/2020) (cit. on p. 43).
Stander, Yolanda, Daniel Marais, and Ilse Botha (2013). ”Trading Strategies with Copulas”.

In: Journal of Economic and Financial Sciences vol. 6 (1), pp. 83–107. Link (visited on
05/11/2019) (cit. on pp. 25, 26).

Stübinger, Johannes and Jens Bredthauer (2017). ”Statistical Arbitrage Pairs Trading with
High-Frequency Data”. In: International Journal of Economics and Financial Issues;
Mersin vol. 7 (4). Link (visited on 04/06/2019) (cit. on pp. 17, 21).

Sullivan, Ryan, Allan Timmermann, and Halbert White (1999). ”Data-Snooping, Technical
Trading Rule Performance, and the Bootstrap”. In: The Journal of Finance vol. 54 (5),
pp. 1647–1691 (cit. on p. 40).

Taleb, Nassim Nicholas and Mark Blyth (2011). ”The Black Swan of Cairo”. In: Foreign
Affairs vol. 90 (3), pp. 33–39. Link (visited on 06/12/2020) (cit. on p. 10).

Tianyong, H., D. Ming, and W. Liang (2013). ”Profitability of Pairs Trading Tactics in
China’s Stock Market”. In: 2013 Suzhou-Silicon Valley-Beĳing International Innovation
Conference. 2013 Suzhou-Silicon Valley-Beĳing International Innovation Conference,
pp. 111–115 (cit. on p. 16).

Tourin, Agnès and Raphael Yan (2013). ”Dynamic Pairs Trading Using the Stochastic Control
Approach”. In: Journal of Economic Dynamics and Control vol. 37 (10), pp. 1972–1981.
Link (visited on 02/10/2019) (cit. on p. 22).

Triantafyllopoulos, Kostas and Giovanni Montana (2011). ”Dynamic Modeling of Mean-
Reverting Spreads for Statistical Arbitrage”. In: Computational Management Science;
Dordrecht vol. 8 (1-2), pp. 23–49. Link (visited on 04/06/2019) (cit. on pp. 15, 32).

Watsham, Terry and Keith Parramore (1997). Quantitative Methods in Finance. 1st ed.
London: Thomson Learning. 395 pp. (cit. on p. 21).

White, Halbert (2000). ”A Reality Check for Data Snooping”. In: Econometrica vol. 68 (5),
pp. 1097–1126 (cit. on p. 40).

Vidyamurthy, Ganapathy (2004). Pairs Trading: Quantitative Methods and Analysis. John
Wiley & Sons. 230 pp. (cit. on pp. 11, 23, 24, 45).

https://linkinghub.elsevier.com/retrieve/pii/S0096300399002295
http://search.proquest.com/docview/1867930575/abstract/70EAE5531550440BPQ/1
http://www.sciencedirect.com/science/article/pii/S0005109813003609
https://www.ssab.fi/ssab-konserni/sijoittajat/ssabn-osake/tietoja-osakkeesta
https://journals.co.za/content/jefs/6/1/EJC135921
http://search.proquest.com/docview/1984686778/abstract/C8A71E6C951B43E6PQ/1
http://search.ebscohost.com/login.aspx?direct=true&db=afh&AN=60123020&site=ehost-live
http://www.sciencedirect.com/science/article/pii/S0165188913001164
http://search.proquest.com/docview/856178515/abstract/F325DA26DCF14A65PQ/1


87

Xie, Wenjun, Rong Qi Liew, Yuan Wu, and Xi Zou (2016). ”Pairs Trading with Copulas”.
In: Journal of Trading; New York vol. 11 (3), pp. 41–52. Link (visited on 05/11/2019)
(cit. on pp. 15, 28, 39).

Yan-Xia Lin, Michael McCrae, and Chandra Gulati (2006). ”Loss Protection in Pairs Trading
Through Minimum Profit Bounds: A Cointegration Approach”. In: Journal of Applied
Mathematics & Decision Sciences vol. 2006 (4), pp. 1–14. Link (visited on 03/21/2020)
(cit. on p. 21).

Yang, Jian, Juan Cabrera, and Tao Wang (2010). ”Nonlinearity, Data-Snooping, and Stock
Index ETF Return Predictability”. In: European Journal of Operational Research vol.
200 (2), pp. 498–507. Link (visited on 05/12/2019) (cit. on p. 40).

