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Abstract 

In a fluidized bed system, mean trajectories of fuel particles within the bed of fluidized inert 

particles are governed by the associated drag forces and characterize hydrodynamic, chemical 

and thermal processes taken place in the system. A large particle size ratio between the bed 

material and the fuel particles affects the hydrodynamics of gas-solid multiphase flows via 

influencing the drag forces between solid phases. The present work focuses on the analysis of 

forces between the two solid phases with large size ratios using the Lagrangian simulations of 

discrete element method (DEM). The results are spatially averaged over variable control 

volume size for comparison to the continuum interphase momentum transfer model. Using our 

DEM simulation results, a correction factor of drag force is presented versus the size of 

averaging control volume usable in continuum models. In addition, the role of inhomogeneity 

of particles distribution within the averaging box is discussed. 
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1. Introduction 

 Due to its principal advantage in the utilization of various types of fuels, the circulating 

fluidized bed technology has proven to be an efficient way for combustion in heat and power 

generation [1]. Computer simulations are often used for better understanding of the gas-solid 

flows in circulating fluidized beds. In the simulations, the modeling of particles phase is based 

on either the Eulerian formulation [2] or the Lagrangian methods such as the discrete element 

method (DEM) [3]. Regardless of advances in computational power to perform DEM 

simulations [4], its application is still limited to the simulation of small scale systems. Thus, 

the Eulerian approach is practically preferred and often used in simulations of fluidized beds. 

In the fluidized bed combustion process, the bed material typically consists of sand, ash 

particles, and fuel particles which are usually coal or biomass particles. Due to the presence of 

different particle types (such as the inert bed particles and the fuel particles), the interphase 

momentum transfer or the drag force between the solid phases is also significant in addition to 

the gas-solid drag force. Various attempts have been made for formulating the solid-solid drag 

force which has resulted in several correlations in the literature [5]. All these formulations are 

based on the kinetic theory of granular flows. These correlations may include the granular 

temperature or not. Among the presented correlations, the model formulated by Syamlal [6] is 

highly used in Eulerian simulations. A basic assumption of this model is associated with the 

homogeneity of particles distribution. Moreover, if the size ratio of particles is large, then a 

local inhomogeneity is predicted due to the presence of large particles [7]. 

The Eulerian approach for simulations of gas-solid flows in fluidized beds requires fine 

grids to obtain reliable flow profiles such as the solids concentration and the mass flow rate 

[8]. Simulations using fine grids (in the order of few particle diameters) are not practical for 

large scale units; instead, coarse grids are created. The use of coarse grids results in the 

volumetric over-averaging of drag force between the phases. Thus, there is a need to formulate 
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sub-grid models for the gas-solid and the solid-solid drag forces, which can be used in coarse 

grid simulations. For the case of monodisperse systems, there are numerous studies dealing 

with the formulation of sub-grid models. A commonly used approach is the filtered or spatial 

averaging approach [9–14]. In this type of approach, the results from the fine grid simulations 

are filtered over different averaging sizes to formulate sub-grid models that can be used in 

coarse grid simulations. However, for the case of bidisperse systems, the topic is relatively new 

and only few efforts have been presented in the literature [15,16]. 

Indeed, the filter size (averaging control volume size) is a dominant parameter, but 

additional markers have been investigated for sub-grid drag modeling of gas-solid flows. In the 

earlier works for monodisperse systems [9,17,18], one-marker model was presented as the 

function of solid volume fraction. Later, the effect of gas-solid slip velocity was also taken into 

account [19,20] as an additional marker. In addition, the variable granular temperature as 

represented by particle velocity fluctuation [21], and the sub-grid model considering the effects 

of local inhomogeneity within a grid [22] were taken into account. Recently, the effects of 

material properties on the sub-grid drag model have been investigated [23]. Thus several 

parameters have been studied in formulating sub-grid models for predicting correct 

hydrodynamics of gas-solid flows. The above markers should be taken into account for 

developing sub-grid models for bidisperse systems, which will be focused in our future works.    

