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Abstract—The industrial healthcare system has enabled the
possibility of realizing advanced real-time monitoring of pa-
tients and enriched the quality of medical services through
data sharing among intelligent wearable devices and sensors.
However, this connectivity brings the intrinsic vulnerabilities
related to security and privacy due to the need of continuous
communication and monitoring over public network (insecure
channel). Motivated from the aforementioned discussions, we
integrate Permissioned Blockchain and smart contract with Deep
Learning (DL) techniques to design a novel secure and efficient
data sharing framework named PBDL. Specifically, PBDL first
has a blockchain scheme to register, verify (using zero-knowledge
proof) and validate the communicating entities using smart
contract-based consensus mechanism. Second, the authenticated
data is used to propose a novel DL scheme that combines Stacked
Sparse Variational AutoEncoder (SSVAE) with Self-Attention-
based Bidirectional Long Short Term Memory (SA-BiLSTM). In
this scheme, SSVAE encodes or transforms the healthcare data
into new format and SA-BiLSTM identifies and improves attack
detection process. The security analysis and experimental results
using IoT-Botnet and ToN-IoT datasets confirms the superiority
of PBDL framework over existing state-of-the-art techniques.

Index Terms—Blockchain, Deep-Learning, Healthcare Sys-
tems, Industrial Internet of Things (IIoT), Intrusion Detection
System, Privacy-Preservation

I. INTRODUCTION

IN recent years, there has been remarkable growth and
development in the Internet of Things (IoT)-driven ap-

plications and services including transportation, smart grid
industry, networking, smart cities, and healthcare [1]. The
extension of IoT in industrial settings, referred as Industrial
Internet of Things (IIoT) has been introduced to substantially
improve the quality of conventional industries by removing
geographic barriers, and enabling autonomous manufacturing,
remote monitoring, and real-time data delivery to customers
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[2]. The current healthcare systems also takes the advantage
from IIoT where industrial sensors and actuators are used
as wearable devices to collect users physiological data, such
as blood pressure, electrocardiogram (ECG), temperature and
so on [3]. In such scenario the data generated from indus-
trial healthcare systems are often delivered or transmitted
to patients’ local gateway or edge devices to perform data
processing, aggregation, and then forwarded to cloud for long-
term storage, and further also used by healthcare providers for
real-time diagnosis and analysis [4]. However, in the present
healthcare ecosystem the devices, and sensors continuously
monitor, communicate and exchange information over insecure
public channel [5]. In addition, round-the-clock connectivity
of devices also makes the entire healthcare systems vulnerable
to various security issues including data manipulation, denial-
of-service, eavesdropping, impersonation, man-in-the-middle
and replay attacks [6]. This raises severe concerns in the
healthcare industry, as data manipulation can lead to incorrect
diagnoses, potentially putting patients under observation in
life-threatening scenarios [7].

Apart from this, privacy and integrity of data are another
major challenges in the present industrial healthcare systems.
We believe data privacy is mostly related to Active Data
Privacy Attacks (ADPA) and Passive Data Privacy Attacks
(PDPA) [8]. In ADPA attack, the attacker tries to alter/modify
or infer private data during data transfer between two com-
municating entities (such as data poisoning attacks) [9]. These
attacks are launched to modify real-time patients health data.
Moreover, it can negatively impact the performance of artificial
intelligence-based data analytic or attack detection process of
Intrusion Detection Systems (IDS) [10]. On the other hand,
PDPA is launched by the attacker to sniff (private) data i.e.,
to gain some fundamental statistical properties from training
dataset (such as data inference attacks) [11]. Moreover, privacy
breaches are also related to authentication i.e., a condition
where an unauthenticated medical sensors can easily be used
as a surveillance device to track and/or monitor critical infor-
mation of patients unknowingly [12]. As a result, an efficient
authentication scheme for controlling participating IoT devices
is also required, that can be used to minimize authentication
related privacy breaches [13].

A. Threat Model
The widely adopted “Dolev-Yao (DY) threat model” [14] is

used in designing the proposed PBDL framework. According
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to ”DY model” the communicating entities (i.e., IoT devices,
edge nodes and cloud vendors) are not fully trustworthy and
data sharing is done over insecure public channels. As a
result, the data exchanged between the communicating entities
can be intercepted, modified (i.e., data poisoning attack),
deleted or even malicious contents can be injected during
communication. Apart from ”DY model”, the current de facto
“Canetti and Krawczyk’s adversary model”, [15] known as
the ”CKadversary model” is also utilized in designing PBDL
framework. According to the ”CKadversary model,” an at-
tacker, ”A” can gain access to the secret credentials as well as
the ”session keys (session states)” for a certain session. Similar
to ”DY model”, in ”CKadversary model” edge and cloud
nodes are considered as semi-trusted entities and registration
authority is assumed as the trusted entity in the network [8].

