Huabin Zeng

CONTINUOUS ELECTROCHEMICAL ACTIVATION OF PEROXYDISULFATE MEDIATED BY SINGLE-ELECTRON SHUTTLE
CONTINUOUS ELECTROCHEMICAL ACTIVATION OF PEROXYDISULFATE MEDIATED BY SINGLE-ELECTRON SHUTTLE

Dissertation for the degree of Doctor of Science (Technology) to be presented with due permission for public examination and criticism at Lappeenranta-Lahti University of Technology LUT, Lappeenranta, Finland on the 7th of May, 2021, at noon.
Abstract

Huabin Zeng
Continuous Electrochemical Activation of Peroxydisulfate Mediated by Single-Electron Shuttle
Lappeenranta 2021
61 pages
Acta Universitatis Lappeenrantaensis 949
Diss. Lappeenranta-Lahti University of Technology LUT

With the burgeoning development of various industries, an increasing number of organic compounds have been synthesized to satisfy societal demand. However, the unavoidable emissions of the used compounds into the natural environment have become a cause for considerable concern. Most importantly, traditional biological treatments have been proven ineffective for removing these emerging contaminants due to the non-biodegradable properties of the materials, which can be even toxic to microorganisms. For the purpose of solving the problem, advanced oxidation processes have been deemed promising technologies for the purposes; these involve the in-situ generation of reactive oxidative radicals, such as hydroxyl radicals (•OH) or sulfate radicals (SO₄•–). Although SO₄•– can be readily formed from peroxydisulfate (PDS) activation by a single-electron reductive catalyst, the use of the catalyst has certain drawbacks, such as the amount of the catalyst required and its and subsequent disposal. By introducing an electron source (hydroxylamine, MoS₂, or boron) into the system, the catalyst can be theoretically regenerated, resulting in continuous PDS activation. Use of the electron sources as an electrochemical approach for PDS activation, in which electrons are employed as a reductive activator, can meet the demand for green chemistry.

In this thesis, the PDS activation process for the decontamination of organic compounds, is presented. The process was initiated by electrons donated by a Ti cathode. The concentration of SO₄•– near the cathode was kept at a non-ignorable level, shifting the reductive atmosphere to an oxidative atmosphere for Cu-EDTA oxidation. In particular, incorporating the Cu(II)/Cu(I) redox pair with the electrochemically activated PDS system by substituting the Cu cathode for the Ti cathode accelerated the PDS activation considerably. The single-electron shuttle (Cu(II)/Cu(I) in this project) could bridge the cathode and PDS, continuously injecting a single electron into the PDS to yield SO₄•–. Meanwhile, another less toxic electron media, the Fe(III)/Fe(II) redox pair, was also proven to be efficient in catalyzing the cathodic activation of PDS. Employing the Pd/Al₂O₃ particle electrode in the three-dimensional reduction system allowed more active sites for Fe²⁺ regeneration, highly improving the performance of the system with regard to PDS activation and subsequent degradation of organic pollutants. We were also intrigued by atomic hydrogen (atomic H*) in the three-dimensional reduction system. As a strongly reductive radical with single-electron capacity, the atomic H* takes H⁺/H₂O as
a precursor and forms H+/H2O after donating electrons, completely eliminating the conventional restriction on the operation pH for catalyzing PDS.

Herein, the present study was the first to propose a ternary system comprising an electron source, a single-electron shuttle, and a peroxide compound. This ternary system allowed researchers to minimize the catalyst dosage and rationally design the oxidation system by selecting a suitable constituent of the system for various purposes.

Keywords: Organic contamination, Peroxydisulfate, electrochemical activation, single electron transferring media, Fe²⁺/Fe³⁺ pair, Cu⁺/Cu²⁺ pair, H⁺/H⁺ pair
Acknowledgements

This research work for thesis was conducted in School of Engineering Sciences, Lappeenranta-Lahti University of Technology LUT in cooperation with the Chinese Academy of Sciences and Tsinghua University during September 2015 to August 2020. The expert research team and the enthusiasm for science made this research feasible.

I am very grateful for Associate Professor Eveliina Repo for acting as my supervisor during the thesis preparation and writing with great patience and carefulness. I am also grateful for her comments and suggestions for further study. I appreciate her support and assistance to finalize this thesis.

I would express my sincere appreciation to Professor Mika Sillanpää who offered the opportunity to conduct this work in Lappeenranta-Lahti University of Technology LUT in the beginning. I thank for his great support and guidance in this research work.

My sincere appreciation also expressed to Professor Xu Zhao, Chinese Academy of Sciences. I highly acknowledge his great support through the whole process. I am grateful for his profound comments in this research and patient guidance during the past several years.

I express my gratitude to Professor Jiuhui Qu, Professor Huijuan Liu, Professor Huachun Lan, professor Feiping Zhao, professor Yuri Park, Professor Yan Wang, Dr. Gong Zhang, Dr. Di Cao, Shanshan Liu, and Olga Pastushok for their contributions as co-authors and/or assistance in this research work.

I sincerely acknowledge the two reviewers of this thesis for their valuable comments. I also appreciate all the reviewers and editors of the papers included in this thesis for their constructive comments and suggestions.

I am thankful for members of the research group in Mikkeli, and Beijing for their assistance in my work. I appreciate all the friends during my stay in Finland for their help and concern which I will keep in mind always.

Finally, I would express gratitude for my families for their unconditional support and encouragement in my PhD study and my life.

Huabin Zeng
January 2021
Lappeenranta, Finland
Contents

Abstract
Acknowledgements
Contents
List of publications 9
Nomenclature 11

1 Introduction 13
1.1 Organic contamination ... 13
1.2 Conventional processes for decontamination of organic pollutants 14
1.3 Peroxydisulfate & sulfate radicals ... 16
1.4 Electron-source/single-electron shuttle pairs 20
1.5 Aim & Research ... 23

2 Methodology 25
2.1 Chemicals & Materials ... 25
 2.1.1 Chemical reagents ... 25
 2.1.2 Material preparation ... 26
 2.2 Reactor configurations .. 26
 2.2.1 Photoelectrocatalytic reactor ... 26
 2.2.2 Electrocatalytic reactor ... 27
 2.3 Analytical method ... 27
 2.3.1 Organic detection ... 27
 2.3.2 Analytical method ... 27

3 Result & Discussion 29
3.1 PDS activation by cathodic reduction ... 29
 3.1.1 Enhanced decomplexation of Cu-EDTA and simultaneous Cu recovery in the PEC system with addition of PDS 29
 3.1.2 Cathodic activation of PDS via single-electron transfer 30
 3.1.3 Acidification induced by PDS oxidation 32
 3.2 Enhanced cathodic activation of PDS mediated by Cu⁺/Cu²⁺ pair 34
 3.2.1 Enhanced degradation of organic compounds 34
 3.2.2 Cu⁺/Cu²⁺ cycle for cathodic activation of PDS 36
 3.3 Pd/electro-generated H₂ for accelerating Fe³⁺/Fe²⁺ cycle 37
 3.3.1 Acceleration of Fe³⁺/Fe²⁺ cycle .. 37
 3.3.2 Enhanced degradation of organic pollutants 40
 3.4 PDS activation by atomic H⁺ ... 42
 3.4.1 Organic degradation in the Pd/ER system 42
 3.4.2 Identification of reactive oxygen species 42
3.4.3 Two routes for PDS electroreduction on Pd(111) facet 44
3.4.4 Electron donor analysis ... 46

4 Conclusions & Prospective ... 49
References ... 51
Publications
List of publications

This dissertation is based on the following papers. The rights have been granted by publishers to include the papers in dissertation.

Author's contribution

Huabin Zeng conducted the experiments, analyzed the data with co-authors and had the main responsibility in writing paper I, III, and IV. Huabin Zeng conducted some parts of the experiments, analyzed the data and helped to prepare the first draft of paper II.
Other related publications

Nomenclature

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>two dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>three dimensional</td>
</tr>
<tr>
<td>CFD</td>
<td>computational fluid dynamics</td>
</tr>
<tr>
<td>LES</td>
<td>large eddy simulation</td>
</tr>
<tr>
<td>PDF</td>
<td>probability density function</td>
</tr>
<tr>
<td>PDS</td>
<td>Peroxydisulfate</td>
</tr>
<tr>
<td>PMS</td>
<td>Permonosulfate</td>
</tr>
<tr>
<td>AOPs</td>
<td>Advanced oxidation processes</td>
</tr>
<tr>
<td>HA</td>
<td>Hydroxylamine</td>
</tr>
<tr>
<td>BA</td>
<td>Benzoic acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>ICP-OES</td>
<td>Inductively coupled plasma-optical emission spectrometry</td>
</tr>
<tr>
<td>TOC</td>
<td>Total organic carbon</td>
</tr>
<tr>
<td>LSV</td>
<td>Linear Sweep Voltammetry</td>
</tr>
<tr>
<td>CV</td>
<td>Cyclic Voltammetry</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray photoelectron spectra</td>
</tr>
<tr>
<td>ESR</td>
<td>Electron spin resonance</td>
</tr>
<tr>
<td>PEC</td>
<td>Photoelectrocatalysis</td>
</tr>
<tr>
<td>PEC/PDS</td>
<td>Photoelectrocatalysis process with PDS addition</td>
</tr>
<tr>
<td>ER</td>
<td>Electroreduction</td>
</tr>
<tr>
<td>ER/PDS</td>
<td>Electroreduction process with PDS addition</td>
</tr>
<tr>
<td>PMSO</td>
<td>Methyl phenyl sulfoxide</td>
</tr>
<tr>
<td>PMSO₂</td>
<td>Methyl phenyl sulfone</td>
</tr>
<tr>
<td>PhSO₂</td>
<td>phenylsulfinic acid</td>
</tr>
<tr>
<td>2,4-DCP</td>
<td>2,4-Dichlorphenol</td>
</tr>
<tr>
<td>BPA</td>
<td>Bisphenol A</td>
</tr>
</tbody>
</table>
Nomenclature
1 Introduction

1.1 Organic contamination

In the human environment, the number of chemical substances has surpassed 30 million, and this number is constantly increasing rapidly, with a high weekly rate. Among these substances, organic compounds account for the largest proportion (Kroes et al. 2000). With the booming development of various industries, especially the organic chemical, petrochemical, and pharmaceutical industries, it is inevitable that the organics from these industries are emitted into the environment, giving rise to various emerging pollutants recently detected in the environment (Gosset et al. 2016, Yang et al. 2017).

These organics can persist in the natural environment. Some organics, whose toxicity is sourced from the specific chemical structure of the organic compound itself and its physiological effects, may adversely affect the normal metabolic functions of organisms and even induce death (non-reactive toxicity) (Escher 2000). Others may disrupt the normal information transmission of cells or cause cell death or mutation, tissue necrosis or allergic reactions, or tumors in the tissues by modifying the pivotal proteins in the biological metabolism processes (reactive toxicity) (Kaim et al. 2013). These organics can accumulate in the food chain at toxic concentrations (Klopman and Tu 1997). Therefore, these organics not only pose a serious threat to human health and the ecosystems, but are also difficult to degrade via biological treatment methods.

In recent years, the environmental impacts of toxic and refractory organic matter have received increasing attention worldwide, and the associated pollution control and prevention has become a popular research topic (Hodges et al. 2018). The United States Environmental Protection Agency (USEPA) took the lead in systematically investigating the toxicity, biodegradability, and appearance of water bodies contaminated with various pollutants in the 1970s and passed the Clean Water Act in 1977 (Pichtel 2005). The case clearly specified 65 types of 129 priority pollutants, of which 114 were synthetic organic matter. The Japanese Environment Agency conducted a nationwide comprehensive environmental safety survey of chemicals in 1974, announced 600 priority toxic chemicals in 1986, and conducted extensive research on toxic organics in the country. In the "Discharge Standards for Water Quality Targets" promulgated by the European Community in 1975, blacklists and greylists were recorded, requiring member states to specify priority pollutants that were appropriate for their situation according to the requirements of the standard. The Information Center on Potentially Hazardous Chemicals was established at the United Nations Conference on Human and Environment in 1972, and the United Nations Environment Programme (UNEP) formally established the "Positive Toxic Chemicals Registry" in 1976. Its main responsibility is to control toxic chemical pollution and develop standards and strategies. The World Health Organization (WHO) has implemented the International Chemical Safety Program since 1980, focusing on evaluating the impact of existing chemicals on human health, establishing and improving chemical safety assessment methods, and training personnel. Based on the
pollution characteristics of domestic organic compounds, in combination with studies reported from other countries, the China National Environmental Monitoring Station has put forth the Chinese environmental priority reflecting China's environmental characteristics based on the toxicity of chemicals, possibility of their natural degradation, and probability of their appearance in water bodies. In the “blacklist”, 68 pollutants in 14 categories require priority control; of these, 58 types of toxic organic compounds are controlled in priority, accounting for 85.29% of the total.

The control of toxic and difficult-to-degrade organic matter is a global environmental governance problem. Therefore, comprehensive and effective management is essential for environmental workers today and in the future. In recent years, the pollution caused by refractory organics in the ecological environment and the damage to human health have increased substantially. Biological toxicity and stability of refractory organics entering the water body can cause a serious long-term deterioration of water quality, obstruct self-purification of the surface water, and endanger people's health. Therefore, research on the treatment technologies of these pollutants has considerable experimental and practical significance (Pitter and Chudoba 1990).

1.2 Conventional processes for decontamination of organic pollutants

In the past few decades, several applicable technologies for the decontamination of the organic pollutants have been developed; these technologies can be divided into biological (Kagle et al. 2009), physical (Bass et al. 2000), and chemical treatment technologies (Salimi et al. 2017). Biological treatment processes use aeration and a biological floc composed of protozoa and bacteria. In this way, municipal wastewater and industrial wastewater (food industry, dyeing and printing industry, or paper industry) can be readily decontaminated at an incredibly low cost via the enhancement of the metabolism of microorganisms and the degradation of organic matter (Zhao et al. 2014b). However, the metabolic functions of the microorganisms are adversely affected by the emerging organic pollutants (pharmaceutical and personal care products, PPCPs; emerging contaminants, ECs) or toxic constituents (heavy metals, such as Ni, Cu, or Zn) that coexist with the organic pollutants in wastewater (Zhao et al. 2014a, Zhao et al. 2013); these compounds induce the death of the microorganisms.

The non-biodegradability of these emerging organic pollutants in industrial wastewaters has necessitated other physicochemical processes for their efficient removal; these include coagulation (Liu et al. 2019a), adsorption (Alshaiee et al. 2016), and oxidation/reduction processes (Zhao et al. 2014c). In contrast to other processes where water purification occurs only by pollutant transfer (coagulation or adsorption), advanced oxidation processes (AOPs) are known to be the most effective in converting biorecalcitrant organic contaminants into inorganic matter through the mineralization of organics (Glaze et al. 1987, Nidheesh et al. 2013).

Typically, AOPs include the degradation of organic pollutants by generating reactive oxidative radicals with a high redox potential in situ. Such technologies include
1.2 Conventional processes for decontamination of organic pollutants

Electrochemical, photocatalytic, and Fenton or Fenton-like processes. Some commonly used radicals and their parent oxidants, including their redox potentials and involved oxidation processes, are listed in Table 1.1.

<table>
<thead>
<tr>
<th>Oxidation species</th>
<th>Redox potential</th>
<th>Generation approach</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-OH/H⁺/H₂O</td>
<td>+2.73 V</td>
<td>Electro catalysis, Fenton, Fenton-like</td>
<td>(Buxton et al. 1988)</td>
</tr>
<tr>
<td>-OH/OH⁻</td>
<td>+1.80 V</td>
<td>Electro catalysis, Fenton, Fenton-like</td>
<td>(Buxton et al. 1988)</td>
</tr>
<tr>
<td>SO₄²⁻/SO₄²⁻</td>
<td>+2.60 V</td>
<td>Persulfate based AOPs</td>
<td>(Lee et al. 2020)</td>
</tr>
<tr>
<td>H₂O₂/H⁺/H₂O</td>
<td>+1.78 V</td>
<td></td>
<td>(Wardman 1989)</td>
</tr>
<tr>
<td>S₂O₅²⁻/SO₄²⁻</td>
<td>+2.01 V</td>
<td></td>
<td>(Eberson 1982)</td>
</tr>
<tr>
<td>HSO₅⁻/SO₄²⁻</td>
<td>+1.75 V</td>
<td></td>
<td>(Spiro 1979)</td>
</tr>
<tr>
<td>HO₂⁻⁻/H⁺/H₂O₂</td>
<td>+1.44 V</td>
<td>Fenton</td>
<td>(Wardman 1989)</td>
</tr>
<tr>
<td>SO₅²⁻/SO₅²⁻</td>
<td>+1.10 V</td>
<td>Peroxymonsulfate (PMS) based AOPs, Fe³⁺/SO₅²⁻</td>
<td>(Das et al. 1999)</td>
</tr>
<tr>
<td>O₂⁻⁻/H⁺/H₂O₂</td>
<td>+0.94 V</td>
<td>Fenton, photoysis</td>
<td>(Wardman 1989)</td>
</tr>
<tr>
<td>H₂O₂/OH⁻</td>
<td>+0.88 V</td>
<td></td>
<td>(Wardman 1989)</td>
</tr>
<tr>
<td>¹O₂/O₂⁻</td>
<td>+0.65 V</td>
<td>Persulfate based AOPs</td>
<td>(Buettner 1993)</td>
</tr>
<tr>
<td>O₂⁻⁻/O₂</td>
<td>+0.33 V</td>
<td>Fenton, photoysis</td>
<td>(Wardman 1989)</td>
</tr>
</tbody>
</table>

Among these oxidants, hydrogen peroxide (H₂O₂) has been widely applied in scientific and technological activities for environmental remediation because of its low price (approximately 200 USD per metric ton) and green properties. As an externally additive reagent, it only decomposes to H₂O or O₂ without leaving byproducts in the aqueous system (Noyori 2005). Moreover, its resultant hydroxyl radical (·OH), due to its high redox potential reaching 2.73 V in an acid solution and 1.8 V in a neutral solution (Buxton et al. 1988), can destroy almost any refractory structure or group present in the organic compounds, leading to their complete mineralization. However, owing to in situ chemical
oxidation, \(\text{H}_2\text{O}_2 \) is unstable and presents risks of explosion, making its storage, transportation, and application challenging. Therefore, other oxidants are being gradually taken into consideration by researchers.

1.3 Peroxydisulfate & sulfate radicals

Over the past decade, peroxydisulfate (PDS, \(\text{S}_2\text{O}_8^{2-} \)) has drawn significant attention as a promising alternative to \(\text{H}_2\text{O}_2 \) (Devi et al. 2016, Ghanbari and Moradi 2017, Oh et al. 2016). PDS contains the same peroxide bond as \(\text{H}_2\text{O}_2 \), substituting sulfur groups for the two hydrogen atoms in \(\text{H}_2\text{O}_2 \) (Figure 1.1). This structural change causes a slight decrease in the peroxide bond length from \(1.469 \) Å (\(\text{H}_2\text{O}_2 \)) to \(1.347 \) Å (PDS); thus, PDS exhibits similar physicochemical properties, while maintaining its own unique nature. For instance, PDS has been shown to possess a higher chemical stability than \(\text{H}_2\text{O}_2 \) under ambient conditions, lowering the cost of storage and transportation (Zeng et al. 2019). When activated, PDS can produce highly oxidizing sulfate radicals (\(\text{SO}_4^{\cdot -} \)), which can readily oxidize organic contaminants by hydrogen abstraction or an electron abstraction mechanism (Deng and Ezyske 2011, Neppolian et al. 2008, Zhou et al. 2014) because of its high redox potential \((E^0 = 2.6–3.1 \text{ V}) \) (Lee et al. 2020). Compared with the well-known \(\text{H}_2\text{O}_2/\text{\cdot OH} \) pairs, the technical advantages of the PDS/SO\(_4^{\cdot -}\) pairs that have been identified include: 1) a higher amount of radicals can be produced from PDS than from \(\text{H}_2\text{O}_2 \) at the same concentration (Anipsitakis and Dionysiou 2004, He et al. 2013, Ling et al. 2010, Yu et al. 2013); 2) SO\(_4^{\cdot -}\)-based oxidation processes for organic degradation are relatively independent of the operating conditions, such as pH, initial peroxide loading, and background constituents (Luo et al. 2015, Lutze et al. 2015, Zhang et al. 2016b); and 3) as a non-selective radical, SO\(_4^{\cdot -}\) exhibits higher reactivity toward electrophilic compounds compared with \(\text{\cdot OH} \) (Lee et al. 2020).

![Figure 1.1 Ball-and-stick models of \(\text{H}_2\text{O}_2 \) and \(\text{S}_2\text{O}_8^{2-} \).](image)

Generally, PDS activation approaches can be classified into two categories (Figure 1.2). In the first approach, the homolytic cleavage of the peroxide bridge in the PDS molecule forms two sulfate radicals (\(\text{SO}_4^{\cdot -} \)) due to energy input in the form of photons (ultraviolet (UV) photolysis), microwaves, or heat (thermolysis) (reaction 1.1, Table 1.2). In these processes, secondary contamination is minimized due to the zero-addition of chemical
activators, which significantly lowers the cost of the downstream treatment for removing these activators. Despite this advantage, applying UV photolysis for PDS activation is limited due to the poor penetrability of UV rays in water, especially in wastewater with high chromaticity and turbidity (Zeng et al. 2016). Interestingly, in recently reported studies, thermal activation of PDS has exhibited excellent application potential in some research fields that cannot be subjected to traditional activation approaches, such as the in-situ remediation of polluted soil, surface water, or groundwater (Srivastava et al. 2016), flue gas denitrification/desulfurization (Liu et al. 2018), and sludge dewatering (Waclawek et al. 2016). Different from H_2O_2 decay to O_2 (and thus, a loss in its oxidation capacity), PDS can be thermally cleaved into two $\text{SO}_4^{\cdot-}$ at a low activation temperature of approximately 30 °C (Bruton and Sedlak 2017, Ji et al. 2017, Park et al. 2016, Peng et al. 2016, Srivastava et al. 2016).

$$\text{S}_2\text{O}_8^{2-} + \text{heat/UV/microwave} \rightarrow 2 \text{SO}_4^{\cdot-} \quad (1.1)$$

Figure 1.2 Activation of PDS through energy input and electron transfer process.
Table 1.2 PDS activation by energy input and its application on organic degradation.

<table>
<thead>
<tr>
<th>Target pollutant</th>
<th>Energy form</th>
<th>Conditions</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>phenol</td>
<td>Heat</td>
<td>C(pollutant), 50 µM, C(PDS), 2 mM, C(NO$_2^-$), 200 mM, Temperature, 50 °C, pH 7.0</td>
<td>(Ji et al. 2017)</td>
</tr>
<tr>
<td>Decabromodiphenyl ether</td>
<td>heat</td>
<td>C(pollutant), 20 mg/kg; C(PDS), 0.5 M; pH, 3; T, 50 °C</td>
<td>(Peng et al. 2016)</td>
</tr>
<tr>
<td>perfluorooctanoic acid</td>
<td>Heat</td>
<td>C(pollutant), 0.241 mM; C(PDS), 84 mM; T, 50 °C</td>
<td>(Park et al. 2016)</td>
</tr>
<tr>
<td>tetrachloroethene</td>
<td>Joule heat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>concentrated leachate</td>
<td>Microwave</td>
<td>C(PDS), 20 mM; pH$_{initial}$, 3.0; P, 450 W</td>
<td>(Gu et al. 2018)</td>
</tr>
<tr>
<td>hospital wastewater</td>
<td>UV light</td>
<td>C(pollutant), 40 µM; C(PDS), 0.5 mM; UV intensity, 398 mW/cm2; pH$_{initial}$, 6.5.</td>
<td>(Serna et al. 2017)</td>
</tr>
<tr>
<td>disinfection byproduct</td>
<td>UV light</td>
<td>UV dose, 585 mJ/cm2; C(PDS), 0.5 mM</td>
<td>(Chu et al. 2015)</td>
</tr>
<tr>
<td>precursors</td>
<td>UV light</td>
<td>C(TCA), 200 nM; C(PDS), 200 µM; pH, 8; I, 148 µW/cm2</td>
<td>(Luo et al. 2016)</td>
</tr>
</tbody>
</table>

The other commonly used approach for PDS activation is the heterolytic cleavage of the peroxide bridge via single-electron injection into the PDS ions (Lee et al. 2020). As a two-electron acceptor, one molecule of PDS yields one molecule of SO$_4^-$ when accepting one electron, while the oxidation capacity of PDS is completely consumed by accepting two electrons. Therefore, the activator for PDS activation should meet two requirements: i) strong reductive ability and ii) one-electron capacity. As shown in reaction 1.2, the combination of transition metal ions (M=Fe, Co, Ag) with PDS can homogeneously oxidize carbamazepine, trichloroethylene, and triclosan (Table. 1.3) (Nfodzo and Choi 2011, Rao et al. 2014, Yuan et al. 2014). Nevertheless, the solution pH should be restricted under acidic conditions because of the inherent nature of metal ions, and the recovery of the catalyst in the form of hydroxide creates chemical sludges that require special disposal practices. It has been well documented that the immobilization of these ions, such as Fe$^{2+}$, on a solid catalyst makes catalyst recovery highly convenient while maintaining high catalytic activity over a wider pH range (Ma et al. 2019, Yue et al. 2016). Interestingly, the incorporation of CuO into Fe$_2$O$_3$ can provide more active sites for PDS adsorption and the subsequent electron transfer from the catalyst to PDS, further
Peroxydisulfate & sulfate radicals oxidizing 2,4-dichlorophenol at a high rate (Sun et al. 2015). Even though the magnetic properties of some heterogeneous catalysts (e.g., CuFe$_2$O$_4$) facilitate their separation from the treated water (Li et al. 2019), the disposal of the used catalysts remains a problem. The single-electron transfer mechanism for PDS activation is further discussed in section 1.4.

$$S_2O_8^{2-} + M^{n+} \rightarrow M^{n+1} + SO_4^{2-} + SO_4^{-}$$ (1.2)

Table. 1.3 PDS activation by single electron injection and its application on organic degradation.