Yu, Philip L.H. and Renjie Lu (2017). ”Cointegrated Market-Neutral Strategy for Basket
Trading”. In: International Review of Economics & Finance vol. 49, pp. 112–124. Link
(visited on 04/06/2019) (cit. on pp. 15, 24).

http://search.proquest.com/docview/1826079575/abstract/63E0795F381A4C6APQ/1
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=25050460&site=ehost-live
https://linkinghub.elsevier.com/retrieve/pii/S0377221709000228
https://linkinghub.elsevier.com/retrieve/pii/S1059056017300254


Appendix 1. Companies

Table A1.1. Listed companies on OMX Helsinki

Symbol Name Sector Data available from
AFAGR Afarak Group Oyj Basic Materials 1997-01-02
ALBAV Ålandsbanken Abp A Financials 1997-01-02
ALBBV Ålandsbanken Abp B Financials 1997-01-02
AMEAS Amer Sports Oyj Consumer Goods 1997-01-02
APETIT Apetit Oyj Consumer Goods 1997-01-02
CRA1V Cramo Oyj Industrials 1997-01-02
CTY1S Citycon Oyj Financials 1997-01-02
EFO1V Efore Oyj Industrials 1997-01-02
ELEAV Elecster Oyj A Industrials 1997-01-02
FIA1S Finnair Oyj Consumer Services 1997-01-02
FSKRS Fiskars Oyj Abp Consumer Goods 1997-01-02
HONBS Honkarakenne Oyj B Consumer Goods 1997-01-02
HUH1V Huhtamäki Oyj Industrials 1997-01-02
ILK2S Ilkka-Yhtymä Oyj 2 Consumer Services 1997-01-02
INVEST Investors House Oyj Financials 1997-01-02
KCR Konecranes Oyj Industrials 1997-01-02
KELAS Kesla Oyj A Industrials 1997-01-02
KEMIRA Kemira Oyj Basic Materials 1997-01-02
KESKOB Kesko Oyj B Consumer Services 1997-01-02
MARAS Martela Oyj A Consumer Goods 1997-01-02
METSA Metsä Board Oyj A Basic Materials 1997-01-02
METSB Metsä Board Oyj B Basic Materials 1997-01-02
NEO1V Neo Industrial Oyj Industrials 1997-01-02
NLG1V Nurminen Logistics Oyj Industrials 1997-01-02
NOKIA Nokia Oyj Technology 1997-01-02
NRE1V Nokian Renkaat Oyj Consumer Goods 1997-01-02
OLVAS Olvi Oyj A Consumer Goods 1997-01-02
OUT1V Outokumpu Oyj Basic Materials 1997-01-02
PKK1V Pohjois-Karjalan Kirjapaino Consumer Services 1997-01-02
PNA1V Panostaja Oyj Financials 1997-01-02
PON1V Ponsse Oyj 1 Industrials 1997-01-02
RAIVV Raisio Oyj Vaihto-osake Consumer Goods 1997-01-02
RAUTE Raute Oyj A Industrials 1997-01-02
SAGCV Saga Furs Oyj C Consumer Goods 1997-01-02
SAMPO Sampo Oyj A Financials 1997-01-02

Continues on next page



Appendix 1. (continued)

Table A1.1 – Continued from previous page
Symbol Name Sector Data available from
STCAS Stockmann Oyj Abp A Consumer Services 1997-01-02
STCBV Stockmann Oyj Abp B Consumer Services 1997-01-02
STEAV Stora Enso Oyj A Basic Materials 1997-01-02
STERV Stora Enso Oyj R Basic Materials 1997-01-02
TIETO Tieto Oyj Technology 1997-01-02
TULAV Tulikivi Oyj A Industrials 1997-01-02
UPM UPM-Kymmene Oyj Basic Materials 1997-01-02
UPONOR Uponor Oyj Industrials 1997-01-02
UUTEC Plc Uutechnic Group Oyj Industrials 1997-01-02
VAIAS Vaisala Oyj A Industrials 1997-01-02
VIK1V Viking Line Abp Consumer Services 1997-01-02
WRT1V Wärtsilä Oyj Abp Industrials 1997-01-02
YEINT Yleiselektroniikka Oyj Industrials 1997-01-02
YIT YIT Oyj Industrials 1997-01-02
HKSAV HKScan Oyj A Consumer Goods 1997-02-06
ICP1V Incap Oyj Industrials 1997-05-05
ATRAV Atria Oyj A Consumer Goods 1997-06-06
POY1V Pöyry Oyj Industrials 1997-12-02
RAMI Ramirent Oyj Industrials 1998-04-30
VALOE Valoe Oyj Industrials 1998-05-15
BITTI Bittium Oyj Technology 1998-09-15
EXL1V Exel Composites Oyj Industrials 1998-10-19
RAP1V Rapala VMC Oyj Consumer Goods 1998-12-04
FORTUM Fortum Oyj Utilities 1998-12-18
MMO1V Marimekko Oyj Consumer Goods 1999-03-12
IFA1V Innofactor Plc Technology 1999-03-15
TLT1V Teleste Oyj Technology 1999-03-30
KSLAV Keskisuomalainen Oyj A Consumer Services 1999-04-19
SAA1V Sanoma Oyj Consumer Services 1999-05-03
KESKOA Kesko Oyj A Consumer Services 1999-06-01
TPS1V Technopolis Oyj Financials 1999-06-08
BIOBV Biohit Oyj B Health Care 1999-06-18
ELISA Elisa Oyj Telecommunications 1999-07-01
METSO Metso Oyj Industrials 1999-07-01
SOLTEQ Solteq Oyj Technology 1999-09-06
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Appendix 1. (continued)