B. Key Contribution

In this paper, we design and implement a permissioned
blockchain and deep-learning techniques for enabling secure
and efficient data sharing in industrial healthcare systems. The
following are the major contributions of this paper.
• Permissioned blockchain and smart contracts are com-

bined with deep learning techniques to design a novel
framework called PBDL. The underlying framework pro-
vides a secure and efficient mechanism to transmit health-
care data between device-edge-cloud.

• In PBDL, a blockchain scheme is designed that first
registers the participating entities, then verifies them
using Zero Knowledge Proof (ZKP) identification system
and finally validates using smart contract-based consensus
mechanism. The underlying approach enables immutable
data exchange and prevents data from poisoning attacks.
An InterPlanetary File System (IPFS)-based off-chain
storage is also integrated to achieve high throughput and
scalability during real-time data access.

• The authenticated data is used by the proposed DL
scheme. The latter combines SSVAE with self-attention
based-BiLSTM model to form a new DL architecture.
In this scheme SSVAE is employed to transform actual
industrial healthcare data into new format in an unsu-
pervised manner (i.e., to prevent inference attack). The
encoded data is further used by Self-Attention based-
BiLSTM (SA-BiLSTM) technique for intrusion detection.
We employed attention mechanism to concentrate more
on the information extracted from the forward and back-
ward hidden layers of BiLSTM.

The rest of the paper is organized as follows. Section II
provides related work. Section III presents the proposed frame-
work. The security analysis is performed in Section IV. The
experimental results and conclusion with future directions is
presented in Section V and Section VI, respectively.

II. RELATED WORK

In order to overcome the aforementioned challenges, various
solution related to blockchain have been proposed in literature
[16], [17]. For example, Tandon et al. [18] highlighted the
importance of security, and privacy in healthcare system, and

suggested the advantage and challenges of utilizing blockchain
as a solution in healthcare system. Farouk et al. [6] illustrated
the need of data privacy protection in IoT-enabled healthcare
system and emphasized on how blockchain technology are
used to achieve privacy goals. Turjman et al. [4] discussed
different ways to integrate blockchain with healthcare system
in order to address issues like security, privacy, access control
integrity, and ownership. Gupta et al. [19] reviewed the bene-
fits of smart contracts in terms of privacy protection and how
they can extend the capabilities of blockchain. Some research
[20], [21] are targeted at illustrating the benefits of blockchain-
based smart healthcare systems and recommended various
security designs but lack implementation specific details. Xu
et al. [2] proposed privacy-protection model for healthcare
data based on fine-grained access control and blockchain. Rah-
man et al. [22] presented a secure and provenance enhanced
framework for healthcare systems based on federated learning
and differential privacy. In this approach blockchain and smart
contracts performs the trust management, edge training, and
authenticates the federated participating entities.

Several studies have been proposed and used to preserve
privacy of data along with the application of intrusion detec-
tion in IoT and industrial healthcare systems [1], [9], [11],
[23], [24]. Various researchers used Machine Learning (ML)
and Deep Learning (DL)-based techniques to design IDS in
healthcare systems. For instance, Kumar et al. [7] designed an
IDS based on fog-cloud architecture and ensemble learning in
healthcare environment. Begli et al. [25] proposed a secure
IDS (SVM-IDS) in remote healthcare systems. Furthermore,
Swarna et al. [26] presented a Deep Neural Network (DNN)-
based IDS for healthcare system. In this model, features
were extracted using Grey-wolf optimization and Principal
Component Analysis. Newaz et al. [27] proposed HealthGuard
that applied different ML approaches to provide security and
privacy. He et al. [28] developed a DL-based IDS that secured
healthcare systems using the Stacked Autoencoder approach.
All these solutions have proved that DL-based IDS can achieve
better performance compared to ML-based IDS.

III. THE PROPOSED FRAMEWORK

A. Overall Systematic Architecture
The systematic architecture of proposed PBDL framework

is made up of three layers, namely, (i) Industrial healthcare
system layer, (ii) Edge-Blockchain layer and (iii) Cloud-
Blockchain layer, as shown in Fig 1.
(i) Industrial healthcare system layer: In this layer var-

ious IoT-based healthcare tracking systems and implantable
medical devices (e.g., temperature sensors, glucose monitor,
heart rate devices) are used to continuously collect the patients
important health information. As these devices have limited
resources and computational capacity they can only keep and
process a portion of the data on the blockchain, hence they
are denoted as lightweight node (LN).
(ii) Edge-Blockchain layer: The layer is made up of power-

ful nodes, such as data analysis servers, industrial computers,
edge-computing servers, and so on, and are referred as full
nodes (FN). The peer-to-peer network is built through geo-
distributed regions of edge devices located in primary and
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Fig. 1: System Model

urban health centres. Each patient (i.e., associated healthcare
device) is assigned with edge service node, that collects,
process, and raise alarms in emergency situations, and interacts
with cloud for long-term storage and backup.

(iii) Cloud-Blockchain layer: This layer includes a number
of cloud providers or vendors and data centres. These Data
Centres (DCs) are in charge of providing clients with services
(like computation, processing, and so on).

