Effect of titanium substitution and temperature variation on structure and magnetic state of barium hexaferrites

This is a Author's accepted manuscript (AAM) version of a publication published by Elsevier in Journal of Alloys and Compounds.

DOI: 10.1016/j.jallcom.2020.158365

Copyright of the original publication: © 2020 Elsevier B.V.

Please cite the publication as follows:

This is a parallel published version of an original publication. This version can differ from the original published article.
EFFECT OF TITANIUM DOPING AND TEMPERATURE VARIATION ON STRUCTURE AND MAGNETIC STATE OF BARIUM HEXAFERRITE

D.A. Vinnik¹, V.E. Zhivulin¹, D.A. Uchaev¹, S.A. Gudkova¹, D.E. Zhivulin¹, A.Yu. Starikov¹, S.V. Trukhanov²,³, V.A. Turchenko¹,⁴,⁵, T.I. Zubar¹,², T.P. Gavrilova⁶, R.M. Eremina⁶, E. Fadeev⁷, E. Lähderanta⁷, A.S.B. Sombra⁸, D. Zhou⁹, R.B. Jotania¹⁰, C. Singh¹¹, A.V. Trukhanov¹,²,³

¹Laboratory of crystal growth, South Ural State University, 454080, Chelyabinsk, Lenin av., 76, Russia
²Scientific Practical Materials Research Centre of NAS of Belarus, 220072, Minsk, P. Brovki str., 19, Belorussia, *corresponding author e-mail: truhanov@ifttp.bas-net.by
³National University of Science and Technology MISiS, 119049, Moscow, Leninsky av., 4, Russia
⁴Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980, Dubna, Joliot-Curie str., 6, Russia
⁵Donetsk Institute of Physics and Technology named after O.O. Galkin of the NASU, 03680, Kiev, Nauki av., 46, Ukraine
⁶Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, 420029, Kazan, Sibirsky tract, 10/7, Russia
⁷Department of Physics, LUT-University, Lappeenranta, Finland.
⁸Department of Physics, Federal University of Ceara, Fortaleza, Ceara 60-455-970, Brazil
⁹Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
¹⁰Department of Physics, Electronics and Space Science, Gujarat University, Gujarat, Ahmedabad 380009, India
¹¹School of Electronics and Electrical Engineering, Lovely Professional University, Phagwara, Punjab 144411, India
A number of solid solutions based on BaFe$_{12-x}$Ti$_x$O$_{19}$ M-type barium hexaferrite doped with titanium cations up to $x = 2.00$ were obtained using conventional ceramic technology. The phase composition, crystal structure and unit cell parameters were refined by the Rietveld method using powder X-ray diffraction data up to $T = 900$ K. It was found that all the compositions have a magnetoplumbite structure satisfactorily described by P6$_3$/mmc space group (No. 194). With increasing temperature and doping concentration, the unit cell parameters increase almost monotonically. The minimum volume of $V \sim 696.72$ Å3 was determined for the composition with $x = 1.00$ at $T= 100$ K, while the maximum value of $V \sim 714.00$ Å3 is observed for the composition with $x = 2.00$ at $T= 900$ K. The mechanism of occupation nonequivalent crystallographic positions with titanium cations is established. The spin-glass component of the magnetic phase state is fixed. The T_{diff} temperature of the difference between the ZFC-FC curves decreases with an increase in the concentration of titanium cations and the magnetic field from ~ 237.2 K to ~ 44.5 K, while the T_{inf} inflection temperature of the ZFC curve increases from ~ 21.0 K to ~ 23.8 K. With an increase in the doping concentration, both the D_{av} average and D_{max} maximum clusters grow up to ~ 100 nm. As the magnetic field increases above the critical value, the spin-glass component disappears. For compositions with $x > 1.00$, the magnetization is not saturated in fields up to 6 T. Along with the formation of the spin-glass component, doping with titanium cations for barium hexaferrite lowers the T_C Curie temperature down to $T \sim 600$ K. The M_s spontaneous and M_r remanent magnetizations, as well as the B_c coercivity, decrease with increasing doping concentration almost monotonically, while the latter has an inflection point at $x = 1.00$. The minimum values of spontaneous and remanent magnetization, as well as coercivity, are observed for the composition with $x = 2.00$ and amount to $M_s \sim 17.7$ emu/g, $M_r \sim 1.9$ emu/g, and $B_c \sim 3.9 \times 10^{-3}$ T, respectively. An interpretation of the magnetic state of the doped BaFe$_{12-x}$Ti$_x$O$_{19}$ barium hexaferrite is given taking into account the mechanism of occupation nonequivalent crystallographic positions with titanium cations.

Keywords: barium hexaferrite; titanium doping; crystal structure; magnetization; spin glass.
1. Introduction

Complex oxides of transition elements are of great applied and scientific importance [1-3]. They find various applications in practice, the main of which are magnetic [4-6], dielectric [7-9], magnetodielectric materials [10-12], energy storage devices [13-15], supercapacitors [16, 17], heating inductors including elements of hyperthermia [18, 19] and much more. Among these complex oxides, iron compounds occupy a dominant role as materials for microwave devices [20-22]. The AFe\textsubscript{12}O\textsubscript{19} (A = Sr, Ba) M-type hexaferrites are of particular practical importance due to the high values of the T\textsubscript{C} Curie temperature, m\textsubscript{tot} total magnetic moment, and k\textsubscript{a} coefficient of magnetic crystallographic anisotropy [23].

The BaFe\textsubscript{12}O\textsubscript{19} M-type barium hexaferrite has a crystal structure of magnetoplumbite with a hexagonal symmetry of the unit cell, which is more often described by P6\textsubscript{3}/mmc space group (No. 194) [24]. Fe3+ iron cations with a spin magnetic moment of S = 5 µ\textsubscript{B} are located in 5 nonequivalent crystallographic positions with the corresponding multiplicities: 1×2a, 2×4f\textsubscript{vi}, 6×12k (octahedral positions); 1×2b (pentahedral position) and 2×4f\textsubscript{iv} (octahedral position). Magnetic moments, ordering in accordance with the Gorter model \[m_{\text{tot}} = 1\times m(2a) + 1\times m(2b) - 2\times m(4f\textsubscript{vi}) - 2\times m(4f\textsubscript{iv}) + 6\times m(12k),\] can lead to the formation of the total magnetic moment equal to 20 µ\textsubscript{B} in the ground state [25].