<table>
<thead>
<tr>
<th>Target pollutant</th>
<th>Energy form</th>
<th>Conditions</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>carbamazepine</td>
<td>Fe$^{2+}$</td>
<td>C(pollutant), 25 µM; [PDS], 1.0 mM; C(catalyst), 250 µM; pH, 3.0</td>
<td>(Rao et al. 2014)</td>
</tr>
<tr>
<td>trichloroethylene</td>
<td>Electrogenerated Fe$^{2+}$</td>
<td>C(pollutant), 0.40 mM; C(PDS), 5 mM; pH$_{initial}$, 5.6.</td>
<td>(Yuan et al. 2014)</td>
</tr>
<tr>
<td>triclosan</td>
<td>Ag$^{+}$</td>
<td>C(pollutant), 115 µM; [PDS], 775 µM; C(catalyst), 775 µM, pH, 7</td>
<td>(Nfodzo and Choi 2011)</td>
</tr>
<tr>
<td>triclosan</td>
<td>Co$^{2+}$</td>
<td>C(pollutant), 115 µM; [PDS], 775 µM; C(catalyst), 775 µM, pH, 7</td>
<td>(Nfodzo and Choi 2011)</td>
</tr>
<tr>
<td>polychlorinated biphenyls</td>
<td>ZVI-PDS</td>
<td>C(PDS)=10%;</td>
<td>(Fan et al. 2014)</td>
</tr>
<tr>
<td>acid orange 7</td>
<td>Fe$_3$O$_4$/MIL-101</td>
<td>C(pollutant), 25 ppm; [PDS], 25 mM; C(catalyst), 1.0 g/L; pH, 3.58</td>
<td>(Yue et al. 2016)</td>
</tr>
<tr>
<td>rhodamine B</td>
<td>γ-Fe$_2$O$_3$/Mn$_3$O$_4$</td>
<td>C(pollutant), 10 ppm; C(PDS), 50 mg/L; C(catalyst), 50 mg/L; pH, 5.1</td>
<td>(Ma et al. 2019)</td>
</tr>
<tr>
<td>2,4-dichlorophenol</td>
<td>CuO/Fe$_3$O$_4$</td>
<td>C(pollutant), 100 ppm; C(PDS), 10 mM; C(catalyst), 0.624 g/L; pH, 6.8</td>
<td>(Sun et al. 2015)</td>
</tr>
<tr>
<td>phenol</td>
<td>CuFe$_2$O$_4$</td>
<td>C(pollutant), 0.21 mM; C(PDS), 1 mM; C(catalyst), 0.75 g/L; pH, 9.5</td>
<td>(Li et al. 2019)</td>
</tr>
<tr>
<td>diethyl phthalate</td>
<td>CuFe$_2$O$_4$ /MWCNTs</td>
<td>C(pollutant), 285 µg/L; C(PDS), 250 mg/L; C(catalyst), 75 mg/L</td>
<td>(Zhang et al. 2016a)</td>
</tr>
</tbody>
</table>
1.4 Electron-source/single-electron shuttle pairs

The breakup of the peroxide bridge in PDS and the formation of corresponding radicals via an electron transfer mechanism from a single-electron reductant has been extensively investigated (Lee et al. 2020). Ferrous ions (Fe$^{2+}$) are of great interest for the effective activation of peroxide compounds due to their cost-effectiveness, low toxicity, and high catalytic activity in aqueous ecosystems (Zeng et al. 2019). The chain reactions initiated by Fe$^{2+}$/PDS pairs (reactions 1.3–1.9) are presented below, in which Fe$^{2+}$ can rapidly activate the PDS via reaction 1.3 ($k = 30 \text{ M}^{-1} \text{s}^{-1}$) and result in Fe$^{3+}$ accumulation in the aqueous system, while Fe$^{2+}$ regeneration remains at a low rate as Fe$^{2+}$ is involved in the continuous catalysis of the PDS oxidation process (reactions 1.6 and 1.9).

\[
\begin{align*}
\text{Fe}^{2+} + \text{H}_2\text{O}_2 &\rightarrow \text{Fe}^{3+} + \cdot\text{OH} + \text{OH}^- \\
\text{Fe}^{2+} + \text{S}_2\text{O}_8^{2-} &\rightarrow \text{Fe}^{3+} + \text{SO}_4^{2-} + \text{SO}_2^{2-} \\
\text{S}_2\text{O}_8^{2-} + \text{SO}_4^{2-} &\rightarrow \text{S}_2\text{O}_6^{2-} + \text{SO}_2^{2-} \\
\text{Fe}^{3+} + \text{S}_2\text{O}_8^{2-} &\rightarrow \text{Fe}^{2+} + \text{S}_2\text{O}_6^{2-} \\
2\text{S}_2\text{O}_8^{2-} + 2\text{H}_2\text{O} &\rightarrow 3\text{SO}_4^{2-} + \text{SO}_2^{2-} + \text{O}_2 - + 4\text{H}^+ \\
\text{S}_2\text{O}_8^{2-} + 2\text{H}_2\text{O} &\rightarrow 2\text{SO}_2^{2-} + \text{HO}_2^- + 4\text{H}^+ \\
\text{Fe}^{3+} + \text{O}_2 &\rightarrow \text{Fe}^{2+} + \text{O}_2 \\
\end{align*}
\]

Several approaches have been developed for accelerating the Fe$^{3+}$/Fe$^{2+}$ cycle by introducing another electron donor (Table 1.4). For example, Liang and Guo (2010) reported that iron can serve as an electron source by reducing two moles of Fe$^{3+}$ to produce three moles of Fe$^{3+}$ (reaction 1.10). Therefore, the Fe$^{3+}$/PDS coupled with zero-valent iron (ZVI) ZVI induced a substantial oxidation of naphthalene particles (Liang and Guo 2010), cyclohexanoic acid (Drzewicz et al. 2012), and naphthenic acids, as well as the sterilization of the ballast water (Ahn et al. 2013). As the reaction proceeds, the Fe$^{2+}$ gradually produced from the ZVI can accelerate radical production and abatement of organic pollutants (Zhou et al. 2008). Another promising electron donor is the cathode in an electro-reductive system, which is deemed a green electron source owing to its reagent-free property and zero-generation of byproducts (Wu et al. 2012). To enhance the Fe$^{2+}$ regeneration, using a cathode with a high surface area, such as graphite, carbon fiber paper, or carbon felt, highly mitigated the mass transfer problem of iron ions on the cathode-solution interface (Chu et al. 2012). Recently, Xing et al. (2018) employed transition metal dichalcogenides (TMDCs, MoS$_2$, and WS$_2$) as a cocatalyst for Fenton or Fe$^{3+}$/PMS processes, where the exposure of reductive W$^{4+}$/Mo$^{4+}$ active sites on the surface of WSx/MoSx can greatly accelerate the rate-limiting step of the Fe$^{3+}$/Fe$^{2+}$ conversion, which plays a vital role in the decomposition of H$_2$O$_2$/PMS and degradation of phenol/aromatic organics. A 3D-MoS$_2$ sponge loaded with MoS$_2$ nanospheres and graphene oxide (GO) was fabricated to maintain the Fe$^{3+}$/Fe$^{2+}$ in a stable dynamic cycle, effectively promoting the oxidative degradation of various aromatic compounds (Zhu et al. 2020).

\[
\begin{align*}
\text{Fe}^0 + 2\text{Fe}^{2+} &\rightarrow 3 \text{Fe}^{2+} \\
\text{Fe}^{3+} + e^- &\rightarrow \text{Fe}^{2+}
\end{align*}
\]

(reactions 1.10, 1.11)
It has been demonstrated that PDS can be continuously activated using the Fe\(^{2+}\)/Fe\(^{3+}\) pair as a single-electron transferring media and reductant as an electron source, where the iron concentration can be decreased to a low level and requires no further elevation regardless of the concentration of the organic compounds. More electron-source/M\(^{n+1}\) pair have been proposed for activating other peroxide compounds, such as H\(_2\)O\(_2\) and PMS. As mentioned above, cathode/Fe\(^{3+}\) is a commonly used pair for initiating H\(_2\)O\(_2\)-based AOP at trace levels of dissolved iron, which is well-known as the electro-Fenton process (Chu et al. 2012). Applying the proper potential (e.g., −0.8 V on the graphite cathode) can steer the reactions on the cathode surface toward the desired Fe\(^{2+}\) regeneration and off the undesired hydrogen evolution. Another potential clean reductant is active H\(_2\) on a Pd catalyst, which allows the production of \(^{\cdot}\)OH via the Fe\(^{2+}\)/H\(_2\)O\(_2\) catalyst/oxidant pair for rapid decontamination (Georgi et al. 2016). Researchers have explored other zero-valent metals as the electron source. Metallic Mo and Fe/Cu alloys not only induced the conversion of Fe\(^{3+}\) to Fe\(^{2+}\) but also promoted other processes for the synergetic oxidation of the targeted pollutants, such as singlet oxygenation (\(^{1}\)O\(_2\)) triggered by superoxide radicals on Mo and CuO-based Fenton oxidation on Fe/Cu alloys (Yamaguchi et al. 2018, Yi et al. 2019).

In 2011, Ma et al. (2011) first reported a homogeneous reductant (Hydroxylamine, NH\(_2\)OH, HA) to facilitate the Fe\(^{3+}/\)Fe\(^{2+}\) redox cycles, completely eliminating the limitations posed by mass transfer. The rapid degradation of benzoic acid (BA) was observed when HA was introduced into the Fenton process. The HA/Fe\(^{3+}\) electron-source/M\(^{n+1}\) pair was also employed to activate PMS and PDS (Li et al. 2020, Zou et al. 2013). This impeded the application of HA in these processes because the end products of HA degradation were confirmed to be NO\(_3\) and N\(_2\)O that are toxic and should be ideally be removed; however, the research determined a different but feasible route for minimizing iron sludge production. Other non-toxic reductants, such protocatechuic acid and ascorbic acid, have also been explored for application as electron sources (Lei et al. 2015, Shi et al. 2019); however, these compounds consumed reactive radicals instead of facilitating Fe\(^{3+}\) reduction (Li et al. 2020). The reactions of the reductant with both Fe\(^{3+}\) and radicals induced a requirement for a higher dosage of oxidants for degrading the targeted pollutants. Applying a ternary system to water purification necessitates another ideal reductant that is inherently non-toxic and forms non-toxic products.

In terms of the one-electron transferring media, the Cu\(^{2+}/\)Cu\(^+\) pair in the bulk solution has frequently been reported to be a viable substitute for Fe\(^{3+}/\)Fe\(^{2+}\) (Chi et al. 2019). Although some transitional metal ions exhibit the potential to play the role of M\(^{n+}/\)M\(^{n+1}\), no further research has determined their performance on the single-electron transfer from the electron source to peroxide compounds, primarily because they belong to the metal type and have the inherent shortcomings of requiring a narrow pH range and post-treatment for catalyst removal. Tao et al. (2015) proposed using devolved oxygen for delivering the photoelectron from the g-\(\text{C}_3\)N\(_4\) photocatalyst to PMS via a Haber-Weiss-like reaction (reactions 1.12 and 1.13). Unfortunately, more research is required regarding the use of this metal-free agent as single-electron transferring media. Therefore, the current research
Table 1.4 Ternary systems reported in literatures.

<table>
<thead>
<tr>
<th>Electron source</th>
<th>M$^{n+}$/M$^{n+1}$ Peroxide compound</th>
<th>Conditions</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>cathode</td>
<td>Fe$^{2+}$/Fe$^{3+}$ H$_2$O$_2$</td>
<td>$\Delta C/C_0$(pollutant), 98%; j, 16.8mA/cm2; C(Fe), 1 mM; C(oxidant), 12 mM; 60 min</td>
<td>(Chu et al. 2012)</td>
</tr>
<tr>
<td>ZVI</td>
<td>Fe$^{2+}$/Fe$^{3+}$ H$_2$O$_2$</td>
<td>$\Delta C/C_0$(pollutant), 100%; C(ZVI), 1g/L; C(oxidant), 15 mM; 10 min</td>
<td>(Zhou et al. 2008)</td>
</tr>
<tr>
<td>H$_2$/Pd</td>
<td>Fe$^{2+}$/Fe$^{3+}$ H$_2$O$_2$</td>
<td>$\Delta C/C_0$(pollutant), 100%; C(Pd), 5mg/L; C(Fe), 1 ppm; C(oxidant), 15 mM; 90 min</td>
<td>(Georgi et al. 2016)</td>
</tr>
<tr>
<td>Mo</td>
<td>Fe$^{2+}$/Fe$^{3+}$ H$_2$O$_2$</td>
<td>$\Delta C/C_0$(pollutant), 100%; C(Mo), 5mg/L; C(Fe), 4 ppm; C(oxidant), 0.4 mM; 5 min</td>
<td>(Yi et al. 2019)</td>
</tr>
<tr>
<td>Fe/Cu bimetal</td>
<td>Fe$^{2+}$/Fe$^{3+}$ H$_2$O$_2$</td>
<td>$\Delta C/C_0$(pollutant), 100%; C(Fe/Cu), 0.22g/L; 35 min</td>
<td>(Yamaguchi et al. 2018)</td>
</tr>
<tr>
<td>MoS$_2$</td>
<td>Fe$^{2+}$/Fe$^{3+}$ H$_2$O$_2$</td>
<td>$\Delta C/C_0$(pollutant), 100%; C(Fe), 0.4 ppm; C(oxidant), 4 µL; 5 min</td>
<td>(Zhu et al. 2020)</td>
</tr>
<tr>
<td>MoS$_2$</td>
<td>Fe$^{2+}$/Fe$^{3+}$ PMS</td>
<td>$\Delta C/C_0$(pollutant), 100%; C(Fe), 0.4 ppm; C(oxidant), 4 µL; 5 min</td>
<td>(Zhu et al. 2020)</td>
</tr>
<tr>
<td>WS$_2$</td>
<td>Fe$^{2+}$/Fe$^{3+}$ H$_2$O$_2$</td>
<td>$\Delta C/C_0$(pollutant), 40%; C(WS$_2$), 4 g/L; C(Fe), 8 ppm; C(oxidant), 4 µL; 5 min</td>
<td>(Dong et al. 2018)</td>
</tr>
<tr>
<td>HA</td>
<td>Fe$^{2+}$/Fe$^{3+}$ H$_2$O$_2$</td>
<td>$\Delta C/C_0$(pollutant), 84%; C(HA), 0.4mM; C(Fe), 0.6ppm; C(oxidant), 0.32mM; 15 min</td>
<td>(Chen et al. 2011)</td>
</tr>
<tr>
<td>HA</td>
<td>Fe$^{2+}$/Fe$^{3+}$ PMS</td>
<td>$\Delta C/C_0$(pollutant), 74%; C(HA), 0.4mM; C(Fe), 0.6ppm; C(oxidant), 0.4mM; 10 min</td>
<td>(Zou et al. 2013)</td>
</tr>
<tr>
<td>HA</td>
<td>Fe$^{2+}$/Fe$^{3+}$ PDS</td>
<td>$\Delta C/C_0$(pollutant), 62%; C(HA), 1.4mM; C(Fe), 0.6ppm; C(oxidant), 1mM; 10 min</td>
<td>(Li et al. 2020)</td>
</tr>
<tr>
<td>HA</td>
<td>Cu$^{+}$/Cu$^{2+}$ PMS</td>
<td>$\Delta C/C_0$(pollutant), 90%; C(HA), 1 mM; C(Fe), 0.64ppm; C(oxidant), 0.5mM; 10 min</td>
<td>(Chi et al. 2019)</td>
</tr>
<tr>
<td>Cu/graphene</td>
<td>Cu$^{+}$/Cu$^{2+}$ H$_2$O$_2$</td>
<td>$\Delta C/C_0$(pollutant), 88%; C(Cu/Graphene), 0.5g/L; 60 min</td>
<td>(Xu et al. 2019)</td>
</tr>
<tr>
<td>Photo-electron</td>
<td>O$_2$/O$_2^-$ PMS</td>
<td>$\Delta C/C_0$(pollutant), 95%; C(Cu), 0.4 g/L; C(oxidant), 0.4g/L; 30 min</td>
<td>(Tao et al. 2015)</td>
</tr>
</tbody>
</table>
1.5 Aim & Research

focuses on the exploration of other metal-free media for this model to develop a non-toxic oxidation system.

\[
\begin{align*}
O_2 + e^- & \rightarrow O_2^- & (1.12) \\
O_2^- + HSO_5^- & \rightarrow \cdot OH + SO_4^{2-} + O_2 & (1.13)
\end{align*}
\]

In the developed ternary system, the electron flow from the electron source to peroxide compounds using M^{n+}/M^n as a single-electron shuttle is highly desired, whereas the direct redox reaction between the electron source and peroxide compounds is unwanted. The later decomposition route of peroxide compounds may waste their oxidation capacity without producing oxidative radicals, inducing a low C(pollutant)/C(peroxide) ratio in the AOPs. From this perspective, PDS has a higher application potential than PMS and H_2O_2 owing to its extremely high stability. For example, the ratio of C(BA)/C(peroxide) in the HA/Fe^{3+}/PDS system was determined to be 15% (Li et al. 2020), while the ratios in the HA/Fe^{3+}/PMS and HA/Fe^{3+}/H_2O_2 systems were only 10% and 7.5%, respectively (Chen et al. 2011, Zou et al. 2013). The higher ratio of C(pollutant)/C(peroxide) indicates the inert property of PDS towards HA. Similar results were also observed with another potential electron source (HSO_3^-), which could readily quench the PMS and H_2O_2 but reacted relatively slowly with PDS (Qi et al. 2017).

![Figure 1.3 Schematics of ternary system for yielding SO_4^{2-} from PDS.](image)

1.5 Aim & Research

In this study, the cathode was selected as the electron source in the electrochemical/photoelectrochemical system, and the Cu^+/Cu^2+, Fe^{2+}/Fe^{3+}, and H*/H^+ pairs were explored to ensure continuous injection of single-electron into the PDS. The results indicated that Cu^+, Fe^{2+}, and H^+ could readily activate the PDS and yield a large amount of SO_4^{2-}. In the ternary system (Figure 1.3), the catalyst dosage could be reduced to a minimum value (using the Cu^+/Cu^2+ and Fe^{2+}/Fe^{3+} pairs as single-electron transferring...
media) and even a reagent-free process, using H* as an activator, could be achieved. In comparison with other activation approaches using transitional-metal-containing catalysts, PDS activation by the cathode prevents the costly transportation and storage of the activators as well as the downstream treatment required for the removal of the byproducts. The results presented in this thesis put forth a highly improved application potential of PDS oxidation.
2 Methodology

2.1 Chemicals & Materials

2.1.1 Chemical reagents

Table 2.1 chemical reagents and their abbreviation.

<table>
<thead>
<tr>
<th>No.</th>
<th>Chemical reagents</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Copper sulfate</td>
<td>CuSO₄</td>
</tr>
<tr>
<td>2</td>
<td>Sodium peroxysulfate</td>
<td>Na₂S₂O₅, PDS</td>
</tr>
<tr>
<td>3</td>
<td>Sodium sulfate</td>
<td>Na₂SO₃</td>
</tr>
<tr>
<td>4</td>
<td>Sodium sulfate</td>
<td>Na₂SO₄</td>
</tr>
<tr>
<td>5</td>
<td>Ethylenediaminetetraacetic acid disodium salt</td>
<td>Na₂EDTA</td>
</tr>
<tr>
<td>6</td>
<td>Diclofenac sodium</td>
<td>C₁₄H₁₀C₁₀NNaO₂</td>
</tr>
<tr>
<td>7</td>
<td>Bismuth(III) nitrate pentahydrate</td>
<td>Bi (NO₃)₃·5H₂O</td>
</tr>
<tr>
<td>8</td>
<td>Molybdenum oxide</td>
<td>MoO₃</td>
</tr>
<tr>
<td>9</td>
<td>Diethylenetriaminepentaaaic acid</td>
<td>C₁₄H₁₃N₂O₁₀</td>
</tr>
<tr>
<td>10</td>
<td>Diethanolamine</td>
<td>C₈H₁₁NO₂</td>
</tr>
<tr>
<td>11</td>
<td>Sodium acetate anhydrous</td>
<td>CH₃COONa</td>
</tr>
<tr>
<td>12</td>
<td>Acetic acid</td>
<td>CH₃COOH</td>
</tr>
<tr>
<td>13</td>
<td>5, 5-dimethyl-1-pyrrolidine N-oxide</td>
<td>DMPO</td>
</tr>
<tr>
<td>14</td>
<td>Benzoic acid</td>
<td>BA</td>
</tr>
<tr>
<td>15</td>
<td>Ferric sulfate</td>
<td>Fe₂(SO₄)₃</td>
</tr>
<tr>
<td>16</td>
<td>Methanol</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Tert-butyl alcohol</td>
<td>TBA</td>
</tr>
<tr>
<td>18</td>
<td>Potassium iodide</td>
<td>KI</td>
</tr>
<tr>
<td>19</td>
<td>Potassium biphthalate</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Phenol</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2,4-dichlorophenol</td>
<td>2,4-DCP</td>
</tr>
<tr>
<td>22</td>
<td>Carbamazepine</td>
<td>CBZ</td>
</tr>
<tr>
<td>23</td>
<td>Methylene blue</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Methyl phenyl sulfoxide</td>
<td>PMSO</td>
</tr>
<tr>
<td>25</td>
<td>Methyl phenyl sulfone</td>
<td>PMSO₂</td>
</tr>
<tr>
<td>26</td>
<td>Phenylsulfinic acid</td>
<td>PhSO₂</td>
</tr>
<tr>
<td>27</td>
<td>bisphenol</td>
<td></td>
</tr>
</tbody>
</table>
2.1.2 Material preparation

The TiO₂ photoanode was prepared via the dip-coating method described by Shang et al. (Shang et al. 2003). A γ-Bi₂MoO₆/ITO photoanode was fabricated by depositing a Bi₂MoO₆ film onto an indium tin oxide (ITO) substrate from an amorphous heteronuclear complex solution using the dip-coating method. The Pd/Al₂O₃ catalyst was purchased from Sigma Aldrich (Finland) (10% Pd loading on Al₂O₃).

2.2 Reactor configurations

2.2.1 Photoelectrocatalytic reactor

In the first part, the photoelectrocatalytic (PEC) experiments in batch mode were performed in an undivided cell with a volume of 500 mL. A tubular TiO₂/Ti mesh electrode (50 mm diameter) was used as the anode, and the TiO₂ film was deposited onto the Ti plate via the dip-coating method described by Shang et al. (Shang et al. 2003). Tubular mesh stainless steel (66 mm) was used as the cathode. The gap between the anode and cathode was 8 mm. A UV lamp (main wavelength 254 nm; 9 W) in a quartz tube was placed in the center of the tubular TiO₂/Ti mesh electrode.

For the second experiment, the batch experiments were carried out using a divided quartz reactor of 54 mm × 50 mm × 60 mm. The reactor contained a 120 mL solution containing DCF (10 ppm) as the target contaminant. The PEC reaction was driven by an electrochemical workstation (CHI 660E, Shanghai Chenhua Instruments Co., Ltd) connected to a γ-Bi₂MoO₆ photoelectrode as the working electrode, a counter electrode, and a reference electrode (Ag/AgCl). The visible light source was a Xe lamp (PLS-SXE300; Beijing PerfectLight Co., Ltd, Beijing, China) with a UV cutoff filter (λ > 420 nm).

Figure 2.1 Schematic diagram of the two-cell electrochemical reactor for batch experiments.
2.3 Analytical method

2.2.2 Electrocatalytic reactor

The electrocatalytic reaction was conducted in a divided two-cell reactor, as shown in Figure 2.1. The model pollutant and Pd/Al$_2$O$_3$ catalyst were added to the cathodic cell simultaneously. The electrocatalytic experiments in this study were carried out under a deoxygenated atmosphere.

2.3 Analytical method

2.3.1 Organic detection

The concentration of the model contaminants was confirmed by high performance liquid chromatography (HPLC), equipped with a C18 column and UV detector. The specific details for the HPLC analysis of the organics are listed in Table 2.1.

Table 2.1 Analysis details of model contaminants by HPLC

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Mobile phase (%)</th>
<th>Acetic acid (0.1%)</th>
<th>Water</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Methanol</td>
<td>Acetonitrile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu-complexes</td>
<td>8</td>
<td>92</td>
<td></td>
<td>254 nm</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>50</td>
<td>50</td>
<td></td>
<td>228 nm</td>
</tr>
<tr>
<td>BA</td>
<td>50</td>
<td>50</td>
<td></td>
<td>228 nm</td>
</tr>
<tr>
<td>PMSO</td>
<td>20</td>
<td>80</td>
<td></td>
<td>230 nm</td>
</tr>
<tr>
<td>PMSO$_2$</td>
<td>20</td>
<td>80</td>
<td></td>
<td>230 nm</td>
</tr>
<tr>
<td>2,4-DCP</td>
<td>70</td>
<td></td>
<td>30</td>
<td>284 nm</td>
</tr>
<tr>
<td>phenol</td>
<td>80</td>
<td></td>
<td>20</td>
<td>272 nm</td>
</tr>
<tr>
<td>BPA</td>
<td>80</td>
<td></td>
<td>20</td>
<td>276 nm</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>60</td>
<td></td>
<td>40</td>
<td>285 nm</td>
</tr>
</tbody>
</table>

2.3.2 Analytical method

PDS concentration was determined using modified iodometry. For the method, Chromogenic agent A (potassium biphthalate, 0.1 M) and Chromogenic agent B (potassium iodide, 0.4 M; NaOH, 0.06 M; ammonium molybdate, 10^{-4} M) were prepared in deionized water, firstly, and then, aliquots (1.5 ml) of the samples were added in a 5-mL centrifuge tube with 0.75 ml of Chromogenic agent A and 0.75 ml of Chromogenic agent B. After waiting for 60 min (until the absorbance of the treated solution was stable), the absorbance of the treated solution was measured using a UV spectrophotometer (Hitachi U-3010) at $\lambda = 352$ nm. The Cu$^{2+}$ concentration and the concentrations of other
metals were measured using a 700 series inductively coupled plasma-optical emission spectrometer (ICP-OES, Agilent Technology). Total organic carbon (TOC) content was determined using a Shimadzu TOC analyzer (TOC-VCPH, Shimadzu, Japan).

Electrochemical characterizations, including linear sweep voltammetry (LSV) and cyclic voltammetry (CV), were conducted in a single-compartment, three-electrode cell on a CHIN800D instrument (CH Instrument Co.). The morphologies of the materials were characterized using a JSM 6301 scanning electron microscope (SEM). X-ray photoelectron spectroscopy (XPS) was used to analyze the surface of the electrode using a PHI Quantera SXM (PHIEnvironmental 5300/ESCA, ULVAC-PHI, Inc.). The phase composition of the synthesized catalyst was studied using X-ray diffraction (XRD, PANalytical) with Co-Kα radiation (λ = 0.1789 nm, at 40 kV and 40 mA) over a 2θ range of 10–120°, with a step size of 0.02° and scan speed of 2°/min. Using DMPO as the trapping agent, active radicals were identified with electron spin resonance (ESR) on a Bruker ESR 300E with a microwave bridge (receiver gain, 1 × 105; modulation amplitude, 2 G; microwave power, 10 mW; modulation frequency, 100 kHz).
3 Result & Discussion

3.1 PDS activation by cathodic reduction

3.1.1 Enhanced decomplexation of Cu-EDTA and simultaneous Cu recovery in the PEC system with addition of PDS

The existence of Cu ions in the effluents from the electroplating, mining, and photographic industries makes the removal of organic contaminants via traditional biological processes challenging (Lopez-Munoz et al. 2009). In particular, the formation of stable Cu complexes (Cu-EDTA or Cu(CN)₅) results in the impossible pre-abatement of Cu ions and subsequent removal of organics (Pirkanniemi et al. 2007, Tunay and Kabdasli 1994). In the works of Zhao et al., PEC processes have exhibited the destruction of the chelating agents via oxidation by photogenerated holes or \(\cdot \)OH generated from the semiconductor photoanode, with simultaneous Cu recovery via cathodic reduction (Zhao et al. 2014a, Zhao et al. 2013, Zhao et al. 2015). Unfortunately, the PEC oxidation of metal complexes only occurred around the photoanode with a low oxidation efficiency, necessitating a long retention time for a better performance in treating Cu complexes (Figure 3.1a). At a current density of 0.2 mA/cm² for 60 min, the removal efficiency of the Cu complexes was only 21.6% in the PEC system using a TiO₂-coated electrode as the photoanode for oxidizing Cu-EDTA and a stainless-steel cathode for Cu reduction. With the introduction of 5 mM PDS into the PEC system (PEC/PDS), the removal efficiency of Cu complexes was increased to 98.4%. Correspondingly, the recovery percentages of Cu²⁺ were elevated to 98.9% from 20.6% within 60 min. Meanwhile, the TOC variations in these processes were further compared, and the higher TOC removal in the PEC/PDS system (52.1%) compared with the PEC system (9.35%) indicated improved oxidation performance of the former.

Figure 3.1 (a) System comparison for Cu-EDTA decomplexation and Cu recovery; ([Cu-EDTA], 0.2 mM; [PDS], 5 mM; initial solution pH, 3.0; current density, 0.2 mA/cm²) (b) reactive oxygen radical analysis by ESR technology.
The enhancement of the oxidation and mineralization capacity of the PEC/PDS system might be ascribed to the increasing radical concentration, which could be verified by ESR analysis using DMPO as a radical trapping agent. As shown in Figure 3.1b, the hyperfine splitting constants of DMPO-OH can be observed in the PEC system, indicating the generation of OH on the TiO$_2$ photoanode under UV radiation (Danilczuk et al. 2009, Laine et al. 2008). With the addition of PDS, the signal of DMPO-OH increased, and another signal of DMPO-SO$_4$- appeared. According to previous studies, the improvement in the SO$_4$- concentration could contribute to the photolytic formation of SO$_4$- using PDS as the parent oxidant (Reaction 1.1). Meanwhile, the unstable DMPO-SO$_4$- could be readily transformed into DMPO-OH in the water [3], inducing the signal enhancement of DMPO-OH.

3.1.2 Cathodic activation of PDS via single-electron transfer

The impact of the S$_2$O$_8^{2-}$ concentration and current density on the degradation of Cu-EDTA and Cu recovery was studied to optimize the conditions for the PEC/PDS process. The performance of the PEC/PDS system as a function of time was studied with varying PDS concentrations (Figure 3.2a). The decomplexation ratios of the Cu complexes with the initial PDS concentrations of 0, 5, 20, and 50 mM were 27.4%, 98.4%, 88.1%, and 57.7%, respectively. According to the results, the optimal dosage of PDS for Cu-complex abatement was 5 mM. A similar trend was observed for Cu recovery. Meanwhile, the effect of current density on the performance of the PEC/PDS process (Figure 3.2b) suggested that a higher current density induced better performance in the removal of Cu complexes and simultaneous recovery of Cu. By applying 1.0 mA/cm2 in the PEC/PDS system, the complexation of Cu-EDTA and Cu recovery on the cathode could be completed within 45 min.

Additionally, as evident from Figure 3.2a and 3.2b, the decomposition of Cu complexes and Cu recovery could be noticeably divided into two phases based on the kinetics. In the lag phase, Cu-complex removal and Cu recovery proceeded at a low rate, then subsequently increased significantly. As shown in Figure 3.2a, the transition points between the two phases appeared at 10 min, 20 min, and 45 min, when the initial concentrations of PDS were 5 mM, 20 mM, and 50 mM, respectively. The lag phase continued for a longer time with higher concentrations of PDS. Notably, the reaction rate remained relatively stable in the PEC process without PDS. In Figure 3.2b, the rate increased at 60 min, 30 min, 10 min, and 10 min with the current densities of 0.1 mA/cm2, 0.2 mA/cm2, 0.5 mA/cm2, and 1.0 mA/cm2, respectively. Thus, we can conclude that the reaction time of the initial stage had a positive correlation with the initial concentration of PDS, while it was negatively correlated with the current density.