In a typical healthcare system, we mainly have LNs, FNs,
and DCs as communicating entities. In such scenario, LNs
have limited resources and can only communicate data to FNs
over edge-blockchain layer. The FNs assists LNs to search,
mine and add a transaction in the blockchain network. Finally,
DCs are in charge for storing data from FNs for as long-
term storage. Data is sent to the edge by the DCs as per the
requirement. The proposed blockchain technique is first used
to register all three participating nodes, then verified using
ZKP protocol and finally, the smart contract-based consensus
enhanced Proof of Work (ePoW) mechanism mentioned in
[23] is used to authenticate data transactions in the network.
Furthermore, the IPFS distributed storage layer is utilized to
keep complete transactions and the produced hash is being
kept on the blockchain network mentioned in [12]. Finally,
the DL technique is first used to convert the authenticated
data and then identify intrusions in the network. At various
network nodes, this technique is delivered as Software-as-
a-Service (SaaS) (i.e., edge servers and cloud data centres,
gateways, routers) mentioned in [7]. Furthermore, the frame-
work is installed on a large-scale distributed network model
or an individual host that successfully communicates with one
another over the edge-blockchain and cloud-blockchain layers,
and it coordinates with one another for the detection of cyber-
attacks.

B. Blockchain Scheme

In the proposed PBDL framework, a permissioned
blockchain is designed due to two principal reasons. First,
as we mentioned in Section I privacy-preservation in terms
of sharing of data within a set of known and authorized

parties is a fundamental consideration. Second, permissionless
blockchain are open and can increase attacks from external ad-
versaries without a notable function enhancement. Therefore,
in our opinion are unsuitable in industrial healthcare systems.
The proposed scheme has four different phases namely (i)
system registration, (ii) verification using Zero Knowledge
Proof (ZKP), (iii) validation and block creation phase,
and (iv) data generation and block updation phase. We have
discussed the steps and working of each phase below:
(i) Registration Phase: In this step, a trusted registration

authority registers the data centre (DCj) and full node (FNj)
safely in off-line mode. In addition, using the zero knowl-
edge proof (ZKP) protocol, light nodes, or sensor nodes
(LNj), are registered with (FNj). This protocol verifies the
identification of two people without providing any personal or
confidential information. In this strategy, one side assumes the
role of challenger, while the other assumes the role of prover.
It becomes a verified party if the prover’s response is valid.
After zero knowledge proof verification, (FNj) registers LNj

by launching a request Rj . The following are the steps in the
registration and verification process:

Step 1: In the first stage, (FNj) creates a temporary key
(Tkj) for LNj , which is made up of three major components
i.e., (i) sensor temporary identification of LNj (TIDj) (ii)
MAC of sensor (SMAC

j ), and (iii) geographical location of
sensor (GLOC

j ). It is worth mentioning here that in industrial
system one patient can have varying number of sensors with
its types. Thus, SMACm

j comprises of m MACs associated
with individual industrial sensors. Further, the timestamp (Tsj)
of Tkj is recorded for the request generation of registration
process. After this the Tkj gets forwarded to (FNj) using
secure channel.

Step 2: Once (FNj) receives Tkj , it extracts the included
parameters. Then SALT-P which generates pseudo random
number that gets appended to Tkj , to protect from pre-
computed hash attack. To create unique hash a SALT adds
random bits before hash computation, that prevents from
attack of pre-computed hash. Further, the SALT-P and Tkj
merged together for hash computation by SHA-2. The SHA-2
creates 256 bits of hash which is computationally inexpensive
comparing to other hash techniques. After this, Hash H[IDj]
is passed to LNj along with public key of FNj(PKj) using
secure channel.

(ii) Verification ZKP Phase: The ZKP approach is used
here for verification from the end of the light node (LNj).
LNj uses SALT-P and Tkj to discover the right H[IDj]
utilising SALT-P and Tkj combination after receiving in-
formation from (FNj). The light node uses new SALT-Q
to compute and maintains a difficulty level by appending the
value of (z). Large prime value (S) and matching generator (T)
are used to calculate the value z. In this case, (FNj) signifies
as a prover and (LNj) is verifier. The LNj has to provide a
prove of secret timestamp ((Tsj)), as y= TTsj mod S. But, value
of (Tsj) can not be revealed in the complete process. As, the
complete process is highly depends on the understanding of
(Tsj) without any disclose. The LNj finds random number
(u) that is further used in the computation of v= Tu mod
S. The d value is applied to create Hi by SALT-Q and
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TABLE I: Registration and verification of LNj

Light Node (LNj) Full Node (FNj)
INPUT: Rj

OUTPUT: IDj

Tkj → (TID
j

,SMACm
j

,GLOC
j

)
Store (Tsj) ← Timestamp of Tkj
(Tkj(Rj )=TID

j
,SMAC

j
,GLOC

j
)

−−−−−−−−−−−−−−−−−−−−−→
(SSL/TLS)