The doping of the BaFe\textsubscript{12-x}M\textsubscript{x}O\textsubscript{19} barium hexaferrite with various M = Al3+, Sc3+, In3+ etc. chemical elements is an effective way to control its physicochemical properties [26]. At least three types of doping can be distinguished: charge, spin, and mixed doping. With the first type of doping, the charge state of the iron cations changes, and with the second, the spin state of iron cations changes. The third type of doping is characterized by a simultaneous change in the charge and spin states of iron cations. The heterovalent doping of the Fe3+ iron cations with the diamagnetic Ti4+ (S = 0) titanium cations is of the mixed type. As a result of this process, Fe2+ iron cations are formed in different nonequivalent crystallographic positions, which have two characteristic features in barium hexaferrite. First, in the octahedral coordination, the Fe2+ iron cation can undergo a spin transition (HS → LS) from the high spin state (HS, S = 2) to the low spin state (LS, S = 0) with decreasing temperature [27]. Second, in the tetrahedral coordination, the Fe2+ iron
cation is Jahn–Teller one, which can manifest itself at an appropriate concentration in the anisotropic distortion of polyhedra [28].

The $\text{BaFe}_{12-x}\text{Ti}_x\text{O}_{19}$ titanium-doped barium hexaferrites are of undoubted interest as materials for microwave absorption [29–39]. It was previously found that for the composition with $x = 0.25$ the S_{11} reflection coefficient reaches ~ -80 dB at frequency of $f \approx 10.5$ GHz, and for the composition with $x = 1.00$ the C_{21} transmission coefficient exceeds > -60 dB at frequency of $f \approx 12$ GHz [34]. The transmission coefficient for the composition with $x = 0.50$ exceeds > -40 dB at frequency of $f \approx 9.3$ GHz [37]. In order to achieve the desired amplitude-frequency characteristics, it is necessary to know the features of the magnetic and electric phase states of the compositions used and to controllably change such magnetic parameters as the Curie temperature, spontaneous magnetization and anisotropy field, and such electrical parameters as ac-resistivity and permeability. Earlier, some results on the study of the magnetic phase state of titanium-doped solid solutions have already been obtained [40].

For the $\text{BaFe}_{12-x}\text{Ti}_x\text{O}_{19}$ ($x \leq 1$) barium hexaferrite ceramics the crystal structure and magnetodielectric properties have been investigated. It was established that titanium cations are predominantly occupied the $4f_{IV}$, $4f_{VI}$ and $12k$ positions. The noncollinear magnetic structure is founded at low temperature. The M_s saturation magnetization decreases down to ~ 56.7 emu/g with increasing x up to 1.00. The M_r residual magnetization and B_c coercivity decrease also. The ac-resistivity decreases with increasing x substitution level up to 1.00 and f frequency up to 10^5 Hz. The real part of the dielectric constant for the $x = 0.50$ gradually decreases at heating up to ~ 500 K, after which it begins to increase sharply. The dielectric loss tangent for this sample has a maximum in the region of ~ 500 K [40].

In the present work, the range of solid solutions of titanium-doped barium hexaferrites was expanded up to 2.00. The phase composition, crystal structure, and unit cell parameters were refined by the Rietveld method based on powder X-ray diffraction data in a wide temperature range. The doping mechanism has been studied. The features of the magnetic phase state are
investigated. The spin-glass component is fixed. The spontaneous magnetization and coercivity are measured at room temperature.

2. Experimental

The high purity Fe$_2$O$_3$ (99.999%) and TiO$_2$ (99.999%) oxides and BaCO$_3$ (99.99%) carbonate have been used to prepare the doped BaFe$_{12-x}$Ti$_x$O$_{19}$ ($x = 0.25; 0.50; 0.75; 1.00; 1.25; 1.50$ and 2.00) samples using conventional ceramic technology. Firstly, the oxides and carbonate have been weighted with design ratio and thoroughly mixed in molar proportions in an agate mortar. Then, the chemical mixtures were ground in a ball mill for 10 hs with a small amount of ethyl alcohol. Then the calcination has been performed at 1200$^\circ$C in air during 6 h to obtain the magnetoplumbite phase. Final synthesis was carried out at 1300$^\circ$C in air during 6 h. After synthesis the sample has been slowly cooled (100$^\circ$C*h$^{-1}$) [40]. The formation of BaFe$_{12-x}$Ti$_x$O$_{19}$ powders can be represented as follows:

$$BaCO_3 + \left(\frac{12-x}{2}\right)Fe_2O_3 + (x)TiO_2 \rightarrow BaFe_{12-x}Ti_xO_{19} + CO_2 \uparrow + \frac{1}{4}xO_2 \uparrow \quad (1)$$

The chemical phase content, crystal structure and unit cell parameters were refined by Rietveld analysis [41] using the FullProf [42]. X-ray diffractometer EMPYREAN (PANalytical firm) with Cu-K$_\alpha$ radiation $\lambda = 1.541874$ Å was used to collect the experimental data up to 900 K [43]. The powder diffraction software package HighScore Plus [44] which includes the standards of the ICDD [45] was applied.

Temperature dependence of specific magnetization in zero field cooled (ZFC) and field cooled (FC) regimes was measured up to $T = 400$ K and $B = 2$ T fields by Liquid Helium Free High Field Measurement System (VSM) [46]. Field dependence of specific magnetization was measured at 300 K [47].

The high temperature ESR investigations were performed on the Varian E12 spectrometer at the frequency of 9.36 GHz (X-band) in the temperature range from 292 K to 680 K.
3. Results and discussion

The experimental X-ray diffraction data and fitting lines for some of the obtained compositions are shown in Fig. 1. To refine the atomic coordinates and unit cell parameters, the P6_3/mmc (No. 194) space group [48] was used, which gave satisfactory results. The χ^2 goodness fitting parameter did not exceed ~ 2.5. Fig. 1 shows that the difference curve contains small maxima. Bragg reflections are slightly shifted towards smaller angles with increasing temperature, which generally corresponds to an increase in an interplanar distance. The diffraction pattern does not fundamentally change, which indicates the absence of sharp structural changes.

