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This thesis explores the possibility of using a scheduling optimisation algorithm, the
Iterative Economic Planning and Optimised Selections (I-EPOS), to solve load bal-
ancing problems in the Finnish residential sector. The algorithm uses principles of
self-adaptive collective learning to solve the decentralised combinatorial optimisation
problems, which offers flexibility and adaptability to the energy management system
structure in addressing future electricity needs, as well as ensuring security for all par-
ticipants in the system.

The thesis contains the necessary base knowledge of the combinatorial optimisation
problem and the working principles of the algorithm itself, as well as a short perfor-
mance simulation of the algorithm and recommendations on deploying it in a hypo-
thetical Finnish household.
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Symbols and Abbreviations

Abbreviations

CSV Comma-Separated Value

DSO Distribution System Operator

HEMS Home Energy Management System

IoT Internet of Things

PV Photovoltaic

TSO Transmission System Operator

Greek Alphabet

λ Local Parameter, used to adjust the balance between local cost

optimisation and global cost optimisation

Latin Alphabet

o* Optimal combination of plans

A All agents in the system

a Individual agent

DC Consumer Discomfort Rank

DE Environment Discomfort Rank

fG Global Cost Optimisation

fL Local Cost Optimisation

N Node in the system

n Number of node

NA Aggregator Node



NC Child node

NL Leaf node

NR Root node

o Combination of plans

P A set of plans

p A single plan

PS A selected plan

RA Aggregated Response

RG Global Response

SP Overall Preference Score of a Plan

U Unfairness
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1 Introduction

1.1 Background

In today’s modern world, a significant part of our lives has become increasingly de-

pendent on electronic devices. Our houses nowadays are filled with electrical home

appliances that need a constant supply of electricity, not to mention other energy-

intensive consumer devices that we frequently use every day. These consumer devices

and appliances have become an inseparable part of our daily lives, and the amount

of their utilisation in the ever-growing world keeps increasing every single day. As a

result, the stability of the power grid that supplies our daily electricity needs becomes

one of the most important aspects of the functioning of modern human society, which

is why ensuring a sustainable operation of the power grid becomes highly important in

sustaining modern human lives. The challenges that come with it lie on, among other

things, implementing new ideas and technologies to solve load balancing problems.

Electronic devices and appliances are not all created the same. Each of them has its

own operational preferences and behaviour, different type of consumers might want to

use it in different ways, and this naturally creates a difference in the load demand of

different consumers. This demand has to be actively monitored and controlled every

day, which traditionally has been the job of the Transmission System Operator (TSO)

as well as the Distribution System Operator (DSO) on both the national load level (high

voltage level) and the residential load level (low voltage level), respectively. However,

the shift from this energy management systems method seems to be happening recently

with research and efforts have been spent to investigate how to reform the current

energy management system to address future energy needs. This movement happens

mainly in response to the increase (and more potential future increase) of renewable

energy production due to countries aiming to accomplish their 2050 climate targets

(European Council, 2019) and the increase in popularity and implementation of the

smart grid.
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1.2 Research Problem

In recent years, electricity service providers have been exploring the possibility of a

consumer-side load balancing system. The increase in renewable energy production is

stated as one of the key reasons that have launched this idea to the surface due to the

fact that a majority of renewable energy production is taking place close to the point

of consumption. (Barancourt, 2019) At the same time, the rise in popularity of the

smart grid emphasises the importance of designing a load-demand balancing system

that is more favourable to the consumer. (Mammoli et al., 2019) Coupled with the

advancement in edge computing and the Internet of Things (IoT), it should be even

more possible now than ever to design and construct an energy management system

that is more consumer-friendly and efficient, especially in the residential sector.

The residential sector, in particular, is an interesting study case for this kind of tech-

nology. The sector has a big impact on the overall power grid consumption level, which

globally represents around 30% to 40% of total energy usage in 2011 (Alberini & Filip-

pini, 2011) and keeps ever increasing. This number outlines a massive potential for a

collective demand-side load balancing not only in a single household within individual

appliances but also within a residential community with an aim to better sustain the

power grid in general. These are big incentives that, to the author’s knowledge, have

not been fully explored from a practical standpoint.