Extract: Tkj(Rj) → TID
j

,SMACm
j

,GLOC
j

H[IDj ]= H(Tkj || SALT-P)
distribute public key: PKj

(H[IDj ],PKj)←−−−−−−−−−−
(SSL/TLS)

Verification of ZKP
Compute: SALT-P
such that: H(Tkj || SALT-P)==H[IDj ]
SALT-P generates pseudo random number
Evaluate y= TTsj mod S
Evaluate u ← Tsj + Rj

Evaluate v=Tu mod S
Hash: Hj=H(v || SALT-Q)
ZKP = PKj(Hj)

ZKP−−−−−−→
(SSL/TLS)

Decrypt: SKj(ZKP)
Retrieve ZKP : v=Tu mod S
Find SALT-Q
so that H(v || SALT-Q)==ZKP
Ask g1=Tsj+R OR
g2=(Tsj+R +Tsj) mod(S-1)
such that: (Tsj+R)=(Tsj+R +Tsj)
Send g1/g2
g=H(g1/g2||SALT − Q)

g
←−−−−−−
(SSL/TLS)

Extract: g → g1/g2
if (g==g1) then Send A1 ← Tsj+R

Else Send A2 ← (Tsj+R +Tsj) mod(S-1)
Send A1 / A2

A=H(A1/A2 || SALT − Q)
A−−−−−−→

(SSL/TLS)
Extract A
Compute A by using SALT − Q)
to compute A1/A2

if (A==A1)
verify TTsj+R mod S==v
else Compute
TT(sj+R)Mod(S−1)Mod S== v.y mod S
successful verification
Assign LNj ← IDj

Add LNj to blockchain network
Disseminate the IDj to other peer

sent to (FNj). Further, created Hi gets encrypted by PKj to
evaluate ZKP and communicated to (FNj). After obtaining
ZKP, the (FNj) decrypts by secret key and extract the value
of Tu mod S such that the hash of Tu mod S and SALT-Q
is identical to ZKP. Now the (FNj) asks the question (g1)=
(Tsj+R) to create hash by SALT-Q for transmit to LNj .
Once the LNj receives the q1 then it computes answer A1

and appends the SALT-Q hash and transmit it to (FNj) for
verification. Finally, the answer is verified by the (FNj) if it
is found correct then it assigns permanent id (IDj) to LNj .
The same IDj is disseminated to the blockchain network for
further communication. The entire process of registration and
verification is summarized in TABLE I.

(iii) Validation and Block Creation Phase: The joining of
the blockchain process occurs if the LNj is registered by the
FNj . The validation and block formation processes are shown
in the TABLE II. These are the procedures involved in creating
and validating LNj and FNj blocks.

Step 1: In the initial step, LNj produces a key value pair
(PBkj , PRkj), with PBkj being the public key whereas
PRkj being the private key of the jth light node (LNj). In

TABLE II: The process of block creation and validation
Light Node (LNj) Full Node (FNj) Full Node (FNj) peer
INPUT: IDj

OUTPUT: Bj

Create key pair (PBkj ,PRkj ) of IDj

PB˙kj
−−−−−−→
(SSL/TLS)

Create sigj
sig˙j

←−−−−−−
(SSL/TLS)

Validate (sigj)
Send (PBkj ,GLOC

j
)

(Request to join PB˙kj,GˆLOC˙j, ID˙j)
−−−−−−−−−−−−−−−−−−−−−−−−−−→

(SSL/TLS)
Send GLOC

j
to FNj peer nodes

GˆLOC˙j
−−−−−−→
(SSL/TLS)

Check GLOC
j

with timestamp, latitude, and longitude
of LNj

Return status (True/False)
(True)←−−−−−−

(SSL/TLS)
Validates GLOC

j

if true, create block Bj

Append the Bj to blockchain
Distributes Bj to peer nodes FNj

(B˙j)
−−−−−−→
(SSL/TLS)

TABLE III: Process of data creation and updation of Block
Light Node (LNj) Full Node (FNj) Full Node (FNj) peer
INPUT: Dataj

OUTPUT: Update Bj

read (Dataj) which
includes SMAC

j
,

PBkj , IDj , and GLOC
j

of
LNj

Sign (sigj)=(Dataj , PRkj )
Create Tj= (Dataj , PBkj , sigj ,IDj)
Send Tj

(T˙j)
−−−−−−→
(SSL/TLS)

Validate IDj , PBkj

Check Dataj , sigj
Validate sigj
Add Tj to Bj

Disseminate to FNj peer
(B˙j)

−−−−−−→
(SSL/TLS)

Validate Bj

Synchronized Blockchain

addition, FNj starts the registration process.
Step 2: The FNj generates a signature (sigj) and sends it

to the appropriate LNj for validation.
Step 3: The LNj validates a signature. When the sigj

matches successfully, LNj sends a request to join the network
to FNj with the credentials PBkj , GLOCj , and IDj .