In the current study, the solid-solid momentum transfer rate between spherical particles 

with large size ratios is computed from the contact forces between the particles of different 

sizes obtained from DEM. The forces are averaged over different volume sizes and compared 

to the volumetric momentum transfer rate model used in the Eulerian simulations. The key 

question is how accurate the continuum model can represent the volumetric momentum transfer 

rate as a function of the size of the averaging region within which inhomogeneity created due 

to a large size ratio. Therefore, one may introduce a correction factor to the existing continuum 
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models of the solid-solid momentum transfer rate in order to extend their applicability to the 

coarse grid Eulerian simulations. The forces obtained from both the DEM and the continuum 

formulation are presented and compared for various averaging sizes. Simulations are also 

performed to study the inhomogeneous conditions in which particles are not uniformly 

distributed within the control volume.  

 

2. Modeling methodology 

2.1. Geometry 

 There is no confining boundaries, but the distribution of particles are given within a 

domain with a rectangular cross-section. A stream of small particles passes over a big particle. 

The cross-section of the stream of small particles is 0.02 × 0.02 𝑚2 with the height of 0.06 𝑚. 

The position of the big particle is at the center of the stream during the simulation. Figure 1 

demonstrates the initial configuration of the stream of small particles and the big particle at the 

center of the stream cross-section. 

 

Fig. 1. Initial arrangement of small particles and big particle. 
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2.2. Computational method 

 In this work, an open source software, LIGGGHTS®, is used which is based on the DEM 

for the Lagrangian simulations of the solid phases [24]. The DEM resolves the kinematics of 

individual particles using the Newton’s second law from the instantaneous normal and 

tangential forces due to the contacts with neighboring particles. Individual particles can have 

translational and rotational motions. Applying the Newton’s law for a particle 𝑖 with mass 𝑚𝑖, 

the moment of inertia 𝐼𝑖, translational velocity 𝒗𝑖 and angular velocity 𝝎𝑖, the equations of 

motion can be written as following   

𝑚𝑖
𝑑𝒗𝑖

𝑑𝑡
= ∑ (𝑭𝑛,𝑖𝑗 + 𝑭𝑡,𝑖𝑗)𝑗 ,      (1) 

𝐼𝑖
𝑑𝝎𝑖

𝑑𝑡
= ∑ 𝑻𝑖𝑗𝑗 ,        (2) 

where 𝑭𝑛,𝑖𝑗 and  𝑭𝑡,𝑖𝑗 are the normal and tangential components of the contact forces 

between particles 𝑗 and 𝑖. The effect of gravity is not included in this study and there is no fluid 

phase considered. 𝑻𝑖𝑗 is the torque imposed by the tangential component of the contact force 

from particle 𝑖 on particle 𝑗. The contact forces in the normal and tangential directions are 

determined by the linear spring-dashpot model. The contact forces constituting of two terms 

corresponding to the stiffness and the damping coefficients can be computed from the modified 

Hertz-Mindlin model [25,26] as follows 

𝑭𝑛,𝑖𝑗 = −
4

3
𝑌∗√𝑅∗𝛿𝑛

3
2⁄

𝒏𝑖𝑗 + 2√
5

6
𝛽√𝑆𝑛𝑚∗𝒗𝑛,𝑖𝑗,   (3) 

𝑭𝑡,𝑖𝑗 = −8𝐺∗√𝑅∗𝛿𝑛𝜹𝑡,𝑖𝑗 + 2√
5

6
𝛽√𝑆𝑡𝑚∗𝒗𝑡,𝑖𝑗,    (4) 

where 𝑆𝑛 = 2𝑌∗√𝑅∗𝛿𝑛 and 𝑆𝑡 = 8𝐺∗√𝑅∗𝛿𝑛. Here, 𝛿𝑛 is the normal overlap distance 

between the particles, 𝒏𝑖𝑗 is the normal unit vector directed from the center of particle 𝑖 to that 

of particle 𝑗, 𝜹𝑡,𝑖𝑗 is the tangential displacement vector calculated by integrating the relative 

tangential velocity at the contact over time, 𝒗𝑛,𝑖𝑗 and 𝒗𝑡,𝑖𝑗 are the normal and tangential 



6 

 

components of the relative velocity of particles 𝑖 and 𝑗. The expression for the torque is given 

as 𝑻𝑖𝑗 = 𝑅𝑖𝒏𝑖𝑗 × 𝑭𝑡,𝑖𝑗. The magnitude of the tangential force is truncated by the Coulomb 

friction criterion: 𝑭𝑡,𝑖𝑗 ≤ 𝜇𝑓𝑭𝑛,𝑖𝑗, where 𝜇𝑓 is the friction coefficient. In the above Eqs. (3) and 