There has been increasing attention to this issue from the academic community and

industry players alike, with research has been conducted to try to find ways of im-

plementing an efficient and accurate demand-side energy management system. Earlier

works including solutions from Pournaras et al. (2018), Al-Hinai and Haes Alhelou

(2021), and Bremer and Lehnhoff (2019), as well as an in-depth investigation by Fan-

itabasi and Pournaras (2020), are only some of the researches that have happened in

this relatively young research field. In addition, Barancourt (2019) from the French

multinational IT service and consulting firm Atos has argued the need to deploy such

technology as ”vital” for the future energy system.
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1.3 Current State and Future Direction of Energy

Management Systems

Load balancing is one of the most important parts of power grid operation. Tradition-

ally, this process of constant monitoring and balancing of power grid load and supply

is performed by the TSOs at the national level and the DSOs at the residential level.

(Barancourt, 2019) However, as more new electronic devices and appliances are being

produced every single day, as well as the constant growth of the world population that

increases the demand and utilisation rate of these devices and appliances, the rigidity

of this traditional system often fails to stand the test. One of the most challenging

problems these two trends bring for electricity providers is the sudden increase in de-

mand during peak hours, sometimes even more than normal. (Muralitharan et al.,

2016) This problem, among other things, contributes to even more frequent blackouts

in high-density population centres. Urgent action is needed to re-evaluate and reform

the current traditional power grid design in order to adapt to the future needs of society.

In recent years, a new paradigm of load balancing systems has emerged due to

the limitation of the traditional energy management system design mentioned above.

Electricity providers are considering shifting (or at least distributing) load balancing

responsibility from TSOs and DSOs down to the consumer level. The development of

the smart metering system that can provide detailed information on electricity con-

sumption with an accuracy of up to a minute has enabled the increase in visibility of

individual electricity consumption to customers, which made tracking personal elec-

tricity usage easier than ever. The advancement of edge computing and data science,

as well as smart metering mentioned above, can provide an impetus toward developing

a more advanced and flexible demand-side load balancing system.

Currently, at least two approaches are being actively explored in consumer-level load

balancing systems. The first approach is an active, response-based load balancing sys-

tem. The program that implements this approach can adjust a consumer’s electricity

consumption by constantly decreasing or increasing electricity loads or allocation in re-

sponse to shortage or excess electricity supply and demand from the electricity provider
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in a real-time precision. A few examples that used this approach can be investigated

further from the works of Shakeri et al. (2017) and Nilsson et al. (2018).

The second approach is based on the optimisation of event scheduling. This ap-

proach assumes that each consumer within an electricity network must have one and

only one electricity usage plan that is preferred the most out of several possible plans

that the consumer could use. This approach aims to find the most optimum plan

for each consumer that satisfies the initial goal set by the system designer, whether

it be achieving the most effective electricity consumption of the system, satisfying all

participants in the system or everything in between. Thus, in theory, depending on

agreements between consumers and the service provider, we can use this approach to”

force” good habits of using energy more efficiently on the consumers without them ever

feeling forced to do it. One of the algorithms that become the centre of this paper,

the Iterative Economic Planning and Optimised Selection (I-EPOS), aims to solve the

load balancing problem using this approach.

1.4 Research Goals

This thesis aims to figure out how the future demand-side energy management system

can be managed and structured using the I-EPOS algorithm as the main decision-

making algorithm on a household level. The principles of decentralisation and collective

learning that the I-EPOS algorithm brings are powerful tools to promote sustainability,

fairness and security in a critical public sector such as the residential energy manage-

ment system, also known as Home Energy Management System (HEMS). The study

conducted in this thesis could open up new knowledge to the reader on the implemen-

tation of one particular algorithm, the I-EPOS algorithm, in tackling the load demand

balancing problem in a residential area.

To achieve this goal, the author conducted a literature review to give necessary

base knowledge before conducting the simulation, as well as supporting the author’s

arguments in the Discussion section. It is structured around the following questions:

1. What is the current state of the energy management system, and what are the
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different methods currently available for demand-side energy management?