Step 4: Then, for validation of the location of LNj , FNj

transmits GLOCj to the peer nodes (FNj).
Step 5: The peer nodes (FNj) use smart contracts to

validate the position of LNj using the timestamp recoded by
FNj , as well as the latitude and longitude of LNj . After it
has been confirmed, the appropriate node receives a True/False
acknowledgment.

Step 6:A latest block (Bj) is constructed and attached to the
network of blockchain including credential PBkj and IDj for
True status.
(iv) Data creation and updation of Block : This phase

includes data generation by LNj . The TABLE III shows
summarized view of data generation and updation of block.
The created data is identified as transactions (Tj). The entire
process of data creation and alteration in a block is discussed
below.

Step 1: At first step, data (Dataj) is generated by SMAC
j

and signed (sigj) with PRkj of LNj , after successful signa-
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ture of Dataj a new transaction (Tj) gets generated including
the credential sigj , PBkj , IDj of LNj . Further, Tj gets
forwarded to FNj for its validation and updation in Bj .

Step 2: Further, PBkj gets associated with IDj and valid
record gets verified with credential Dataj and sigj . Once the
required credential matches successfully then Tj gets added
into a block Bj and shared over the blockchain network.
At last, Bj gets updated and appended into the blockchain
network.

C. Deep-Learning Scheme

Once the communicating entities are registered and vali-
dated in the network. The proposed DL scheme is enforced
on the authenticated data to detect intrusions. The proposed
scheme first performs feature mapping and data normalization
using steps mentioned in [7], [23]. Then we design a Stacked
Sparse Variational AutoEncoder (SSVAE) technique to reshape
or encode data (used to prevent inference attacks) and the
encoded data is finally used by the proposed Self-Attention-
based Bidirectional Long Short Term Memory (SA-BiLSTM)
for intrusion detection.

The VAE technique, works on the principal of graphical
model with directed probabilistic approach, which is imple-
mented at this stage and is achieved by approaching the
neural network posterior. Let’s say that we have the actual
F = {aj}Bj=1 dataset that contains the a and N record
attributes. The latent variable µ′s is used by the VAE and
then characterizes the F distribution. We presume that the
conditional distribution of the latent variable µ denotes the
Gaussian distribution (GD) [8]. In addition, the theory shows
that if the hidden variable µ matches GD, neural network
produces data from a distribution. This means that a new
dataset F̂ = {âj}Bj=1 is generated by µ by optimizing the
generated Ω parameter, which is pretty much the same as the
original dataset F = {aj}Bj=1. This indicates that qΩ(a) is a
marginal probability that we want to maximize.

qΩ(a) =

∫
qΩ(µ)qΩ(a|µ)fµ,with µ ∼ N(0, 1) (1)

Since the exact true posterior density of qΩ(a|µ) is in-
tractable, the VAE utilizes the sΩ(a|µ) recognition model to
approximate the undetermined true posterior of qΩ(a|µ) to
address the issue. Kullback-Leibler (KL) divergence is used
in the case of VAE to calculate the relationship between the
sΩ(a|µ) recognition model and the actual mΩ(a|µ) posterior
distribution.

log qΩ

(
a(j)

)
= D

KL

(
sΩ(µ|a(j)) || qΩ(µ|a(j))

)
+H

(
Ω, δ;a(j)

) (2)

The KL divergence must be greater than 0, log qΩ(a
(j)) ≥

H(Ω, δ;a(j)). The variational lower bound formula,
G(Ω, δ;a(j)) on the marginal probability of data point
′j′ is defined as:

L
(
Ω, δ;a(j)

)
= −D

KL

(
sΩ(µ|a(j)) || qΩ(µ)

)
+Ycδ(µ|a(j))

[
log qΩ

(
a(j)|µ

)] (3)

In order to optimize log qΩ (a), the marginal variational lower
bound reflect the entire VAE optimization target. The first
term on the right side of Eq.3 is equal to the regularization
term and the second term is a negative reconstruction error.
The qΩ(a

(j)|µ) distribution is considered to be Gaussian,
therefore it is necessary to view sΩ(µ|a(j)) as probabilistic
rather than binary performance. Thus, sΩ(µ|a(j)) is a prob-
abilistic encoder that contains the δ variance parameter and
the qΩ(a

(j)|µ) probabilistic decoder with the Ω generation
parameter. We have extended the traditional VAE by adding
L1 regularization i.e., the sparse constraint in the loss function
of original VAE as mentioned below.

L
(
Ω, δ;a(j)

)
= L

(
Ω, δ;a(j)

)
+ η1R1

= L
(
Ω, δ;a(j)

)
+ η1

∑
ij

∥ai − aj∥2 Wij

(4)

where R1 represents the Laplacian regularization term. η1 is
the adjusting parameter of L1 regularization and W is the
weighting value. The Stacked SVAE (SSVAE) is a neural
network made out of numerous layers of simple SVAE, each
with its outputs connected to the inputs of the next layer.