Based on the lag time analysis, PDS reduction on the cathode may have occurred, which was further confirmed by LSV analysis of the Cu$^{2+}$, Cu-EDTA, and S$_2$O$_8^{2-}$ solutions in 0.1 M Na$_2$SO$_4$. It can be seen from Figure 3.2c that the current increased at a potential lower than 0.05 V, suggesting that the Cu$^{2+}$ reduction began at a potential of 0.05 V vs. Ag/AgCl. Similar analysis for the Cu-EDTA solution demonstrated that the cathodic
3.1 PDS activation by cathodic reduction

Reduction of Cu-EDTA began at the potential of -0.25 V. The lower potential of the chelated Cu$^{2+}$ than the free Cu$^{2+}$ indicated an increasing difficulty in the Cu$^{2+}$ reduction induced by complexation. Surprisingly, the PDS reduction started at a potential of 0.20 V. The positive shift in the potential for the PDS reduction implied that PDS could be reduced before the Cu$^{2+}$/Cu-EDTA reduction.

Figure 3.2 Effect of PDS concentration (a) and current density (b) on the PEC/PDS process ([Cu-EDTA], 0.5 mM; [Na$_2$S$_2$O$_8$], 10 mM; current density, 0.2 mA/cm2; initial solution pH, 3.0; current density, 0.2 mA/cm2); (c) LSV analysis of (a) S$_2$O$_8^{2-}$, (b) Cu$^{2+}$ and (c) Cu-EDTA in 0.1 M Na$_2$SO$_4$ (Solution pH, 3.0); (d) ESR spectra in the bulk solution and around the cathode of the EC/S$_2$O$_8^{2-}$ process; (e) Effect of the current density on the ESR signals of DMPO-OH at the solution pH of 10.0.
To elucidate the product of the PDS reduction, an ESR analysis was applied at different positions of the electrochemical system with the addition of PDS (EC/PDS). With respect to the EC/PDS process, nearly no enhanced signals of DMPO-SO₄⁻ and DMPO-'OH in the bulk solution were observed (Figure 3.2d). Interestingly, obvious DMPO-SO₄⁻ signals appeared around the cathode, and the intensity of the radicals increased with the current density (Figure 3.2e). The results suggest that the PDS could be activated to form SO₄⁻ via cathodic reduction (reaction 3.1).

\[\text{S}_2\text{O}_8^{2-} + e^- \rightarrow \text{SO}_4^{2-} + \text{SO}_4^- \]

(3.1)

Therefore, in the PEC/PDS process, cathodic activation and UV photolytic activation accelerated the production of active radicals, enhancing the Cu-complex oxidation and Cu recovery performance.

3.1.3 Acidification induced by PDS oxidation

In our previous studies on Cu recovery from the complexed Cu²⁺ by the PEC system, the alkaline or neutral solution pH significantly impeded its cathodic recovery owing to the in situ precipitation of the decomplexed Cu²⁺ onto the Bi₂MoO₆ photoanode in the form of CuO, Cu₂O, or Cu(OH)₂ (Zhao et al. 2015). Therefore, in the PEC process employed in the current study, the performance of the decomplexation of Cu-EDTA and Cu recovery deteriorated under alkaline and neutral conditions (Figure 3.3a), which can be attributed to the Cu-involved deposition blocking the active sites on the photoanode and thereby decreasing the decomplexation capacity (Zhao et al. 2014b). In contrast, varying the solution pH had a negligible impact on the PEC/PDS process (Figure 3.3b), revealing that the addition of S₂O₈²⁻ allows highly efficient Cu-complex decomplexation and Cu recovery over a wide pH range.

Furthermore, the influence of the initial solution pH on the distribution of Cu species was evaluated. In the PEC system, almost no deposition of Cu appeared on the anode, while it increased with an increase in the solution pH (Figure 3.3c). The results were identical to those of a previous study by Zhao et al. (2015). With the addition of PDS, the Cu precipitation exhibited considerably different behaviors with varying initial solution pH. Only 1.71%, 1.18%, and 0.511% Cu was precipitated on the anode with the solution pHs of 3.0, 7.0, and 11.0, respectively. The recovery ratios of Cu were determined to be 61.9%, 59.8%, and 53.2%, respectively. Furthermore, in contrast to the Cu(II) precipitation on the anode of the PEC system, the Cu species on the cathode were determined to be the desired Cu(0) in the PEC/PDS system (XPS analysis in Figure 3.3e).

The variations in the solution pH throughout the PEC/PDS processes were also monitored. As shown in Figure 3.3d, the solution pH values in the PEC processes were stable at their initial values, with a slight decrease. In contrast, the solution pH rapidly decreased to approximately 2.1 in the PEC/PDS processes with various initial pHs. Due to the narrow gap in the redox potential between SO₄⁻ (2.5–3.1 V) and 'OH (1.8–2.7 V), we attributed the acidification to the inter-conversion of SO₄⁻ to 'OH as shown in reaction 3.2 (Liang...
3.1 PDS activation by cathodic reduction

and Su 2009a). The reaction revealed that the produced SO_4^{2-} was transformed into $\cdot\text{OH}$ by reacting with OH-. Consequently, the solution pH decreased during the initial phase. The acidic conditions facilitate the decomplexation and Cu recovery process better than the alkaline conditions (Zhao et al. 2013).

Figure 3.3 Effect of initial solution pH on the Cu-EDTA decomplexation and Cu recovery in PEC system (a) and PEC/PDS system (b); (c) The copper mass balance and (d) variation in the solution pH in the PEC process and the PEC/S$_2$O$_8^{2-}$ process under various initial solution pHs. ([Cu-EDTA], 1.0 mM; [Na$_2$S$_2$O$_8$], 50 mM; current density, 0.2 mA/cm2); (e) XPS analysis of the titanium cathode at different reaction times in the PEC/S$_2$O$_8^{2-}$ process; (f) Schematic of the PEC/S$_2$O$_8^{2-}$ process.
In conclusion, Cu-EDTA was oxidized and decomposed by SO₄⁻ through UV photolysis and cathodic reduction of PDS. With the destruction of the EDTA structure, Cu²⁺ was liberated. Meanwhile, the conversion of SO₄⁻ to *OH rapidly created an acidic condition against the precipitation of the liberated Cu²⁺. Once the S²O₈²⁻ ions were consumed, the cathodic reduction of the Cu²⁺ ions dominated the cathodic reaction. The Cu²⁺ ions were efficiently deposited onto the cathode, followed by Cu⁰ electroreduction.

3.2 Enhanced cathodic activation of PDS mediated by Cu⁺/Cu²⁺ pair

![Figure 3.4](image-url)

Figure 3.4 (a) Characterizations of Bi₂MoO₆ photoanode; (b) Variations in diclofenac sodium degradation efficiency in various systems; (c) TOC removal in various systems; (d) First-order kinetic rate constants of diclofenac degradation in the PEC/PDS system with different applied potentials. ([Diclofenac], 10 mg/L; initial solution pH, 5.62; applied potential, 1.5 V)

3.2.1 Enhanced degradation of organic compounds

In this work, a visible-light-sensitive photoanode (γ-Bi₂MoO₆) was fabricated (Zhang et al. 2011). As shown in **Figure 3.4a** (insert), a chapped surface, which was identical to the assembled particles in other studies (Dong et al. 2014), of the Bi₂MoO₆ membrane on the electrode was observed through SEM analysis. Furthermore, the XRD analysis revealed
that the peaks of the prepared electrode were in line with the Bi$_2$MoO$_6$ standard (JCPDS: 21-0102). Both the sharpness of the XRD reflections and the small half peak width demonstrated the high crystallinity of the desired photocatalyst on the synthesized photoanode. Corresponding to the cell parameters (a = 5.50, b = 16.24, c = 5.49), the resulting crystalline phase could be confirmed as an orthorhombic structure.

Using the prepared photoanode and Cu cathode, the performance of the PEC/PDS system on diclofenac degradation was investigated. The degradation efficiency of diclofenac after 2 h was significantly improved to 67.35% with the addition of 1 mM PDS into the PEC system, compared with 3.04% removal in the individual PDS oxidation and 19.35% in the PEC process (Figure 3.4b). With an increase in the PDS dosage to 10 mM, the treatment efficiency also improved to 86.28%. Accordingly, the TOC removal was also improved from 0.659 ppm to 3.557 ppm with the addition of 10 mM PDS. Furthermore, the applied potential displayed a positive relationship with the first-order kinetic constant of diclofenac degradation.

![Figure 3.5](image)

Figure 3.5 (a) ESR analysis in bulk solution, near the anode and cathode in the Bi$_2$MoO$_6$/Cu/PEC/PDS system; (b) ESR analysis of the PDS aqueous solution, near the cathodes of the Bi$_2$MoO$_6$/Ti/PEC/PS system and the Bi$_2$MoO$_6$/Cu/PEC/PDS system.

Positive effects of the applied potential and PDS dosage on the diclofenac degradation suggested that the enhanced performance may be ascribed to the PDS activation by the Cu cathode. This could be confirmed by ESR analysis using DMPO as a trapping agent for the radicals (Zeng et al. 2016). As shown in Figure 3.5a, DMPO-'OH and DMPO-SO$_4$ were observed in the bulk solution and near the anode/cathode, indicating the generation of 'OH and SO$_4$$^-$ with the PDS addition into the PEC system. Interestingly, the concentrations of 'OH and SO$_4$$^-$ were higher than those in the bulk solution and near the anode. The ESR signals around the Cu cathode were even higher than those around the Ti cathode, indicating the presence of a new single-electron medium when Cu was employed in the PEC/PDS system.
3.2.2 Cu⁺/Cu²⁺ cycle for cathodic activation of PDS

To explore the essential medium for the single-electron transfer from the cathode to the PDS, we further investigated the changes to the Cu cathode. Interestingly, the fresh Cu foil cathode gradually became dark red during the PEC/PDS process. The surface change of the Cu foil was first determined by SEM analysis. As shown in Figure 3.6a, the surface of the unused foil was relatively smooth, except for some scratches caused by the Cu foil pretreatment by sandpaper polishing. In contrast, a porous structure was observed on the Cu cathode after the reaction (Figure 3.6b, c), implying the generation of a new layer.

Comparing the XRD results of the fresh and used Cu foils revealed that a new peak at 335.1 eV was observed on the Cu foil used in the PEC/PDS process, which was assigned to the newly created Cu(II) on the Cu(0) substrate (952.5 eV and 932.6 eV) (Figure 3.6d) (McIntyre et al. 1981, Miller and Simmons 1993, Wagner 1975). Moreover, the XRD analysis (Figure 3.6e) revealed that Cu₂O may be simultaneously produced on the Cu foil, owing to the uniformity of the detected XRD signals with the Cu₂O standard (JCPDS: 78-2076). These results demonstrate that the porous structure of the Cu cathode may be induced by the generated Cu(II)/Cu(I) in the PEC/PDS process, and the Cu(I)/Cu(II) on the Cu substrate may act as a single-electron medium. To further confirm the results, in situ Raman spectroscopy was employed to determine the copper species variations during the PEC/PDS process. As shown in Figure 3.6f, no signals were detected on the fresh Cu foil. After a 5 min reaction, some Raman peaks appeared at 145, 216, 414, and 624 cm⁻¹, indicating the emergence of Cu₂O (Ren et al. 2015), and the signals became stronger as the reaction progressed.

These results demonstrate that metallic Cu can be oxidized by PDS to form Cu(II)/Cu(I) (reaction 3.3), and Cu(I) has been reported to be an efficient activator for peroxide compounds (reaction 3.5) (Chi et al. 2019), which may play a role in the single-electron shuttle in this system. The produced Cu(II) was then reduced by photoelectrons, and Cu(I) was continuously regenerated (reaction 3.4). Using photoelectrons as the electron donor, the accelerated Cu(II)/Cu(I) cycle as a single-electron transfer channel, and PDS as an oxidant, the PEC/PDS system could continuously output SO₄⁻ radicals and subsequently degrade diclofenac.

\[
\begin{align*}
\text{Cu} + \text{S}_2\text{O}_8^{2-} & \rightarrow \text{Cu}^{(II)} + 2 \text{SO}_4^{2-} & (3.3) \\
\text{Cu}^{(II)} + e^- & \rightarrow \text{Cu}^{(I)} & (3.4) \\
\text{Cu}^{(I)} + \text{S}_2\text{O}_8^{2-} & \rightarrow \text{Cu}^{(II)} + \text{SO}_4^{2-} + \text{SO}_4^{2-} & (3.5)
\end{align*}
\]
3.3 Pd/electro-generated H2 for accelerating Fe$^{3+}$/Fe$^{2+}$ cycle

Figure 3.6. (a–c) FE-SEM images of Cu foil at various times in PEC/PDS system; (d) XRD patterns of copper foil at different reaction times in PEC/PDS system; (f) XPS Cu 2p spectra of the Cu foil before and after the reaction; (g) In situ Raman spectroscopic analysis of the copper cathode during the reaction process. (Applied bias potential, 1.5 V; [PDS], 5 mM; initial solution pH, 5.62)

3.3 Pd/electro-generated H2 for accelerating Fe$^{3+}$/Fe$^{2+}$ cycle

3.3.1 Acceleration of Fe$^{3+}$/Fe$^{2+}$ cycle

Given the hypotoxicity of copper ions (Cu$^{2+}$/Cu$^+$ pairs) that necessitates a strict downstream step for removing the leached Cu, the Fe$^{3+}$/Fe$^{2+}$ pair was further explored as a more suitable single-electron shuttle. In the electro-Fenton process, where Fe$^{3+}$ can be readily reduced by two-dimensional cathodes in dual/single-cell electrochemical systems, such as graphite, or carbon felt (Barhoumi et al. 2017, Chu et al. 2012, Fleszar and Sobkowiak 1983, Özcan et al. 2008, Panizza and Cerisola 2001, Ridruejo et al. 2018, ...
Sirés et al. 2007, Sirés et al. 2006, Sudoh et al. 1986), the dissolved iron should meet a concentration requirement (millimolar level) due to the mass transfer limitation. Herein, a three-dimensional electroreduction (3D-ER) system was constructed using commercial Pd/Al₂O₃ as the particle electrode (50 mg/120 mL) that provided a large area and abundant active sites for the Fe³⁺ reactions.

The properties of the Pd/Al₂O₃ particle and the corresponding substrate (α-Al₂O₃) were characterized by SEM, XRD, and XPS analyses. The SEM results (Figure 3.7a) demonstrated that, on the smooth surface of the α-Al₂O₃ substrate presented in Figure 3.7b, many flower-like particles were successfully attached. These particles were mostly identified as Pd⁰ species (340.5 eV, Pd⁰ 3d₂/₃; 335.2 eV, Pd⁰ 3d₅/₃) by XPS results (Figure 3.7c) (Militello and Simko 1994). Meanwhile, the coverage of the Pd crystals on the surface slightly weakened the Al₂O₃-involving signals (74.7 eV, Al³⁺ 2p; 351.6 eV, O²⁻ 1s; Figure 3.7c inset) (Tan et al. 1991). Furthermore, comparing the XRD analysis of the Pd/Al₂O₃ particle with the α-Al₂O₃ substrate, a face-centered cubic structure of the coated Pd catalyst was revealed (Figure 3.7d). The peak of Pd/Al₂O₃ (39.4°) could be ascribed to the Pd(111) of the metallic Pd crystal; the exposure of the Pd(111) facet allowed the active sites on the catalyst to trap electrons and produce atomic H* (Quaino and Santos 2015).

As expected, an extremely fast reduction of 20 ppm Fe³⁺ (360 μM) in the 3D-ER system occurred with a half-time of approximately 30 s (Figure 3.8a), while no variation in the iron species was observed in the absence of the Pd/Al₂O₃ catalyst. To better elucidate the reduction mechanism, we reduced the reaction rate of Fe³⁺ by decreasing the dosage of Pd/Al₂O₃ ten-fold (5 mg/120 mL). It has been well documented that electroreduction can
be achieved via direct electron transfer or an indirect mechanism via atomic H* (Lan et al. 2016, She et al. 2019, Zhao et al. 2014c, Zhou et al. 2019a). In the Pd-involved 3D-ER system, atomic H* can be generated via proton conversion by the electro-induction or dissociative adsorption of electro-generated H2 (reactions 3.5 and 3.6). Ter-butyl alcohol (TBA) was employed to quench atomic H*, subsequently clarifying the importance of two reductive approaches in Fe3+ reduction (Lan et al. 2016). As shown in Figure 3.8b, strong inhibition of the Fe2+ generation occurred with the addition of TBA (36 mM and 360 mM). We further visualized the significance of the two mechanisms by fitting the processes with pseudo-first-order kinetics (Figure 3.8c). With the addition of 36 mM and 360 mM of TBA, the reduction kinetics demonstrated a constant decrease by 77.81% and 83.97%, respectively. The decrease in the Fe3+ reduction rate confirmed the critical role of atomic H*, as well as the assisted role of the direct electron transfer mechanism.

\[
\begin{align*}
\equiv\text{Pd} + H^+ + e^- & \rightarrow \equiv\text{Pd-H}^* \quad (3.5) \\
\equiv\text{Pd-H}_2 & \rightarrow 2 \equiv\text{Pd-H}* \quad (3.6)
\end{align*}
\]

Figure 3.8 (a) Reduction ratio of Fe3+ ions in the Pd-EC system (initial solution pH, 3.0; C(iron ions), 360 µM); (b) Quenching experiment on Fe3+ reduction by TBA ([Fe3+], 360 µM; [Pd/Al2O3], 50 mg/120 ml; current, 0.1 A; initial solution pH, 3.0); (c) First-order kinetic constants for Fe3+ reduction.
3.3.2 Enhanced degradation of organic pollutants

As elucidated in Section 3.3.1, a stable Fe$^{2+}$ concentration in the solution can be achieved using a cathode as an electron source and Pd/Al$_2$O$_3$ as a catalyst for trapping electrons in the form of atomic H*. An experiment for PDS activation (10 mM) under the Pd/Al$_2$O$_3$ enhanced electroreduction condition (pH 3.0, deoxygenated atmosphere) was conducted. Removal of organics reached a high level of 80.12% in 120 min (Figure 3.7a) when BA was chosen as a radical probe because of its high kinetic constants with ‘OH and SO$_4$’ (Lindsey and Tarr 2000, Nate et al. 1977). The acceleration of Fe(III)/Fe(II) by electro-generated H$_2$ induced the continuous activation of PDS to enhance the degradation of BA. Both ‘OH and SO$_4$’ in the enhanced system were determined by ESR analysis (Figure 3.7b). Meanwhile, with the addition of ethanol as a radical quenching agent (Zeng et al. 2019), the BA degradation was highly inhibited, indicating the vital role of these radicals in the BA oxidation process (Figure 3.7c).

![Figure 3.7](image)

Figure 3.7. (a) Enhanced performance of Pd/Al$_2$O$_3$-ER process on the Fe$^{3+}$/PDS oxidation of BA; radical identification by (b) ESR analysis and (c) quenching experiments analysis; Effect of (d) iron dosage, (e) current density and (f) PDS dosage on the BA degradation by Pd-ER/PDS system.

We further optimized the operating parameters of the process. As shown in Figure 3.7d, the system exhibited a stronger oxidation capacity with the addition of a higher Fe$^{3+}$ dosage. Even with the addition of 2 ppm (36 µM) Fe$^{3+}$ (EU emission standard), BA degradation with an efficiency up to 80.12% was attained in 120 min. In the wastewater treatment process, the dissolved iron ions produced iron sludge, and sludge production was assessed by the ratio of C$_r$(iron)/ΔC(pollutant). According to previous studies, the ratio varied from 3.6 to 125 in the Fe$^{2+}$/PDS process (Table 3.1) (Bu et al. 2016, Jiang et al. 2013, Long et al. 2014, Rao et al. 2014, Shang et al. 2019, Wang and Wang 2017, 2017).
3.3 Pd/electro-generated H2 for accelerating Fe³⁺/Fe²⁺ cycle

Zhou et al. 2013); this ratio in our system decreased to 0.2 (lower than 1.0), implying the recycling of iron ions in the system as well as the trace production of iron sludge in the post-treatment process. Furthermore, for the traditional Fe²⁺/PDS process, excess Fe²⁺ had a detrimental effect on the decontamination of organics because of the quenching effect toward •OH and SO₄²⁻ radicals (reactions 3.7. and 3.8). In our system, the Fe²⁺/PDS ratio was no more than 0.0036 (compared with 0.16–1.0 in other literature, Table 3.1) (Bu et al. 2016, Jiang et al. 2013, Long et al. 2014, Rao et al. 2014, Shang et al. 2019, Wang and Wang 2017, Zhou et al. 2013), indicating that Fe²⁺ ions were predominantly used for PDS activation (reaction 1.4) rather than radical quenching (reactions 3.7 and 3.8). The addition of trace iron not only benefits the post-treatment of dissolved iron, but also improves the contaminant oxidation efficiency of the Fenton-like process.

Table 3.1 Comparison of pollutant concentration, iron dosage, and PDS dosage in the Fe²⁺/PDS system.

<table>
<thead>
<tr>
<th>ΔC(pollutant)</th>
<th>C(Fe)</th>
<th>C(PDS)</th>
<th>C(Fe)/ΔC(pollutant)</th>
<th>C(Fe)/C(PDS)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 μM</td>
<td>1.6 mM</td>
<td>2 mM</td>
<td>40</td>
<td>0.16</td>
<td>(Jiang et al. 2013)</td>
</tr>
<tr>
<td>10 μM</td>
<td>0.4 mM</td>
<td>0.4 mM</td>
<td>40</td>
<td>1</td>
<td>(Bu et al. 2016)</td>
</tr>
<tr>
<td>4.2 μM</td>
<td>1 mM</td>
<td>5 mM</td>
<td>238</td>
<td>0.2</td>
<td>(Shang et al. 2019)</td>
</tr>
<tr>
<td>0.7 mM</td>
<td>3.6 mM</td>
<td>5 mM</td>
<td>5.1</td>
<td>0.72</td>
<td>(Long et al. 2014)</td>
</tr>
<tr>
<td>0.84 mM</td>
<td>5.8 mM</td>
<td>20 mM</td>
<td>6.9</td>
<td>0.29</td>
<td>(Rao et al. 2014)</td>
</tr>
<tr>
<td>0.8 mM</td>
<td>8.1 mM</td>
<td>35 mM</td>
<td>10.13</td>
<td>0.23</td>
<td>(Rao et al. 2014)</td>
</tr>
<tr>
<td>25 μM</td>
<td>0.25 mM</td>
<td>1 mM</td>
<td>10</td>
<td>0.25</td>
<td>(Rao et al. 2014)</td>
</tr>
<tr>
<td>50 μM</td>
<td>4 mM</td>
<td>4 mM</td>
<td>80</td>
<td>1</td>
<td>(Wang et al. 2017)</td>
</tr>
<tr>
<td>32 μM</td>
<td>2 mM</td>
<td>2 mM</td>
<td>62.5</td>
<td>1</td>
<td>(Zhou et al. 2013)</td>
</tr>
<tr>
<td>172 μM</td>
<td>15 mM</td>
<td>10 mM</td>
<td>87.2</td>
<td>1.5</td>
<td>Fe³⁺/PDS</td>
</tr>
<tr>
<td>144 μM</td>
<td>36 μM</td>
<td>10 mM</td>
<td>0.25</td>
<td>0.0036</td>
<td>This study</td>
</tr>
</tbody>
</table>

*OH + Fe²⁺ → OH⁻ + Fe³⁺
SO₄²⁻ + Fe²⁺ → SO₄²⁻ + Fe³⁺

(3.7)
(3.8)

Meanwhile, a higher current density could substantially enhance Fe³⁺/Fe²⁺ by yielding more H₂ as a reductant. A proper dosage of PDS (20 mM) can maximize the oxidation process.

In conclusion, the new system exhibited continuous oxidation capacity using a cathode (electro-induced atomic H* and electro-generated H₂) as an electron source, Fe²⁺/Fe³⁺
pair as an electron shuttle, Pd/Al₂O₃ particles for the catalytic reduction of Fe³⁺ ions, and PDS as an oxidant.

3.4 PDS activation by atomic H*

3.4.1 Organic degradation in the Pd/ER system

As described in Section 3.3, PDS can oxidize BA even in the absence of iron ions. One reasonable hypothesis is that single-electron injection into PDS can be mediated by H*/H⁺ pairs. As shown in Figure 3.8a, 45.08% of BA in the Pd/ER system was rapidly degraded at a first-order kinetic constant of 0.0097 min⁻¹ (k₁, R² = 0.9965), whereas the ER system and Pd/Al₂O₃ individually showed negligible degradation of BA (C₀(BA)=50 µM; C₀(PDS)=20 mM; C(Pd/Al₂O₃)=0.5 g/L; current=100 mA; initial solution pH=3.0; anaerobic atmosphere). These results demonstrate that a synergetic activation of PDS occurred in the Pd/ER system. Meanwhile, by monitoring the variations in the PDS concentration as a function of time, simultaneous degradation can be observed with a zero-order kinetic constant of 0.3002 mM∙min⁻¹ (k₀, R² = 0.9971).

We further evaluated the oxidation capacity of the system by degrading several model contaminants (10 µM). As shown in Figure 3.8b, these organic compounds can be easily degraded with efficiencies of more than 80% in 60 min, demonstrating that the system involves a strong and non-selective oxidation process.

Figure 3.8 (a) BA degradation and PDS consumption in Pd/Al₂O₃ adsorption, ER process, and Pd/ER process; (b) Degradation of various organics in the H*/PDS system. ([Organic compounds], 10 µM; [Pd/Al₂O₃], 0.5 g/L; [PDS], 20 mM; current, 0.1 A; solution pH 3.0)

3.4.2 Identification of reactive oxygen species

ESR analysis was then used for the direct identification of radicals in the system using DMPO as a spin-trapping reagent. As displayed in Figure 3.9a, nine characteristic peaks of DMPO−H are observed in the Pd/ER system, suggesting the formation of atomic H*. With the addition of PDS into the Pd/ER system, SO₄•⁻ and its symbiotic radical (•OH)
3.4 PDS activation by atomic H* 43

(reaction 3.9) can be clearly observed, accompanied by the disappearance of atomic H*. The data revealed that the oxidizing radical may originate as a result of PDS reduction by atomic H*. The quenching experiment using ethanol as a scavenger for both ‘OH and SO₄⁻ further confirmed the essential roles of ‘OH and SO₄⁻ in the BA degradation process (Figure 3.9b) (Zeng et al. 2019).

It has been widely reported that atomic H* can be formed in the 3D electroreduction system with a Pd-particle electrode (Lan et al. 2016, Zhao et al. 2014c). Like Fe²⁺ ion (most representative single-electron activator for the activation of peroxide compounds), atomic H* (a single-electron reductive radical) can theoretically cleave the peroxide bridge in the PDS molecule and forms SO₄⁻ radical for subsequent oxidation of BA (reaction 6) (Pan et al. 2018). Comparing the inhibitory results of ethanol and TBA on BA removal demonstrated the significance of atomic H* on the activation of PDS (Figure 3.9b). As a scavenger of both atomic H* and ‘OH, TBA showed lower activity with SO₄⁻ radical (Liang and Su 2009b). Hence, this should have implied a stronger inhibition of organic degradation by ethanol than that by TBA in SO₄⁻-based oxidation systems, as

![Figure 3.9](image-url)
documented in previous literature (Rastogi et al. 2009). However, our batches for BA degradation with the ethanol addition revealed a higher k_i-value than that with the addition of TBA in this system, which may be ascribed to the simultaneous inhibition of both the reactive radical formation from atomic H* and BA degradation by 'OH. The abnormal phenomena unravel the necessity of atomic H* on unleashing the oxidative power of PDS.

\[
\begin{align*}
\text{SO}_4^{2-} + \text{OH}^- & \rightarrow \text{SO}_4^{2-} + \cdot \text{OH} \\
=\text{Pd-H}^* + \text{S}_2\text{O}_5^{2-} & \rightarrow =\text{Pd} + \text{H}^* + \text{SO}_4^{2-} + \text{SO}_4^{2-} \tag{3.10} \\
=\text{Pd-H}^* + \text{SO}_4^{2-} & \rightarrow =\text{Pd} + \text{H}^* + \text{SO}_4^{2-} \tag{3.11}
\end{align*}
\]

In addition, different from AOPs using metal activators, where radicals ('OH, SO$_4^{2-}$) and high valent cationic species [Fe(IV), Mn(III), Cu(III), or Cr(V)], were all involved in the decomposition of organics (Dong et al. 2020a, Dong et al. 2020b, Liu et al. 2019b, Wang et al. 2020, Wang et al. 2018), the H*/PDS system can theoretically avoid the involvement of high valent cationic species owing to the employment of metal-free activator. Degradation experiment using methyl phenyl sulfoxide (PMSO) as a probe of reactive oxygen species can verify the hypothesis. Phenylsulfinic acid (PhSO$_2$) was formed from the radical oxidation while PMSO was converted into methyl phenyl sulfone (PMSO$_2$) by high valent cationic species (Wang et al. 2018). As presented in Figure 3.9c. The HPLC results in the H*/PDS system showed that only negligible signal of PMSO$_2$ appeared through the whole process of PMSO degradation. The above analysis revealed that atomic H* can reduce PDS, followed by SO$_4^{2-}$ generation for organic decontamination.