(4), the term 𝛽 is expressed as a function of restitution coefficient 𝑒 given by  

𝛽 =
𝑙𝑛(𝑒)

√𝑙𝑛2(𝑒)+𝜋2
.        (5) 

The other symbols mentioned in Eqs. (3) and (4), are given as, 

1

𝑌∗
=

1−𝜈𝑖
2

𝑌𝑖
+

1−𝜈𝑗
2

𝑌𝑗
,       (6) 

1

𝑅∗ =
1

𝑅𝑖
+

1

𝑅𝑗
,        (7) 

1

𝑚∗ =
1

𝑚𝑖
+

1

𝑚𝑗
,        (8) 

1

𝐺∗ =
2(2−𝜈𝑖)(1+𝜈𝑖)

𝑌𝑖
+

2(2−𝜈𝑗)(1+𝜈𝑗)

𝑌𝑗
,     (9) 

where 𝑌∗ is the effective Young’s modulus, 𝐺∗ is the effective shear modulus, 𝜈 is the 

Poisson’s ratio, 𝑅∗ is the effective radius and 𝑚∗ is the effective mass. 

In order to compare the DEM results with the continuum formula, Syamlal’s formula is 

used for the volumetric solid-solid momentum transfer rate. The momentum transfer rate 

between the two solid phases corresponding to big (𝑏) and small (𝑠) particles is given by the 

following expression [6,7], 

𝑭𝑠𝑏 =
3(1+𝑒)(𝜋

2⁄ +𝜇𝑓
𝜋2

8⁄ )𝛼𝑠𝛼𝑏𝜌𝑠𝜌𝑏(𝑑𝑠+𝑑𝑏)2𝑔0|𝒖𝑏−𝒖𝑠|

2𝜋(𝜌𝑠𝑑𝑠
3+𝜌𝑏𝑑𝑏

3)
(𝒖𝑏 − 𝒖𝑠),  (10) 

where the radial distribution function at contact is 𝑔0 =
1

𝛼𝑔
+

3𝑑𝑠𝑑𝑏

𝛼𝑔
2 (𝑑𝑠+𝑑𝑏)

(
𝛼𝑠

𝑑𝑠
+

𝛼𝑏

𝑑𝑏
). Here, 

𝛼𝑔 is the void fraction as 1 − 𝛼𝑏 − 𝛼𝑠. In addition to the volume fractions, the volumetric 

momentum transfer rate between phase 𝑠 and phase 𝑏 contains the diameter and density of 

particles, collisional properties including the restitution and friction coefficients, and the 

averaged velocities of both phases. 
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2.3. Simulations details 

 In the simulated cases shown in Fig. 1, a big particle is fixed in space. Three different 

cases are analyzed in which the diameter of the big particle is considered with the size ratios 

of 5, 10 and 15 with respect to the size of small particles. A stream of small particles is set to 

pass over the big particle with its lateral position at the center of the stream cross-section. The 

initial velocity of the small particles is 0.5 𝑚
𝑠⁄  in the negative z-direction. The simulation 

parameters are given in Table 1. The mechanical properties of the material considered in Table 

1 are similar to the glass beads which are mainly found in the literature for performing small 

scale simulations.  

Table 1. Parameter values used in simulations. 
Parameter Value 

Small particle diameter, 𝑑𝑠 0.0005 𝑚 

Big particle diameter, 𝑑𝑏 0.0025 𝑚, 0.005 𝑚, 0.0075 𝑚 

Particle density: 𝜌𝑠, 𝜌𝑏 2500 
𝑘𝑔

𝑚3⁄  

Young’s modulus: 𝑌𝑠, 𝑌𝑏 109  
𝑘𝑔

𝑚𝑠2⁄  

Poisson’s ratio: 𝜈𝑠, 𝜈𝑏 0.2 

Friction coefficient: 𝜇𝑠−𝑏, 𝜇𝑠−𝑠 0.15 

Restitution coefficient: 𝑒𝑠−𝑏, 𝑒𝑠−𝑠 0.95 

Simulation time 0.2 𝑠 

Time step size 2.5 × 10−7 s 

 

 

3. Results and discussion 

3.1. Forces from DEM  

 For all the cases of the big particle diameters, a stream of small particles is allowed to 

pass over it. Figure 2 shows the snapshots of the stream of small particles passing over the 

fixed big particle with an initial uniform velocity. The snapshots are presented for the case with 
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𝑑𝑏 = 15𝑑𝑠. The snapshots shown in Fig. 2 are presented only for the small particles located in 

the back half of the stream, and the front half of the stream is omitted for the sake of clear 

visualization. It can be seen that during the transient time, the stream of small particles 

approaches the big particle, results in collisions and then gradually pass over the big particle. 

