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Tämä pro gradu -tutkielma tarkastelee volatiliteetin ennustamista kuudessa eri osakeindek-
sissä. Indeksit ovat DAX30 (Saksa), FTSE100 (Iso-Britannia), Shanghai SE Composite 
(Kiina), NIKKEI225 (Japani), S&P500 (Yhdysvallat) ja Dow Jones Industrial Average (Yh-
dysvallat). Erilaisten GARCH-mallien ja liukuvan keskiarvon päivittäiset ja kuukausitason 
volatiliteettiennusteet aikajaksolla 1.1.2016-31.12.2020 vertaillaan ja laitetaan järjestykseen 
MSE ja MAE tappiofunktioiden mukaisesti. Yang-Zhang volatiliteettiestimaattoria käyte-
tään kuvaamaan todellista volatiliteettia. Mallien volatiliteettiennusteiden tilastollista mer-
kitsevyyttä mitataan Diebold-Mariano testillä. Tutkielman keskeinen tulos on se, että mikään 
yksittäinen malli ei ole toistuvasti paras tutkimuksessa mukana olevissa indekseissä. Päivä-
tason ennusteissa vähintään yksi EGARCH-mallin ennuste on kuitenkin jokaisessa indek-
sissä kolmen parhaan mallin joukossa. Ainoana poikkeuksena tähän on DAX30, jossa GJR-
GARCH ennustemallit ovat molempien tappiofunktioiden mukaan parhaimmat. Liukuva 
keskiarvo sekä eksponentiaalinen painotettu liukuva keskiarvo ovat parhaimmat päivätason 
volatiliteetin ennustemallit Shanghai SE Composite indeksissä. Asymmetriset EGARCH -ja 
GJR-GARCH-mallit suoriutuvat volatiliteettiennusteissa lähes toistuvasti tavallista 
GARCH-mallia paremmin. Kuukausitason volatiliteettiennusteissa DAX30 ja NIKKEI225 
ovat ainoat indeksit, joissa EGARCH ei ole kolmen parhaan ennustemallin joukossa. Hui-
pukkuutta paremmin mallintavat Studentin t-jakauman volatiliteettiennusteet eivät toistu-
vasti suoriudu paremmin verrattuna normaalijakauman volatiliteettiennusteisiin. Diebold-
Mariano testin tulokset osoittavat, että suurimmassa osassa tapauksista kolmen parhaan mal-
lin volatiliteettiennusteissa ei ole tilastollisesti merkitsevää eroa ja testi vahvistaa viiden päi-
vän liukuvan keskiarvon hyvänä volatiliteetin ennustemallina, sillä mallin volatiliteettien-
nusteet ovat lähes kaikissa tapauksissa tilastollisesti yhtä tarkkoja parhaan mallin ennusteen 
kanssa.  
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This master’s thesis examines volatility forecasting in six global equity indices, namely 
DAX30 (Germany), FTSE100 (UK), Shanghai SE Composite (China), NIKKEI225 (Japan), 
S&P500 (US) and Dow Jones Industrial Average (US). The forecasting window is from 
1.1.2016 to 31.12.2020. The daily and monthly volatility forecasts of different GARCH-type 
and moving average models are compared and ranked based on mean squared error and mean 
absolute error loss functions. The Yang-Zhang volatility estimator is used as a proxy for the 
actual volatility. The Diebold-Mariano test is used to test statistical difference of the models’ 
forecasts. The overall finding is that there’s no single model outperforming across indices, 
although at least one of the EGARCH model was constantly ranked in top three forecasting 
model under both loss functions. The exception to this was the mean squared error ranking 
for German DAX30 where the GJR-GARCH and the five-day moving average ranked best 
daily volatility forecasting models. The moving average and exponentially weighted moving 
average are best daily volatility forecasting models in Chinese Shanghai SE Composite in-
dex. With few exceptions the EGARCH and GJR-GARCH models constantly outperformed 
the standard GARCH across the indices. With monthly forecasts, the DAX30 and NIK-
KEI225 were the only indices where the EGARCH was not ranked in top three forecasting 
model under both loss functions. Although the data show signs of excess kurtosis and fat 
tails, models with t-distributions are not constantly outperforming their normal distributed 
counterparts. The Diebold-Mariano test results indicate that in most cases, there’s no statis-
tical difference between the first ranked model forecast and following second or third ranked 
model forecasts. The Diebold-Mariano test confirm the good performance of the five-day 
moving average, as the model’s forecasts are almost always statistically equally accurate 
with the best ranked models’ forecasts.   
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1 Introduction 

Volatility and its forecasts are perhaps one of the most important subjects in finance and 

widely used e.g., in risk management, derivative pricing and hedging and portfolio manage-

ment. Different volatility-based trading strategies are also actively used by investors. Vola-

tility, often described as variance or standard deviation, is a statistical measure of variation 

and counts the dispersion of the data around its mean. In finance, one of the most common 

representations of the volatility is the standard deviation which denotes the security’s return 

variation from the mean over a certain period of time. Volatility is also a measure of risk and 

a security with a higher standard deviation is often noted riskier because of the bigger fluc-

tuation between the returns and the mean. This thesis concentrates on volatility forecasting 

in global stock markets and next, before the research questions, few conceptual issues re-

garding volatility are presented.  

Volatility and financial time series have some well-known stylized facts such as fat tails, 

volatility clustering, leverage effects and long memory in volatility. Fat tails means deviation 

from normal distribution and exhibition of excess kurtosis. Volatility clustering can be un-

derstood as periods of high volatility following further high volatility and similar pattern 

with lower volatility following low volatility. Leverage effects means that there is negative 

correlation in prices with volatility. Leverage effects can be understood also as an asymmetry 

in volatility, which means that there is higher volatility after negative shock compared to 

similar size positive shock. Long memory indicates that volatility is persistent and corre-

lated. (Knight and Satchell 2007, 3) 

Having these certain characteristics volatility has raised a lot of attention among research 

and many different volatility models have been developed. Early econometric models how-

ever were not created to capture all the characteristics of volatility. In fact, volatility was 

considered as a constant and time-independent parameter in the early models although vol-

atility clustering was first mentioned by Mandelbrot (1963) already in 1960s. These early 

models assumed that returns are independent of each other and that the return-generating 

process is linear with parameters that are independent of past realizations (MSCI 2021). It 

was the ARCH (Autoregressive Conditional Heteroscedasticity) by Engle (1982) that mod-

elled non-linearity and replaced the assumption of constant volatility with conditional 
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volatility. The ARCH was not only intended to estimate but also forecast volatility and its 

groundbreaking concept of conditional heteroscedasticity refers to the future volatility being 

conditional (time-dependent) on current and past volatility. Modelling volatility clustering 

the ARCH however has some limitations, such as that the model usually requires several 

parameters to capture the dynamics of volatility and therefore quite soon extended to 

GARCH (Generalized Autoregressive Conditional Heteroscedasticity) by Bollerslev (1986). 

The GARCH is widely recognized and used in financial applications. Perhaps the model’s 

biggest contribution is however volatility forecasting. Several other forecasting models have 

also been developed, such as the EGARCH (Exponential Generalized Autoregressive Con-

ditional Heteroscedasticity) by Nelson (1991) and the GJR-GARCH by Glosten, Jaganna-

than and Runkle (1993). One of the key differences between these GARCH-type models is 

that both EGARCH and GJR-GARCH were created to cover also the leverage effects 

whereas the standard GARCH does not account the asymmetric volatility (Brooks 2019, 

405-406).  

Beside of the sophisticated GARCH-type models, some more simpler models are also still 

widely used to forecast volatility. Perhaps one of the well-known are the moving average 

(MA) and exponentially weighted moving average (EWMA). Moving average volatility 

forecasting simply means that the model uses some fixed length of arithmetic average of 

standard deviations which are rolling forward keeping the averaging length same. Exponen-

tially weighted moving average does the same, with the exception that there’s a weighting 

factor, usually denoted with lambda. The value of lambda is between one and zero and higher 

values indicate more weight to most recent observations compared to the simple moving 

average with equal weights. Compared to asymmetric GARCH models, the moving average 

models are not accounting the leverage effects. (Brooks 2019, 390-391)  

Previous research related to volatility forecasting is broad and wide and there’s almost count-

less papers considering different forecasting models including sophisticated GARCH-type 

and more simpler moving average models. The results from previous studies are however 

mixed and there’s no solid and consistent view of superior volatility forecasting model. 

Some of the research gives support to GARCH (see e.g., Franses and Van Dijk 1996; Bera 

and Higgins 1997; Andersen and Bollerslev 1998; Hansen and Lunde 2005; Sharma and 

Sharma 2015), while others show the outperformance of asymmetric models (for EGARCH 

see e.g., Pagan and Schwert 1990; Cumby, Figlewski and Hasbrouck 1993; Awartani and 
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Corradi 2005 and for GJR-GARCH see e.g., Engle and Ng 1993; Brailsford and Faff 1996). 

For research supporting moving average and EWMA see e.g., Kuen and Tung (1992); Walsh 

and Tsou (1998); McMillan, Speight, and Gwilym (2000). Poon and Granger (2003) review 

93 research papers of volatility forecasting. They conclude that historical volatility methods, 

such as random walk, moving average, exponential weights and autoregressive models per-

form equally well compared to other sophisticated models including the GARCH-type mod-

els. The evaluation of the forecasting performance is usually done with some loss functions, 

such as mean absolute error, mean squared error, root mean squared error and mean absolute 

percentage error. There’s however no unanimous conclusion that which of the loss functions 

one should always use and as Poon and Granger (2003) outline, with different data, loss 

functions or volatility proxies, the forecasting results might be different. Poon and Granger 

(2003) also mention that it is rarely discussed if one forecasting method is significantly better 

than another and although some particular method of forecasting volatility can be suggested 

being the best, there’s no discussion about the cost-benefit from using it. Based on these 

aspects and results from previous research, interesting topic regarding the comparison of the 

GARCH-type and moving average models is that which of the models should we choose 

when considering forecasting volatility. 

The main purpose of this thesis is to compare the volatility forecasts of different GARCH-

type and moving average models in six global equity indices that are DAX30 (Germany), 

FTSE100 (UK), Shanghai SE Composite (China), NIKKEI225 (Japan), S&P500 (US) and 

Dow Jones Industrial Average (US). Daily and monthly volatility forecasts are produced for 

the out-of-sample period from 1.1.2016 to 31.12.2020. The volatility forecasts of different 

models are evaluated and ranked based on mean squared error and mean absolute error loss 

functions. Although fat tails and excess kurtosis are a well-known phenomenon in financial 

data, it is not however clear whether volatility forecasting models with normal distributions 

or distributions allowing more kurtoses are better. Some of the previous research has showed 

the superiority of more leptokurtic distributions (see e.g., Wilhelmsson 2006; Liu & Morley 

2009). Therefore, to compare the volatility forecasting results the normally distributed and 

t-distributed models are included. The Diebold-Mariano test is used to test statistical differ-

ence of the models’ forecasts. To study these issues in global stock markets, four research 

questions are formed: 
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Which of the volatility forecasting models perform best according to loss functions MSE and 

MAE for the one-day and one-month forecasting horizon?  

How does the GARCH, EGARCH and GJR-GARCH volatility forecasting models perform 

compared to moving average and EWMA models for the one-day ahead forecasting horizon? 

Is there a difference between normally distributed and t-distributed models based on vola-

tility forecasting results? 

Is there a statistical difference in volatility forecasting accuracy between models?  

The purpose of the results from this thesis is two-sided. First, the findings from this thesis 

brings new information and contributes to the existing volatility forecasting literature about 

the performance of the models across six large equity indices. Second, the practical side of 

the results can be considered for traders that are interested in short-term volatility predic-

tions. These can be for instance day traders that are using volatility-based trading strategies 

and models.  
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Limitations of the study 

Next, some of the limitations regarding the research behind this thesis. First, the models used 

on forecasting in this thesis rely on GARCH, EGARCH, GJR-GARCH, EWMA and MA. 

The choice of these models was based on their broad use in previous literature. These models 

are also easy to adapt and calibrate to equity-based volatility forecasting. However, some 

other models such as AGARCH, IGARCH, TGARCH and QGARCH to name a few, could 

also provide interesting volatility forecasting results (see e.g., Awartani and Corradi 2005; 

Ederington and Guan 2005; Franses and Van Dijk 1996; McMillan, Speight, and Gwilym 

2000).  

This thesis examines univariate GARCH-type models and multivariate models, such as the 

BEKK and DCC-GARCH are left out of this study. The volatility predictions of the 

GARCH-type models are based on historical volatility. Another way of volatility forecasting 

is to use options and extract volatility using some option pricing model such as the Black-

Scholes-Merton model (Black and Scholes 1973; Merton 1973). This implied volatility is 

often considered as a market’s expectation of future volatility. In research, both the historical 

estimation of volatility and the GARCH-type models and implied volatility are widely ex-

amined in the area of volatility forecasting. In this thesis the focus is on GARCH-type mod-

els and therefore the implied volatility was left out of scope.  

For some readers, the use of the results from this thesis can be more theoretical because of 

the short forecasting horizon. Longer prediction horizon, such as six months or one year, can 

be more useful in practice regarding for instance strategic portfolio asset management. How-

ever, day traders and other short-term investors may use shorter period volatility forecasts. 

Also, as the market movements can be large on a daily and even on an intraday level, the 

volatility forecasts of next day’s movements can be useful for investors with speculative 

trading.  

Another limitation involved is the use of daily data. Again, the background of using daily 

stock market data comes from the literature as it has claimed that the GARCH-models work 

well on daily data (see e.g., Figlewski 1997, 34-35). Another common assumption is that the 

high-frequency data could also be fruitful basis for volatility forecasting. As it was not pos-

sible to acquire the high-frequency intraday data the natural choice was the readily available 
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daily stock market data, and this thesis contributes to the existing volatility forecasting liter-

ature by using six global equity indices with a long twenty-year period from 2000 to 2020. 

One limitation is also the choice of volatility proxy. Volatility proxy means the actual or true 

volatility. Historical close-to-close volatility calculated from today’s and yesterday’s closing 

prices has been claimed to be inaccurate and noisy estimator (Andersen and Bollerslev 

1998). Same historical estimator using high-frequency intraday data could provide more re-

alistic picture of the true realized volatility. As the high-frequency data was not possible to 

get, the focus was directed to range-based volatility estimators. Range-based volatility esti-

mators use open, close, high, and low prices over certain fixed sampling interval. Alizadeh, 

Brandt and Diebold (2002) and Shu and Zhang (2006) claim that logarithmic range-based 

estimators are powerful to obtain market microstructure effects compared to intraday high-

frequency data estimators. From the four different estimators, Parkinson (1980), Garman and 

Klass (1980), Rogers and Satchell (1991) and Yang and Zhang (2000), the choice was the 

Yang-Zhang estimator as it has claimed to account for overnight price jumps and offer pre-

cise volatility estimate. Previous literature has favored Garman-Klass estimator as well as 

Parkinson’s model (Diebold and Yilmaz 2012). Using different volatility proxy may natu-

rally offer different aspects to volatility forecasting.  

Together with volatility proxy, the loss functions or error functions, are important aspects 

when comparing the performance of volatility forecasting models as the ranking of the mod-

els is based on the loss functions. Some common loss functions are root mean squared error 

(RMSE), mean squared error (MSE), mean absolute error (MAE), mean absolute percentage 

error (MAPE) and mean mixed error (MME). MSE has stated to be a robust loss function 

(Hansen and Lunde 2006) but one of the shortcomings of MSE is that it is sensitive to outliers 

and penalizes high volatility (Brooks 2019, 285). Because of this the MAE loss function was 

also chosen to be included in this thesis. Using several different loss functions might give 

more profound results of the forecasting performance of the models. However, in the context 

of this thesis, the MSE and MAE were considered reasonable selection.  

After the introduction the thesis is organized as follows. Theoretical framework and litera-

ture review are discussed in chapter 2. Chapter 3 presents the data and methodology followed 

by results in chapter 4. Discussion and summary are presented in chapter 5.   
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2 Theoretical framework and literature review 

In this chapter the theoretical framework behind the volatility is discussed. Volatility fore-

casting models, statistical tests and literature review are also presented. 

2.1 Volatility and its proxies 

Volatility, often described as variance or standard deviation, is a measure of variation. Being 

more precise, volatility counts the dispersion around the mean of the data. High volatility 

can be understood as a large deviation from the mean, whereas low volatility fluctuates 

closer from the mean. In finance, common representation of the volatility is the standard 

deviation which denotes the asset’s price variation from the mean over a certain period of 

time. Volatility is also a measure of risk and a security with a higher standard deviation is 

often noted riskier because of the bigger fluctuation between the returns and the mean. A 

well-known indicator of the market risk is the VIX, also known as the Fear Index, a volatility 

index by the Chicago Board Options Exchange. Derived from the S&P500 index options, 

the VIX is a representation of the market’s sentiment and expectations for the future volatil-

ity. Under turbulent periods, the VIX tends to rise and reflects uncertainty and the probability 

of price fluctuations in the market. The volatility of the VIX is called implied volatility as it 

is extracted from the current option prices.  

Broadly speaking, the estimation and forecast of volatility is usually done either from some 

historical dataset or derived from option markets using for instance the Black-Scholes-Mer-

ton option pricing model. Implied volatility is more of market expectations of future volatil-

ity because it is derived from the current market price of the option whereas historical vola-

tility is computed from previous historical asset price changes. The option pricing models 

often assume constant volatility. Other distinctive feature of the implied volatility is that 

options with same time to maturity but with different strike price produce different volatility 

for the same underlying asset. (Poon and Granger 2003) The forecasts of implied and histor-

ical volatility models are widely discussed in research and the results are not unanimous 

whether implied or historical volatility models are superior. The volatility predictions of the 

GARCH-type models are based on historical volatility and because this thesis examines 
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these models the implied volatility is not discussed further. Common presentation of the 

historical volatility is as follows:  

!! = #
∑ (&" −	&̅)#$
"%&
+ − 1

 (1) 

where square root of the variance denotes the standard deviation of the returns. + is the 

sample size, &" is the daily logarithmic return computed from the closing prices and &̅ is the 

mean return. The annualized volatility is obtained by multiplying the standard deviation by 

the square root of the number of trading days per year which in this thesis was decided to be 

252. For monthly returns, the annualized volatility is obtained by multiplying the standard 

deviation of monthly logarithmic returns by the square root of 12.  

Next, the choice of volatility proxy is discussed. The volatility proxy is important because it 

is a measure of true realized volatility, and the volatility forecasts of different models are 

then compared against the volatility proxy. With daily data, the daily close-to-close volatility 

can be calculated from todays and yesterday’s closing prices. Close-to-close volatility is easy 

to adapt and might be useful on some occasions. Close-to-close volatility estimation how-

ever doesn’t include any information about the possible intraday volatility. Asset price can 

fluctuate intensively during trading days but end up near the previous day’s closing price. 

Another drawback of using close-to-close estimator is that the squared returns are claimed 

to be inaccurate and noisy estimators of the realized volatility (Andersen and Bollerslev 

1998). Squared returns might offer a proxy of the realized volatility but on a given day the 

estimate can be very different compared to the actual (unobserved) volatility. Using high 

frequency intraday data might give more realistic picture of the true realized volatility (An-

dersen, Bollerslev, Diebold and Labys 2003).  

Alizadeh, Brandt and Diebold (2002) describe realized volatility as the sum of squared high-

frequency returns over a given sampling period. Daily realized variance series can be com-

puted for instance by summing over each day a sequence of squared intraday returns. Sam-

pling period for intraday returns can be e.g., five-minute returns. Market microstructure bi-

ases can however skew high-frequency prices and returns. Authors explain that in the pres-

ence of a bid-ask spread, the observed price is a noisy version of the true price because it 

effectively equals the true price plus or minus half the spread, depending on whether a trade 

is buyer or seller initiated. Buying and selling transactions affect to bid-ask spread and 
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therefore increases the measured volatility of high-frequency returns. Authors continue that 

bid-ask bounce affects so that by summing the squared high-frequency returns, each of 

which is biased upward, the realized volatility contains a cumulate and therefore potentially 

large bias, which becomes more severe if returns are sampled more frequently.  

Alizadeh, Brandt and Diebold (2002) and Shu and Zhang (2006) claim that logarithmic 

range-based volatility estimators are powerful to obtain market microstructure effects com-

pared to intraday high-frequency data estimators. The idea of range-based volatility estima-

tors is to use open, close, high, and low prices over certain fixed sampling interval. The 

range-based estimation is less likely to be contaminated by bid-ask bounce. Alizadeh, Brandt 

and Diebold (2002) explain also that the observed maximum daily price is likely to be at the 

ask and hence too high by half the spread, whereas the observed minimum is likely to be at 

the bid and too low by half the spread. This means that on average the range is inflated only 

by the average spread, which is small in liquid markets. The range-based estimator might be 

a less efficient volatility proxy than realized volatility under ideal conditions. However, the 

range-based might still be superior in real-world in which market microstructure biases dis-

tort high-frequency prices and returns. (Alizadeh, Brandt and Diebold 2002) 

For this thesis, it was not possible to acquire high frequency intraday data and therefore we’ll 

focus on range-based volatility estimators. Next, four of these estimators are described: Par-

kinson (1980), Garman and Klass (1980), Rogers and Satchell (1991) and Yang and Zhang 

(2000). These range-based volatility proxies are commonly discussed among literature and 

therefore were chosen to be included in this thesis. 