2. How does the I-EPOS algorithm decide the most optimum solution to a combi-

natorial optimisation problem given a set of pre-defined selection options, con-

straints and agent preferences?

3. How can the I-EPOS algorithm be implemented in a hypothetical Finnish house

and, even more importantly, in a local Finnish residential grid?

1.5 Scope and Limitations

The research in this thesis focuses particularly on the structure of HEMS using a specific

multi-agent system planning optimisation algorithm (i.e. the I-EPOS algorithm) in a

Finnish household. The research does not take into account any self-energy production

that is produced by the consumer (e.g. energy produced by solar PV panel array

installed on the house roof) nor energy storage of any form. The thesis strictly looks at

how the I-EPOS algorithm works and how it can be utilised to handle load balancing

tasks of several major appliances in a Finnish household.

1.6 Structure of Thesis

The thesis is presented following the IMRaD (Introduction, Methods, Results and Dis-

cussion) structure with a few modifications. The Introduction section briefly explained

the research background, research problem, a brief explanation of the current state and

future direction of the energy management system, research goals as well as the scope

and limitations of the research. It is followed by a literature review of the Combina-

torial Optimisation Problem and the I-EPOS Algorithm. The Methodology section

explains how the simulation was carried out. The Results section contains the re-

sults of the load scheduling simulation of five major home appliances in a hypothetical

Finnish house using the I-EPOS algorithm. A short analysis of the simulation result is

presented, followed by discussions on how the residential energy management system

would be structured around the structure principle of the I-EPOS algorithm. Finally,

the conclusion section concludes the thesis as well as gives a few suggestions for future

research in this field.
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2 Literature Review

2.1 Combinatorial Optimisation Problem

In the field of mathematical optimisation, time-dependent scheduling optimisation

problems can be classified as combinatorial optimisation problems. The combinatorial

optimisation problem is a mathematical problem that aims to find the most optimal

solution from a finite set of objects. (Schrijver, 2003) The solution could be of an exact

value, a set of values or approximation values.

The desired accuracy of solutions produced by a combinatorial optimisation algo-

rithm highly affects the speed and resources needed: the more precise an algorithm

needs to achieve, the more computational resources it needs and the slower the result

will come out. This is because, among other factors, most combinatorial optimisation

problems are categorised as NP -hard problems in terms of complexity. (Turky et al.,

2020) Gawiejnowicz (2020) define NP -hard problems as:

If for a problem P and any P ′ ∈ NP we have P ∝ P , the problem P is

said to be NP -hard. (Gawiejnowicz, 2020, p. 36)

In other words, a problem P is NP -Hard if any solution to P is verifiable in polynomial

time. Later, he remarks:

The problems which are NP -complete (NP -hard) with respect to the binary

encoding scheme become polynomial with respect to the unary encoding

scheme. Therefore, such problems are also called NP -complete (NP -hard)

in the ordinary sense, ordinary NP -complete (NP -hard) or binary NP -

complete (NP -hard) problems. (Gawiejnowicz, 2020, p. 36)

As the complexity increases, the computational resources needed to find a solution (or

a set of solutions) to an NP -hard problem increase on polynomial factor in relation to

time. Due to this limitation, as the number of search spaces increases, most combinato-

rial optimisation algorithms resort to either aim to yield an approximate solution (or a

set of solutions) as close to the exact answer as possible or by heuristically searching for

the best solutions within a number of possible solutions. (Gawiejnowicz, 2020, p. 24-

28) One famous example of the combinatorial optimisation problem is the Traveling
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Salesman Problem. The essence of this problem is to find the least route a salesman

needs to travel to visit all listed cities. The load balancing problem can also be cat-

egorised as a combinatorial optimisation problem, as the most optimum load balance

can be found through performing a defined mathematical optimisation technique that

iteratively goes over a search space in the form of load demand data.