Further to verify the effectiveness of SSVAE based privacy-
preservation approach, a utility system based on Self-
Attention-based BiLSTM (SA-BiLSTM) is designed to re-
tain data privacy. The traditional BiLSTM initially originated
from Recurrent Neural network (RNN) architecture. By using
two distinct hidden layers, bidirectional RNNs handle input
sequences in both of the input direction i.e., forward and
backward. Typical RNNs are limited by the fact of using
only the previous context of input datasets. BiLSTMs offers
by allowing the data flow in both directions (forward and
backward) [9]. The BiLSTM network calculates the output of
forward pass (from past to future) p⃗(e), output of the backward
pass (from future to past)

←
p (e) and the h(e) output layer itself

by reiterating top to the bottom (forwards) from e = 1 to ef ,
bottom to the top (backwards) from e = ef to 1 and then final
values are modified using the below equation:

p⃗(e) = P (Tg⃗Re + Vg⃗pg⃗(e− 1) + ag⃗) (5)
←
p (e) = P (T←

g
Re + V←

g
p←
g
(e− 1) + a←

g
) (6)

h(m) = Pg⃗sg⃗(e) +O←
g
s←
g
(e) + ah (7)

h(e) = σh(
→
p ,
←
p ) (8)

The σh function concatenates hidden layer neurons output
sequences and can execute any of these four operations:
concatenate, add, average, and multiply. The input to self-
attention layer is the sequence of hidden state vectors obtained
from BiLSTM i.e., h(e) [11].

M =

N∑
e=1

ϱeHe (9)

where ϱt (weighted vector) is evaluated as;

ϱe =
exp

(
UT

e UW

)∑
e exp (U

T
e UW)

(10)
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(a) Analysis of Registration Time
Analysis for IoV Nodes

(b) Actual data upload time analysis
over the IPFS storage layer

(c) Block Mining Time Analysis for
different Transactions (Tx)

(d) Block creation time analysis for
different Transactions (Tx)

(e) Analysis of Block access time
with different Transactions (Tx)

(f) Analysis of Contract Deploy-
ment time with different Transac-
tions (Tx)

(g) Non-Repudiation Time Analysis
with Signing of different Transac-
tion (Tx)

(h) Anaysis of Off-chain layer stor-
age (Size in KB) for different
Transactions

Fig. 2: Results obtained from blockchain scheme

Ut = tanh (WWHe +BW) (11)

The softmax function at last layer is used to accurately classify
threat and normal group. Let M = (M1,M2, . . . ,MT) is
the output from attention block and a one-hot encoded C-
dimensional vector y denotes the network outcome from the
output layer (using a softmax function φ). The probability p
that a single input M corresponds to a certain threat type (y)
can be determined as follows:

p
(
Ŷc = Yc | M

)
= φ (M)Yc =

expMc∑C

d=1 exp
Md

(C = 1, 2, . . . , c) (12)

The C-way cross-entropy loss function gives a probability
across C class labels, which is used to compute the loss for
each prediction for all timestamps as follows [11]:

LOSS =
1

N

N∑
i=1

C∑
c=1

Yic log
(
Ŷic

)
(13)

where N represents the batch size, C represents the number
of classes, Y and Ŷ, represent the actual and predicted class
labels, respectively.

IV. SECURITY ANALYSIS

The security analysis of the proposed PBDL framework is
discussed below.

Impersonation Attack: An adversary can act as a legitimate
LNj by sending the (i) sensor temporary identification (TID

j )
(ii) MAC of sensor (SMAC

j ), and (iii) geographical location
of sensor (GLOC

j ) to FNj for creating a temporary id Tkj .
Further,timestamp (Tsj) is created for request generation of
IDj . However, FNj verifies the existing timestamp records.
If matches then, it goes for further ZKP verification and
permanent IDj creation. If timestamp (Tsj) does not matches
then, connection gets terminated. Thus, proposed model pre-
vents from impersonation attack.

Insider Attack: An adversary can be privileged insider and
can get all the information about the LNj such as (i) sensor
temporary identification (TID

j ) (ii) MAC of sensor (SMAC
j ),

(iii) geographical location of sensor (GLOC
j , and (iv) times-

tamp (Tsj). However, permanent IDj can not be accessed due
to random number generation and salting process. Thus, the
model is secure with insider attack.

MITM and Replay attack: An adversary can obtain the mes-
sage from channel like TID

j , SMAC
j , and GLOC

j to perform
MITM and Replay attack. However with receiving information
LNj computes all possible value to find correct H[IDj] using
SALT-P and Tkj combination. The SALT-Q is evaluated
to ensures level of difficulty by appending z value. This value
is computed using large prime value (S) and corresponding
generator (T) which is difficult to predict. Thus, adversary
fails to perform MITM and replay attack.

