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Poikkeamat ovat väistämätön osa suuria data määriä. Koneoppimista hyödyntäviä 

poikkeamien tunnistamisalgoritmeja on ajan mittaan kehitetty. Tämän työn tavoitteena on 

etsiä mahdollisimman hyvä vaihtoehto valituista koneoppimisalgoritmeista tunnistamaan 

poikkeamia annetusta kuludatasta, hankinnan kuluanalyysin näkökulmasta. Algoritmien 

suorituskyky mainitussa kontekstissa analysoidaan ja yhtä algoritmeista suositellaan case 

yritys Sievolle eteenpäin kehitettäväksi ja implementoitavaksi osaksi sen tuotetta. Valitut 

algoritmit vertailussa ovat One-Class Vector Machine, pääkomponenttianalyysiin perustuva 

poikkeamien tunnistus, Isolation Forest ja Local Outlier Factor. 

 

Kirjallisuuskatsaus käy lävitse kaikki neljä algoritmia teoreettisella tasolla. Lisäksi hankinnan 

kuluanalyysi ja kuludata esitellään. Poikkeama sekä poikkeamien tunnistaminen käsitteinä 

määritellään. Työn empiirisessä osassa käytetään oikeaa case yrityksen asiakkaan kuludataa. 

Algoritmien parametrit optimoidaan käytettävään kuludataan sopiviksi. Optimoituja 

algoritmeja testataan iteratiivisesti datalla ja suorituskykyä tarkastellaan kahden mittarin 

avulla – Excess-Mass ja Mass-Volume. Analyysiä tukee myös muut mittarit kuten 

poikkeamien suhteellinen osuus sekä algoritmin laskennallinen suorituskyky. 

 

Excess-Mass ja Mass-Volume mittareiden perusteella yksi algoritmeista suoriutui parhaiten 

kuludatan tapauksessa. Syvemmän analyysin perusteella, case yritykselle suositellaan kyseistä 

algoritmia jatkokehitettäväksi sekä aiemmin mainittujen mittareiden että muiden algoritmin 

kokonaissuorituskykyyn liittyvien tekijöiden perusteella.
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Outliers are inevitable when working with large amounts of data. Outlier detection methods 

utilizing machine learning have been developed and are readily available to use. This thesis 

aims to determine the best alternative outlier detection machine learning algorithm for a given 

spend data set from the procurement spend analysis perspective. The algorithms’ performance 

is analyzed, and a recommendation of an algorithm to be developed and implemented as a 

part of the case company Sievo’s product is given. Outlier detection algorithms chosen for the 

comparison are the One-Class Support Vector Machine, Principal Component Analysis based 

method, Isolation Forest, and Local Outlier Factor. 

 

The literature review gives information about the four algorithms in theory. In addition to this, 

spend analysis and spend data are presented, and the concept of an outlier and outlier 

detection is defined. In the empirical section, a real spend data set is used from the case 

company’s client. The algorithms’ parameters are tuned to be the most suitable for the sample 

spend data. The tuned algorithms are iteratively tested with the data, and the performance is 

measured using Excess-Mass and Mass-Volume. Other measures like counts and proportions 

of the detected outliers are also evaluated in the comparison to support the analysis. 

 

The final results are that one of the studied algorithms performs best in terms of Excess-Mass 

and Mass-Volume measures for the particular spend data case. Based on further analysis, that 

algorithm is the suggested one for the case company for further development considering the 

above-mentioned measures and other factors related to the algorithm’s overall performance. 
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1 INTRODUCTION 

 

In this introductory chapter, the background and purpose of this thesis are presented. The 

research questions, limitations, delimitations and assumptions, and the case company Sievo are 

also introduced. 

 

1.1 Background and the purpose of the study 

 

Outlier detection has been an interesting subject for a long time. During the past few decades, 

the methods have quickly advanced due to the development of machine learning, pattern 

recognition, and data mining tools. (Mehrotra, et al., 2017) The earlier work on the outlier 

detection field has been in the statistics community. Drawbacks in outlier detection’s statistical 

approaches have been deficient algorithmic scalability and not focusing on interpreting the 

models and results. (Aggarwal, 2013) Outliers appear in various fields and can reveal, for 

instance, failures in mechanical systems or credit card frauds (Hodge & Austin, 2004). In the 

field of procurement, organizations are increasingly collecting their data to analyze it. 

(Aggarwal, 2013) Spend analysis studies organizations spend data to find, for example, savings. 

Instead of outlier detection just being part of spend data cleansing, outliers can also indicate 

invoicing fraud of a vendor or employee. From the error point of view, outliers as part of the 

data can potentially lead to false conclusions and decisions in the business context. 

 

In procurement and strategic sourcing, spend analysis has become an important asset to obtain 

potential savings. Spend analysis starts with the data. Organizing and enhancing the data 

provides a holistic view of the spend structures and patterns of the organization. Valid and good 

quality data ensures such analysis and view of the procurement processes. (Pandit & Marmanis, 

2008) Outliers in the data might cause losing already mentioned potential savings or lead to 

false conclusions. The other side of the outlier detection in strategic sourcing is detecting 

fraudulent behavior of a supplier or simple human errors. 

 

Even though outliers in spend analysis have not been studied very much, it has been recognized 

by the experts in the procurement data analytics field. Ruck (n.d) discusses outlier detection to 

ensure data quality in the procurement analytics field. Suplari (2019) points out outliers in 
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procurement data analytics in their blog post. Fraudulent behavior detection could also be an 

application for outlier detection in procurement analytics, which Coupa Software Incorporated 

(Computer Weekly News, 2020) tries to tackle with clustering-based outlier detection. Data 

plays a crucial role in spend analysis, and good data is required to accomplish accurate analysis 

(Heath, 2006). One of the challenges listed by Heath (2006) was the incompleteness, 

inaccurateness, and inconsistency of the data. By proper outlier detection from the spend, data 

is one step closer towards better and more effective spend analysis. 

 

The purpose of this study is to combine the two topics introduced – machine-learning-based 

outlier detection and strategic sourcing via data analytics. As data is an essential part of spend 

analytics, outliers cannot be avoided. Outlier detection algorithms could potentially provide a 

solution and a tool for spend analysis to discover, for instance, simple errors or fraudulent 

behavior in the sourcing processes and potentially increase the overall quality of the analysis. 

In this thesis, spend data is gathered from one anonymous customer of the case company Sievo. 

Outlier detection is delimited in identifying price outliers as well as possible. Four rather basic 

outlier detection algorithms were chosen for the study, and the purpose is to find the most 

suitable one for outlier detection in the spend data context. Finding the best alternative is 

accomplished by testing the algorithms in practice with real spend data and evaluating the 

unsupervised algorithms’ performances. 

 

Ruck (n.d) and Suplari (2019) provide some insight into the actual detection of the outliers from 

spend data and statistical approaches. This study’s significance comes with the utilization of 

machine learning in the spend analysis field that Coupa (Computer Weekly News, 2020) 

touches on with the clustering-based approach to fraud detection in procurement. The topic is 

also essential for the case company. Machine learning-based implementation for outlier 

detection could help Sievo develop its product and the outlier detection to be more accurate. 

This thesis is an initial study on the machine learning-based outlier detection in spend data 

giving first directions and insights for further research around the topic.  
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1.2 The objective and research question of the study 

 

This thesis aims to study the outlier detection in the spend data context and perform a 

comparative analysis within this specific context. The outcome is a suggestion of an outlier 

detection algorithm that the case company Sievo could potentially use as a part of the data 

preprocessing. The algorithms chosen for the study are One-Class Support Vector Machine 

(Schölkopf, et al., 2001), PCA-based outlier detection (Shyu, et al., 2003), Isolation Forest (Liu, 

et al., 2008), and Local Outlier Factor (Breunig, et al., 2000). The first two of these are requested 

by the case company to be included in the research. The last two algorithms were chosen based 

on the preliminary review before the thesis as conceptually slightly different options than the 

first two. Isolation Forest was chosen because it is an ensemble method. Local Outlier Factor 

is a density-based model alongside the Isolation Forest, which made it an interesting algorithm 

to be part of the study with two very different algorithms. Comparison of the algorithms is made 

based on the empirical study, which includes measuring the performance. The theoretical 

literature review strives to give the necessary information and knowledge about the chosen 

algorithms. A summary of the algorithms is gathered at the end of the theory section.  

 

The research questions of the thesis are formulated as follows: 

 

How do the One-Class SVM, PCA, Isolation Forest, and Local Outlier Factor algorithms 

perform compared to each other in price outlier detection in spend data? 

 

Which algorithm is suggested for the case company to develop a machine learning-based 

outlier detection? 

 

The study only includes the algorithms’ basic forms, but a simple hyperparameter tuning is 

performed to find the optimal parameters for each algorithm for the task. A detailed analysis of 

the outliers that the algorithms identify is not in the scope of this thesis. Labeled data that would 

include either labeling for regular data points or both inliers and outliers is not available. 

Labeling each data point by hand is laborious. Thus, the algorithms in the study are 

implemented unsupervised, which means using unlabeled data. 
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1.3 Delimitations, limitations, and assumptions 

 

Time limits the scope of this thesis to some extent. Many more outlier detection algorithms 

exist, but the number of examined algorithms in this thesis is delimited to four. The scope of 

the study has also been delimited to utilize the algorithms unsupervised. Creating labeling for 

the supervised and semi-supervised implementations requires an extensive amount of manual 

work of going through the data with an expert from the sample data owner company. Hence the 

labeling is not available for this study. The aforementioned sets an assumption that the chosen 

evaluation method of the unsupervised algorithm can rank the methods. The performance of 

the evaluation method itself is not studied further or compared to other evaluation methods. 

 

1.4 Case company Sievo 

 

Sievo is a Finnish software company and one of the global leaders in Procurement Analytics, 

providing intelligent spend management software. The company was established in 2003 and 

has over 180 employees in Helsinki, Finland, and Chicago, United States. Sievo manages over 

350 billion dollars of spend yearly, and customer references include international companies 

like ISS, Carlsberg, and Schindler. (Sievo, 2020a) Sievo extracts the raw spend data. Spend 

data can be from ERP systems, general ledgers, purchase orders, and other systems. The most 

common of these are ERP systems, where Sievo collects the data into one platform. In Sievo, 

the raw data is cleansed and enriched. Cleansing and enriching include spend data classification, 

supplier consolidation, and for example, translations and currency conversions. Then the data 

is collected into reports to be analyzed. (Sievo, 2020b) 

 

It is Sievo’s interest to provide more accurate and robust data and analytics for its customers. 