Table A1.1 – Continued from previous page
Symbol Name Sector Data available from
DIGIA Digia Oyj Technology 1999-09-27
DIGIGR Digitalist Group Oyj Technology 1999-09-28
ASPO Aspo Oyj Industrials 1999-10-01
ACG1V Aspocomp Group Oyj Industrials 1999-10-04
DOV1V Dovre Group Oyj Industrials 1999-10-15
FSC1V F-Secure Oyj Technology 1999-11-05
NDA FI Nordea Bank Abp Financials 2000-01-31
BAS1V Basware Oyj Technology 2000-02-29
TRH1V Trainers’ House Oyj Technology 2000-03-15
ETTE Etteplan Oyj Industrials 2000-04-27
SIEVI Sievi Capital Oyj Financials 2000-05-22
WUF1V Wulff-Yhtiöt Oyj Industrials 2000-10-09
EQV1V eQ Oyj Financials 2000-11-01
SSH1V SSH Communications Security Technology 2000-12-20
CTH1V Componenta Oyj Industrials 2001-03-20
CAPMAN CapMan Oyj Financials 2001-04-02
GLA1V Glaston Oyj Abp Industrials 2001-04-02
TEM1V Tecnotree Oyj Technology 2001-04-02
LAT1V Lassila & Tikanoja Oyj Industrials 2001-10-01
REG1V Revenio Group Oyj Health Care 2001-10-01
SUY1V Suominen Oyj Consumer Goods 2001-10-01
QPR1V QPR Software Oyj Technology 2002-03-08
TELIA1 Telia Company Telecommunications 2002-05-03
NESTE Neste Oyj Oil & Gas 2005-04-18
ALMA Alma Media Oyj Consumer Services 2005-04-29
CGCBV Cargotec Oyj Industrials 2005-06-01
KNEBV KONE Oyj Industrials 2005-06-01
OKDAV Oriola Oyj A Health Care 2006-07-03
OKDBV Oriola Oyj B Health Care 2006-07-03
ORNAV Orion Oyj A Health Care 2006-07-03
ORNBV Orion Oyj B Health Care 2006-07-03
OTE1V Outotec Oyj Industrials 2006-10-10
SRV1V SRV Yhtiöt Oyj Industrials 2007-06-12
SOPRA Soprano Oyj Technology 2007-11-05
AKTIA Aktia Bank Abp Financials 2009-09-29
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TIK1V Tikkurila Oyj Industrials 2010-03-26
SCANFL Scanfil Oyj Industrials 2012-01-02
SOSI1 Sotkamo Silver AB Basic Materials 2012-07-17
SIILI Siili Solutions Oyj Technology 2012-10-15
TAALA Taaleri Oyj Financials 2013-04-24
ENDOM Endomines Basic Materials 2013-05-14
AM1 Ahlstrom-Munksjö Oyj Basic Materials 2013-06-07
CAV1V Caverion Oyj Industrials 2013-07-01
OVARO Ovaro Kiinteistösĳoitus Oyj Financials 2013-10-14
NOHO NoHo Partners Oyj Consumer Services 2013-11-28
VALMT Valmet Oyj Industrials 2014-01-02
SSABAH SSAB A Basic Materials 2014-08-01
SSABBH SSAB B Basic Materials 2014-08-01
NIXU Nixu Oyj Technology 2014-12-05
ATG1V Asiakastieto Group Oyj Financials 2015-03-27
ROBIT Robit Oyj Industrials 2015-05-21
PIHLIS Pihlajalinna Oyj Health Care 2015-06-04
TNOM Talenom Oyj Industrials 2015-06-11
PIZZA Kotipizza Group Oyj Consumer Services 2015-07-07
EVLI Evli Pankki Oyj Financials 2015-12-02
CONSTI Consti Yhtiöt Oyj Industrials 2015-12-11
HOIVA Suomen Hoivatilat Oyj Financials 2016-03-31
LEHTO Lehto Group Oyj Industrials 2016-04-28
TOKMAN Tokmanni Group Oyj Consumer Services 2016-04-29
QTCOM Qt Group Oyj Technology 2016-05-02
DNA DNA Oyj Telecommunications 2016-11-30
KAMUX Kamux Oyj Consumer Services 2017-05-12
SILMA Silmäasema Oyj Health Care 2017-06-09
ROVIO Rovio Entertainment Oyj Consumer Goods 2017-09-29
TTALO Terveystalo Oyj Health Care 2017-10-11
HARVIA Harvia Oyj Consumer Goods 2018-03-22
ALTIA Altia Oyj Consumer Goods 2018-03-23
KOJAMO Kojamo Oyj Financials 2018-06-15
OMASP Oma Säästöpankki Oyj Financials 2018-11-30
TALLINK AS Tallink Grupp FDR Consumer Services 2018-12-03