3.4.3 Two routes for PDS electroreduction on Pd(111) facet

Problem comes from that the value of Δc(PDS)/Δc(BA) was calculated as 700, which was identical to values in other electrochemical activation processes of PDS (Chen and Huang 2015, Chen et al. 2014, Liu et al. 2020, Matzek et al. 2018). According to the property of PDS, the meaningless consumption of PDS can be due to the inhibition of excess atomic H* on the SO$_4^{2-}$ (reaction 7), or that two-electron reduction of PDS occurs via non-radical route. We monitored the PDS decomposition for investigating the quenching mechanism. As shown in the Figure 3.9b, the TBA showed negligible influence on the PDS decay while it obviously inhibited PDS activation by atomic H* and following BA degradation. The results excluded the possibility of PDS consumption via a two-step reduction of two atomic H*, and suggested an unknown mechanism on the non-radical decomposition of PDS.

For better elaborating the PDS decomposition with the assistance of Pd/Al$_2$O$_3$ catalyst, DFT technology was employed in elucidating the PDS decomposition by two electroreduction mechanism (indirect reduction via atomic H* and direct electron transfer). In the DFT analysis, a hyphen indicates the states where two units are bonded with each other, whereas the plus sign represents a separate state. According to XRD results of Pd/Al$_2$O$_3$ catalyst, we constructed a Pd(111) facet as the catalytical platform for PDS decomposition. In the indirect reduction approach of PDS, the H* ion firstly
adsorbed on the Pd atom with a Gibbs free energy change (∆G) of −1.324 eV, the negative value indicated that the physical adsorption can spontaneously occur (Figure 3.10). Then, the atomic H* was generated through the formation of a Pd–H* bond (∆G = 0.232 eV) with the Pd-H* accepting one-electron. Subsequently, the PDS molecule in the bulk solution coupled Pd-H* to form a =Pd-H*-S2O82− adduct (∆G = −3.321 eV), followed by structure conversion into a transition state (TS1) with ∆G value of 0.916 eV. The charge density analysis demonstrated that the electron was successfully injected into the PDS molecule from Pd-H* adduct with the formation of =Pd-H*-S2O82− adduct. In the meantime, the electron-injection into the S2O82− induced a longer length of the peroxide bond from 1.347 Å (S2O82−) to 1.498 Å (=Pd-H*-S2O82−), suggesting the following cleavage of the peroxide bond with the generation of the desired SO4•−. It can be easily concluded that the phase where TS1 was formed was the determining step through the whole process (∆Gds), with the highest ∆G among these elementary reactions (Zhou et al. 2019b). Only when the system was driven across the uphill energy barrier, can the reaction smoothly proceed (Wei et al. 2012).

![Figure 3.10](image.png)

Figure 3.10 Gibbs free energy variations for PDS decomposition on the Pd(111) facet via different reduction approaches: indirect reduction via atomic H* and direct electron transfer.

PDS decomposition via direct electron transfer was then studied by DFT analysis, with assuming SO4•− as reduction product. Different from the indirect reduction mechanism, S2O82− directly adsorbed on the Pd atoms instead of atomic H* (∆G = −5.977 eV). The
\[\text{Pd-S}_2\text{O}_8^{2-} \] was then evolved into two less oxidative \[\text{Pd-SO}_4^{2-} \], accompanied with the cleavage of peroxide bond in the PDS molecule (Feng et al. 2017). The single-electron transfer could steer the PDS decomposition towards free \(\text{SO}_4^{2-} \) radical. The system exhibited a high oxidation ability when \(\text{SO}_4^{2-} \) fell off the Pd atom. Nevertheless, the \(\Delta G \) of determining step for this reaction route (4.281 eV) was obviously higher than that in the indirect reduction approach. The comparison excluded the generation mechanism of \(\text{SO}_4^{2-} \) via the direct electron transfer and demonstrated that the atomic \(\text{H}^* \) could readily initiate the PDS oxidation with yielding the desired \(\text{SO}_4^{2-} \). By contrast, if we supposed the product of PDS reduction as inert \(\text{SO}_4^{2-} \), the \(\Delta G_{\text{ds}} \) was determined to be only 0.539 eV. Much lower \(\Delta G_{\text{ds}} \) (0.539 eV to 4.281 eV) indicated that the PDS reaction on the Pd catalyst via direct electron transfer was oriented to the production of \(\text{SO}_4^{2-} \).

Hence, it can be concluded that these two mechanisms steered the PDS electroreduction toward different products: PDS formed \(\text{SO}_4^{2-} \) via the atomic \(\text{H}^* \) reduction, whereas PDS inclined to accepted two-electron in one-step (direct electron transfer).

3.4.4 Electron donor analysis

The optimized conditions for PDS decomposition and \(\text{SO}_4^{2-} \) generation were further explored in the Pd/ER system. The kinetic constants (\(k_0 \) for PDS decay and \(k_1 \) for BA degradation) are listed in Table 3.2. According to Batch 1–3, higher current on the system can positively stimulate the PDS decomposition, which is directly related to the \(\text{H}_2 \) generation rate. This can be contributed to the role of two-electron donor played by \(\text{H}_2 \) in the direct electron transfer process. Interestingly, varying the PDS and catalyst dosages presented negligible influence on the \(k_0 \)-value for PDS decomposition (Batch 1, 4–8). The insensitivity to these two factors suggested that PDS can react with \(\text{H}_2 \) at an ultrafast rate, and the PDS diffusion didn’t become the rate-limiting step during the process. By contrast, these factors imposed different influence on the \(\text{SO}_4^{2-} \) production, which was characterized using BA as radical probe. The \(k_1 \)-value for BA oxidation was improved by applying higher current/potential or adding more Pd/Al\(_2\)O\(_3\) catalyst, while \(k_1 \) showed unaffected by different concentration of PDS.

As mentioned in section 3.3, atomic \(\text{H}^* \) can be generated from proton conversion by the electro-induction or dissociative adsorption of \(\text{H}_2 \) (reaction 3.5 and 3.6) (Georgi et al. 2016, Lan et al. 2016, Xu et al. 2017, Zeng et al. 2019). For elaborating their roles in the PDS decomposition process, we developed two systems to differentiate these active hydrogen species. We ruled out the electro-induced atomic \(\text{H}^* \) by monitoring the BA degradation in the \(\text{H}_2/\text{Pd} \) system, where contained PDS as radical precursor. To our surprise, there is no any BA degradation observed through the whole PDS decomposition process (Figure 3.11). The results were controversy to the generally believed approach of atomic \(\text{H}^* \) formation from the dissociation of dihydrogen. By contrast, the adsorbed \(\text{H}_2 \) molecules on the Pd catalyst may directly act as a two-electron donor (\(\equiv\text{Pd-H}_2^\text{2-} \), reaction 3.12) without necessary formation of atomic \(\text{H}^* \) (Jiang et al. 2017). In addition, a three-cell electrochemical reactor was designed, in which electrochemically generated \(\text{H}_2 \) was blocked in the cathodic cell and only electro-induced atomic \(\text{H}^* \) in the middle cell.
3.4 PDS activation by atomic H* 47

In this case, BA degradation with decomposition of trace PDS revealed the efficient yield of SO$_4^{\cdot-}$ via the activation of PDS induced by the electro-induced atomic H*.

\[\equiv \text{Pd} + \text{H}_2 \rightarrow \equiv \text{Pd-H}_2^* \]

(3.12)

The aforementioned researches demonstrated two electron donors for PDS decay in the Pd/ER system: the activation of PDS into SO$_4^{\cdot-}$ was initiated by electro-induced atomic H*, while Pd-activated H$_2$ played a role as a two-electron donor for the direct electron transfer process. Maximizing the valid activation of PDS necessitated methods to enhance the production of electro-induced atomic H* and simultaneous inhibition of the H$_2$ yield. In the electrochemical system, the H$_2$ generation quantitatively depended on the applied current, while the atomic H* production via the electro-induction depended on the catalyst concentration and electric field. Unfortunately, both electro-induced atomic H* and electro-generated H$_2$ simultaneously increased with an elevation of applied current. In contrast, higher dosage of Pd/Al$_2$O$_3$ catalyst to 1.0 g/L can provide more active sites for proton adsorption and conversion into atomic H*, thus inducing higher SO$_4^{\cdot-}$ levels and simultaneously accelerating the organic degradation process.
Table 3.2 Effects of the applied current, PDS concentration, and Pd/Al₂O₃ dosage on the kinetics constants (k-value) of PDS consumption and BA degradation. (BA, 50 μM; initial solution pH, 3.0; deoxygenated atmosphere)

<table>
<thead>
<tr>
<th>No.</th>
<th>Current (A)</th>
<th>C(PDS) (mM)</th>
<th>C(Pd/Al₂O₃) (g/L)</th>
<th>k₁ (BA) (min⁻¹)</th>
<th>k₀ (PDS) (mM/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0.1</td>
<td>20</td>
<td>0.5</td>
<td>0.0097</td>
<td>0.2982</td>
</tr>
<tr>
<td>2.</td>
<td>0.05</td>
<td>20</td>
<td>0.5</td>
<td>0.0051</td>
<td>0.1595</td>
</tr>
<tr>
<td>3.</td>
<td>0.02</td>
<td>20</td>
<td>0.5</td>
<td>0</td>
<td>0.0657</td>
</tr>
<tr>
<td>4.</td>
<td>0.1</td>
<td>20</td>
<td>1.0</td>
<td>0.0169</td>
<td>0.3026</td>
</tr>
<tr>
<td>5.</td>
<td>0.1</td>
<td>20</td>
<td>0.2</td>
<td>0.0031</td>
<td>0.3163</td>
</tr>
<tr>
<td>6.</td>
<td>0.1</td>
<td>20</td>
<td>0.1</td>
<td>0.0019</td>
<td>0.3121</td>
</tr>
<tr>
<td>7.</td>
<td>0.1</td>
<td>50</td>
<td>0.5</td>
<td>0.0087</td>
<td>0.3002</td>
</tr>
<tr>
<td>8.</td>
<td>0.1</td>
<td>10</td>
<td>0.5</td>
<td>0.0074</td>
<td>0.2802</td>
</tr>
</tbody>
</table>

In conclusion, the reactive oxygen species (SO₄⁻/·OH) could be readily formed by the single-electron reduction of PDS by electro-induced atomic hydrogen (atomic H*, indirect reduction mechanism), while the direct two-electron transfer from H₂ to PDS consumed its oxidation capacity without yielding radicals due to the higher energy barrier. By increasing the concentration of the Pd/Al₂O₃ catalyst in the ER system, more atomic H* could be generated for PDS activation and the subsequent degradation of organics. The H*/H⁺ pair was proven to be an efficient single-electron transferring medium for PDS activation.
4 Conclusions & Prospective

To improve the quality of human life, a plethora of organic compounds have been synthesized by various industries. However, the emissions resulting from their production have caused serious environmental concerns. In addition, traditional biological treatment methods have been deemed to be ineffective in removing these emerging contaminants due to their non-biodegradable properties and toxicity to microorganisms. AOPs have been deemed a promising technology that generate reactive oxidative radicals in situ, for the treatment of these pollutants. Although SO₄⁻⁻ can be readily formed via PDS activation by a single-electron donor, the catalyst is deactivated after donating the electrons. By introducing an electron source into the system, the catalyst can be regenerated, resulting in continuous PDS activation. Among the electron injection approaches, the electrochemical approach of PDS activation, in which electrons are employed as a reductive activator, can meet the demand for green chemistry.

First, the PEC system as an electron source using Ti foil as the cathode was explored. With the addition of 5 mM PDS into the PEC system, the decomplexation ratio of Cu-EDTA increased from 47.5% to 98.4% in the PEC process within 60 min. Correspondingly, the recovery percentage of Cu increased from 47.4% to 98.3%. In addition to the photolytic activation of PDS, S₂O₇²⁻ was activated to generate SO₄⁻ radicals through cathodic reduction. The produced SO₄⁻ enhanced the Cu-EDTA oxidation, subsequently liberating the Cu²⁺ ions. Meanwhile, acidification induced by the conversion of SO₄⁻ to "OH favored the recovery of Cu on the cathode. When PDS was consumed, Cu recovery proceeded quickly via cathodic reduction.

Although PDS activation via electrons on the cathode was demonstrated, the key media for single-electron transfer between the cathode and PDS was not identified; hence, a more efficient activation process was explored. We further substituted the Ti foil with Cu foil as the cathode in the PEC/PDS system. Interestingly, the ESR analysis demonstrated that the radical signals in the new system were 10-fold stronger than those in the PEC/PDS/Ti system. Accordingly, the PEC/PDS system exhibited a stronger oxidation capacity toward diclofenac. SEM analysis and XPS of the fresh and used Cu foils revealed that Cu(II) appeared on the surface of the Cu cathode, and in situ Raman spectroscopy indicated that Cu(I) existed throughout the PEC/PDS process. The above results on the valence variation of the Cu species allowed us to propose that the Cu(II)/Cu(I) pair acted as the single-electron transfer media. The involvement of Cu(II)/Cu(I) could effortlessly transfer a single photoelectron from the cathode to PDS for SO₄⁻ production, preventing the PDS from the consecutive two-electron reduction and the complete loss of its oxidation capacity.

Then, we employed a more readily available Fe²⁺/Fe³⁺ redox pair (single-electron shuttle) in the more commonly used electroreduction system (electron source). We constructed a trace-iron based ER/PDS system using Pd/Al₂O₃ particles as the particle electrodes and externally added PDS as an oxidant. In the system, the electro-generated H₂ exhibited a strong reductive ability to accelerate the Fe³⁺/Fe²⁺ cycle in the Fe²⁺/PDS system with the
assistance of a Pd/Al₂O₃ catalyst. Both the indirect reduction mechanisms via atomic H* and direct electron transfer were involved in the electroreduction process. The quenching experiments indicated that Fe³⁺ reduction predominantly occurred via an indirect reduction mechanism, while the direct electron transfer played an insignificant role in the process. Benefiting from the accelerated Fe³⁺/Fe²⁺ cycle, the ER/Fe³⁺/PDS system could continuously output SO₄²⁻ for BA degradation with a removal efficiency of 80.12% in 120 min. The process involved the electro-generated H₂ as an electron source, leaving only H₂O in the Fe³⁺ reduction process. The non-toxic property provided a green solution for reducing iron sludge production, while the oxidation performance remained unchanged.

Except for the Fe³⁺/Fe²⁺ pair as a single-electron shuttle, we were also intrigued by the atomic H* in the ER/PDS system, which is also a strong single-electron reductant. Our results indicated that using a Pd/Al₂O₃ catalyst as the particle electrode for initiating PDS oxidation in the cathodic cell could degrade various organic pollutants by varying the kinetic constants from 0.0256 min⁻¹ to 0.0645 min⁻¹. The reactive oxygen species were determined to be SO₄²⁻/•OH by ESR analysis, quenching experiments, and PMSO degradation analysis. Furthermore, these radicals were readily formed from the single-electron reduction of PDS by electro-induced atomic hydrogen (atomic H*, indirect reduction mechanism), while direct two-electron transfer from H₂ to PDS consumed its oxidation capacity without yielding radicals due to the higher energy barrier.

This study was the first to design a ternary system comprising an electron source, a single-electron shuttle, and a peroxide compound. The ternary system facilitates a rational design for the construction of an oxidation system for continuously producing radicals according to the water matrix. In our following work, the ternary system will be further employed for the treatment of different types of actual wastewaters, such as contaminated ground water or ballast water, and then choose suitable elements for the system.
References

Chowdhury, A.I.A., Gerhard, J.I., Reynolds, D. and O’Carroll, D.M., 2017. Low Permeability Zone Remediation via Oxidant Delivered by Electrokinetics and

References

Sun, C., Zhou, R., Jianan, E., Sun, J.Q. and Ren, H.J., 2015. Magnetic CuO@Fe3O4 nanocomposite as a highly active heterogeneous catalyst of persulfate for 2,4-dichlorophenol degradation in aqueous solution. RSC Advances 5(70), 57058-57066.

References

Zhao, X., Zhang, J.J., Qiao, M., Liu, H.J. and Qu, J.H., 2015. Enhanced Photoelectrocatalytic Decomposition of Copper Cyanide Complexes and Simultaneous Recovery of Copper with a Bi:MoO\textsubscript{6} Electrode under Visible Light by EDTA/K\textsubscript{2}P\textsubscript{2}O\textsubscript{7}. Environmental Science & Technology 49(7), 4567-4574.

Zeng, H.B., Liu, S.S., Chai, B.Y., Cao, D., Wang, Y., and Zhao, X.

Enhanced Photoelectrocatalytic Decomplexation of Cu-EDTA and Cu Recovery by Persulfate Activated by UV and Cathodic Reduction

Reprinted with permission from Environmental Science & Technology Vol. 50, pp. 6459-6466, 2016 © 2016, American Chemistry Society
Enhanced Photoelectrocatalytic Decomplexation of Cu–EDTA and Cu Recovery by Persulfate Activated by UV and Cathodic Reduction

Huabin Zeng,†‡ Shanshan Liu,†‡ Buyu Chai,‡ Di Cao,†‡ Yan Wang,† and Xu Zhao*,†‡

1Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2University of Chinese Academy of Sciences, Beijing 100085, China

ABSTRACT: In order to enhance Cu–EDTA decomposition and copper cathodic recovery via the photoelectrocatalytic (PEC) process, S2O8^2− was introduced into the PEC system with a TiO2/Ti photoanode. At a current density of 0.2 mA/cm^2 and initial solution pH of 3.0, the decomposition ratio of Cu complexes was increased from 47.5% in the PEC process to 98.4% with 5 mM S2O8^2− addition into the PEC process (PEC/S2O8^2−). Correspondingly, recovery percentage of Cu was increased to 98.3% from 47.4% within 60 min. It was observed that nearly no copper recovery occurred within the initial reaction period of 10 min. Combined with the analysis of ESR and electrochemical LSV curves, it was concluded that activation of S2O8^2− into SO4^2− radicals by cathodic reduction occurred, which was prior to the reduction of liberated Cu^2+ ions. UV irradiation of S2O8^2− also led to the production of SO4^2−. The generated SO4^2− radicals enhanced the oxidation of Cu–EDTA. After the consumption of S2O8^2−, the Cu recovery via cathodic reduction proceeded quickly. Acidification induced by the transformation of SO4^2− to OH− favored the copper cathodic recovery. The combined PEC/S2O8^2− process was also efficient for the TOC removal from a real electroplating wastewater with Cu recovery efficiency higher than 80%.

INTRODUCTION

The Cu ions and chelating agents, such as EDTA and CN−, widely coexisted in the effluents from the electroplating, mining and photographic industries. The stable Cu complexes formed from chelating agents and copper ions were difficult to be removed by conventional processes, such as coagulation, adsorption, precipitation and biological process. To achieve an effective treatment of Cu complexes, not only the destruction of the chelating agents but also the copper recovery was desirable. Photoelectrocatalytic (PEC) process can destroy the Cu–EDTA, Ni–EDTA, and Cu(CN)3^− with the simultaneous recovery of the liberated Cu/NI ions reported in our previous work. Under the light irradiation, photogenerated holes and induced hydroxyl radicals (OH•) from the semiconductor photoanode can destroy metal-complexes, and the liberated metal ions were deposited onto the cathode by electrochemical reduction, which was convenient for the recovery. Unfortunately, the PEC oxidation of metal-complexes mainly occurred around the photoanode with a low oxidation efficiency and long reaction time, which limited its application.

In recent years, persulfate (S2O8^2−) has received an increasing interest in both scientific research and application for the groundwater remediation and wastewater treatment. When being activated, they can produce strong sulfate radicals (SO4•−), which can react with a wide range of organic and inorganic contaminants, due to its high redox potential, even compared with that of OH•. Generally, S2O8^2− activation to SO4•− can be initiated under the thermal, photochemical and metal ions catalysis conditions. In the application of S2O8^2− as in situ chemical oxidation, the low reactivity of S2O8^2− under low temperature or the natural minerals conditions ensured the S2O8^2− reaching the contaminated zone. However, in order to employ the S2O8^2− in the wastewater treatment, acceleration of the S2O8^2− activation was desired. It has been exhibited that 4-chloro-3-methylphenol was abated within 5–59 s in pressurized hot water and in supercritical water with the S2O8^2− addition activated by high temperature. To some extent, the limitation in such homogeneous processes was the energy consumption, as well as the thermal pollution to the environment. The coupling of S2O8^2− with metals such as Fe(II) and Co(II) led to the formation of SO4•− radicals (reaction 1 ~ 2), which were responsible for the rapid removal of microcystin-LR and bisphenol A.

![Diagram of PEC system with persulfate activation](image)

\[S_2O_8^{2-} + Fe^{2+} \rightarrow SO_4^{2-} + SO_2^{2-} + Fe^{3+} \] (1)

\[S_2O_8^{2-} + Co^{2+} \rightarrow SO_4^{2-} + SO_2^{2-} + Co^{3+} \] (2)

Received: February 5, 2016
Revised: May 15, 2016
Accepted: May 23, 2016

DOI: 10.1021/acs.est.6b00002
Supporting Information

Green Chem. 2016, XXX, XXX–XXX
In these processes, the subsequent recovery of metal ions had to be performed for the purpose of catalysts reuse and prevention from secondary contamination. The copper and iron oxides were employed as heterogeneous catalysts for S\textsubscript{2}O\textsubscript{8}2− activation and convenient to reuse, the metal leaching at acid condition cannot be completely avoided and the rate of heterogeneous activation remained low. With respect to the UV activation, large amount of SO\textsubscript{4}− were produced in the bulk solution, which led to the efficient degradation of 2,4-dichlorophenol. And secondary pollution was greatly minimized with sulfate ions as the only end-product. Furthermore, the photolysis activation can work over a broad pH range [12,17,24].

In light of the UV photolysis activation, S\textsubscript{2}O\textsubscript{8}2− ions were added into the PEC system consisting of TiO\textsubscript{2} photanode and stainless steel cathode with the UV light irradiation. The results indicated that, in comparison with the individual PEC process, the Cu−EDTA destruction and the recovery of the liberated Cu2+ ions by a cathodic deposition were largely improved with the given amount of S\textsubscript{2}O\textsubscript{8}2−·SO\textsubscript{4}−·H\textsubscript{2}O adducts. The performance of the PEC process with the current density of 0.2 mA/cm2 at 60 min. By contrast, in the PEC process with the same amount of S\textsubscript{2}O\textsubscript{8}2− ions, Cu complexes decomposition and copper recovery by the UV irradiation (UV/S\textsubscript{2}O\textsubscript{8}2−) in the reaction cell were examined first. The recovery percentage of Cu2+ ions was defined as following:

\[
R_{Cu} = 100\% \times \left(\text{initial amount of Cu}^{2+} \text{ions} - \text{remained amount of Cu}^{2+} \text{ions} \right) / \text{initial amount of Cu}^{2+} \text{ions in the reaction cell}
\]

As shown in Figure 1(a), decomplexation ratio of Cu complexes are 47.5% in the PEC process with the current density of 0.2 mA/cm2 at 60 min. By contrast, in the PEC process with the S\textsubscript{2}O\textsubscript{8}2− addition (PEC/S\textsubscript{2}O\textsubscript{8}2−), the decomplexation ratio is increased to 98.4%. Meanwhile, with the addition of the same amount of S\textsubscript{2}O\textsubscript{8}2− ions, Cu complexes decomposition and copper recovery by the UV irradiation (UV/S\textsubscript{2}O\textsubscript{8}2−) process were also tested as a reference. In the UV/S\textsubscript{2}O\textsubscript{8}2− process, nearly no decomposition of Cu complexes occur (Figure 1(a)). With the Cu−EDTA destruction, complication occurred between the Cu2+ ions with the generated intermediates including ethylenediamine diacetate (EDDA), nitrotriacetic acid (NTA) and iminodiacetic acid (IDA), which was illustrated in the Supporting Information Text SI-1. As a result, nearly no concentration decrease of total Cu complexes is observed. In the EC/S\textsubscript{2}O\textsubscript{8}2− process, decomposition ratio of Cu complexes are 21.6%. Similar results can be obtained for the Cu recovery (Figure 1(a)). The above results indicated that not only efficient decomposition of Cu complexes...
was obtained but also Cu recovery was largely improved when a given amount of 5 mM S\textsubscript{2}O\textsubscript{8}2− was added into the PEC process.

In the individual PEC process, the oxidation destruction of Cu complexes was mainly induced by the active radicals, particularly OH·, generated from the TiO\textsubscript{2} photoanode under UV light irradiation.4 Due to the limitation of the diffusion mass transfer and low concentration of generated OH·, the destruction efficiency of Cu complexes was low. It has been reported that the UV photolysis of one molar of S\textsubscript{2}O\textsubscript{8}2− produced two molar of SO\textsubscript{4}·− according to the reaction 3.29

\[
S_{2}O_{8}^{2−} + h \nu \rightarrow 2SO_{4}^{−}
\]

The addition of S\textsubscript{2}O\textsubscript{8}2− into the PEC system may lead to an efficient production of SO\textsubscript{4}·− in the bulk solution. Therefore, it can be concluded that the efficient decomplexation of Cu complexes was induced by the oxidation of SO\textsubscript{4}·− radicals in the bulk solution and active OH· generated via the PEC process.

With the improved destruction of Cu-complexes, liberated copper ions were efficiently recovered by the cathodic reduction deposition. TOC variation under the various processes was furthermore compared. As shown in Figure 1 (b), TOC removal efficiencies increase with the reaction time for all of the processes. At 60 min, TOC removal efficiencies are 20.5%, 13.3%, 9.35%, and 52.1% for the UV/S\textsubscript{2}O\textsubscript{8}2− process, PEC process, EC/S\textsubscript{2}O\textsubscript{8}2− process and PEC/S\textsubscript{2}O\textsubscript{8}2− process. Obviously, the addition of S\textsubscript{2}O\textsubscript{8}2− largely enhanced the TOC removal in the PEC process.

To optimize the conditions for PEC/S\textsubscript{2}O\textsubscript{8}2− process, the effect of S\textsubscript{2}O\textsubscript{8}2− concentration and current density on the decomplexation of Cu complexes and Cu recovery was investigated. Figure 2 (a) displays the residual ratio of Cu complexes and recovery percentage of Cu as a function of time during the PEC/S\textsubscript{2}O\textsubscript{8}2− process with different S\textsubscript{2}O\textsubscript{8}2− concentrations. The decomplexation ratios of Cu complexes at the initial S\textsubscript{2}O\textsubscript{8}2− concentration of 0 mM, 5 mM, 20 mM and 50 mM are 27.4%, 98.4%, 88.1%, and 57.7%, respectively. The best performance in the decomplexation process of Cu complexes was obtained at the initial S\textsubscript{2}O\textsubscript{8}2− concentration of 5 mM. A similar trend for the Cu recovery is observed. Figure 2 (b) investigated the effect of current density on the performance of the PEC/S\textsubscript{2}O\textsubscript{8}2− process. Corresponding to the current density of 0.1 mA/cm2, 0.2 mA/cm2, 0.5 mA/cm2 and 1.0 mA/cm2, the decomplexation ratios of Cu complexes are 19.6%, 62.2%, 93.1%, and 100%, and the recovery percentages of Cu are 17.5%, 60.0%, 92.7%, and 100%, respectively. It can be seen that the increase of the current density significantly enhanced the decomplexation of Cu complexes and Cu recovery.

Additionally, it is notable from Figure 2 that the decomposition of Cu complexes and Cu recovery can be divided into two phases. In the initial phase, the Cu complexes decom-

Figure 1. (a) Variation of residual Cu complexes ratio and recovery percentage of Cu and (b) TOC removal ratio in the UV/S\textsubscript{2}O\textsubscript{8}2− process, PEC process, EC/S\textsubscript{2}O\textsubscript{8}2− process and PEC/S\textsubscript{2}O\textsubscript{8}2− process. ((Cu-EDTA), 0.2 mM; (Na\textsubscript{2}S\textsubscript{2}O\textsubscript{8}), 5 mM; initial solution pH, 3.0; current density, 0.2 mA/cm2).