Outliers in data affect the data’s quality and accuracy, and Sievo is interested in detecting and 

cleansing the outliers from the data with a machine learning-based approach. Sievo’s customers 

are also interested in this as they are aware that their data may contain outliers and errors, 

leading to inaccurate spend analysis and insights.  
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1.5 Structure of the study 

 

The structure of this study consists of five chapters. The first chapter introduces the topic and 

describes the significance of the study. The research question is presented, as well as the 

objective of the study. The study’s scope is delimited in the introductory chapter, and the last 

two sections introduce the case company and the structure of the thesis.  The second chapter is 

a literature review on the topics of this thesis. The literature about the spend analysis and spend 

data is reviewed. The concept of an outlier is defined to gain more understanding of the topic 

and give information to discuss the reasons for spend data outliers based on the literature. In 

addition to these, the second chapter includes the theory behind all the algorithms used 

alongside the theoretical background of the evaluation method used to rank the algorithms in 

the empirical study part in chapters three and four. 

 

Chapter three describes the process and methodology that leads to the results in the fourth 

chapter. Chapter three describes the data preprocessing steps required and goes through the 

studied sample data set in an exploratory data analysis, including basic statistics and 

visualizations. The implementation of the algorithms is described in the third chapter. The 

performance evaluation method appliance in practice is the last section of chapter three, leading 

to chapter four. The study results are presented in the fourth chapter, the base for conclusions 

and discussion in chapter five. Chapter five summarizes the findings from the results and 

presents the conclusions drawn from the results. Also, recommendations for further research 

are given in the fifth chapter. 
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2 LITERATURE REVIEW 

 

In this chapter, previous research and knowledge are gathered around the topic of this study. 

Spend analysis and spend data are introduced, and how the purchasing processes affect the 

spend data. Outliers are presented and defined alongside combining the theory behind outliers 

and spend data. All the outlier detection algorithms later tested in chapter 3, and the evaluation 

method to rank the algorithms are defined in this chapter’s later parts. 

 

2.1 Spend analysis 

 

Strategic sourcing is playing a big role in the procurement operations of many organizations 

nowadays. The ability to access, organize, and analyze spend data plays a large role in more 

strategic and effective sourcing. Spend analysis is a process to do that. It analyzes historical 

purchasing data, also referred to as spend data, to identify savings opportunities and reduce 

costs. (Aberdeen Group, 2004; Pandit & Marmanis, 2008; Talluri & Narasimhan, 2004) 

Example questions that spend analysis aim to answer are, for example, the following: 

 

• How much did the company spend on purchasing product X? 

• How much did the company spend with supplier Y on product Z? 

• What was the spend amount in a specific category N in the first quarter of last year? 

 

The more complex type of questions that spend analysis could answer are: 

 

• Are there suppliers that are more valuable and strategic than others, and which suppliers 

are they? 

• What was the trend in spending over the last years? 

• How much spend is there associated with preferred suppliers, and what percentage of 

this spend is contracted? 

 

The existing data itself is not necessarily able to answer the questions introduced above. Pandit 

and Marmanis (2008) introduce the ETLA approach to implement the spend analysis solution 
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to get there. E stands for extracting T for transforming, L for loading, and A for analysis in the 

ETLA approach. In addition to these, Aberdeen Group (2004) divides the transforming step 

into four: validation, cleansing, classification, and enhancing.  

 

The data must be extracted from the system to get it into use. These systems can be Enterprise 

Resource Planning (ERP) systems or other internal and external data systems and files. 

Organizations usually have multiple different systems, and those may also be geographically 

scattered. To get comprehensive visibility of the organization’s procurement operations and 

spending, all these data sources must be synchronized (Pandit & Marmanis, 2008). In the 

transforming step, the data is normalized and enriched. This step also includes aggregating and 

organizing the spend data for the analysis. After the extraction, the Aberdeen Group (2004) 

identified three steps that include similar tasks as Pandit and Marmanis’ (2008) transformation 

step. The validation step ensures that the data is accurate and complete. After that, cleaning and 

classification are performed. The classification step can also include vendor consolidation and 

categorization.  

 

The same vendor in the data can be entered in different ways. Pandit and Marmanis (2008) 

bring up IBM as an example vendor that can be entered as “I.B.M” or “International Business 

Machines” in addition to the regular “IBM” spelling. The spend is coming from the same 

vendor, but both would be analyzed as separate vendors if not consolidated into one. Similarly, 

categorization helps to gather, for example, purchasing data of the same material from different 

sources together if the same material had, for instance, different identifiers or naming in 

different source systems. Overall, categorization maps the data to a standard classification 

system that can be enterprise-specific and brings the data to a lower level for spend analysis. 

(Pandit & Marmanis, 2008; Aberdeen Group, 2004) 

 

Cleansed data can be enriched or enhanced with some additional information. Vendor data can 

be enriched with additional information about the vendor’s diversity, quality, performance, or 

credit ratings. In addition to vendor enrichment, other kinds of enhancing information can also 

improve the spend data classification. After all the raw data preprocessing, it can be loaded into 

a database for further use. This loading part is the next step after transforming the data. (Pandit 

& Marmanis, 2008) 
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The data that has been preprocessed, cleaned, enhanced, and loaded to the database is ready for 

analysis. Necessary reports are run to get insights from the data. Implementing visualizations 

and taking business intelligence tools to look at the data and spend patterns from different 

dimensions. The most powerful way is to start analyzing the data from a higher level and 

advance to the transactional level. (Pandit & Marmanis, 2008) 

 

2.2 Spend data 

 

Spend transactions are the base for spend analysis. The process of generating the data is called 

the Procure-to-Pay (P2P) process. The process flow goes from contract to purchase order (PO) 

and from PO to invoice and payment (Figure 1). This process mostly applies to direct spend, 

which is the product’s cost of being manufactured, such as purchasing raw materials. Some of 

the Maintenance, Repair, and Operations (MRO) spend is also generated by the P2P process. 

An example of MRO spend is spare parts or maintenance required for the production 

machinery. The P2P process is not as used in indirect spend, including other general and 

administrative costs like marketing costs or purchasing office supplies. (Pandit & Marmanis, 

2008; Chowdhary, et al., 2011)  

 

 

Figure 1 Procure-to-Pay process flow (Pandit & Marmanis, 2008) 

 

Indirect spend does not usually follow the P2P process of purchasing. There are also other types 

of spend data than just the type that the P2P process generates. Invoices without a purchase 

order and contract are common alongside Purchasing cards (P-Cards) and company credit cards. 

From these, only invoices, transactions, and P-cards provide data with standard dimensions like 

purchase orders in the P2P process. Invoice information is typically Accounts Payable (AP) 

data, including both invoice information and payment information. Master data for general 

ledgers (GL), cost centers, vendors, and other fields with descriptions to identification numbers 

Contract PO Invoice Payment
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is important information from the spend analysis point of view to help to model the dimensions. 

Names for vendors instead of just vendor numbers could help, especially in the vendor 

consolidation process. (Pandit & Marmanis, 2008; Chowdhary, et al., 2011) Examples of the 

features that are likely to be included in the data from the P2P process and invoice transactions 

can be found in Table 1. 

 

Table 1 Examples of features in the P2P process and invoicing in accordance with Pandit and Marmanis 

(2008) 

 

Corporate P-Cards and credit cards have similar features to each other. Still, P-card transaction 

history is more structured and suitable for spend analysis purposes than credit card data. P-Card 

is built for purchasing purposes, and the transaction structure is built to be a suitable part of 

procurement and sourcing processes. Transaction data from corporate cards are structured and 

digital, thus easily available to be extracted as part of spend analysis. The issue with the credit 

card data is that all employees do not have a corporate credit card. They go through the process 

of purchasing by using their own credit card and submitting the receipts for verification. That 

process possibly affects the data quality since the employee usually does the expense report 

filing, leading to abnormalities in patterns of individual expense reimbursements discussed 

more in the next section. Both P-Cards and corporate credit cards are an important source of 

indirect spend data. (Pandit & Marmanis, 2008) Table 2 has an example of features of P-Card 

data that credit card data include. 

  

Vendor Total amount Invoice due 

PO Number Invoice number Billed quantity 

GL Account Discounts Billed amount 

Cost center Surcharges  

Item description Total amount billed  

Quantity Taxes  

Price Invoice amount  

Payment terms Invoice date  
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Table 2 Example set of features in P-Card data (Pandit & Marmanis, 2008) 

Account number Vendor 

User Cost center 

Transaction ID GL account 

Transaction date Item description 

Transaction amount  

 

Besides the P2P process, invoice transactions, AP master, and card data, other data sources can 

be included in the spend analysis. Receiving docks may have a system to track when shipments 

are delivered based on PO numbers. The receiving system can provide information about the 

delivered quantity. Third-party transportation companies can provide transaction details about 

transportation mode, location, and status. Other third-party data, like market research or 

supplier intelligence, enriches the data for the analysis even further. (Pandit & Marmanis, 2008) 

 

2.3 Outliers 

 

Outlier, anomaly, deviation, novelty, exception, or noise, all these terms describe data points in 

a data set that are somehow abnormal or significantly different from the majority of the data 

(Aggarwal, 2013; Hodge & Austin, 2004). The most suitable term for this occurrence in this 

thesis is an outlier. Barnett and Lewis (1987) define an outlier as “An outlying observation, or 

‘outlier,’ is one that appears to deviate markedly from other members of the sample data set in 

which it occurs.” Aggrawal (2013) also brings up Hawkins (1980) formal definition of an 

outlier: “An outlier is an observation which deviates so much from the other observations as to 

arouse suspicions ta different mechanism generated it.” The term “observation” in the 

definitions refers to data points in a data set. Both are commonly referred definitions, but 

universally accepted one does not exist. Mehrotra et al. (2017) shortly conclude outliers being 

substantial variations from the norm. This definition is a more statistical way of viewing outliers 

and normality, which, in this case, refers to the statistical norm of the data set. In Figure 2, 

outliers are displayed and marked according to the definitions above. Blue marks represent the 

normal data points, and orange marks are potential outliers. 
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Figure 2 A simple artificial example data set with few potential outliers marked orange 

 

Sridhar and Suman (2019) state that outlier is a value deviating from what is expected, but 

outlier detection can vary depending on the situation. Even though outliers are very often 

considered as errors, they may also include important information. When the data of a process 

behaves unusually, it leads to outliers, and the outlier gives information about the unusual 

characteristics within the process. (Aggarwal, 2013) There are multiple example applications 

where these unusual data points can be useful information instead of an error. Credit card fraud 

detection is one commonly presented use case for outlier detection, where the outliers are not 

removed as a part of data cleansing but as unusual data points that can be identified as fraud. 