The lattice constants a, c and the volume V of the unit cell depend on doping concentration as shown in Fig. 2. In general, they increase with x. The lattice constant c increases monotonically. Moreover, the rate of change of the lattice constant c $dc/dx \approx 11 \times 10^{-2}$ Å/x at a high temperature is higher than those $dc/dx \approx 7.5 \times 10^{-2}$ Å/x at a low temperature. The dependence of the lattice constant a and volume V is characterized by extrema. A local minimum is observed in these dependences in the temperature range 100-300 K at $x = 1.00$. At a high temperature of 900 K, these dependences have a local minimum at $x = 0.50$ and a local maximum at $x = 1.25$. The volume V also changes at a higher rate of $dV/dx \approx 3.3$ Å3/x at high temperatures than those $dV/dx \approx 2.2$ Å3/x at low temperatures.

The temperature dependences of the lattice constants a and c and volume V of the unit cell for different doping concentrations are shown in Fig. 3. All quantities change almost monotonically with increasing temperature. An anomaly is observed for the composition with $x = 1.00$ at 300 K. The minimum value of the lattice constant $a \approx 5.883$ Å is observed for the composition with $x = 1.00$ at 100 K. The maximum value of the lattice constant $a \approx 5.923$ Å is observed for the composition with $x = 1.00$ at 900 K. For the same composition with $x = 1.00$, the highest $da/dT \approx 5.0 \times 10^{-5}$ Å/K change rate of the lattice constant a is observed with increasing temperature. The minimum value of the lattice constant $c \approx 23.20$ Å is observed for the composition with $x = 0.25$ at 100 K. The maximum value of the lattice constant $c \approx 23.55$ Å is observed for the composition with $x = 2.00$ at 900 K. With an increase in the doping concentration from $x = 0.25$
to $x = 2.00$, the rate of change of the lattice constant c increases from $dc/dT \approx 2.1 \times 10^{-4} \text{ Å/K}$ to $dc/dT \approx 2.6 \times 10^{-4} \text{ Å/K}$, respectively. The maximum rate of change in the lattice constant c $dc/dT \approx 2.9 \times 10^{-4} \text{ Å/K}$ is observed for the composition with $x = 1.00$. The change rate of volume V increases from $dV/dT \approx 1.1 \times 10^{-2} \text{ Å}^3/\text{K}$ for $x = 0.25$ to $dV/dT \approx 1.7 \times 10^{-2} \text{ Å/K}$ for $x = 2.00$ with a maximum $dV/dT \approx 2.1 \times 10^{-2} \text{ Å/K}$ for $x = 1.00$.

It is clearly seen from the Figs. 2 and 3 that the relative change in the a parameter is much less than the relative change in the c parameter. For example, the relative change in the a parameter vs. x at the room temperature is $\sim 1.7 \times 10^{-3}\%$ and vs. T for the $x = 1.00$ is $\sim 6.8 \times 10^{-3}\%$, whereas the relative change in the c parameter vs. x at the room temperature is $\sim 5.8 \times 10^{-3}\%$ and vs. T for the $x = 1.00$ is $\sim 10.0 \times 10^{-3}\%$. Such behavior is explained by the high crystal anisotropy of hexaferrite and the peculiarities of the occupation mechanism of nonequivalent crystallographic positions with the Ti$^{4+}$ titanium cations. The different behavior of the a and c parameters corresponds to the accuracy of the X-ray diffraction measurement.

The behavior of the lattice constants a and c and volume V of the unit cell is explained by a change in the charge and spin state of the Fe$^{2+/3+}$ iron cations and by the mechanism of occupation of the nonequivalent crystallographic positions with the Ti$^{4+}$ titanium cations. Cations of triply Fe$^{3+}$ and doubly Fe$^{2+}$ charged iron in octahedral coordination can be in both low spin (LS) and high spin (HS) states, while in tetrahedral coordination they can only be in high spin (HS) state. According to the data of [49], the following ionic radii can exist in the titanium-doped BaFe$_{12-\delta}$M$_\delta$O$_{19}$ composition of the barium hexaferrite: fourfold charged Ti$^{4+}$[IV] titanium cation in tetrahedral coordination $r(\text{Ti}^{4+}[\text{IV}]) = 0.560 \text{ Å}$; fourfold charged Ti$^{4+}$[VI] titanium cation in octahedral coordination $r(\text{Ti}^{4+}[\text{VI}]) = 0.745 \text{ Å}$; HS triply charged Fe$^{3+}$[IV, HS] iron cation in tetrahedral coordination $r(\text{Fe}^{3+}[\text{IV, HS}]) = 0.630 \text{ Å}$; LS triply charged Fe$^{3+}$[VI, LS] iron cation in octahedral coordination $r(\text{Fe}^{3+}[\text{VI, HS}]) = 0.690 \text{ Å}$; HS triply charged Fe$^{3+}$[VI, HS] iron cation in octahedral coordination $r(\text{Fe}^{3+}[\text{VI, HS}]) = 0.785 \text{ Å}$; HS doubly charged Fe$^{2+}$[IV, HS] iron cation in tetrahedral coordination $r(\text{Fe}^{2+}[\text{IV, HS}]) = 0.770 \text{ Å}$; LS doubly charged Fe$^{2+}$[VI, LS] iron cation
in octahedral coordination $r(\text{Fe}^{2+}[,\text{VI, LS}]) = 0.750 \, \text{Å}$; HS doubly charged Fe$^{2+}[,\text{VI, HS}]$ iron cation in octahedral coordination $r(\text{Fe}^{2+}[,\text{VI, HS}]) = 0.920 \, \text{Å}$.