Parkinson’s (1980) volatility estimator uses high and low intraday trading prices. The as-

sumption is that the logarithmic prices follow Brownian motion with zero mean. Parkinson’s 

estimator does not account possible overnight volatility. Parkinson’s estimator can be de-

rived as follows: 

!'()*"+,-+ =	-
+

4/01(2)
301 4

5"
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 (2) 

where + is the number of periods per year. / is the number of periods used in volatility 

estimation. 5" is the highest intraday price and 6" is the lowest intraday price.  
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Another range-based volatility estimator is the Garman-Klass (1980) model. A distinctive 

difference to Parkinson’s estimator is that open and closing prices are added in Garman-

Klass model, which also assumes Brownian motion with zero drift. Overnight volatility is 

not captured by the Garman-Klass model either, which might result to underestimating vol-

atility. The Garman-Klass estimator is given by: 
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where + is the number of periods per year, / is the number of periods used in volatility 

estimation, 5" is the highest intraday price, 6" is the lowest intraday price, 9" is the closing 

price and :" is the opening price.  

Rogers and Satchell (1991) demonstrated a model with a non-zero drift (allowing non-zero 

mean of returns). As with other previous models, their model does not account for overnight 

price variation. The Rogers and Satchell estimator is as follows: 
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where, + is the number of periods per year, / is the number of periods used in volatility 

estimation, 5" is the highest intraday price, 6" is the lowest intraday price, 9" is the closing 

price and :" is the opening price.  

Yang and Zhang (2000) volatility estimator can account for non-zero drift and also overnight 

price jumps. The model is a sum of overnight volatility and weighted open-to-close volatility 

and Rogers and Satchell volatility. The Yang-Zhang estimator can be derived as:  
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@ = 	
0.34

1.34 +	
/ + 1
/ + 1

 

where, + is the number of periods per year, / is the number of days used in volatility esti-

mate, 9" is the closing price and :" is the opening price on trading day D and 9"1&is the closing 

price of the previous day. The Rogers-Satchell volatility estimator is the same as provided 

in formula 4. 

After presenting these different volatility proxies it is now time to choose one to be used in 

the empirical part of this thesis. It is rather clear that any of these proxies offer a bit better 

estimate from true volatility than the close-to-close estimator. Allowing drift, the Rogers and 

Satchell model would provide good volatility proxy. Previous literature has favored Garman 

and Klass estimator as well as Parkinson’s model (Diebold and Yilmaz 2012). Shu and 

Zhang (2006) stated that Yang-Zhang model is precise and offers accurate volatility esti-

mates during large overnight price jumps. Therefore, accounting for both non-zero drifts and 

overnight price jumps, the Yang and Zhang estimator was chosen as a volatility proxy in this 

thesis.  
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2.2 Volatility forecasting models 

One of the well-known forecasting model is the Autoregressive Moving Average (ARMA) 

model by Box and Jenkins (1976). The ARMA model however has some shortcomings, as 

the model assumes homoscedasticity and it doesn’t account the stylized facts of financial 

time series, such as volatility clustering. The ARMA model or Autoregressive Integrated 

Moving Average (ARIMA) model is however included in this thesis to model the conditional 

mean of the equity indices. Therefore, the combinations of ARIMA and GARCH-type mod-

els are used to model both conditional mean and conditional volatility of the indices. The “I” 

in ARIMA process refers to integrated autoregressive process in which the characteristic 

equation has a unit root on the unit circle. When the process is non-stationary, then by dif-

ferentiating the variables by d times, the model is stationary. Hence, the ARMA(p, q) differ-

enced d times, is equivalent to ARIMA(p,d,q). (Brooks 2019, 272) 

The autoregressive part models the dependence of the current value of E on the past values 

of the same variable E in addition with a white noise error term. Moving average part models 

the linear combination of white noise processes, so that the dependent variable E depends on 

the current and past values of the white noise error terms. (Brooks 2019, 251, 254) Combin-

ing the autoregressive and moving average parts, the ARMA(p, q) model is described as 

follows: 

E! = 	F +	3G"E!1" +	3H>I!1> +	I!

?

>%&

=

"%&
 (6) 

where E! denotes the form of time series data, which in thesis is the logarithmic returns data 

from the equity indices, G is the coefficient of the autoregressive part of lag J, H is the 

coefficient of the moving average process of lag K. I! is a white noise process with zero 

mean and constant variance. (Brooks 2019, 264)   

After ARMA model, Engle (1982) developed the ARCH model which quite soon extended 

to GARCH model by Bollerslev (1986). The ARCH(q) model can be derived as follows: 
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I! =	L!!!	, L!	~	+(0,1) 

!!# = O@ +3O"I!1"
#

?

"%&
 (7) 

where the conditional variance depends on previous K lags of squared errors. L! is normally 

distributed with zero mean and unit variance, so that I! will also be normally distributed with 

zero mean and variance !!#. For an ARCH(q) model, all coefficients O@ and O" are required 

to be non-negative to ensure the positive conditional variance estimates. (Brooks 2019, 394-

395) ARCH is reported having some limitations, such as that it is problematic to decide the 

number of lags of the squared residuals and that the number of lags to capturing all the de-

pendence in the conditional variance, can be very large. This can result to large conditional 

variance model not being parsimonious. Other problematic issue is that non-negative coef-

ficients estimates might occur if there are large amounts of parameters. (Brooks 2019, 396)  

Next, the GARCH, EGARCH and GJR-GARCH models are presented. The GARCH(p,q) 

process is given by:  

I! =	L!!!	, L!	~	+(0,1) 

!!# = O@ +3O"I!1"
#
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#
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>%&
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where the conditional variance !!# depends upon K lags of the squared errors and J lags of 

the conditional variance itself. Constraints for non-negativity are: O@ > 0, O"	 ≥ 0, D =

1,… , J, P> ≥ 0, T = 1,… , K.	The O" 	coefficient is an ARCH term and explain volatility clus-

tering and the P> is a GARCH term representing the persistence of volatility. The uncondi-

tional variance of I! is constant and given by	LUV(I!) = O@ 1⁄ − O − P so long as O" + P> <

1. For O" + P> > 1, the unconditional variance is not defined and O" + P> = 1 is termed in-

tegrated GARCH or IGARCH. For stationary GARCH models (O" + P> < 1), the condi-

tional variance forecasts converge to the long-term mean variance. (Brooks 2019, 398-399) 

Compared to ARCH, the GARCH model is less likely to breach non-negativity constraints 

and the GARCH is more parsimonious and avoids overfitting. Overcoming the limitations 

of ARCH model, the basic GARCH still has its own shortcomings, such as that it assumes 

positive and negative shocks affecting similarly to volatility. For financial time series there’s 
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however evidence that volatility tends to rise more in response to bad news compared to a 

positive shock of the same magnitude. This asymmetric volatility is also called the leverage 

effects. Other limitation of the GARCH is that the non-negative constraints might be violated 

by the model. This could be avoided only if there are artificial constraints on the model 

coefficients. (Brooks 2019, 396, 404-405) According to Nelson (1991) it is also difficult to 

evaluate whether shocks to variance are persistent or not. If volatility shocks persist forever, 

they may move the whole term structure of risk premia, and therefore likely to have a sig-

nificant impact on investment in long term capital goods (Poterba and Summers 1986). 

Asymmetric GARCH models named the GJR-GARCH model by Glosten, Jagannathan and 

Runkle (1993) and the EGARCH model by Nelson (1991) were developed to model the 

asymmetric behavior of volatility and to overcome the shortcomings of the basic GARCH 

model. (Brooks 2019, 396, 404-405) 

The EGARCH(p,q) model can be formulated by: 
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where the ARCH term, O" indicates the magnitudes of past standardized innovations and the 

GARCH term P> indicates past logarithmic conditional variances and the leverage term e" 

capture asymmetry in volatility clustering. Compared to the GARCH model, the EGARCH 

models the conditional variance with logarithm, which means that the variance will be pos-

itive even if the parameters are negative. If large and sudden negative shocks cause volatility 

to rise more than a positive shock of the same magnitude, then the leverage term e" is ex-

pected to be negative. (Brooks 2019, 405-406) 

The GJR-GARCH(p,q) model is given by:  

I! =	L!!!	, L!	~	+(0,1) 
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where similarly with EGARCH, the additional term e" accounts possible asymmetries in 

volatility. For these leverage effects (negative shocks have larger impact on conditional 
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variance than positive shocks) it is assumed that e" > 0. Even if e" < 0 the model can be used 

as long as O" + e" ≥ 0. The dummy variable h!1" gets value 1 if I!1" < 0, and zero otherwise. 

Constraints for non-negativity are: O@ 	> 0, 	O" 	> 0, P> 	≥ 0, O" + e" 	≥ 0. (Brooks 2019, 

405) 

Next, the moving average models are presented. The simple moving average model com-

putes an arithmetic average from certain length of previous observations. It is then rolling 

one-step forward keeping the averaging length same. We use the five-day moving average 

(MA5), one month moving average (MA21) and three month (MA63) moving average mod-

els. The length of these moving average models is calculated based on the approximation of 

252 trading days per year. There is no theoretical background of choosing the right length 

for the model. It is although rather obvious that shorter moving average models are following 

and adjusting to current trends in data faster than longer moving average models. One dis-

tinctive feature of the moving average model is that it is not incorporating the abovemen-

tioned stylized facts of financial time-series data.  

The moving average model is given by:  

!! =
1
i
3!!1>

A

>%&
 (11) 

where i is the averaging length and !!1> represents historical volatility from daily closing 

prices.  

Exponentially weighted moving average (EWMA) is another moving average model and can 

be expressed as follows: 

!!# = (1 − j)3j>1&(V!1> −	 V̅)#
B

>%&
 (12) 

where !!# is the variance estimate for period k, and this also becomes the forecast of future 

volatility for next periods, V̅ is the average return and λ is a weighting factor. The value of 

the lambda is always between one and zero. Putting more weight to most recent observations, 

the EWMA is more responsive and reacts more rapidly to new information compared to the 

simple moving average model with equal weights. A lower value of the lambda indicates 

less impact for the recent observations. RiskMetrics introduced by the financial services firm 
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J.P. Morgan use 0.94 lambda value for daily returns and this decay factor is also used in this 

thesis (MSCI 2021). 0.94 lambda means that the most recent observation is weighted by 6%. 

The next observation is weighted by 5.64% ((1-0.94)*(0.94)^1) and so on. As with simple 

moving average, the EWMA does not model leverage effects. The EWMA is not accounting 

for mean-reverting volatility either. (Brooks 2019, 390-391) 

2.3  Statistical tests  

In this chapter statistical tests used in this thesis are described. We begin with stationarity 

tests. Stationarity is a preferable condition in financial time series and a stationary series can 

be described having constant mean, constant variance and constant autocovariance for each 

given lag. A stationary variable is one that does not contain a unit root. (Brooks 2019, 334)  

There are various tests available for testing stationarity such as the augmented Dickey-Fuller 

(ADF) test and KPSS test by Kwiatkowski, Phillips, Schmidt and Shin (1992). Other widely 

used stationarity test is Phillips-Perron test but in this thesis we consider the ADF and KPSS 

tests. For the augmented Dickey-Fuller test the null hypothesis is that the time series contains 

a unit root and alternative hypothesis is that the series is stationary, and no unit root exists.  

The Dickey-Fuller model with null hypothesis that the series contains a unit root (G = 1) is 

described as:  

E! = 	GE!1& +	l! (13) 

Where E! is data process, l! is a mean zero innovation process. Another way of expressing 

the model is by:  

ΔE! = 	nE!1& +		l! (14) 

Where a test of G = 1 is equivalent to a test of n = 0 (because G − 1 =	 n). From this the 

augmented Dickey-Fuller test for a unit root can be modelled as:  

ΔE! = 	nE!1& +	3O"ΔE!1" +	l!

=

"%&
 (15) 

Where J is the number of lags of the dependent variable, l! is a mean zero innovation pro-

cess, Δ is the differencing operator and as Brooks (2019, 345) explains, the lags of ΔE! ab-

sorb any dynamic structure present in the dependent variable, to ensure that l! is not auto-

correlated. Brooks (2019, 344) say that l! is assumed not to be autocorrelated but would be 
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so if there was autocorrelation in the dependent variable of the regression ΔE! which has not 

been modelled. The Dickey-Fuller test would then be oversized, meaning that the true size 

of the test (the proportion of times a correct null hypothesis is incorrectly rejected) would be 

higher than the nominal size used (e.g. 5%). Answer to this is the augmented test using J 

lags of the dependent variable. The optimal number of lags is however user specific and 

quite arbitrary. For monthly data the use of twelve lags might be appropriate. For daily data 

used in this thesis there’s no clear guideline for the number of lags. Information criterion can 

be used to decide the number of lags. In this thesis the number of lags were chosen without 

the use of information criterion and decided to be twenty lags.  

Augmented Dickey-Fuller test for a unit root can be modelled as: 

ΔE! = F + ok + GE!1& +	3P=ΔE!1= +	l!

=

"%&
 (16) 

where F is a constant, J is the number of lags of the differences of the dependent variable, Δ 

is the differencing operator and l! is a mean zero innovation process. The ADF test can be 

done with model variants with drift and trend stationary. The model with o = 0 has no trend 

and the model with F = 0 and o = 0 has no drift or trend.  

Augmented Dickey-Fuller test statistic is:  

pqr = 	
fGs − 1g

tufGsg
 (17) 

Another way to assess stationarity is to use KPSS test by Kwiatkowski, Phillips, Schmidt, 

Shin (1992), in which the null is that the data is stationary. The structural model behind the 

test is as follows: 

E! =	F! +	G! +	l&! , 										F! =	F!1& +	l#! (18) 

where G! is the trend coefficient, l&! is a stationary process, l#! is an independent and iden-

tically distributed process with mean zero and variance !#. The null hypothesis is then that 

!# = 0, which considers that the random walk term F! is constant and interprets as the model 

intercept.  
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KPSS test statistic is given by:  

vwtt = 	
∑ t!

#$
!%&
+#x#

 (19) 

where + is the sample size, t!# is the squared cumulative residuals and x# is the Newey-West 

estimate of the long-run variance. Authors of the test used Monte Carlo simulations and 

tabulated critical values from those simulations. (Mathworks 2022)  

The Ljung-Box Q-test (1978) is a test for possible autocorrelation in returns time series. It 

can be also used with squared residuals for testing conditional heteroscedasticity. In this 

thesis the Ljung-Box is used to test autocorrelation in returns. The Ljung-Box test statistic 

can be derived from: 

y = +(+ + 2)3
ẑ*
#

+ − @

0

*%&
	~	|0#  (20) 

Where + is the sample size, ẑ*# is autocorrelation coefficient and } is maximum lag length. 

In this thesis the maximum lag length is 20. Under the null hypothesis of no autocorrelation 

(that all } autocorrelations are jointly zero), the test statistic follows chi-squared distribu-

tion. (Brooks 2019, 249) 

Engle’s (1982) ARCH test is used to test for conditional heteroscedasticity on the residuals. 

Engle’s ARCH test is also used to justify the use of GARCH type models. The idea of 

Engle’s ARCH test is a joint null hypothesis that all K lags of the squared residuals have 

coefficient values that are not significantly different from zero. If squared residuals indicate 

autocorrelation, then it means that variance of returns is significantly autocorrelated and thus 

returns are conditionally heteroscedastic. In practice, the test is a test for autocorrelation in 

the squared residuals. 

Engle’s ARCH test can be derived as follows: 

l!	 =	L!!!								L!	~	+(0,1) 

E! =	P& + P#&#! + PC&C!	+. . . +	P>&>! +	l! (21) 

Test begins with linear regression of the form given in equation X and saving the residuals 

l~!. L! is normally distributed with zero mean and unit variance. Test continues by squaring 

the residuals and regressing them on K own lags:  
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l~!# =	e@ +	e&l~!1&
# +	e#l~!1#

# +⋯+	e?l~!1?# +	L! (22) 

Obtaining the Ä# from the regression and multiplying it by the number of observations i we 

get the test statistic iÄ#. Under the null hypothesis of no ARCH effects the test statistic 

follows the chi-squared distribution with K degrees of freedom. (Brooks 2019, 395) 

The Jarque-Bera tests the null hypothesis that the data is normally distributed with an un-

known mean and variance. The test statistic is:  

ÅÇ = 	
1
6
Ñx# +

(@ − 3)#

4
?, (23) 

where 1 is the sample size, x is the sample skewness, and @ is the sample kurtosis. For large 

sample sizes, the test statistic has a chi-square distribution with two-degrees of freedom. For 

normally distributed data the skewness is zero and kurtosis gets value of three. Skewness 

can be defined as the shape of the distribution and measures the extent to which it is not 

symmetric about its mean value. Kurtosis indicates the fatness of the tails of the distribution 

and peakedness at the mean. Coefficient of excess kurtosis equal to the coefficient of kurtosis 

minus three. A normal distribution has a coefficient of excess kurtosis of zero. (Brooks 2019, 

55) 

Selecting the right models for data can be a difficult task. One can use graphical evaluation 

with autocorrelation and partial autocorrelation functions. However, interpreting the plots 

can be too subjective. Another evaluation method, called the information criteria, can help 

to evaluate different models’ fit to data. Two well-known information criterions are used in 

this thesis and those are the Akaike’s (1974) information criterion (AIC) and the Bayesian 

information criterion (BIC) by Schwarz (1978). 

AIC and BIC consider the model’s complexity and the maximum likelihood by considering 

a penalty term for including additional parameters. AIC incorporate a weak penalty term 

whereas the BIC uses more strict penalty term. The goal is to choose the number of param-

eters which minimizes the value of the information criteria. (Brooks 2019, 271) 

Akaike’s and Schwarz’s information criteria are described as follows: 

pÖ9 = ln(!~#) +	
2@
i

 (24) 
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ÇÖ9 = ln(!~#) +	
@
i
	01	i 

where !~# is the residual variance, i is the sample size and @ is the total number of parameters 

estimated. Brooks (2019, 272) asks important question, which criterion should be preferred 

if they suggest different model orders? It is not straightforward to say that the other should 

be preferred over the other. Brooks (2019, 272) answers that BIC is consistent but inefficient 

whereas AIC is not consistent but is generally more efficient. Author continues that BIC will 

deliver the correct model order, while AIC gives on average too large model. He also notes 

that, the average variation in selected model orders from different samples within a given 

population will be greater in the context of BIC than AIC. Conclusion is that neither criterion 

is superior to other. In this thesis, both criterions will be considered, and ARIMA-GARCH 

type models are chosen according to both AIC and BIC. Model offering smallest AIC and 

BIC values are chosen to volatility forecasting. 

2.4 Literature review of volatility forecasting 

In this chapter the previous research of volatility forecasting is presented. Research papers 

are presented in a chronological order starting from the early papers of volatility forecasting. 

This literature review is not a complete list of research related to volatility forecasting and 

the main purpose is to offer a compact view of previous research.  

Akgiray (1989) forecast volatility using daily returns from value-weighted and equal-

weighted stock indices from 1963 to 1986. The 24-year period is divided into four different 

periods of six years each and each period is analyzed separately. Forecasts are generated for 

the following month (20 days) and for each subsequent forecast, the estimation sample is 

shifted forward by one month by dropping the initial 20 observations and adding in the new 

20 observations. Volatility forecasts are created using the simple historical variance estimate, 

exponentially weighted moving average, ARCH and GARCH models. The forecasts are 

compared under mean error, root mean square error, mean absolute error, and mean absolute 

percent error statistics. Results show that all error statistics indicate the superiority of the 

GARCH(1,1) and the model is capable of providing the most accurate forecasts through all 

periods. Based on model fitting and volatility forecasting, the GARCH(1,1) indeed outper-

forms other models but the research highlight that the results only hold for daily data. The 

return series for weekly and monthly series are not as leptokurtic as those of daily returns 



28 

and there is no statistically significant autocorrelation in weekly and monthly returns. For 

squared and absolute series, the weekly data exhibit some autocorrelation up to four lags, 

but monthly series have no significant autocorrelation and hence the monthly returns con-

cluded as a strict white noise. 

Pagan and Schwert (1990) use monthly US stock return data from July 1835 to December 

1925. Forecast models are estimated using data from 1835-1899 and forecasts are made for 

1900-1925. Also, estimates from 1835-1925 are used to forecast for 1926-1937. Models are 

two-step conditional variance estimator, GARCH(1,2), EGARCH(1,2), Hamilton’s switch-

ing-regime Markov model, nonparametric kernel model with one lag and nonparametric 

Fourier model with one and two lags. For the sample period 1835-1925, the results imply 

that the nonparametric models have the best explanatory power. However, for out-of-sample 

1900-1925, the authors claim that the nonparametric models work poorly because of the few 

large returns during the sample period. Authors explain that the nonparametric models obtain 

their explanatory power from a few extreme returns. For the 1926-1937 predictions, the two-

step, GARCH(1,2) and EGARCH(1,2) are the best performing models. Authors explain that 

these models can capture the volatility persistence rising from volatile period including the 

Great Depression (1929-1939). Authors claim that the large negative returns caused by the 

banking crisis of 1837, the banking panic of 1857, the start of the Civil War 1860 and the 

banking crisis 1907, have the biggest impact why the nonparametric models provide poor 

predictive results. Large negative returns are also the reason why the EGARCH(1,2) is the 

best performing model. Authors explain that the kernel and Fourier estimates react rapidly 

and adapt changes in volatility fastly, while the parametric GARCH, EGARCH and Hamil-

ton estimates do it more gradually with slow adjustment to large volatility shocks and with 

volatility persistence. Although EGARCH(1,2) is the best model, Pagan and Schwert (1990)  

discuss that combining parametric models with terms recommended by non-parametric mod-

els, the explanatory power would be increasing.  