Credit card fraud is an unauthorized usage of credit cards (Maimon & Rokach, 2005). This 

unauthorized use may show up as differing patterns like using the card in a geographically 

distant location, purchasing unusual items, or spending unusual amounts of money. Patterns 

like this in credit card transaction data are useful for banks or credit card providers to identify 

to minimize the clients’ and the credit card providers’ financial losses. (Maimon & Rokach, 

2005; Aggarwal, 2013) 

 

The other end of outliers also being useful when they are actual errors, and the application area 

defines the nature of the outliers. Outliers being errors are, for instance, typographical errors in 
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the system data entry caused by human error. Once this type of outlier is detected, it can be 

corrected and restored as a normal data point. (Hodge & Austin, 2004) Depending on the data 

use case, an error type of outliers may cause incorrect results or wrong defined model in 

modeling and analysis. (Maimon & Rokach, 2005) Outliers like this are also good to verify if 

they are actual errors. An example of this is research on the human population. A small group 

of people seems to be very heavy or a group of people much taller than the others in the research. 

These data points can be typographical errors if humans do the data collection. The other option 

here is that these are natural occurrences that simply seem like an outlier. (Hodge & Austin, 

2004) Overall, it is useful to detect and verify outliers from the data to ensure the modeling, 

analysis, and result correctness. 

 

2.4 Outliers in spend analysis 

 

Outliers in spend can be data input errors, errors in conversions, and confusion in measurement 

units. Spend data outliers can also indicate fraudulent behavior in the procurement processes 

(Phillips & Lanclos, 2014). The utilization of outlier detection methods could help the 

organization find and evaluate abnormal transactions to quickly resolve them, whether it is a 

fraud or merely a human error (Ball, 2019). 

 

Phillips and Lanclos (2014) identified activities that could potentially provide an opportunity 

for fraud in procurement processes. One could direct a contract to a favored vendor in the 

procurement planning phase instead of choosing the vendor with the most suitable offering. 

Deficient, fraudulent, or biased market research may restrict the competition leading to a 

situation where the material may be purchased overpriced. During the invoicing process, the 

vendor can consciously mischarge the purchaser, which is accidentally not noticed. (Phillips & 

Lanclos, 2014) Even though Phillips and Lanclos (2014) research acknowledge only the U.S 

Government procurement fraud scheme, the actions mentioned above can also apply to private 

sector procurement processes. 

 

Errors in the data impact data quality. Pandit and Marmanis (2008) have recognized different 

types of errors that spend data might include. These errors can be caused by misspellings, 

missing information, or inconsistencies in the attribute values. The errors are divided into two 
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types of errors – single-source and multisource. In single-source errors, the errors come from 

one source, and the cause of it does not have any connections to other data sources. Multisource 

errors are caused by the many data sources that the data is received from. Combining the data 

sources might cause errors in the data. From the price outlier point of view, the following errors 

are potential to produce such errors and then outliers per Pandit and Marmanis (2008): 

 

• Single-source errors: 

▪ Misspelling errors, like spelling “Supplier” incorrectly as “Suplier.” 

▪ Terms referring to the same thing phrased or formulated differently like status terms 

“completed” and “100%.” 

▪ The discrepancy between the values and schema, e.g., the date can be in an invalid 

format for a column having a date as a data type causing incorrect values 

• Multisource errors: 

▪ Different units of measurement formats between source systems, e.g., metric system 

versus the imperial system. 

▪ Different formats of values, for example, marking decimals with point or comma. 

 

All the listed are data point-level errors meaning that the errors are specific to a single data 

point and not the whole schema. Outliers caused by these kinds of errors in the data are 

important to detect and possibly eliminate to ensure the data quality for further use. (Pandit & 

Marmanis, 2008) 

 

Outliers or abnormal transactions in the procurement data can also be something other than 

fraud or error. A drastic change in the price, for example, may seem like a mistake at first glance 

but has a reasonable explanation behind it. Outlier detection could also bring the abnormalities 

up for management to review if actions like changing the contract or vendor are required (Ball, 

2019). Outlier detection in procurement does not necessarily have to aim to cleanse the data. It 

could also support the whole procurement process in terms of taking corrective actions to obtain 

savings. Another example is price opportunities. The price of material could drastically drop. 

In case that is not an error, the procurer could utilize the information and opportunity to acquire 

even more savings. 
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Outliers caused by errors are essential to detect and possibly eliminate to ensure the data quality 

for further use. The other point of view of the outliers is fraud detection and contract 

compliance, meaning examining the procurement process to detect violations within each 

procurement process activity. In addition to these, outliers can provide insights about actions 

that would require attention and, without outlier detection, could be left unnoticed. 

 

2.5 Outlier Detection 

 

Different outlier detection algorithms have been developed over time using different kinds of 

characterized approaches. The distance-based approach detects the points that are further away 

from the other points and marks them outliers. The density-based approach considers outliers 

being lower density regions in the data set. In the rank-based approach, outliers are data points 

that nearest neighbours have others as their nearest neighbours. (Mehrotra, et al., 2017) The 

nature of the data defines the fundamental approach of outlier detection on top of the distance, 

density, and rank-based approaches. The supervised approach is when there is a training data 

set with classification with existing labels. It is used to train the algorithm to recognize and 

classify the outliers as outliers. In a semi-supervised way, normal or abnormal behavior is taught 

with partial labels in the data. The unsupervised nature of the data means that there are no labels 

to train the algorithm. Hence it does not know what kind of criteria defines an outlier or a normal 

data point. (Hodge & Austin, 2004; Mehrotra, et al., 2017; Li & Fu, 2017) 

 

The data in outlier detection is usually partially labeled or unlabeled, so the approach is an un- 

or semi-supervised algorithm. As already mentioned, semi-supervised outlier detection 

involves partially labeled data. The ideal would be that the model learns the characteristics of 

normal data. Meaning that the model would be able to detect outliers as they differ from the 

regular data points. (Sridhar & Suman, 2019) The semi-supervised approach is suitable for both 

static and dynamic data due to learning only the normality. (Hodge & Austin, 2004) 

 

Labeling of the data requires manual work. If the amount of data is large, that is not very often 

done if the task to be performed is not a common classification. In many outlier detection cases, 

the model is unsupervised, where the data is unlabeled. The distances and comparisons are 

made based on the entire data set (Mehrotra, et al., 2017). The model is trained without actual 
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training data having labels. The model’s purpose is to recognize the most distant point or points 

and, as an output, give them as a potential outlier. (Hodge & Austin, 2004) In this thesis, all the 

models are utilized and researched as unsupervised, even though most of the next algorithms 

can also be implemented as supervised and semi-supervised. Against the Hodge and Austin 

(2004) approach, the data set is split into training and test sets. 

 

2.5.1 One-class Support Vector Machine 

 

One-class Support Vector Machine (OCSVM or OSVM) is a variant from Support Vector 

Machines (SVM) for outlier detection purposes. SVM has been performing at least as well as 

the competing methods in terms of generalization (Burges, 1998). OCSVM is basically a semi-

supervised model variant from SVMs, but it can also be used for unlabeled data in unsupervised 

cases. (Amer, et al., 2013; Shin, et al., 2005) The basic theory behind Support Vector Machines 

is the statistical learning theory findings by Vapnik (1995) and was initially developed for 

pattern recognition. Based on Vapnik’s theory, Schölkopf et al. (2000) proposed an enhanced 

SVM algorithm for regression and classification. Slightly later, Schölkopf et al. (2001) 

proposed an extension for their previous SVM algorithm to the case of unlabeled data called a 

single class SVM. 

 

Compared to basic SVM, One-Class SVM algorithms goal is to find and learn an optimal 

hyperplane or set of hyperplanes as a boundary separating the data from the origin. A small part 

of the data points can lie outside this hyperplane, and those are considered outliers, which is 

also the main difference between the traditional SVM and OCSVM. The basic SVM for 

classification purposes finds and learns a hyperplane between the two classes instead of origin 

and the whole data set. (Amer, et al., 2013) The One-Class SVM algorithm’s output is a binary 

value, 1 representing inliers and -1 marking outliers. An outlier score is also possible output 

that gives more information about the “outlier-ness” measure of the data point instead of a 

binary value telling if the point is an outlier or not. (Amer, et al., 2013; Sridhar & Suman, 2019) 

Figure 3 is an artificial example data set with a hyperplane separating outliers (-1) and inliers 

(+1) on each side of the hyperplane. 
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Figure 3 One-Class Support Vector Machine illustration where the blue line represents the learned decision 

boundary 

 

The key idea behind the OCSVM algorithm is that abnormal data points are expected to 

contribute less to the decision boundary than normal data points. The Gaussian kernel 

guarantees this boundary. All the data points in the kernel space lie in the same quadrant, which 

can be concluded from all the kernel entries being non-negative. Based on the above, the 

Gaussian kernel deals well with any dataset. (Amer, et al., 2013) 

 

One-Class SVM estimates function f that is positive on S and negative on the complement S 

and can be presented as follows: 

 

 
𝑓(𝑥) = {

+1   𝑖𝑓 𝑥 ∈ 𝑆

−1   𝑖𝑓 𝑥 ∈ 𝑆
 

(1) 

 

Where S is an estimate of a subset of the feature space bounded by a priori specified value 

v ∈ (0,1) that a test point from the dataset’s probability distribution P lies inside S. S is the 

complement of S. (Manevitz & Yousef, 2001) 

 

-1

+1
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Let x1, x2, …, xl be the training data points that belong to the one class Xt that is a subset of 

vector space ℝN (Manevitz & Yousef, 2001). According to Amer et al. (2013), g(·) can be 

defined so: 

 

 𝑔(𝑥) =  𝑤𝑇 𝜑(𝑥)  −  𝜌, (2) 

 

where w is a perpendicular vector to the decision boundary, x is a single data point, ρ represents 

the bias term, and φ(·) is the implicit transformation function defined by the kernel for 

projecting the data into a higher-dimensional space. The decision function of OCSVM returning 

positive values for inliers and otherwise negative is defined: 

 

 𝑓(𝑥) = 𝑠𝑔𝑛(𝑔(𝑥)), (3) 

 

where g(x) is defined in Equation (2) (Amer, et al., 2013) and sgn(·) is the signum function. 