The concentration dependence of the lattice constants a and c and volume V of the unit cell is explained by the specific mechanism of occupation of the five nonequivalent crystallographic positions 2a, 2b, 4f$_{IV}$, 4f$_{VI}$ and 12r with the Ti$^{4+}$ titanium cations. The entire doping interval can be divided into three subintervals. In the first doping subinterval, at $x \leq 0.25$, the Ti$^{4+}$ titanium cations replace HS triply charged Fe$^{3+}[,\text{VI, HS}]$ iron cations in the octahedral positions 2a, 4f$_{VI}$ and 12K with the total size effect of $\Delta r(\text{Ti}^{4+}[\text{VI}] \rightarrow \text{Fe}^{3+}[\text{VI, HS}]) = -0.040 \, \text{Å}$. The HS doubly charged Fe$^{2+}[,\text{IV, HS}]$ iron cations appear instead of the triply charged Fe$^{3+}[,\text{IV, HS}]$ ones in tetrahedral positions 4f$_{IV}$ with the size effect of $\Delta r(\text{Fe}^{2+}[\text{IV, HS}] \rightarrow \text{Fe}^{3+}[\text{IV, HS}]) = 0.140 \, \text{Å}$. As a result of this occupation, the total size effect is $\delta r(1) = \Delta r(\text{Fe}^{2+}[\text{IV, HS}] \rightarrow \text{Fe}^{3+}[\text{IV, HS}]) + \Delta r(\text{Ti}^{4+}[\text{VI}] \rightarrow \text{Fe}^{3+}[\text{VI, HS}]) = 0.100 \, \text{Å}$. In the second doping subinterval $0.25 < x \leq 1.00$, the fourfold charged Ti$^{4+}[\text{IV}]$ titanium cations replace the HS doubly charged Fe$^{2+}[,\text{IV, HS}]$ iron cations in the 4f$_{IV}$ tetrahedral positions with the size effect of $\Delta r(\text{Ti}^{4+}[\text{IV}] \rightarrow \text{Fe}^{2+}[\text{IV, HS}]) = -0.210 \, \text{Å}$. The HS doubly charged Fe$^{2+}[,\text{VI, HS}]$ iron cations appear instead of the HS triply charged Fe$^{3+}[\text{VI, HS}]$ iron cations in the octahedral 2a, 4f$_{VI}$ and 12K positions with the size effect of $\Delta r(\text{Fe}^{2+}[\text{VI, HS}] \rightarrow \text{Fe}^{3+}[\text{VI, HS}]) = 0.135 \, \text{Å}$. As a result of this occupation, the total size effect is $\delta r(2) = \Delta r(\text{Ti}^{4+}[\text{IV}] \rightarrow \text{Fe}^{2+}[\text{IV, HS}]) + \Delta r(\text{Fe}^{2+}[\text{VI, HS}] \rightarrow \text{Fe}^{3+}[\text{VI, HS}]) = -0.075 \, \text{Å}$. In the third doping interval, $1.00 < x \leq 2.00$, the fourfold charged Ti$^{4+}[\text{VI}]$ titanium cations replace the HS triply charged Fe$^{3+}[\text{VI, HS}]$ iron cations in octahedral 2a, 4f$_{VI}$ and 12K positions with the size effect of $\Delta r(\text{Ti}^{4+}[\text{VI}] \rightarrow \text{Fe}^{3+}[\text{VI, HS}]) = -0.040 \, \text{Å}$. The HS doubly charged Fe$^{2+}[\text{VI, HS}]$ iron cations appear instead of the HS triply charged Fe$^{3+}[\text{VI, HS}]$ cations in the octahedral 2a, 4f$_{VI}$ and 12K positions with the size effect of $\Delta r(\text{Fe}^{2+}[\text{VI, HS}] \rightarrow \text{Fe}^{3+}[\text{VI, HS}]) = 0.135 \, \text{Å}$. As a result of this occupation, the total size effect is $\delta r(3) = \Delta r(\text{Ti}^{4+}[\text{VI}] \rightarrow \text{Fe}^{3+}[\text{VI, HS}]) + \Delta r(\text{Fe}^{2+}[\text{VI, HS}] \rightarrow \text{Fe}^{3+}[\text{VI, HS}]) = 0.095 \, \text{Å}$. This occupation mechanism is in good agreement with the previously proposed one [40].
As we have already noted above, at three concentration subintervals, features are observed in the occupation of the nonequivalent crystallographic positions by the Ti$^{4+}$ titanium cations. An increase in the average cationic radius in the B-sublattice of hexaferrite leads to an increase in the volume of the generalized oxygen polyhedron. The total size effect $\delta r(1) + \delta r(2) + \delta r(3) = 0.120$ Å over the entire doping range is positive; therefore, the lattice broadening is observed in general, and hence the interplanar distance increases. This type of doping leads to an increase in interplanar spacing as a trend.

Taking into account such occupation mechanism, the nonmonotonic behavior of the concentration dependence of the lattice constant a and volume V of the unit cell in Fig. 2 at 300 K is understandable. Recalling that the HS doubly charged Fe$^{2+}$[IV, HS] iron cation in tetrahedral coordination is a Jahn-Teller cation, one can understand the monotonic change in the c parameter of unit cell. At low temperatures, the doubly charged Fe$^{2+}$[VI, HS] iron cations in octahedral coordination can undergo a transition to the LS state Fe$^{2+}$[VI, HS] → Fe$^{2+}$[VI, LS] [27], which will be seen somewhat below. With an increase in temperature, the lattice constants a and c and volume V, as it can be seen from Fig. 3, undergo a monotonic increase due to an increase in the energy of the chaotic vibrational motion of cations.

Indeed, it is well known that 3-d transition metals can have a mixed charge state. Since the titanium atom is in the 4-th group of the periodic table, this indicates that the main charge state is 4+. This behavior is easily explained by the filling of electron orbitals and the binding energy of 3-d electrons. The authors do not have access to information about the works in which triple-charged Ti$^{3+}$ titanium cations in complex transition metal oxides were observed. Based on this fact, when considering the occupation mechanism and interpreting the magnetic properties, the presence of triple-charged charged Ti$^{3+}$ titanium cations was not taken into account. With the appearance of oxygen vacancies, it is most likely that triple-charged Fe$^{3+}$ iron cations will transform into double-charged Fe$^{2+}$ ones, rather than four-charged Ti$^{4+}$ titanium cations will transform into triple-charged Ti$^{3+}$ ones. Presumably, triple-charged Ti$^{3+}$ titanium cations will lead to a greater increase in the unit cell volume and interplanar distance.
The temperature dependence of the ZFC and FC magnetization in the weak field of 0.01 T is shown in Fig. 4. It is clearly seen that with an increase in the doping concentration, the signal is \(\sim 2.4 \text{ emu/g} \) for \(x = 0.25 \) and it gradually decreases. All the ZFC curves start almost from zero and reach saturation above \(\sim 180 \text{ K} \). The FC curves are practically constant. The difference between the ZFC and FC curves indicates the existence of a frustrated component of the magnetic phase state [50]. This is the so-called spin glass state. As a rule, in the case of a classical spin glass, two characteristic temperatures are distinguished. These are the \(T_f \) freezing temperature and the \(T_{\text{dif}} \) difference temperature. Both these temperatures characterize the size of the magnetically disordered cluster. The spin glass state arises as a result of frustration of exchange interactions, and, in some approximation, it can be considered as a superposition of the ordered clusters located in a disordered matrix. If the order parameter exceeds a certain critical value, then on the contrary, one speaks of disordered clusters located in an ordered matrix. The peak temperature of the ZFC curve, the \(T_f \) freezing temperature, determines the average cluster size according to the Bean – Livingstone ratio [51]. The \(T_{\text{dif}} \) difference temperature between the ZFC and FC curves characterizes the maximum cluster size. The \(T_{\text{dif}} \) difference temperature decreases from \(\sim 237.2 \text{ K} \) to \(\sim 164.0 \text{ K} \) with an increase in the concentration of titanium cations and the magnetic field. From the data presented in Fig. 4 it is well seen that the maximum cluster size decreases at the rate
\[
\frac{dT_{\text{dif}}}{dx} \approx -36.61 \text{ K/x}.
\]