Cao and Tsay (1992) compare volatility forecasting of threshold autoregressive (TAR) mod-

els with ARMA, GARCH and EGARCH models using data from US stock indices from 

January 1928 to December 1989. Using loss functions mean squared error and average ab-

solute deviation, study claim that the EGARCH model is best for longer period volatility 

forecasting for small stock returns. Results also show that the TAR models outperform 

GARCH, EGARCH and ARMA models in volatility forecasting of large stock returns. 
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With daily Australian stock market data 1974-1993 Brailsford and Faff (1996) reported GJR-

GARCH(1,1) as a best volatility forecasting model. However, comparing forecast results 

with different error statistics (the mean error, the mean absolute error, the root mean squared 

error and the mean absolute percentage error) indicate that there is no single model outper-

forming. Models included were random walk, historical mean, moving average (5-year) and 

moving average (12-year), an exponential smoothing model, EWMA, a regression model, 

GARCH(1,1), GARCH(3,1), GJR-GARCH(1,1) and GJR-GARCH(3,1). Model parameters 

were estimated using the period 1974-1985. To obtain monthly volatility forecasts, the daily 

rolling forecasts for each month was done and repeated until June 1993. The mean absolute 

error imply that the GJR-GARCH(1,1) is the most accurate forecasting model and the GJR-

GARCH(3,1) is the second most accurate. The root mean squared error puts the historical 

mean and a regression model to the first place followed by the moving average (12-year), 

GJR-GARCH(1,1) and the EWMA. The mean absolute percentage error indicate that the 

GJR-GARCH(1,1) is the best model followed by the other GARCH models. Authors report 

also over- and under-predictions with mean mixed error MME(O) which penalize over-pre-

dictions and mean mixed error MME(U) which penalize under-predictions. They state that 

only the random walk and the GJR-GARCH(3,1) models provide equal number of over- and 

under-predictions. Other models, except the GJR-GARCH(1,1), over-predict volatility. Ac-

cording to MME(U) the GARCH models and the GJR-GARCH(3,1) are the best forecasting 

models whereas the GJR-GARCH(1,1) and random walk models ranks the bottom line. An-

other distinctive result from Brailsford and Faff (1996) is that the exponential smoothing 

model was ranked last, seventh and tenth by the MAE, RMSE and MAPE but offers the 

second-best forecasting model according to the MME(U). The MME(O) ranks the GJR-

GARCH(1,1) as a best forecasting model. Authors highlight that the final purpose of the 

forecasting is important while choosing the error measurement. They explain that a buyer of 

a call option being more interested with over-predictions, would prefer the MME(O) statistic 

and would favor the GJR-GARCH(1,1) model. Brailsford and Faff (1996) conclude that they 

choose the GJR-GARCH(1,1) as a best forecasting model but also state the importance of 

choosing the appropriate error statistic and that the obtained rankings should be carefully 

assessed.  

Franses and Van Dijk (1996) compare the volatility forecasting performance of asymmetric 

QGARCH(1,1) and GJR-GARCH(1,1) models relative to GARCH(1,1) model and also the 

performance of all three models relative to the simple random walk forecasting. Stock index 
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data 1986-1994 from Germany, The Netherlands, Spain, Italy, and Sweden is used and 

weekly forecasts for the years 1990-1994 is evaluated using the median of squared error. 

Results show that the QGARCH and the random walk are the best models, and they do the 

forecasting almost equally well. GARCH(1,1) is ranked as a best forecasting model for two 

times, whereas GJR-GARCH(1,1) ranks the worst and authors recommend not to use the 

model. Authors note that the random walk model performs well with extreme values in the 

data (such as the 1987 stock market crash).  

McMillan, Speight, and Gwilym (2000) study volatility forecasting using the historical 

mean, moving average, random walk, exponential smoothing, exponentially weighted mov-

ing average, simple regression, GARCH, TGARCH, EGARCH and component-GARCH 

models. Data from UK FTA All Share and FTSE100 stock index is analyzed with monthly, 

weekly, and daily frequencies and both with and without adjustment for the 1987 stock mar-

ket crash. For the FTSE100 index, the data covers January 1984 to July 1996 (in-sample 

estimation 1984-1994 and out-of-sample forecasting 1995-1996). For the FTA All Share 

index, the data covers January 1969 to July 1996 (in-sample estimation 1969-1994 and out-

of-sample forecasting 1995-1996). Forecast evaluation is made using the mean error (ME), 

root mean squared error (RMSE) and mean absolute error (MAE). Asymmetric loss func-

tions, mean mixed error (MME(U) and MME(O)) statistics are also reported. Results for 

monthly frequency indicate that the random walk model offers the best forecasting with 

smallest ME, RMSE and MAE for both FTA All Share index and FTSE100 index. The sim-

ple regression and historical mean offer the poorest forecasting accuracy. The accuracy of 

the GARCH models is rather weak and specially when the 1987 stock market crash is in-

cluded in FTSE100 index. Results for weekly frequency imply that the random walk model 

offers the best forecasting accuracy based on the MAE followed by the exponential smooth-

ing model for the FTA All Share index. The moving average and recursive EWMA models 

are the next best forecasting models for both indices followed by the GARCH. The moving 

average, recursive exponential smoothing and EWMA models offer the best forecasting un-

der the RMSE error statistic for the FTA All Share index. For FTSE data, the moving average 

models and the recursive EWMA provide superior forecasts. Under the ME statistic, the 

recursive exponential smoothing model provides the best forecast except in the crash-ad-

justed FTA, where the 3-month moving average model is preferred. For the FTA series and 

crash-unadjusted (1987 market crash excluded) FTSE data, the exponential smoothing and 

3-month moving average models provide the best forecasts on the MAE statistic. With 1987 
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market crash included, the 3-month moving average is marginally superior to the random 

walk and other smoothing models for the FTSE data. The three-month moving average is 

also marginally superior for FTA and FTSE crash-unadjusted data under the RMSE statistic. 

The GARCH model is favored for the crash-adjusted FTSE data and exponential smoothing 

for the adjusted FTA data. Lastly, with asymmetric loss functions authors summarize that if 

overpredictions are penalized more heavily than underpredictions, then the random walk 

model outperforms. If underpredictions are more heavily penalized, then the historical mean 

is favored for the forecasting of daily FTA and FTSE volatility, while the historical mean 

and simple regression are jointly favored for weekly FTA volatility, and exponential smooth-

ing is the best one for forecasting weekly FTSE volatility. 

McMillan, Speight, and Gwilym (2000) sum that the random walk model provides the most 

accurate forecasts at the monthly and weekly frequencies, but model performance is rather 

poor for the daily returns. The exponential smoothing and moving average models provide 

more accurate weekly and daily forecasts. The historical mean and simple regression rank 

poorly compared to the other models. Overall, the moving average models provide good 

relative forecasts. The GARCH models also provide consistently relative fair performance 

in which GARCH and EGARCH outperforming the TGARCH and CGARCH models. Au-

thors conclude that the moving average and GARCH models provide the most consistent 

forecasting performance if one considers forecasting method for all frequencies and sym-

metric loss functions. 

Loudon, Watt, and Yadav (2000) study different ARCH models with daily UK stock index 

data from January 1971 to October 1997. The whole sample period is divided to three sub 

periods of January 1971 to December 1980, January 1981 to December 1990 and January 

1991 to October 1997. Results show that the model estimates are all statistically significant 

meaning that the conditional variance is related to its previous level and to past innovations 

in returns. Volatility asymmetry is also revealed as the asymmetry parameters are highly 

significant although for the EGARCH, GJR-GARCH and TGARCH, the asymmetry was 

stronger during 1981 to 1990. For the NGARCH and VGARCH, the asymmetry coefficient 

was highest during 1991 to 1997. Model evaluation include comparing the predictability of 

the models with West-Cho (1995) test and Diebold-Mariano (1995) test. West-Cho statistic 

examine statistically significant differences in the conditional variance forecast errors across 

the models. Out-of-sample tests show highly significant differences. In-sample results show 



32 

significance both for the first period and the last period. Pairwise tests (of the equality of the 

conditional variance forecast errors for the benchmark LGARCH and alternative models) 

show no in-sample or out-of-sample significance except in the third period out-of-sample 

performance where conditional variance forecast errors are significantly different between 

the LGARCH and the MGARCH, GJR-GARCH and NGARCH. For the Diebold-Mariano 

tests, none of the mean differences is significantly non-zero on an in-sample. For LGARCH 

and MGARCH and LGARCH and VGARCH the Diebold-Mariano statistic show significant 

difference for the second (1981-1990) out-of-sample period. Skewness and kurtosis tests in 

the standardized residuals show that the models can only partly capture the observed skew-

ness and kurtosis. Also, volatility persistence is only partially captured by the models. None 

of the models outperform consistently across different sub-periods and authors conclude that 

the optimal choice of a model is period specific. 

Comparing 330 different ARCH models using daily exchange rate data of Deutsche Mark-

USD and IBM daily stock returns, Hansen and Lunde (2005) state that GARCH(1,1) works 

well with exchange rate data but is outperformed in stock returns data. Models covering 

leverage effects can produce better forecasting results with stock returns data.  

Comparing the volatility forecasting ability of the historical standard deviation, an exponen-

tially weighted moving average, GARCH(1,1), AGARCH, EGARCH and two regression 

models Ederington and Guan (2005) reveal that the GARCH(1,1) model overweight the most 

recent observations and put too little weight on older observations. This however has little 

impact on out-of-sample forecast accuracy, which is evaluated with root mean squared fore-

cast error. Authors create a new model, the least squares regression model in which the fore-

cast volatility for the future period is a weighted average of recent absolute return deviations 

with exponentially declining weights. The model outperforms both GARCH and EGARCH 

models. Authors use daily data, and the forecast horizons are 10, 20, 40, 80 and 120 trading 

days. Authors note that the GARCH model perform relatively better at short forecast hori-

zons (10-40 days). Using data from S&P500 index, the Japanese yen/dollar exchange rate, 

the three-month Eurodollar rate, the 10-year treasury bond rate and five equities (Boeing, 

GM, International Paper, McDonald’s, and Merck), the result for out-of-sample forecasting 

is that the regression model provide best forecasts in T-bonds, Eurodollars, and yen, while 

GARCH outperforms in the S&P500. With equities both GARCH and regression model in-

dicate the best forecasts. 
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Awartani and Corradi (2005) study predictive ability of GARCH, IGARCH, ABGARCH, 

EGARCH, TGARCH, GJR-GARCH, AGARCH and QGARCH models. Exponential 

smoothing model by RiskMetrics is also included. Models covering asymmetry are 

EGARCH, TGARCH, GJR-GARCH, AGARCH and QGARCH. Authors use dividend ad-

justed daily S&P-500 price index data from January 1990 to September 2001. Study reveals 

that asymmetric GARCH models, specially EGARCH outperforms the GARCH(1,1) for 

one-step ahead and longer forecast horizons using mean squared errors (MSE). In the mul-

tiple comparison, the asymmetric GARCH models again outperforms the GARCH(1,1). 

However, GARCH models that do not cover asymmetry, are not able to beat the 

GARCH(1,1). According to results, exponential smoothing model by RiskMetrics has poor-

est predictive ability.  

Wilhelmsson (2006) with S&P500 futures data from 1996 to 2002 report that the 

GARCH(1,1) with t-distribution outperformed all the other volatility forecast models, in-

cluding the moving average models. One of the more recent research by Sharma and Sharma 

(2015) compare the daily volatility forecasts of standard GARCH, and the more advanced 

EGARCH, GJR-GARCH, TGARCH, AVGARCH, APARCH and NGARCH models using 

21 global stock indices from 2000 to 2013. The results show that the standard GARCH is 

the best volatility forecasting model. The other models do not offer any additional value and 

do not create better volatility forecasts. Sharma and Sharma (2015) however note that the 

GARCH models’ volatility forecasting performance is sensitive to the choice of data set and 

there is no single GARCH model that provides the best forecast for all the 21 stock indices.  

These results from previous research show that the forecasting results and performance of 

the GARCH-type models is not unanimous and there’s no consistent view of superior vola-

tility forecasting model. In their famous article, Poon and Granger (2003) review 93 research 

papers of volatility forecasting. They conclude that historical volatility methods, such as 

moving average, exponential weights and autoregressive models perform equally well com-

pared to other sophisticated models including the GARCH-type models. However, Poon and 

Granger (2003) outline that with different data, loss functions or volatility proxies, the fore-

casting results might be different. Also, there’s no unanimous conclusion that which of the 

loss functions one should always use and Poon and Granger (2003) mention that it is rarely 

discussed if one forecasting method is significantly better than another and although some 

particular method of forecasting volatility can be suggested being the best, there’s no 
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discussion about the cost-benefit from using it. Based on these aspects and results from pre-

vious research, interesting topic concerning the comparison of the GARCH-type and moving 

average models is that which of the models should we choose when considering forecasting 

volatility. Making empirical research with stock market data this thesis seeks to find more 

profound answer to model selection. 
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3 Data and methodology 

The data in this thesis consists of six large stock market indices DAX30, FTSE100, NIK-

KEI225, Shanghai SE Composite, S&P500 and Dow Jones Industrial Average. These indi-

ces were chosen because they cover large amount of equity markets, and to compare how 

different GARCH-type and moving average models perform across global indices. Daily 

time series data includes the period from January 1, 2000 through December 31, 2020 and 

the data was obtained from Thomson Reuters Datastream. All the indices are price indices, 

except the DAX30 which is a total return index. The difference between price indices and 

total return indices are that dividends and other cash distributions are included in total return 

index. Price index tracks only the price movements of the component. For Shanghai SE 

Composite index it was not possible to get total return index observations for the whole 

sample period. The S&P500 is commonly displayed as a price index, whereas the DAX30 

as a total return index. In addition of closing prices, the daily opening and high and low 

prices were obtained in purpose of the volatility proxy used in this thesis. National holidays 

were excluded from the data. No other preparations were done for the data. Full sample was 

divided to in-sample period of January 1, 2000 to December 31, 2015 and to out-of-sample 

forecasting period January 1, 2016 to December 31, 2020. Following approach used in liter-

ature, the returns in this thesis are expressed in logarithmic returns. Next, the indices are 

briefly presented.  

The DAX30 is a German stock market index. It includes the 30 largest and most liquid com-

panies on the Frankfurt Stock Exchange. The DAX30 includes global giants, such as BMW, 

Daimler, Siemens, and Volkswagen Group, and offers information about the market senti-

ment in Europe. (Deutsche Börse 2021) The FTSE100 is another European stock market 

index covering companies from wide range of industries. It is a capitalization-weighted share 

index of the 100 largest companies listed on the London Stock Exchange. (FTSE Russell 

2021) The NIKKEI225 is a stock market index for the Tokyo Stock Exchange. Index consists 

of 225 large companies from different fields of businesses. (Nikkei 2021) The Shanghai 

Stock Exchange Composite index is a stock market index of all shares listed on the Shanghai 

Stock Exchange (China Securities Index 2021). One of the most well-known index, the 

S&P500 includes 500 largest companies traded on the New York Stock Exchange and 
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Nasdaq. The S&P500 covers large amount of US equities and is often used as an indicator 

of the US economy. The S&P500 is a free-float capitalization-weighted index and its current 

market cap is approximately 33 trillion USD. (S&P Dow Jones Indices 2021a) Another 

iconic index, the Dow Jones Industrial Average consists of the thirty largest US companies 

(S&P Dow Jones Indices 2021b).  

Figure 1 displays the development of the indices from 2000 to 2020. The twenty-year period 

is next shortly discussed. Rather clear upward trend after 2010 is visible in all indices except 

in Shanghai SE Composite. Another distinctive feature is the development of the indices 

during the early years of 2000s. Downward trend turned upwards, especially in China due 

some speculative matters and rocketing markets, until the 2008 financial crisis which led to 

market crash. The economic situation was globally severe, but especially the drop in China 

was large and although Chinese markets have emerged, the Shanghai SE Composite has not 

reached its pre-2008 level. The aftermath of the 2008 crisis led to the European sovereign 

debt crisis which caused different problems and uncertainty in the eurozone. Some of this 

uncertainty emerged in 2012 as the concerns expanded from Greece to Spain and Italy which 

reported high budget deficits and public debt ratios. Together with disorder from many Eu-

ropean banks, the crisis led to massive bailouts. Support from the European Union, European 

Central Bank and International Monetary Fund returned trust to markets. Rather steep slope 

of rising indices from 2012 is also visible in DAX30 and FTSE100. Another volatile period 

occurred in 2015-2016 which led to market drop in 2016. Reasons behind the drop are many, 

as it has been explained that the fall in oil prices, uncertainty in US and Chinese stock market 

(massive selloffs and speculation with Chinese stock market bubble) and United Kingdom 

decision to European Union membership referendum (Brexit) might cause the market down-

turn. During the most recent years, the indices dropped in 2018 mainly because of worries 

caused by the US and China trade war and a global economic slowdown and especially in 

US where the Federal Reserve informed about the rising interest rates. In 2020 the global 

stock markets saw an extraordinary dive due to COVID-19 pandemic. In March 2020 the 

markets crashed heavily as the pandemic caused fear and massive selloffs. The markets how-

ever recovered quite soon as the announcements from the governments and central banks 

financial stimulus convinced investors and markets turned upwards.  
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Figure 1. Price development of the equity indices from 2000 to 2020  

3.1  Descriptive statistics 

Logarithmic returns derived from the price indices are presented in Figure 2. Volatility clus-

tering is clearly visible in all indices as high volatility following further high volatility and 

similar pattern with lower volatility following low volatility. Previously described market 

conditions are also visible and as the markets face turbulent periods it is evident that the 

returns fluctuate widely. Based on pure graphical evaluation, it seems that volatility bursts 
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and persistent volatility is more present in Shanghai SE Composite index returns. The min-

imum daily returns seemed to happen during the 2020 COVID-19 pandemic in DAX30, 

FTSE100, S&P500 and Dow Jones indices. In Shanghai SE Composite, the minimum re-

turns seemed to occur right before the 2008 financial crisis and during 2015-2016 market 

disorder. The biggest daily returns seemed to happen during the 2008 crisis and the 2020 

pandemic.  

 

Figure 2. Logarithmic returns of equity indices from 2000 to 2020 

Next, the in-sample returns are presented in QQ-plots in Figure 3. X-axis describes the stand-

ard normally distributed quantiles. The QQ-plots the data (log returns) against the normal 

distribution. The information from the QQ-plots indicate very strong nonnormality and lep-

tokurtosis of the data. The returns have heavier tails as the distribution of sample data has 
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observations in the upper right-hand side and in the lower left-hand side. Sample data obser-

vations are not along the red line, and this is a notion of non-normal distribution.   

 

Figure 3. QQ-plots of the in-sample returns  

Histograms of the in-sample returns are presented in Figure 4. Not so much can be said from 

the histograms. Visually evaluated noteworthy is the peakedness of the histograms as the 

highest peaks are around zero. Histograms seems to be quite symmetric and as noticed also 

from the Figure 2, few extreme observations can be picked from the tails. Non-normal dis-

tribution of the returns is verified by the histograms.  
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Figure 4. Histograms of the in-sample returns 

Last visual diagnostics of the data are sample autocorrelation (ACF) and partial autocorre-

lation (PACF) functions. First, the ACF and PACF for the in-sample returns are presented 

in Figure 5.  

DAX30

-5 0 5 10
0

100

200

300

400

500

600
FTSE100

-10 -5 0 5 10
0

100

200

300

400

500

600

NIKKEI225

-10 -5 0 5 10
0

100

200

300

400

500
SHANGHAI SE COMPOSITE

-10 -5 0 5 10
0

100

200

300

400

500

S&P500

-10 -5 0 5 10
0

100

200

300

400

500

600

700
DOW JONES INDUSTRIAL AVERAGE

-5 0 5 10
0

100

200

300

400

500

600

700



41 

 

Figure 5. ACF and PACF of the in-sample returns 

With five percent significance level there seems to be no autocorrelation in DAX30 returns, 

except in lag 5. Autocorrelation and partial autocorrelation functions for FTSE100 in-sample 

returns indicate significant autocorrelation of both signs in lags 1 to 6. Autocorrelation and 

partial autocorrelation functions for NIKKEI225 returns indicate no autocorrelation. Auto-

correlation and partial autocorrelation functions for Shanghai SE Composite imply some 

autocorrelation at least in lags 4 and 6. Autocorrelation and partial autocorrelation functions 

for S&P500 and Dow Jones indicate autocorrelation at least in lags 2 and in lags 16 and 18. 

Overall, little can be said from the autocorrelation and partial autocorrelation functions as it 

seems that there is no or rather little autocorrelation.  
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Next, the ACF and PACF for the squared returns are presented in Figure 6. The ACF and 

PACF indicate persistent and significant autocorrelation. Visually this implies conditional 

heteroscedasticity of the returns. 