Figure 2. (a) Effect of S\textsubscript{2}O\textsubscript{8}2− concentration on the PEC process (current density, 0.2 mA/cm2); (b) Effect of current density on the PEC/S\textsubscript{2}O\textsubscript{8}2− process ((Na\textsubscript{2}S\textsubscript{2}O\textsubscript{8}), 10 mM) ((Cu-EDTA), 0.5 mM; initial solution pH, 3.0; current density, 0.2 mA/cm2).
plexation and Cu recovery proceeded at a low rate. After that, the rate rapidly increased. The transition point varied with the $S_2O_8^{2-}$ concentration and current density. It can be seen from Figure 2(a) that the transition points between these two stages appear at 5 min, 20 and 45 min, when the initial concentrations of $S_2O_8^{2-}$ are 5 mM, 20 mM and 50 mM, respectively. With higher concentration of $S_2O_8^{2-}$, the period of Cu complexes decomplexation with a low rate by this system remained longer. It should be pointed out here that the reaction rate stays relatively stable in the PEC process without $S_2O_8^{2-}$. In Figure 2(b), the rate increased at the point of 60 min, 30 min, 10 and 10 min with the current density of 0.1 mA/cm2, 0.2 mA/cm2, 0.5 mA/cm2 and 1.0 mA/cm2. It was clear that the reaction time of the initial stage with a slow reaction rate had a positive correlation with concentration of $S_2O_8^{2-}$, which was negative to the current density. The differences will be explained subsequently.

Acidification Induced by $S_2O_8^{2-}$ Oxidation. Effect of initial pH on the decomplexation of Cu complexes and Cu recovery in the PEC process and PEC/$S_2O_8^{2-}$ process was investigated. In the individual PEC process, Cu recovery obviously decreases under the alkaline and neutral condition (Supporting Information Figure SI-11(a)), which can be explained by the different adsorption ability of Cu$^{2+}$ and EDTA on the anode and the variation of Cu$^{2+}$-EDTA species with solution pH. By contrast, the variation of initial solution pH has slight influence on the PEC/$S_2O_8^{2-}$ process (Supporting Information Figure SI-11(b)). It is obviously that the addition of $S_2O_8^{2-}$ benefited the high efficiencies of Cu complexes decomplexation and Cu recovery under a wide pH range.

Furthermore, the distribution of Cu species was analyzed at various initial solution pH. With respect to the individual PEC process, as shown in Figure 3(a), under the initial solution pH of 3.0, 22.9% of Cu is removed from the solution and 21.1% is deposited on the cathode. It is noticed that the liberated Cu$^{2+}$ ions prefer to deposit on the anode rather than to deposit on the cathode with the increase of the initial solution pH. Under the alkaline condition, the formation of the copper (hydro) oxides precipitated on the anode will occupy active sites or cause adverse effects on the generation of OH$^\bullet$, which inhibited the decomplexation of Cu complexes and Cu recovery. By contrast, a different behavior was exhibited in the PEC/$S_2O_8^{2-}$ system with the variation of initial solution pH. While recovery percentages of Cu are 61.9%, 59.8% and 53.2%, percentages of Cu precipitated on the anode are detected as 1.71%, 1.18% and 0.311% respectively, corresponding to the initial solution pH of 3.0, 7.0, and 11.0 (Figure 3(a)). The liberated Cu ions were mainly deposited onto the cathode under all initial solution pH conditions. As shown in Figure 3(b), the solution pH values remain to be constant in the individual PEC process. By contrast, the solution pH rapidly decreases to about 2.1 in the PEC/$S_2O_8^{2-}$ process at various initial pH.

The redox potential of SO_4^{2-} was confirmed as 2.5–3.1 V$^\circ$, while the potential of OH$^\cdot$ was detected at 2.7 V in acid solution and 1.8 V in neutral solution. Due to the narrow gap of redox potential between SO_4^{2-} and OH$^\cdot$, the interconversion from SO_4^{2-} to OH$^\cdot$ occurred by the following reaction 4 and reaction 5.

$$SO_4^{2-} + OH^\cdot \rightarrow OH + SO_4^{2-}$$

$$SO_4^{2-} + H_2O \rightarrow OH + SO_4^{2-} + H^+$$

SO_4^{2-} can be further oxidized to SO_4^{2-} by the system, resulting in the destruction of Cu species. In the PEC/$S_2O_8^{2-}$ process, the consumption of the OH$^\cdot$ for the production of SO_4^{2-} can be carried out by the SO_4^{2-} generation in the PEC/S2O82-. It was indicated that a large portion of SO_4^{2-} was transferred into OH$^\cdot$ with the consumption of the OH$^\cdot$ or the production of H^+. As a result, the solution pH decreased at the initial phase. It should be pointed out here that the acidic condition was beneficial to the decomplexation process and Cu recovery process than the alkaline condition.

It can be concluded that the $S_2O_8^{2-}$ ions played a double role in the PEC/$S_2O_8^{2-}$ process. On one hand, SO_4^{2-} radicals generated from the $S_2O_8^{2-}$ ions contributed to the enhanced destruction of Cu complexes. On the other hand, the rapid decrease of the system pH benefitted the further destruction of Cu complexes and the subsequent cathodic reduction of liberated Cu$^{2+}$ ions onto the cathode.

Involved Active Radicals. First, the active radicals in the UV/$S_2O_8^{2-}$, PEC and PEC/$S_2O_8^{2-}$ processes were analyzed using the ESR technique with the DMPO addition. The hyperfine splitting constants of DMPO radicals adducts of DMPO$–$OH and DMPO$–$SO\cdot_4^{2-} were representative of OH$^\cdot$ and SO\cdot_4^{2-} radicals, respectively. As shown in Figure 4(a), the signals of DMPO$–$SO\cdot_4^{2-} and DMPO$–$OH in the PEC/$S_2O_8^{2-}$
process are stronger than that in the PEC process and that in UV/S2O82− process, respectively. With respect to the EC/S2O82− process, nearly no enhanced signal of DMPO−SO\textsubscript{4}2− and DMPO−OH in the bulk solution was observed (Figure 4(b)), it is interesting to observe that the obvious signals of DMPO−SO\textsubscript{4}2− around the cathode appear (Figure 4(b)). It was suggested that the S2O82− can be activated into SO\textsubscript{4}2− by the cathodic reduction. To support this conclusion, the variation of radicals’ production rate around cathode with increase of current density in the EC/S2O82− process was investigated at the solution pH of 10.0, where the ESR signals of DMPO−OH can be regarded as representative of total radicals due to nearly complete transformation of SO\textsubscript{4}2− to OH−.31 As shown in Figure 4(c), high current density has a positive effect on the intensity of DMPO−OH signals, indicating that increasing current density can promote the cathodic activation of S2O82− and was beneficial to the production of active radicals. Activation of S2O82− to SO\textsubscript{4}2− by UV irradiation has been largely investigated.3,4,44 In our case, SO\textsubscript{4}2− in the bulk solution may be mainly induced by the UV activation process. It also has been recognized that SO\textsubscript{4}2− can be formed as a result of the electron transfer from the reductive materials, such as Fe2+, Fe and other reducing oxides to S2O82−.15,34 In the EC system, the cathode also had the same ability to donate electron. Thus, the SO\textsubscript{4}2− may be generated from S2O82− via a cathodic activation (reaction 6).

\[
\text{S}_2\text{O}_8^{2−} + e^{−} \rightarrow \text{SO}_4^{−} + \text{SO}_4^{2−}
\]

It has been reported that photogenerated electron of C3N4-photocatalysis can activate S2O82− under visible light irradiation.15 In the PEC/S2O82− process, activation of S2O82− by photogenerated electrons transferred to the cathode by bias potential may occur. In general, in the PEC/S2O82− process, the cathodic activation and UV photolysis activation accelerated the production of active radicals, which were responsible for the enhanced performance of Cu complexes oxidation and Cu recovery.

A Proposed S2O82− Enhanced Reaction Process. The electrochemical behaviors of Cu2+, Cu−EDTA and S2O82− in solution of 0.1 M Na2SO\textsubscript{4} were investigated by linear sweep voltammetry. It can be seen from Figure 5(a) that the current intensity increases with the concentration of S2O82− at the potential lower than 0.20 V, which indicates that the cathodic reduction of S2O82− begins at the potential of 0.20 V vs Ag/AgCl. By contrast, the cathodic reduction of Cu2+ and Cu−EDTA begins at the potential of +0.02 V (Figure 5(b)) and +0.28 V (Figure 5(c)), respectively. The lower reduction potential of both Ce4+ and Cu−EDTA than S2O82− indicated that S2O82− was prior to be activated through reaction 6 on the cathode. Then, the cathodic reduction of the liberated Cu2+ ions occurred.

The residual ratio of S2O82− and Cu recovery percentage in the PEC/S2O82− process were investigated at a S2O82− concentration of 5 mM and a Cu−EDTA concentration of 0.5 mM. The S2O82− concentration decreases rapidly with a low rate of Cu recovery at the beginning of 10 min (Supporting Information Figure SI-12). After the S2O82− concentration decreases to 1 mM, the Cu ions are removed rapidly.

Surface variation of the titanium cathode at the different reaction time in the PEC/S2O82− process was characterized by SEM and EDS analysis. In comparison with that before the reaction (Supporting Information Figure SI-13 (a-I)), it can be seen from Supporting Information Figure SI-13 (a-II) that the nearly no copper can be observed on the surface of cathode at 10
min. By contrast, as shown in Supporting Information Figure SM-13 (a-III), the cathode at 45 min is occupied with granular deposition. It can be seen from Supporting Information Figure SI-13 (b-I), (b-II) and (b-III) that the atomic percentage of Cu from the EDS analysis on the cathode is increased from 0.838% to 0.979% after 10 min reaction. By contrast, it is increased to 14.41% at 45 min. The XPS analysis further confirmed the above results (shown in Figure 6(a)). XPS spectra in the Cu 2p$_{3/2}$ region for the titanium cathode for the 45 min reaction are given in Figure 6(b). The signals are presented at 932.8 and 952.4 eV, which are assignable to the emissions from the Cu 2p$_{3/2}$ and Cu 2p$_{1/2}$ levels and respond to the binding energies of Cu$_0$. It is notable to point out that there is no signal at 934 eV, which is directly related to the presence of CuO species.

Summarily, as shown in Figure 7, at the beginning of the PEC/S$_2$O$_8^{2-}$ process, besides the PEC oxidation of Cu$^{2-}$EDTA, the

Figure 5. Linear sweep voltammetry of (a) S$_2$O$_8^{2-}$, (b) Cu$^{2+}$ and (c) Cu$^{2+}$EDTA with various concentrations at the glassy carbon electrode in 0.1 M Na$_2$SO$_4$ (Solution pH, 3.0).

Figure 6. XPS analysis of the titanium cathode at the different reaction time in the PEC/S$_2$O$_8^{2-}$ process: (a) XPS full scan of the Titanium cathode; (b) XPS analysis in the Cu 2p region of the titanium cathode.

Figure 7. Schematic of the PEC/S$_2$O$_8^{2-}$ process.
SO$_4^{2-}$ was greatly generated through the cathodic activation and photolysis activation to enhance the decomplexation process of Cu–EDTA. As a result, the efficient decomplexation process was achieved. The reduction of S$_2$O$_8^{2-}$ was prior to that of the liberated Cu$^{2+}$ ions at the cathode. Once the S$_2$O$_8^{2-}$ ions were consumed, the cathodic reduction of liberated Cu$^{2+}$ ions dominated the cathodic reaction. Meanwhile, the conversion of SO$_4^{2-}$ to OH$^-$ rapidly contributed to the pH decrease, which was beneficial for the Cu$^{2+}$ recovery. The liberated Cu$^{2+}$ ions were efficiently deposited onto the cathode followed by the Cu0 electroreduction.

Environmental Implications for Wastewater Treatments. This paper exhibited that activation of S$_2$O$_8^{2-}$ to SO$_4^{2-}$ can be achieved by cathodic reduction and UV irradiation jointly in the PEC system, which largely increased the oxidation efficiency of the PEC process toward the destruction of Cu–EDTA and cathodic recovery of Cu ions across a wide range of pH conditions. In order to check the efficiency of PEC/S$_2$O$_8^{2-}$ process, a real electroplating wastewater was treated. As shown in Figure 8(a), with the increase of S$_2$O$_8^{2-}$ concentration from 0 mM to 10 mM, the TOC removal improved from 30.29 mg/L to 64.00 mg/L, indicating that the organics in the electroplating wastewater were efficiently ablated in the PEC/S$_2$O$_8^{2-}$ process. At the same time, the percentage of Cu recovery in 90 min is as high as 82.8% with the addition of S$_2$O$_8^{2-}$ (Figure 8(b)). This result furthermore demonstrated that S$_2$O$_8^{2-}$-enhanced PEC process can achieve a fast destruction of Cu complexes with simultaneous Cu cathodic reduction.

Generally, penetrability of UV light due to the block of turbidity and chromaticity, as well as the NO$_3^-$ in high concentration (Supporting Information Text SI-6), and the design of the PEC system should be considered carefully in the application of PEC/S$_2$O$_8^{2-}$ process. The impact of some ions in the real electroplating wastewater, such as Cl$^-$ and SO$_4^{2-}$, on the PEC/S$_2$O$_8^{2-}$ process also was investigated. The S$_2$O$_8^{2-}$ exhibited a limited effect on TOC removal and Cu recovery (Supporting Information Text SI-7). By contrast, an obvious negative influence was observed with the Cl$^-$ addition into the PEC/S$_2$O$_8^{2-}$ process (Supporting Information Text SI-8). Besides the ions in the wastewater, the dissolved oxygen may also impede the S$_2$O$_8^{2-}$ activation and Cu recovery on the cathode due to its competition between O$_2$ with S$_2$O$_8^{2-}$ or Cu$^{2+}$ on the cathode (Supporting Information Text SI-9). A pilot-scale experiment of the application of this PEC/S$_2$O$_8^{2-}$ process in treating the real electroplating wastewater containing heavy metal complexes with the simultaneous metal ions recovery will be performed to further optimize the reaction parameters and confirm its adaptation. And, a large-scale testing and engineering cost comparisons are necessary before PEC/S$_2$O$_8^{2-}$ process can be recommended for full scale applications.

ASSOCIATED CONTENT

* Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.est.6b00632.

Additional information about the detection methods of total Cu complexes and S$_2$O$_8^{2-}$, procedure of Cu mass balance, proposed degradation pathway of Cu–EDTA, radicals quenching study, effect of NO$_3^-$, SO$_4^{2-}$, Cl$^-$ and O$_3$ on the PEC/S$_2$O$_8^{2-}$ process, effect of initial solution pH on the PEC process and PEC/S$_2$O$_8^{2-}$ process, the variation of S$_2$O$_8^{2-}$ concentration and Cu$^2+$, characteristics of the cathode at different reaction time and qualities variation of the real electroplating wastewater (PDF)

AUTHOR INFORMATION

* Corresponding Author
 Phone: +86-10-62849667; fax: +86-10-62849667; e-mail: zhaoxue@rcees.ac.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by National Natural Science Foundation of China (No. 21377148, 51438011, 51222802).

REFERENCES

(5) Zhao, X.; Guo, L. B.; Hu, C. Z.; Liu, H. J.; Qu, J. H. Simultaneous destruction of Nickel (II)-EDTA with TiO$_2$/Ti film anode and...
(33) Dautelczuk, M.; Schalk, S.; Comes, F. D. Cerium(III) as a stabilizer of perfluorinated membranes used in fuel cells: In situ detection of early events in the ESR resonator. Macromolecules 2009, 42, 8943−8949.
(39) Tao, Y.; Ni, Q.; Wei, M.; Xiu, D.; Li, X.; Xu, A. Metal-free activation of peroxymonosulfate by g-C₃N₄ under visible light irradiation for the degradation of organic dyes. RSC Adv. 2015, 5, 44128−44136.
Liu, S.S., Zhao, X., Zeng, H.B., Wang, Y.B., Qiao, M., and Guan, W.

Enhancement of Photoelectrocatalytic Degradation of Diclofenac with Persulfate Activated by Cu Cathode

Reprinted with permission from
Chemical Engineering Journal
Vol. 320, pp. 168-177, 2017
© 2017, Elsevier B.V.
Enhancement of photoelectrocatalytic degradation of diclofenac with persulfate activated by Cu cathode

Shanshan Liu, Xu Zhao, Huabin Zeng, Yanbin Wang, Meng Qiao, Wei Guan

Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
University of Chinese Academy of Sciences, Beijing 100049, China
Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Chongqing 402160, China

Highlights

- Photoelectro-oxidation of diclofenac was largely enhanced with persulfate addition.
- Cu$_2$O was identified at copper cathode by in situ Raman technique.
- Activation mechanism of persulfate to SO$_4^{2-}$ at copper cathode was proposed.

Graphical abstract

Abstract

In this work, persulfate (S$_2$O$_8^{2-}$, PS) was introduced to the photoelectrocatalytic (PEC) system, which consisted of a γ-Bi$_2$MoO$_6$ photoanode and a copper foil cathode (Bi$_2$MoO$_6$/Cu/PEC/PS system). Significant enhancement of diclofenac sodium (DCF) degradation efficiency was observed in this system under visible light irradiation. At an applied bias of 1.5 V and initial solution pH of 5.62, the removal efficiency of DCF with an initial concentration of 10 mg/L was increased from 19.4% in the PEC process to 86.3% in the PEC process with 10 mM PS addition. The pseudo-first-order kinetic rate constant of DCF degradation was increased from 0.1112 h$^{-1}$ to 1.0498 h$^{-1}$. Active free radicals involving SO$_4^{2-}$ and HO$^\cdot$ were produced in this process, which were confirmed by electron spin resonance analysis. Furthermore, the surface variation of copper foil cathode was characterized by FE-SEM, GI-XRD, XPS and in situ Raman spectroscopy. It was demonstrated that Cu$_2$O formed on the surface in the reaction process with the S$_2$O$_8^{2-}$ addition, which was further confirmed by the photoelectrochemical analysis of the cathode. The surface Cu(0)–Cu(I)–Cu(II)–Cu(0) redox cycle of cathode was proposed, which was responsible for the persulfate activation, leading to the generation of free radicals. This work may provide a new perspective on the combined utilization of different technologies for catalytic contaminant removal.

1. Introduction

Pharmaceuticals and personal care products (PPCPs) have received an increasing attention of their occurrence and transfer in aquatic systems and soils over the past few years [1,2]. Diclofenac sodium (DCF), which is considered as a common non-steroidal anti-inflammatory drug and meanwhile, a persistent toxic pollutant, may produce adverse effect on animal kidney, liver and cause renal lesions [3,4]. Due to its low biodegradability, DCF cannot be effectively removed by conventional biochemical processes [5]. In recent years, the application of UV, UV/H$_2$O$_2$ and ozonation treatments in its degradation was largely investigated. For instance, it
has been proved that DCF could be removed effectively by UV irradiation with H2O2 addition [2,6], and ozonation technology also has been proved to be more efficient than single photocatalytic process [8]. In PEC system, the application of a small external bias decreases the recombination rate of photogenerated electron–hole pairs and thus increases the photocatalytic activity of the semiconductor photocatalyst [9]. It has been largely investigated on the application of PEC processes in degrading refractory organics in aquatic system and water splitting recently [10]. In a PEC system, the semiconductor film electrode is usually used as the cathode to electrocatalytic system driven by UV light in order to enhance the PEC degradation efficiency of target contaminant, DCF. In situ Raman spectroscopy combined with photoelectrochemical analysis was employed to analyze the copper cathode variation and generation of CuO on the surface was confirmed. The variation of copper species was investigated in detail. In this variation process, PS was activated and free radicals such as HO• and SO• were produced, which were responsible for the enhanced degradation efficiency of DCF. The activation mechanism was investigated in details.

2. Material and methods

2.1. Chemicals

Sodium persulfate (Na2S2O8, 98 ± 1% purity) and sodium sulfate (Na2SO4, 98.5% purity) were bought from Acros Organics. Diclofenac sodium (C14H10Cl2NNaO2, 98% purity) was procured from TOKYO Chemical Industry Co., Ltd. Sodium sulfate (Na2SO4, 99% purity), Bismuth(III) nitrate pentahydrate (Bi(NO3)3·5H2O, 99% purity), Molybdenum oxide (MoO3, 99% purity), Diethylentriamine-pentaacetic acid (C14H23N3O10, 99.0 ± % purity), Dithianlamine (C4H4N5O, 98–102% purity), sodium acetate (CH3COONa, 98% purity) and acetic acid (CH3COOH, 98.8% purity) were all purchased from Sinopharm Chemical Reagent Co., Ltd. The 5,5-dimethyl-1-pyrroline N-oxide (DMPO) was obtained from Aldrich, China. The copper foil was bought from Beijing Heng Li Ti Co., Ltd. All reagents used were at least analytical grade and without further purification. All solutions were prepared to required concentration in Milli-Q water (ρ = 18.2 MΩ cm).

2.2. Experimental section

Degradation experiments were carried out in a rectangular quartz reactor with DCF solution (120 mL, 10 mg/L). The PEC reaction was driven by an electrochemical workstation (CHI 660E; Shanghai Chenhua Instruments Co., Ltd., Shanghai, China) connected with a working photoelectrode (the γ-Fe2O3:MoO3 film deposited onto the Indium-tin oxide glass, active area of 13 cm2), a counter electrode (copper foil, active area of 13 cm2) and a reference electrode (saturated calomel electrode). The visible light source was from a Xe lamp (PLS-SXE100; Beijing PerfectLight Co., Ltd, Beijing, China) with a UV cutoff filter (λ > 420 nm). Linear sweep voltammetry (LSV) was also conducted in a single-compartment with Na2SO4 electrolyte, three electrode cell on the same workstation. Electrochemical impedance spectra (EIS, presented in Supplementary material) were measured at 0 V (vs. open circuit potential) on an electrochemical workstation (Interface 1000, Gamry, America). The initial pH (pH4) adjustments were achieved by moderate addition of H2SO4 (0.1 M) or NaOH (0.1 M).

Samples were taken from the reactor every 30 min and filtered through a 0.22 μm membrane prior to analysis.

As reported in our previous work [26], γ-Fe2O3:MoO3 film was deposited onto indium tin oxide (ITO) substrate from an amorphous heteronuclear complex solution by dip-coating method. Before each experiment, the anode film was rinsed by Milli-Q water and the copper foil used as a cathode was rinsed by hydrochloric acid, cleaned with 800-grit sandpapers to remove any rusts or solid deposits and double rinsed with Milli-Q water.
2.3 Analytical procedures

The concentration of DCF was determined by high performance liquid chromatography (HPLC; Shimadzu LC-20AT, Tokyo, Japan) with a C18 (50 mm × 4.6 mm × 5 μm) reversed-phase column (GL Sciences Inc., Tokyo, Japan) and a UV detector. The mobile phase was a mixture of acetate buffer (pH = 5.0) and methanol (V/V = 40/60) with a flow rate of 1 mL/min. The injection volume was set at 20 μL.

For the intermediates identification, samples were filtered and analyzed by UPLC-Q-TOF-MS (ACQUITY UPLC, Quattro Premier XE, Waters, America) with a C18 (50 mm × 2.1 mm × 1.7 μm) reversed-phase column. The mobile phase contained A (0.2% formic acid in water) and B (0.1% formic acid in acetonitrile) at the flow rate of 0.3 mL/min. The gradient was 90% A for 1 min, linearly increasing to 95% B for 8 min, 95% B and 5% A for 5 min, decreasing back to 90% A and maintaining for 1 min. The mass spectrometer was operated with negative electrospray ionization recorded from 50 to 1000 m/z.

The mineralization of DCF was measured with an Elementar vario TOC analyzer (Germany). The pH adjustment was completed on PHS-3E. The metal ions were quantified by inductively coupled plasma-optical emission spectrometer (ICP-OES, Optima 8300, PerkinElmer, America).

The surface morphology of electrodes was characterized by field emission-scanning electron microscope (FE-SEM; HITACHI SU8020, Tokyo, Japan). The X-ray diffraction (XRD) patterns of electrodes were recorded on an X-ray diffractometer (X'Pert Pro MPD) with a Cu Kα radiation. X-ray photoelectron spectroscopy (XPS) was measured on ESCALAB 250Xi (Thermo Fisher Scientific) to determine the chemical state of copper. In situ Raman spectroscopic studies were performed with a confocal Raman microscope (LabRAM HR 800, Horiba, Tokyo, Japan), equipped with an Ar laser (514 nm) and a 40× objective.

For the involved radical studies, experiments were detected on Bruker A300-10/12 (Germany) using DMPO as trapping agent. The measurements were conducted using a radiation of 9.85 GHz (X band) with center field of 3512.170 G, modulation frequency of 100 kHz, sweep width of 200 G, sweep time of 81.92 s, time constant of 40.96 ms, and microwave power of 21 MW at room temperature.

3. Results and discussion

3.1 Characterization of γ-Bi2MoO6 film anode

XRD pattern and SEM image of γ-Bi2MoO6 were shown in Fig. 1(a). The peaks of prepared electrode are in conformity with the standard Bi2MoO6 (JPDF: 21-0102). Both the sharpness of XRD reflections and small half peak width clearly demonstrate that the synthesized γ-Bi2MoO6 film is highly crystalline. The cell parameters are a = 5.50 Å, b = 16.24 Å, c = 5.49 Å and the principal crystalline phase is orthorhombic structure. As Fig. 1(a) inset graph shows, the film consists of small particles with a porous structure. In recent years, Bi-based photocatalysts are getting more and more attention [27,28]. The electrochemical behavior of photoanode was also investigated by LSV in solution with 0.05 M Na2SO4 at a potential range from 0.0 V to 1.5 V (vs. SCE). As shown in Fig. 1(b), the Bi2MoO6 electrode shows a strong photocurrent under visible light irradiation. The transient photocurrent response of prepared Bi2MoO6 electrode was examined. As shown in Fig. 1(c), the photocurrent with good reproducibility for prepared photoanode is observed when irradiated with visible light. After several cycles, the current remains stable and thus indicates that the electrode photocurrent is repeatable and reversible. Under 1 V applied bias, the photocurrent density of electrode is 5 μA cm⁻². The optical property of prepared anode was conducted by UV-Vis diffuse reflectance spectroscopy and presented in Supplementary material (Fig. S1). The bandgap of the prepared γ-Bi2MoO6 is determined to be 2.58 eV and it exhibits a strong ability to utilize the visible portion of solar spectrum. The above result demonstrated that the prepared photoanode represented a good response to visible light.

3.2 Enhancement performance for DCF degradation

As shown in Fig. 2(a), only 19.4% of DCF is removed in 2 h in the PEC system using Bi2MoO6 as photoanode and Cu as cathode, and...
the removal efficiency of DCF by PS or copper alone is negligible. When copper itself is put into the solution with 1 mM PS, 30.6% of DCF is removed. Interestingly, a remarkable enhancement of DCF removal with the addition of PS concentration was observed. With 10 mM PS, 80.35% DCF is removed. All these results indicate that the combination of PS and PEC process is an efficient way to degrade the target contaminant from water.

The kinetic investigations exhibit that the degradation reaction of DCF follows a pseudo-first-order kinetics equation and the rate constant versus the concentration of PS is shown in Fig. 2(b). It is estimated to be 0.1112 h⁻¹ (R² = 0.993) in the PEC system without the addition of PS. By contrast, corresponding to PS concentration of 1, 5 and 10 mM, the rate constants are 0.5561 h⁻¹ (R² = 0.992), 0.7290 h⁻¹ (R² = 0.995) and 1.0498 h⁻¹ (R² = 0.987), respectively. These results strongly confirm the enhancement of DCF degradation efficiency in PEC process with the PS addition.

With respect to TOC variation, in PEC system, the TOC removal ratio is less than 10%. As shown in Fig. 2(c), when 1, 5 and 10 mM PS is added to the solution, it increases to 20.5%, 35.9% and 45.1%, respectively. It is demonstrated that DCF can be degraded more thoroughly in the PEC process with an increasing addition of PS.

3.3. Influence of applied bias and initial pH

The effect of applied bias on the DCF removal in PEC process was investigated with 1 mM PS addition. As illustrated in Fig. 3(a), the degradation efficiency of DCF increases with the increasing applied potential. For example, when the applied bias increases from 0 V to 0.5 V, the removal ratio of DCF increases from 17.3% to 25.3%. As the potential is increased to 2 V, a 72.4% removal of DCF is achieved within 2 h. It can be seen from Fig. 3(b) that the kinetic rate constant increases as the applied bias increases. When the applied bias increases from 0 V to 2 V, the rate constant increases from 0.0912 h⁻¹ (R² = 0.980) to 0.6431 h⁻¹ (R² = 0.990). The increased degradation efficiency is due to firstly, the increased bias promotes the separation of the photogenerated electron-hole pairs and reduces their recombination possibility [29]. As a result, the photocatalytic oxidation of DCF at the photoanode is increased [30,31]. Secondly, as shown in Fig. 3(c), the copper concentration in the solution decreases obviously when the applied bias increases to be 2 V. It is clear that the increased applied bias is beneficial to the cathodic reduction of the liberated copper ions in PEC system within a certain range. The Cu cathodic leakage and reduction in the long-term run was also evaluated [Text S1, Fig. S2].