The fact of the linear decrease in the \(T_{\text{dif}} \) difference temperature indicates a decrease in the maximum size of the ordered cluster. This happens because the intensity of the \(\text{Fe}^{2+}/\text{Fe}^{3+} - \text{O}^2^- - \text{Ti}^{4+} \) indirect superexchange interactions become negative and the \(\text{Fe}^{3+} - \text{O}^2^- - \text{Fe}^{3+} \) positive exchange-linked chains are broken as a result of doping with titanium cations. With a uniform distribution of substitutional titanium cations over the lattice, a decrease in the maximum size of the ordered cluster will be observed.

As it was mentioned above, the \(T_f \) freezing temperature is determined by the peak position of the ZFC curve. From Fig. 4 it is well seen that the ZFC curves increase monotonically and have no peak. However, they can be characterized by a similar inflection point temperature. The \(T_{\text{inf}} \)
inflection temperature is determined by the local extremum point on the first derivative of the corresponding curve. Fig. 5 shows the temperature dependences of the first derivative of the ZFC curve in the field of 0.01 T. It can be seen that the T_{inf} inflection point temperature increases monotonically and nonlinearly. The T_{inf} inflection point temperature increases from ~ 21.0 K to ~ 23.8 K. Above $x > 1.00$, the dependence reaches saturation. Hence, we can conclude that, in the field of 0.01 T, the average size of ordered cluster increases at rate of $d T_{\text{inf}}/dx \approx 2.55$ K/x in the x range of 0.00 - 1.00 and $d T_{\text{inf}}/dx \approx 0.27$ K/x in the x range of 1.00 - 2.00. With increase in the doping concentration, both the D_{av} average and D_{max} maximum clusters grow up to ~ 100 nm [47].

An increase in the field up to 1 T does not lead to a fundamental change in the magnetic phase state. The magnetization becomes much higher and amounts to ~ 68.5 emu/g for $x = 0.25$ at low temperatures. The extended temperature range of coincidence of the ZFC and FC curves indicates a homogeneous ferrimagnetic state. A pronounced magnetic transition appears in the region of ~ 300 K. The T_{dif} difference temperature also decreases with an increase in the doping concentration. As it is seen from Fig. 6, the rate of decrease in the maximum cluster size in this case becomes lower and amounts to $d T_{\text{dif}}/dx \approx -62.43$ K/x.

It should be noted here that the low-temperature drop in the magnetization in this case is most likely a consequence of a change in the magnetic structure, and it is not cluster behavior, since the field amount is too high. This behavior can be explained by the formation of a noncollinear ferrimagnetic structure as a result of the spin transition of the doubly charged Fe$^{2+}$ iron cation from LS to HS state ($LS \rightarrow HS$) with increasing temperature [52]. This behavior is often observed for doubly charged Fe$^{2+}$ iron cations in metal-organic complexes [53]. To clarify the features of the magnetic structure under these conditions, it is necessary to carry out neutron diffraction experiments, which are planned in the very near future and will be performed at the IBR-2M reactor at JINR (Dubna, Russia). With an increase in the field to 2 T, the difference between the ZFC and FC curves disappears, as does the low-temperature anomaly, which can be seen from the data in Fig. 7.
With an increase in the doping concentration, the M_s spontaneous magnetization decreases monotonically, which can be seen from Fig. 8. At the room temperature, the magnetization in the field of 6 T is ~ 74.83 emu/g for the $x = 0.00$, while for the $x = 2.00$ it is ~ 29.22 emu/g. The field dependences for the $x \geq 1.25$ are not saturated in the fields up to 6 T. The M_r remanent magnetization and B_c coercivity also decrease monotonically with an increase in the doping concentration, which is clearly seen from the more detailed Fig. 9. The change in magnetic parameters is satisfactorily described by the change in the charge and spin state of the Fe$^{2+/3+}$ iron cations and by the mechanism of the occupation by the Ti$^{4+}$ titanium cations the nonequivalent crystallographic positions as it was proposed above.

The M_s spontaneous and M_r remanent magnetization decrease mainly for two reasons. The first reason is the appearance of diamagnetic Ti$^{4+}$ titanium cationes mainly in the 2a and 12k octahedral positions. Since the diamagnetic cation has a local spin equal to zero, the total moment will decrease with an increase in the doping concentration. One Ti$^{4+}$ titanium cation converts one trivalent Fe$^{3+}$ iron cation with a local spin of $5 \mu_B$ into a bivalent Fe$^{2+}$ iron cation with a local spin of $4 \mu_B$. Such a transformation in general will also reduce the total moment and hence the M_s spontaneous and M_r remanent magnetization.

The decrease in the B_c coercivity upon titanium doping can also be explained by a decrease in the intensity and stiffness of the Fe$^{2+/3+}$ - O$^{2-}$ - Ti$^{4+}$ indirect superexchange interactions as compared to the Fe$^{3+}$ - O$^{2-}$ - Fe$^{3+}$ initial interactions. A decrease in the stiffness leads to an increased susceptibility of local spins to the reorienting action of the weak fields, as a result of which, when the direction of the field is changed, the demagnetizing effect quickly reaches a maximum, and the magnetization becomes zero.