In the field of multi-agent system planning optimisation a few solutions that utilise

concepts of combinatorial optimisation are COHDA (Hinrichs et al., 2014), EPOS

(Pournaras et al., 2017) and I-EPOS. (Pournaras et al., 2018)

2.2 The I-EPOS Algorithm

The I-EPOS algorithm is the next evolution of the EPOS algorithm. Both algorithms

are quite similar in the way that they intend to solve time-scheduling optimisation

problems within a large multi-agent network system. One major difference that the

I-EPOS algorithm introduces to improve upon the EPOS algorithm is the iterative

problem-solving process. The I-EPOS algorithm allows each agent in the system to

generate their own set of plans P and then put weights (preferences) on each plan in

the set (p ∈ P ), in which there must be one and only one plan that has the highest

preference among other plans in the set.

The highest plan in the set is defined as the selected plan PS. The selected plan of

one agent is then aggregated along with other agents’ selected plans to form an aggre-

gated response RA. A vector that contains all selected plans within a system is then

compiled to form a global response RG. (Pournaras et al., 2018, p. 5) I-EPOS can then

optimise the global cost fG by optimising for g. However, since I-EPOS allows each

agent to select their own plans out of a set of agent-generated plans, I-EPOS is also

able to optimise the local cost fL by optimising for the difference between each agent’s

plan preference and selected plans. This means that the algorithm can be used in vari-

ous applications, including the load balancing problem, with a high degree of flexibility.

An optimal combination of plans o∗ can be defined as:
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o∗ = arg min fG(
∑
a,o

o), (1)

where a is an individual agent and o is a combination of plans. (Pournaras et al., 2018,

p. 5)

(a) Selected Plan (b) Aggregated

Response

(c) Global Response

Figure 1: Illustration of the plan aggregation process in I-EPOS (Adapted from

Pournaras et al. (2018, p. 3)

In I-EPOS, the priority on global cost optimisation and local cost optimisation is

controlled by a local parameter λ, with λ = 0 sets the algorithm to optimise solely on

minimising global cost and λ = 1 sets the algorithm to optimise solely on minimising

the local cost. Global cost can be defined as the cost that is inflicted on the whole sys-

tem in order to execute a certain set of plans for every agent in the system, while local

cost is the amount of discomfort an individual agent is experiencing while executing

the plan selected by the system compared to their most preferred plan. The solution

with the most optimum global cost is not guaranteed to have the most optimum local

cost and vice versa. This is where another metric is defined to explain this difference:

Unfairness.

Global cost can be defined as the cost that is inflicted to the whole system in or-

der to execute a certain set of plans of every agents in the system, while local cost is

the amount of discomfort an individual agent is experiencing while executing the plan

selected by the system compared to their most preferred plan. The solution with the

most optimum global cost is not guaranteed to have the most optimum local cost, and
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vice versa. This is where another metric is born to explain this difference: Unfairness.

Unfairness U is defined as “the deviation of discomfort values across all agents”,

(Fanitabasi & Pournaras, 2020, p. 119885) which measures whether all agents in the

system get the same benefit of getting their most preferred plan. (Pournaras et al.,

2018, p. 6) Unfairness U is calculated by normalising the standard deviation σ of local

costs for all plan selections with the mean µ of selected plan’s local costs:

U =
σ{fL(sa) | a ∈ A}
µ{fL(sa) | a ∈ A}

, (2)

where sa is the selected plans and a ∈ A is an individual agent. (Pournaras et al.,

2018, p. 6)

In their paper, the algorithm designer structured the multi-agent system in a tree

topology structure. The tree topology “...serves the purpose of computing the aggre-

gated and global response in an efficient and accurate way...” (Pournaras et al., 2018,

p. 6). Unlike the graph topology, the tree topology is structured under a set of rules,

for example under a node n there must be a certain amount of child node NC . Due to

the acyclical nature of the tree topology, the I-EPOS algorithm divided the decision-

making process into bottom-up and top-down phases.