As the stream particles collide with the big particle, there is some decrease in the relative 

velocity, however, the velocity of stream particles away from the big particle does not alter 

much.  

 

Fig. 2. Snapshots of small particles passing over the fixed big particle colored by their 

velocities. Note that only the small particles located in the half-part of the stream are shown 

for better visualization.    

 

 As mentioned earlier, the effect of gravity is not included to avoid the acceleration of 

the stream. The interphase forces between particles from DEM include the normal and 

tangential components of the contact forces as given in Eq. (1). Since the direction of the 

relative velocity between the stream particles and the big particle is in the vertical direction, 

the instantaneous force in z-direction exerted on the big particle are demonstrated in Fig. 3a. It 

can be seen from Fig. 3a that the instantaneous force is highly fluctuating which originates 
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from individual collisions with the small particles of the stream. In the studied solid volume 

fractions standing for dilute regimes, collisions are majorly isolated events with quiescent times 

between successive collisions. The mean effective force acts within a time window sufficiently 

larger than the duration of single collisions. Note that the fluctuations start with the collisions 

and end when the particles completely pass over the big particle.  

 

 

Fig. 3. (a) Instantaneous force in the vertical direction (z-direction) versus time calculated from 

the DEM for the case of big particle diameter as 0.0025 m. (b) The time-averaged force exerted 

on the big particle versus time using different sampling times (Dt) as 1 ms, 5 ms and 10 ms. 

(a) 

(b) 
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 As mentioned above, the averaging time window must contain sufficient number of 

collisions to obtain statistically correct average values. For example, the sampling time of 𝐷𝑡 =

1 𝑚𝑠 corresponds to 4000𝑑𝑡, where 𝑑𝑡 is the time step size used in the simulations. The 

variation of mean forces with time obtained from averaging the instantaneous forces using 

different averaging time windows are presented in Fig. 3b. Previously, similar analysis was 

presented for the mean forces versus averaging time window [27]. By increasing the size of the 

averaging time, the fluctuations of the mean forces with time are damped out. The concept of 

averaging over a time window resembles the measurement of force by a strain gauge which 

senses a collective effect of isolated collisions through the sampling period of the sensor. Note 

that, the mean forces are significantly smaller than the magnitudes of the spikes of 

instantaneous forces, which is a result of time averaging over the major portion of time being 

as the quiescent times between successive collisions. It is also noted from Fig. 3b that the 

fluctuations start to damp out when higher averaging time window of 5 𝑚𝑠 is used, while the 

mean forces are highly fluctuating with 1 𝑚𝑠. In this work, the averaging time window is 

chosen as 2.5 𝑚𝑠.  

 

3.2. Continuum model prediction versus DEM 

 The main aim of this work is to analyze the effect of spatial averaging on the continuum 

model for solid-solid momentum transfer rate used in Eulerian models. The computational 

methods developed to solve Eulerian equations discretize the domain into a finite number of 

control volumes. For the Eulerian simulations of monodisperse particle systems, the grid sizes 

of the order of few particle diameters have been suggested in literature to yield realistic flow 

profiles. For instance, the grid sizes are shown to be in the order of 10 particle diameters for 

the case of risers [28] and in the order of 3 particle diameters for the case of bubbling fluidized 

beds [29]. For the case of bidisperse systems, there is no reported study introducing suitable 
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grid resolution. In the development of filtered models for bidisperse gas-particle flow systems 

[16], the minimum grid resolution was about 5 times the sum of particle diameters at the size 

ratio of 4. They studied fine particles from the group of Geldart A particles. In this study, the 

small particles were considered much coarser which typically represent the inert bed material 

whereas the big particles stand for the biomass particles commonly used in circulating fluidized 

beds. If the size ratio between interacting particles gets larger, e.g. in the order of 10 or higher, 

the grid size (the control volume here) may be taken in the same order of the big particle 

diameter because it collects a significant number of contacts and collisions from many 

neighboring small particles.   