The doping with diamagnetic Ti$^{4+}$ titanium cations leads to a significant weakening of the Fe$^{3+}$(Ti$^{4+}$) – O$^{2-}$ - Fe$^{3+}$(Fe$^{2+}$) exchange interactions and a decrease in the T_C Curie temperature. Typical electron spin resonance (ESR) spectra of the investigated BaFe$_{10.5}$Ti$_{1.5}$O$_{19}$ sample are presented in Fig. 10. In the temperature range above ~ 650 K the experimental spectrum consists of one ESR line with the Lorentzian lineshape. We suggest that the sample is a paramagnetic at
this temperatures and the exchange-narrowing line is due to the signal from iron spins with strong exchange interaction. In the temperature range below ~ 650 K the experimental spectrum has a complex lineshape. One can suggest that lines of ferromagnetic resonance were detected in magnetic resonance spectra below ~ 650 K. The observation of several lines in the ferromagnetic resonance spectrum may be related to the phase ordering of spin sublattices of the Fe$^{2+/3+}$ iron cations which occupy 12 different crystallographic positions and the complex nature of the Fe$^{3+}$(Ti$^{4+}$) – O$^{2-}$ - Fe$^{3+}$(Fe$^{2+}$) exchange interactions between these cations.

Despite the fact that the decomposition/interpretation of the magnetic resonance spectrum is rather difficult task in this case, the integral intensity of ESR absorption line can be obtained by double integration of the original signal (Fig. 11). It should be noted that the integral intensity of the ESR absorption line is proportional to the concentration of magnetic centers and magnetic moment of the sample. One can see from Fig. 11 that the temperature dependance of the integral intensity demonstrates the stepwise behavior which is typical for the ferromagnetic state near the T_C Curie temperature. The T_C Curie temperature can be obtained as the minimum in the temperature dependance of the first derivative of the integral intensity with respect to temperature (dI_{int}/dT vs. T). And it is equal $T_C \approx 610$ K.

The concentration dependences of the M_s spontaneous magnetization, M_r remanent magnetization and B_c coercivity are shown in Fig. 12. With an increase in the doping concentration, the M_s spontaneous magnetization decreases monotonically but nonlinearly from a maximum value of ~ 74.31 emu/g for the x = 0.00 to ~ 17.65 emu/g for the x = 2.00. The change rate is $dM_s/dx \approx -28.33$ emu*g$^{-1}$*x$^{-1}$. The M_r remanent magnetization also decreases monotonically from ~ 26.92 emu/g for the x = 0.00 to ~ 1.86 emu/g for the x = 2.00 at the rate of $dM_r/dx \approx -12.53$ emu*g$^{-1}$*x$^{-1}$. The B_c coercivity decreasing from ~ 35.37 mT for the x = 0.00 to ~3.91 mT for the x = 2.00 has an inflection point at the x = 1.00. The change rate is $dB_c/dx \approx -15.73$ mT*x$^{-1}$.

Conclusions
The titanium doped \(\text{BaFe}_{12-x}\text{Ti}_x\text{O}_{19} \) \((x = 0.25; 0.50; 0.75; 1.00; 1.25; 1.50 \text{ and } 2.00)\) M-type barium hexaferrite solid solutions were obtained using conventional ceramic technology. The phase composition, crystal structure and unit cell lattice constants were refined by the Rietveld method using powder XRD data up to \(T = 900\) K. The \(\chi^2\) goodness fitting parameter did not exceed \(~ 2.5\). It was found that all the compositions have a magnetoplumbite structure satisfactorily described by \(P6_3/mmc\) space group (No. 194). With increasing temperature and doping concentration, the unit cell parameters increase almost monotonically. The rate of change of the lattice constant \(c\) \(dc/dx\approx 11*10^{-2}\) Å/x at a high temperature is higher than those \(dc/dx\approx 7.5*10^{-2}\) Å/x at a low temperature. The minimum volume of \(V \sim 696.72\) Å\(^3\) was determined for the composition with \(x = 1.00\) at \(T= 100\) K, while the maximum value of \(V \sim 714.00\) Å\(^3\) is observed for the composition with \(x = 2.00\) at \(T= 900\) K. The volume \(V\) also changes at a higher rate of \(dV/dx\approx 3.3\) Å\(^3/x\) at high temperatures than those \(dV/dx\approx 2.2\) Å\(^3/x\) at low temperatures. For the same composition with \(x = 1.00\), the highest \(da/dT\approx 5.0*10^{-5}\) Å/K change rate of the lattice constant \(a\) is observed with increasing temperature. The rate of change of the lattice constant \(c\) increases from \(dc/dT\approx 2.1*10^{-4}\) Å/K to \(dc/dT\approx 2.6*10^{-4}\) Å/K for the \(x = 0.25\) to \(x = 2.00\), respectively. The change rate of volume \(V\) increases from \(dV/dT\approx 1.1*10^{-2}\) Å\(^3/K\) for \(x = 0.25\) to \(dV/dT\approx 1.7*10^{-2}\) Å/K for \(x = 2.00\) with a maximum \(dV/dT\approx 2.1*10^{-2}\) Å/K for \(x = 1.00\). The mechanism of occupation nonequivalent crystallographic positions with titanium cations is established. The entire \(0.00 \leq x \leq 2.00\) doping interval can be divided into three subintervals:

1). \(x \leq 0.25\), 2). \(0.25 < x \leq 1.00\) and 3). \(1.00 < x \leq 2.00\). Next type of occupation are established:

1). \(\text{Fe}^{2+}[\text{IV, HS}] \rightarrow \text{Fe}^{3+}[\text{IV, HS}] \) and \(\text{Ti}^{4+}[\text{VI}] \rightarrow \text{Fe}^{3+}[\text{VI, HS}];\) 2). \(\text{Ti}^{4+}[\text{IV}] \rightarrow \text{Fe}^{2+}[\text{IV, HS}]\) and \(\text{Fe}^{2+}[\text{VI, HS}] \rightarrow \text{Fe}^{3+}[\text{VI, HS}]\) and 3). \(\text{Ti}^{4+}[\text{VI}] \rightarrow \text{Fe}^{3+}[\text{VI, HS}]\) and \(\text{Fe}^{2+}[\text{VI, HS}] \rightarrow \text{Fe}^{3+}[\text{VI, HS}].\) The spin-glass component of the magnetic phase state is fixed. The \(T_{\text{dif}}\) difference temperature between the ZFC-FC curves decreases with an increase in the concentration of titanium cations and the magnetic field from \(~ 237.2\) K to \(~ 44.5\) K, while the \(T_{\text{inf}}\) inflection point temperature of the ZFC curve increases from \(~ 21.0\) K to \(~ 23.8\) K. The maximum cluster size decreases at the rate \(dT_{\text{dif}}/dx\approx -36.61\) K/x. In the field of \(0.01\) T, the average size of ordered cluster increases at
rate of $d T_{\text{inf}} / dx \approx 2.55 \text{ K/x}$ in the x range of 0.00 - 1.00 and $d T_{\text{inf}} / dx \approx 0.27 \text{ K/x}$ in the x range of 1.00 - 2.00. With an increase in the doping concentration, both the D_{av} average and D_{max} maximum clusters grow up to ~ 100 nm. The change in the magnetic structure at low temperature in field of 1 T was established, and it is explained by the formation of a noncollinear ferrimagnetic structure as a result of the spin transition of the doubly charged Fe$^{2+}$ iron cation from LS to HS state ($LS \rightarrow HS$) with increasing temperature. As the magnetic field increases above the critical value, the spin-glass component disappears. At the room temperature, the magnetization in field of 6 T is ~ 74.83 emu/g for the $x = 0.00$, while for the $x = 2.00$ it is ~ 29.22 emu/g. For compositions with $x > 1.00$, the magnetization is not saturated in fields up to 6 T. Along with the formation of the spin-glass component, doping with titanium cations for the barium hexaferrite lowers the T_C Curie temperature down to $T \sim 600 \text{ K}$. The M_s spontaneous and M_r remanent magnetizations, as well as the B_c coercivity, decrease with increasing doping concentration almost monotonically, while the latter has an inflection point at $x = 1.00$. The minimum values of spontaneous and remanent magnetization, as well as coercivity, are observed for the composition with $x = 2.00$ and amount to $M_s \sim 17.7 \text{ emu/g}$, $M_r \sim 1.9 \text{ emu/g}$, and $B_c \sim 3.9 \times 10^{-3} \text{ T}$, respectively. An interpretation of the magnetic state of the doped BaFe$_{12-x}$Ti$_x$O$_{19}$ barium hexaferrite is given taking into account the mechanism of occupation nonequivalent crystallographic positions with titanium cations. **Doping of titanium cations for the barium hexaferrite leads to a controlled change in the magnetic properties of the compound and makes it promising for microwave applications.**

Acknowledgment

The work was supported by bilateral Russian-Belorussian grant (for BRFBR No. F19PM-011 for RFBR No. 19-53-04010). Present work is also realized with assistance of Act 211 Government of the Russian Federation, contract № 02.A03.21.0011. Electron spin resonance measurements were performed with financial support from the government assignment for FRC Kazan Scientific Center of RAS.
References

4. S.V. Trukhanov, Peculiarities of the magnetic state in the system La$_{0.70}$Sr$_{0.30}$MnO$_3$-γ (0 \leq γ \leq 0.25), JETP 100 (2005) 95-105. https://doi.org/10.1134/1.1866202.

24. V. Turchenko, V.G. Kostishyn, S. Trukhanov, F. Damay, F. Porcher, M. Balasoiu, N. Lupu, B. Bozzo, I. Fina, A. Trukhanov, J. Waliszewski, K. Recko, S. Polosan, Crystal and magnetic

28. S.V. Trukhanov, I.O. Troyanchuk, A.V. Trukhanov, I.A. Bobrikov, V.G. Simkin, A.M. Balagurov, Concentration-dependent structural transition in the La$_{0.70}$Sr$_{0.30}$MnO$_3$-δ system, JETP Lett. 84 (2006) 254-257. https://doi.org/10.1134/S002136400617005X.

30. L. Wang, H. Yu, X. Ren, G. Xu, Magnetic and microwave absorption properties of BaMn$_{0.5}$Co$_{0.5}$TiFe$_{10}$O$_{19}$, J. Alloys Compd. 588 (2014) 212-216. https://doi.org/10.1016/j.jallcom.2013.11.072.

46. S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, H. Szymczak, Frustrated exchange interactions formation at low temperatures and high hydrostatic pressures in \(\text{La}_{0.70}\text{Sr}_{0.30}\text{MnO}_{2.85} \), JETP 111 (2010) 209-214. https://doi.org/10.1134/S106377611008008X.

47. S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, A.M. Balagurov, H. Szymczak, Magnetic state of the structural separated anion-deficient \(\text{La}_{0.70}\text{Sr}_{0.30}\text{MnO}_{2.85} \) manganite. JETP 113 (2011) 819-825. https://doi.org/10.1134/S1063776111130127.

Figure captions

Fig. 1. X-ray diffraction patterns and their Rietveld refinement for the BaFe$_{12-x}$Ti$_x$O$_{19}$ samples with $x = 0.25$ (left panel); 1.00 (central panel) and 2.00 (right panel) at $T = 100$ K (a, d, j); 300 K (b, e, h) and 900 K (c, f, i). The crosses show the experimental data. The top red solid line is a fitting curve. The bottom blue line is a difference curve. Vertical bars define the Bragg’s positions.

Fig. 2. Concentration dependence of lattice constant a (a), lattice constant c (b) and volume V (c) of unit cell at $T = 100$ K (black circles); 300 K (red circles) and 900 K (green circles) for the BaFe$_{12-x}$Ti$_x$O$_{19}$ samples.

Fig. 3. Temperature dependence of lattice constant a (a), lattice constant c (b) and volume V (c) of unit cell for the BaFe$_{12-x}$Ti$_x$O$_{19}$ samples with $x = 0.25$ (black circles); 1.00 (red circles) and 2.00 (green circles).

Fig. 4. Temperature dependence of ZFC (open circles) and FC (full circles) magnetization in field of 0.01 T for the BaFe$_{12-x}$Ti$_x$O$_{19}$ samples with $x = 0.25$ (black circles); 0.50 (red circles); 1.00 (green circles) and 1.50 (blue circles). Insert demonstrate linear fitting of the T_{diff} difference temperature in field of 0.01 T.