 

Figure 6. ACF and PACF of the in-sample squared returns 
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After visual representations of the data, the descriptive statistics for both full sample and in-

sample are presented in Table 1. Similarity can be found through the indices as the sample 

mean, median and variance are all small. As the visual information from the QQ-plots imply, 

the high kurtosis verifies fat tails of the returns. Small negative skewness indicate that the 

returns are slightly left-tailed. Kurtosis and skewness both indicate that the returns are not 

normally distributed. Non-normality is verified with Jarque-Bera test as the null hypothesis 

of normal distribution is strongly rejected. ADF test rejects the null hypothesis of a unit root 

and show signs of stationary data. ADF test was done in three different ways; with auto-

regressive, autoregressive with drift and trend stationary models up to twenty lags. KPSS 

test verify the stationarity as the null hypothesis of time series being stationary is not rejected. 

Ljung-Box Q test is showing significant autocorrelation up to twenty lags as the null of no 

autocorrelation is rejected with 1% significance level. However, with NIKKEI225 data, the 

Ljung-Box Q test indicates no autocorrelation. Engle’s ARCH test confirms visual evalua-

tion of the squared returns as test imply conditional heteroscedasticity in returns by clearly 

rejecting the null hypothesis of no ARCH effects. Both visual inspection and tests confirm 

the use of GARCH-type models. Conditional mean model is justified by the autocorrelation 

in returns.    

  



44 

Table 1. Descriptive statistics for full sample and in-sample returns. Statistical significance 

at the 5% and 1% levels is denoted by ** and ***.  

 DAX30 FTSE100 NIKKEI225 Shanghai SE S&P500 Dow Jones 

Panel A: In-sample 2000-2015 

N  4067 4040 3929 3872 4024 4024 

Mean 0.00011 -0.00002 4.12964E-07 0.00025 0.00008 0.00011 

Median 0.00079 0.00037 0.00033 0.00068 0.00053 0.00044 

Standard Deviation 0.01549 0.01229 0.01545 0.01646 0.01267 0.01186 
Sample Variance 0.00024 0.00015 0.00024 0.00027 0.00016 0.00014 

Kurtosis 4.18406 6.08763 6.16320 4.34607 8.01334 7.91706 

Skewness -0.01878 -0.15312 -0.39776 -0.28014 -0.18535 -0.06631 
Minimum -0.08875 -0.09266 -0.12111 -0.09256 -0.09470 -0.08201 

Maximum 0.10797 0.09384 0.13235 0.09401 0.10957 0.10508 

ADF  -14.3548*** -15.4930*** -14.0431*** -12.3881*** -14.6808*** -15.0166*** 
KPSS  0.0629 0.0633 0.0819 0.0822 0.0517 0.0376 

Ljung-Box  47.5233*** 83.5720*** 24.8912 59.5365*** 111.4298*** 107.7610*** 

Engle's ARCH test 879.4908*** 1032.5000*** 992.1632*** 396.1117*** 1244.6000*** 1182.9000*** 
Jarque-Bera 2968.3645*** 6235.6187*** 6301.4952*** 3087.0901*** 10756.0847*** 10477.0040*** 

Panel B: Full sample 2000-2020 

N  5330 5305 5149 5090 5282 5282 

Mean 0.00013 -5.89805E-06 0.00007 0.00018 0.00018 0.00019 

Median 0.00076 0.00041 0.00041 0.00065 0.00059 0.00051 
Standard Deviation 0.01491 0.01199 0.01490 0.01549 0.01255 0.01208 

Sample Variance 0.00022 0.00014 0.00022 0.00024 0.00016 0.00015 

Kurtosis 5.74919 7.83999 6.34990 5.00961 10.94638 13.02634 
Skewness -0.16468 -0.32603 -0.37359 -0.37041 -0.39325 -0.37702 

Minimum -0.13055 -0.11512 -0.12111 -0.09256 -0.12765 -0.13842 

Maximum 0.10797 0.09384 0.13235 0.09401 0.10957 0.10764 
ADF -16.5012*** -17.2605*** -16.1274*** -14.3887*** -16.5782*** -17.0102*** 

KPSS  0.0596 0.0581 0.0557 0.0547 0.0344 0.0237 

Ljung-Box 35.0808** 82.7594*** 22.9644 66.7635*** 173.7501*** 190.9219*** 
Engle's ARCH test 1026.3000*** 1164.2000*** 1185.8000*** 527.8228*** 1657.0000*** 1687.0000*** 

Jarque-Bera  7346.6308*** 13650.8543*** 8748.6224*** 5424.7910*** 26446.7912*** 37378.6864*** 
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3.2  Loss functions MSE & MAE and Diebold-Mariano test 

Next, a short discussion about the loss functions and the Diebold-Mariano test used in this 

thesis. Together with volatility proxy, the loss functions or error functions, are important 

aspects when comparing the performance of volatility forecasting models. Previous litera-

ture has used different methods to evaluate and compare the forecasting performance of the 

models. Some common methods are root mean squared error (RMSE), mean squared error 

(MSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and mean 

mixed error (MME). Mean squared error measures the average squared difference between 

the estimated (forecasted) values and the actual values, which is the Yang-Zhang volatility 

proxy in this thesis. Mean absolute error measures the average absolute difference between 

the forecasted and the actual values. Hansen and Lunde (2006) present six different loss 

functions. Authors state that MSE is a robust loss function. MSE however penalize large 

errors more than MAE and Brooks (2019, 285) claim that the usefulness of MSE depends 

on whether large forecast errors are disproportionately more serious than smaller errors.  

MSE is computed as a sum of squared differences between the forecasted values and the 

actual values divided by the sample size. MSE is given by:  

àtu = 	
1

i − (i& − 1)
	3(

A

!%A!
!! −	!D,!)# (25) 

where i is the number of observations and  i& is the first out-of-sample forecast observation. 

!! and  !D," are the volatility proxy and forecasted volatility at time k. 

MAE is computed as a sum of absolute differences between the forecasted values and the 

actual values divided by the sample size. MAE is given by: 

àpu =	
1
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where  i is the number of observations and i& is the first out-of-sample forecast observation 

!! and !D," are the volatility proxy and forecasted volatility at time k.  

In order to assess more deeply the performance of the volatility forecasting models some 

other loss functions could also be used. However, in the context of this thesis, the MSE and 



46 

MAE are good candidates because they emphasize different things and there’s conceptual 

difference between these two loss functions. Also, their wide use in previous research is 

another reason why they are chosen in this thesis to rank the volatility forecasting models. 

The loss functions MAE and MSE show the ranking of the volatility forecasting models. To 

assess whether these rankings hold statistically significant difference, the Diebold-Mariano 

test (1995) is used. White’s (2000) Reality Check and Hansen’s (2005) Superior Predictive 

Ability tests are other ways to compare the forecasts. In this thesis we’ll focus on the 

Diebold-Mariano test and the test is done so that the best ranked model under MAE and 

MSE from each index and its volatility forecast !D" is tested against all the other model fore-

casts !D> separately. The two forecast errors are then computed as ä" =	!F. −	!D" and ä> =

	!F. −	!D>, where !F. is the Yang-Zhang volatility proxy. The loss differentials are then 

defined as ã! =	ä"!# −	ä>!#  for the squared forecast errors and as ã! =	 |ä"!| −	 âä>!â for the 

absolute forecast errors. The test is based on the loss differentials of the forecast errors and 

the null hypothesis of equal forecast accuracy means that the population mean of the loss 

differential series is zero. The alternative hypothesis is that the two forecasts have different 

levels of accuracy. (Diebold and Mariano 1995; Diebold 2015) 

Test statistic of the Diebold and Mariano is: 

qà =	
ã

#Ñå1iç ∗ 	èUV
ê fãg?

 
(27) 

where ã is the sample mean loss differential and èUVê fãg is a consistent estimate of the 

variance of loss differential. Under the null hypothesis of equal forecast accuracy, the 

Diebold-Mariano test statistic follows a standard normal distribution +(0,1). (Diebold and 

Mariano 1995) 
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3.3  Making of volatility forecasts 

This chapter explains how volatility forecasting was done. First, the full sample data was 

divided to in-sample period of January 1, 2000 to December 31, 2015 and to out-of-sample 

forecasting period of January 1, 2016 to December 31, 2020. After the data sampling the 

second decision was to choose the specific GARCH-type models. The basic GARCH(1,1), 

EGARCH(1,1) and GJR(1,1) models were selected first as a benchmarking models for vol-

atility forecasting. Previous studies, e.g., Engle and Ng (1993), Brailsford and Faff (1996), 

have shown that these basic models offer good volatility forecasting results. Other GARCH-

type models were then chosen based on purely AIC and BIC information criterion. Because 

these information criteria can give different results it was chosen that if the results vary (i.e., 

the AIC and BIC suggest different models), then both of these were considered when choos-

ing the models. As an example with the DAX30 data, the AIC suggested the ARIMA(1,0,1)-

EGARCH(2,3) whereas, the BIC proposed the ARIMA(0,0,0)-EGARCH(1,3), so therefore 

both of these models were chosen. Similar model selection was done with all of the six in-

dices and after the selection the models were fitted with the in-sample data.  

Before forecasting the standardized residuals of the fitted models were tested with Ljunq-

Box test, Engle’s ARCH test and Jarque-Bera test. Log-likelihood values were also consid-

ered to check the adequacy of the fitted models. Making the goodness-of-fit tests it was clear 

that the selected models based on AIC and BIC were not the best ones. There was e.g., some 

ARCH effects still left, and the Ljunq-Box test indicated that there was also some significant 

autocorrelation left in the standardized residuals. With NIKKEI225 the models based on AIC 

and BIC seemed to be fitted quite well since all the initial models did not reject Ljunq-Box 

or ARCH test. The forecasting was done in Matlab and the process was to run daily and 

monthly volatility forecasts with one-step ahead rolling window all the way through the out-

of-sample period 2016-2020. In this way, the oldest observation dropped out and models 

were re-estimated until to the end of the out-of-sample period. However, the computational 

problems appeared when trying to run other, some better fitting models. With some bigger 

models, e.g. ARIMA(2,0,2)-GARCH(3,3) Matlab was not able to fully run the forecasts and 

there was missing forecast values. For these reasons it was decided to make the daily vola-

tility forecasts based on the AIC and BIC model selection and the author of this thesis rec-

ognizes that these models may not be the best ones and some alternative models could offer 
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better volatility forecasting results. Also, the monthly volatility forecasts were chosen to be 

done only with the GARCH(1,1), EGARCH(1,1) and GJR(1,1) models. With monthly fore-

casts there was also some computational problems as there was missing forecast values for 

EGARCH(1,1) with NIKKEI225 data. Again, author of this thesis recognize that some other 

models could be better. It was also decided not to include the moving average models for 

monthly forecasting because of time and length limitation of making this thesis. 

Selected daily volatility forecasting models for DAX30 were ARIMA(1,0,0)-GARCH(1,2), 

ARIMA(0,0,0)-GARCH(1,1), ARIMA(1,0,1)-EGARCH(2,3), ARIMA(0,0,0)-

EGARCH(1,3), ARIMA(1,0,1)-GJR-GARCH(1,1), ARIMA(0,0,0)-GJR-GARCH(1,1). 

Forecasting models for FTSE100 were ARIMA(1,0,1)-GARCH(1,2), ARIMA(1,0,0)-

GARCH(1,1), ARIMA(1,0,1)-EGARCH(1,2), ARIMA(1,0,1)-EGARCH(1,1), 

ARIMA(1,0,1)-GJR-GARCH(1,1), ARIMA(0,0,0)-GJR-GARCH(1,1). For NIKKEI225 the 

forecasting models were ARIMA(2,0,2)-GARCH(1,2), ARIMA(0,0,0)-GARCH(1,1), 

ARIMA(1,0,1)-EGARCH(1,2), ARIMA(0,0,0)-EGARCH(2,2), ARIMA(1,0,1)-GJR-

GARCH(1,1), ARIMA(0,0,0)-GJR-GARCH(1,1). Forecasting models for Shanghai SE 

Composite were ARIMA(1,0,1)-GARCH(1,2), ARIMA(0,0,0)-GARCH(1,1), 

ARIMA(1,0,1)-EGARCH(2,2), ARIMA(1,0,1)-EGARCH(1,1), ARIMA(1,0,1)-GJR-

GARCH(1,2), ARIMA(0,0,0)-GJR-GARCH(1,1). For S&P500 the volatility forecasting 

models were ARIMA(1,0,1)-GARCH(2,2), ARIMA(1,0,1)-GARCH(1,2), ARIMA(1,0,1)-

EGARCH(1,2), ARIMA(1,0,1)-EGARCH(1,1), ARIMA(1,0,1)-GJR-GARCH(1,1). And 

lastly, the forecasting models for DOW Jones were ARIMA(1,0,1)-GARCH(2,2), 

ARIMA(0,0,0)-GARCH(2,2), ARIMA(0,0,0)-EGARCH(2,2), ARIMA(1,0,1)-

EGARCH(1,1), ARIMA(1,0,1)-GJR(2,2), ARIMA(1,0,1)-GJR(1,1). Volatility forecasts 

were also made with the basic GARCH(1,1), EGARCH(1,1) and GJR(1,1) models in all of 

the indices. In addition of normal distribution, the t-distributed forecasting models were also 

included to compare their volatility forecasting performance. For the moving average mod-

els, the five-day moving average (MA5), one month moving average (MA21), three month 

moving average (MA63) and the exponentially weighted moving average (EWMA) fore-

casting models were included for all of the indices. After obtaining the daily and monthly 

volatility forecasts, each forecasting window was computed with the MSE and MAE loss 

functions from the equations 25 and 26. Tables from 2 to 8 in the next chapter are presenting 

the average of these errors and the models are ranked based on these values. Lastly, the 

Diebold-Mariano test was used to test statistical difference of the models’ forecasts. 
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4 Results 

In this chapter the daily and monthly volatility forecasting results for each index are pre-

sented. The results from the Diebold-Mariano test of equal predictive accuracy are also in-

cluded.  

4.1  Volatility forecasting results 

DAX30  

The daily volatility forecasting results for DAX30 are presented in Table 2. ARIMA(1,0,1)-

GJR-GARCH(1,1) with t-distribution is the best performing volatility forecasting model un-

der both loss functions. The MA5 and ARIMA(1,0,1)-GJR-GARCH with normal distribu-

tion are on a second and third place based on MSE. Normally distributed ARIMA(1,0,1)-

EGARCH(2,3) and ARIMA(1,0,1)-GJR-GARCH(1,1) holds second and third place based 

on MAE loss function. Being the second best model under MAE, the normally distributed 

ARIMA(1,0,1)-EGARCH(2,3) ranks among the middle class based on the MSE. Basic GJR-

GARCH(1,1) models are performing well under MSE whereas same models are on a middle 

cast based on MAE. According to MSE, the basic EGARCH(1,1) models are right after the 

basic GJR(1,1) models (although the numerical difference between the models is rather 

large). However, under MAE, the basic GJR-GARCH(1,1) models are outperformed by the 

basic EGARCH(1,1) models. The bottom three ranking with MSE loss function is MA21, t-

distributed ARIMA(1,0,0)-GARCH(1,2) and MA63. Under MAE, the bottom ranked mod-

els are GARCH(1,1) and ARIMA(1,0,0)-GARCH(1,2) both t-distributed, and MA63. 

GARCH models are among the worst performing models with both MSE and MAE. 
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Table 2. Volatility forecasting performance and ranking of the models for DAX30 

DAX30      

Model 
Average 
MSE Rank  

Average 
MAE Rank 

ARIMA(1,0,1)-GJR-GARCH(1,1) t  0.686116 1 ARIMA(1,0,1)-GJR-GARCH(1,1) t  0.051951 1 
MA5 0.688841 2 ARIMA(1,0,1)-EGARCH(2,3) 0.052063 2 
ARIMA(1,0,1)-GJR-GARCH(1,1) 0.695545 3 ARIMA(1,0,1)-GJR-GARCH(1,1) 0.052656 3 
ARIMA(0,0,0)-GJR-GARCH(1,1) 0.695892 4 ARIMA(0,0,0)-GJR-GARCH(1,1) 0.052679 4 
ARIMA(0,0,0)-GJR-GARCH(1,1) t  0.695892 5 ARIMA(0,0,0)-GJR-GARCH(1,1) t  0.052679 5 

GJR-GARCH(1,1) 0.707818 6 EGARCH(1,1) 0.053046 6 
GJR-GARCH(1,1) t 0.708878 7 EGARCH(1,1) t 0.053118 7 
EGARCH(1,1) t 0.737638 8 ARIMA(0,0,0)-EGARCH(1,3) 0.053193 8 
EGARCH(1,1) 0.766232 9 ARIMA(1,0,1)-EGARCH(2,3) t  0.053224 9 
ARIMA(0,0,0)-EGARCH(1,3) t 0.837488 10 ARIMA(0,0,0)-EGARCH(1,3) t  0.053226 10 
ARIMA(0,0,0)-EGARCH(1,3) 0.839728 11 GJR-GARCH(1,1) 0.054015 11 
ARIMA(0,0,0)-GARCH(1,1) 0.863346 12 GJR-GARCH(1,1) t 0.054197 12 
ARIMA(1,0,1)-EGARCH(2,3) 0.872928 13 MA5 0.055224 13 
GARCH(1,1) 0.877539 14 EWMA 0.056255 14 
ARIMA(1,0,0)-GARCH(1,2) 0.885136 15 MA21 0.056995 15 
ARIMA(0,0,0)-GARCH(1,1) t  0.890407 16 ARIMA(0,0,0)-GARCH(1,1) 0.057456 16 
GARCH(1,1) t 0.909510 17 GARCH(1,1) 0.057738 17 
ARIMA(1,0,1)-EGARCH(2,3) t 0.909779 18 ARIMA(1,0,0)-GARCH(1,2) 0.058147 18 
EWMA 0.927982 19 ARIMA(0,0,0)-GARCH(1,1) t  0.058216 19 
MA21 0.968938 20 GARCH(1,1) t 0.058438 20 
ARIMA(1,0,0)-GARCH(1,2) t  0.980727 21 ARIMA(1,0,0)-GARCH(1,2) t  0.060740 21 
MA63 1.443383 22 MA63 0.068780 22 

 

It is also noteworthy from the German market results that the EWMA and MA21 are ranked 

higher under MAE close to the middle ranking whereas under MSE both models are ranked 

to the bottom. The EWMA is ranked just below the middle class under MAE and the model 

is outperforming all the GARCH models. Under MSE, EWMA’s performance is among the 

bottom range models. The best performing model under both loss functions is t-distributed. 

This is an expected result as the data showed signs of excess kurtosis. The t-distributed mod-

els are not however constantly outperforming models with normal distributions. In fact, the 

results indicate that under both loss functions, the relative performance, and the ranking of 

the models with normal distributions is better compared to models with t-distributions.  
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FTSE100  

Table 3 presents the daily volatility forecasting results for FTSE100. Under MSE loss func-

tion, the top three ranked models are ARIMA(1,0,1)-EGARCH(1,1) with t-distribution, 

basic EGARCH(1,1) and ARIMA(1,0,1)-EGARCH(1,1) with normal distributions. Under 

MAE loss function, the ARIMA(1,0,1)-EGARCH(1,1) with t-distribution ranks first, the 

ARIMA(1,0,1)-EGARCH(1,2) with t-distribution ranks second and basic EGARCH(1,1) 

holds third position. Under MSE, the EWMA is among bottom ranked models followed by 

MA21 and MA63. EWMA, ARIMA(1,0,1)-GARCH(1,2) with t-distribution and moving 

average model MA63 are ranked as bottom three models under MAE loss function. Being 

the second best model under MAE, the ARIMA(1,0,1)-EGARCH(1,2) with t-distribution 

ranks sixth under MSE. Otherwise model rankings are rather similar with both loss functions 

as the EGARCH and GJR type models holds the upper and middle class rankings. Basic 

GARCH(1,1) is outperformed by all the EGARCH and GJR models. Under MAE, the MA5 

is close to basic GJR-GARCH(1,1) model and the model is also outperforming all the 

GARCH models. 
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Table 3. Volatility forecasting performance and ranking of the models for FTSE100 

FTSE100      
 Model Average 

MSE Rank  
Average 
MAE Rank 

ARIMA(1,0,1)-EGARCH(1,1) t 0.376954 1 ARIMA(1,0,1)-EGARCH(1,1) t  0.042879 1 
EGARCH(1,1) 0.382116 2 ARIMA(1,0,1)-EGARCH(1,2) t  0.043708 2 
ARIMA(1,0,1)-EGARCH(1,1)  0.382485 3 EGARCH(1,1) 0.043879 3 
EGARCH(1,1) t 0.390204 4 ARIMA(1,0,1)-EGARCH(1,1)  0.043967 4 
ARIMA(1,0,1)-EGARCH(1,2)  0.396519 5 EGARCH(1,1) t 0.044322 5 

ARIMA(1,0,1)-EGARCH(1,2) t  0.400224 6 ARIMA(1,0,1)-EGARCH(1,2)  0.044420 6 
ARIMA(1,0,1)-GJR-GARCH(1,1) t  0.448037 7 ARIMA(1,0,1)-GJR-GARCH(1,1) t  0.045160 7 
ARIMA(1,0,1)-GJR-GARCH(1,1) 0.450159 8 ARIMA(0,0,0)-GJR-GARCH(1,1) t 0.045540 8 
ARIMA(0,0,0)-GJR-GARCH(1,1) 0.454161 9 ARIMA(1,0,1)-GJR-GARCH(1,1) 0.045755 9 
ARIMA(0,0,0)-GJR-GARCH(1,1) t  0.454963 10 ARIMA(0,0,0)-GJR-GARCH(1,1) 0.046024 10 
GJR-GARCH(1,1) 0.457192 11 GJR-GARCH(1,1) 0.046169 11 
ARIMA(1,0,0)-GARCH(1,1) 0.469458 12 MA5 0.046548 12 
ARIMA(1,0,1)-GARCH(1,2) 0.472088 13 GJR-GARCH(1,1) t 0.046656 13 
GJR-GARCH(1,1) t 0.472404 14 ARIMA(1,0,0)-GARCH(1,1) 0.047825 14 
GARCH(1,1) 0.473553 15 GARCH(1,1) 0.047931 15 
MA5 0.482676 16 ARIMA(1,0,1)-GARCH(1,2) 0.047980 16 
ARIMA(1,0,0)-GARCH(1,1) t  0.484868 17 MA21 0.048165 17 
ARIMA(1,0,1)-GARCH(1,2) t  0.487855 18 ARIMA(1,0,0)-GARCH(1,1) t 0.048320 18 
GARCH(1,1) t 0.488531 19 GARCH(1,1) t 0.048406 19 
EWMA 0.570884 20 EWMA 0.048482 20 
MA21 0.606920 21 ARIMA(1,0,1)-GARCH(1,2) t  0.048521 21 
MA63 0.835566 22 MA63 0.056862 22 

 

A distinctive feature from the FTSE100 results is that all asymmetric EGARCH models are 

performing well and all GJR-GARCH models are ranked among middle class according to 

both loss functions. Model rankings based on normal distributions and t-distributions vary. 