 For particles in bidisperse mixtures of diameters 𝑑𝑠 and 𝑑𝑏, an appropriate value for the 

size of the control volume could be taken as (𝑑𝑠 + 𝑑𝑏). The solid structures in gas–solid 

multiphase flows consist of meso-scale structures such as clusters and streamers of particles. 

The sizes of these structures vary over length scales from few millimeters to few centimeters, 

therefore, fine grids must be used to resolve such flow structures. In addition to monodisperse 

systems, these flow structures have been studied for bidisperse systems using the Eulerian 

approach [15] in which the appropriate size of the averaging control volume was not 

necessarily the minimum grid size to resolve meso-scale flow structures in the Eulerian 

simulations of bidisperse systems. Here, we have used the control volume size of (𝑑𝑠 + 𝑑𝑏) as 

the minimum scale resolution, and then perform spatial averaging over coarser scales to 

demonstrate the need for sub-grid modeling of solid-solid momentum transfer rate by means 

of DEM. 

 The mean volumetric momentum transfer rate between the big and small particles can 

be calculated by averaging the instantaneous force calculated directly from the DEM as given 

by the following formula [7], 

 〈𝑭𝑚〉 =
∑ ∑ 𝑭𝑖𝑗

𝑁𝑏𝑠
𝑖=1

𝑁𝑡
𝑗=1

𝑉𝑁𝑏𝑠𝑁𝑡
,       (11)  
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 where 𝑁𝑏𝑠 refers to the number of contacts between the big and the small particles at 

any time step 𝑗 during the averaging time window 𝐷𝑡. The time interval refers to the sampling 

time as 𝑁𝑡 ∙ 𝑑𝑡, where 𝑑𝑡 is the time step size for simulations. Also, 𝑁𝑡 refers to the number of 

time steps fit in 𝐷𝑡. In this study, the averaging time window is taken as 2.5 𝑚𝑠 corresponding 

to the value of 𝑁𝑡 as 104. If the big particle contacts several small particles simultaneously, the 

vertical force (direction of relative velocity) is calculated as the net value of the projection of 

the normal and tangential components onto the vertical axis. The mean force is then calculated 

over the control volume 𝑉 around the big particle. 

 The volumetric momentum transfer rate from DEM is compared to that predicted by 

the continuum formula by Syamlal (Eq. 10). For this purpose, all information of particles in 

time have been used to calculate the volume fractions and phase velocities inside the control 

volume. Figure 4 shows the volumetric momentum transfer rate between the big and small 

particles calculated from both the DEM and Syamlal’s formula for three diameters of the big 

particle. In Figs. 4a-c, the size of the control volume is the sum of the particle diameters, i.e. 

(𝑑𝑠 + 𝑑𝑏). Figures 4a, 4b and 4c correspond to the cases with the size of the big particle as 

5𝑑𝑠, 10𝑑𝑠 and 15𝑑𝑠, respectively.  

 

(a) 
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Fig. 4. Comparison of momentum transfer rate between the big and small particles calculated 

using DEM and Syamlal’s model for big particle diameter as (a) 5ds, (b) 10ds and (c) 15ds. 

 

 It should be noted that the small particles volume fraction in the stream is not the same 

for different big particle diameters. The small particles volume fraction in the stream was 

chosen as 0.16, 0.1 and 0.06, corresponding to the simulation cases with the diameter of big 

particle as 5𝑑𝑠, 10𝑑𝑠 and 15𝑑𝑠, respectively. The reason for using different volume fractions 

(b) 

(c) 
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in the stream for all three cases of big particle diameters was to get similar trend of the 

momentum transfer rate between the DEM and the Syamlal’s model when using the control 

volume size as (𝑑𝑠 + 𝑑𝑏). As Fig. 4 demonstrates, the time variation of mean forces on the big 

particle obtained from DEM and the continuum model (based on the solid volume fraction and 

velocity data from DEM) are similar. Minor temporal discrepancy between the results of the 

DEM and continuum model could be a result of averaging and existing simplifying 

assumptions in the derivation of Syamlal’s formula. We have performed a spatial averaging 

associated with the Syamlal’s prediction to introduce correction factors needed in coarse grid 

simulations, as presented in the next section. 

 

3.3. Correction factor to Syamlal’s model 

 We study the effect of spatial averaging around the big particle on the momentum 

transfer rate between the big and small particles. Different averaging regions are selected 

around the big particle such that the center of the big particle and the averaging regions are 

aligned. Following various spatial averaging within different sizes of averaging control 

volume, an expression can be developed to formulate the correction for the continuum model. 