The effect of pH on the DCF removal and solution pH variation in the PEC process were illustrated in Fig. 4. As shown in Fig. 4(a), when the pH increases from 5.62, 7.00 to 10.00, the removal ratio of DCF decreases from 67.4%, 64.5% to 46.3% at 2 h. As shown in the inset graph of Fig. 4(a), the degradation rate of DCF is well fitted with a pseudo-first-order reaction model at each initial solution pH and the kinetic rate constants are determined to be 0.5561 h⁻¹ (R² = 0.992), 0.4882 h⁻¹ (R² = 0.982) and 0.3217 h⁻¹ (R² = 0.987), respectively.

Thus, it is clear that the rate of DCF degradation efficiency decreases with an increase of pH. DCF has a pKa of 4.0, it deprotonates in the pH range of 5.62 to 10.0 thus is always negative charged. Therefore, the effect from the charge interaction between electrode and DCF can be excluded. There may be some other factors which influence the DCF degradation in this system. From the view of free radicals, the redox potential of SO₄²⁻ is confirmed as 2.5 ~ 3.1 V, even higher than HO⁻ (potential of HO⁻ is about 2.7 V in acid solution and 1.8 V in neutral solution) [32–35]. As shown in Eq. (3), the conversion of SO₄²⁻ to HO occurs easily in alkaline conditions [36]. Therefore, more SO₄²⁻ are generated at acid conditions, which may be partly responsible for the efficient DCF degradation under acid conditions.

SO₄²⁻ + OH⁻ → SO₃²⁻ + HO⁻ k = (6.5 ± 1.0) × 10⁷ M⁻¹ s⁻¹ (3)

Moreover, PS was reported to be further catalyzed under acid conditions according to the literature [37] indicated by Eqs. (4) and (5):

S₅O₈²⁻ + H⁺ → HS²O₄⁻ (4)

HS²O₄⁻ + SO₄²⁻ → SO₃²⁻ + H⁺ (5)

On the other hand, solution pH may affect the generation of Cu species and the liberation of copper ions in solution. As shown in Fig. 4(b), the leached copper concentration is decreased from acid...
to alkaline conditions. Copper ions in alkaline conditions are inclined to precipitate. By contrast, acid condition is beneficial to copper electrodeposition [38], which will be discussed subsequently.

The pH variations with the reaction evolution under different conditions were shown in Fig. 4(c). It can be observed that the solution pH decreases as the reaction proceeds under both acid and alkaline conditions. This phenomenon is caused by the acidification stems from the transformation of SO₄²⁻/C₅⁰ to HO⁻/C₅, which consumes OH⁻ in the solution according to Eq. (3). The result was consistent with the research reported by Gu et al. [37].

3.4. Involved active radicals

According to previous literatures [14,22], there are two major proposed mechanisms to explain the PS activation process: radical processes and nonradical processes. In most cases, it was illustrated that SO₄²⁻ and HO⁻ were produced in the process of activation which was responsible for the pollutant degradation [16,39]. As shown in Fig. 5(a), SO₄²⁻ and HO⁻ are both detected at the Cu cathode and Bi₂MoO₆ anode in our PEC system. In PEC system, the photoanode produces electron-hole pairs and the holes can move to the surface of semiconductor to react with water and form HO⁻ [30]. The detected HO⁻ at the anode stem from this process. It can be concluded that the relative intensity of free radicals generated at the cathode is much higher than those generated at the anode and in the bulk solution. The above results indicate that free radicals are produced in this PS activation process and it mainly occurs at the surface of the copper cathode in this PEC system.

In order to investigate the role of Cu foil cathode in the generation process of free radicals, the control experiments were conducted by using Ti, Fe and Cu foil as cathodes (the ESR analyses
of Fe, Co cathodes were shown in Fig. S3). As shown in Fig. 5(b), the peak intensities of HO•/C\textsubscript{5} and SO\textsubscript{4}•/C\textsubscript{5}/C\textsubscript{0} generated at the Cu cathode are obviously higher than other metal cathodes. Some literatures demonstrate that photogenerated electrons could activate PS in the photocatalytic process [40,41]. In our case, the photogenerated electrons transferred to the cathode is limited for activating PS. Meanwhile, the Cu cathode plays the key role in activating PS. The effects of PS concentration, applied bias and pH\textsubscript{0} on ESR signals of SO\textsubscript{4}• and HO• at the Cu cathode increase which leads to an increased degradation efficiency of DCF. As shown in Fig. 5(c), more free radicals may exist in the form of HO• in alkaline conditions according to Eq. (3) as stated.

3.5. Characterizations of the Cu cathode variation

It was noticed that the fresh copper foil cathode became dark red with the addition of PS during the PEC reaction. The surface change of copper cathode was firstly checked using the FE-SEM technique. As shown in Fig. 6, the surface of copper foil is relatively smooth and uniform before the PEC reaction. The scratches observed are caused by copper pretreatment by sandpaper polish. However, the smooth surface is destroyed with the generation of porous structure at the PEC reaction time of 0.5 and 1 h. With the reaction evolution, this structure can be always observed and nearly covers the copper surface fully at 2 h.

Furthermore, copper cathode samples at various times in the PEC reaction with PS addition were analyzed by GI-XRD. This technique has a smaller incident angle of 0.2° and it could obtain a more intense signal than conventional XRD from surface in order to reduce the effect of Cu substrate. As shown in Fig. 7, before the PEC reaction, no other peaks except copper are observed. After one hour, peaks at 2\textdegree = 36.4°, 42.3° and 61.4° are obviously observed, which are corresponded well with Cu\textsubscript{2}O (JCPDS: 78-2076). Moreover, the peak intensity of Cu\textsubscript{2}O increases with the reaction evolution. It is demonstrated that some reactions may occur on the copper foil, leading to the formation of Cu\textsubscript{2}O. In addition, XPS technique was used to determine the variation of the copper valence. It can be clearly seen from Fig. 8(a) that nearly no change of the major elements on the copper surface is observed after the PEC reaction. As shown in Fig. 8(b), before the
reaction, the major Cu 2p_{3/2} peaks centered at 932.6 eV and major Cu 2p_{1/2} peaks centered at 952.45 eV are assigned to zero-valent copper \[42,43\]. After the reaction, there are three peaks related to copper valence appearing in the graph. The binding energies are 933.05, 952.5 and 935.08 eV, respectively. The major Cu 2p_{3/2} peak centered at 933.05 eV is assigned to Cu^{+} \[44\]. In addition, the major Cu 2p_{1/2} peak centered at 952.5 eV is assigned to Cu_{2}O \[45\]. Combined with XRD analysis, this evidence once again indicates that Cu(II) generates on the copper foil cathode in the PEC process. In addition, a major Cu 2p_{3/2} peak centered at 935.08 eV is also detected and it is assigned to Cu^{2+} \[46\].

The variation of the copper foil cathode during the PEC reaction was further examined by in situ Raman spectroscopy. As shown in Fig. 9, no obvious peak is observed at 0 min, demonstrating that the copper remains metallic. Five peaks at 145, 214, 414, 527 and 624 cm\(^{-1}\) appear at 5 min, which are assigned to Cu_{2}O \[47\]. The intensity of these peaks remains low before the first 30 min and enhances gradually from 30 min to 120 min. Besides, in situ Raman spectra of copper foil under different pH\(_{0}\) are compared which are shown in Fig. S5. It can be concluded that pH\(_{0}\) do not have an
obvious influence on the generation of Cu2O. From above, the generation of Cu2O in the reaction process is confirmed.

3.6 Photoelectrochemical analysis

Photoelectrochemical characteristics of the Bi2MoO6 electrode and Cu2O electrode were further discussed in the presence and absence of the persulfate by LSV measurements. As shown in Fig. 10(a), under visible light irradiation, the Bi2MoO6 photoanode shows a significant enhancement in photocurrent response. A slight difference was observed in the presence or absence of persulfate. In Fig. 10(b), the photoelectrochemical performance of the generated Cu2O on the Cu cathode was presented. Under visible light irradiation, an enhancement of current is observed and the generated Cu2O shows a good response to visible light with a p-type semiconductor characterization. Furthermore, it is clear that the current is largely increased with the persulfate addition both in the dark and under visible light irradiation, which indicated the interaction between generated Cu2O and persulfate.

The IPCE plots and EIS Nyquist plots were shown in Fig. S6. IPCE increases slightly with the increase of persulfate concentration using the copper foil as cathode (Fig. S6(a)). As shown in Fig. S6(b), the arc radius of the Bi2MoO6 photoanode without visible light irradiation is larger than that with visible light irradiation. Smaller arc radius implies a higher efficiency of charge transfer. But the arc radius of system with persulfate is nearly similar with the system without persulfate under visible light irradiation. Above results demonstrate that the introduction of persulfate in this PEC system do not obviously change the transfer efficiency of photogenerated electron-hole pairs.

3.7 Identification of intermediates and proposed reaction pathways

The main intermediates of DCF in the reaction were identified by UPLC-Q-TOF-MS. A possible reaction pathway was proposed in Fig. 11. Besides DCF itself, there were four intermediates identified in the reaction (the structures were in Table S1 and the mass spectra were shown in Fig. S7). We formulated these detected products from P1 to P4, respectively. The MS spectrum of DCF shows a molecular ion peak at 294 m/z and 250 m/z. The loss of 44 could be attributed to CO2 loss, which is consistent with previous studies about DCF. The MS spectrum of P1 shows a strong peak at 177 m/z. Previous studies reported that peak at 161 m/z might be the major product in the degradation process of DCF [48]. P1 might be the product derived from addition reaction with OH. In the mass spectrum of P2, the fragments are 228, 264 and 310 m/z. The most

![Fig. 11. Proposed degradation pathways of DCF in the Bi2MoO6/Cu/PEC/PS system (intermediates with * were deduced).](image)

Open the ring structures
important fragment 228 m/z corresponds to the loss of HCl from fragment 264 m/z. The fragment 264 m/z corresponds to the loss of OH and CH groups from 310 m/z. In the mass spectrum of P3, the most important fragment is 266 m/z and it corresponds to the loss of CO2 from 310 m/z. P1 can be formed by cleavage of C-N bond from P8. There is an interchange between P4 and P8. P5 results from decarboxylation of DCF. P3 and P6 possess the same elemental compositions and they are derived from hydroxylation as a result of HO attack. P2 is probably obtained by dehalogenation and oxidation of P6. It can be concluded that most of the identified intermediates are generated by the attack of HO in the reaction. This result is consistent with the ESR analyses and it is demonstrated that the main oxidizing species are HO in this system.

3.8. A proposed enhanced mechanism

The above results indicated that HO and SO4 were produced from the copper foil cathode with the addition of PS, and CuO was generated during the PEC reaction process. Considering the above analyses, a proposed reaction process was expressed by Eqs. (6)–(9) and Scheme S1.

\[
\begin{align*}
&\text{Cu}^0 + \text{h}^+ \rightarrow \text{Cu}^+ \\
&\text{SO}_4^{2-} + \text{e}^- \rightarrow \text{SO}_4^{2-} \\
&\text{Cu}_2\text{O} + 2\text{H}^+ \rightarrow \text{Cu}^2\text{O}^{\text{aq}} + \text{Cu}^+ + \text{H}_2\text{O} \\
&\text{Cu}^2\text{O}^{\text{aq}} + 2\text{e}^- \rightarrow \text{Cu}^0 \\
\end{align*}
\]

As illustrated in Scheme S1, PS could be activated by receiving an electron from the copper when PS was added into the PEC system. As a result, SO4 and HO were generated, which were responsible for DCF oxidation. Meanwhile, Cu2O was generated on the surface of copper cathode. In order to test its activation capacity for PS, the Cu2O thin film was prepared with an electrodeposition method of copper cathode. In order to test its activation capacity for PS, the Cu2O thin film was prepared with an electrodeposition method on ITO glass.[49] As shown in Fig. 38, there is nearly no removal of DCF observed by the prepared Cu2O film with addition of 1 mM PS. It is known that Cu2O is more inclined to undergo disproportionation reaction, leading to the generation of Cu and Cu2O in acid conditions. Cu2O absorbed on the surface according to XPS results may diffuse into the solution. In the meantime, Cu2O could be deposited onto the copper surface again by cathodic reduction, which benefited the copper recycle between electrode and solution. This copper recovery process can be confirmed by the compared experiments between PEC system and chemical oxidation system in which copper just puts into solution with PS and DCF. The leached copper ion concentration in PEC system is 37% fewer than in chemical oxidation process when the PS and copper dosage is definite. This result demonstrates that the leached copper ions can be recovered by the cathodic reduction in the PEC system. In a word, the copper surface redox cycle of Cu(0)→Cu(I)→Cu(II)→Cu(0) would be probably responsible for the PS activation in this system.

3.9. Stability analysis

In order to evaluate the reproducibility of the system, the experiments were conducted for three times. As shown in Fig. 12, the removal efficiency of DCF does not change significantly in each cycle (67%, 72% and 71%, respectively). The final removal efficiency remains steady and consistent in the three cycles. From the above results, the system shows high reproducibility for DCF removal.

4. Conclusions

In summary, DCF can be efficiently removed in the PEC system with Y-Bi2MoO6 as photoanode and copper as cathode with the PS addition. The generation of hydroxy radicals and sulfate radicals was detected, which was responsible for the enhanced DCF degradation. It was deduced that the copper provided electrons to PS with the generation of Cu2O on the surface and PS was activated in this process. Then Cu(I) disproportionated in the acid solution, leading to the production of Cu(0) and Cu(II). Cu(II) was deposited onto the copper again by the cathodic reduction. Above results of this study showed the PS oxidation catalyzed with copper cathode may be an available method for contaminant removal. This work also provides a new perspective towards PS activation and efficient utilization of the cathode in the PEC system.

Acknowledgements

The authors gratefully acknowledge financial support from National Natural Science Foundation of China (No. 21377148, 51438011), Natural Science Foundation of Yongchuan, Chongqing (Ycstc, 2014ac9001).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.cej.2017.03.047.

References

Publication III

Zeng, H.B., Zhao, X., Zhao, F.P., Park, Y., and Sillanpää, M.

Accelerated Fe3+/Fe2+ Cycle Using Atomic H* on Pd/Al\textsubscript{2}O\textsubscript{3}: A Novel Mechanism for an Electrochemical System with Particle Electrode for Iron Sludge Reduction in the Fe2+/Peroxydisulfate Oxidation Process

Reprinted with permission from
Chemical Engineering Journal
Vol. 382, pp. 122972, 2019
© 2019, Elsevier B.V.
Accelerated Fe\(^{3+}/Fe^{2+}\) cycle using atomic H* on Pd/Al\(_2\)O\(_3\): A novel mechanism for an electrochemical system with particle electrode for iron sludge reduction in the Fe\(^{2+}/\)peroxydisulfate oxidation process

Huabin Zenga,⁎, Xu Zhaoa, Feiping Zhaoa, Yuri Parka, Mika Sillanpääa

a Department of Green Chemistry, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Sammonkatu 12, FI-50130 Mikkeli, Finland
b State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

HIGHLIGHTS

• In Pd-EF system, SO\(_4^{2-}\) and OH were continuously produced with addition of trace iron.
• Iron sludge reduction was achieved via accelerating the Fe\(^{3+}/Fe^{2+}\) cycle.
• Atomic Hydrogen played a dominant role in the cycle of Fe\(^{3+}/Fe^{2+}\).
• The performance of Pd-EF system can be further enhanced by N\(_2\) sparging.

GRAPHICAL ABSTRACT

ARTICLE INFO

Keywords:
Fe\(^{2+}/PDS\) process
Pd/Al\(_2\)O\(_3\)
Atomic H*
Iron cycle
Iron sludge reduction

ABSTRACT

The high cost associated with the disposal of iron sludge in Fe\(^{2+}\) activated oxidation systems significantly limits their widespread use. In this study, we constructed a trace iron-based peroxydisulfate (PDS) oxidation system (Pd-EFP) using Pd/Al\(_2\)O\(_3\) as the particle electrode and externally added PDS as an oxidant. At an initial solution pH of 3.0 and a current density of 3.33 mA/cm\(^2\), with the addition of 10 mM PDS, 50 mg Pd/Al\(_2\)O\(_3\), and 2 mg/L Fe ions, 80.12% of 180 µM benzoic acid (BA) was degraded within 120 min. The Pd/Al\(_2\)O\(_3\) catalyst provided sufficiently large surface area for atomic H* production from the adsorption of electrogenerated H\(_2\) or H\(^+\) conversion via electro-induction on the Pd/Al\(_2\)O\(_3\) surface, which subsequently accelerated the transformation from Fe\(^{3+}\) to Fe\(^{2+}\). Using this method, organics could be degraded by both SO\(_4^{2-}\) and OH via the Fe\(^{2+}\)-activated PDS process. In the Pd-EFP process, the optimal dosage of Fe ions was determined to be 36 µM (2 mg/L). Correspondently, the optimal current density and PDS concentration in the Pd-EFP system were 3.33 mA/cm\(^2\) and 20 mM, respectively. Furthermore, degradation of BA was efficiently promoted by the N\(_2\) atmosphere, which could steer the reaction on the surface of Pd/Al\(_2\)O\(_3\) in the right direction toward Fe\(^{3+}\) reduction by atomic H*, by dispersing accumulated H\(_2\) above the reaction liquid and suppressing oxygen reduction. Finally, the Pd/Al\(_2\)O\(_3\)
1. Introduction

By producing strongly oxidizing -OH, advanced oxidation processes (AOPs) are appealing treatment options for removing non-biodegradable, recalcitrant and toxic organic contaminants from water [1–4]. Among AOPs, the Fenton reaction (reaction (1)) has been widely applied in wastewater treatments for its high oxidation ability, low operating cost, and controllability [5]. In parallel to the Fenton reaction, the Fe2+/PDS reaction (reaction (2)) shares some advantages with the Fenton reaction while sulfate radical (SO₄²⁻) demonstrate a longer lifetime than hydroxyl radical (-OH) in water [6–14].

Fe²⁺ + H₂O₂ → Fe³⁺ + OH⁻ + •OH⁻ (1)

S²O₈²⁻ + 2H₂O → 3SO₄²⁻ + SO₄²⁻ + 4H⁺ (5)

Fe³⁺ + S²O₈²⁻ → Fe²⁺ + 2SO₄²⁻ (6)

S²O₈²⁻ + 2H₂O → 3SO₄²⁻ + SO₄²⁻ (3)

S²O₈²⁻ + 2H₂O → 2SO₄²⁻ + H₂O + 4H⁺ (4)

S²O₈²⁻ + H₂O → 2SO₄²⁻ + H₂O + 4H⁺ (6)

Fe²⁺ + O₂ + H₂O → Fe³⁺ + O₂⁻ + 2H⁺ (7)

The activation of PDS with dissolved Fe ions as a catalyst has some intrinsic drawbacks [15]. As shown in reaction (2), one mole of added Fe³⁺ only produces one mole of radicals. Although Fe²⁺ remains far longer than their consumption rate via reaction (2) [12,13]. For efficient production of SO₄²⁻, engines normally choose to add more Fe³⁺. The separation of Fe ions as ferric oxyhydroxides is required before discharging treated wastewater into natural waters, resulting in the production of iron sludge. Correspondently, the high cost of the disposal of iron sludge significantly limits the widespread use of the Fe²⁺/PDS reaction. Although PDS oxidation processes initiated by heterogeneous catalysts have the potential to avoid iron sludge formation, the application of some of these catalysts leads to problems, such as leaching of metal ions into the acidic solution [16]. Furthermore, other efforts to accelerate the transformation of Fe²⁺ into Fe³⁺ have been undertaken. Hydroxylamine in the Fenton process and the Fe²⁺/PDS process is reported to enhance the Fe²⁺/Fe³⁺ redox cycles, which leads to steady Fe²⁺ recovery and significantly activated H₂O₂/PMS with a small addition of Fe ions (1 mg/L) [17,18]. Hydroxylamine is degraded in oxidation processes, but it also introduces NO₂⁻/NO₃⁻ into the wastewater. Anett et al. explored H₂/Pd pairs as a reductant/catalyst to achieve the fast regeneration of Fe³⁺ back to Fe²⁺ and an accelerated catalytic Fenton reaction with traces of iron [9]. It can be deduced that Fe³⁺ continuously came from the reduction of Fe²⁺ by chemisorbed atomic H* on Au/Pd particle electrodes [26]. However, no direct evidence was provided in their study and, to our knowledge, no study has quantified the accelerating effect of a 3D electrochemical system on Fe²⁺ regeneration and sludge reduction.

In this work, benzoic acid (BA) was used as a probe for SO₄²⁻ and -OH because BA is highly reactive with these two radicals [27,28]. First, a trace iron-based electrode/Fe³⁺/PDS system was constructed using Pd/Al₂O₃ as the particle electrode and by externally added PDS as the oxidant. The oxidation performance of this new system was assessed by comparing it with other systems and the radicals in this process were confirmed via electron spin resonance (ESR) analysis and quenching experiments. Thereafter, the influencing factors such as PDS concentration, current density, iron concentration and gas atmosphere were investigated to evaluate the radical utilisation efficiency. Finally, the stability of Pd/Al₂O₃ was studied and the application potential of this system was discussed.

2. Experimental section

2.1. Chemicals and materials

Benzoic acid (BA), sodium peroxodisulfate (PDS), ferric sulfate (Fe₂(SO₄)₃), sodium sulfate (NaSO₄), methanol, tert-butyl alcohol (TBA), and 5,5-dimethyl-1-pyrroline N-oxide (DMPO) were purchased from Sigma Aldrich (Finland). The Pd/Al₂O₃ catalyst was purchased from Sigma Aldrich (Finland), which had 10% Pd loading on Al₂O₃.

2.2. Experimental procedures

The solutions in this study were prepared using deionised (DI) water (resistivity of 18.2 MΩ, Arium® Pro System). The solution pH was adjusted using either 100 mM NaOH or 50 mM H₂SO₄.

Experiments were conducted in a two-cell electrochemical reactor, a schematic diagram of which is presented in Fig. SM-2 (Supplementary Material). Before the reactor was used, N₂ was used to flush out the air in the cathode cell. The hydrogen produced from the cathode was sealed in the cathode cell during the experiment. To prevent further oxidation of BA in the sample, an ethanol solution was added once the sample was removed from the reactor.

2.3. Analytical methods

The concentration of BA was measured by high-performance liquid chromatography (HPLC, Shimadzu LC-20AD, Tokyo, Japan) using a C18 column and ultraviolet detector. The mobile phase was maintained at a flow rate of 1.0 mL/min with a constant ratio (50:50) of 25 mM acetic acid and methanol; the temperature of the column was kept at 35 °C, and the maximum absorption wavelength at 228 nm was selected. The PDS concentration was determined colorimetrically using pentatitanium tetrachlorate solution at a wavelength of 532 nm using an ultraviolet spectrophotometer (Lambda 4S, PerkinElmer). This detection method was described in detail by Zeng et al. [29]. The Pd leaching concentration was analysed by inductively coupled plasma-optical emission spectrometry (ICP Agilent 5100).

The formation of reactive oxygen radicals was identified using an electron spin resonance (ESR) spectrometer (CMS 8400, Agilent). For the -OH and SO₄²⁻ measurements, the sample was immediately mixed with DMPO to form adducts. The phase composition of the synthesised catalyst was found to be durable in the Pd-EFP system according to reusability experiments and X-ray diffraction patterns of the fresh and used Pd/Al₂O₃ catalyst. This research provides an environmentally benign system for recycling Fe²⁺ in Fe²⁺/PDS processes and for suppressing iron sludge production.
catalyst was studied using an X-ray diffractometer (XRD, PANalytical) using Cu-Kα radiation (λ = 0.1789 nm, at 40 kV and 40 mA) over a 20 range of 10°–20° with a step size of 0.02° and scan speed of 2°/min.

3. Results and discussion

3.1. Enhancement of the Electro/Fe²⁺/PDS process using Pd/Al₂O₃

Initially, we conducted an experiment to degrade BA ([BA] = 180 µM) in a Pd/Al₂O₃-enhanced electro/Fe³⁺/PDS system (Pd-EFP system), i.e. in addition to PDS (10 mM) and Fe³⁺ (36 µM), a 50 mg Pd/Al₂O₃ suspension contained Pd/Al₂O₃ as the particle electrode catalyst and cathode (3.33 mA/cm², pH of 3.0, and N₂ atmosphere). As shown in Fig. 1a, 80.12% of BA was degraded within 120 min. The Pd/Al₂O₃ catalyst in this experiment showed almost no adsorption towards BA or Fe ions.

Moreover, the role of PDS, the cathode, Pd/Al₂O₃ catalyst, and Fe³⁺ in the oxidation process, control experiments were conducted by excluding each component. Zero degradation of BA occurred in the absence of PDS (electro/Pd/Fe²⁺), which obviously played the role of oxidant in the Pd-EFP system. The addition of the Pd/Al₂O₃ catalyst in the Fe³⁺/PDS system also had a negligible effect on the degradation of BA (Pd/Fe³⁺/PDS system). To our surprise, 2.87% of BA was degraded in the electro/Fe³⁺/PDS system. According to the aforementioned discussion, Fe³⁺ could be reduced on the cathode directly and then led to the subsequent activation of PDS [19]. The low reduction efficiency of Fe³⁺ could be ascribed to the occupation of active sites by H² and subsequent H₂ evolution on the cathode (Fig. 2a). This was verified by the large amount of bubbles near the cathode. According to the research reported by Anett, generated H₂ could be chemically absorbed by the Pd/Al₂O₃ catalyst and converted into a strongly reducing agent (Pd-H*) (reaction (8)), which can reduce Fe³⁺ [9].

To verify our hypothesis for our system, we investigated the variation of the Fe²⁺ concentration in the Pd-EFP system in the absence of BA and PDS (Fig. 1b). Because the recycling of Fe³⁺/Fe²⁺ was too fast to detect the variation of the Fe²⁺ concentration, we increased the initial concentration of Fe ions ten-fold. In the absence of the Pd/Al₂O₃ catalyst, no variation in the iron species was observed. With the addition of 50 mg of Pd/Al₂O₃ in the electrochemical cell, 360 µM of Fe²⁺/Pd/Al₂O₃ could be totally reduced, and Fe²⁺ were formed in only 1 min. The results strongly supported our hypothesis that the cathode played the role of electron donor by electro-generating H₂.

\[\text{Pd-H}^* \rightarrow 2\text{Pd} + \text{H}_2 \]

(8)

In summary, this new system exhibited continuously strong oxidation ability when we applied PDS as the oxidant, a cathode as an electron donor, Pd/Al₂O₃ particles for the catalytic reduction of Fe³⁺, and Fe ions as the one-electron transferring medium. Based on this, it is reasonable to divide the Pd-EFP system into a two-stage process: an accelerated Fe³⁺/Fe²⁺ cycle on the Pd/Al₂O₃ particle electrode and a subsequent Fe²⁺/PDS oxidation process in the bulk solution.

3.2. Active radical analysis

ESR spectroscopy with the spin-trapping reagent of DMPO was applied to directly confirm the generation of radicals. The hyperfine splitting constants for the DMPO radical adducts of DMPO-·OH and DMPO-SO₄ were representative of ·OH and SO₄−, respectively [13,30–32]. In this study, as shown in Fig. 2a, we observed no signal for the Fe²⁺/PDS system. For the Pd-EFP system, as we predicted, slight signals for DMPO-SO₄ adducts suggested the generation of SO₄−. Moreover, a typical four-line ESR spectrum with an intensity of 1:2:2:1 was detected, which indicated the emergence of ·OH.

It is obvious that SO₄− came from the PDS activation via in situ-generated Fe²⁺ (reaction (2)) in the Pd-EFP system. The redox potential of SO₄2− was confirmed to be 2.5–3.1 V, while the 2.7 V potential of ·OH was detected in acidic solution [33,34]. Due to the narrow gap of potentials between the two radicals, ·OH could be generated via fast transformation from SO₄2− (reaction (9)) [12].

\[\text{SO}_4^{2−} + \text{H}_2\text{O} \rightarrow \text{SO}_4^{\cdot} + \text{OH} + \cdot\text{H}^+ \]

(9)

Quenching experiments were further conducted to check the importance of SO₄− and ·OH in the oxidation process. Ethanol is well known to be an efficient scavenger for ·OH and SO₄− due to its high reaction constant with these two radicals [24]. As shown in Fig. 3b, the degradation of BA was significantly inhibited in the presence of ethanol. More specifically, 80.12% BA was degraded without ethanol within 120 min. With the addition of 0.18 M ethanol, only 30.80% BA degradation was observed; with a further increase in the ethanol concentration to 1.8 M, the degradation of BA was reduced to 22.82%. The inhibitory effect of ethanol on the BA degradation indicated that SO₄− and its symbiotic radical ·OH were the main oxidation species in the Pd-EFP system.