Appendix 2. Removed companies

Table A2.1. List of companies removed from OMX Helsinki

Date Company Reason

2018-03-15 Ahtium Oyj bankruptcy
2018-02-21 Affecto Oyj acquisition (CGI Nordic Investments Limited)
2018-01-31 Lemminkäinen Oyj merger (YIT)
2017-07-09 PKC Group acquisition (Motherson Sumi)
2017-06-29 Comptel acquisition (Nokia)
2017-06-09 Norvestia merger (CapMan)
2017-05-12 Sponda acquisition (Polar Bidco)
2017-03-04 Ahlström Oyj merger (Munksjö)
2016-09-30 Biotie Therapies acquisition (Acorda Therapeutics)
2016-08-25 Finnlines acquisition (Grimaldi Group)
2016-08-11 Okmetic acquisition (NSIG)
2015-05-18 Vacon acquisition (Danfoss)
2015-04-09 Turvatiimi acquisition (Atine Group)
2014-12-19 Oral Hammaslääkärit acquisition (Renideo Group)
2014-11-20 Rautaruukki acquisition (SSAB)
2014-01-10 Pohjola Pankki acquisition (OP-Pohjola)
2013-11-21 Stonesoft acquisition (McAfee)
2013-10-28 GeoSentric unknown
2013-10-10 Tiimari bankruptcy
2012-12-21 Interavanti acquisition
2012-12-15 Nordic Aluminium acquisition (Lival)
2012-08-08 Aldata Solution acquisition (Symphony Technology)
2012-02-13 Tekla acquisition (Trimble Finland)
2011-11-17 Elcoteq SE bankruptcy
2011-09-23 Salcomp acquisition (Nordstjernan)
2010-11-06 Larox acquisition (Outotec)
2010-05-05 Tamfelt acquisition (Metso)
2010-03-19 Julius Tallberg-Kiinteistöt unknown
2009-08-26 Terveystalo Healthcare acquisition (Star Healthcare)
2009-05-14 Rocla acquisition (Mitsubishi Caterpillar Forklift E...
2009-02-07 Evia bankruptcy
2008-11-12 Stromsdal bankruptcy
2008-07-04 Kemira GrowHow acquisition (Yara Nederland B.V.)
2008-05-29 Birka Line acquisition (Rederiaktiebolaget Eckerö)



Appendix 2. (continued)