Mathematically, the expression can be simply written as, 

〈𝑭𝐷𝐸𝑀〉 = 𝜔〈𝑭𝑆𝑦〉,        (12) 

where, <> is the spatial averaging operator and 𝜔 is the correction factor which needs to be 

determined. The spatial averaging operator is applied to obtain the volumetric momentum 

transfer rate between two solid phases calculated from the DEM and the Syamlal’s formula.  

 As seen from Figs. 4a-c, the momentum transfer rate increases during the initial 

moments of encounter and it decays at the end. This is the time span during which the stream 

enters and leaves the averaging control volume. Excluding the beginning and the end of the 

encounter, the flow exhibits fluctuating but uniform mean rate of momentum transfer. The 
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volume fraction of small particles remains uniform during the encounter period. As seen earlier 

in Fig. 3b, the fluctuations can be reduced by increasing the averaging time window. The 

variation of the correction factor for different averaging sizes in various size ratios studied in 

this work is presented in Figs. 5a-c. Interestingly, the correction factor during the transient 

period at the start of encounter reaches as high as 3 to 3.5, which is about 4 times higher than 

the steady value. This indicates that the correction factor can be highly dependent of the 

transient conditions which requires an extensive study on the issue. However, this study only 

concerns the steady or quasi-steady conditions. It can be seen from Figs. 5a-c that during the 

steady period of the encounter, the correction factor decreases asymptotically when the size of 

the averaging region increases.  

 

 

(a) 
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Fig. 5. Comparison of correction factor for various averaging region sizes for the big particle 

diameter as (a) 5ds, (b) 10ds and (c) 15ds. 

 

(b) 

(c) 
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 In order to reveal the behavior of the correction factor with the size of averaging control 

volume, we demonstrate its mean value obtained during the steady period of each simulation 

versus the averaging size in Fig. 6. It reveals that for all size ratios, the correction factor 

decreases with the size of the averaging control volume. This trend is in accordance to filtered 

drag models in monodisperse [9] and bidisperse systems [16].  Moreover, for all size ratios, the 

correction factor is close to 1 when using the averaging size of (𝑑𝑠 + 𝑑𝑏). The volumetric 

momentum transfer rate based on Syamlal’s model increases with the averaging size in 

comparison to that obtained from DEM, which means the correction factor needs to reduce for 

larger averaging size. This finding simply shows that the growing size of averaging control 

volume diminishes the effect of big particle such that the correction factor asymptotically 

reaches to a certain value. 

 

Fig. 6. Correction factor as a function of averaging size for various size ratios. 
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3.4. Inhomogeneity effects  

 In the above-mentioned results, we discussed the cases with the width of the stream of 

small particles greater than the side length of the averaging control volume. Hence, the small 

particles were homogeneously entering the averaging control volume with a full soaking of the 

big particle. However, in real gas-solid systems, clusters with various length scales and volume 

fractions exist which can interact with the larger particles. Therefore, it is crucial to study the 

effect of inhomogeneity of small particles within the control volume. For this purpose, as 

sketched in Fig. 7, the width of the stream of small particles is taken smaller than the diameter 

of big particle, and so the side length of control volume. 

 

Fig. 7. Schematic of two particle phases for inhomogeneous condition simulations.  

 

 For the case of big particle diameter as 15𝑑𝑠, various simulation cases are considered 

for which the stream width 𝑙𝑠 was fixed at 12𝑑𝑠 with different volume fractions of small 

particles 
𝑠
 within the stream. Note that the flow condition, the position of the big particle and 

the stream height remains the same as in earlier mentioned simulations. In order to study the 
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interphase momentum transfer rate from the Syamlal’s equation, the control volume size was 

chosen as 20𝑑𝑠. The volumetric momentum transfer rate calculated from the DEM (Eq. 11) 

and the Syamlal’s formula are shown in Fig. 8 for different values of the stream volume 

fractions.  

 

 

Fig. 8. The volumetric momentum transfer rate for various volume fractions of the stream 

obtained from (a) DEM and (b) Syamlal formula.  

(a) 

(b) 
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 It can be observed from Fig. 8a and 8b that the momentum transfer rate within the 

steady period increases with the volume fraction of the stream for both the DEM and the 

Syamlal’s formula, though the DEM shows higher magnitudes than the Syamlal’s equation. In 

such cases, the momentum transfer rate due to the Syamlal’s formula is underestimated. This 

is presumably a result of the inhomogeneity in the distribution of the volume fraction of small 

particles within the control volume. Figure 9 shows that the averaged volume fraction of small 

particles in the control volume reduces in comparison to the stream volume fraction.  