The reductive effect of Pd-based catalysts in the electrochemistry system has been extensively investigated [21,22,35,36]. Direct electron transfer and atomic H² may be both involved in the accelerated recycling process of Fe³⁺/Fe²⁺. For a better understanding of the accelerated iron recycling process, we further clarified the importance of the two reductive mechanisms in the reduction process of Fe³⁺. Tert-butylic alcohol (TBA) is reported to be an efficient scavenging agent of atomic H² [26]. To minimise the systematic error, the initial H² concentration was kept at 3.33 mA/cm². H₂ bubbles were observed in the Pd-EFP system without the addition of TBA, while complete removal of H₂ was observed in the Pd-EFP system containing 0.18 M TBA.

3.3. Active radical analysis

ESR spectroscopy with the spin-trapping reagent of DMPO was applied to directly confirm the generation of radicals. The hyperfine splitting constants for the DMPO radical adducts of DMPO-·OH and DMPO-SO₄ were representative of ·OH and SO₄−, respectively [13,30–32]. In this study, as shown in Fig. 2a, we observed no signal for the Fe²⁺/PDS system. For the Pd-EFP system, as we predicted, slight signals for DMPO-SO₄ adducts suggested the generation of SO₄−. Moreover, a typical four-line ESR spectrum with an intensity of 1:2:2:1 was detected, which indicated the emergence of ·OH.

It is obvious that SO₄− came from the PDS activation via in situ-generated Fe²⁺ (reaction (2)) in the Pd-EFP system. The redox potential of SO₄2− was confirmed to be 2.5–3.1 V, while the 2.7 V potential of ·OH was detected in acidic solution [33,34]. Due to the narrow gap of potentials between the two radicals, ·OH could be generated via fast transformation from SO₄2− (reaction (9)) [12].

\[\text{SO}_4^{2−} + \text{H}_2\text{O} \rightarrow \text{SO}_4^{\cdot} + \text{OH} + \cdot\text{H}^+ \]

(9)

Quenching experiments were further conducted to check the importance of SO₄− and ·OH in the oxidation process. Ethanol is well known to be an efficient scavenger for ·OH and SO₄− due to its high reaction constant with these two radicals [24]. As shown in Fig. 3b, the degradation of BA was significantly inhibited in the presence of ethanol. More specifically, 80.12% BA was degraded without ethanol within 120 min. With the addition of 0.18 M ethanol, only 30.80% BA degradation was observed; with a further increase in the ethanol concentration to 1.8 M, the degradation of BA was reduced to 22.82%. The inhibitory effect of ethanol on the BA degradation indicated that SO₄− and its symbiotic radical ·OH were the main oxidation species in the Pd-EFP system.

The reductive effect of Pd-based catalysts in the electrochemistry system has been extensively investigated [21,22,35,36]. Direct electron transfer and atomic H² may be both involved in the accelerated recycling process of Fe³⁺/Fe²⁺. For a better understanding of the accelerated iron recycling process, we further clarified the importance of the two reductive mechanisms in the reduction process of Fe³⁺. Tert-butylic alcohol (TBA) is reported to be an efficient scavenging agent of atomic H² [26]. To minimise the systematic error, the initial H² concentration was kept at 3.33 mA/cm². H₂ bubbles were observed in the Pd-EFP system without the addition of TBA, while complete removal of H₂ was observed in the Pd-EFP system containing 0.18 M TBA.
concentration was increased to 360 μM, while the Pd/Al2O3 catalyst was set to only 5.0 mg/120 mL. As shown in Fig. 3, strong inhibition of Fe3+ reduction occurred with TBA addition (36 mM and 360 mM). We further fitted the process with pseudo-first-order kinetics. As shown in Fig. 4, with the addition of 180 μM Fe3+ (10 mg/L), the removal efficiency was kept at 80.12%.

Fig. 4. (a) ESR spectra of DMPO-OH and DMPO-SO4• formed in various systems. (b) Effect of scavengers on the BA degradation in the Pd-EFP system ([BA], 180 μM; [PDS], 10 mM; [Fe3+], 36 μM; [Pd/Al2O3], 50 mg/120 mL; current density, 3.33 mA/cm2; initial solution pH, 3.0).

To quantitatively compare the iron sludge production in various systems, we standardized the iron sludge production by dividing the iron dosage (C0(Fe)) by the organic removal (ΔC(pollutant)) in the Fe2+/PDS process. Depending on the organic contaminants, the ratio varied from 5.1 to 238 for the Fe2+/PDS process (Table 1) [37–43]. As shown in reactions 2–7, one mole of Fe3+ can produce one mole of OH, which can subsequently oxidize up to one mole of organics. Thus, a ratio of C(Fe)/C(pollutant) in the Fe3+-activated PDS process below 1.0 indicates the recycling of Fe ions in the system. We checked the C(Fe)/ΔC(BA) in the Fe3+/PDS oxidation process of BA (Table 1), and the ratio was 87.2 when the ratio was decreased to 0.2 in the Pd-EFP system, suggesting trace production of iron sludge in the post-treatment process.

For conventional Fenton processes or Fe3+/PDS processes, excess Fe3+ has been reported to have a detrimental effect on the oxidation of contaminants owing to their quenching effect toward •OH and SO4•− (reactions 11–12). According to studies on Fe3+/PDS processes (Table 1), an optimal ratio of C(Fe)/C(PDS) for organic degradation has generally been determined to be in the range of 0.16–1.0 [37–43]. With higher Fe3+ addition than the optimal dosage, excess Fe3+ will result in decreasing the degradation efficiency of organics. We checked the BA degradation in the Fe3+/PDS system, and the optimal ratio was obtained when the iron concentration was 1.5 times the PDS concentration (Fig. S3-4). In the N-EFP process, the Fe3+-/PDS ratio was no more than 0.0036, indicating that Fe3+ was mainly used for PDS activation instead of radical quenching. The addition of trace iron not only benefited the post treatment of the dissolved iron, but also improved the contaminant oxidation efficiency of the Fe3+/PDS process [5,7].

Fe3++ + OH− → Fe3++ + •OH (11)
Fe3++ + SO4•− → Fe3++ + SO4− (12)

Another mechanism for decreasing the iron dosage in the Fe3+-activating oxidation process is the reduction of Fe3+ on the cathode (reaction 13), which has been widely investigated for the electro...

Fig. 3. Fe3+ concentration variation in the Pd-EFP system without DAS and BA ([Fe3+], 360 μM; [Pd/Al2O3], 50 mg/120 mL; current density, 3.33 mA/cm2; initial solution pH, 3.0).

3.3. Sludge production

Fe ions bridged as a single electron-transferring medium between the electron-donor and PDS-oxidation process. Additionally, Fe ions are significant for this system because they are removed from water as a sludge, which is the focus of our research. We then investigated the effect of varying the initial iron concentration on the efficiency of BA. As shown in Fig. 4, with the addition of 180 μM Fe3+ (10 mg/L), the degradation efficiency of BA was determined to be 86.89% within 120 min. When we further decreased the initial Fe3+ concentration to 36 μM (2 mg/L), the removal efficiency was kept at 80.12%.

In Fig. 2, the enhancement of atomic H* in the bulk solution accelerated the transformation of Fe2+ for the Fe2+/PDS oxidation process. Thus, organics could be degraded by both SO4•− and OH from the Fe2+–activated PDS process.

Fig. 2. (a) ESR spectra of DMPO–OH and DMPO–SO4• formed in various systems. (b) Effect of scavengers on the BA degradation in the Pd-EFP system ([BA], 180 μM; [PDS], 10 mM; [Fe3+], 36 μM; [Pd/Al2O3], 50 mg/120 mL; current density, 3.33 mA/cm2; initial solution pH, 3.0).
Fenton process. By accurately controlling the applied potential on the cathode, such as graphite or carbon felt, fast reduction of Fe$^{3+}$ can be achieved.

$$\text{Fe}^{3+} + e^- \rightarrow \text{Fe}^{2+} \quad (13)$$

To better compare the performance of this new system and the electro-Fenton system on the iron sludge reduction, the iron concentration in electro-Fenton processes are summarised in Table SM-1. Obviously, the electro-Fenton process requires iron dosages according to the different cathode materials. To continuously provide Fe$^{2+}$ and activate H$_2$O$_2$, iron concentrations are required to be higher than 0.2 mM (11.2 mg/L). In contrast, the iron dosage was 36 μM (2 mg/L) in the Pd-EFP system (limitation of Fe in EU and US). The further decrease in the need for iron can be ascribed to the strong reduction ability of atomic H* and large surface area of the Pd/Al$_2$O$_3$ catalyst.

3.4. Radical consumption analysis

The effects of the applied current density and PDS concentration were investigated to optimize the parameters and explore side reactions. As shown in Fig. 5a, under a current density of 0.66 mA/cm2, the degradation efficiency of BA was only 20.63% within 120 min. With an increase in the current density to 3.33 mA/cm2, the degradation efficiency was improved to 80.12%. Interestingly, a further increase in the current density to 6.66 mA/cm2 led to a counterproductive effect on BA degradation.

With the increase in the current density, the applied voltage increased and hydrogen bubbles were produced faster, both of which were beneficial to the production of atomic H* on the Pd/Al$_2$O$_3$. Thus, as a reductant, atomic H* on the catalyst can act not only as an accelerator of iron recycling but also as a possible quenching agent for OH and SO$_4^{2-}$ (reactions 14–15). The adverse effect of current density beyond 3.33 mA/cm2 verified the hypothesis, i.e. in our system, the optimal current density was 3.33 mA/cm2.

$$\text{Pd} + \text{H}^+ + \text{OH}^- \rightarrow \text{Pd} + \text{H}_2\text{O} \quad (14)$$

$$\text{Pd} + \text{H}_2\text{O}_2 \rightarrow \text{Pd} + \text{H}^+ + \text{SO}_4^{2-} \quad (15)$$

Similar to the effect of current density on the performance of BA degradation, BA removal was enhanced with an increase in the PDS concentration from 2 to 20 mM; however, a further increase of PDS concentration adversely affected the degradation efficiency of BA (Fig. 5b). This was due to the fact that more SO$_4^{2-}$ was generated at higher PDS concentrations, but excessive PDS consumed SO$_4^{2-}$ via reaction (3) [44].

3.5. Effect of the gas atmosphere

The gas atmosphere above the cathodic cell is another parameter that affects the reaction on the Pd/Al$_2$O$_3$. We concluded that atomic H* is the main species responsible for Fe$^{3+}$ reduction. It has been found that dissolved oxygen can compete with Fe$^{3+}$ for the reaction with atomic H* (reaction (16)) [45,46]. Given the inhibition of dissolved oxygen on atomic H*, oxygen should be prevented in the cathodic cell [47].

$$\text{Pd} + \text{H}^* + \text{O}_2 \rightarrow 4\text{Pd} + 2\text{H}_2\text{O} \quad (16)$$

In the study by Anett et al., increasing concentration of H$_2$ above the gas atmosphere significantly increased the removal efficiency of BA and PDS in the Pd-EFP system (Fig. 5b).

Table 1

<table>
<thead>
<tr>
<th>AT(pollutant)</th>
<th>C(Fe)</th>
<th>C(PDS)</th>
<th>C(Fe)/(\Delta C\text{(pollutant)})</th>
<th>C(PDS)/(\Delta C\text{(pollutant)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 μM</td>
<td>1.6 mM</td>
<td>2 mM</td>
<td>40</td>
<td>0.16</td>
</tr>
<tr>
<td>10 μM</td>
<td>0.4 mM</td>
<td>0.4 mM</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>4.2 μM</td>
<td>1 mM</td>
<td>5 mM</td>
<td>238</td>
<td>0.2</td>
</tr>
<tr>
<td>0.7 μM</td>
<td>3.6 μM</td>
<td>5 mM</td>
<td>5.1</td>
<td>0.72</td>
</tr>
<tr>
<td>0.04 μM</td>
<td>5.8 μM</td>
<td>20 mM</td>
<td>6.9</td>
<td>0.29</td>
</tr>
<tr>
<td>0.04 μM</td>
<td>8.1 μM</td>
<td>35 mM</td>
<td>10.13</td>
<td>0.23</td>
</tr>
<tr>
<td>25 μM</td>
<td>0.25 mM</td>
<td>1 mM</td>
<td>10</td>
<td>0.25</td>
</tr>
<tr>
<td>50 μM</td>
<td>4.4 mM</td>
<td>5.6 mM</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>32 μM</td>
<td>2 mM</td>
<td>2 mM</td>
<td>62.5</td>
<td>1</td>
</tr>
<tr>
<td>172 μM</td>
<td>15 mM</td>
<td>10 mM</td>
<td>87.2</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Fig. 4. Effect of initial Fe$^{3+}$ addition on the removal efficiency of BA in the Pd-EFP system ([BA], 180 μM; [PDS], 10 mM; [Pd/Al$_2$O$_3$], 50 mg/120 mL; current density, 3.33 mA/cm2; initial solution pH, 3.0).

Fig. 5. Effect of current density (a) and initial PDS addition (b) on the removal efficiency of BA in the Pd-EFP system ([BA], 180 μM; [PDS], 10 mM; [Pd/Al$_2$O$_3$], 50 mg/120 mL; current density, 3.33 mA/cm2; initial solution pH, 3.0).
cathode cell was found to be beneficial to accelerate Fe^{3+} recycling owing to the reductive effect of activated H2 on the Pd/Al2O3 catalyst. By slowly feeding Na2SO4 and H2, we checked the performance of the Pd-EFP process on BA degradation in Na2S and H2 atmospheres (Fig. 6a). Compared with the in situ electro-generated H2 atmosphere, pure Na2S provided a better atmosphere for the performance of the Pd-EFP system on BA degradation. Interestingly, PDS in the H2 atmosphere initially displayed a higher degradation rate than in the N2 atmosphere, but almost no degradation of BA occurred after a retention time of 40 min. This variation can be ascribed to the quick degradation of PDS in the pure H2 atmosphere. As shown in Fig. 6b, the PDS was degraded quickly in the pure H2 atmosphere, while N2 and electro-generated H2 atmospheres showed a relatively slow degradation rate towards PDS. The results indicated a two-electron transfer from H2 to PDS via reaction (17) rather than one-electron transfer from atomic H* to Fe^{3+}, which suppresses the oxidation process via a Pd-H*+SO4−→PDS/Fe^{3+}→SO4−→BA mechanism. To confirm this hypothesis, we checked BA degradation in the H2/Pd/PDS system, and PDS was completely consumed with zero degradation of BA.

\[\text{Pd-H}_2 + \text{SO}_4^{2-} \rightarrow \text{Pd} + 2\text{H}^+ + 2\text{SO}_4^{2-} \]

(17)

By dispensing accumulated H2 above the reaction liquid and suppressing the oxygen reduction, N2 atmosphere could steer the reaction on the surface of Pd/Al2O3 in the right direction toward Fe^{3+} reduction by atomic H*, further leading to efficient organic degradation.

3.6. Application potential analysis

The aforementioned results indicated that Pd/Al2O3 particles, as a famous H* keeper, showed high performance for iron recycling and reducing iron sludge production in the Fe^{3+}/PDS process. According to our catalyst dosage study, even with the addition of only 10 mg Pd/Al2O3 catalyst per 120 mL of reaction liquid in the Pd-EFP system, BA degradation could reach the level of 60% (Fig. SM-5). However, the stability of the particle electrode is a crucial issue owing to the high cost of noble metals. The Pd/Al2O3 catalyst has been extensively used in chemical industries owing to its high stability and outstanding catalytic efficiency. We also monitored the catalyst stability by recycling the Pd/Al2O3 catalyst in the Pd-EFP system five times. As shown in Fig. 7a, the degradation efficiencies were kept relatively stable between 80.56% and 83.19%, indicating relatively high stability. Simultaneously, the Pd concentration in the effluent was lower than the detection limit of ICP-OES (0.01 mg/L). The variation in the catalytic activity on the Pd/Al2O3 catalyst in the Pd-EFP process was evaluated using XRD analysis. XRD patterns of the fresh and used Pd/Al2O3 catalyst were recorded, as shown in Fig. 7b, where diffraction peaks assigned to (1 1 1), (2 0 0), and (3 1 1) of metallic Pd were observed. The obtained results demonstrated that Pd/Al2O3 is stable and could be effectively used for a long period of time, which can produce a considerable economic benefit.

For practical application, the initial solution pH and the variation of the solution pH with the reaction progress are also important [48,49]. Owing to the acidification effect of the PDS decomposition process (reaction (17)), the Pd-EFP process was confirmed to be an efficient system even with an initial solution pH of 10.0 (Text SM-2).

The Pd-EFP process successfully produced a continuous Fe^{3+}/PDS process with trace amounts of Fe ions. However, this also resulted in some drawbacks, such as a low oxidation rate, high cost for catalyst preparation, and subsequent recovery of the Pd/Al2O3 catalyst. The catalyst dosage analysis revealed that the Pd-EFP process exhibited oxidation capacity even when we used a Pd catalyst dosage of 10 mg/120 mL. Furthermore, in the research field of electrocatalytic dechlorination, various functional materials have been developed that possess new characteristics while maintaining their capacity as an atomic H* keeper, and they are good alternatives as particle electrodes in this system. To further decrease the Pd dosage in the Pd-EFP system, the catalytic activity of atomic H* formation can be enhanced by changing the morphology so that the (1 1 1) facet and defect sites on the Pd crystal are highly active [50,51]. It has been found that Pd-supported multi-walled nanotubes can act as an excellent H* producer in a 3D electrocatalytic process with only 0.5% loading of Pd [22]. A bimetal catalyst (Pd/In) has also showed strong reducive capacity in a 3D electrochemical process [21].

In this study, a trace-iron based electro/Fe^{3+}/PDS system was constructed using Pd/Al2O3 as the particle electrode and by externally added PDS as the oxidant. At an initial solution pH of 3.0, with the addition of 10 mM PDS, 50 mg Pd/Al2O3, and 2 mg/L Fe ions, 80.12% of 180 µM BA was degraded within 120 min. Mechanistic studies showed that the -OH and SO4− from Fe^{3+}-activated PDS were responsible for the BA degradation, whereas atomic H* was mainly responsible for Fe^{3+} reduction to Fe^{2+}. In the Pd-EFP process, the optimal dosage of Fe ions was determined to be 36 µM (2 mg/L) because the extra addition of more than 2 mg/L Fe ions had a positive but negligible influence on BA degradation. Correspondingly, the optimal current density and PDS concentration in the Pd-EFP system were found to be 3.33 mA/cm² and 20 mM, respectively. A higher current density

![Fig. 6. Effect of gas atmosphere in a cathode cell on BA degradation (a) and PDS consumption (b) in the Pd-EFP system ([BA], 180 µM; [PDS], 10 mM; [Fe^{3+}], 36 µM; [Pd/Al2O3], 50 mg/120 mL; current density, 3.33 mA/cm²; initial solution pH, 3.0).](image-url)
or higher PDS concentration had a quenching effect on \(SO_2^− \). The Pd-EFP process is efficient for BA degradation at various initial solution pH levels. Furthermore, the degradation of BA was also efficiently promoted by the N\textsubscript{2} atmosphere, which could steer the reaction on the surface of Pd/Al\textsubscript{2}O\textsubscript{3} in the right direction toward Fe3+ reduction by atomic H+ by dispelling accumulated H\textsubscript{2} above the reaction liquid and suppressing oxygen reduction. Finally, catalyst reusability experiments and the XRD pattern of fresh and used Pd/Al\textsubscript{2}O\textsubscript{3} catalyst indicated that the Pd/Al\textsubscript{2}O\textsubscript{3} catalyst maintained its high durability in the Pd-EFP system.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors are grateful to the Academy of Finland and the European Union for funding this project.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/jcej.2019.122972.

References

Publication IV

Insight into Electroreductive Activation Process of Peroxydisulfate for Eliminating Organic Pollution: Essential Role of Atomic Hydrogen

Reprinted with permission from
Chemical Engineering Journal
Vol. 2021 (in press)
© 2021, Elsevier B.V.
Insight into Electroreductive Activation Process of Peroxydisulfate for Eliminating Organic Pollution: Essential Role of Atomic Hydrogen

Huabin Zeng, Huachun Lan, Xiaoqiang An, Eveliina Repo, Yuri Park, Olga Pastushok, Huijuan Liu, Jiuhui Qu

PII: S1385-8947(20)34467-3
DOI: https://doi.org/10.1016/j.cej.2020.128355
Reference: CEJ 128355

To appear in: Chemical Engineering Journal

Received Date: 25 September 2020
Revised Date: 30 November 2020
Accepted Date: 26 December 2020

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier B.V.
Insight into Electroreductive Activation Process of Peroxydisulfate for Eliminating Organic Pollution: Essential Role of Atomic Hydrogen

Huabin Zeng, a,b Huachun Lan, a* Xiaojiang An, a Eveliina Repo, b Yuri Park, b Olga Pastushok, b Huijuan Liu, a Jiuhui Qu a

a Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
b Department of Separation Science, School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Sammonkatu 12, FI-50130 Mikkeli, Finland

*Corresponding author:
Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
E-mail address: hclan@tsinghua.edu.cn
Table of Contents/Abstract Art

Direct electron transfer

Indirect reduction via atomic H*

\[H^* + S_2O_8^{2-} \rightarrow SO_4^{2-} + SO_4^{2-} \]
Abstract

Electrochemically activating peroxydisulfate (PDS) can eliminate organic pollution using electron as activator without the involvement of byproducts. Notwithstanding, the process suffered from long hydraulic retention time, and the activation regime remained unclear. Herein, using Pd/Al₂O₃ catalyst as particle electrode for initiating PDS oxidation in the cathodic cell can degrade various organic pollutants with varying the kinetic constants from 0.0256 min⁻¹ to 0.0645 min⁻¹, which were at least 5-fold higher than that in previous studies. The reactive oxygen species were determined to be SO₄•⁻/•OH. These radicals were readily formed from the single-electron reduction of PDS by electro-induced atomic hydrogen (indirect reduction mechanism), while direct two-electron transfer from electro-generated H₂ to PDS consumed its oxidation capacity without yielding radical due to the higher energy barrier. Revealing the mechanism of electrochemically unleashing the oxidative power of PDS into SO₄•⁻ can rationalize the design of scalable electrode for PDS-based water purification.

Keywords: Organic pollution, peroxydisulfate, electroreductive activation, single electron transfer, atomic hydrogen
1. Introduction

By producing strongly oxidizing radicals, advanced oxidation processes (AOPs) were appealing treatment processes for degrading non-biodegradable, recalcitrant and toxic organic contaminants [1]. Recently, peroxydisulfate (PDS, $S_2O_8^{2–}$) attracted growing attention as a promising oxidant not only due to its chemical stability in the storage and transport periods but also owing to highly achievable radical formation yield [2]. Moreover, the produced sulfate radical ($SO_4^{•–}$) demonstrated longer lifetime than hydroxyl radicals (‘OH) in water (30 µs for $SO_4^{•–}$ and 1 µs for ‘OH) [3], as well as less dependence of treatment efficiency on the operational parameters (e.g. pH, initial peroxide loading, and background constituents) [2]. These properties endowed the PDS with bright application perspective in the soil remediation and water treatment.

\begin{align*}
S_2O_8^{2–} + \text{energy} & \rightarrow 2 SO_4^{•–} \quad (1) \\
S_2O_8^{2–} + M^{n+} & \rightarrow M^{(n+1)+} + SO_4^{•–} + SO_4^{2–} \quad (2) \\
S_2O_8^{2–} + e^{-} & \rightarrow SO_4^{2–} + SO_4^{•–} \quad (3)
\end{align*}

For extending the application scenarios of PDS oxidation, the suitable activation approach for environmental problem has been a “holy grail” in these scientific researches [2]. Generally, the $S_2O_8^{2–}$ activation to $SO_4^{•–}$ can be initiated by energy input (heat, microwave, or light) or single-electron transfer from transition metal catalysts (M=Fe, Co, Cu, Ag) (reaction 1\sim2) [4]. Among these approaches, the PDS activation by transition metal catalysts has been widely employed for application of PDS in in-situ chemical oxidation of polluted areas [5, 6]. In addition, the electrochemical activation of PDS via one-electron reduction on the cathode (reaction 3) attracted some attention [7-9], owing to the reagent-free property using electron as reductant without the involvement of byproducts, preventing the costly transportation and storage on the activators and...
the downstream treatment for removing the byproducts, as well as reducing the dependence on the operating pH [9]. Meanwhile, remotely electrolytic manipulation toward the PDS activation theoretically allowed the environmental remediation process to be precisely controlled by tuning the applied potential [10, 11]. Despite these advantages, the degradation kinetics of most organic compounds (dinitrotoluene, aniline, and ciprofloxacin,) were much slower than those for PDS oxidation initiated by transition metal activators, and the process exhibited meaningful degradation only within an irrational time scale (more than 6 hours) [7-9]. More importantly, these works were confined to revealing the phenomena of heterolytically cleaving the peroxide bond for yielding SO$_4$$^{-}$ by single-electron injection from carbon cathode into PDS molecule (reaction 3). The studies never unravel the active sites for PDS reaction and key intermedia for single-electron transfer except in cases where pH-sensitive Fe$^{2+}$/Fe$^{3+}$ bridged between electrode and PDS [12]. The insight into the electrochemical activation mechanism without iron will facilitate the rational design of an electro-AOP for efficiently utilizing PDS.

It has been well-documented that the electrocatalytic reduction of substrates can proceed through both direct electron transfer and indirect mechanism via atomic hydrogen (atomic H*) [13]. Depending on using the electrode surface or the electro-generated atomic H* as a platform for adsorption of substrates, the subsequent conversion may be steered towards the different routes with yielding different products. In our case, we were particularly intrigued by atomic H* due to its unique nature as a one-electron reductant. Especially, much lower redox potential of H*/H$^{+}$ couple (E° = -2.1 V vs RHE) than that of Fe$^{2+}$/Fe$^{3+}$ couple ($E^\circ = -0.77$ V vs RHE) indicated that PDS reduction by atomic H* was thermodynamically feasible with SO$_4$$^{-}$ as reduction product (Reaction 4) [14, 15]. Among various materials for atomic H* generation, the most presentative ones were palladium (Pd) and its alloys, for their outstanding electronic property to form relatively
stable Pd-H* bond (Volmer reaction) [16], and depress the recombination of two atomic H* (Heyrovsky reaction), therefore to extend the retention time of atomic H* [17-19]. The lab-scale experiments using Pd-doping cathode (two-dimensional electrode, 2D electrode) or Pd-coating particle electrode (three-dimensional electrode, 3D electrode) have been deemed atomic-H*-rich systems for dechlorination of disinfection by-products and dehydrogenation of various unsaturated organics [20]. In comparison to 2D electrochemical system, the electroreduction system with 3D electrode theoretically provided more active sites for generating atomic H*, which may lead to higher kinetic constant of substrate reduction in the system.

\[\text{S}_2\text{O}_8^{2-} + \text{H}^+ \rightarrow \text{H}^+ + \text{SO}_4^{2-} + \text{SO}_4^{\cdot -} \] (4)

In this work, a 3D electroreduction system using commercial Pd/Al$_2$O$_3$ as particle electrode was applied for investigating the mechanism of PDS reduction. Meanwhile, externally added BA (50 µM) was employed as a probe for efficiently capturing SO$_4^{\cdot -}$ in the PDS decomposition process \((k=1.2 \times 10^9 \text{ M}^{-1} \cdot \text{s}^{-1}) [12, 21]\), while it showed inertness to atomic H* produced on the Pd/Al$_2$O$_3$ [12]. The PDS decompositions via single-electron/two-electron reduction routes were clarified by electron spin resonance (ESR) analysis, quenching experiments, and density function theory (DFT) calculations. The involved parameters were optimized for accelerating PDS activation. Finally, the practical value of the system was further assessed by degrading various organic contaminants.

2. Experimental Section

2.1 Chemicals

A complete list of reagents is provided in Text S1 (Supplementary Material).

2.2 Setup of batch Experiment

Solutions in this study were prepared using deionized (DI) water (resistivity 18.2 MΩ, arium® pro system). Solution pH regulation was performed using NaOH or H$_2$SO$_4$.

Experiments were conducted in a two-cell electrochemical reactor, a schematic diagram of which is presented in Figure S1. Before the reactor was used, N$_2$ was used to flush out the air in the cathodic cell. The liquid samples were preserved in the 1 M ethanol solution once the sample was taken from the reactor.