The following quadric programming problem needs to be solved to separate the data set from 

the origin: 

 

 

𝑚𝑖𝑛𝑤,𝜉,𝜌

‖𝑤‖2

2
− 𝜌 +

1

𝑣𝑛
 ∑ 𝜉𝑖

𝑙

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝑤𝑇𝜑(𝑥𝑖)  ≥  𝜌 −  𝜉𝑖 , 𝑖 = 1,2, … , 𝑙    𝜉𝑖  ≥  0, 

 

(4) 

 

where 𝜉𝑖  is the slack variable for point i allowing it to lie on the opposite side of the boundary, 

l is the size of the training data set, and v is the regularization parameter (Amer, et al., 2013; 

Manevitz & Yousef, 2001).  

 

By defining the decision boundary as 

 

 𝑔(𝑥) = 0 (5) 

 

the distance of any chosen data point to the decision boundary can be computed as follows: 

(Amer, et al., 2013): 
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𝑑𝑖𝑠𝑡(𝑥) =

|𝑔(𝑥)|

‖𝑤‖
 

(6) 

 

Hence the algorithm is attempting to maximize the distance 
𝜌

‖𝑤‖
 when the origin is added to the 

equation, which can also be presented as minimization of  
‖𝑤‖2

2
− 𝜌 (Amer, et al., 2013).  

 

One-Class SVM algorithm is a popular unsupervised outlier detection technique. OCSVM can 

model any pattern of normal behavior being either linear or non-linear well. SVM based models 

are appealing options due to the good generalization if parameters are configured correctly. 

(Erfani, et al., 2016) In terms of generalization errors, Amer et al. (Amer, et al., 2013) mention 

that SVMs have been performing in outlier detection at least as well as other algorithms. It is 

also argued that SVMs can be used for dimensionality reduction purposes, making it an 

attractive option for outlier detection as it could potentially overcome the so-called “curse of 

dimensionality” (Amer, et al., 2013).  

 

2.5.2 PCA-based outlier detection 

 

Principal Component Analysis (PCA) is a method used for dimensionality reduction purposes. 

Usually, these principal components are determined before implementing a machine-learning 

algorithm to reduce the number of dimensions. Shyu et al. (2003) propose a PCA-based 

approach for outlier detection. Principal Component Analysis is already an unsupervised 

algorithm, so the outlier detection is also practical for a case with unlabeled data.  

 

In Principal Component Analysis, the data is transformed from correlated data into uncorrelated 

variables – principal components (PCs). (Ghorbel, et al., 2015) The principal components are 

linear combinations of random variables, and these variables must have certain properties. As 

already mentioned, PCs must be uncorrelated, the first PC’s variance must be the highest, the 

second one has the second-highest, and so on. The combined total variation of the principal 

components needs to match the total variation of the original variables. (Shyu, et al., 2003) 

PCA-based outlier detection approach assumes outliers to be different from the normal data 

points. The detection algorithm is built so that the normal group’s correlation matrix is 
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generated, and PCA is used on that. As this approach is unsupervised, it is not clear that the 

normal group data set would contain only normal data points. The initial expectation is that the 

number of outliers or suspicious data points is much smaller than normal data points. PCA 

method also assumes that outliers do not have the same correlation structure as the normal data 

points. (Shyu, et al., 2003) 

 

Principal Component Analysis calculates the eigenvalue of the covariance or the correlation 

matrix that usually give different principal components. In this definition, the covariance matrix 

is used. In the principal component analysis, let n represent the number of data points in the 

data set having b variables. The i-th data point is a row of the data set denoted by Xi = [xi1 … 

xib] where xij is the ith data point of Xj. Let the covariance matrix be denoted as b × b of the data 

set by Σ. Here the (i,j)th entry is the covariance between the ith and jth dimensions and 

diagonalized as 

 

 Σ = 𝑃 ∙ 𝐷 ∙  𝑃𝑇 , (7) 

 

where D is a diagonal matrix and P is an orthonormal matrix having corresponding columns to 

the orthonormal eigenvectors of Σ. These vectors provide the directions of the axes that the data 

should be projected. (Aggarwal, 2013) 

 

The way of modeling the “outlier-ness” or abnormality level of a data point is done using 

eigenvalue to calculate a normalized distance between the data point and the centroid along 

each principal component’s direction. Let ej̅ be the jth eigenvector, and along that direction, an 

eigenvalue (variance) of λj. (Aggarwal, 2013) To the centroid 𝜇̅, outlier score of a single data 

point x is given by the following equation (Aggarwal, 2013): 

 

 

𝑆𝑐𝑜𝑟𝑒(𝑥) = ∑
|(𝑥 − 𝜇) ∙  𝑒𝑗|

2

λ𝑗

𝑏

𝑗=1

 

(8) 

 

In the research of Shyu et al. (2003), the outcome is that the PCA-based method surpasses more 

traditional outlier detection methods like the k-nearest neighbour and Local Outlier Factor 

(LOF). Other advantages of the PCA-based method are that it does not assume the data to follow 
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any distribution. As the PCA method’s one of the original use cases is dimensionality reduction, 

it performs well in high-dimensional cases. (Shyu, et al., 2003) PCA-based outlier detection 

methods have also been expanded as non-linear dimensionality reduction is starting to find its 

application in the outlier detection field. An example of these is kernel principal component 

analysis (KPCA). (Ghorbel, et al., 2015) However, the scope of this thesis remains in the basic 

approach to PCA-based outlier detection.  

 

2.5.3 Isolation Forest 

 

Isolation Forest also referred to as iForest, is an outlier detection method where the abnormal 

data points are isolated instead of learning and characterizing the normal behaviour of the data. 

Isolation forest is an ensemble method, which means combining a collection of some methods. 

In the case of Isolation Forest, the ensemble consists of isolation trees (iTrees). Isolation Forest 

assumes that the outliers being rare and distant from the centers of the normal clusters. In other 

words, outliers represent the minority in the data set, and the values are very different from the 

normal data points. (Liu, et al., 2008) This method can be considered partially density-based 

and distance-based without actual calculation of distances or densities. 

 

Liu et al. (2008) define isolation as “separating an instance from the rest of the instances,” in 

which the term “instance” refers to a data point. Liu et al. (2008) also define outliers as rare and 

distant from the other data points, and they are easier to be separated from those other data 

points. The basic idea behind Isolation Forest is that it is a collection of tree structures that are 

used to partition the data set recursively. These structures are collected in each iteration where 

cuts parallel to axes and randomly selected are used to isolate each data point from the others. 

Partitioning of an outlier has fewer partitions than the data points closer to the others. Thus, the 

path in the case of outliers is much shorter, which means that different values distant from the 

others are more likely to get isolated earlier in the partitioning process. (Liu, et al., 2008) Figure 

4 shows the cuts of one data point (marked orange) to be isolated from the group of blue data 

points. 
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Figure 4 Example of isolating potential outlier (orange) from the rest of the data set (Hariri, et al., 2019) 

 

Let T be one node of an iTree, which can be either an external node without children or an 

internal node with one test node and precisely two child nodes – Tm and Tr. A test contains 

attribute q and splits value p where q < p dividing the data points into Tm and Tr. A given sample 

data set X having n data points from d-variate distribution is recursively divided by selecting q 

and p randomly until one of the following is reached: 

 

(a) the tree reaches the height limit 

(b) | X | = 1, where | X | is cardinality of X 

(c) all data points of X have the same value. 

 

The iTree is a binary tree where each node has exactly zero or two daughter nodes. All data 

points are also assumed to be distinct, and each one is isolated into an external node when the 

Isolation Tree is fully grown. (Liu, et al., 2008) 

 

For outlier detection, anomaly ranking or score is required. Path length h(x) of a data point x is 

not comparable itself as the maximum height of the iTree grows in the order of n, and the 

average height grows in the order of log n. The structure of an iTree is equivalent to a Binary 
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Search Tree (BST). Therefore, the estimation of average path length is calculated based on an 

unsuccessful BST search. For data set of n data points, the average path length of an 

unsuccessful BST search is: 

 

 𝑐(𝑛) =  2𝐻(𝑛 − 1) − (2(𝑛 − 1)/𝑛) (9) 

 

Where H(n-1) is estimated harmonic number ln(n-1) + 0.5772156649 (Euler’s constant). (Liu, 

et al., 2008) To normalize h(x) for given n, c(n) is used, and the outlier or anomaly score s of a 

data point x is 

 

 
𝑠(𝑥, 𝑛) = 2

−
𝑎𝑣𝑔(ℎ(𝑥))

𝑐(𝑛)  
(10) 

 

where avg(h(x)) is the average of h(x) and leading to the following scores 

 

• when avg(h(x)) → c(n), s → 0.5; 

• when avg(h(x)) → 0, s → 1; 

• avg(h(x)) → n ˗ 1, s → 0 

 

where s is monotonic to h(x). (Liu, et al., 2008) 

 

From the score s the following can be concluded: (i) any data points returning s very close to 1 

are definitely outliers, (ii) data points having s much smaller than 0.5 are relatively safe to be 

seen as inliers, and (iii) in case of all data points returning s approximately 0.5 the sample data 

set does not include any distinct outliers. (Liu, et al., 2008) 

 

Ding and Fei (2013) have studied iForest, and they have listed a few advantages of the Isolation 

Forest method. The isolation Forest method does not utilize any distance or density-based 

calculations, reducing the method’s computational cost. The complexity of iForest grows 

linearly, which means that the memory requirement of using the method is low. The last 

advantage mentioned is that the method’s ensemble nature turns weaker individual iTrees into 

a robust algorithm when combined and used together. Based on these advantages, the Isolation 

Forest seems a good algorithm from the performance point of view. (Ding & Fei, 2013) 
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2.5.4  Local Outlier Factor 

 

Local Outlier Factor (LOF) is an outlier detection method introduced by Breunig et al. (2000). 