Both loss functions show that the best model is t-distributed and with MAE also the second 

best model holds t-distribution. With basic GARCH(1,1), EGARCH(1,1) and GJR-

GARCH(1,1) the normally distributed models outperform their t-distribution counterparts. 

Based on the data with excess kurtosis and non-normality, it is surprising result that the t-

distributed models are not constantly outperforming models with normal distributions. 

  



53 

NIKKEI225 

The daily volatility forecasting results for NIKKEI225 are presented in Table 4. According 

to both loss functions, the ARIMA(0,0,0)-EGARCH(2,2) with normal distribution is the best 

performing model. Based on MAE loss function, the model is followed by MA5 and 

ARIMA(2,0,2)-EGARCH(2,2) with t-distribution. Basic EGARCH(1,1) with normal and t-

distribution ranks second and third under MSE. Same models are doing pretty well also un-

der MAE. Top performer among MAE, the MA5 ranks around middle position under MSE. 

According to both loss functions, the GJR-GARCH models ranks after the EGARCH type 

models. Being the second worst forecasting model under MSE, the MA21 ranks a bit higher 

under MAE and outperforms both EWMA and all GARCH models. As was the case with 

German DAX30 and UK FTSE100, the performance of the GARCH type models is again 

rather poor under both loss functions.  

Table 4. Volatility forecasting performance and ranking of the models for NIKKEI225 

NIKKEI225      

 Model 
Average 
MSE Rank   

Average 
MAE Rank 

ARIMA(0,0,0)-EGARCH(2,2) 0.513319 1 ARIMA(0,0,0)-EGARCH(2,2) 0.056959 1 
EGARCH(1,1) 0.521137 2 MA5 0.057159 2 
EGARCH(1,1) t 0.524877 3 ARIMA(0,0,0)-EGARCH(2,2) t  0.057637 3 
ARIMA(0,0,0)-EGARCH(2,2) t  0.530426 4 EGARCH(1,1) 0.058659 4 
ARIMA(1,0,1)-EGARCH(1,2) 0.532504 5 ARIMA(1,0,1)-EGARCH(1,2) 0.058952 5 
ARIMA(1,0,1)-EGARCH(1,2) t  0.548547 6 EGARCH(1,1) t 0.058966 6 
ARIMA(1,0,1)-GJR-GARCH(1,1) t 0.580790 7 ARIMA(1,0,1)-EGARCH(1,2) t  0.059609 7 
ARIMA(1,0,1)-GJR-GARCH(1,1) 0.593452 8 ARIMA(1,0,1)-GJR-GARCH(1,1) t 0.060684 8 
ARIMA(0,0,0)-GJR-GARCH(1,1) 0.593531 9 ARIMA(1,0,1)-GJR-GARCH(1,1) 0.061531 9 
ARIMA(0,0,0)-GJR-GARCH(1,1) t 0.593531 10 ARIMA(0,0,0)-GJR-GARCH(1,1) 0.061540 10 
GJR-GARCH(1,1) 0.605000 11 ARIMA(0,0,0)-GJR-GARCH(1,1) t 0.061540 11 
GJR-GARCH(1,1) t 0.607939 12 GJR-GARCH(1,1) 0.062313 12 
MA5 0.674646 13 GJR-GARCH(1,1) t 0.062452 13 
ARIMA(0,0,0)-GARCH(1,1) 0.691834 14 MA21 0.063843 14 
GARCH(1,1) 0.692283 15 EWMA 0.064012 15 

EWMA 0.696202 16 ARIMA(0,0,0)-GARCH(1,1) 0.066121 16 
ARIMA(2,0,2)-GARCH(1,2) 0.704979 17 GARCH(1,1) 0.066216 17 
ARIMA(0,0,0)-GARCH(1,1) t 0.710006 18 ARIMA(2,0,2)-GARCH(1,2) 0.066424 18 
GARCH(1,1) t 0.711554 19 ARIMA(0,0,0)-GARCH(1,1) t  0.066868 19 
ARIMA(2,0,2)-GARCH(1,2) t  0.741796 20 GARCH(1,1) t 0.067021 20 
MA21 0.771787 21 ARIMA(2,0,2)-GARCH(1,2) t  0.067962 21 
MA63 0.972174 22 MA63 0.075250 22 
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Nikkei index data shows signs of asymmetry and it is a surprising result that simple moving 

average beats more complex GARCH type models which are created to capture well-known 

characteristics of stock market data. Moving average is purely an average of a certain time 

period and the only dynamic feature is adding new variables and dropping the old ones as 

time period goes further. EWMA on the other hand puts more weight on more recent data 

and it is memorizing past events based on weighting factor lambda. This could be understood 

as an asset in changing market conditions and hence ability to produce more accurate fore-

casts. The forecasting performance of the EWMA is far from the EGARCH and GJR models 

but still the model beats all the GARCH models under MAE and gets rather close to 

GARCH(1,1) with MSE. According to results from the table 4, the top performing model is 

normally distributed and all the basic GARCH(1,1), EGARCH(1,1) and GJR(1,1) models 

with normal distributions are performing slightly better than their t-distributed counterparts.  

Shanghai SE Composite 

Table 5 provides the daily volatility forecasting results for Shanghai SE Composite index. 

According to MSE loss function, the top three volatility forecasting models are EWMA, 

MA5 and MA21. Same models are in top three also with MAE loss function as the MA5 is 

ranked first followed by MA21 and on a third position EWMA. ARIMA(1,0,1)-GJR-

GARCH(1,2) with t-distribution is the poorest forecasting model under MAE. The same 

model ranks the second worst forecasting model under MSE while MA63 holds the bottom 

position. In general, the EGARCH type models are performing well as they are ranked after 

the MA5, MA21 and EWMA. Normally distributed basic GARCH(1,1) outperforms all 

GJR-GARCH models and is on a middle position based on the rankings of MSE and MAE. 

This is again surprising result as it would’ve been expected that the GJR-GARCH models 

follow the similar kind asymmetric EGARCH models more closely. Ranked on a bottom 

under MSE, the MA63 rise few steps higher under MAE. Otherwise, the model rankings are 

rather similar on both loss functions. Moving average models MA5, MA21 and EWMA are 

showing good volatility forecasting performance and the differences are quite big compared 

to more complex GARCH, EGARCH and GJR-GARCH models. This is rather surprising 

result, and one possible explanation can be that moving average models are able to response 

and react more quickly to changing market conditions in a high volatile environment. Based 
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on the results, the GARCH-type models with normal distributions are persistently outper-

forming the t-distributed models.  

Table 5. Volatility forecasting performance and ranking of the models for Shanghai SE Com-
posite 

Shanghai SE Composite      

 Model 
Average 
MSE Rank   

Average 
MAE Rank 

EWMA 0.540193 1 MA5 0.052253 1 
MA5 0.556823 2 MA21 0.053951 2 
MA21 0.598278 3 EWMA 0.054216 3 
ARIMA(1,0,1)-EGARCH(2,2)  0.604012 4 ARIMA(1,0,1)-EGARCH(1,1) 0.059726 4 
ARIMA(1,0,1)-EGARCH(1,1) 0.612422 5 EGARCH(1,1)  0.059805 5 
EGARCH(1,1)  0.613252 6 ARIMA(1,0,1)-EGARCH(2,2)  0.060107 6 
ARIMA(1,0,1)-EGARCH(2,2) t  0.625067 7 ARIMA(1,0,1)-EGARCH(1,1) t  0.061355 7 
ARIMA(1,0,1)-EGARCH(1,1) t  0.636503 8 ARIMA(1,0,1)-EGARCH(2,2) t  0.061441 8 
EGARCH(1,1) t 0.641823 9 EGARCH(1,1) t 0.061527 9 
ARIMA(0,0,0)-GARCH(1,1) 0.646364 10 ARIMA(0,0,0)-GARCH(1,1) 0.062297 10 
GARCH(1,1) 0.646405 11 GARCH(1,1) 0.062309 11 
ARIMA(0,0,0)-GJR-GARCH(1,1)  0.657852 12 ARIMA(1,0,1)-GARCH(1,2) 0.062734 12 
GJR-GARCH(1,1) 0.658809 13 ARIMA(0,0,0)-GJR-GARCH(1,1)  0.062784 13 
ARIMA(1,0,1)-GARCH(1,2) 0.658951 14 GJR-GARCH(1,1) 0.062838 14 
ARIMA(1,0,1)-GJR-GARCH(1,2)  0.661192 15 ARIMA(1,0,1)-GJR-GARCH(1,2)  0.062861 15 
GARCH(1,1) t 0.674023 16 GARCH(1,1) t 0.064388 16 
ARIMA(0,0,0)-GARCH(1,1) t  0.674065 17 ARIMA(0,0,0)-GARCH(1,1) t 0.064402 17 
ARIMA(0,0,0)-GJR-GARCH(1,1) t   0.686723 18 MA63 0.064516 18 
GJR-GARCH(1,1) t 0.690028 19 ARIMA(0,0,0)-GJR-GARCH(1,1) t   0.064978 19 
ARIMA(1,0,1)-GARCH(1,2) t  0.717509 20 GJR-GARCH(1,1) t 0.065143 20 
ARIMA(1,0,1)-GJR(1,2) t  0.732184 21 ARIMA(1,0,1)-GARCH(1,2) t  0.065646 21 

MA63 0.772009 22 ARIMA(1,0,1)-GJR-GARCH(1,2) t  0.066443 22 

 

S&P500 

Table 6 presents the daily volatility forecasting results for S&P500. T-distributed and nor-

mally distributed ARIMA(1,0,1)-EGARCH(1,1) followed by MA5 are top three forecasting 

models according to MAE loss function. Top three models under MSE loss functions are 

normally distributed ARIMA(1,0,1)-EGARCH(1,1), EGARCH(1,1) and ARIMA(1,0,1)-

EGARCH(1,1) with t-distribution. EWMA, MA21 and MA63 are the bottom ranked models 

under MSE. ARIMA(1,0,1)-GARCH(1,2) with t-distribution, EWMA and MA63 are the last 

three models under MAE loss function. Being the top performer under MSE, the normally 
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distributed ARIMA(1,0,1)-EGARCH(1,1) ranks second under MAE. Same model t-distrib-

uted counterpart holds first place under MAE, while its ranking is third under MSE. Another 

difference between the rankings of the models is that the basic EGARCH(1,1) with normal 

distribution ranks fourth under MAE, while the model holds second place under MSE. MA5 

is ranked third under MAE and sixth under MSE loss function and there’s quite big numer-

ical difference to the winner ARIMA(1,0,1)-EGARCH(1,1) with normal distribution. MA21 

is among worst performing models under MSE whereas ranking changes few positions 

higher under MAE. 

Table 6. Volatility forecasting performance and ranking of the models for S&P500 

S&P500      

 Model 
Average 
MSE Rank   

Average 
MAE Rank 

ARIMA(1,0,1)-EGARCH(1,1)  0.335936 1 ARIMA(1,0,1)-EGARCH(1,1) t  0.040685 1 
EGARCH(1,1)  0.346272 2 ARIMA(1,0,1)-EGARCH(1,1)  0.040798 2 
ARIMA(1,0,1)-EGARCH(1,1) t  0.361836 3 MA5 0.041613 3 
EGARCH(1,1) t 0.374369 4 EGARCH(1,1)  0.042301 4 
ARIMA(1,0,1)-EGARCH(1,2) 0.392890 5 ARIMA(1,0,1)-EGARCH(1,2) 0.043211 5 
MA5 0.413721 6 EGARCH(1,1) t 0.043288 6 
ARIMA(1,0,1)-GJR-GARCH(1,1) 0.456754 7 ARIMA(1,0,1)-GJR-GARCH(1,1) t  0.045581 7 
ARIMA(1,0,1)-GJR-GARCH(1,1) t  0.483563 8 ARIMA(1,0,1)-GJR-GARCH(1,1) 0.046155 8 
GJR-GARCH(1,1) 0.485374 9 GJR-GARCH(1,1) 0.047510 9 
GARCH(1,1) 0.523860 10 GJR-GARCH(1,1) t 0.048355 10 
ARIMA(1,0,1)-GARCH(1,2) 0.528586 11 GARCH(1,1) 0.050915 11 
ARIMA(1,0,1)-GARCH(2,2) 0.528806 12 ARIMA(1,0,1)-GARCH(1,2) 0.051156 12 
GJR-GARCH(1,1) t 0.544563 13 ARIMA(1,0,1)-GARCH(2,2) 0.051227 13 
GARCH(1,1) t 0.606601 14 GARCH(1,1) t 0.052723 14 
ARIMA(1,0,1)-GARCH(2,2) t  0.628026 15 MA21 0.053226 15 
ARIMA(1,0,1)-GARCH(1,2) t  0.629620 16 ARIMA(1,0,1)-GARCH(2,2) t  0.053632 16 
EWMA 0.747593 17 ARIMA(1,0,1)-GARCH(1,2) t  0.053654 17 
MA21 0.813991 18 EWMA 0.055225 18 
MA63 1.298019 19 MA63 0.069468 19 

 

The results from the S&P500 show that the benchmark models GARCH(1,1) and GJR-

GARCH(1,1) are all performing moderately. EGARCH(1,1) is particularly top performer 

under both loss functions. Asymmetric EGARCH and GJR-GARCH models outperform 

GARCH models under MAE loss function. Results are similar under MSE, although t-dis-

tributed GJR-GARCH(1,1) drops a bit lower and is being outperformed by the 

ARIMA(1,0,1)-GARCH(1,2) and ARIMA(1,0,1)-GARCH(2,2) models. The results also 
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reveal that the normally distributed ARIMA(1,0,1)-EGARCH(1,1) and EGARCH(1,1) fol-

lowed by ARIMA(1,0,1)-EGARCH(1,1) with t-distribution are the best models according 

MSE. T-distributed ARIMA(1,0,1)-EGARCH(1,1) takes the lead under MAE followed by 

normally distributed models. T-distributed GARCH models are among the worst volatility 

forecasting models under MAE. With MSE some of the t-distributed models are also close 

to bottom rankings. Also, normally distributed GARCH(1,1), EGARCH(1,1) and GJR(1,1) 

are all outperforming their t-distributed counterparts. It's not straightforward to say which 

distribution is the best one as the rankings vary depending on the loss function. However, 

normally distributed models seem to have an upper hand when comparing models separately 

under the loss functions. 

Dow Jones Industrial Average  

The daily volatility forecasting results for Dow Jones index are provided in Table 7. Accord-

ing to results, the ARIMA(1,0,1)-EGARCH(1,1) and ARIMA(0,0,0)-EGARCH(2,2) both 

with normal distributions, followed by t-distributed ARIMA(1,0,1)-EGARCH(1,1), are the 

top three volatility forecasting models under MAE loss function. According to MSE loss 

function, the top three models are normally distributed ARIMA(1,0,1)-EGARCH(1,1), 

EGARCH(1,1) and ARIMA(0,0,0)-EGARCH(2,2). MA21, EWMA and MA63 are the bot-

tom three models under MAE. Worst three volatility forecasting models under MSE are 

EWMA, MA21 and MA63. EGARCH-type models are all ranked as a best performing mod-

els followed by MA5 under MAE loss function. Results are similar with MSE as the 

EGARCH models perform well, although the MA5 is outperforming the t-distributed 

ARIMA(0,0,0)-EGARCH(2,2) model. Compared to more complex models, the simple mov-

ing average model MA5 is also performing well under both loss functions. A distinctive 

result between the loss functions is the performance of MA5 and MA21 as the MA5 is su-

perior and MA21 is ranked among the worst performing models. 
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Table 7. Volatility forecasting performance and ranking of the models for Dow Jones  

Dow Jones       

Model 
Average 
MSE Rank Model 

Average 
MAE Rank 

ARIMA(1,0,1)-EGARCH(1,1) 0.404091 1 ARIMA(1,0,1)-EGARCH(1,1) 0.040584 1 
EGARCH(1,1) 0.413114 2 ARIMA(0,0,0)-EGARCH(2,2) 0.040783 2 

ARIMA(0,0,0)-EGARCH(2,2) 0.416344 3 ARIMA(1,0,1)-EGARCH(1,1) t 0.040883 3 

ARIMA(1,0,1)-EGARCH(1,1) t 0.425303 4 EGARCH(1,1) 0.041880 4 
EGARCH(1,1) t 0.433174 5 EGARCH(1,1) t 0.042880 5 

MA5 0.469753 6 ARIMA(0,0,0)-EGARCH(2,2) t 0.043432 6 

ARIMA(0,0,0)-EGARCH(2,2) t 0.470570 7 MA5 0.044311 7 
ARIMA(1,0,1)-GJR-GARCH(1,1) 0.552562 8 ARIMA(1,0,1)-GJR-GARCH(2,2) t 0.046662 8 

ARIMA(1,0,1)-GJR-GARCH2,2) 0.571168 9 ARIMA(1,0,1)-GJR-GARCH(1,1) t 0.046672 9 

GJR-GARCH(1,1) 0.583272 10 ARIMA(1,0,1)-GJR-GARCH(1,1) 0.046705 10 
ARIMA(1,0,1)-GJR-GARCH(2,2) t 0.586441 11 ARIMA(1,0,1)-GJR-GARCH(2,2) 0.047299 11 

ARIMA(1,0,1)-GJR-GARCH(1,1) t 0.587503 12 GJR-GARCH(1,1) 0.048222 12 

GARCH(1,1) 0.633181 13 GJR-GARCH(1,1) t 0.049068 13 
GJR-GARCH(1,1) t 0.638675 14 GARCH(1,1) 0.051801 14 

ARIMA(0,0,0)-GARCH(2,2) 0.640260 15 ARIMA(0,0,0)-GARCH(2,2) 0.052292 15 

ARIMA(1,0,1)-GARCH(2,2) 0.641253 16 ARIMA(1,0,1)-GARCH(2,2) 0.052317 16 
GARCH(1,1) t 0.713474 17 GARCH(1,1) t 0.053465 17 

ARIMA(0,0,0)-GARCH(2,2) t 0.727646 18 ARIMA(0,0,0)-GARCH(2,2) t 0.054232 18 

ARIMA(1,0,1)-GARCH(2,2) t 0.733538 19 ARIMA(1,0,1)-GARCH(2,2) t 0.054434 19 
EWMA 0.940432 20 MA21 0.055535 20 

MA21 1.008261 21 EWMA 0.057705 21 

MA63 1.592943 22 MA63 0.072078 22 

 

As was the case with S&P500 results, the EWMA is ranked among bottom class under both 

loss functions. As a benchmark model, the basic EGARCH(1,1) is also rather good based on 

both loss functions. Asymmetric EGARCH and GJR-GARCH models volatility forecasting 

performance is again relatively good and the models are outperforming the GARCH models. 

For some reason the difference between the EGARCH models and GJR-GARCH models is 

however rather big and again the EGARCH beats the GJR-GARCH. Comparing the perfor-

mance of normally distributed and t-distributed models, we can see that the first ranked 

model is normally distributed based on both loss functions. As was the case with S&P500, 

it seems also that with the Dow Jones, the normally distributed models are outperforming 

their t-distributed counterparts when comparing models separately under the loss functions. 

The results of the ARIMA(1,0,1)-GJR-GARCH(1,1) and ARIMA(1,0,1)-GJR-GARCH(2,2) 
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are interesting as under MSE, the normally distributed models ranks higher whereas under 

MAE the t-distributed models outperform, although the relative numerical difference is ra-

ther small.  