Date Company Reason

2008-05-05 OMX acquisition (NASDAQ OMX Group)
2008-03-17 Perlos acquisition (Lite-On)
2007-12-21 eQ acquisition (Straumur-Burdaras)
2007-08-20 FIM acquisition (Glitnir)
2007-08-05 Kylpyläkasino acquisition (Restel)
2007-06-27 Puuharyhmä acquisition (Aspro Ocio S.A.)
2007-04-09 Evox Rifa Group acquisition (KEMET Electronics)
2006-09-27 Sentera acquisition (SysOpen Digia)
2006-09-14 Fortum Espoo acquisition (Fortum)
2006-06-14 Pohjola acquisition (OKO)
2006-05-22 Suomen Spar acquisition (SOK)
2006-03-29 Saunalahti Group acquisition (Elisa)
2006-01-12 Kekkilä acquisition (Vapo)
2005-09-15 Plandent acquisition (Planmeca)
2005-07-11 Alma Media merger (Almanova)
2005-06-21 Chips acquisition (Orkla ASA)
2005-02-03 Turun Arvokiinteistöt acquisition (Nordea)
2004-12-31 Yomi merger (Elisa)
2004-11-05 Hackman acquisition (Alifin Oy)
2004-11-05 Tamro acquisition (Phoenix International Beteiligung...
2004-06-28 Polar Kiinteistöt acquisition (IVG Immobiliére SAS)
2004-04-27 WM-data Novo acquisition (WM-data AB)
2004-03-29 Janton acquisition (BACPE Finland Holdings)
2004-01-23 Instrumentarium acquisition (General Electric Finland)



Appendix 3. Trading periods

Table A3.1. Analyzed periods

Fitting period Trading period
1 January 1, 2004 to December 31, 2004 January 1, 2005 to July 2, 2005
2 March 25, 2004 to March 25, 2005 March 26, 2005 to September 24, 2005
3 June 17, 2004 to June 17, 2005 June 18, 2005 to December 17, 2005
4 September 9, 2004 to September 9, 2005 September 10, 2005 to March 11, 2006
5 December 2, 2004 to December 2, 2005 December 3, 2005 to June 3, 2006
6 February 24, 2005 to February 24, 2006 February 25, 2006 to August 26, 2006
7 May 19, 2005 to May 19, 2006 May 20, 2006 to November 18, 2006
8 August 11, 2005 to August 11, 2006 August 12, 2006 to February 10, 2007
9 November 3, 2005 to November 3, 2006 November 4, 2006 to May 5, 2007
10 January 26, 2006 to January 26, 2007 January 27, 2007 to July 28, 2007
11 April 20, 2006 to April 20, 2007 April 21, 2007 to October 20, 2007
12 July 13, 2006 to July 13, 2007 July 14, 2007 to January 12, 2008
13 October 5, 2006 to October 5, 2007 October 6, 2007 to April 5, 2008
14 December 28, 2006 to December 28, 2007 December 29, 2007 to June 28, 2008
15 March 22, 2007 to March 21, 2008 March 22, 2008 to September 20, 2008
16 June 14, 2007 to June 13, 2008 June 14, 2008 to December 13, 2008
17 September 6, 2007 to September 5, 2008 September 6, 2008 to March 7, 2009
18 November 29, 2007 to November 28, 2008 November 29, 2008 to May 30, 2009
19 February 21, 2008 to February 20, 2009 February 21, 2009 to August 22, 2009
20 May 15, 2008 to May 15, 2009 May 16, 2009 to November 14, 2009
21 August 7, 2008 to August 7, 2009 August 8, 2009 to February 6, 2010
22 October 30, 2008 to October 30, 2009 October 31, 2009 to May 1, 2010
23 January 22, 2009 to January 22, 2010 January 23, 2010 to July 24, 2010
24 April 16, 2009 to April 16, 2010 April 17, 2010 to October 16, 2010
25 July 9, 2009 to July 9, 2010 July 10, 2010 to January 8, 2011
26 October 1, 2009 to October 1, 2010 October 2, 2010 to April 2, 2011
27 December 24, 2009 to December 24, 2010 December 25, 2010 to June 25, 2011
28 March 18, 2010 to March 18, 2011 March 19, 2011 to September 17, 2011
29 June 10, 2010 to June 10, 2011 June 11, 2011 to December 10, 2011
30 September 2, 2010 to September 2, 2011 September 3, 2011 to March 3, 2012
31 November 25, 2010 to November 25, 2011 November 26, 2011 to May 26, 2012
32 February 17, 2011 to February 17, 2012 February 18, 2012 to August 18, 2012
33 May 12, 2011 to May 11, 2012 May 12, 2012 to November 10, 2012
34 August 4, 2011 to August 3, 2012 August 4, 2012 to February 2, 2013
35 October 27, 2011 to October 26, 2012 October 27, 2012 to April 27, 2013