In the bottom-up phase, each leaf node NL (i.e. the bottom-most node in the topol-

ogy) create a selection of plans and select only one plan they prefer the most. create a

selection of plans and selects only one plan they prefer the most. It is assumed at this

point that each leaf node does not know what kind of plan the other leaf nodes created

or chose or what the aggregated response looks like when their own plan is combined

with other nodes’ plans. The preliminary set of plans is then sent to their parent

node, which acts as the aggregator node NA between two leaf nodes. NA computes

and selects a preliminary selection of plans only for the nodes inside the branch they

manage (since they do not have the knowledge of other branches), which is then passed

to their parent node. This process is repeated for each node in an upward direction

until it reaches the root node NR. NR then computes an effective selection of plans by
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optimising the global cost or the local cost as, by this point, the root node will have

complete knowledge on all plan selections in the system.

In the top-down phase, agents “...approve/reject the preliminary selections...” and

update the aggregated and global responses for all agents. (Pournaras et al., 2018,

p. 10) In other words, the computation result of fG by NR, as well as RA from all

agents, are informed back to every agent. In this phase, an agent can change their plan

selection “...if and only if all its ancestors approve the preliminary plan selection.”

(Pournaras et al., 2018, p. 10) This bottom-up and top-down cycle will keep happening

iteratively, enabling every agent to optimise their plan selection with the system’s goal.

This is how the I-EPOS decentralised collective learning works while at the same time

trying to achieve fast decision-making.

The decentralised nature of I-EPOS spreads the responsibility of decision-making to

not only one agent/node but also to all agents/nodes in the system. The algorithm also

only requires each agent to pass around their plan selection to other agents, allowing

each node to make an accurate and informed decision without having to transmit

all unnecessary data to other nodes above them. It allows each agent to keep their

sensitive personal information, theoretically preventing the leak of personal and other

sensitive data that criminals can exploit. It can increase the system’s security, which

is beneficial for all participants in the system.
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3 Methodology

This thesis contains a literature review that explores the state of the energy manage-

ment system, as well as gives a short explanation of the combinatorial optimisation

problem and the working principle of the I-EPOS algorithm. It was conducted to pro-

vide the base knowledge needed to understand the key arguments proposed later in the

Discussion section. This research also used a computer simulation to test the formation

of energy usage scheduling with the I-EPOS algorithm on a synthetic dataset of a few

major home appliances.

3.1 Simulation Method

The software used for the simulation is the I-EPOS Exemplar Software Suite. The

software is a Java executable file licensed under the GNU General Public License v2

(GNU GPL v2). There is a short explanation of how to use the software in three

different usage scenarios1, as well as a more detailed guide to customising more aspects

of the software.2 At the time of writing, the software is still in the development phase,

and the author could not find a Graphical User Interface (GUI) despite its appearance

on the official website. The software can be downloaded right from its GitHub page3

in a zip file that must be extracted. Inside, a .jar executable file is executed to start

the simulation. It must be noted that since the software is implemented in Java, the

Java Runtime Environment (JRE) must be installed in the local machine to run the

software. After the simulation is fully performed, it will create a new folder named

“output” that contains the results in files formatted as Comma-Separated Value (CSV)

and images illustrating the selected plans of each agent after each simulation runs.

To get the intended result from the simulation, a dataset directory containing plans

for each agent must be provided. The configuration file that comes with the software

suite is customised according to the software manual guide. A plan must consist of a

preference score and a vector of comma-separated values, all written in a single line

1https://epos-net.org/software/exemplar/
2https://github.com/epournaras/EPOS-Manual/blob/master/manual.pdf
3https://github.com/epournaras/EPOS/releases
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separated by a colon (:). For the purpose of this thesis, a preference score ranging from

the lowest 1 to the highest 10 was given for each plan, while a 24-column vector on each

plan indicates the power used in Watt (W) by an appliance in active use and 0 when

it is inactive. Each column in the vector represents one hour in 24 hours period. Due

to the complexity of modelling electricity load demand in a real-world scenario, usage

plans for each appliance were made manually based on both the author’s experience

and previous similar research.

There are five home appliances included in the simulation: television (TV), washing

machine, dishwasher, coffee maker, and electric oven. In order to model the usage of

each appliance, the author used several supporting resources. The author founds the

works from Fanitabasi and Pournaras (2020) and Shakeri et al. (2017) to be very useful

in giving a guideline on how to model the usage of various common home appliances.