It is one of the earliest outlier detection methods. The general idea is to determine how local 

the data point is with respect to the surrounding neighbour data points. It is a density-based 

method where the outliers are considered to be distant from the restricted neighbourhood. 

(Breunig, et al., 2000; Kotu & Deshpande, 2016; Celebi & Aydin, 2016) 

 

Local Outlier Factor is calculated for each data point, and the value indicates the “outlier-ness” 

of the data point. The key technique in LOF is the relative density score of the data point x, 

which is the measurement of the data point’s local deviation with respect to its nearest 

neighbours. Relative density is in concept level calculated as follows: 

 

 
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑥 =  

𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑥

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑎𝑙𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑
 

(11) 

 

(Kotu & Deshpande, 2016) For outliers, this calculated density is lower than the density of the 

neighbourhood. In other words, the space around an outlier is sparser compared to data points 

that have a lower distance to their neighbours. (Mehrotra, et al., 2017; Celebi & Aydin, 2016; 

Kotu & Deshpande, 2016) 

 

According to Schubert et al. (2012 cited Breunig, et al., 2000), LOF uses the k-nearest 

neighbours (kNNs) for context and reference of data point x, using a density model called local 

reachability density (lrd). Let o represent a neighbour data point, M a parameter value for the 

minimum number of neighbour data points, and NM(x) parameter value for the neighbourhood’s 

volume where o belongs as well. Local reachability density for a single data point x is defined 

as follows: 

 

 
𝑙𝑟𝑑𝑀(𝑥) =  1/

∑ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 - 𝑑𝑖𝑠𝑡𝑀(𝑥, 𝑜) 𝑝∈𝑁𝑀(𝑥)

|𝑁𝑀(𝑥)|
 

(12) 

 

Where reachability-dist
M

(x,o) is defined as: 
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 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦-𝑑𝑖𝑠𝑡𝑀(𝑥, 𝑜)  =  𝑚𝑎𝑥{𝑀-𝑑𝑖𝑠𝑡(𝑜), 𝑑𝑖𝑠𝑡(𝑥, 𝑜)} (13) 

 

In Equation (13), dist is a distance between x and o, and M-dist(o) is the distance between o and 

the Mth nearest neighbour of o. The following comparison calculates the final score: 

 

 

𝐿𝑂𝐹𝑀(𝑥) =
∑

𝑙𝑟𝑑𝑀(𝑜)
𝑙𝑟𝑑𝑀(𝑥)𝑝∈𝑁𝑀(𝑥)

|𝑁𝑀(𝑥)|
 

(14) 

 

(Breunig, et al., 2000; Schubert, et al., 2012) 

 

The Local Outlier Factor method has been successful in outlier detection cases where the data 

sets density has been non-uniform in multiple different fields. Varying density has been an issue 

with the simplest density-based clustering outlier detection methods, and LOF was successfully 

proposed to overcome this challenge. However, in the LOF method, the local outlier factor is 

calculated for each data point, decreasing the efficiency and calculation time of this algorithm 

significantly when the number of data points increases. (Kotu & Deshpande, 2016; Su, et al., 

2019) Researchers have been extending the basic LOF model to increase efficiency and 

accuracy (Schubert, et al., 2012). In this thesis, the method used is LOF in its original format 

that Breunig et al. (2000) proposed. In the research of Breunig et al. (2000), LOF turned out 

efficient and practical for large data sets. 

 

2.6 Summary of the outlier detection methods 

 

A comparison of the outlier detection algorithms presented in the previous section can be found 

in Table 3. It includes advantages and disadvantages listed based on the previous section’s 

literature review. 
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Table 3 Summary of the outlier detection algorithms 

 One-Class SVM PCA Isolation Forest LOF 

Basic concept Finding a hyperplane 

separating the data 

from the origin. Data 

points between the 

hyperplane and origin 

are labeled as 

outliers. 

The normal 

group’s 

correlation matrix 

is used to 

calculate the 

principal 

components. The 

reconstruction 

error is used to 

determine if the 

data point is an 

outlier. 

Outliers being rare 

and distant, are easier 

to isolate from the 

other data points 

when partitioning the 

data set recursively. 

The relative density 

around the data 

point measures the 

data point’s local 

deviation with 

respect to its k-

nearest neighbours. 

Advantages - Good generalization 

level 

- Finds patterns well 

in both linear and 

non-linear cases 

- Goes well with 

high dimensional 

cases 

- The data is not 

expected to 

follow any 

distribution 

-No distance or 

density calculations 

required reducing the 

computational 

requirements 

-Ensemble method 

quality turns 

individual models 

into a more robust 

algorithm 

- Good performance 

in cases where the 

density of the data 

set varies 

- Suitable for non-

uniform density 

cases 

Disadvantages - Rather high 

computational 

requirements (Amer, 

et al., 2013) 

- Poor performance 

with more complex 

data sets (Amer, et 

al., 2013) 

- The linear nature 

of the model is 

not suitable for all 

practical cases 

(Hodge & Austin, 

2004) 

- Does not consider 

the relative 

importance of the 

features (Chen & Wu, 

2018) 

- Local density 

might not be 

enough for more 

complex data sets 

(Gao, et al., 2011) 

- The quality of the 

results depends 

highly on the 

determination of the 

number of the k-

nearest neighbours 

(Gao, et al., 2011) 
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Based on the literature review and the above summary (Table 3), one cannot determine which 

would be the best outlier detection method for spend analysis purposes. 

 

2.7 Evaluation of unsupervised learning methods 

 

Evaluation and ranking must be performed somehow to determine the best alternative algorithm 

for outlier detection. In unlabeled data and unsupervised learning, the evaluation, comparison, 

and benchmarking are more complicated than when the data is labeled. Traditional criteria like 

Receiver Operating Characteristic (ROC) curve cannot be used (Goix, 2016a). Goix et al. 

(2015) introduce Excess-Mass (EM) and Mass-Volume (MV) curves to get the information on 

how well each method performs in unsupervised outlier detection so that the best one of the 

alternatives can be chosen. 

 

The Mass-Volume calculation is an extension of the ROC curve, where partial preorder is 

produced on the scoring functions, which means that the selection of optimal elements defines 

the set of scoring functions having a minimum MV curve everywhere. (Clémençon & Thomas, 

2018)  The excess-Mass curve is calculated similarly to the Mass-Volume curve, but the optimal 

elements are determined by mass maximization. Mass-Volume and Excess-Mass curves do not 

work so well with high-dimensional data. Goix (2016a) mentions that MV and EM performance 

decreases drastically if the number of dimensions exceeds eight. However, a way to come 

around this issue has been proposed. This approach works so that the number of features to 

calculate MV and EM is chosen randomly, and the performance score is obtained by averaging 

the different draws of the features. Interpretation of these values goes as follows: best-

performing algorithms have the lowest EM and highest MV score. (Goix, 2016a) 

 

In unsupervised cases, the distribution F of the normal data set without outliers is unknown, 

which means that the MV and EM curves need to be estimated. The decision function is an 

output of an outlier detection algorithm, which includes the outlier scores of each data point 

before the scores are turned into binary values 1 and 0 or +1 and -1. Let e ∈ E be a decision 

function, X1,…, Xz independent and identically distributed random variables with cumulative 

distribution function F representing the normal behavior and set ℙz to be: 
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ℙ𝑧(𝑒 ≥ 𝑡) =

1

𝑧
 ∑ 𝟙𝐸(𝑿𝑖)≥𝑡

𝑧

𝑖=1

, 
(15) 

 

where ℙz is the probability of an event z and t is a discretized version of the Lagrangian 

multiplier. In Equation (15), 𝟙E indicator function of E representing the membership of Xz in E. 

(Goix, 2016a; Goix, 2016b).  

 

Then the MV and EM curves are defined as follows: 

 

 𝑀𝑉̂𝑠(𝛼) = inf
𝑢≥0

{Leb(𝑒 ≥ 𝑢) 𝑠. 𝑡. ℙ𝑛(𝑒 ≥ 𝑢) ≥ 𝛼} (16) 

 

 𝐸𝑀̂𝑠(𝑡) = sup
𝑢≥0

ℙ𝑛(𝑒 ≥ 𝑢) − 𝑡Leb(𝑒 ≥ 𝑢)  (17) 

 

for any α ∈ (0,1) and t > 0 where the volume Leb(e ≥ u) is the Lebesgue integral, and u is a 

unique element in the decision function of the sample data set X. (Goix, 2016a). Leb(e ≥ u) is 

estimated with Monte-Carlo approximation in case of fewer than 8 dimensions in the data set. 

Empirically, the performance criteria based on EM and MV can be computed using the 

following equations: 

 

 𝐶̂𝐸𝑀(𝑒) = ‖𝐸𝑀̂𝑒‖
𝐿1(𝐼𝐸𝑀)

        𝐼𝐸𝑀 = [0, 𝐸𝑀̂−1(0.9)] 

 

(18) 

 

 

 𝐶̂𝑀𝑉(𝑒) = ‖𝑀𝑉̂𝑒‖
𝐿1(𝐼𝑀𝑉)

         𝐼𝑀𝑉 = [0.9,0.999] (19) 

 

(Goix, 2016a). As the accuracy is evaluated, one natural interval of IMV could be from 0.9 to 1. 