V. EXPERIMENTAL RESULTS AND EVALUATION

All experiments were conducted on Tyrone PC with configu-
ration mentioned in [29]. We have developed the permissioned
blockchain scheme using Ethereum and Solidity 6.0 with IPFS
version 0.4.19. The DL scheme was developed using Tensor-
Flow library Keras. On the ToN-IoT [30] and IoT-Botnet [31]
datasets, the performance of the proposed PBDL for intrusion
detection was evaluated. Both datasets were divided into train-
ing and testing sets, with 70% and 30% respectively. Finally,
as mentioned in [29], feature mapping and normalization were
conducted on both datasets. The performance of IDS was
measured using four metrics: accuracy, precision, detection
rate and F1-score mentioned in [7]. The PBDL model was
also compared to baseline (i.e., Naive Bayes (NB), Decision
Tree (DT), and Random Forest (RF)), standard BiLSTM, and
several recently developed state-of-the-art approaches.

A. Results analysis of blockchain scheme

To provide security and privacy in the proposed architecture,
each IoT node is first registered in the blockchain scheme.
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TABLE IV: Comparison of class wise prediction (%) results with traditional BiLSTM using ToN-IoT dataset.
Method Parameters Backdoor DDoS DoS Injection MITM Normal Password Ransomware Scanning XSS

BiLSTM
PR 99.73 96.27 99.41 98.38 90.75 99.99 99.96 99.53 99.31 98.18
DR 99.89 99.90 99.47 99.03 99.64 100.00 98.38 98.73 98.70 97.93
F1 99.81 97.11 98.99 98.25 91.51 99.99 99.57 99.12 99.32 98.52

FAR 0.000120 0.001707 0.000264 0.000733 0.000202 0.000062 0.000015 0.000203 0.000309 0.000831

PBDL
PR 99.93 99.03 99.85 99.42 93.42 100.00 99.98 100.00 99.93 99.53
DR 99.99 97.95 99.58 99.12 99.28 99.99 99.18 99.71 99.33 99.86
F1 99.91 99.46 99.66 99.23 96.43 100.00 99.68 99.86 99.96 99.73

FAR 0.000030 0.000446 0.000068 0.000256 0.000144 0.0 0.000007 0.0 0.000030 0.000211

TABLE V: Comparison of class wise prediction (%) results
with traditional BiLSTM using IoT-Botnet dataset

Method Parameters DoS DDoS Reconnaissance Normal Theft

BiLSTM
PR 99.62 95.87 96.47 47.25 0.21
DR 77.81 94.97 99.97 99.79 10.41
F1 87.38 95.42 98.19 64.13 0.42

FAR 0.14 1.99 1.45 5.89 1.05

PBDL
PR 99.99 99.99 100.00 99.72 87.17
DR 99.99 100.00 99.96 99.98 70.83
F1 99.99 99.99 99.98 99.85 78.16

FAR 0.000013 0.000006 0.0 0.000144 0.000022
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Fig. 3: The Accuracy vs loss for SSVAE technique using ToN-
IoT dataset
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Fig. 4: The Accuracy vs loss for SSVAE technique using IoT-
Botnet dataset

The registration time for numerous IoT nodes is shown in
2a. The data upload time of different sensors over the IPFS
secured storage layer is shown in Fig. 2b, along with the
transaction numbers. As the number of transactions grows, so
does the upload time. The block mining time, block creation
time, and block access time are depicted in 2c, 2d, and
2e. It can be seen that as the number of IoT sensor nodes
grows, the time increases, as predicted. Contract deployment
time and transaction signing time are depicted in 2f and
2g, respectively. the signature with transactions assures non-
repudiation. The actual storage size in KB increases as the
number of transactions increases, as seen in Fig. 2h.

B. Results analysis of deep-learning scheme

The SSVAE approach is used to alter the blockchain
scheme’s authorized data. The suggested technique is trained
and validated using the ToN-IoT and IoT-Botnet datasets. This
method is used to avoid inference attacks from being exposed

by the learnt model. In both datasets, hyper parameters are
initialized using input layer; the encoder uses the 2 layer,
which includes hidden nodes 50 and 25. As an output layer,
Relu activation and sigmoid are utilized. Decoder is made
up of a 2 hidden layer with hidden nodes 25, 50. The
final model is configured with optimizer= Nadam, loss=
categorical crossentropy, batch size= 50 and epochs=20.
The results shown in Fig. 3 and Fig. 4 illustrates the efficiency
of SSVAE technique in terms of acc vs loss. The results
reports high performance with both datasets i.e., 94.34% acc
and 8.89% loss, and 88.38% acc and 8.92% loss, respectively.
The SSVAE technique is employed to reshape or convert initial
data into new format that can prevent inference attacks. This
converted data is then utilized to create a high-performing,
efficient IDS.

The suggested approach’s efficacy as a utility system is also
assessed using the SA-BiLSTM model. Both datasets are used
to fed input layer with 5 hidden layers, and hidden nodes= 200,
100, 50, 25, 15 accordingly, a Relu activation function, and
a Softmax activation function are used to configure the hy-
perparameters. loss= categorical crossentropy, optimizer=
Nadam, epochs=20, and batch size= 50 are the settings for
the final model. The results are based on the existing BiLSTM
framework as well as the new PBDL framework. The PBDL
with ToN-IoT dataset obtained 0.0052 loss and 99.89 acc,
whereas the BiLSTM model achieves 99.58 acc and 0.0167
loss. PBDL with IoT-Botnet dataset model obtained 0.0685
loss and 99.98 acc, whereas BiLSTM model obtained 5.5116
loss and 90.86 acc.