Another important resource that was used is the work of Richardson et al. (2010), who

created a load demand model for the United Kingdom (UK) residential sector in the

form of an Excel macro file that is free to use for everyone. Table 1 below contains a

detailed list of appliances used in the simulation, while Table 2 illustrates the usage

schedule of an appliance (TV) in the simulation.
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Table 1: List of home appliances included in the simulation with its essential specifica-

tions

Appliance Model Power Rating (W) Prime Time1

TV LG 43” UP75 LED

TV

85 21:00-24:00

Washing Machine Electrolux

EW7F6669Q6

570/cycle2 17:00-18:00

Coffee Machine Moccamaster

HB951-AO

1,500 07:00-09:00

Dishwasher Siemens SD6P1S 2,400 08:00-09:00

Oven Samsung

NV68N3372BM

1,700 18:00-19:00

1 The average time period when an appliance is in high usage among the majority of

Finnish households.

2 One washing cycle includes the prewash, washing, rinsing and spinning stage.

Table 2: Illustration of the generated usage plans of television, taken from the dataset

used in the simulation

Usage Plan of Television

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Plan 1

Plan 2

Plan 3

Plan 4

Plan 5

Plan 6

Plan 7

Plan 8

Plan 9

Plan 10
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3.2 Plans Preference Scoring Method

The overall score of a plan SP consists of two components: Consumer discomfort ranks

DC , and environment discomfort ranks DE. DC is the discomfort value that a plan

causes to the consumer (e.g. radically different plan from previous usage behaviour

would cause a certain level of discomfort for the consumer), while DE is the discomfort

value that a plan causes towards the environment (e.g. using an appliance more than

the normal usage or during the peak hours would inflict certain damage to the envi-

ronment due to the need of increasing electricity generation). Every plan was ranked

on a scale of 1 to 10 for each factor, with 1 being the most preferable (inflicts the least

discomfort) and 10 being the least preferable (inflicts the most discomfort). To get SP ,

55% of the DE and 45% of DC numbers values were taken and then summed together.

SP = (DC ∗ 55%) + (DE ∗ 45%) (3)

Each appliance’s current consumer usage behaviour is used as a baseline for DC , i.e.

it automatically gets the number 1 as its DC . The ranking for consumer discomfort

was decided before the ranking for environment discomfort. After that, a percentage

from both ranks was taken as SP , as explained in Equation 3. Table 3 shows an

example of how the TV plan scoring process is done. By following this method, the

research intends to consider both consumer and environmental aspects of the energy

management system.
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Table 3: Scoring Table for Television usage plans

Plan Environment

Discomfort Rank

Consumer

Discomfort Rank

Overall Preference

Score

1 9 1 5.40

2 8 2 5.30

3 10 3 6.85

4 7 5 6.10

5 6 4 5.10

6 3 7 4.80

7 2 6 3.80

8 4 8 5.80

9 1 10 5.05

10 5 9 6.80
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4 Results

The simulation showed that the I-EPOS algorithm could quickly minimise variance

in the system’s global costs. In every simulation condition, the algorithm can find

optimum solutions within only 10-15 iterations on average. In fact, as the value of

λ increases, the algorithm finds optimum solutions even faster. Figure 2 shows the

changes in global cost value as the algorithm iterates over a set of available plans.

Figure 2: Global cost changes over iterations when λ = 0, λ = 0.25, and λ = 0.5 from

left to right.

It was also found that as the λ value increases after 0.5, the global cost graph becomes

flat over all iterations as the algorithm neglects optimisation in global cost variance.

This is due to a priority shift towards optimisation of local cost variance on higher λ

values.

Another metric that was investigated is the unfairness rating. As we are not op-

timising for unfairness in all simulation runs, the first graph in Figure 3 on the left

when λ = 0 shows that the unfairness level is highly varied over iterations as well

as in different simulation runs; thus, no definite conclusion can be drawn. The next

two simulation conditions (λ = 0.25 and λ = 0.5, both on the middle and the right,

respectively) showed a more stable progression of unfairness over iterations. However,
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there is still some difference between one simulation run with another.