MONTHLY VOLATILITY FORECASTS 

Lastly, the results from the monthly volatility forecasts are presented in Table 8. For the 

DAX, the GJR-GARCH(1,1) with normal distribution ranks first under both MAE and MSE 

loss functions. GARCH(1,1) with t-distribution ranks bottom based on MSE and 

EGARCH(1,1) with t-distribution ranks last under MAE. For the FTSE, the EGARCH(1,1) 

with t-distribution holds first place based on both loss functions. Normally distributed GJR-

GARCH(1,1) ranks last under both loss functions. For the Nikkei, the EGARCH(1,1) and 

the GJR-GARCH(1,1) both with normal distributions ranks first according to MSE and MAE 

loss functions. T-distributed GARCH(1,1) ranks last under MSE and EGARCH(1,1) with 

normal distribution is bottom ranked under MAE loss function. For the Shanghai, the 

EGARCH(1,1) with normal distribution ranks first based on MSE whereas the GARCH(1,1) 

also with normal distribution holds first place under MAE. T-distributed GJR-GARCH(1,1) 

ranks last under both loss functions. For the S&P500, the normally distributed 

EGARCH(1,1) ranks first based on both loss functions. GARCH(1,1) with t-distribution is 

bottom ranked. Lastly, for the Dow Jones, the GJR-GARCH(1,1) with normal distribution 

ranks first under MSE and the EGARCH(1,1) with normal distribution takes the first place 

under MAE. As was the case with the S&P500, the GARCH(1,1) with t-distribution is bot-

tom ranked also with Dow Jones index. 
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Table 8. Monthly volatility forecasting performance and ranking of the models 
  
DAX30 FTSE100 

  
Average 
MSE Rank   

Average 
MAE Rank   

Average 
MSE Rank   

Average 
MAE Rank 

GJR-GARCH(1,1) 1.038112 1 GJR-GARCH(1,1) 0.085131 1 EGARCH(1,1) t 0.520153 1 EGARCH(1,1) t 0.059988 1 

GJR-GARCH(1,1) t 1.067352 2 GJR-GARCH(1,1) t 0.086057 2 EGARCH(1,1) 0.520848 2 EGARCH(1,1) 0.060044 2 
EGARCH(1,1) 1.347843 3 GARCH(1,1) 0.093033 3 GARCH(1,1) 0.527053 3 GARCH(1,1) 0.060056 3 
GARCH(1,1) 1.445399 4 EGARCH(1,1) 0.094602 4 GARCH(1,1) t 0.534777 4 GARCH(1,1) t 0.060347 4 
EGARCH(1,1) t 1.580262 5 GARCH(1,1) t 0.096440 5 GJR-GARCH(1,1) t 0.610669 5 GJR-GARCH(1,1) t 0.060782 5 
GARCH(1,1) t 1.627665 6 EGARCH(1,1) t 0.103237 6 GJR-GARCH(1,1)  0.611860 6 GJR-GARCH(1,1)  0.060902 6 
Nikkei225 Shanghai SE Composite 

  
Average 
MSE Rank   

Average 
MAE Rank   

Average 
MSE Rank   

Average 
MAE Rank 

EGARCH(1,1) 1.310782 1 GJR-GARCH(1,1) 0.104735 1 EGARCH(1,1) 2.048330 1 GARCH(1,1) 0.115751 1 

GJR-GARCH(1,1) 1.36129 2 GARCH(1,1)  0.106331 2 GARCH(1,1) 2.051822 2 GARCH(1,1) t 0.116991 2 
GARCH(1,1) 1.432529 3 GJR-GARCH(1,1) t 0.107769 3 EGARCH(1,1) t 2.053889 3 EGARCH(1,1) 0.119691 3 
EGARCH(1,1) t 1.451752 4 GARCH(1,1) t 0.109959 4 GARCH(1,1) t 2.078758 4 EGARCH(1,1) t 0.119976 4 
GJR-GARCH(1,1) t 1.551990 5 EGARCH(1,1) t 0.114264 5 GJR-GARCH(1,1) 2.126378 5 GJR-GARCH(1,1) 0.122096 5 
GARCH(1,1) t 1.586940 6 EGARCH(1,1) 0.115243 6 GJR-GARCH(1,1) t 2.132338 6 GJR-GARCH(1,1) t 0.122419 6 
S&P500 Dow Jones 

  
Average 
MSE Rank   

Average 
MAE Rank   

Average 
MSE Rank   

Average 
MAE Rank 

EGARCH(1,1) 0.733942 1 EGARCH(1,1) 0.072242 1 GJR-GARCH(1,1) 0.701103 1 EGARCH(1,1) 0.071893 1 

GJR-GARCH(1,1) 0.740654 2 EGARCH(1,1) t 0.074052 2 GJR-GARCH(1,1) t 0.719029 2 GJR-GARCH(1,1) 0.072663 2 
EGARCH(1,1) t 0.756713 3 GJR-GARCH(1,1) 0.074229 3 EGARCH(1,1) 0.731785 3 EGARCH(1,1) t 0.072728 3 
GJR-GARCH(1,1) t 0.761025 4 GJR-GARCH(1,1) t 0.074742 4 EGARCH(1,1) t 0.752979 4 GJR-GARCH(1,1) t 0.073125 4 
GARCH(1,1) 1.206325 5 GARCH(1,1) 0.087995 5 GARCH(1,1) 1.046227 5 GARCH(1,1) 0.083679 5 
GARCH(1,1) t 1.300972 6 GARCH(1,1) t 0.089548 6 GARCH(1,1) t 1.205571 6 GARCH(1,1) t 0.086795 6 
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As the results of daily and monthly volatility forecasts indicate, the asymmetric EGARCH 

and GJR-GARCH performed well, and these models almost constantly outperformed the 

standard GARCH model across the indices. The results from the daily volatility forecasts 

also show the good performance of the five-day moving average MA5, as the model outper-

formed many of the more complex GARCH-type models. The moving average models per-

formed well also with Shanghai data as the EWMA was the best performing model followed 

by the MA5 and MA21 under MSE loss function. Based on MAE, the MA5 was ranked first 

followed by the MA21 and EWMA. According to results from the monthly forecasts, the 

exception to top performance of the asymmetric models are the results from Shanghai as 

under MAE, the GARCH(1,1) with normal and t-distribution ranks first and second place. 

Under MSE, the EGARCH(1,1) holds first place followed by the GARCH(1,1). Next, the 

Diebold-Mariano test results for daily and monthly volatility forecasts are presented.  

4.2  Diebold-Mariano test results 

DAX30  

Table 9 provides the Diebold-Mariano test results for DAX30 index. According to the 

Diebold-Mariano test under squared loss differentials, there’s no statistically significant dif-

ference between the forecasts of t-distributed ARIMA(1,0,1)-GJR(1,1) and MA5, normally 

distributed  ARIMA(1,0,1)-GJR(1,1) and ARIMA(0,0,0)-GJR(1,1) and t-distributed 

ARIMA(0,0,0)-GJR(1,1). Similar result with equal forecast accuracy holds for all 

EGARCH-type model forecasts with 1% significance level. The only exception is the t-dis-

tributed ARIMA(1,0,1)-EGARCH(2,3) indicating significant difference between its forecast 

and the t-distributed ARIMA(1,0,1)-GJR(1,1). With 5% significance level results vary a bit 

as the ARIMA(0,0,0)-EGARCH(1,3) and ARIMA(1,0,1)-EGARCH(2,3) indicate rejecting 

the null hypothesis of equal predictive accuracy. For all the other model forecasts, the null 

hypothesis of equal predictive accuracy is rejected. Under absolute loss differentials the 

Diebold-Mariano test shows equal predictive accuracy between the forecasts of t-distributed 

ARIMA(1,0,1)-GJR(1,1) and all EGARCH-type model forecasts. Compared to squared loss 

functions, there’s clear significant difference between the forecasts of t-distributed 

ARIMA(1,0,1)-GJR(1,1) and all other GJR-type models. 
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Table 9. Results of the Diebold-Mariano tests for DAX30. Statistical significance at the 5% 

and 1% levels is denoted by ** and ***  

DAX30      

Model ranking based on the 
average MSE 

Diebold- 
Mariano  
test statistic p value 

Model ranking based on the 
average MAE 

Diebold- 
Mariano  
test statistic p value 

ARIMA(1,0,1)-GJR-GARCH(1,1) t     ARIMA(1,0,1)-GJR-GARCH(1,1) t     

MA5  -0.03962 0.9684 ARIMA(1,0,1)-EGARCH(2,3)  -0.10433 0.9169 

ARIMA(1,0,1)-GJR-GARCH(1,1)  -1.51378 0.1301 ARIMA(1,0,1)-GJR-GARCH(1,1)  -4.90804*** 0.0000 

ARIMA(0,0,0)-GJR-GARCH(1,1)  -1.57125 0.1161 ARIMA(0,0,0)-GJR-GARCH(1,1)  -5.08472*** 0.0000 

ARIMA(0,0,0)-GJR-GARCH(1,1) t   -1.57125 0.1161 ARIMA(0,0,0)-GJR-GARCH(1,1) t   -5.08472*** 0.0000 

GJR-GARCH(1,1)  -5.21325*** 0.0000 EGARCH(1,1)  -1.29651 0.1948 

GJR-GARCH(1,1) t  -5.61228*** 0.0000 EGARCH(1,1) t  -1.51839 0.1289 

EGARCH(1,1) t  -1.28542 0.1986 ARIMA(0,0,0)-EGARCH(1,3)  -1.27764 0.2014 

EGARCH(1,1)  -1.55598 0.1197 ARIMA(1,0,1)-EGARCH(2,3) t   -1.11509 0.2648 

ARIMA(0,0,0)-EGARCH(1,3) t   -2.55912** 0.0105 ARIMA(0,0,0)-EGARCH(1,3) t   -1.32415 0.1855 

ARIMA(0,0,0)-EGARCH(1,3)  -2.31365** 0.0207 GJR-GARCH(1,1)  -13.42225*** 0.0000 

ARIMA(0,0,0)-GARCH(1,1)  -3.36206*** 0.0008 GJR-GARCH(1,1) t  -15.97602*** 0.0000 

ARIMA(1,0,1)-EGARCH(2,3)  -2.40455** 0.0162 MA5  -2.38750** 0.0170 

GARCH(1,1)  -3.42521*** 0.0006 EWMA  -3.73110*** 0.0002 

ARIMA(1,0,0)-GARCH(1,2)  -3.63059*** 0.0003 MA21  -4.30312*** 0.0000 

ARIMA(0,0,0)-GARCH(1,1) t dist  -3.86656*** 0.0001 ARIMA(0,0,0)-GARCH(1,1)  -6.43379*** 0.0000 

GARCH(1,1) t  -3.81001*** 0.0001 GARCH(1,1)  -6.57157*** 0.0000 

ARIMA(1,0,1)-EGARCH(2,3) t   -2.87150*** 0.0041 ARIMA(1,0,0)-GARCH(1,2)  -7.13829*** 0.0000 

EWMA  -2.96734*** 0.0030 ARIMA(0,0,0)-GARCH(1,1) t   -7.14021*** 0.0000 

MA21  -3.53357*** 0.0004 GARCH(1,1) t  -7.05015*** 0.0000 

ARIMA(1,0,0)-GARCH(1,2) t   -3.83261*** 0.0001 ARIMA(1,0,0)-GARCH(1,2) t   -8.89246*** 0.0000 

MA63  -4.71824*** 0.0000 MA63  -8.94356*** 0.0000 

 

FTSE100  

The Diebold-Mariano test results for FTSE100 index are presented in Table 10. The results 

under squared loss imply statistically equal predictive accuracy with 1% significance level, 

for the first ranked t-distributed ARIMA(1,0,1)-EGARCH and the second ranked 

EGARCH(1,1) with normal distribution and third ranked ARIMA(1,0,1)-EGARCH(1,1) 

with normal distribution. Similar result of equal predictive accuracy holds also for the MA5, 

which is ranked below the middle class under MSE. With 5 % significance level the null 

hypothesis is rejected with these same models indicating the t-distributed ARIMA(1,0,1)-

EGARCH(1,1) offering statistically more accurate forecast. For all the other models, the null 
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is clearly rejected. Same result holds for the absolute loss differentials as the null hypothesis 

is clearly rejected with all of the models. 

Table 10. Results of the Diebold-Mariano tests for FTSE100. Statistical significance at the 

5% and 1% levels is denoted by ** and ***  

FTSE100      

Model ranking based on the 
average MSE 

Diebold- 
Mariano  
test statistic p value 

Model ranking based on the 
average MAE 

Diebold- 
Mariano  
test statistic p value 

ARIMA(1,0,1)-EGARCH(1,1) t     ARIMA(1,0,1)-EGARCH(1,1) t     

EGARCH(1,1)  -2.54849** 0.0108 ARIMA(1,0,1)-EGARCH(1,2) t   -2.76737*** 0.0057 

ARIMA(1,0,1)-EGARCH(1,1)   -2.50467** 0.0123 EGARCH(1,1)  -11.08488*** 0.0000 

EGARCH(1,1) t  -15.59526*** 0.0000 ARIMA(1,0,1)-EGARCH(1,1)   -11.02160*** 0.0000 

ARIMA(1,0,1)-EGARCH(1,2)   -2.72854*** 0.0064 EGARCH(1,1) t  -23.33731*** 0.0000 

ARIMA(1,0,1)-EGARCH(1,2) t   -3.01652*** 0.0026 ARIMA(1,0,1)-EGARCH(1,2)   -5.83900*** 0.0000 

ARIMA(1,0,1)-GJR-GARCH(1,1) t   -3.61624*** 0.0003 ARIMA(1,0,1)-GJR-GARCH(1,1) t   -3.96910*** 0.0000 

ARIMA(1,0,1)-GJR-GARCH(1,1)  -3.84172*** 0.0001 ARIMA(0,0,0)-GJR-GARCH(1,1) t   -4.55443*** 0.0000 

ARIMA(0,0,0)-GJR-GARCH(1,1)  -4.00014*** 0.0000 ARIMA(1,0,1)-GJR-GARCH(1,1)  -5.14122*** 0.0000 

ARIMA(0,0,0)-GJR-GARCH(1,1) t   -3.87899*** 0.0001 ARIMA(0,0,0)-GJR-GARCH(1,1)  -5.57694*** 0.0000 

GJR-GARCH(1,1)  -4.09372*** 0.0000 GJR-GARCH(1,1)  -5.76506*** 0.0000 

ARIMA(1,0,0)-GARCH(1,1)  -5.48305*** 0.0000 MA5  -2.93982*** 0.0033 

ARIMA(1,0,1)-GARCH(1,2)  -5.61408*** 0.0000 GJR-GARCH(1,1) t  -6.21184*** 0.0000 

GJR-GARCH(1,1) t  -4.44669*** 0.0000 ARIMA(1,0,0)-GARCH(1,1)  -6.97453*** 0.0000 

GARCH(1,1)  -5.71082*** 0.0000 GARCH(1,1)  -7.08941*** 0.0000 

MA5  -2.54443** 0.0000 ARIMA(1,0,1)-GARCH(1,2)  -7.15131*** 0.0000 

ARIMA(1,0,0)-GARCH(1,1) t   -6.07910*** 0.0000 MA21  -5.02017*** 0.0000 

ARIMA(1,0,1)-GARCH(1,2) t   -6.21269*** 0.0000 ARIMA(1,0,0)-GARCH(1,1) t   -7.53076*** 0.0000 

GARCH(1,1) t  -6.26295*** 0.0000 GARCH(1,1) t  -7.60259*** 0.0000 

EWMA  -6.61250*** 0.0000 EWMA  -5.69692*** 0.0000 

MA21  -5.69444*** 0.0000 ARIMA(1,0,1)-GARCH(1,2) t  -7.75036*** 0.0000 

MA63  -7.17499*** 0.0000 MA63  -8.89700*** 0.0000 

 

NIKKEI225 

The Diebold-Mariano test results for NIKKEI225 index are provided in Table 11. Being the 

best performing model under the MSE, the normally distributed ARIMA(0,0,0)-

EGARCH(2,2) and following EGARCH(1,1) models show statistically equal predictive ac-

curacy. With 1% significance level the same result of equal accuracy holds also for the 

ARIMA(1,0,1)-EGARCH(1,2) with normal distribution whereas with 5% level the null is 

slightly rejected. For all the other models, the null is clearly rejected implying that the 
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forecast of the best ranked ARIMA(0,0,0)-EGARCH(2,2) with normal distribution, is also 

statistically more accurate. For the MAE rankings, the Diebold-Mariano test indicate that 

the null hypothesis of equal predictive accuracy is rejected for each of the models. The only 

exception is the second ranked MA5 as there’s no statistical difference between it and the 

ARIMA(0,0,0)-EGARCH(2,2) forecasts.  

Table 11. Results of the Diebold-Mariano tests for NIKKEI225. Statistical significance at 

the 5% and 1% levels is denoted by ** and *** 

NIKKEI225      

Model ranking based on the 
average MSE 

Diebold- 
Mariano  
test statistic p value 

Model ranking based on the  
average MAE 

Diebold- 
Mariano  
test statistic p value 

ARIMA(0,0,0)-EGARCH(2,2)    ARIMA(0,0,0)-EGARCH(2,2)    

EGARCH(1,1)  -0.64615 0.5182 MA5  -0.12040 0.9042 

EGARCH(1,1) t  -0.93902 0.3477 ARIMA(0,0,0)-EGARCH(2,2) t   -2.98602*** 0.0028 

ARIMA(0,0,0)-EGARCH(2,2) t   -3.08054*** 0.0021 EGARCH(1,1)  -3.05564*** 0.0023 

ARIMA(1,0,1)-EGARCH(1,2)  -1.98773** 0.0468 ARIMA(1,0,1)-EGARCH(1,2)  -4.03923*** 0.0000 

ARIMA(1,0,1)-EGARCH(1,2) t   -3.31936*** 0.0009 EGARCH(1,1) t  -3.54559*** 0.0004 

ARIMA(1,0,1)-GJR-GARCH(1,1) t  -3.72636*** 0.0002 ARIMA(1,0,1)-EGARCH(1,2) t   -4.81633*** 0.0000 

ARIMA(1,0,1)-GJR-GARCH(1,1)  -4.29216*** 0.0000 ARIMA(1,0,1)-GJR-GARCH(1,1) t  -5.13137*** 0.0000 

ARIMA(0,0,0)-GJR-GARCH(1,1)  -4.29063*** 0.0000 ARIMA(1,0,1)-GJR-GARCH(1,1)  -6.17653*** 0.0000 

ARIMA(0,0,0)-GJR-GARCH(1,1) t  -4.29063*** 0.0000 ARIMA(0,0,0)-GJR-GARCH(1,1)  -6.18817*** 0.0000 

GJR-GARCH(1,1)  -4.82014*** 0.0000 ARIMA(0,0,0)-GJR-GARCH(1,1) t  -6.18817*** 0.0000 

GJR-GARCH(1,1) t  -4.97760*** 0.0000 GJR-GARCH(1,1)  -7.13589*** 0.0000 

MA5  -2.96934*** 0.0030 GJR-GARCH(1,1) t  -7.29487*** 0.0000 

ARIMA(0,0,0)-GARCH(1,1)  -7.76964*** 0.0000 MA21  -5.33031*** 0.0000 

GARCH(1,1)  -7.85447*** 0.0000 EWMA  -6.62948*** 0.0000 

EWMA  -6.68427*** 0.0000 ARIMA(0,0,0)-GARCH(1,1)  -10.38245*** 0.0000 

ARIMA(2,0,2)-GARCH(1,2)  -7.96957*** 0.0000 GARCH(1,1)  -10.51088*** 0.0000 

ARIMA(0,0,0)-GARCH(1,1) t   -8.64463*** 0.0000 ARIMA(2,0,2)-GARCH(1,2)  -10.55660*** 0.0000 

GARCH(1,1) t  -8.77482*** 0.0000 ARIMA(0,0,0)-GARCH(1,1) t   -11.05315*** 0.0000 

ARIMA(2,0,2)-GARCH(1,2) t   -9.27097*** 0.0000 GARCH(1,1) t  -11.20630*** 0.0000 

MA21  -6.87580*** 0.0000 ARIMA(2,0,2)-GARCH(1,2) t   -11.87693*** 0.0000 

MA63  -10.31441*** 0.0000 MA63  -12.21235*** 0.0000 

 

SHANGHAI SE Composite 

The Diebold-Mariano test results for Shanghai SE Composite index are presented in Table 

12. The Diebold-Mariano test under MSE ranking imply that the forecast of the EWMA, 

MA5 and normally distributed ARIMA(1,0,1)-EGARCH(2,2) are statistically equally 
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accurate. However, with 5% significance level the null is rejected for the ARIMA(1,0,1)-

EGARCH(2,2). For all the other models, the null is clearly rejected implying that the forecast 

of the best ranked EWMA, is also statistically more accurate. Under MAE ranking the 

Diebold-Mariano test indicate statistically similar forecasting accuracy between the top three 

ranked models MA5, MA21 and EWMA. For all the other models, the null is rejected. 