MV deviates from 1 when the support is infinite. Thus IMV = [0.9,0.999] is chosen. Similarly 

with IEM = [0, EM−1(0.9)], where EM−1
e(0.9) = inf{t ≥ 0, EMe(t) ≤ 0.9}, as EMe(0) is equal to 

1. (Goix, 2016b) 
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In the existing literature, MV and EM as an evaluation criterion have also performed well in 

the high dimensional cases. Compared to ROC and Precision-Recall (PR) curve, Mass-Volume, 

and Excess-Mass curves have agreed with the supervised criterion in approximately 80% of the 

cases. In Goix’s (2016a) research, 12 different data sets were used to rank iForest, OCSVM, 

and LOF algorithms alongside ROC and PR. The study concluded that MV and EM could rank 

unsupervised outlier detection methods without labels in the data to some extent. In the cases 

where ROC and PR disagree with each other, MV’s and EM’s performance is not giving as 

promising results either. (Goix, 2016a) 
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3 RESEARCH METHODS 

 

This chapter introduces the data, research methodology, and the process of the empirical study. 

 

3.1 Data set preprocessing and exploratory data analysis 

 

The dataset used in this research is an actual transactional dataset from an anonymous Sievo 

client. Due to information security reasons, no information about the client company is revealed 

at any point. The dataset is exported from the Sievo database using Microsoft SQL Server 

Manager and query in SQL language into Comma-separated values (CSV) format file. Data 

rows with spend amount and quantity above zero and year 2019 were chosen from the database. 

In addition to this, transactions that reverse each other has been eliminated. These kinds of 

counter transactions appear when the operator has made a mistake in submitting a purchasing 

document to the system. This mistake can be corrected by first submitting a reversing document 

with the same spend amount in the opposite direction. Only after that, the user would submit a 

new, correct transaction. For example, the user may have created a document with an incorrect 

amount of 10. A new document with the amount of -10 would be created to cancel the first 

document. In Sievo, these canceled double transactions are detected by comparing the 

transaction lines and amounts. 

 

The file containing the data is in a virtual machine hosted by Sievo, imported in Python for 

further analysis. The whole undivided dataset in the CSV-file imported in Python contains 51 

columns and 2 002 387 rows. All the features contain identification numbers unique within the 

Sievo database and determined separately by Sievo for each transaction row. The data set does 

not contain original data values from the client’s raw source data, which means that all the data 

are anonymized. It is impossible to determine the actual values of the data’s features. Year 

information, spend amount, and quantity are exceptions as they contain the transactions’ actual 

values. Since all the other values are anonymized, one cannot determine the actual vendor 

company, plant, material, or document description of the spend transaction. Only comparisons 

like differences between the features within the examined rows can be examined. 
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The data are prepared for exploratory analysis and algorithm implementation. The whole script 

of the data preparation and algorithm implementation is done in Python language and within a 

Jupyter notebook. The preparation starts with importing the CSV-file containing the data into 

a dataframe object using a Python software library called Pandas. The dataframe format makes 

manipulating and handling the dataset more convenient. With the imported dataframe, the 

preparation continues with choosing a subset of the data that has been classified to one category 

already in the Sievo application. The category was chosen based on the number of spend 

transaction rows. The category chosen included the largest number of rows at the exporting 

point of time. 

 

Each purchase’s price is calculated by dividing the spend amount by the purchased quantity and 

saved as a new column in the dataframe. After calculating the price, four of the most important 

features are chosen for the dataset alongside with price for further analysis. Based on the 

previous chapter’s literature review, vendor information was first chosen as an essential feature 

for detecting price outliers. Vendors are the factor in the sourcing process that affects the price 

as they are the party defining the price and invoicing based on that. Vendors are also affecting 

the possible fraudulent invoicing. The other two features chosen for further analysis are material 

and material group information. Material has a high impact on defining the price. Material 

group information gives slightly higher-level information about the material and may also be 

useful when looking for price outliers in transactional data. Material information is chosen 

because larger deviations within one material (or material group) might signal outliers. At the 

end of the data preprocessing, the number of features in the dataset is 4. The number of rows is 

44 219. 

 

The data set’s basic shape can be seen in Figure 5, where the scatter plots show the shape of the 

data and histograms in the diagonal, showing the shapes of value counts of each feature. Even 

though the data is in scatter plots, the other variables except price are categorical. Since the 

categorical values are in numerical identification number format, the values can be visualized 

in a scatter plot. Price as a numerical value is also easy to visualize against all the other features.  
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Figure 5 Basic shape of the data set in a scatter plot matrix 

 

There are a few clearer clusters in the categorical graphs that do not include the price. In the 

vendor-material scatter plot, there are some clusters in the middle of the graph. Those clusters 

tell that most probably there are specific vendors that the company uses to purchase specific 

materials. Price seems to have few values that are significantly different from the other data 

points. As 94.4% of the data points have price value under 500, Figure 6 shows the same scatter 

plot matrix but with a subset of the data with data points having price less than 500. The shape 

of the price against the other features can be seen more clearly. There are widely different prices 

within one material group, and the same applies to materials and vendors. There are no clear 

price clusters in any of the features. The prices seem to be distributed between specific material 
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groups and somewhat clearly between certain materials and vendors. The previously mentioned 

is visible in the scatter plots with price as the data points are distributed vertically along specific 

identification values. 

 

 

Figure 6 Scatter plot matrix of the data with price value less than 500 

 

Table 4 shows the statistical summary of the price feature in the dataset. The difference between 

the 75th percentile and the maximum value is significantly large. From the statistical point of 

view, this could indicate the existence of outliers with extreme price values in the dataset. High 

standard deviation confirms that the price values are spread out rather widely.  
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Table 4 Statistical summary of price 

Count 44 219 

Mean 175.0313 

Standard deviation 890.2701 

Min 0.000071 

25th percentile 0.0923 

50th percentile 0.5005 

75th percentile 4.3052 

Max 62 396.2773 

 

Within the 44 219 rows, there are not as many unique categorical values in the dataset. Table 5 

shows a summary of the value counts of other variables than price. 

 

Table 5 Summary of value counts of categorical variables 

 Material group Material Vendor 

Maximum count 10 306 3 323 6 824 

Minimum count 1 1 1 

Count of unique values 85 935 94 

 

Based on the exploratory data analysis, there are potential outliers in the dataset. The scatter 

plot matrices (Figure 5 and Figure 6) show that some data points are relatively isolated from 

the other data points. The statistical summary of the price (Table 4) shows that price outliers 

potentially exist. 

 

For comparison purposes, a threshold value for the proportion of outliers in the data set is 

needed. The case company utilizes a statistical method for that. Briefly explained, it calculates 

the median prices of material and supplier combinations. Upper and lower limits to the median 

price are determined, and all material supplier combinations with a price outside these limits 

are labeled as outliers. This method resembles a statistical method called Interquartile Range 

(IQR). From this particular data set described above, the statistical method determined 

approximately 1% to be outliers. However, a human expert has not gone through these outliers, 
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and they are not validated. The 1% threshold value only gives a direction for the performance 

analysis of the algorithms. 

 

3.2 Methodology and implementation of the algorithms 

 

As already mentioned in the previous section, this research’s execution was done in Jupyter 

notebook with Python. In Python, lots of ready-made packages are available. Machine Learning 

library Scikit-learn created by Pedregosa et al. (2011) is used for most of this research. Python 

Outlier Detection (PyOD) is another Python library for outlier detection built by Zhao et al. 

(2019). These libraries include the outlier detection algorithms introduced in the previous 

chapter. To evaluate the algorithms’ performance for the benchmarking, Excess-Mass, and 

Mass-Volume measures by Goix (2016a) are used. The author provides a ready-to-use function 

for these in the GitHub repository. In addition to EM and MV measures and curves, each 

algorithm’s execution time is measured with Python module time. The execution time 

measurement works so that the timer is started before the predicting function is called. The 

timer stops when the algorithm has calculated the labels for the test data points. The execution 

time is the difference between the start and end of the timer in seconds. 

 

3.2.1 Parameter tuning 

 

Parameter tuning is implemented by utilizing a for loop and a dataframe, including all possible 

combinations of chosen parameters and values. First, the most critical hyperparameters are 

chosen, and for those parameters, the values tried in the tuning loop are determined. The 

dataframe includes all the possible combinations of these values by calculating the Cartesian 

Product from the value lists given. Each row of this combination dataframe is an input to 

initialize the parameter tuning model in a loop. In each iteration loop, the model is taught with 

the training data. In the same iteration round, the decision function of the test data is calculated 

to get the performance measure Excess-Mass. EM is calculated within each iteration of the loop 

and saved to a list for analyzing the initialized algorithm’s performance. Most optimal 

parameters for the model are found by finding the hyperparameter values with the highest 

resulting EM measure. 
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Hyperparameters tested for One-Class SVM are kernel type, gamma, and degree if kernel type 

is polynomial. Kernel type is used to precompute the kernel matrix, which determines the 

hyperplane between outliers and inliers. Gamma is the kernel coefficient for all the different 

kernel types. It determines how far the influence of a single data point reaches in training. High 

values of gamma mean that the influence reach is close, and for low values, the opposite. 

Gamma value “auto” is one divided by the number of features in the data. Value “scale” divides 

one by multiplying the number of features by the data set’s variance. The degree is determined 

for the polynomial kernel type only, and all the other kernels ignore the degree parameter. The 

table, including the possible combinations, is built as short as possible to keep the algorithm’s 

running time in control. The polynomial kernel type has eight different combinations because 

of the degree changes. The other two kernels have just two options as the degree does not affect 

the calculation. Table 6 shows each hyperparameter’s possible values and the optimal 

combination bolded, giving the maximum EM value. 