We also compare and contrast the performance of the
proposed PBDL framework with traditional BiLSTM in terms
of class-wise prediction outcomes, using PR, DR, F1, and FAR
measures. It is reported in Table IV that the PBDL using the
ToN-IoT dataset has obtained high numerical values i.e., an
average between 90% -100% for DR, PR, and F1 score, and
has achieved 0% FAR. In Table V, the model has obtained
high values between 99% -100% PR, DR, and F1 metrics for
various types of attacks such as Reconnaissance, DoS, Normal
group, and DDoS based on IoT-Botnet dataset. However, with
theft attack model achieved 70% -87% values. It is seen
that the proposed model has increased the performance of
traditional BiLSTM.

C. Comparisons with baseline approaches

The comparison of PBDL with baseline approach such
as RF, DT, and NB and BiLSTM in terms of DR under
multiclass classifications (shown in Table VI and Table VII).
The proposed framework can detect different attacks up to
97%− 100% in ToN-IoT datasets. Similarly, with IoT-Botnet
dataset, PBDL has outperformed all other competing models
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TABLE VI: Comparison of DR (%) with various baseline techniques on ToN-IoT dataset
Techniques Backdoor DDoS DoS Injection MITM Normal Password Ransomware Scanning XSS

RF 99.98 90.40 91.97 93.53 0.00 100.00 97.81 99.40 95.74 85.47
DT 100.00 100.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00 100.00
NB 99.22 26.80 91.70 92.96 95.11 100.00 75.32 79.98 96.91 19.02

BiLSTM 99.89 99.90 99.47 99.03 99.64 100.00 98.38 98.73 98.70 97.93
PBDL 99.99 97.95 99.58 99.12 99.28 99.99 99.18 99.71 99.33 99.86

TABLE VII: Comparison of DR (%) with various baseline
techniques on IoT-Botnet dataset

Techniques DoS DDoS Reconnaissance Normal Theft
RF 99.96 100.00 100.00 14.95 0.00
DT 100.00 100.00 80.06 0.00 100.00
NB 97.76 99.97 81.44 74.76 92.85

BiLSTM 77.81 94.97 99.97 99.79 10.41
PBDL 99.99 100.00 99.96 99.98 70.83

TABLE VIII: Comparison of accuracy with state-of-the-art
approaches

Authors Year Approach Dataset Accuracy
Nguyen et al. [31] 2020 CNN IoT-Botnet 98.70%
Alsaedi et al. [30] 2020 CART ToN-IoT 77.00%
Dunn et al. [33] 2021 XGBoost ToN-IoT 98.00%
Booij et al. [32] 2021 RF ToN-IoT 98.07%

Poposed Work 2021 PBDL ToN-IoT 99.89%
IoT-Botnet 99.98%

Terms & Abbreviations: CNN: Convolutional Neural Network, CART: Clas-
sification and Regression Trees, RF: Random Forest.

and achieved DR between 70% − 100%. We conclude that
the proposed framework has a higher DR for the majority of
attacks and the normal group seen in both datasets.

D. Comparisons with state-of-the-art techniques

Table VIII compares the performance of different existing
state-of-the-art approaches in terms of accuracy. The work
published in [31], [30], [32], [33] evaluated their work using
IoT-Botnet and ToN-IoT datasets. It can be observed that the
suggested PBDL framework outperforms existing state-of-the-
art approaches by over 1%. The reason for this performance is
the combination of permissioned blockchain and SSVAE with
SA-BiLSTM. Moreover, the attention mechanism used in the
proposed approach has greater impact as it focused only on
certain information received from BiLSTM hidden layers that
were only required to detect intrusions.

VI. CONCLUSION

A novel framework named PBDL was proposed for indus-
trial healthcare systems to increase ability of data protection
as well as to ensure secure data sharing. The permissioned
blockchain and smart contract enabled anonymous authenti-
cation by implementing a ZKP identification system and pre-
vented data from poisoning attacks. The blockchain solution
ensured data with verifiability, non-tamper and transparent
features. The off-chain IPFS storage system made PBDL
highly scalable with high throughput to access healthcare
data. A new DL architecture by combining SSVAE with SA-
BiLSTM was also proposed to enforce data privacy (i.e.,
prevent inference attack) and enhance attack detection process
of traditional BiLSTM technique. Experiment results on two
publicly available datasets proves enhanced performance in
terms of detection rate and accuracy over traditional BiLSTM,
some baseline and state-of-the-art approach. Future works

include implementation of the PBDL framework with software
defined networks to evaluate the scalibility and performance.
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