Fig. 5. Temperature dependence of derivative of ZFC magnetization in field of 1 T for the BaFe$_{12-x}$Ti$_x$O$_{19}$ samples with $x = 0.25$ (black line); 0.50 (red line); 1.00 (green line) and 1.50 (blue line). Insert demonstrate polynomial fitting of the T_{inf} inflection point temperature for the ZFC magnetization in field of 0.01 T for the same samples.

Fig. 6. Temperature dependence of ZFC (open circles) and FC (full circles) magnetization in field of 1 T for the BaFe$_{12-x}$Ti$_x$O$_{19}$ samples with $x = 0.25$ (black circles); 0.50 (red circles); 1.00 (green circles) and 1.50 (blue circles). Insert demonstrate linear fitting of the T_{diff} difference temperature in fields of 0.01 T and 1 T.

Fig. 7. Temperature dependence of magnetization in field of 2 T for the BaFe$_{12-x}$Ti$_x$O$_{19}$ samples with $x = 1.00$ (black circles) and 1.50 (red circles).

Fig. 8. Field dependence of magnetization at room temperature for the BaFe$_{12-x}$Ti$_x$O$_{19}$ samples with $x = 0.00$ (black circles); 0.25 (red circles); 0.50 (green circles); 0.75 (blue circles); 1.00 (cyan circles); 1.25 (magenta circles); 1.50 (dark yellow circles); 1.75 (purple circles) and 2.00 (wine circles).

Fig. 9. Field dependence of magnetization at room temperature for the BaFe$_{12-x}$Ti$_x$O$_{19}$ samples with $x = 0.00$ (black circles); 0.25 (red circles); 0.50 (green circles); 0.75 (blue circles); 1.00 (cyan circles); 1.25 (magenta circles); 1.50 (dark yellow circles); 1.75 (purple circles) and 2.00 (wine circles) in range of ±50 mT.

Fig. 10. Typical ESR spectrum for the BaFe$_{12-x}$Ti$_x$O$_{19}$ sample with $x = 1.50$ at X-band frequency in the temperature range of 292 – 678 K.

Fig. 11. Temperature dependence of the integral intensity of ESR lines for the BaFe$_{12-x}$Ti$_x$O$_{19}$ sample with $x = 1.50$. Inset shows the first derivative of the integral intensity with respect to temperature dI_{int}/dT.

Fig. 12. Concentration dependence of the M_s spontaneous magnetization (a); M_r residual magnetization (b) and B_C coercivity (c) for the BaFe$_{12-x}$Ti$_x$O$_{19}$ samples at room temperature.
Fig. 1. X-ray diffraction patterns and their Rietveld refinement for the BaFe$_{12-x}$Ti$_x$O$_{19}$ samples with $x = 0.25$ (left panel); 1.00 (central panel) and 2.00 (right panel) at $T = 100$ K (a, d, j); 300 K (b, e, h) and 900 K (c, f, i). The crosses show the experimental data. The top red solid line is a fitting curve. The bottom blue line is a difference curve. Vertical bars define the Bragg’s positions.
Fig. 2. Concentration dependence of a parameter (a), c parameter (b) and V volume (c) of unit cell at T = 100 K (black circles); 300 K (red circles) and 900 K (green circles) for the BaFe$_{12-x}$Ti$_x$O$_{19}$ samples.
Fig. 3. Temperature dependence of a parameter (a), c parameter (b) and V volume (c) of unit cell for the $\text{BaFe}_{12-x}\text{Ti}_x\text{O}_{19}$ samples with $x = 0.25$ (black circles); 1.00 (red circles) and 2.00 (green circles).
Fig. 4. Temperature dependence of ZFC (open circles) and FC (full circles) magnetization in field of 0.01 T for the BaFe$_{12-x}$Ti$_x$O$_{19}$ samples with $x = 0.25$ (black circles); 0.50 (red circles); 1.00 (green circles) and 1.50 (blue circles). Insert demonstrate linear fitting of the T_{dif} difference temperature in field of 0.01 T.
Fig. 5. Temperature dependence of derivative of ZFC magnetization in field of 1 T for the BaFe$_{12-x}$Ti$_x$O$_{19}$ samples with $x = 0.25$ (black line); 0.50 (red line); 1.00 (green line) and 1.50 (blue line). Insert demonstrate polinomial fitting of the T_{inf} inflection point temperature for the ZFC magnetization in field of 0.01 T for the same samples.
Fig. 6. Temperature dependence of ZFC (open circles) and FC (full circles) magnetization in field of 1 T for the BaFe$_{12-x}$Ti$_x$O$_{19}$ samples with $x = 0.25$ (black circles); 0.50 (red circles); 1.00 (green circles) and 1.50 (blue circles). Insert demonstrate linear fitting of the T_{diff} difference temperature in fields of 0.01 T and 1 T.
Fig. 7. Temperature dependence of magnetization in field of 2 T for the BaFe$_{12-x}$Ti$_x$O$_{19}$ samples with $x = 1.00$ (black circles) and 1.50 (red circles).
Fig. 8. Field dependence of magnetization at room temperature for the BaFe$_{12-x}$Ti$_x$O$_{19}$ samples with $x = 0.00$ (black circles); 0.25 (red circles); 0.50 (green circles); 0.75 (blue circles); 1.00 (cyan circles); 1.25 (magenta circles); 1.50 (dark yellow circles); 1.75 (purple circles) and 2.00 (wine circles).
Fig. 9. Field dependence of magnetization at room temperature for the BaFe$_{12-x}$Ti$_x$O$_{19}$ samples with x = 0.00 (black circles); 0.25 (red circles); 0.50 (green circles); 0.75 (blue circles); 1.00 (cyan circles); 1.25 (magenta circles); 1.50 (dark yellow circles); 1.75 (purple circles) and 2.00 (wine circles) in range of ±50 mT.
Fig. 10. Typical ESR spectrum for the BaFe$_{10.5}$Ti$_{1.5}$O$_{19}$ sample with $x = 1.50$ at X-band frequency in the temperature range of 292 – 678 K.
Fig. 11. Temperature dependence of the integrated intensity of EPR spectrum for the BaFe$_{10.5}$Ti$_{1.5}$O$_{19}$ sample with $x = 1.50$.
Fig. 12. Concentration dependence of the M_s spontaneous magnetization (a); M_r residual magnetization (b) and B_C coercivity (c) for the $\text{BaFe}_{12-x}\text{Ti}_x\text{O}_{19}$ samples at room temperature.