Table 12. Results of the Diebold-Mariano tests for Shanghai SE Composite. Statistical sig-

nificance at the 5% and 1% levels is denoted by ** and *** 

Shanghai SE Composite      

Model ranking based on the 
average MSE 

Diebold- 
Mariano  
test statistic p value 

Model ranking based on the 
average MAE 

Diebold- 
Mariano  
test statistic p value 

EWMA    MA5    

MA5  -0.34531 0.7299 MA21  -1.00759 0.3137 

MA21  -4.26145*** 0.0000 EWMA  -1.25388 0.2099 

ARIMA(1,0,1)-EGARCH(2,2)   -2.51715** 0.0118 ARIMA(1,0,1)-EGARCH(1,1)  -4.36973*** 0.0000 

ARIMA(1,0,1)-EGARCH(1,1)  -2.94717*** 0.0032 EGARCH(1,1)   -4.41572*** 0.0000 

EGARCH(1,1)   -2.99376*** 0.0028 ARIMA(1,0,1)-EGARCH(2,2)   -4.65222*** 0.0000 

ARIMA(1,0,1)-EGARCH(2,2) t   -3.59315*** 0.0003 ARIMA(1,0,1)-EGARCH(1,1) t   -5.23993*** 0.0000 

ARIMA(1,0,1)-EGARCH(1,1) t   -3.91990*** 0.0000 ARIMA(1,0,1)-EGARCH(2,2) t   -5.40209*** 0.0000 

EGARCH(1,1) t  -4.07555*** 0.0000 EGARCH(1,1) t  -5.31074*** 0.0000 

ARIMA(0,0,0)-GARCH(1,1)  -4.63848*** 0.0000 ARIMA(0,0,0)-GARCH(1,1)  -5.93696*** 0.0000 

GARCH(1,1)  -4.63682*** 0.0000 GARCH(1,1)  -5.94050*** 0.0000 

ARIMA(0,0,0)-GJR-GARCH(1,1)   -5.00539*** 0.0000 ARIMA(1,0,1)-GARCH(1,2)  -6.14941*** 0.0000 

GJR-GARCH(1,1)  -5.04139*** 0.0000 ARIMA(0,0,0)-GJR-GARCH(1,1)   -6.27538*** 0.0000 

ARIMA(1,0,1)-GARCH(1,2)  -4.82905*** 0.0000 GJR-GARCH(1,1)  -6.30547*** 0.0000 

ARIMA(1,0,1)-GJR-GARCH(1,2)   -4.97705*** 0.0000 ARIMA(1,0,1)-GJR-GARCH(1,2)   -6.30143*** 0.0000 

GARCH(1,1) t  -5.87536*** 0.0000 GARCH(1,1) t  -7.00162*** 0.0000 

ARIMA(0,0,0)-GARCH(1,1) t  -5.88443*** 0.0000 ARIMA(0,0,0)-GARCH(1,1) t   -7.01963*** 0.0000 

ARIMA(0,0,0)-GJR-GARCH(1,1) t    -6.25127*** 0.0000 MA63  -5.98337*** 0.0000 

GJR-GARCH(1,1) t  -6.38049*** 0.0000 ARIMA(0,0,0)-GJR-GARCH(1,1) t   -7.43117*** 0.0000 

ARIMA(1,0,1)-GARCH(1,2) t   -6.48960*** 0.0000 GJR-GARCH(1,1) t  -7.51840*** 0.0000 

ARIMA(1,0,1)-GJR(1,2) t   -6.78686*** 0.0000 ARIMA(1,0,1)-GARCH(1,2) t  -7.57576*** 0.0000 

MA63  -7.55097*** 0.0000 ARIMA(1,0,1)-GJR-GARCH(1,2) t  -8.14056*** 0.0000 

 

S&P500 

According to the results from Table 13, the outperformance of the normally distributed 

ARIMA(1,0,1)-EGARCH(1,1) under MSE is also statistically significant as its forecast is 

more accurate than the other models. The only exception to this is the MA5 as the null 
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hypothesis of equal predictive accuracy between the model and the best performing 

ARIMA(1,0,1)- EGARCH(1,1) is not rejected. Under MAE ranking, the Diebold-Mariano 

test result indicate that the forecast of best performing model ARIMA(1,0,1)-EGARCH(1,1) 

with t-distribution is not statistically more accurate than the forecasts of second and third 

ranked normally distributed ARIMA(1,0,1)-EGARCH(1,1) or MA5.  For all other models 

under MAE, the null hypothesis of equal predictive accuracy is rejected.   

Table 13. Results of the Diebold-Mariano tests for S&P500. Statistical significance at the 

5% and 1% levels is denoted by ** and *** 

S&P500      

Model ranking based on the 
average MSE 

Diebold- 
Mariano  
test statistic p value 

Model ranking based on the 
average MAE 

Diebold- 
Mariano  
test statistic p value 

ARIMA(1,0,1)-EGARCH(1,1)     ARIMA(1,0,1)-EGARCH(1,1) t     

EGARCH(1,1)   -6.04090*** 0.0000 ARIMA(1,0,1)-EGARCH(1,1)   -0.37860 0.7050 

ARIMA(1,0,1)-EGARCH(1,1) t   -2.75769*** 0.0058 MA5  -0.73455 0.4626 

EGARCH(1,1) t  -4.13165*** 0.0000 EGARCH(1,1)   -4.80071*** 0.0000 

ARIMA(1,0,1)-EGARCH(1,2)  -4.05211*** 0.0000 ARIMA(1,0,1)-EGARCH(1,2)  -5.90147*** 0.0000 

MA5  -1.34243 0.1795 EGARCH(1,1) t  -10.85862*** 0.0000 

ARIMA(1,0,1)-GJR-GARCH(1,1)  -3.55708*** 0.0004 ARIMA(1,0,1)-GJR-GARCH(1,1) t  -7.34919*** 0.0000 

ARIMA(1,0,1)-GJR-GARCH(1,1) t   -3.64551*** 0.0003 ARIMA(1,0,1)-GJR-GARCH(1,1)  -8.93693*** 0.0000 

GJR-GARCH(1,1)  -3.81456*** 0.0001 GJR-GARCH(1,1)  -10.03098*** 0.0000 

GARCH(1,1)  -5.64639*** 0.0000 GJR-GARCH(1,1) t  -9.33059*** 0.0000 

ARIMA(1,0,1)-GARCH(1,2)  -5.64697*** 0.0000 GARCH(1,1)  -13.10768*** 0.0000 

ARIMA(1,0,1)-GARCH(2,2)  -5.50327*** 0.0000 ARIMA(1,0,1)-GARCH(1,2)  -13.29954*** 0.0000 

GJR-GARCH(1,1) t  -4.08361*** 0.0000 ARIMA(1,0,1)-GARCH(2,2)  -13.14224*** 0.0000 

GARCH(1,1) t  -5.93066*** 0.0000 GARCH(1,1) t  -13.23679*** 0.0000 

ARIMA(1,0,1)-GARCH(2,2) t   -6.02355*** 0.0000 MA21  -9.03932*** 0.0000 

ARIMA(1,0,1)-GARCH(1,2) t   -6.05653*** 0.0000 ARIMA(1,0,1)-GARCH(2,2) t   -13.82448*** 0.0000 

EWMA  -7.43999*** 0.0000 ARIMA(1,0,1)-GARCH(1,2) t   -13.92687*** 0.0000 

MA21  -5.88927*** 0.0000 EWMA  -11.18563*** 0.0000 

MA63  -8.33392*** 0.0000 MA63  -13.05475*** 0.0000 

 

Dow Jones Industrial Average  

Based on Diebold-Mariano test results in Table 14, the forecast of the best performing model 

under MSE, the ARIMA(1,0,1)-EGARCH((1,1) with normal distribution, is statistically 

equally accurate with the forecast of the third ARIMA(0,0,0)-EGARCH(2,2), fourth 

ARIMA(1,0,1)- EGARCH(1,1) with t-distribution and sixth MA5 model. However, for the 
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ARIMA(1,0,1)-EGARCH(1,1) with t-distribution, the result hold with 1% significance, 

whereas the null hypothesis is rejected with 5% significance level. For all other model fore-

casts the null hypothesis is rejected, including also the second ranked model, the 

EGARCH(1,1) with normal distribution. Based on MAE ranking, the Diebold-Mariano test 

result indicate that the forecast of best performing model ARIMA(1,0,1)-EGARCH(1,1) 

with normal distribution is not statistically more accurate than the forecasts of the second, 

ARIMA(0,0,0)-EGARCH(2,2) with normal distribution and third, the ARIMA(1,0,1)-

EGARCH(1,1) with t-distribution models. For all other models under MAE, the null hypoth-

esis of equal predictive accuracy is rejected.   

Table 14. Results of the Diebold-Mariano tests for Dow Jones. Statistical significance at the 

5% and 1% levels is denoted by ** and *** 

Dow Jones      

Model ranking based on the 
average MSE 

Diebold- 
Mariano  
test statistic p value  

Model ranking based on the 
average MAE 

Diebold- 
Mariano  
test statistic p value 

ARIMA(1,0,1)-EGARCH(1,1)    ARIMA(1,0,1)-EGARCH(1,1)    

EGARCH(1,1)  -6.97574*** 0.0000 ARIMA(0,0,0)-EGARCH(2,2)  -0.54809 0.5836 

ARIMA(0,0,0)-EGARCH(2,2)  -1.07283 0.2834 ARIMA(1,0,1)-EGARCH(1,1) t   -1.12855 0.2591 

ARIMA(1,0,1)-EGARCH(1,1) t   -2.01178** 0.0442 EGARCH(1,1)  -14.68249*** 0.0000 

EGARCH(1,1) t  -2.92371*** 0.0035 EGARCH(1,1) t  -9.77063*** 0.0000 

MA5  -0.76377 0.4450 ARIMA(0,0,0)-EGARCH(2,2) t   -5.11418*** 0.0000 

ARIMA(0,0,0)-EGARCH(2,2) t   -4.22876*** 0.0000 MA5  -2.56239** 0.0104 

ARIMA(1,0,1)-GJR-GARCH(1,1)   -2.90128*** 0.0037 ARIMA(1,0,1)-GJR-GARCH(2,2) t  -5.96209*** 0.0000 

ARIMA(1,0,1)-GJR-GARCH2,2)   -2.84764*** 0.0044 ARIMA(1,0,1)-GJR-GARCH(1,1) t  -5.97731*** 0.0000 

GJR-GARCH(1,1)  -3.17797*** 0.0015 ARIMA(1,0,1)-GJR-GARCH(1,1)   -6.73790*** 0.0000 

ARIMA(1,0,1)-GJR-GARCH(2,2) t   -3.11526*** 0.0018 ARIMA(1,0,1)-GJR-GARCH(2,2)   -7.16408*** 0.0000 

ARIMA(1,0,1)-GJR-GARCH(1,1) t   -3.13387*** 0.0017 GJR-GARCH(1,1)  -7.77987*** 0.0000 

GARCH(1,1)  -4.93672*** 0.0000 GJR-GARCH(1,1) t  -7.43052*** 0.0000 

GJR-GARCH(1,1) t  -3.46440*** 0.0005 GARCH(1,1)  -10.87458*** 0.0000 

ARIMA(0,0,0)-GARCH(2,2)  -4.74823*** 0.0000 ARIMA(0,0,0)-GARCH(2,2)  -11.24089*** 0.0000 

ARIMA(1,0,1)-GARCH(2,2)  -4.75786*** 0.0000 ARIMA(1,0,1)-GARCH(2,2)  -11.24006*** 0.0000 

GARCH(1,1) t  -5.23180*** 0.0000 GARCH(1,1) t  -10.73875*** 0.0000 

ARIMA(0,0,0)-GARCH(2,2) t   -5.19419*** 0.0000 ARIMA(0,0,0)-GARCH(2,2) t   -11.38009*** 0.0000 

ARIMA(1,0,1)-GARCH(2,2) t   -5.26767*** 0.0000 ARIMA(1,0,1)-GARCH(2,2) t  -11.50236*** 0.0000 

EWMA  -7.25247*** 0.0000 MA21  -8.67828*** 0.0000 

MA21  -5.78639*** 0.0000 EWMA  -10.71311*** 0.0000 

MA63  -7.91488*** 0.0000 MA63  -12.98017*** 0.0000 
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Lastly, the results of Diebold-Mariano test for monthly forecasts are presented in Table 15. 

According to results for DAX30, the null hypothesis of equal predictive accuracy is rejected 

under both loss functions for the first ranked GJR-GARCH(1,1) with normal distribution 

and the second ranked GJR-GARCH(1,1) with t-distribution. Under squared loss differen-

tials, the null hypothesis is also rejected for the EGARCH(1,1) with t-distribution. Under 

absolute loss differentials, third ranked GARCH(1,1) with normal distribution and its fore-

cast is statistically equally accurate with the GJR-GARCH(1,1), as the null hypothesis is not 

rejected. For FTSE100, the null hypothesis of equal predictive accuracy is rejected under 

both loss functions for the first ranked EGARCH(1,1) with t-distribution and the second 

ranked EGARCH(1,1) with normal distribution. For other models, the null hypothesis is not 

rejected implying statistically equally accurate forecasts. For Nikkei225, the results from 

Diebold-Mariano test show that the null hypothesis of equal predictive accuracy is not re-

jected for any of the models. The only exception to this is the result from squared loss dif-

ferentials as the null hypothesis is rejected with 10% significance level for the first ranked 

EGARCH(1,1) and bottom ranked GARCH(1,1) with t-distribution. For Shanghai, the null 

hypothesis of equal predictive accuracy is rejected only for EGARCH(1,1) models under 

squared loss differentials. Based on absolute loss differentials, the null hypothesis is rejected 

only for the second ranked GARCH(1,1) with t-distribution. For other models the result in-

dicate statistically similar forecasting accuracy with the first ranked EGARCH(1,1) and 

GARCH(1,1). For S&P500, the first ranked model under both MSE and MAE, the normally 

distributed EGARCH(1,1) and its forecast is statistically equally accurate with the GJR-

GARCH(1,1) and t-distributed EGARCH(1,1) models forecasts, as the null hypothesis of 

equal predictive accuracy is not rejected. For bottom ranked GARCH(1,1) models the null 

hypothesis is rejected with 10% and 5% levels. For Dow Jones, the results are similar indi-

cating statistically equally accurate forecasts for EGARCH(1,1) and GJR-GARCH(1,1) 

models.  
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Table 15. Results of the Diebold-Mariano tests for monthly volatility forecasts. Statistical significance at the 10%, 5% and 1% levels is denoted 

by *, ** and *** 

DAX30           FTSE100           
Model ranking based 
on the average MSE 

DM test 
statistic p value 

Model ranking based 
on the average MAE 

DM test 
statistic p value 

Model ranking based  
on the average MSE 

DM test 
statistic p value 

Model ranking based 
on the average MAE 

DM test 
statistic p value 

GJR-GARCH(1,1)     GJR-GARCH(1,1)     EGARCH(1,1) t     EGARCH(1,1) t    
GJR-GARCH(1,1) t -1.82918 0.0674* GJR-GARCH(1,1) t -2.11451 0.0345** EGARCH(1,1) -2.11269 0.0346** EGARCH(1,1)  -1.94483 0.0518* 
EGARCH(1,1) -1.55203 0.1207 GARCH(1,1) -1.50802 0.1315 GARCH(1,1) -0.13559 0.8921 GARCH(1,1)  -0.01909 0.9848 

GARCH(1,1) -1.31483 0.1886 EGARCH(1,1) -1.72650 0.0843* GARCH(1,1) t -0.27907 0.7802 GARCH(1,1) t  -0.09965 0.9206 
EGARCH(1,1) t -2.28606 0.0223** GARCH(1,1) t -1.80495 0.0711* GJR-GARCH(1,1) t -0.74998 0.4533 GJR-GARCH(1,1) t  -0.26321 0.7924 

GARCH(1,1) t -1.43599 0.1510 EGARCH(1,1) t -2.64856 0.0081*** GJR-GARCH(1,1)  -0.75495 0.4503 GJR-GARCH(1,1)   -0.29981 0.7643 

Nikkei225           Shanghai SE Composite           
Model ranking based 
on the average MSE 

DM test 
statistic p value 

Model ranking based 
on the average MAE 

DM test 
statistic p value 

Model ranking based  
on the average MSE 

DM test 
statistic p value 

Model ranking based 
on the average MAE 

DM test 
statistic p value 

EGARCH(1,1)    GJR-GARCH(1,1)    EGARCH(1,1)    GARCH(1,1)    

GJR-GARCH(1,1) 0.17646 0.8599 GARCH(1,1)  -0.51997 0.6031 GARCH(1,1) -0.02215 0.9823 GARCH(1,1) t  -3.93289 0.0000*** 
GARCH(1,1) -0.64567 0.5185 GJR-GARCH(1,1) t -0.35801 0.7203 EGARCH(1,1) t -2.68942 0.0072*** EGARCH(1,1)  -0.87624 0.3809 

EGARCH(1,1) t -1.00959 0.3127 GARCH(1,1) t -1.15360 0.2487 GARCH(1,1) t -0.19885 0.8423 EGARCH(1,1) t  -0.93864 0.3479 
GJR-GARCH(1,1) t -1.48800 0.1368 EGARCH(1,1) t 0.30720 0.7587 GJR-GARCH(1,1) -1.52303 0.1278 GJR-GARCH(1,1)  -1.51643 0.1294 

GARCH(1,1) t -1.75305 0.0796* EGARCH(1,1) 0.22423 0.8226 GJR-GARCH(1,1) t -1.63736 0.1016 GJR-GARCH(1,1) t  -1.59352 0.1110 

S&P500           Dow Jones           
Model ranking based 
on the average MSE 

DM test 
statistic p value 

Model ranking based 
on the average MAE 

DM test 
statistic p value 

Model ranking based  
on the average MSE 

DM test 
statistic p value 

Model ranking based 
on the average MAE 

DM test 
statistic p value 

EGARCH(1,1)    EGARCH(1,1)    GJR-GARCH(1,1)    EGARCH(1,1)    

GJR-GARCH(1,1) -0.09426 0.9249 EGARCH(1,1) t -1.14355 0.2528 GJR-GARCH(1,1) t -1.20089 0.2298 GJR-GARCH(1,1)  -0.22034 0.8256 
EGARCH(1,1) t -0.57360 0.5662 GJR-GARCH(1,1) -0.69856 0.4848 EGARCH(1,1) -0.35980 0.7190 EGARCH(1,1) t  -0.83275 0.4050 

GJR-GARCH(1,1) t -0.29167 0.7705 GJR-GARCH(1,1) t -0.75404 0.4508 EGARCH(1,1) t -0.61611 0.5378 GJR-GARCH(1,1) t  -0.33195 0.7399 
GARCH(1,1) -1.74716 0.0806* GARCH(1,1) -2.14962 0.0316** GARCH(1,1) -2.01965 0.0434** GARCH(1,1)  -2.18639 0.0288** 

GARCH(1,1) t -1.69613 0.0899* GARCH(1,1) t -2.10460 0.0353** GARCH(1,1) t -1.78611 0.0741* GARCH(1,1) t  -2.19216 0.0284** 
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5  Discussion and summary  

The main purpose of this thesis was to compare the volatility forecasts of different GARCH-

type and moving average models in six global equity indices, namely DAX30 (Germany), 

FTSE100 (UK), Shanghai SE Composite (China), NIKKEI225 (Japan), S&P500 (US) and 

Dow Jones Industrial Average (US). Daily time series data of these indices covered the pe-

riod from January 1, 2000 through December 31, 2020. Daily and monthly volatility fore-

casts were produced for the out-of-sample period from January 1, 2016 to December 31, 

2020. To work properly, the conditional volatility model usually requires also some condi-

tional mean model. In this thesis, the conditional mean was computed with ARIMA-type 

models. Hence, the forecasting models used in this thesis were combinations of ARIMA-

GARCH, ARIMA-EGARCH and ARIMA-GJR-GARCH models. Dropping the conditional 

mean, the basic GARCH(1,1), EGARCH(1,1) and GJR-GARCH(1,1) models were included 

as a benchmark forecasting models. Previous studies, e.g., Engle and Ng (1993), Brailsford 

and Faff (1996), have shown that these basic models offer good volatility forecasting results. 

Monthly volatility forecasts were done only with the GARCH(1,1), EGARCH(1,1) and GJR-

GARCH(1,1) models. According to previous research and empirical evidence financial time 

series data is often described having excess kurtosis and fatter tails compared to normal dis-

tributions. However, many of the models still make use of the normal distributions. The data 

in this thesis indicated non-normal distributions and therefore all the volatility forecasts with 

GARCH-type models were done with both normal and Student’s t-distributions to compare 

the forecasting results of these different distributions. The Diebold-Mariano test was used to 

test statistical difference of the models’ forecasts. To study these issues in global stock mar-

kets, four research questions were formed. Next, the results regarding the research questions 

are discussed.  

Which of the volatility forecasting models perform best according to loss functions MSE 

and MAE for the one-day and one-month forecasting horizon? 