Continues on next page
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Table A3.1 – Continued from previous page
Fitting period Trading period

36 January 19, 2012 to January 18, 2013 January 19, 2013 to July 20, 2013
37 April 12, 2012 to April 12, 2013 April 13, 2013 to October 12, 2013
38 July 5, 2012 to July 5, 2013 July 6, 2013 to January 4, 2014
39 September 27, 2012 to September 27, 2013 September 28, 2013 to March 29, 2014
40 December 20, 2012 to December 20, 2013 December 21, 2013 to June 21, 2014
41 March 14, 2013 to March 14, 2014 March 15, 2014 to September 13, 2014
42 June 6, 2013 to June 6, 2014 June 7, 2014 to December 6, 2014
43 August 29, 2013 to August 29, 2014 August 30, 2014 to February 28, 2015
44 November 21, 2013 to November 21, 2014 November 22, 2014 to May 23, 2015
45 February 13, 2014 to February 13, 2015 February 14, 2015 to August 15, 2015
46 May 8, 2014 to May 8, 2015 May 9, 2015 to November 7, 2015
47 July 31, 2014 to July 31, 2015 August 1, 2015 to January 30, 2016
48 October 23, 2014 to October 23, 2015 October 24, 2015 to April 23, 2016
49 January 15, 2015 to January 15, 2016 January 16, 2016 to July 16, 2016
50 April 9, 2015 to April 8, 2016 April 9, 2016 to October 8, 2016
51 July 2, 2015 to July 1, 2016 July 2, 2016 to December 31, 2016
52 September 24, 2015 to September 23, 2016 September 24, 2016 to March 25, 2017
53 December 17, 2015 to December 16, 2016 December 17, 2016 to June 17, 2017
54 March 10, 2016 to March 10, 2017 March 11, 2017 to September 9, 2017
55 June 2, 2016 to June 2, 2017 June 3, 2017 to December 2, 2017
56 August 25, 2016 to August 25, 2017 August 26, 2017 to February 24, 2018
57 November 17, 2016 to November 17, 2017 November 18, 2017 to May 19, 2018
58 February 9, 2017 to February 9, 2018 February 10, 2018 to August 11, 2018
59 May 4, 2017 to May 4, 2018 May 5, 2018 to November 3, 2018
60 July 27, 2017 to July 27, 2018 July 28, 2018 to January 26, 2019
61 October 19, 2017 to October 19, 2018 October 20, 2018 to April 20, 2019
62 January 11, 2018 to January 11, 2019 January 12, 2019 to July 13, 2019
63 April 5, 2018 to April 5, 2019 April 6, 2019 to October 5, 2019
64 June 28, 2018 to June 28, 2019 June 29, 2019 to December 28, 2019
65 September 20, 2018 to September 20, 2019 September 21, 2019 to March 21, 2020
66 December 1, 2018 to December 1, 2019 December 2, 2019 to May 31, 2020



Appendix 4. Example distance pairs
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Figure A4.1. Top 10 pairs with the lowest sum of squared differences on trading period 55
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Appendix 5. Example cointegration pairs

1. MacKinnon p-value = 0.0
2.55

2.60

2.65

2.70

2.75
ALBAV
ALBBV

6. MacKinnon p-value = 0.0
0.5

1.0

1.5

2.0

2.5

3.0

NEO1V
RAUTE

2. MacKinnon p-value = 0.0

1.30

1.35

1.40

1.45

OKDAV
OKDBV

7. MacKinnon p-value = 0.0

0.25
0.50
0.75
1.00
1.25
1.50 KELAS

ACG1V

3. MacKinnon p-value = 0.0

3.5

3.6

3.7

3.8

3.9

4.0 ORNAV
ORNBV

8. MacKinnon p-value = 0.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4 OTE1V

ROBIT

4. MacKinnon p-value = 0.0

1.5

1.6

1.7

1.8

1.9 METSA
METSB

9. MacKinnon p-value = 0.0
2.6

2.7

2.8

2.9

UPONOR
TIK1V

JulAugSepOctNovDecJan
2017

FebMarAprMayJun

5. MacKinnon p-value = 0.0

0

1

2

3

4

CGCBV
TNOM

JulAugSepOctNovDecJan
2017

FebMarAprMayJun

10. MacKinnon p-value = 0.001

1.0

1.5

2.0

2.5

3.0

KELAS
WRT1V

Figure A5.1. Top 10 pairs with the lowest MacKinnon p-value on trading period 55
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