 

Table 6 Hyperparameters and values for OCSVM tuning 

Parameter Values 

kernel {polynomial, RBF, sigmoid} 

gamma {scale, auto} 

degree {1, 2, 3, 4} 

 

Figure 7 shows the development of the Excess-Mass value within the combinations. The 

peaking combination with the highest Excess-Mass is the one bolded in Table 6. There can be 

seen that from 12 options, only one gives a significantly higher result than the others. 
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Figure 7 Excess-Mass scores of each OCSVM hyperparameter combination 

 

For PCA, the optimal hyperparameters to be determined are the number of components used 

for calculating the PCA (n-components), contamination, standardization, and the type of 

singular value decomposition (SVD) solver. Contamination is a threshold value for the decision 

function, and it determines the proportion of the outliers. For example, if the contamination is 

set to 50%, half of the data points are labeled as outliers. Standardization is either done or not, 

and if done, the data is converted to zero mean and unit variance (Zhao, et al., 2019). SVD 

solver called as “full” calls standard LAPACK solver from Python SciPy package. SVD solver 

“arpack” calls ARPACK solver from the same SciPy package and has a requirement that the 

number of components chosen cannot be equal to the number of features in the data. The rows 

in the parameter table with the “arpack” solver and 4 components were dropped out before 

running the parameter tuning. “Randomized” solver uses the SVD method of Halko et al. 

(2011). 

 

Table 7 shows the values that constructed the parameter table for the PCA tuning and the chosen 

ones bolded. Interestingly, all the possible combinations with 1 component gave exactly the 

same highest EM values. The aforementioned can be observed from Figure 8. Thus, some 

decisions about the other parameters for the actual study were made based on other criteria.  
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Table 7 Hyperparameters and values for PCA tuning 

Parameter Values 

n-components {1, 2, 3, 4} 

contamination {0.001, 0.01, 0.1} 

standardization {true, false} 

SVD solver {full, arpack, randomized} 

 

Multiple combinations give precisely the same Excess-Mass value. It is known that the number 

of outliers is around 1% in the data set. Therefore, contamination was chosen to get the value 

of 0.01. Standardization does not affect the results either. Hence it has been left out to avoid 

any extra calculation time. For the SVD solver, the documentation by Zhao et al. (2019) 

suggests the “randomized” solver for lower dimensional cases. Therefore it was chosen. 

 

 

Figure 8 Excess-Mass scores of each PCA hyperparameter combination 

 

Isolation Forest parameter tuning includes finding the optimal number of base estimators (n-

estimators), maximum number of data points used for all the trees in the ensemble (max 

samples), bootstrapping, and the maximum number of features used to train each base estimator 

(max features). “Auto” maximum number of data points in each tree is minimum from the 

number of data points in the data set and 256. The bootstrapping determines if the trees would 

be fitted on random subsets of training data. Table 8 shows the parameter values that are used 

to build the combinations for parameter tuning. The optimal values are bolded. 
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Table 8 Hyperparameters and values for iForest tuning 

Parameter Values 

n-estimators {10, 50, 100, 500} 

max samples {100, 500, 1000, all, auto} 

bootstrap {true, false} 

max features {1, 2, 3, 4} 

 

Figure 9 shows the Isolation Forest’s development of Excess-Mass values over the different 

combinations of parameters. The index of the best combination is 109. From the figure can be 

concluded that many parameter combinations give pretty good results, which means that the 

algorithm is somewhat stable in terms of changes in the parameters. 

 

 

Figure 9 Excess-Mass scores of each iForest hyperparameter combination 

 

Local Outlier Factor has only two critical parameters to be tuned – the number of neighbours 

(n-neighbours) and contamination. The number of neighbours determines how many 

neighbours are used to calculate the relative density around the data point. Contamination 

determines the proportion of the outliers in the dataset. Table 9 has the values used for LOF 

parameter tuning. With the most optimal contamination, 0.001 with 90 neighbours gave the 

highest EM value. 
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Table 9 Hyperparameters and values for LOF tuning 

Parameter Values 

n-neighbours {10, 20, 30, …, 70, 80, 90, 100} 

contamination {0.001, 0.01, 0.1, 0.2} 

 

From Figure 10 can be observed that the Local Outlier Factor Excess-Mass measures with 

different hyperparameters are rather stable, excluding the few very poorly performing ones. In 

the graph, combination number 24 gives the best performing parameters, also shown in Table 

9. 

 

 

Figure 10 Excess-Mass scores of each LOF hyperparameter combination 

 

The most optimal parameters for each algorithm are chosen to initialize each algorithm 

described in the next subsection. 

 

3.2.2 Implementing the algorithms 

 

The algorithms’ actual testing happens by iterating the train-test split, training, and testing the 

model in a loop. All the important measures for further analysis are saved from each iteration 
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loop, and then the average results are presented in the next chapter. In a format of simplified 

pseudo-code following Python code style, the iteration loop of each algorithm looks as follows: 

1. model = Algorithm(parameters) 
2.   
3. for i in range(1,n): 
4.   
5.  df_train, df_test = train_test_split(df, test_size=0.50, 

6.  random_state = i) 

7.  
8.   model.fit(df_train) 
9.   model_labels = model.predict(df_test) 
10. s_df = model.decision_function(df_test) 

11. s_unif = model.decision_function(unif) 

12. em = EM(s_df, s_unif) 

13. mv = MV(s_df, s_unif) 

 

Here, the first line initializes the model with the given parameters. Parameter tuning in the 

previous subsection gives the parameter values for each algorithm. The loop iterates the lines 

from 5. to 13. for n times. The data set (df) is split into a training and testing set (df_train and 

df_test). Here the ratio between training and testing is 50%, which means that half of the data 

points are for training and the other half is for testing. The train-test-split’s random state 

determines how many times the split is randomly done before assigning the training and testing 

sets. The eighth line fits the initialized model to the training data, i.e., trains the model. Line 9 

predicts the outlier and inlier labels for the test data set, and line 10 saves the decision function 

that determines the labeling for the test data. The same decision function is saved for the 

uniformly distributed data to calculate the Excess-Mass and Mass-Volume measures in lines 12 

and 13. All the necessary results from each iteration are saved into a list for further analysis. 

 

The first algorithm tested and implemented for the data is the One-Class Support Vector 

Machine. The used Python package was the Scikit-learn OCSVM algorithm, which is built 

based on the LIBSVM library by Chang & Lin (2011). The One-Class SVM implementation 

by Chang and Lin is based on the OCSVM theory of Schölkopf et al. (2001). The parameters 

and the values for those can be found in Table 6, where the optimal values are bolded. The 

algorithm is iterated 100 times, and OCSVM predict-function returns label -1 for outliers and 

1 for inliers. 
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PCA based outlier detection algorithm implemented in this research is from the PyOD library. 

The calculation is based on Shyu et al. (2003) research, built by Zhao et al. (2019). Tuned 

parameters for PCA can be found in Table 7. Train-test-split, training, and evaluation are 

iterated 100 times as one iteration takes less than 1 second for PCA. The labeling in PCA is 1 

for outliers and 0 for the inliers.  

 

The Isolation Forest evaluated in this study is from the Scikit-learn library by Pedregosa et al. 

(2011). The algorithm’s theoretical background from two studies by Liu et al. (2008) and 

(2012). Table 8 shows the optimal parameters used for initializing the Isolation Forest. The 

calculation time of the iForest is less than one minute. Thus, the number of iterations done is 

100 as the script’s total running time stays moderate. Scikit-learn Isolation Forest returns -1 for 

outliers and 1 for inliers. 

 

The LOF algorithm used is from the Scikit-learn library, and it is built based on the study by 

Breunig et al. (2000). Tuned parameters for LOF can be found in Table 9, and the loop iterates 

the splitting, training, and evaluation measure calculation 100 times. Like Isolation Forest, LOF 

returns -1 for outliers and 1 for inliers when calling predict-function.  

 

3.3 Evaluation and benchmarking method 

 

Comparing the different outlier detection algorithms to determine the best one for the purpose 

is done by measuring the EM and MV measures. The performance is evaluated using Goix’s 

(2016a) Mass-Volume and Excess-Mass measures to rank each algorithm compared to each 

other. In addition to the MV and EM measures, some other aspects are also considered part of 

this comparison and benchmarking, such as calculation time and implementation requirements. 

As the best performing algorithm is potentially going to be implemented as a part of an actual 

product, things like calculation time and implementation requirements are also essential to take 

into consideration on the side of the performance of the algorithm being mainly under 

evaluation. 

 

As already mentioned, the author of the EM and MV functions is Goix (2016a; Goix, 2016b), 

and they are available in the authors GitHub repository. The maximum value of t was defined 
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to be 0.9, and α was determined to be a minimum of 0.9 and 0.999 at maximum. Volume support 

is used to calculate t and both measures – EM and MV. Volume support is a product of an array 

that is the difference between the maximum and the minimum value of the data set. Value t is 

defined as a range between 0 and 100 divided by volume support with a step of 0.01 divided by 

the volume support. Data with uniform distribution is drawn by using the Numpy library in 

Python that includes random uniform function. The uniform distribution data is the same size 

as the studied test data set. The minimum and maximum values also follow the original data set 

of this study. As a final step before the actual EM and MV calculation, the algorithms’ decision 

functions were defined for both uniformly distributed and the actual data. After defining all the 

EM and MV curve calculation parameters, the EM and MV scores are calculated. For plotting 

purposes, a value called “amax” was determined. “Amax” defines how many values are taken 

to when plotting the curve. Here the “amax” is -1, which means that all the values are taken 

into the plot except the very last values for the EM curves. 
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4 RESULTS 

 

In this chapter, all the results obtained from the study described in the previous chapter are 

introduced. In addition to Excess-Mass and Mass-Volume measures, outlier counts, 

proportions, and calculation times are presented to get more insights. All the results are averages 

of the iterated values, as each algorithm was repeatedly run 100 times with different training 

and testing data sets. 

 

Figure 11 shows the Excess-Mass curves for all the models. The area under the EM curve is the 

largest with the best performing algorithm based on EM criteria. Based on visual interpretation, 

one cannot clearly tell whether the area under iForest’s curve is larger than OCSVM’s. The 

ranking of PCA and Local Outlier Factor is clearer in the graph. The EM score of PCA seems 

to be the lowest based on the figure. LOF seems to have performed better but not as well as 

OCSVM or Isolation Forest.  