 

Fig. 9. Time variation of the averaged volume fraction of the small particles in the control 

volume for different stream volume fractions. 

 

 Note that the width of the stream is selected relative to the edge length of the control 

volume, which is supposed to represent coarse grids in Eulerian simulations. Thus the ratio of 

the stream width to the control volume edge length is kept below unity to characterize the 

presence of inhomogeneity in the control volume. The homogeneity of granular phases within 
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the control volume is a main assumption in the derivation of Syamlal’s formula. Thus we need 

a fine grid in Eulerian simulations to capture the momentum transfer rate correctly. Syamlal’s 

model does not perform well when we increase the size of the averaging region, thus the 

magnitude of the momentum transfer rate is overestimated and needs to be lowered using a 

correction factor on the basis of the DEM results. Moreover, the discrepancy between the 

results of the DEM and the Syamlal’s formula can be originated from inhomogeneity, which 

could lower the mean values of volume fraction fed into the Syamlal’s formula. As noted from 

Fig. 9, the volume fraction in the control volume fluctuates around a constant value during the 

steady period of the encounter.  

 Figure 10 depicts how the correction factor calculated from Eq. 12 varies with 〈𝛼𝑠〉, an 

indication factor for the inhomogeneity level of the stream. It can be clearly seen that for 

smaller 〈𝛼𝑠〉 values (larger inhomogeneity) the correction factor is higher whereas it decays as 

〈𝛼𝑠〉 grows. It is evident that the correction factor has close-to-linear behavior in the higher 

range of 〈𝛼𝑠〉, but it rapidly decays with 〈𝛼𝑠〉 in the lower range. 

 

Fig. 10. Variation of correction factor versus averaged volume fraction of small particles in the 

control volume.  
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 It is worth mentioning that in this section, only the inhomogeneity effects are 

considered that are due to the difference in the volume fractions of small particles. In general, 

the prediction of interphase momentum transfer rate with Syamlal’s formula depends on 

variables such as phases volume fractions, size ratio of phases, slip velocity, material 

properties, density difference and control volume size. Further studies will be performed in 

future to find suitable correction factor for Syamlal’s equation taking into account all those 

variables.  

 

4. Conclusions 

 For gas–solid multiphase flows consisting large size ratios, such as in biomass fired 

fluidized beds, proper modeling for solid-solid momentum transfer rate is required in addition 

to the gas-solid drag forces for a reasonable representation of the hydrodynamics. In this work, 

a stream of small particles passing over a single big particle is simulated using DEM in which 

the size ratio is around 10. Spatial averaging is performed for different averaging regions and 

the correction factor is obtained for the Syamlal’s continuum formula and its dependence on 

the averaging size is presented. 

 The correction factor is determined for different size ratios in addition to the size of 

averaging region. Moreover, the results of current study indicate that the transient encounter 

results in higher correction factors than those in the steady conditions. Interestingly, the trend 

of correction factor is such that it remains below 1 as the averaging size increases for all size 

ratios, though they approach to a unique value for large averaging sizes. In other words, the 

formula works the best if the size of averaging control volume is close to the size of big particle. 

If the averaging size is bigger than the big particle size, the averaging size is suggested to be at 

least twice bigger than the size of big particle in order to apply the same correction factor. In 

any averaging size, larger size ratio leads to a greater correction factor.  
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 In addition, the effect of the stream volume fraction is studied on the momentum 

transfer rate when the stream is narrower than the side length of the control volume leading to 

the creation of an inhomogeneous condition inside the control volume. The results reveal that 

the momentum transfer rate using the Syamlal’s formula is underestimated compared to the 

predictions of the DEM under imposing of inhomogeneous condition. Thus, there is a need for 

formulating a correction to Syamlal’s formula which takes into account the local 

inhomogeneity caused by particle phases distributions based on size ratio, material properties, 

density differences, volume fractions and slip velocity.  

 In the present study, the variation of slip velocity is not addressed with the momentum 

transfer rate and the volume fraction of the big particle phase. The future studies will be devoted 

to develop and implement more comprehensive sub-grid model applicable to coarse grid 

Eulerian simulations. 
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