The results from the daily volatility forecasts for the DAX30 indicate that the best perform-

ing model under both MAE and MSE is the ARIMA(1,0,1)-GJR(1,1) with t-distribution. For 

the FTSE100 the best performing model according to MAE and MSE is the ARIMA(1,0,1)-
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EGARCH(1,1) with t-distribution. For the NIKKEI225 the best performing model under 

MAE and MSE is the ARIMA(0,0,0)-EGARCH(2,2) with normal distribution. For the 

Shanghai SE Composite the best performing model under MAE is the five-day moving av-

erage (MA5) and under MSE, the EWMA ranks first. For the S&P500 the best performing 

model under MAE is the t-distributed ARIMA(1,0,1)-EGARCH(1,1). According MSE, the 

ARIMA(1,0,1)-EGARCH(1,1) with normal distribution ranks first. For the Dow Jones the 

best performing model under MAE and MSE is the ARIMA(1,0,1)-EGARCH(1,1) with nor-

mal distribution. The results from the monthly volatility forecasts imply that for the DAX30, 

the best performing model under both MAE and MSE loss functions is the GJR-

GARCH(1,1) with normal distribution. For the FTSE100 the best performing model accord-

ing to MAE and MSE is the EGARCH(1,1) with t-distribution. For the NIKKEI225 the best 

performing model under MAE is the GJR-GARCH(1,1) with normal distribution and under 

MSE, the normally distributed EGARCH(1,1) ranks first. For the Shanghai SE Composite 

the best performing model under MAE is the GARCH(1,1) with normal distribution whereas 

the EGARCH(1,1) also with normal distribution ranks first based on MSE. For the S&P500 

the best performing model under both loss functions is the EGARCH(1,1) with normal dis-

tribution. Lastly, for the Dow Jones the best performing model under MSE is the GJR-

GARCH(1,1) with normal distribution and under MAE the EGARCH(1,1) with normal dis-

tribution takes the first place.  

As these results outline, based on MAE and MSE loss functions there’s no single model 

outperforming across the indices. However, the performance of the EGARCH-type models 

was convincing with both daily and monthly forecasts and across the indices as at least one 

of the EGARCH model was constantly ranked in top three under both loss functions. The 

exception to this was the MSE ranking with daily forecasts for the German DAX30 index 

where the ARIMA(1,0,1)-GJR-GARCH(1,1) with t-distribution ranked first followed by the 

five-day moving average MA5 and normal distributed ARIMA(1,0,1)-GJR-GARCH(1,1). 

Overall, the performance of the GJR-GARCH models was good with German data as the 

models outperformed most of the EGARCH models. Another exception to the top perfor-

mance of the EGARCH models were the daily volatility forecasting results from the Shang-

hai data as the moving average models were the top three forecasting models. With monthly 

forecasts, the DAX30 and NIKKEI225 were the only indices where the EGARCH was not 

ranked in top three under both loss functions. In these indices the GJR-GARCH(1,1) and 

GARCH(1,1) ranked top three under MAE.  
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Next, the performance of the basic GARCH(1,1), EGARCH(1,1) and GJR-GARCH(1,1) are 

shortly discussed. When comparing these models relative performance and based on MSE 

and MAE loss functions the EGARCH(1,1) and GJR-GARCH(1,1) constantly outperformed 

the standard GARCH(1,1) across the indices and with both daily and monthly forecasts. 

With daily forecasts, the combinations of different conditional mean and conditional vola-

tility models often outperformed these basic models. However, the basic EGARCH(1,1) was 

frequently highly ranked so depending on the objective of the forecast and evaluation crite-

ria, the model can be useful in some circumstances.  

The good performance of the EGARCH and GJR-GARCH models is in line with previous 

results (see e.g., Engle and Ng 1993; Brailsford and Faff 1996; Awartani and Corradi 2005). 

However, the results from this thesis cannot be generalized covering all possible situations. 

As Poon and Granger (2003) have also outlined, with different data, loss functions or vola-

tility proxies the results might be different. Poon and Granger (2003) also mention that it is 

rarely discussed if one forecasting method is significantly better than another and although 

some particular method of forecasting volatility can be said being the best, there’s no dis-

cussion about the cost-benefit from using it. Clearly, these aspects are important when eval-

uating different volatility forecasting models and their use in practice. GARCH, EGARCH 

and GJR-GARCH require statistical software whereas moving average and exponentially 

weighted moving average can be applied with a single spreadsheet. Another aspect regarding 

the GARCH-type models is that they usually require large datasets and fitting the models, 

which in some cases may be problematic. On the other hand, if the objective is to make 

forecasts and evaluate the out-of-sample performance of the models, then the in-sample fit 

of the models is not so relevant. A practical point of view is also the accuracy of the volatility 

forecasts. If there’s marginal difference between the GARCH-type and simpler models, per-

haps the biggest benefit is gained when there’s possibility to combine and choose different 

models that perform well in different markets and market conditions and based on the ob-

jective of the forecast. Some private investors doing day trading would perhaps try the com-

binations of GARCH-type models and some of the simpler models. Risk managers may as-

sess the benefits from a different point of view and compare some models and their perfor-

mance more profoundly. Lastly, the evaluation of the forecasting performance is usually 

done with some loss functions. As the results from this thesis show, the ranking of the models 

varies based on MAE and MSE loss functions. Choosing the loss function always includes 

at least some user specific matters and there’s no unanimous conclusion that which of the 
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loss functions one should always use. Comparing the forecasting models with several differ-

ent loss functions may give better understanding of the performance of the models. MAE 

and MSE were chosen to be used in this thesis because of their wide use in previous research. 

However, some alternative loss functions, such as root mean squared error and mean abso-

lute percentage error could give interesting results. Asymmetric loss functions that penalize 

over-predictions and under-predictions of volatility could also provide different ranking of 

the models.  

How does the GARCH-type volatility forecasting models perform compared to moving av-

erage and EWMA models for the one-day ahead forecasting horizon? 

In general, the asymmetric EGARCH and GJR-GARCH models performance was superior 

and the models outperformed most of the moving average models. However, under MAE 

loss function, the MA5 was ranked second with NIKKEI225 and third with S&P500. Under 

MSE, the MA5 was ranked second with DAX30 and sixth with S&P500 and Dow Jones. As 

these results indicate, the performance of the MA5 was also relatively good and the model 

outperformed many of the more complex GARCH-type models. The moving average models 

performed well also with Shanghai data as the EWMA was the best performing model fol-

lowed by the MA5 and MA21 under MSE loss function. Based on MAE, the MA5 was 

ranked first followed by the MA21 and EWMA. Simple models outperforming more sophis-

ticated GARCH-type models can be understood as a rather surprising result. The data indi-

cated clear signs of heteroscedasticity, fat tails, volatility clustering and leverage effects. The 

GARCH-type models were created to capture these effects so therefore it would’ve been 

expected that these models dominate the volatility forecasts. Different EGARCH-type mod-

els were however also performing well with Shanghai data as they were ranked just after the 

top three moving average models although the margin was rather clear favoring the simpler 

models. China’s stock market can be considered rather volatile as the statistics from the 

Shanghai SE Composite index also show. Can the high volatile market explain why the mov-

ing average models perform so well? If the models are able to adapt to changing market 

conditions more quickly than the GARCH-type models, than there’s evidence to also con-

sider these models when choosing the appropriate forecasting models. Another distinctive 

feature about the Shanghai results was that some of the GARCH-models were ranked after 

the EGARCH-models. This is surprising since they are not asymmetric models whereas the 

GJR-GARCH models are, and it would’ve been expected that the GJR-GARCH follow the 



74 

ranking of the similar kind asymmetric EGARCH models. The three-month moving average 

MA63 was bottom ranked model in all indices. The only exception to this was again the 

result from Shanghai data with MAE loss function in which the ARIMA(1,0,1)-GJR-

GARCH(1,2) with t-distribution was ranked worst and MA63 was few positions higher. 

Another not so expected result was the performance of the GARCH compared to EWMA 

models. EWMA and GARCH are closely related, and both models can capture volatility 

clustering. It would’ve been expected that the models’ forecasting performance is similar 

and therefore it is surprising result that there’s also relatively large numerical difference 

according to loss functions of the models. The EWMA is performing very well with the 

Shanghai data as the model is ranked first under MSE and third under MAE whereas the 

GARCH is ranked on a mediocre level. With other indices the results change as almost all 

the GARCH models outperform and EWMA ranks lower. Under MAE loss function, the 

EWMA ranked higher only in DAX30 and NIKKEI225. Previous research (e.g., Ederington 

and Guan 2005; Awartani and Corradi 2005) show GARCH models outperforming EWMA. 

On the other hand, Walsh and Tsou (1998) and McMillan and Kambouroudis (2009) give 

some support of EWMA outperforming.  

Is there a difference between normally distributed and t-distributed models based on vol-

atility forecasting results? 

According to previous research and empirical evidence financial time series data is often 

described having excess kurtosis and fatter tails compared to normal distributions. The data 

used in this thesis showed similar characteristics indicating non-normal distributions and 

therefore Student’s t-distributions were included along normal distributions. If the data is 

non-normal, then it would be expected that the t-distribution models would outperform their 

normal distributed counterparts. The results show that this is not the case and models with t-

distributions are not constantly outperforming their normal distributed counterparts. Results 

from the DAX30 and FTSE100 show that the best daily volatility forecasting model under 

both loss functions is t-distributed model. Results from the other indices however show the 

normally distributed models holding the first place. Even the results from the Shanghai show 

that the normal distributed models are all outperforming their t-distributed counterparts. The 

result from the US data is interesting as with S&P500 the ARIMA(1,0,1)-EGARCH(1,1) 

with t-distribution is ranked first based on MAE, whereas the same model is ranked third 

based on MSE. With Dow Jones, the normal distribution model ranks first under both loss 
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functions and the ARIMA(1,0,1)-EGARCH(1,1) with t-distribution holds third position un-

der MAE. Also, based on MAE, the ARIMA(1,0,1)-GJR-GARCH(2,2) and ARIMA(1,0,1)-

GJR-GARCH(1,1) both with t-distributions, slightly outperform their normal distributed 

models. Under MSE these same models rankings change and t-distribution models are out-

performed by the normal distribution models. For monthly forecasts, the FTSE100 is the 

only index where the t-distributed EGARCH(1,1) ranks first and with all the other indices 

the normally distributed models hold the first place.  

Is there a statistical difference in volatility forecasting accuracy between models?  

The loss functions MAE and MSE showed the ranking of the volatility forecasting models. 

To assess whether these rankings hold statistically significant difference, the Diebold-

Mariano test was used. The test was done so that the best ranked model under MAE and 

MSE from each index and its volatility forecast was tested against all the other model fore-

casts separately. The null hypothesis of the Diebold-Mariano test was equal forecast accu-

racy between the two forecasts.  

For the DAX30 the Diebold-Mariano test show that there’s no statistically significant dif-

ference between the forecasts of the best ranked ARIMA(1,0,1)-GJR-GARCH(1,1) with t-

distribution and four following model forecasts, MA5, normally distributed  ARIMA(1,0,1)-

GJR-GARCH(1,1), ARIMA(0,0,0)-GJR-GARCH(1,1) and t-distributed ARIMA(0,0,0)-

GJR-GARCH(1,1). Similar result with equal forecast accuracy holds for almost all 

EGARCH-type model forecasts. For all the other model forecasts under squared loss differ-

entials, the null hypothesis of equal predictive accuracy was rejected indicating that the fore-

cast of the first ranked t-distributed ARIMA(1,0,1)-GJR-GARCH(1,1) would also be statis-

tically more accurate. Under absolute loss differentials the Diebold-Mariano test shows 

equal predictive accuracy between the forecasts of the best ranked t-distributed 

ARIMA(1,0,1)-GJR-GARCH(1,1) and all EGARCH-type model forecasts, including the 

second best ranked ARIMA(1,0,1)-EGARCH(2,3) with normal distribution. Compared to 

squared loss functions, there’s clear significant difference between the forecasts of t-distrib-

uted ARIMA(1,0,1)-GJR-GARCH(1,1) and all other GJR-GARCH-type models again indi-

cating that the forecast of the first ranked t-distributed ARIMA(1,0,1)-GJR-GARCH(1,1) 

would also be statistically more accurate. The performance of the t-distributed 

ARIMA(1,0,1)-EGARCH(1,1) and its forecast was convincing in FTSE100 data as the 

model was ranked first under both loss functions and there’s also clear significance between 
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the model’s forecast and for all other models forecasts. Under squared loss differentials the 

only exception to this were the forecasts of EGARCH(1,1) and ARIMA(1,0,1)-

EGARCH(1,1) with normal distributions and MA5 as they showed equal predictive accuracy 

with 1% significance level.  

For the NIKKEI225, the result from the Diebold-Mariano test under absolute loss differen-

tials implies that the forecasts of the best performing ARIMA(0,0,0)-EGARCH(2,2) and the 

second ranked MA5 are statistically equally accurate. For all the other model forecasts, 

there’s statistical difference indicating statistically more accurate forecast of the best ranked 

ARIMA(0,0,0)-EGARCH(2,2). Under squared loss differentials, the forecasts of the best 

ranked ARIMA(0,0,0)-EGARCH(2,2) and following EGARCH(1,1) are statistically equally 

accurate. For all the other models, the forecast of the ARIMA(0,0,0)-EGARCH(2,2) is sta-

tistically more accurate. For the Shanghai data the result from the Diebold-Mariano test 

showed that the forecasts of the best performing EWMA and second ranked MA5 under 

MSE are statistically equally accurate whereas for the third ranked MA21 there’s statistical 

evidence of the forecasts to be different in favor of the EWMA forecast. Based on MAE loss 

function the Diebold-Mariano test showed the forecasts to be equal holds for the best per-

forming MA5, MA21 and the third EWMA, as the null hypothesis of equal predictive accu-

racy was not rejected. 

According to Diebold-Mariano test with S&P500 data, the forecast of the first ranked 

ARIMA(1,0,1)-EGARCH(1,1) with normal distribution under MSE was statistically signif-

icant as the null hypothesis of equal predictive accuracy was rejected for all of the other 

model forecasts. The only exception to this was the MA5, indicating no statistical difference 

between the two forecasts. Based on MAE, the similar result for the forecasts to be statisti-

cally equal holds also for the best performing ARIMA(1,0,1)-EGARCH(1,1) with t-distri-

bution and the second ranked ARIMA(1,0,1)-EGARCH(1,1) with normal distribution and 

the third ranked MA5 as the null hypothesis of equal predictive accuracy was not rejected. 

For all the other model forecasts, there’s statistical difference indicating statistically more 

accurate forecast of the ARIMA(1,0,1)-EGARCH(1,1) with t-distribution. For the Dow 

Jones data the Diebold-Mariano test show that the forecast of the best performing 

ARIMA(1,0,1)-EGARCH(1,1) with normal distribution under MSE was statistically signif-

icant as the null hypothesis of equal predictive accuracy was rejected for all of the other 

model forecasts. However, with the forecasts of the ARIMA(0,0,0)-EGARCH(2,2) with 
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normal distribution, ARIMA(1,0,1)-EGARCH(1,1) with t-distribution and MA5, the null 

was not rejected, indicating forecast accuracy to be equal in population for each of the mod-

els. Based on MAE, the forecasts of the best performing ARIMA(1,0,1)-EGARCH(1,1) with 

normal distribution and the second ARIMA(0,0,0)-EGARCH(2,2) also with normal distri-

bution, and the third ARIMA(1,0,1)-EGARCH(1,1) with t-distribution, would be statisti-

cally equal in population. For all the other model forecasts there’s statistical difference indi-

cating statistically more accurate forecast of the ARIMA(1,0,1)-EGARCH(1,1) with normal 

distribution.  

As the results from the Diebold-Mariano tests show, that in most cases, there’s no statistical 

difference between the first ranked model forecast and following second or third ranked 

model forecasts. With monthly forecasts the exception to this are the results from DAX30 

and FTSE100 where first and second ranked model forecasts are statistically significant with 

10% and 5% level. Under absolute loss differentials with Shanghai data there’s also signifi-

cant difference in monthly forecasting accuracy favoring the first ranked GARCH(1,1) with 

normal distribution. With daily forecasts under squared loss differentials with S&P500 data 

there’s also clear statistical difference in volatility forecasting accuracy in favor of the first 

ranked ARIMA(1,0,1)-EGARCH(1,1) with normal distribution. Similar kind result is also 

from the FTSE100 under absolute loss differentials indicating statistical difference in vola-

tility forecasting accuracy in favor of the first ranked ARIMA(1,0,1)-EGARCH(1,1) with t-

distribution. The Diebold-Mariano test confirm the good performance of the five-day mov-

ing average, as the model’s forecasts are almost always statistically equally accurate with 

the best ranked models’ forecasts. Lastly, based on the results from the Diebold-Mariano 

tests, it is evident that the results of the volatility forecasting models can be re-evaluated and 

the ones with no statistical difference can be considered as one of the best models. However, 

after stating this, it should be noted that the comparison of the performance of the models, 

should still also include the use of loss functions. The Diebold-Mariano test is for comparing 

forecasts and perhaps the most profound evaluation of the results can be done using loss 

functions and Diebold-Mariano test or some other similar test such as White’s (2000) Reality 

Check and Hansen’s (2005) Superior Predictive Ability tests.  
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SUMMARY 

Volatility is perhaps one of the most important subjects in finance and having certain well-

known characteristics, such as volatility clustering and leverage effects, modelling and fore-

casting volatility has raised a lot of attention among research and practitioners. GARCH-

type models were created not only to capture the characteristics but also to forecast volatility. 

Beside of the sophisticated GARCH-type models, some more simpler models are also widely 

used to forecast volatility. Perhaps one of the well-known are the moving average (MA) and 

exponentially weighted moving average (EWMA). The results from previous volatility fore-

casting studies are mixed and there’s no solid and consistent view of superior volatility fore-

casting model while some of the research give support to GARCH-type models and others 

to more simpler moving average models. Volatility forecasts are useful basically everyone 

involved in financial markets. Different volatility forecasts are used in practice e.g., by risk 

and portfolio managers to adjust their asset positions and to hedge portfolios. Volatility is 

also one of the parameters in Black-Scholes-Merton option pricing. Lately, perhaps one of 

the most interesting area has been around volatility-based trading strategies. 

This thesis examined volatility forecasting in six global equity indices, namely DAX30 (Ger-

many), FTSE100 (UK), Shanghai SE Composite (China), NIKKEI225 (Japan), S&P500 

(US) and Dow Jones Industrial Average (US). The sample data from January 1, 2000 through 

December 31, 2020 was divided to January 1, 2000 to December 31, 2015 in-sample and 

January 1, 2016 to December 31, 2020 forecasting periods. The one-day ahead volatility 

forecasts of different ARIMA-GARCH, ARIMA-EGARCH, ARIMA-GJR-GARCH and 

moving average models were compared and ranked based on mean squared error and mean 

absolute error loss functions. Basic GARCH(1,1), EGARCH(1,1) and GJR-GARCH(1,1) 

forecasting models were also included and monthly forecasts were produced only with these 

models. Although fat tails and excess kurtosis are a well-known phenomenon in financial 

data, it is far from clear whether volatility forecasting models with normal distributions or 

distributions allowing more kurtoses are better. Therefore, to compare the volatility forecast-

ing results the normally distributed and t-distributed models were included. The Diebold-

Mariano test was used to test statistical difference of the models’ forecasts. 

The overall conclusion was that there was no single model outperforming across the indices. 

However, the results provided support for the asymmetric models, as at least one of the 

EGARCH model was constantly ranked in top three under both loss functions. The exception 
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to this was the mean squared error ranking with daily volatility forecasts for the German 

DAX30 where the GJR-GARCH and the five-day moving average (MA5) model ranked 

best. The performance of the MA5 was also relatively good and the model outperformed 

many of the GARCH-type models across the indices. Contrary to previous research the 

standard GARCH model was almost constantly outperformed by the asymmetric EGARCH 

and GJR-GARCH models. The results from Shanghai SE Composite index revealed also 

that some of the simple forecasting models can outperform more complex models as the 

moving average and exponentially weighted moving average ranked best volatility forecast-

ing models. According to results from the monthly forecasts, the exception to top perfor-

mance of the asymmetric models were the results from Shanghai as under MAE, the 

GARCH(1,1) with normal t-distribution ranked first and second place. Under MSE, the 

EGARCH(1,1) hold first place followed by the GARCH(1,1).  

Beside of the good performance of the asymmetric and the five-day moving average models, 

the other key take away message from this thesis is that although the data showed signs of 

excess kurtosis and fat tails, models with t-distributions were not constantly outperforming 

their normal distributed counterparts. Also, the Diebold-Mariano test result indicated that in 

most cases, there’s no statistical difference between the first ranked model forecast and fol-

lowing second or third ranked model forecasts. When evaluating these results, it is important 

to consider the dependence of methodological choices. The data in this thesis was stock 

market data from different equity indices. As previous research has also outlined, the per-

formance of the volatility forecasting models can vary with different datasets, assets and 

evaluation techniques. Perhaps the biggest benefit is gained when there’s possibility to 

choose different models that perform well in different markets and based on the objective of 

the forecast. 

SUGGESTIONS OF FUTURE RESEARCH 

The results from this thesis created new approaches to consider in future research. The use 

of intraday data and evaluating the forecasting results with different loss functions would be 

fruitful research area. Evaluating volatility forecasts in different market conditions would 

also be an interesting topic. Some volatility forecasting models could offer interesting results 

during rising markets, whereas it would be interesting to see which models perform well in 

market downturns. Lastly, longer forecasting horizon could also bring valuable information 

to strategic portfolio management.   
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