Figure 3: Changes in unfairness over iterations when λ = 0, λ = 0.25, and λ = 0.5

from left to right.
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5 Discussion

From the simulation result, we can see how different priority levels in global cost op-

timisation affect the convergence speed of the algorithm as well as the most optimum

global cost value at the end of the iteration. We can relate global cost in HEMS with

the amount of energy used by the household, while the λ value can be related to the

level of the system’s preference towards optimising energy consumption. Besides global

cost, the unfairness rating is also an important metric to watch in order to build an

energy management system that is beneficial for the consumer. While global cost can

be considered a measure of consumer electricity consumption, unfairness can be con-

sidered a measure of consumer dissatisfaction with the selected plans. Both metrics

are equally important in the grand scheme of the energy management system, so there

should be a balance between both. The findings from the simulation in the previous

section can be utilised to adjust both settings in real-world use cases.

From the system architecture point of view, how the demand-side load balancing

system under I-EPOS can be structured? As proposed by Pournaras et al. (2018) in

their paper, the multi-agent system can be built in a tree topology, specifically the

binary tree topology. The system could consist of multiple home appliances as indi-

vidual agents and a smart home controller acting as both aggregator and the main

root node. Each node/appliance can locally form its own usage schedule by combin-

ing past usage data and automatic plan generation using various techniques such as

classification (Fröhling, 2017), Markov decision processes (Pandey et al., 2016), and

other techniques. The rank/scoring of each plan could then be decided locally based on

estimated consumer discomfort, electricity prices, estimated emission, etc. This data

would then be passed to the decision-maker system, which is entirely run by the I-EPOS

algorithm, to find an optimum set of plans for the whole appliances in the household.

The smart home device, which acts as the root node, can be used to calculate an es-

timated amount of power needed based on the optimum plan selections solution and

only ask for that amount of electricity from the DSO. This approach looks restrictive

at first, but the iterative and collective learning nature of I-EPOS adds flexibility to

the system to unexpected events, as the whole system is required to keep learning and
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adapting to changes.

Controller

agg

Appliance Appliance

agg

Appliance Appliance

Figure 4: Proposed home energy management system model under I-EPOS. Both ag-

gregator (agg) nodes and the root node is abstracted in the main processing

unit. (in this case the smart home controller)

With the advancement of edge computing and smart home devices, consumers in

the residential community do not need to worry about installing too many electronic

devices or allocating big spaces in their homes just for storing all the processing units

to do the required calculations. Theoretically, the whole abstraction can be done inside

a smart home controller device, i.e. usage data gathering, plan generation, and optimi-

sation processes can be done all inside one or two of these devices.4 Thus in a perfect

world, smart home device manufacturers only need to push a major firmware update

to incorporate I-EPOS to their existing devices without doing a major physical rein-

stallation of their customer’s smart home system. This would benefit both consumers

and smart home monitoring device manufacturers.

4The configuration could be in the form of a smart home controller combined with an external home
monitoring device or a single board computer (SBC) such as Raspberry Pi
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6 Conclusion

In the author’s opinion, the potential for developing a demand-side energy manage-

ment system in the residential sector is something that the industry cannot close their

eyes off. We are now at the moment of transition from a traditional grid system to a

future system in smart grid. In a decentralised electricity market like Finland and the

Nordics, there is a big opportunity for anyone who wants to take a chance designing

such an energy management system in the residential sector. The proposed framework

offered in this thesis shows that it is, in theory, possible to design such a thing.

Future research can expand this thesis by including real data, for example, on Finnish

household load profile, electricity price, and real-world consumer behaviours, into the

simulation. Furthermore, future research can implement a concrete energy management

system prototype based on the proposed framework in this thesis and test the viability

of building such project on a scale. The simulation results presented in this thesis must

also be further validated to determine whether the selected plan list is indeed the most

optimum and correct answer given the defined constraints.
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