2.3 Analytical Method

The concentrations of model contaminants were measured by high-performance liquid chromatography (HPLC, Shimadzu LC-20AD, Tokyo, Japan) with a C18 column and ultraviolet detector, the temperature of column was kept at 30 °C and the mobile phase was maintained at a flow rate of 1.0 ml/min. Other analytical details about HPLC analysis of organic contaminants were presented in the Table S1, including mobile phase and detecting wavelengths. The PDS concentration was determined colorimetrically using potassium titanium oxalate solution at a wavelength of 352 nm by ultraviolet spectrophotometer (lambda 45, PerkinElmer) and the detection method was described in detail by Zeng et al [22].

The formation of reactive oxygen species (ROS) was identified with an ESR spectrometer (CMS 8400, Adani). For OH$^-$ and SO$_4$$^-$ measurements, the sample was immediately mixed with DMPO to form adducts. The phase composition of the synthesised catalyst was studied by X-ray diffractometer (XRD, PANalytical), using Co-Kα radiation ($\lambda=0.1789$ nm, at 40 kV and 40 mA) over a 2θ range of 10–120° with a step size of 0.02° and scan speed of 2°/min.

2.4 DFT analysis

The surface of Pd (111) was built, where the vacuum space along the z-direction is set to be 20 Å, eliminating the interaction between two neighboring images. The bottom two atomic layers were fixed, the top three atomic layers were adequately relaxed for all surface systems. Then the atom, ion and molecular were adsorbed on the surface. The first-principles calculations in the framework
of DFT were carried out based on the Cambridge Sequential Total Energy Package (CASTEP) [23]. The exchange-correlation functional under the generalized gradient approximation (GGA) with norm-conserving pseudopotentials [24], and Perdew-Burke-Ernzerhof functional was adopted to describe the electron-electron interaction [25]. An energy cutoff of 750 eV was used and a k-point sampling set of 5×5×1 were tested to be converged. A force tolerance of 0.01 eV/Å, energy tolerance of 5.0×10⁻⁷ eV per atom and maximum displacement of 5.0×10⁻⁴ Å were considered. The transition states are calculated with the complete LST/QST search. The adsorption energy of were calculated by: \[\Delta E_A = E^*_{A} - E^* - E_A \]
where \(E_A^* \), \(E^* \) and \(E_A \) denote the energy of adsorbed system, clear surface and absorbed atom, ion or molecular, respectively [26].

3. Results and discussion

3.1 PDS Activation by Pd/Al₂O₃ in Electroreduction System.

The physicochemical properties of the Pd/Al₂O₃ catalyst and its corresponding substrate (α-Al₂O₃) were characterized by SEM, XPS, and XRD analysis. SEM results (Fig. 1b) presented that many flower-like particles were attached to the relatively smooth surface of the particle presented in Fig. 1a (SEM analysis of α-Al₂O₃ substrate). These particles can be determined to be dominant Pd⁰ speciation (335.2 eV for Pd⁰ 3d⁵/₂ and 340.5 eV for Pd⁰ 3d⁷/₂) by XPS analysis (Fig. 1c) [27]. Meanwhile, the coverage of the Pd crystal on the surface slightly impaired the acquisition of Al₂O₃-involving signals (74.7 eV for Al³⁺ 2p and 351.6 eV for O²⁻ 1s, Fig. 1c inset) [28]. Furthermore, comparing the XRD results of Pd/Al₂O₃ catalyst with α-Al₂O₃ substrate revealed the face-centered cubic structure of coated Pd catalyst (Fig. 1d). The emerging peak of Pd/Al₂O₃ at 39.4° can be assigned to the Pd(111) of metallic Pd crystal.
Theoretically, the dominant exposure of the Pd(111) facet can provide ideal active sites for producing atomic H* [29]. The atomic H* provision capacity of Pd/Al$_2$O$_3$ catalyst was further evaluated by the cyclic voltammetry (CV) curves using Pd/Al$_2$O$_3$-coating glassy carbon electrode as working electrode (Text S2). With varying starting potentials from -0.65 V to -0.80 V during CV analysis, the generated H* species in the reduction stage were oxidized in oxidation stage. Fig. 1e exhibited two oxidation peaks in positive scans, located in the potential ranges of −0.30 to −0.10 V and −0.10 to 0.10 V. By the addition of atomic H* scavenger (2,4-dichlorophenol, 2,4-DCP) [18], the peak at -0.10 V can be assigned to adsorbed H*$_{ads}$ while the peak at -0.30 V referred to the oxidation of absorbed H*$_{abs}$. As shown in Fig. 1f, the height of the oxidation peaks for these atomic H* (H*$_{abs}$ and H*$_{ads}$) significantly increased with a decreasing starting potential. The results suggested that the Pd/Al$_2$O$_3$ catalyst had plenty of active sites for H*, indicative of good testing platform for PDS activation by atomic H*.

Then, we conducted an experiment in the cathodic compartment to investigate feasibility of BA degradation ($C_{\text{initial}}=50 \ \mu$M) and simultaneous decomposition of PDS ($C_{\text{initial}}=20 \ \text{mM}$) in the Pd/Al$_2O_3$-enhanced electroreduction system (Pd/ER/PDS system), i. e. in addition to a constant current applied on the cathode (100 mA), the reaction suspension contained Pd/Al$_2$O$_3$ as particle electrode (0.5 g/L catalyst, pH of 3.0, and deoxygenated atmosphere). As shown in Fig. 2, 45.08% of BA in the Pd/ER system was rapidly degraded at a first-order kinetic constant of 0.0097 min$^{-1}$ (k_1, $R^2=0.9965$). For demonstrating the role of these elements, Pd/PDS system and ER/Pd system showed no performance on the BA degradation, ruling out the feasibility of PDS activation by Pd/Al$_2$O$_3$ and BA degradation by atomic H*. Aforementioned results revealed that a synergetic activation of PDS occurs between Pd catalyst and ER system within the time scale. Meanwhile, we monitored the variation of PDS concentration as a function of time. As we supposed above that
PDS may serve as an oxidant for organic degradation, simultaneous PDS decomposition was observed with a zero-order kinetic constant of 0.3002 mM·min⁻¹ \((k_0, R^2=0.9971) \).

3.2 ROS analysis

ESR analysis was employed directly identifying ROS for BA oxidation using DMPO as a spin-trapping reagent. As displayed in Fig. 3a, nine characteristic peaks of DMPO−H were observed in the Pd/ER system, indicative of atomic H* formation \[13\]. With the addition of PDS, both DMPO−SO₄⁻ and DMPO−OH adducts were clearly detected whereas signals of DMPO−H disappeared, proving the occurrence of SO₄²⁻ and its symbiotic radical (•OH) in our system \(\text{(reaction 5)} \) \[22\]. It has been well-documented that atomic H* can be generated in the 3D electrochemical system that contained Pd-involved particle electrode \[20, 30\]. Similar to Fe²⁺ (most presentative single-electron medium for activation of peroxide compounds), atomic H* as a single-electron reductant can asymmetrically cleavage the peroxide bond in the S₂O₈²⁻ ions and forms SO₄²⁻ for oxidizing BA \(\text{(reaction 6)} \). The quenching experiment using ethanol as a scavenger for both SO₄²⁻ and •OH further confirmed the dominant role of these radicals played in the BA degradation process \(\text{(Fig. 3b, Fig. S3a)} \) \[12\]. Comparing the inhibitory effects of ethanol and TBA on the BA degradation unraveled the importance of atomic H* on the PDS activation \(\text{(Fig. 3b, Fig. S4a)} \). As a quenching agent for •OH and atomic H*, TBA showed much lower reactivity with SO₄²⁻ \(\text{(Table S2)} \) \[31\]. Therefore, this should have suggested a slighter inhibition of organic abatement by TBA than that by ethanol in the SO₄²⁻-based oxidation process, as evidenced by other researchers \[32\]. However, our experiment batch for BA degradation with TBA addition demonstrated a lower \(k_i \)-value than that with the addition of ethanol in this system, which may arise from the simultaneous quenching on both oxidizing radical generation from atomic H* and BA oxidation by •OH. The abnormal results reflected the necessity of atomic H* for the PDS
activation.

\[\text{SO}_4^{2-} + \text{OH}^- \rightarrow \text{SO}_4^{2-} + \cdot \text{OH} \quad (5) \]

\[\equiv \text{Pd-H}^* + \text{S}_2\text{O}_8^{2-} \rightarrow \equiv \text{Pd} + \text{H}^+ + \text{SO}_4^{2-} + \text{SO}_4^{•-} \quad (6) \]

\[\equiv \text{Pd-H}^* + \text{SO}_4^{•-} \rightarrow \equiv \text{Pd} + \text{H}^+ + \text{SO}_4^{2-} \quad (7) \]

Based on the data in Fig. 2, the ratio of \(\Delta c(\text{PDS})/\Delta c(\text{BA}) \) was estimated to be around 700, which was close to the values in the literatures [7-9], indicating a low utilization efficiency of PDS for oxidizing organics. The low utilization efficiency might be due that excess atomic H* may quench the generated SO_4^{•-} (reaction 7) and inhibit organics' decontamination (similar to excess Fe^{2+} in Fenton process) [33], or that oxidation capacity of PDS could be consumed by directly abstracting two-electrons via a non-radical approach. The monitoring on PDS decay supplied some evidences for this. As displayed in Fig. 3b, although TBA efficiently inhibited atomic H*, the TBA addition of various concentrations showed almost no influence on the PDS degradation. The result ruled out the mechanism for PDS consumption via a two-step reduction of two atomic H* and implied another PDS decomposition approach.

3.3 DFT analysis

For better elucidating the PDS decomposition on the Pd/Al_2O_3, DFT analysis was conducted to connect the decomposition approaches of PDS with two electroreduction routes. In the analysis, a hyphen stood for the states where two units bonded with each other, whereas the plug sign presented the separate state. A Pd(111) facet was constructed as the representative role of Pd/Al_2O_3 catalyst, since the facet was revealed as the most exposed crystal faces by XRD analysis. In the proposed indirect reduction mechanism via atomic H*, the H* ions were firstly adsorbed on the Pd atom with a Free Gibbs energy change (\(\Delta G \)) of -1.324 eV, the negative value indicated that the physical adsorption step can proceed spontaneously (Fig. 4). Later, the adsorbed H* ion accepted
one electron from Pd catalyst, then was converted into atomic H* through the formation of Pd-H* bond (ΔG=0.232 eV). Subsequently, the S\textsubscript{2}O\textsubscript{8}2− ion in the bulk solution coupled with atomic H* on the Pd surface to form ≡Pd-H*-S\textsubscript{2}O\textsubscript{8}2− adduct (ΔG=−3.321 eV), followed by the formation of a transition state structure (TS1) (ΔG=0.916 eV). The drastic decrease of the Gibbs free energy for forming ≡Pd-H*-S\textsubscript{2}O\textsubscript{8}2− implied the strong bond between atomic H* and S\textsubscript{2}O\textsubscript{8}2−. As shown in Fig. S5, charge density difference analysis revealed that the electron density around S\textsubscript{2}O\textsubscript{8}2− molecule went up with the formation of ≡Pd-H*-S\textsubscript{2}O\textsubscript{8}2− adduct while the electron density around Pd-H* went down, suggesting an obvious injection of electron into PDS from ≡Pd-H*. Meanwhile, the bond length of the peroxide bridge in the S\textsubscript{2}O\textsubscript{8}2− ions is stretched from 1.347Å to 1.498Å upon S\textsubscript{2}O\textsubscript{8}2− adsorption on the atomic H*, indicating the subsequent cleavage of peroxide bond and formation of the ≡Pd-HSO\textsubscript{4}− and desired SO\textsubscript{4}•−. The step where TS1 was formed was confirmed as the determining step through the reaction channel, due to its highest positive ΔG among these elementary reactions (ΔG\textsubscript{ds}) [19]. Only when the system overcame the uphill energy barrier, the reaction proceeded fluently. More specifically, the determining step became the “neck of the funnel” for kinetics of PDS activation by atomic H*, determining the kinetic constant for the whole process according to the Arrhenius equation [34].

We then investigated the PDS reduction via direct electron transfer and supposed SO\textsubscript{4}•− as the product. In this case, the Pd atoms can be directly employed as the active sites for the PDS adsorption (ΔG = −5.977 eV). With the optimization of the molecule model, the peroxide bond was cleaved and then converted into two less oxidative ≡Pd-SO\textsubscript{4}− [35]. By single-electron transfer, PDS decomposition can be oriented towards SO\textsubscript{4}•−, presenting highly oxidative capacity when the SO\textsubscript{4}•− de-adsorbed from the Pd catalyst. However, the ΔG\textsubscript{ds} for this reaction channel (4.281 eV) was much higher than ΔG\textsubscript{ds} for PDS activation by atomic H*, denying the direct electron transfer
mechanism for SO₄²⁻ production and confirming that the atomic H* can orient the PDS reduction towards desired SO₄²⁻. In contrast, if the product was supposed to be SO₄²⁻, the ΔGds for the channel was just 0.539 eV, suggesting the reasonable reaction route for direct two-electron transfer mechanism.

PDS activation can be efficiently initiated by single-electron transfer, whereas it lost the total oxidation capacity via a two-electron abstraction approach. It can be concluded from the DFT results that the electrochemical system met the necessity for single-electron transfer using atomic H* as “stepping stone” (indirect reduction mechanism), by contrast, the reduction via direct electron transfer approach tended to consecutively donate two electrons to the adsorbed PDS on the Pd catalyst.

3.4 Electron donor analysis

We optimized the parameters for PDS degradation and SO₄²⁻ production in the Pd/ER system. Original data were displayed in Fig. S6–S8, and involved kinetics constants were summarized in Table 1. The PDS decay exhibited proportional degradation rates to applied current, which directly refers to the H₂ yield in the system (Batch No. 1–3). The positive correlation can be explained by that the H₂ played the role as a two-electron donor in the process through direct electron transfer mechanism. By contrast, the k_p-value for PDS decay was revealed to be kept at a certain value (about 0.3000 M·min⁻¹), even with varying PDS and Pd/Al₂O₃ dosage (Batch No. 1, 4–8). The independence of PDS decay on these two parameters indicates that the PDS reaction with H₂ occurs at an extremely high speed. Moreover, comparing these influence factors revealed that the PDS diffusion was not the rate-limiting step under these conditions. Interestingly, the BA degradation exhibited different trends towards these influence factors, which characterizes the SO₄²⁻ production in the process. Higher applied current (or applied potential) and higher Pd/Al₂O₃
dosage endowed the BA degradation process higher kinetic constant \((k_1)\), while the \(k_1\) remained unaffected by varying PDS concentration.

It was frequently mentioned in the literatures that atomic \(H^*\) can be generated from the adsorptive dissociation of electro-generated \(H_2\) (reaction 8) or \(H^+\) reduction by capturing the Pd-trapping electron (electro-induced atomic \(H^*\), reaction 9) in the 3D ER system [12, 30, 36, 37]. For clarifying the interaction of PDS with active hydrogen species, we purged \(H_2\) into reaction liquid containing BA as \(SO_4^{2-}\) probe, PDS as oxidant, and Pd/Al\(_2\)O\(_3\) as catalyst. By this way, we excluded the electro-induced atomic \(H^*\) and deepened the insight into the \(H_2\)-initiated PDS degradation process (Fig. 5). Interestingly, the PDS was rapidly decomposed without variation of BA concentration, indicative of a non-radical process between PDS and active \(H_2\). Unlike conventionally believed idea that \(H_2\) reduced pollutants via dissociative formation of atomic \(H^*\), adsorbed \(H_2\) molecule with assistance of Pd catalyst can directly act as a two-electron donor (\(H_2^*\), reaction 10) without necessity to form atomic \(H^*\) [18]. Additionally, we designed a three-cell electrochemical reactor where only electro-induced atomic \(H^*\) occurred in the middle cell. In this case, the BA degradation at sacrifice of trace PDS suggested successful production of \(SO_4^{2-}\) via efficient activation of PDS by electro-induced atomic \(H^*\).

\[
\begin{align*}
\equiv & Pd + H_2 \rightarrow 2 \equiv & Pd-H^* \quad (8) \\
\equiv & Pd + e^- + H^+ \rightarrow \equiv & Pd-H^* \quad (9) \\
\equiv & Pd + H_2 \rightarrow \equiv & Pd-H_2^* \quad (10)
\end{align*}
\]

Aforementioned statement clearly unraveled two electron donors for PDS attenuation in the 3D electroreduction system, one was \(H_2\) that inactivated the PDS via direct two-electron transfer, the other was electro-induced atomic \(H^*\) that allowed valid activation of PDS via single-electron transfer. The \(H_2\) yield was decided by the applied current, while the atomic \(H^*\) by electro-induction
theoretically depended on the electric field and concentration of particle electrode. Unfortunately, the electrical double layer near the electrode mostly attenuated the electric potential, while only finite electric potential difference was used for constructing the electric field, which was the driving force source for ions directional migration to form current. It was impossible to minimize the H$_2$ yield and increase the proportion of atomic H* by simply adjust the applied potential/current, further improving the PDS activation efficiency. By contrast, increasing the Pd/Al$_2$O$_3$ dosage to 1.0 g/L can readily induce higher SO$_4^{2-}$ level by providing more active sites for yielding more atomic H*, simultaneously increasing the organic degradation kinetics and PDS utilization efficiency.

3.5 Application analysis

The research unraveled the mechanism for PDS activation in an electroreduction system, emphasizing the importance of the indirect reduction mechanism in the process. The H*/PDS system was further evaluated by degrading several model contaminants (10 µM). As shown in Fig. 6a, all these organics can be abated with removal efficiencies of more than 80% in 60 min. Fitting these degradation process with first-order kinetics unrevealed that the resultant kinetic constants (Table S3) were at least 5 times than that in previous researches about electrochemically activating PDS (Table S4) [7-9]. And different from traditionally transitional-metal-involved AOPs where high valent cationic (HVC, such as Fe(IV), Cr(V), Mn(III), Cu(III)) and radicals (‘OH, SO$_4^{2-}$) all got involved in oxidizing organics [38-42], the H*/PDS system theoretically avoided the generation of HVC. This can be confirmed by analyzing the degradation intermediate using methyl phenyl sulfoxide (PMSO) as model contaminant, due that PMSO was converted into methyl phenyl sulfone (PMSO$_2$) by HVC, while phenylsulfinic acid (PhSO$_3$H) was produced from the radical oxidation (Fig. S9) [39]. The concentration of PMSO$_2$ was monitored in the PMSO...
degradation process (Fig. 6b), the results revealed that nearly no signal of PMSO$_2$ appeared through the H*/PDS oxidation process. Excluding the HVC as ROS in the H*/PDS allowed engineers to controllably steer the decontamination process via a scheduled degradation route, while organics degradation (such as various sulfoxide contaminants) was possibly oriented to unexpected products by HVC in the PDS oxidation system [39, 43]. Additionally, different from the M$^{n+}$/PDS system, the H*-PDS system had less dependence on the solution pH (Text S3), because the atomic H* can be evolved from H$^+$ at acidic condition, while it came from the H$_2$O at alkaline/neutral solution [16]. Meanwhile, the acidification in the PDS-based oxidation process highly alleviated the possible effect of solution pH on the system.

The endurability of Pd/Al$_2$O$_3$ was monitored by recycling the catalyst in the H*/PDS system for 6 times. In these cycles, the performance on the BA degradation was kept at a high level (>80%) (Fig. S10). Accordingly, nearly no dissolved Pd was detected by ICP-OES analysis, demonstrating no loss of active sites on the catalyst. Meanwhile, the XPS analysis (Fig. S11a and S11b, 335.8 eV for Pd0 3d$_{5/2}$ and 341.1 eV for Pd0 3d$_{3/2}$) revealed that the Pd on the used electrode was still kept at Pd0 species, even after several cycles. The XRD results of the used electrode was also unraveled that the crystal face didn’t change in the process (Fig. S11c). The excellent stability of Pd/Al$_2$O$_3$ catalyst, zero-addition property of transition metal catalyst, and pH-independent nature endowed the system with high potential for a ternary process of wastewater before the emission to the natural waters. However, taking the low efficiency of PDS activation into consideration, other materials with high performance on atomic H* generation and inhibition of direct electron transfer mechanism should be explored to reduce the PDS dosage and sulfate residue, and improve the application value of electro-activated PDS technology.

4. Conclusion
In this study, an electroreduction system for activating PDS and degrading organic contaminants was constructed using Pd/Al₂O₃ catalyst as particle electrode. The reactive oxygen species were determined to be SO₄•/•OH by ESR analysis, quenching experiments and PMSO degradation analysis. Furthermore, the single-electron reduction of PDS by electrogenerated atomic H* can readily form SO₄• (indirect reduction mechanism), through which the energy barrier (ΔGₐₖ) was determined to be only 0.92 eV by density functional theory analysis. By contrast, taking Pd-activated H₂ as electron donor, the PDS decomposition via direct electron transfer was unveiled difficult to yield SO₄²⁻ (ΔGₐₖ=4.28 eV), but smoothly steered towards inert SO₄²⁻ (ΔGₐₖ=0.54 eV).

By optimizing the operation parameters to maximize the production of electro-induced atomic H*, the cathodic cell can efficiently activate PDS and degrade various organic pollutants with varying the kinetic constants from 0.0256 min⁻¹ to 0.0645 min⁻¹, which were (5–15)-fold higher than that in previous studies. This research pointed out the importance of indirect reduction mechanism in the PDS activation process, which paved the way to rationally construct efficient materials for electrochemically activating PDS and subsequent decontamination of organic compounds by weakening the direct electron transfer and enhancing the atomic H*-mediated reduction mechanism.

Author information

Corresponding Author

Email: hclan@tsinghua.edu.cn. Tel: 86-10-62849160.

Notes

The authors declare no competing financial interest.
Supplementary Material

The Supplementary Material is available free of charge, including 4 Texts, 11 Figures, and 4 Tables.

Acknowledgements

The authors acknowledge financial support by National Natural Science Foundation of China (No. 51722811, 51978373).

References

[35] Y. Feng, P.H. Lee, D.L. Wu, K.M. Shih, Surface-bound sulfate radical-dominated degradation of 1,4-dioxane by alumina-supported palladium (Pd/Al\textsubscript{2}O\textsubscript{3}) catalyzed peroxymonosulfate, Water Res. 120 (2017) 12-21.

Fig. 1. SEM analyses of α-Al₂O₃ substrate (a) and Pd/Al₂O₃ catalyst (b); XPS analyses (c) and XRD analyses (d) of α-Al₂O₃ substrate and Pd/Al₂O₃ catalyst; (e) CVs of the Pd catalyst in N₂-saturated 50 mmol·L⁻¹ Na₂SO₄ solution with and without 2,4-DCP under different starting potentials; (f) CVs of the Pd catalyst in N₂-saturated 50 mM Na₂SO₄ solution with different CV starting potentials: from −0.65 to −1.10 V. (scanning rate, 50 mV s⁻¹; solution pH, 7.0).
Fig. 2. BA degradation and PDS consumption in ER/PDS, Pd/PDS, Pd/ER and Pd/ER/PDS process.

(BA, 50 µM; PDS, 20 mM; Pd/Al₂O₃, 0.5 g/L; Applied current, 0.10 A; initial solution pH, 3.0; deoxygenated atmosphere)
Fig. 3. (a) Identification of reactive species by ESR analysis; (b) k-value comparison of BA degradation (k_1) and PDS consumption (k_0) under different quenching conditions. (BA, 50 µM; PDS, 20 mM; Pd/Al$_2$O$_3$, 0.5 g/L; Applied current, 0.10 A; initial solution pH, 3.0; deoxygenated atmosphere)
Fig. 4. Gibbs free energy variation for PDS decomposition on Pd(111) facet via different reduction approaches: indirect reduction via atomic H* and direct electron transfer.
Fig. 5. The effect of different approaches for atomic H^* generation on the BA degradation and PDS decomposition. (BA, 50 µM; PDS, 20 mM; Pd/Al$_2$O$_3$, 0.5 g/L; applied current, 0.10 A; initial solution pH, 3.0; deoxygenated atmosphere)
Fig. 6. (a) Degradation performance on various organics in the H*/PDS system; (b) the HPLC spectra of samples in the H*/PDS system. ([Organic compounds], 10 µM; [Pd/Al₂O₃], 0.5 g/L; [PDS], 20 mM; current, 0.1 A; solution pH 3.0; λ_HPLC, 230 nm)
Table 1. Effect of the applied current, PDS concentration and Pd/Al₂O₃ dosage on the kinetics constants (k-value) of PDS consumption and BA degradation. (BA, 50 µM; initial solution pH, 3.0; deoxygenated atmosphere)

<table>
<thead>
<tr>
<th>No.</th>
<th>Current (A)</th>
<th>C(PDS) (mM)</th>
<th>C(Pd/Al₂O₃) (g/L)</th>
<th>k₁ (BA) (min⁻¹)</th>
<th>k₀ (PDS) (mM/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0.1</td>
<td>20</td>
<td>0.5</td>
<td>0.0097</td>
<td>0.2982</td>
</tr>
<tr>
<td>2.</td>
<td>0.05</td>
<td>20</td>
<td>0.5</td>
<td>0.0051</td>
<td>0.1595</td>
</tr>
<tr>
<td>3.</td>
<td>0.02</td>
<td>20</td>
<td>0.5</td>
<td>0</td>
<td>0.0657</td>
</tr>
<tr>
<td>4.</td>
<td>0.1</td>
<td>20</td>
<td>1.0</td>
<td>0.0169</td>
<td>0.3026</td>
</tr>
<tr>
<td>5.</td>
<td>0.1</td>
<td>20</td>
<td>0.2</td>
<td>0.0031</td>
<td>0.3163</td>
</tr>
<tr>
<td>6.</td>
<td>0.1</td>
<td>20</td>
<td>0.1</td>
<td>0.0019</td>
<td>0.3121</td>
</tr>
<tr>
<td>7.</td>
<td>0.1</td>
<td>50</td>
<td>0.5</td>
<td>0.0087</td>
<td>0.3002</td>
</tr>
<tr>
<td>8.</td>
<td>0.1</td>
<td>10</td>
<td>0.5</td>
<td>0.0074</td>
<td>0.2802</td>
</tr>
</tbody>
</table>

Highlights:

1. Degradation of organic pollutant can be highly improved in H*/PDS system.
2. PDS can electrochemically form SO₄•⁻ using electro-induced atomic H* as activator.
3. Via direct electron transfer mechanism, PDS is decomposed into inert SO₄²⁻ by H₂.

SHNAI, IUILIA. The technology of flipped classroom: assessments, resources and systematic design. 2020. Diss.

FILIMONOV, ROMAN. Computational fluid dynamics as a tool for process engineering. 2020. Diss.

VIRTANEN, TIINA. Real-time monitoring of membrane fouling caused by phenolic compounds. 2020. Diss.

HONKANEN, JARI. Control design issues in grid-connected single-phase converters, with the focus on power factor correction. 2020. Diss.

KEMPPINEN, JUHA. The development and implementation of the clinical decision support system for integrated mental and addiction care. 2020. Diss.

KORHONEN, SATU. The journeys of becoming an international entrepreneur: A narrative inquiry of the "I" in international entrepreneurship. 2020. Diss.

SIRKIÄ, JUKKA. Leveraging digitalization opportunities to improve the business model. 2020. Diss.

FARFAN OROZCO, FRANCISCO JAVIER. In-depth analysis of the global power infrastructure - Opportunities for sustainable evolution of the power sector. 2020. Diss.

KARPPANEN, JANNE. Assessing the applicability of low voltage direct current in electricity distribution - Key factors and design aspects. 2020. Diss.

931. **CALDERA, UPEKSHA.** The role of renewable energy based seawater reverse osmosis (SWRO) in meeting the global water challenges in the decades to come. 2020. Diss.

932. **KIVISTÖ, TIMO.** Processes and tools to promote community benefits in public procurement. 2020. Diss.

933. **NAQVI, BILAL.** Towards aligning security and usability during the system development lifecycle. 2020. Diss.

936. **PUOLAKKA, TIINA.** Managing operations in professional organisations – interplay between professionals and managers in court workflow control. 2020. Diss.

938. **METSOLA, JAAKKO.** Good for wealth or bad for health? Socioemotional wealth in the internationalisation process of family SMEs from a network perspective. 2020. Diss.

940. **JI, HAIBIAO.** Study of key techniques in the vacuum vessel assembly for the future fusion reactor. 2020. Diss.

943. **MANKONEN, ALEKSI.** Fluidized bed combustion and humidified gas turbines as thermal energy conversion processes of the future. 2020. Diss.

944. **KIANI OSHTORJANI, MEHRAN.** Real-time efficient computational approaches for hydraulic components and particulate energy systems. 2020. Diss.

945. **PEKKANEN, TIIA-LOTTA.** What constrains the sustainability of our day-to-day consumption? A multi-epistemological inquiry into culture and institutions. 2021. Diss.