 

 

Figure 11 Excess-Mass curves 

 

The Mass-Volume curves can be found in Figure 12. The algorithm with the smallest MV score 

is the best performing model. In other words, a smaller area under the curve is the most desirable 

in terms of performance. Based on the visual interpretation of Figure 12, Isolation Forest seems 

to have the smallest area under the MV curve. OCSVM’s score is not as close to the iForest’s 
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as it is with EM measure. Overall ordering of the MV results is clearly visible. PCA keeps on 

performing poorly, and LOF somewhat better than PCA.  

 

 

Figure 12 Mass-Volume curves 

 

Table 10 summarizes the results seen in the above curves showing the exact values of the scores. 

The best results are bolded, and the worst are underlined. The ordering of OCSVM and iForest 

was not evident in Figure 11. Table 10 shows that the algorithms’ scores are very close to each 

other, but Isolation Forest has a slightly higher EM score making it the best performing 

algorithm in terms of EM measure.  

 

Table 10 Table of results including EM and MV scores and execution time of the algorithm in seconds 
 

EM score MV score Calculation time (sec) 

OCSVM 4.5036e-20 3.4284e+19 14.5504 

PCA 4.3523e-23 2.1584e+20 0.0031 

Isolation Forest 4.5339e-20 5.368e+16 1.7164 

LOF 4.3691e-23 1.5411e+20 0.7299 

 

Table 10 verifies that Isolation Forest has the lowest MV score, observed already from Figure 

12. Only based on the MV score, the other algorithms’ scores are not very close to iForest. Both 

measures agree with each other about the ordering. OCSVM is the second-best algorithm, 
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followed by LOF. The algorithms’ computational performance is also visible in Table 10, and 

OCSVM calculation seems to take significantly more time than the others. Calculating labels 

with PCA takes barely any time making it the fastest algorithm of all. 

 

Table 11 includes the counts of outliers and inliers of all the algorithms. As it is known that the 

proportion of outliers is less than 1%, the proportion of outliers labeled by each algorithm was 

also calculated. Even though one data point cannot be partially labeled to be an outlier, the 

counts are not integers. On each iteration round, the counts of the labels were saved, and later 

the average of both counts was calculated, which explains the results not being whole numbers. 

 

Table 11 Each algorithm’s outlier and inlier count and proportion of outliers 

 OCSVM PCA iForest LOF 

Inliers 10 173.2 21 894.8 20 885.0 22 101.2 

Outliers 11 936.8 215.2 1 225.0 8.8 

Proportion of outliers 53.99% 0.97% 5.54% 0.04% 

 

The share of outliers labeled by OCSVM is significantly higher than the same share of other 

algorithms, allocating over 50% of the data points to be outliers. PCA and LOF got closer to 

the 1% threshold given by the case company’s existing logic. Isolation Forest’s ratio of 5.54% 

is quite far from the threshold of 1%. 

 

The ranking of the algorithms based on the EM and MV is the following. Isolation Forest 

performed best, followed by One-Class Support Vector Machine, Local Outlier Factor, and 

PCA, respectively. However, considering other factors like the calculation time and the inlier-

outlier counts, the ordering could also be different, which is discussed in the next chapter. 
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5 CONCLUSIONS AND DISCUSSION 

 

Significantly differing data points in data set, outliers, in spend analysis can either lead the 

decision-maker to false conclusions. Outliers in spend data may also indicate fraud in the 

procurement processes or be useful information about potential savings. A price outlier can be 

a simple input error in measurement units as well as knowingly over-invoiced purchase. A 

drastic price drop may seem like an outlier but can also provide an opportunity for savings if it 

is not an error. 

 

Outlier detection algorithms studies in this thesis are One-Class SVM (Schölkopf, et al., 2001), 

PCA (Shyu, et al., 2003), Isolation Forest (Liu, et al., 2008), and Local Outlier Factor (Breunig, 

et al., 2000). The performance was measured with Excess-Mass and Mass-Volume criteria by 

Goix (2016a). Because the thesis’s case company could implement the suggested machine 

learning algorithm as a part of their product, each model’s computational performance was 

studied as well. Hence, in addition to EM and MV measures, the calculation times of the 

algorithms were measured. As the case company has a statistical outlier detection in use, results 

from that were used as a loose threshold value for evaluating the proportions of outliers labeled 

by each algorithm. 

 

Overall results from the EM and MV analysis is that Isolation Forest performed the best of all 

the algorithms. OCSVM had the second-best results, with LOF right behind that with the third-

best outcome. PCA-based outlier detection method had the worst EM and MV results. In terms 

of calculation time, PCA was definitely the most efficient algorithm, and OCSVM significantly 

the most time-consuming method. PCA was the closest to the threshold outlier proportion value 

of 1%. Only OCSVM labeled outliers significantly over the threshold value. Isolation Forest, 

the best performing algorithm, labeled a somewhat higher proportion of outliers than the current 

statistical approach. Based on the summarized results above, the research questions are 

answered. 

 

Which algorithm from One-Class SVM, PCA, Isolation Forest, and Local Outlier Factor 

perform the best in spend data price outlier detection? 
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Compared to each other, the Isolation Forest performed best based on EM and MV measures. 

The Isolation Forest calculation time was not the lowest, but it was lower than LOF and 

OCSVM. When predicting the labels, the algorithms needed to go through approximately 40 

thousand rows of data in total. Isolation Forest did this in under 2 seconds, which is a rather 

good result, especially compared to the 15 seconds of OCSVM calculation. OCSVM clearly 

assigns too many data points to be outliers with a proportion of over 50% compared to the 1% 

threshold. On the other end, LOF allocated only 8.8 data points on average to be outliers, which 

means that less than pro mill of the data would be outliers. The number of labeled outliers 

closest to the current statistical method was PCA’s 0.97%. However, based on the performance 

measures, PCA did not do very well, and those results of PCA were undoubtedly the worse. 

Isolation Forest’s share differs from the threshold of 1% to some extent, but the difference is 

less than 5 percentage points. Overall, based on the results, the answer to the first research 

question is that Isolation Forest performs the best in detecting price outliers from spend data.  

 

Which algorithm is suggested for the case company to develop a machine learning-based 

outlier detection on top of the existing statistical approach? 

 

From the business and strategic sourcing point of view, the outlier detection algorithm’s 

accuracy is essential. As the current statistical method’s accuracy is not measured, it is unsure 

if the number of outliers is precisely 1%. The threshold value only gives direction to rule out 

the most extreme deviations from that. In this case, the comparison would exclude OCSVM 

from the optimal options as the proportion differs significantly from the threshold.  Excess-

Mass and Mass-Volume give the direction of how accurate the assignment has been. It could 

be noted that it is more important to have more values classified as outliers to some extent than 

too few of them. As outliers in spend analysis can be fraud, error, or opportunity, an expert 

should always review at least the most drastic ones and try to find the reasoning behind them. 

Of course, that may be laborious when the amount of data is very high. Errors in the data could 

be corrected to keep the accuracy in the analysis. Fraud could be detected and prevented from 

happening again in the future, and savings could be obtained if materials can be purchased at a 

lower price. If the algorithm detects too few potential outliers, some of these might be missed. 

Of course, a perfect set including only the outliers correctly would be the outlier detection’s 
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optimal outcome. With the set up in this thesis, that cannot be obtained due to the lack of labels 

to verify the results. An expert could go through a reasonable set of data from 500 to 1000 rows 

of outliers and determine if they require any action, which means that incorrectly labeled 

outliers, also known as false-positive outliers, could be better than false-negatives in the spend 

analysis context. 

 

The hyperparameter tuning also gave interesting results and insights about the algorithms. An 

algorithm with only one parameter combination giving significantly better results can be very 

unstable in case of changes in the parameters. OCSVM in this study gave such results in the 

parameter tuning. All the other algorithms’ EM scores were more balanced throughout the 

combinations than OCSVM’s. Especially, the Isolation Forest’s performance with different 

combinations of hyperparameters was rather stable. The algorithm’s sensitivity to 

hyperparameter changes could also be considered when choosing an algorithm for a specific 

use. Incorrectly executed parameter tuning for an algorithm may produce much poorer results 

in the latter parts of the implementation if the algorithm chosen is sensitive for variations in the 

hyperparameters. 

 

The calculation time of the algorithms was also measured. As the algorithms would potentially 

be implemented as a part of a software product, efficiency and computational performance are 

important factors considering the algorithm selection. When implementing a machine learning 

algorithm for real use cases, the model would be trained rarely, and in many cases, it may take 

a lot longer time than getting the results for new data. The calculation time of the results for the 

new data is critical, as well as the optimization of the predicting function instead of the training 

of the model. Determining the labeling for approximately 40 thousand rows under 2 seconds is 

relatively swift even though the Isolation Forest’s calculation time was not the lowest (Table 

10).  

 

Considering all the algorithms in this study, OCSVM and PCA is easier and quicker for the 

case company to develop as a part of their product. However, these algorithms’ poor 

performance, PCA’s EM and MV scores, and OCSVM’s large proportion of outliers eliminates 

them from being suggested for the case company in this study. Hence, based on all the 

conclusions and discussions above, the suggested algorithm for further development is the best-
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performing Isolation Forest in terms of Excess-Mass and Mass-Volume measures. Considering 

the other factors discussed above as well, Isolation Forest seems like the best alternative for the 

task and further development. 

 

In the future, it would be reasonable to get labeled data to verify the results. All the algorithms 

could be tuned and tested with the labeled data set, but especially validating Isolation Forest’s 

results before taking it to use. From the implementation point of view, determining a normal 

group of the data for semi-supervised outlier detection could also be an area of development if 

full labeling of a data set is not doable. The algorithm developed for practical use could utilize 

the normal labeled set to train the model and detect outliers from new unlabeled data. In addition 

to the basic algorithms presented in this thesis, many extensions and enhancements of those 

exist. Testing the enhanced algorithms could provide even better results than the basic ones. 

Checking and analyzing the resulting outliers of all tested algorithms could be an area of further 

research to understand the spend data outliers better. Understanding the outliers in the 

procurement spend data may open an opportunity to combine the results from multiple different 

algorithms to create an ensemble more robust than only one algorithm. The unsupervised 

algorithms could also be used as one ensemble, considering all the algorithms’ results. The data 

points with the most votes from all the algorithms would be elected as outliers. Results from 

this voting strategy would definitely be an interesting direction of research. 
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